
Hoogle⋆: Constants and λ-abstractions in
Petri-net-based Synthesis using Symbolic Execution
Henrique Botelho Guerra #

INESC-ID and IST, University of Lisbon, Portugal

João F. Ferreira #Ñ

INESC-ID and IST, University of Lisbon, Portugal

João Costa Seco # Ñ

NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

Abstract
Type-directed component-based program synthesis is the task of automatically building a function
with applications of available components and whose type matches a given goal type. Existing
approaches to component-based synthesis, based on classical proof search, cannot deal with large
sets of components. Recently, Hoogle+, a component-based synthesizer for Haskell, overcomes
this issue by reducing the search problem to a Petri-net reachability problem. However, Hoogle+
cannot synthesize constants nor λ-abstractions, which limits the problems that it can solve.

We present Hoogle⋆, an extension to Hoogle+ that brings constants and λ-abstractions to
the search space, in two independent steps. First, we introduce the notion of wildcard component, a
component that matches all types. This enables the algorithm to produce incomplete functions, i.e.,
functions containing occurrences of the wildcard component. Second, we complete those functions,
by replacing each occurrence with constants or custom-defined λ-abstractions. We have chosen
to find constants by means of an inference algorithm: we present a new unification algorithm
based on symbolic execution that uses the input-output examples supplied by the user to compute
substitutions for the occurrences of the wildcard.

When compared to Hoogle+, Hoogle⋆ can solve more kinds of problems, especially problems
that require the generation of constants and λ-abstractions, without performance degradation.

2012 ACM Subject Classification Software and its engineering → Automatic programming; Theory
of computation → Automated reasoning

Keywords and phrases Type-directed, component-based, program synthesis, symbolic execution,
unification, Haskell

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.4

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.20

Funding FCT UIDB/04516/2020, FCT UIDB/50021/2020, and ANI Lisboa-01-0247-Feder-045917.

Acknowledgements We want to thank to the anonymous reviewers, for the constructive feedback.

1 Introduction

Program synthesis is the task of automatically building a program that fulfills a specification
supplied by the user [12]. Specifications can vary from examples [31], sketches [36], to
ontologies [4] and types [13]. In type-guided component-based program synthesis, users
provide the type of the function to synthesize (the query type), and optionally, input-
output examples. Each solution is composed of applications of functions from a given
component set. A recent example is Hoogle+ [14, 20], a state-of-the-art synthesizer for
the Haskell programming language that successfully solves several real-world problems with
large component sets. For example, given the query type (a -> b) -> [a] -> b, it can

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 4; pp. 4:1–4:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:henrique.b.guerra@tecnico.ulisboa.pt
https://orcid.org/0009-0002-5906-3033
mailto:joao@joaoff.com
https://joaoff.com
https://orcid.org/0000-0002-6612-9013
mailto:joao.seco@fct.unl.pt
http://ctp.di.fct.unl.pt/~jcs
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.4230/DARTS.9.2.20
https://doi.org/10.4230/DARTS.9.2.20
https://doi.org/10.4230/DARTS.9.2.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

synthesize the function \x1 x2 -> x1 (GHC.List.head x2). Multiple solutions are filtered
using input-output examples. Unlike most approaches to component-based synthesis, which
are based on classical proof search, Hoogle+ can deal with large sets of components, because
it reduces synthesis to a Petri-net reachability problem, following the approach of SyPet [7],
a component-based synthesizer for Java.

Challenges for constants and λ-abstractions. Despite the benefits of Petri-net-based
approaches, they exclude constants and custom λ-abstractions from the search space, because
Petri nets only synthesize solutions whose terms belong to the component set, and it is
impossible to insert all constants and custom λ-abstractions in a finite set. We found
several problems in StackOverflow that Hoogle+ cannot solve because the solutions require
constants or λ-abstractions to be synthesized. So, bringing both classes of terms to the
search space will allow Hoogle+ to solve more problems, making life easier for Haskell
programmers.

Motivating example. As an example, suppose that we want to append the constant 0 to a
list. We provide to Hoogle+ the query type [Int] -> [Int] together with the example that
maps the input [1] 1 to the output [1, 0] . A solution is as simple as \x1 -> x1 ++ [0] ,
however, Hoogle+ is not able to synthesize it, because it requires the constant [0] to
be synthesized. The same happens with custom λ-abstractions. Suppose that we want
to map each element of a list of integers to its square. For example, given [1, 2, 3] ,
the output should be [1, 4, 9] . The query type is [Int] -> [Int], and a solution
is \list -> map (\x -> x * x) list. However, this solution cannot be synthesized by
Hoogle+ as λ-abstractions do not belong to the search space.

Our approach. In this work we propose and evaluate a solution to bring constants and
λ-abstractions to the search space of Hoogle+, following two independent steps. First,
we add to the component set the wildcard component, a component that matches all types.
The Petri net is then allowed to synthesize incomplete functions: functions that use that
component, such as \list -> map wildcard list. In this example, the wildcard compon-
ent appears where a function is expected; however, in general, it could appear in place of
an integer, string, or any other type. The second step is to replace the occurrences of the
wildcard component with constants or λ-abstractions. When the wildcard occurs in place
of a constant, we use a unification algorithm based on symbolic execution, that uses the
input-output examples provided by the user to infer the constant. When the wildcard occurs
in place of a function, we synthesize a λ-abstraction, using a faster, bespoke synthesizer.

Contributions. In summary, our contributions are:
1. We develop a new unification algorithm for a subset of Haskell, that we use to replace the

occurrences of the wildcard component with constants. The algorithm is generic enough
for other uses, as explained in Section 8.

2. We present Hoogle⋆, an extension of Hoogle+, that synthesizes functions with
constants and λ-abstractions. As shown in Section 5, it solves several problems that
cannot be solved by the original Hoogle+.

1 Haskell list notation is represented in italic font, to avoid confusion with citations.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:3

P1 P2 P3
T1

T3

T2

1 1
1

2 1

1

Figure 1 A Petri net with 3 places, 3 transitions, and 6 edges. In Feng et al. [7].

P1 P2 P3
T1

T3

T2

1 1
1

2 1

1

Figure 2 The Petri net of Figure 1 after T1 has fired. In Feng et al. [7].

Document structure. Section 2 presents the background: Petri nets and Hoogle+;
Section 3 presents the unification algorithm; Section 4 describes the extension made to
Hoogle+; Section 5 evaluates Hoogle⋆, by comparing it to Hoogle+; Section 6 discusses
the related work; Section 7 discusses the limitations of this work; and Section 8 summarizes
the lessons learned and the future work.

2 Background

In this section, we describe Petri nets, Hoogle+, and SyPet.

2.1 Petri nets
Petri nets are used by Hoogle+ to represent the search space. In this section, we define
relevant concepts of Petri nets and present examples.

▶ Definition 1. A Petri net is a tuple (P, T, E, W), where P is the set of places, T is the
set of transitions, E ⊆ (P × T) ∪ (T × P) is the set of edges between places and transitions
and between transitions and places, and W : E → N0 is a function that maps each edge to its
weight. Each place in a Petri net can have zero or more tokens. A marking (also known
as configuration) M of a Petri net N = (P, T, E, W) is a function P → N0 that maps each
place to its number of tokens.

We represent places by drawing circles and transitions by drawing narrow rectangles.
Edges are represented by arrows, and each natural number we write near each edge is its
weight. For example, consider the Petri net in Figure 1. The places are P1, P2 and P3, and
the transitions are T1, T2 and T3. The edge (P2, T2) has weight 2, and all the other edges
have weight 1. The place P1 has 2 tokens, whereas the remaining places have no tokens.

We explain next how transitions can change the marking of a Petri net, defining the
concepts of enabled transition and firing a transition.

▶ Definition 2. We say that the transition t is enabled if and only if for each place p with an
edge to t, the number of tokens is at least the weight of the edge (p, t). We say that firing an
enabled transition is changing the marking of the Petri net, consuming a certain number
of tokens from each place that has an edge to the transition, and producing a certain number
of tokens in each place with an edge from the transition, according to the weight of each edge.

ECOOP 2023

4:4 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

A C

B

D E
f g h

1 1 1 1 1 11

1

Figure 3 A Petri net for the component set f:A->C, g:B->C->D, h:D->E. The initial marking
for the query type A->B->E.

In the example of Figure 1, T1 is the only enabled transition. Firing T1 produces the
marking of Figure 2: one token was consumed in P1 (W (P1, T1) = 1), and one token was
produced P2 (W (T1, P2) = 1).

The last concept about Petri nets that we introduce is a decision problem called reachability.

▶ Definition 3. Given a Petri net N = (P, T, E, W), with marking M , and new marking
M ′, the reachability problem for Petri nets consists of assessing whether it is possible
to reach M ′ starting at M and by firing a certain sequence of transitions. We say that M

is the initial marking, M ′ is the target marking, and the trace is the sequence of fired
transitions.

For example, consider the Petri net and marking M shown in Figure 1. A marking
{P1 7→ 0, P2 7→ 0, P3 7→ 1} is reachable from M . A trace is ⟨T1, T1, T2⟩.

2.2 SyPet, Hoogle+ and Synthesis via Petri-net reachability
SyPet [7] is a scalable component-based synthesizer for Java and deals with large component
sets by reducing the problem to a Petri-net reachability problem. Hoogle+ [14] adapts this
idea to the Haskell programming language, extending the approach to deal with parametric
polymorphism, high-order functions, and typeclasses. In its latest version, it support input-
output examples [20]. In this section, we explain how Petri nets can be used for synthesis, as
well as an overview of SyPet, and the changes introduced by Hoogle+.

Petri net construction. Generally speaking, SyPet starts with building a Petri net that
models the component set, and then solves the reachability problem, using the resulting trace
to synthesize functions. Given a component set C and a query type t, SyPet constructs the
Petri net N = (P, T, E′, W), and the initial marking as follows.
1. The places in P are the parameter types and return types of the components in C.
2. The transitions in T are the components of C, i.e., T = C.
3. For each type t′, and component c, we have (t′, c) ∈ E with W ((t′, c)) = m if and only if

t′ is the type of m > 0 parameters of c.
4. For each type t′, and component c, we have edge (c, t′) if and only if t′ is the return type

of c.
5. For each place p that is the type of a parameter of the query type, we add a clone

transition k where W (p, k) = 1 and W (k, p) = 0.
6. For each parameter type of the query type we put as many tokens as the number of

arguments of the given type.

Figure 3 shows an example of a Petri net that models a synthesis problem.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:5

Synthesizing a function from a trace. Once the Petri net is built, we solve a reachability
problem, where the target marking has a single token in the place that represents the return
type of the query type. Then, the resulting trace is used to synthesize the desired function.
For instance, in Figure 3, the target marking would have a token in place E, and a trace
is ⟨ f,g,h ⟩, from which the function \arg1 arg2 -> h (g (f arg1) arg2) is synthesized.
However, synthesizing a function from a trace is not trivial, because a trace cannot distinguish
between different tokens in the same place, and no notion of order of incoming edges is
maintained. So, multiple functions may arise from a single trace. We do not explain how
SyPet performs the reachability analysis and synthesis from traces, as it is not necessary to
follow the rest of this paper; for more details, see Feng et al. [7].

Hoogle+. So far we have discussed the algorithm of SyPet, which only supports mono-
morphic types. However, most functions from the Haskell libraries have polymorphic types.
Thus, Hoogle+ [14] has to deal with polymorphic types, which introduce the following chal-
lenges, if we represent all the monomorphic types in the Petri net: there is no limit to the set
of types that may arise (for example [Char], [[Char]], [[[Char]]], etc.), and some compon-
ents, such as id :: a -> a, create a transition for each place. Representing monomorphic
types, even if we bound the set of types, leads to an intractable Petri net, so Hoogle+
uses abstract types, representing sets of concrete, monomorphic types. For example, the
abstract type τ is the set of all existing types, whereas Maybe τ = {Maybe t : t ∈ Type}. The
algorithm starts with the most abstract Petri net, containing only the place τ , which leads
to ill-typed programs. Then, the type errors are used to refine the Petri net, introducing
more concrete types. For more details, see Guo et al. [14].

3 Unification via Symbolic Execution

Petri nets allow the generation of functions with occurrences of the wildcard component.
Our goal is to use Hoogle+ to generate functions that may contain wildcards and then
replace each wildcard occurrence with a constant or a custom λ-abstraction, matching
the set of given input-output examples. For this purpose, we use a unification algorithm
that, given a source expression with symbolic variables, and a target grounded expression,
computes a substitution for the symbolic variables so that the first expression evaluates to
the second expression. When a solution is found by Hoogle+, we replace the occurrences
of the wildcard with symbolic variables in the synthesized function, the parameters with
the input of the input-output example, and unify the resulting expression with the output
of the input-output example. Consider the example from Section 1, where constant [0]
is appended to the input list. The query type is [Int] -> [Int], and an example maps
the input [1] to the output [1, 0] . The Petri net will generate \x1 -> x1 ++ wildcard .
We then replace the occurrences of wildcard with fresh symbols and unify [1] ++ s1 with
[1, 0] , where the algorithm substitutes the symbolic variable s1 with the constant [0] , by
inspecting the definition of (++).

Requirements. The unification algorithm has the following requirements:
The input of the unification algorithm is the function synthesized by the Petri net, as well
as the input-output examples. As the algorithm inspects the definitions of the synthesized
function, and of the applied components, it has to support enough language constructs
to encode the component set of Hoogle+, such as the case construct, algebraic data
types, integers, or, at least naturals, ad-hoc polymorphism, function application, and
λ-abstractions. Additionally, it has to support symbols both in place of constants and in
place of functions.

ECOOP 2023

4:6 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

e ::= x (variable)
| s (symbolic variable)
| λx.e (λ-abstraction)
| µ {e} (polymorphic λ-abstraction)
| K e (data constructor)
| case e of {a} (case)
| e e (application)

a ::= K x → e (case alternative)

Figure 4 Grammar of the supported language, λU .

The unification algorithm does not need to support the occurrence of symbols, nor the
application of functions or case constructs in the target expression, because this expression
is always the output of an input-output example, simplifying the algorithm.

3.1 Syntax

Figure 4 presents the grammar of the language supported by the unification algorithm, which
we call λU . Now, we discuss each construct, and present Example 4 and Example 5.

Variables play the same role as in λ-calculus, and are represented by x, xi.
Symbolic variables denote unknown expressions and are represented by s, si. Symbolic

variables can occur in place of functions or constants.
Abstractions have a sequence of variables (the parameters) and an expression that defines

the abstraction. For example, the identity function can be encoded as λ x . x.
Polymorphic abstractions allow us to encode ad-hoc polymorphism, present in Haskell

through typeclasses: each type provides an implementation for a given operation, which
are chosen depending on the types of the arguments [33]. In λU , a polymorphic abstraction
consists of a set of λ-abstractions, each one being a monomorphic variant.

Data constructors have a name and a sequence of arguments. As we do not have literals,
this is the only way to represent data (natural numbers are represented using Peano
numbers2, such as S (S Z), lists are represented using constructors Cons and Nil).

Case expressions have an expression (the scrutinee) and a sequence of alternatives. Each
alternative has the name of a data constructor, a sequence of variables (one vari-
able per constructor argument), and an expression. A case expression is of the form:
case x of {Cons x1 x2 → Just x1; Nil → Nothing}. There are two differences with rela-
tion to case expressions in Haskell: we do not support guards and our alternatives only
support variables after the data constructor (Haskell allows patterns such as Just True).

Applications have an expression and a sequence of expressions (the arguments). For example,
e e1 e2 denotes the application of e to the arguments e1 and e2. Currying is not supported
natively, and requires a specific encoding, as explained in Section 7.

▶ Example 4. Function map, applying a function f to a list l, can be encoded in λU as:

map = λ f l . case l of {Nil → Nil; Cons h t→ Cons (f h) (map f t)}

2 To be concise, we may write Arabic numbers as an abbreviation of the Peano representation.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:7

▶ Example 5. We define the polymorphic abstraction eq, similar to the function
Data.Eq.(==) from the Haskell standard library, which has two arguments, and returns
True if and only if the arguments are equal. We define two versions: one for naturals and
another for booleans: eq = µ {eqN, eqB}.

eqN = λ x1 x2 . case x1 of {Z → case x2 of {Z → True; S x3 → False};
S x3 → case x2 of {Z → False; S x4 → eq x3 x4}}

eqB = λ x1 x2 . case x1 of {False → case x2 of {False → True; True → False};
True → case x2 of {False → False; True → True}}

3.2 Inference rules
Now, we explain how the algorithm works by providing inference rules. First, we define the
concept of map of substitutions, in Definition 6, and then, in Definition 7, we introduce a
judgement that establishes the result of unifying two expressions. The inference rules can be
used to derive judgements, and we provide different rules for different combinations of source
and target expressions.

▶ Definition 6. A map of substitutions Σ is a mapping from symbolic variables to
expressions (or applications of symbolic variables, when they occur in place of functions, as
explained in Section 3.2.5). Σ(s) denotes the value of s in map Σ, while Σ[s 7→ e] denotes
the map Σ updated with the substitution of s with e. We write [] to denote the empty map,
and dom(Σ) to denote the set of symbolic variables that are substituted in Σ.

▶ Definition 7. The judgement Σ ⊢ esrc ≡ etgt ▷ Σ′, defined by the rules in Figure 5,
denotes the relation where Σ′ is the map of substitutions that results from unifying esrc and
etgt, given the initial map Σ.

The rules shown in Figure 5 guarantee that for all resulting substitutions Σ′, we have
eval(Σ′, esrc) = eval(Σ′, etgt), with Σ ⊆ Σ′. We validated this experimentally (a formal proof
is left for future work). The evaluation function is defined in Algorithm 1. We need to use
two maps Σ and Σ′ because the first map represents the substitutions computed so far, and
the second map represents the first one, eventually updated with new substitutions so that a
substitution computed before is not discarded. So, we have Σ ⊆ Σ′. We will return to this
topic when we address the rule for unifying data constructors, in Section 3.2.2. In the rest of
this section, we present the syntax-directed rule system, which is summarized in Figure 5.

3.2.1 Unifying symbolic variables with expressions
We start with the simplest case: Σ ⊢ s ≡ e ▷ Σ′, in which the source expression is a
symbolic variable s, and the target expression is any expression e. In this case, adding the
substitution of s for e to the input map solves the problem, if s is not already assigned in the
substitutions map computed so far, which is Σ (rule SNAL). When the symbolic variable s

is already substituted in Σ, we try to unify e with Σ(s) and add the new substitutions to the
initial map (rule SAL).

▶ Example 8. We derive [s1 7→ s2] ⊢ s1 ≡ False ▷ [s1 7→ s2, s2 7→ False].

s1 ∈ [s1 7→ s2]
s2 ̸∈ dom([s1 7→ s2])

[s1 7→ s2] ⊢ [s1 7→ s2](s1) ≡ False ▷ [s1 7→ s2, s2 7→ False] SNAL

[s1 7→ s2] ⊢ s1 ≡ False ▷ [s1 7→ s2, s2 7→ False] SAL

s1 cannot be assigned to False because it is already assigned to s2. So, we unified Σ(s1)
with False.

ECOOP 2023

4:8 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Algorithm 1 Function eval.

eval(Σ, λ x . b) = λ x . b eval(Σ, µ {opts}) = µ {opts}

eval(Σ,s) =
{

s if s ̸∈ dom(Σ)
eval(Σ, e) if Σ(s) = e

eval(Σ, K) = K

eval(Σ, K e1 ... ek) = K eval(Σ, e1) ... eval(Σ, ek)

eval(Σ, f e1 ... ek) =

eval(Σ, b{e′
1/x1 , ..., e′

k/xk}) if eval(Σ,f)=λ x1 ... xk . b
where e′

i=eval(Σ,ei), for i∈{1, ..., k}

eval(Σ, b{e′
1/x1 , ..., e′

k/xk})
if eval(Σ,f)=µ {opts},

λ x1 ... xk . b ∈ opts, and
eval(Σ,b{e′

1/x1 ,..., e′
k/xk})̸=error

where e′
i=eval(Σ,ei), for i∈{1, ..., k}

eval(Σ, Σ(s e′
1 ... e′

k))
if eval(Σ,f)=s

s e′
1 ... e′

k∈dom(Σ)
where e′

i=eval(Σ,ei), for i∈{1, ..., k}

s e′
1 ... e′

k

if eval(Σ,f)=s
s e′

1 ... e′
k ̸∈dom(Σ)

where e′
i=eval(Σ,ei), for i∈{1, ..., k}

eval(Σ, case scr of {alts}) = eval(Σ, b{e1/x1, ..., ek/xk}) if eval(Σ,scr)=K e1 ... ek

and K x1 ... xk→b ∈ alts

eval(Σ, e) = error otherwise

We have said that the target expression should not contain symbols. However, internally,
we need support for symbols in the target expression, due to the rule for case constructors,
which is presented in Section 3.2.3. So, there are two more rules: SNAR and SAR, similar
to the SNAL and SAL, with the difference that the symbolic variable is now the target
expression.

3.2.2 Unifying data constructors
The rule DC is applied when both expressions are data constructors, with the same data
constructor and the same number of arguments, and unifies each argument of the source
data constructor with the corresponding argument in the target data constructor.

▶ Example 9. We derive [] ⊢ Pair s1 s2 ≡ Pair True Nil ▷ [s1 7→ True, s2 7→ Nil].

s1 ̸∈ dom([])
[] ⊢ s1 ≡ True ▷ [s1 7→ True]

s2 ̸∈ dom([s1 7→ True])
[s1 7→ True] ⊢ s2 ≡ Nil ▷ [s1 7→ True, s2 7→ Nil]

[] ⊢ Pair s1 s2 ≡ Pair True Nil ▷ [s1 7→ True, s2 7→ Nil]

where the two top rules are SNAL, and the bottom rule is DC. Both expressions are data
constructors with two arguments, and the constructor is the same, Pair . So, we unify s1
with True, and the result is passed to the unification of s2 with Nil. An important aspect is

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:9

s ̸∈ dom(Σ)
Σ ⊢ s ≡ e ▷ Σ[s 7→ e] SNAL

e′
i = eval(Σ, ei), i = 1, 2, ..., k

s e′
1 ... e′

k ̸∈ dom(Σ)
Σ ⊢ s e1 ... ek ≡ dst ▷ Σ[s e′

1 ... e′
k 7→ dst] ASNA

s ̸∈ dom(Σ)
Σ ⊢ e ≡ s ▷ Σ[s 7→ e] SNAR

e′
i = eval(Σ, ei), i = 1, 2, ..., k

Σ(s e′
1 ... e′

k) = e′

Σ ⊢ dst ≡ e′ ▷ Σ′

Σ ⊢ s e1 ... ek ≡ dst ▷ Σ′ ASA

s ∈ dom(Σ) Σ ⊢ Σ(s) ≡ e ▷ Σ′

Σ ⊢ s ≡ e ▷ Σ′ SAL
s ∈ dom(Σ) Σ ⊢ e ≡ Σ(s) ▷ Σ′

Σ ⊢ e ≡ s ▷ Σ′ SAR

Σ0 ⊢ e1 ≡ f1 ▷ Σ1

...

Σk−1 ⊢ ek ≡ fk ▷ Σk

Σ0 ⊢ K e1 ... ek ≡ K f1 ... fk ▷ Σk
DC

λ x1 ... xk . b ∈ opts

Σ ⊢ (λ x1 ... xk . b) e1 ... ek ≡ e′ ▷ Σ′

Σ ⊢ (µ {opts}) e1 ... ek ≡ e′ ▷ Σ′ AP

Σ ⊢ b{s1/x1, ... sk/xk} ≡ e′ ▷ Σ0

s1, ... sk fresh
Σ0 ⊢ e1 ≡ s1 ▷ Σ1

...

Σk−1 ⊢ ek ≡ sk ▷ Σk

Σ ⊢ (λ x1 ... xk . b) e1 ... ek ≡ e′ ▷ Σk
AL

K x→ b ∈ a

Σ ⊢ scr ≡ K s ▷ Σ′, s fresh
Σ′ ⊢ b{s/x} ≡ e ▷ Σ′′

Σ ⊢ case scr of {a} ≡ e ▷ Σ′′ C

Figure 5 Syntax-directed rule system that defines the judgement Σ ⊢ esrc ≡ etgt ▷ Σ′.

that the map that results from unifying e1 with f1 is passed as input to unify e2 with f2,
and so on, to preserve all substitutions and to avoid contradictions, which is illustrated in
Example 10.

▶ Example 10. We want to unify Pair s s with Pair True False. Both expressions have the
same data constructor and the same number of arguments, so let us apply the DC rule. First,
we have to derive [] ⊢ s ≡ True ▷ [s 7→ True], by using the rule SNAL. Second, we have to
derive [s 7→ True] ⊢ s ≡ False ▷ Σ′, for a certain Σ′. However, this is impossible because
we are trying to unify s with False, and the unification of the first argument substituted s

with True.

3.2.3 Unifying case expressions with expressions
When the source expression is a case construct, the rule C chooses a case alternative such
that the scrutinee (scr) unifies with the selected data constructor. For example, if the case
expression is case expr of {Nothing → False, Just x→ x}, and supposing that we have
chosen the first alternative, we have to ensure that expr unifies with Nothing. When the

ECOOP 2023

4:10 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

data constructor has arguments (for instance, Just has one argument), we generate fresh
symbols (which introduces the need to support symbolic variables in the target expression).
This would be the case if we selected the second alternative: we would unify expr with
Just s, where s is a fresh symbol. Finally, we unify the body of the alternative, b, with
the target expression, substituting the variables of the alternative with the fresh symbols
(b{s/x}). In rule C of Figure 5, s denotes the sequence of fresh symbols, x denotes the
sequence of arguments of the data constructor, and b{s/x} denotes the expression b in which
each occurrence of xi ∈ x is replaced with the corresponding symbol si ∈ s.

▶ Example 11. We derive

[] ⊢ case s of {Nothing → False, Just x→ x} ≡ True ▷ [s 7→ Just s1, s1 7→ True]

where s1 is a fresh symbol, and A and B are derivation subtrees. The derivation applies C:

A B (Just x→ x) ∈ {Nothing → False, Just x→ x}
[] ⊢ case s of {Nothing → False, Just x→ x} ≡ True ▷ [s 7→ Just s1, s1 7→ True]

where A abbreviates

s ̸∈ dom([])
[] ⊢ s ≡ Just s1 ▷ [s 7→ Just s1], s1 fresh SNAL

and B abbreviates

s1 ̸∈ dom([s 7→ Just s1])
[s 7→ Just s1] ⊢ x{s1/x} ≡ True ▷ [s 7→ Just s1, s1 7→ True] SNAL

We choose the alternative Just x→ x, unify s with Just instantiated with a fresh symbolic
variable s1 and then unify the body with the target expression. Note that the symbolic
variable s is substituted with Just s1 and s1 is substituted with True, so we have to evaluate s.
We have eval([s 7→ Just s1, s1 7→ True], s) = Just True, and substituting s with Just True

solves the unification problem.

3.2.4 Unifying λ-abstraction applications with expressions
When the source expression is an application of a λ-abstraction, and the number of arguments
is the same as the number of parameters, we apply AL, replacing the arguments of the
application with fresh symbols in b and unifying this result, b{s1/x1, ... sk/xk}, with the
target expression. The idea is to propagate the target expression to the arguments of the
application: the unification will compute substitutions for the fresh symbols, and then we
unify each argument with the corresponding fresh symbol.

▶ Example 12. We derive [] ⊢ (λ x y . x) s F ≡ T ▷ [s1 7→ T, s 7→ s1, s2 7→ F], where s1
and s2 are fresh symbols, and A, B and C are derivation subtrees.

A B C
[] ⊢ (λ x y . x) s F ≡ T ▷ [s1 7→ T, s 7→ s1, s2 7→ F] AL

where A, B, and C abbreviate respectively

s1 ̸∈ dom([])
[] ⊢ x{s1/x, s2/y} ≡ T ▷ [s1 7→ T], s1, s2 fresh SNAL

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:11

s ̸∈ dom([s1 7→ T])
[s1 7→ T] ⊢ s ≡ s1 ▷ [s1 7→ T, s 7→ s1] SNAL

s2 ̸∈ dom([s1 7→ T, s 7→ s1])
[s1 7→ T, s 7→ s1] ⊢ F ≡ s2 ▷ [s1 7→ T, s 7→ s1, s2 7→ F] SNAR

The λ-abstraction has two parameters, and so we generate two symbols: s1 and s2. The body
of the λ-abstraction is x, and x{s1/x, s2/y} = s1, which is unified with the target expression.
Finally, we unify the arguments s and F with s1 and s2.

3.2.5 Unifying applications of symbols with expressions
As stated in Section 3.1, a symbolic variable can occur in place of a function, however, instead
of assigning it directly to expressions, which is out of the scope of this work, we assign
applications of symbolic variables to expressions. This allows the generation of input-output
examples for unknown functions and the detection of contradictions, which is relevant for
Hoogle⋆, as described in Section 4. For instance, unifying map s (Cons 1 (Cons 2 Nil))
with Cons 2 (Cons 3 Nil) generates examples for the unknown function s: assigns s 1 to 2
and s 2 to 3. On the other hand, it will be impossible to unify map s (Cons 1 (Cons 1 Nil))
with (Cons 1 (Cons 2 Nil)), because s 1 will be assigned to 1, and then to 2, which generates
a contradiction.

We have two rules ASNA and ASA, very similar to the rules for symbols, shown in
Section 3.2.1. We need to store the arguments e = e1 e2 ... ek in a form as reduced as
possible (using eval) because we need to compare each argument for equality3, to check if an
application is already assigned as in the following example.

▶ Example 13. We derive [s 0 7→ 2, s 1 7→ 3] ⊢ s ((λ x . 0) 1) ≡ 2 ▷ [s 0 7→ 2, s 1 7→ 3].

0 = eval(Σ, s ((λ x . 0) 1)) Σ(s 0) = 2 Σ ⊢ 2 ≡ 2 ▷ Σ
Σ ⊢ s ((λ x . 0) 1) ≡ 2 ▷ Σ ASA

where Σ = [s 0 7→ 2, s 1 7→ 3]. We omit the derivation of Σ ⊢ 2 ≡ 2 ▷ Σ. This example
shows the importance of evaluating the arguments before updates and lookups to the map of
substitutions. Indeed, the application s ((λ x . 0) 1) is not substituted in Σ, but (λ x . 0) 1
evaluates to 0, and s 0 is already substituted in Σ.

3.2.6 Unifying applications of polymorphic abstractions with expressions
When the source expression is an application of a polymorphic abstraction, we apply AP ,
which chooses a λ-abstraction from opts and then unifies the application of this λ-abstraction
to the provided arguments with the target expression. However, we cannot just choose any
λ-abstraction. For instance, if the arguments are lists, we cannot choose a function that
expects booleans, as the unification will fail.

▶ Example 14. We derive that [] ⊢ eq s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False]
where polymorphic abstraction eq was defined in Example 5.

eqB ∈ opts [] ⊢ eqB s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False]
[] ⊢ eq s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False]

3 Rule ASA can be applied only if the arguments are comparable for equality, which require the arguments
not to be abstractions.

ECOOP 2023

4:12 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

where rule AP is applied, opts = {eqN, eqB} and the derivation of the second hypothesis
is omitted. When applying rule AP , we cannot choose the λ-abstraction eqN , because the
derivation of [] ⊢ eqN s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False] gets stuck, as
the case expressions of eqN do not contain alternatives matching True and False.

3.3 Lazyness

The inference rules are lazy. For instance, consider the application (λ x y . x) e1 e2
being unified with target. We first unify the body with arguments replaced with symbols
x{s1/x, s2/y} with target, and then unify e1 with s1 and e2 with s2. As y is not used in the
abstraction, s2 will not be assigned, so the unification of e2 with s2 will simply assign the
symbol to the expression, and e2 is not reduced. Thus, in principle, the algorithm supports
computations with conceptually infinite structures [18]. For instance, it can unify take sym1
(repeat sym2) with [3, 3], replacing sym1 with 2 and sym2 with 3.

3.4 Implementation

The unification algorithm was implemented in Haskell and performs a depth-first search:
it tries to apply the rules and backtracks if it fails. The heart of symbolic execution and
backtracking in the algorithm is the rule for the case construct: it attempts each alternative
until it succeeds. To prevent the algorithm from running forever, we limit the depth of the
DFS. The algorithm returns a substitution if found; Mismatch, if no substitution was found
after trying all the possible rules (never reaching the limit for rules); or DepthReached if
the maximum number of rules was reached in at least one path and no solution was found.
Although the algorithm implements a search, it is very fast in practice. We conjecture that
this is because the branching factor is reduced. Functions that work with lists typically have
case expressions with no more than two cases (Nil and Cons), and the Nil case tends to be
a base case (a leaf, in the search tree).

4 Extension to Hoogle+: Hoogle⋆

In this section, we describe the implementation of Hoogle⋆4, by explaining the two in-
dependent steps presented in Section 1. We start with the modifications to introduce the
wildcard component in Section 4.1, and, in Section 4.2, we address how the occurrences of
the wildcard component are replaced.

4.1 The wildcard component

The first step is to add a component that matches all types so that it can occur where an
integer, a list, a function, etc., is expected. Hoogle+ requires the name and the type of each
component, so we provided the name wildcard associated with the type a, which matches all
types. With this extension, Hoogle+ can synthesize functions containing the wildcard such
as \arg1 -> map wildcard arg1, in which the wildcard occurs in place of a function (the
first parameter of GHC.List.map is a function) or \arg1 -> arg1 ++ wildcard , in which
the wildcard occurs in place of a list (both parameters of GHC.List.++ are lists).

4 The Hoogle⋆ repository is available at https://github.com/sr-lab/hoogle_plus.

https://github.com/sr-lab/hoogle_plus

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:13

The component set of Hoogle+ contains four constants ([], True, False, and Nothing),
which are not required in Hoogle⋆ because the unification algorithm is able to generate
them. So, these constants are not present in the default component set of Hoogle⋆.

4.2 Replacing occurrences of the wildcard component

Algorithm 2 Overview of Hoogle⋆.
1: procedure Hoogle⋆(components, query, N , examples)
2: parsedExamples← parse examples to λU

3: petri← build the Petri Net with components ∪ {("wildcard", "a")}
4: for i = 1, ..., N do
5: synth← synthesize a function for query using petri

6: if synth has wildcards then
7: completions← complete(synth, parsedExamples, components, query)
8: print(comp) for comp ∈ completions

9: else if synth respects examples then
10: print(synth)

Algorithm 2 shows an overview of Hoogle⋆. It takes four parameters: components,
the component set; query, the query type; N , the number of functions the Petri net should
synthesize; and examples, the input-output examples. Hoogle⋆ starts by parsing each
input-output example to a pair (xi1 ... xik, yi), containing a sequence of k inputs and output
in λU , and the Petri net is built, considering the wildcard component. Then the Petri
net synthesizes N functions. The function complete then tries to replace the wildcards
(Algorithm 3).

4.2.1 The Complete function
complete takes four parameters: f , the function generated by the Petri net, expressed in the
Hoogle+ grammar; examples, the examples expressed in λU , components, the component
set; and type, the query type. It has three main steps, presented afterward.

Step 1: Convert to λU . complete starts by converting the function generated by the
Petri net to λU , where each wildcard is replaced with a fresh symbolic variable. The variable
f ′ denotes the function in λU , and symbols denotes the array of generated symbols.

Step 2: Unify. The next step is to call the unification algorithm with the examples. For
each example, the application of f ′ to the inputs is unified with the output, which requires
as many calls to the unification algorithm as the number of examples. The result of all
unifications, Σ, contains symbolic variables assigned to constants for the wildcards occurring
in place of constants, and input-output examples for the wildcards occurring in place of a
function5.

Note that Σ respects all the examples because the unification of each example uses the
result of the unification of the previous example.

5 It is not guaranteed that each symbol is assigned in Σ, which can happen if its value does not impact
the result of the unification. For instance, unifying head (Cons s1 s2) with target assigns s1 to target,
but does not assign s2. In this case, the incomplete function is rejected.

ECOOP 2023

4:14 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Algorithm 3 Function complete.
1: procedure complete(f , examples, components, type)
2: f ′, symbols← convert f to λU , replace wildcards with fresh symbols, and return it
3: Σ← [] ▷ unify pairs of applications to outputs of examples
4: for ((x1, ..., xk), y) ∈ examples do
5: Σ← Unify(Σ, f ′ x1 ... xk, y)
6: if Σ = Error then
7: return Error
8: p← the length of symbols ▷ i.e., the number of wildcards to replace
9: for i = 1, ..., p do

10: if ∃e : symbols[i] e ∈ dom(Σ) then ▷ if symbols[i] denotes a function
11: wildcardType← get the type of the wildcard i in function f

12: λ← synth-lambda(wildcardType, f ′, examples, components, symbols[i])
13: fill[i]← λ

14: else if symbols[i] ∈ dom(Σ) then ▷ if symbols[i] denotes a constant
15: val← eval(Σ, symbols[i])
16: fill[i]← convert val to Haskell notation
17: res← {}
18: for (e1, ..., ep) ∈ fill[1]× ...× fill[p] do ▷ all combinations of expressions
19: res← res ∪ f ′{e1/symbols[1], ..., ep/symbols[p]} ▷ replace wildcards
20: return res in the grammar of Hoogle+

Step 3: Replacing wildcards. After the unification, each symbolic variable is replaced with
a constant or a λ-abstraction. Each iteration of the loop starting at line 9 replaces a symbol,
assigning the replacement (or replacements, if there is more than one alternative) to the
corresponding entry in the array fill. It starts with a lookup in Σ to determine the type of
the expected term:

If there is an application of the symbol, symbols[i], in Σ, the corresponding wildcard must
be replaced with a function. In this case, synth-lambda (Algorithm 4, Section 4.2.2),
is called to synthesize λ-abstractions, with the data type of the function, wildcardType.
Note that this function returns a set of λ-abstractions, because it may find more than
one function that has the specified type and respects the examples.
If the symbol s is itself assigned in Σ, the corresponding wildcard should be replaced with
a constant. In this case, Σ(s) is the expression that replaces the wildcard. However, this
expression must be evaluated, because it may contain occurrences of other symbols, as
explained in Section 3.2.3. Additionally, we replace Peano numbers with Arabic numbers
and Cons/Nil lists with Haskel-syntax lists.

At the end of the loop that starts in line 9, fill has one entry for each wildcard, each one
containing a set of alternative replacements. Then, in the loop starting at line 18 we compute
all the combinations of replacements for each wildcard, through a cartesian product, and, for
each combination, we replace the wildcards in f ′, and add the resulting expression to res.

▶ Example 15. Recall the first example of Section 1. The Petri net is able to synthesize
\x1 -> x1 ++ wildcard . We start by converting both the generated function and the
input-output examples to λU . The function corresponds to λ x1 . (++) x1 s1, the input of
the example becomes Cons 1 Nil, and the output becomes Cons 1 (Cons 0 Nil). The next
step is to unify (λ x1 . (++) x1 s1)(Cons 1 Nil) with Cons 1 (Cons 0 Nil), to compute Σ.
As a result, s1 is assigned itself in Σ to an expression, so the expected term is a constant.
We have eval(Σ, s1) = Cons 0 Nil, that corresponds to [0] in Haskell notation. Finally, the
wildcard is replaced with [0] , which produces the function \x1 -> x1 ++ [0] .

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:15

Note the importance of having the unification algorithm supporting symbols in place of
functions, described in detail in Section 3.2.5. On the one hand, it allows replacing multiple
function wildcards, because they are replaced one at a time. For instance, suppose that
there are two function wildcards to replace. When replacing the first wildcard, we pick a
λ-abstraction and then apply the unification algorithm to the original function, with the
new λ-abstraction replaced. In this case, the second symbol remains, but the unification
algorithm is able to validate if the first wildcard is replaced correctly. If the algorithm could
not support symbolic functions, we would have to pick all the λ-abstractions at once and
try each possible combination, which would lead to a combinatorial explosion. On the other
hand, supporting symbolic functions allows for saving time, because the algorithm can detect
if no λ-abstraction can fill a specific wildcard. In those cases, Hoogle⋆ does not waste time
calling synth-lambda. Section 4.2.2 discusses in detail synth-lambda.

4.2.2 The synthesizer for λ-abstractions

Algorithm 4 Function synth-lambda.
1: procedure synth-lambda(type, originalFun, examples, comps, symbol)
2: lamComps← remove Data.ByteString and high-order components from comps

3: yi ← the i-th parameter of originalFun for i = 1, ..., n

4: xi ← the i-th parameter of the λ-abstraction, for i = 1, ..., k

5: leafs← {y1, ..., yn, x1, ..., xk, s}, s fresh
6: exprs← synth-expr(type, leafs, lamComps, 0)
7: res← {}
8: for e ∈ exprs do
9: lambda← λ x1 ... xk . e

10: lambda′ ← replace-symbols(originalFun, lambda, examples, symbol)
11: if lambda′ ̸= Error and the type of lambda′ matches type then
12: res← res ∪ {lambda′}
13: return res ▷ a list of many λ-abstractions with the specified type

The function synth-lambda computes a λ-abstraction that respects the input-output
examples and has the specified type. We could call Hoogle⋆ recursively, but we conjecture
that it would lead to performance degradations, and a simpler, faster synthesizer is enough to
synthesize λ-abstractions. On the one hand, it may be needed to synthesize λ-abstractions
several times during a single Hoogle+ query, but the paper that presented Hoogle+ [14]
has shown that for many problems, Hoogle+ may take several seconds. Note that each query
may require an unbounded number of synthesis of λ-abstractions because each one of the N

incomplete functions may have an arbitrary number of wildcards in place of functions. On
the other hand, from our experience with the Haskell programming language, λ-abstractions
are simpler than other portions of code and use fewer components. So, we decided to build a
faster, bespoke synthesizer that corresponds to the function synth-lambda.

Search space. The search space of synth-lambda is composed of applications of compon-
ents from Hoogle⋆. To guarantee a faster synthesis, we exclude high-order functions, as well
as the module Data.ByteString (that seems less common in λ-abstractions, from our exper-
ience as Haskell programmers), which leaves 54 popular components. The arguments of the
applications can be the parameters of the λ-abstraction, parameters of the original function,
symbols (to replace using the unification algorithm), and applications of components, with at

ECOOP 2023

4:16 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Algorithm 5 Function synth-expr.
1: procedure synth-expr(type, leafs, components, level)
2: exprs← {}
3: for l ∈ leafs s.t. the type of l matches type do
4: exprs← exprs ∪ {l}
5: if level < 2 then
6: for comp ∈ components s.t. the return type of comp matches type do
7: sign ← the signature of comp, with type variables replaced s.t. the return

type matches type

8: prms← extract the types of the parameters from sign

9: p← the number of parameters of comp

10: args[i]← synth-expr(prms[i], leafs, components, level + 1) for i = 1, ..., p

11: for (e1, ..., ep) ∈ args[1]× ...× args[p] do ▷ all combinations of expressions
12: exprs← exprs ∪ {comp e1 ... ep}
13: return exprs ▷ a list of many expressions with the specified type

Algorithm 6 Function replace-symbols.
1: procedure replace-symbols(originalFun, lambda, examples, symbol)
2: originalFun← originalFun{lambda/symbol}
3: Σ← []
4: for ((x1, ..., xk), y) ∈ examples do
5: Σ← Unify(Σ, originalFun x1 ... xk, y)
6: if Σ = error then
7: return Error
8: for each symbolic variable s in lambda do
9: val← eval(Σ, s)

10: converted← convert val to Haskell notation
11: lambda← lambda{converted/s}
12: return lambda

most two levels, for performance reasons (e.g., in \x -> f (g x) (h x), the arguments of
g and h cannot be applications, only variables, and constants). For example, if the Petri net
synthesizes \arg1 -> map wildcard arg1, for the query type [Int]-> [Int], the wildcard
may be replaced with \x1 -> x1 + 2, \x1 -> x1 * (length arg1), etc., depending on
the input-output examples provided by the user.

Implementation. synth-lambda (Algorithm 4), takes five parameters: type, the signature
of the function to synthesize; originalFun, the original function generated by the Petri net,
but with wildcards replaced with fresh symbols; examples, the input-output examples of
the original function; comps, the component set; and symbol, the symbolic variable that the
new λ-abstraction should replace in originalFun. It follows a generate-and-test approach:
synth-expr does a type-guided enumeration of λ-abstractions, and then replace-symbols
tests the original function with each new λ-abstraction in place of the corresponding symbol,
and replace symbols if any. Finally, we check that the λ-abstraction has the specified type,
because synth-expr does not perform a full type-checking, and only uses types to prune
the search, thus can return ill-typed expressions. At this stage, type classes are ignored, and
we leave for future work the analysis of their impact on the algorithm and its performance.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:17

synth-expr (Algorithm 5) takes four parameters: type, the type of the expression to
synthesize; leafs, the set that contains the parameters of the new λ-abstraction (x1, ...,
xn), the parameters of the original function (y1, ..., yk), and a fresh symbol; components,
the component set of Hoogle⋆ excluding high-order functions and the Data.ByteString
module; and the depth of applications, level. If level is equal or greater than 2, synth-expr
only returns the leafs whose type matches type, to ensure that the maximum level is not
exceeded. Otherwise, it returns also the application of components whose return type matches
type, and the arguments are synthesized by calling synth-expr recursively. Note that we
may have to replace type variables, which we do in line 7. For instance, if the component
has type a -> a and type is Int, we replace a with Int.

replace-symbols (Algorithm 6) takes four parameters: the original Hoogle+ function,
originalFun; the new λ-abstraction, lambda; the input-output examples, examples; and
the symbolic variable that lambda replaces. It starts by replacing symbol with lambda in
the original function. Then, the unification algorithm is used as in the complete function:
for each example, we unify the application of originalFun to the inputs of the example with
the expected output. Finally, each symbol that belongs to λ is replaced with a lookup in Σ,
as complete does. Note that every symbol in the new λ-abstraction must be a constant
because the component set excludes high-order functions.

Example 16 illustrates the synthesis of wildcards in place of functions.

▶ Example 16. Recall the second example of Section 1. The Petri net is able to synthes-
ize \x1 -> map wildcard x1, which corresponds to λ x1 . map s x1 in λU . The example
is converted to λU , and the unification is performed, assigning applications of s (for in-
stance, s 1 to 1), which informs that the expected term is a λ-abstraction. Then, we call
synth-lambda, where type is Int -> Int, originalFun is λ x1 . map s x1, examples is
{(([1, 2, 3]), [1, 4, 9])} and symbol is s. The leafs are the parameter of the original
function (x1), the parameter of the new λ-abstraction (y1), and a fresh symbol. One of
the generated λ-abstractions can be \y1 -> (GHC.Num.*) y1 y1. Then replace-symbols
unifies (\x1 -> map (\y1 -> y1 * y1) x1) [1, 2, 3] with [1, 4, 9] , which succeeds.
Finally, we check that the function has type Int -> Int.

5 Evaluation

In this chapter we empirically evaluate Hoogle⋆, answering the following research questions:
RQ1 Can Hoogle⋆ solve all the problems that Hoogle+ solves, without performance

degradation?
RQ2 Can Hoogle⋆ solve more problems than Hoogle+?

5.1 Evaluation Design
Benchmarks. We use two different sets of benchmarks. To answer RQ1, we use the first
set of 44 benchmarks (Table 1) from the original paper of Hoogle+ [14], which consists of
only query types. To answer RQ2, we use the second set of 26 benchmarks (Table 2), which
consists of a query types and input-output examples and requires the generation of constants
or λ-abstractions6.

6 Most of those benchmarks were adapted from questions in StackOverflow because we could not use
them directly (e.g., if a question used floats, we changed, when possible, to integers). We systematically
searched StackOverflow for Haskell problems, excluding the ones that did not require the generation of

ECOOP 2023

4:18 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Table 1 First set of 44 benchmarks (from Hoogle+ [14]).

Problem Query
1 firstRight [Either a b] -> Either a b
2 firstKey [(a, b)] -> a
3 flatten [[[a]]] -> [a]
4 repl-funcs (a -> b) -> Int -> [a -> b]
5 containsEdge Int -> (Int, Int) -> Bool
6 multiApp (a -> b -> c) -> (a -> b) -> a -> c
7 appendN Int -> [a] -> [a]
8 pipe [a -> a] -> (a -> a)
9 intToBS Int64 -> ByteString

10 cartProduct [a] -> [b] -> [[(a, b)]]
11 applyNtimes (a -> a) -> a -> Int -> a
12 firstMatch [a] -> (a -> Bool) -> a
13 mbElem Eq a => a -> [a] -> Maybe a
14 mapEither (a -> Either b c) -> [a] -> ([b], [c])
15 hoogle01 (a -> b) -> [a] -> b
16 zipWithResult (a -> b) -> [a] -> [(a, b)]
17 splitStr String -> Char -> String
18 lookup [(a, b)] -> a -> b
19 fromFirstMaybes a -> [Maybe a] -> a
20 map (a -> b) -> [a] -> [b]
21 maybe Maybe a -> a -> Maybe a
22 rights [Either a b] -> Either a [b]
23 mbAppFirst b -> (a -> b) -> [a] -> b
24 mergeEither Either a (Either a b) -> Either a b
25 test Bool -> a -> Maybe a
26 multiAppPair (a -> b, a -> c) -> a -> (b, c)
27 splitAtFirst a -> [a] -> ([a], [a])
28 2partApp (a->b)->(b->c)->[a]->[c]
29 areEq Eq a => a -> a -> Maybe a
30 eitherTriple Either a b -> Either a b -> Either a b
31 mapMaybes (a -> Maybe b) -> [a] -> Maybe b
32 head-rest [a] -> (a, [a])
33 appBoth (a -> b) -> (a -> c) -> a -> (b, c)
34 applyPair (a -> b, a) -> b
35 resolveEither Either a b -> (a->b) -> b
36 head-tail [a] -> (a,a)
37 indexesOf ([(a,Int)] -> [(a,Int)]) -> [a] -> [Int] -> [Int]
38 app3 (a -> b -> c -> d) -> a -> c -> b -> d
39 both (a -> b) -> (a, a) -> (b, b)
40 takeNdropM Int -> Int -> [a] -> ([a], [a])
41 firstMaybe [Maybe a] -> a
42 mbToEither Maybe a -> b -> Either a b
43 pred-match [a] -> (a -> Bool) -> Int
44 singleList Int -> [Int]

Experiments. We compare Hoogle⋆ to the original Hoogle+ as described below, giving
each benchmark a timeout of 60 seconds, in the first set of benchmarks, and 90 seconds in
the second set.
1. We run both Hoogle+ (twice, with and without the constants True, False, Nothing and

[]) and Hoogle⋆ on the 44 original benchmarks measuring the number of synthesized
solutions, and the time taken to synthesize the first solution. For each benchmark, we

constants and λ-abstractions, and problems exercising the same capabilities. We also excluded problems
that could not be solved by Hoogle+, for other reasons than the absence of constants and λ-abstractions.
To diversify the components used we searched for questions using specific components. No problem that
we have excluded would be solved by Hoogle+.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:19

Table 2 Second set of 26 benchmarks.

Problem Query Examples
1 mapAdd [Int] -> [Int] [([[1, 2, 3]], [2, 3, 4])]
2 mapSquare [Int] -> [Int] [([[1, 2]], [1, 4])]
3 appendConst [Int] -> [Int] [([[1, 2, 3]], [1, 2, 3, 1000])]
4 filterDiff [Int] -> [Int] [([[1, 2, 3]], [1, 3])]
5 getFirstOnes [Int] -> [Int] [([[1, 1, 0, 1, 2]], [1, 1])]
6 removeFirstOnes [Int] -> [Int] [([[1, 1, 0, 0, 1, 2]], [0, 0, 1, 2])]
7 listIntersect [Int] -> [Int] -> [Int] [([[0, 2, 4], [2, 4, 6]], [2, 4])]
8 indexConst [a] -> a [([[1, 2, 0, 3, 0, 1]], 3)]

9 allGreaterThan [Int] -> Bool
([[2, 3, 4]], True),
([[2, 1, 4]], False)]

10 dropConst [Int] -> [Int] [([[0, 0, 4, 4, 3]], [4, 3])]
11 filterGreaterThan [Int] -> [Int] [([[2, 0, 1, 3]], [2, 3])]
12 filterPairs [(Int, Int)] -> [(Int, Int)] [([[(1, 2), (2, 2), (3, 0)]], [(2, 2)])]
13 filterEq [Int] -> [Int] [([[1, 2, 1, 3, 4, 4]], [1, 1])]
14 replicateConst Int -> [Int] [([1], [1, 1])]
15 addElemsTwoLists [Int] -> [Int] -> [Int] [([[1, 2, 3], [3, 4, 5]], [4, 6, 8])]
16 sumSquares [Int] -> Int [([[1, 3, 1]], 11)]
17 removeMax [Int] -> [Int] [([[1, 3, 2]], [1, 2])]

18 nandPair (Bool, Bool) -> Bool

[([(True, True)], False),
([(False, False)], True),
([(True, False)], True),
([(False, True)], True)]

19 allEqBool [Bool] -> Bool

[([[False, False]],True),
([[True, False]], False),
([[True]],True)]

20 mapReverse [[a]] -> [[a]] [([[[1, 3]]], [[3, 1]])]

21 allJust [Maybe a] -> Bool

[([[Nothing, Just 1]], False),
([[Just 0, Just 0]], True),
([[Just 0, Nothing]], False)]

22 andListPairs [(Bool,Bool)] -> Bool

[([[(True, True), (False, False)]],
False), ([[(True, True), (False,
False), (True, True)]], False),
([[(True, True), (True, True)]],
True), ([[(False, False)]], False)]

23 sumPairEntries (Int, Int) -> Int [([(1, 2)], 3)]
24 filterPairsTyClass (Eq a) => [(a, a)] -> [(a, a)] [([[(1, 2), (2, 2), (3, 0)]], [(2, 2)])]
25 mapAddFloat [Float] -> [Float] [([[1, 2, 3]], [1.5, 2.5, 3.5])]
26 mapAddLarge [Int] -> [Int] [([[100, 200, 300]], [120, 220, 320])]

ask both synthesizers to synthesize at most 10 solutions (parameter N in Algorithm 2).
The goal is to understand the impact of the addition of the wildcard component, and the
removal of the constant components.

2. We run both Hoogle⋆ and the version of Hoogle+ that supports examples[20], on
the 26 benchmarks, measuring also the time consumed replacing the occurrences of the
wildcard, and we ask both synthesizers to synthesize at most 35 solutions7.

Experimental setup. We run the experiments on a laptop with an AMD 5600G, running at
3.9 GHz, with 6 cores and 16 GB of RAM. All the versions of Hoogle+ and Hoogle⋆ use
only two cores. The operating system is Ubuntu 22.04.2 LTS, the version of stack is 2.9.1, and

7 This is a higher value than in the previous step, because many of the N functions synthesized by the
Petri net may be rejected due to the test of input-output examples, and with a lower value of N , both
synthesizers ended the search before the timeout, without finding any solution.

ECOOP 2023

4:20 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

the version of GHC is 8.4.4. The component set used by both Hoogle+ versions contains
the following modules: Data.Bool, Data.ByteString.Builder, Data.ByteString.Lazy,
Data.Either, Data.Eq, Data.Function, Data.Int, Data.Maybe, Data.Ord, Data.Tuple,
GHC.Char, GHC.List, and Text.Show. The total number of components is 297. The compon-
ent set used by Hoogle⋆ is the same, except that we removed the constants Data.Bool.True,
Data.Bool.False, Data.Maybe.Nothing and [], and we added the wildcard component.
Those constants can be synthesized by the unification algorithm, so the component set does
not need to contain them.

5.2 Results
In this section, we discuss the results of the experiments performed to answer the research
questions stated at the beginning of the Section 5.

Results of the first set of benchmarks. The results of the first set of benchmarks are
presented in Table 3, which shows that Hoogle⋆ solves two problems that Hoogle+ could
not solve (benchmarks 6 and 9), and Hoogle+ one problem that Hoogle⋆ could not solve
(benchmark 35). We have not found significant differences in the synthesized solutions, and
in most benchmarks, there are solutions in common.

Hoogle⋆ tends to be faster at synthesizing the first solution and synthesizes more
solutions. On average, Hoogle⋆ synthesizes 2.95 solutions per benchmark and takes 3.92
seconds to synthesize the first solution. Hoogle+ synthesizes 2.41 solutions and takes 5.58
seconds. This can be explained by the removal of the four constants: on average, Hoogle+
without constants takes 3.37 seconds to synthesize the first solution, so, in average, it is faster
than Hoogle+ with constants and Hoogle⋆. Indeed, the removal of the constants leads to
a smaller component set, however, the reason for that is not the number of components that
were removed, but the kind of components. Note that in the Petri net encoding, constants
correspond to nullary transitions, i.e., transitions that do not need tokens to fire, so they can
fire at any moment, leading to a higher branching factor. Thus, the removal of a constant
should have more impact than the removal of a function.

Results of the second set of benchmarks. The results of the second set of benchmarks are
shown in Table 4. Hoogle⋆ solves 22 out of 26 benchmarks, whereas Hoogle+ solves only
3 (benchmarks 50, 52, and 62), which are all solved by Hoogle⋆. This happens because
most benchmarks require constants and λ-abstractions to be synthesized, which Hoogle+
is not able to do. The authors of Hoogle+ [14] argue that the absence of λ-abstractions
does not impact the completeness of the method, because terms with λ-abstractions can be
replaced with a term in point-free style, using the combinators S, K and I. However, this
requires adding a nullary version of each component to the component set, which the authors
consider infeasible, and in practice, only a small subset is added. The component sets of each
version of Hoogle+ used in our evaluation contain the combinators S, K, and I (module
Data.Function), but it was not enough to solve the problems that require λ-abstractions.

In the benchmarks that require the synthesis of constants, the time spent com-
pleting the functions is always lower than 20% of the total time. However, in the
benchmarks that require the synthesis of λ-abstractions, the time spent completing
the wildcards can reach more than 50% of the total time, as happens in bench-
marks 53, 59, and 60. Hoogle⋆ cannot solve benchmark 51, whose solution is
\arg1 arg2 -> filter (\x1 -> x1 ‘elem‘ arg2) arg1, because it requires the Petri net
to synthesize the incomplete function \arg1 arg2 -> filter wildcard arg1, which does
not use arg2, and the Petri net always synthesizes functions that use all the parameters.
It also fails to solve benchmark 68, which is very similar to 56, with the difference that

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:21

Table 3 Results of the first set of benchmarks. For both synthesizers, we show the number
of solutions and the total time to synthesize the first solution, in seconds, or - if no solution was
produced within the timeout of 60 seconds.

Hoogle+ Hoogle+, no consts. Hoogle⋆
Benchmark Time (s) Sols. Time (s) Sols. Time (s) Sols.
1 firstRight 0.56 5 0.53 5 0.47 6
2 firstKey 2.32 4 1.41 2 1.21 2
3 flatten 1.09 9 6.10 9 0.93 9
4 repl-funcs 0.81 2 0.57 2 0.5 5
5 containsEdge 0.92 2 0.82 1 0.66 1
6 multiApp - 0 - 0 1.73 2
7 appendN 0.6 10 0.54 10 0.48 10
8 pipe 6.99 4 7.48 2 7.41 2
9 intToBS - 0 - 0 0.66 6

10 cartProduct 20.08 1 3.97 1 1.43 1
11 applyNtimes 4.88 2 5.06 3 5.15 6
12 firstMatch 0.97 5 1.03 5 1.23 6
13 mbElem - 0 - 0 - 0
14 mapEither 2.28 1 7.42 1 3.07 1
15 hoogle01 0.68 4 0.66 4 0.61 9
16 zipWithResult - 0 - 0 - 0
17 splitStr 0.58 5 0.54 4 0.5 9
18 lookup - 0 - 0 - 0
19 fromFirstMaybes 2.17 3 2.03 5 1.37 2
20 map 0.78 5 0.81 5 0.54 7
21 maybe 0.68 1 0.69 1 0.51 1
22 rights 30.41 1 16.18 1 6.64 1
23 mbAppFirst 1.31 1 0.98 1 0.85 1
24 mergeEither - 0 - 0 - 0
25 test 10.68 2 9.23 1 12.98 1
26 multiAppPair - 0 - 0 - 0
27 splitAtFirst 1.01 5 0.79 1 0.72 3
28 2partApp 2.08 5 4.08 3 2.64 3
29 areEq - 0 - 0 - 0
30 eitherTriple - 0 - 0 - 0
31 mapMaybes 0.72 5 0.70 6 0.57 9
32 head-rest 3.79 3 8.67 3 2.36 3
33 appBoth 1.82 1 4.56 1 1.6 1
34 applyPair 1.68 1 1.98 1 3.82 1
35 resolveEither 42.49 1 - 0 - 0
36 head-tail 9.69 2 10.37 3 11.03 2
37 indexesOf 22.38 1 - 0 54.35 1
38 app3 0.59 1 0.86 1 0.52 7
39 both - 0 - 0 - 0
40 takeNdropM - 0 - 0 - 0
41 firstMaybe 1.71 6 1.41 8 1.31 4
42 mbToEither - 0 - 0 - 0
43 pred-match 1.02 4 0.97 4 0.9 4
44 singleList 0.66 4 0.61 3 0.51 4

average 5.58 2.41 3.37 2.20 3.92 2.95

the query type has a typeclass constraint, instead of a monomorphic type. The solution is
\arg1 -> filter (\p -> fst p == snd p) arg1, however, the Petri net does not synthes-
ize the incomplete function \arg1 -> filter wildcard arg1 within the timeout (whereas
it synthesizes when the type is monomorphic). Benchmark 69 uses real numbers, that
are not supported by the unification algorithm, and benchmark 70 contains input-output
examples with large constants, leading the unification to reach the maximum depth before
finding valid assignments. Comparing the solutions synthesized for the benchmarks that
Hoogle+ solves, the solutions of Hoogle⋆ are simpler, using fewer components. For
instance, in benchmark 52, Hoogle+ synthesizes \arg0 -> last (init (init arg0)),
whereas Hoogle⋆ synthesizes \arg1 -> (!!) arg1 3.

ECOOP 2023

4:22 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Table 4 Results of the second set of benchmarks. This table shows, for both synthesizers, the
time elapsed to synthesize the first solution, in seconds, as well as the number of solutions, and the
time spent replacing symbols until the first solution is completed. The timeout is 90 seconds.

Hoogle+ with examples Hoogle⋆
Benchmark Time (s) Sols. Time (s) Unify (s) Sols.
45 mapAdd - 0 8.07 0.66 11
46 mapSquare - 0 7.99 0.61 11
47 appendConst - 0 4.14 0.49 1
48 filterDiff - 0 14.26 6.04 10
49 getFirstOnes - 0 1.89 0.16 21
50 removeFirstOnes 2.55 1 1.49 0.18 22
51 listIntersect - 0 - - 0
52 indexConst 3.94 1 1.16 0.18 1
53 allGreaterThan - 0 21.45 15.42 25
54 dropConst - 0 1.81 0.18 9
55 filterGreaterThan - 0 15.14 6.48 10
56 filterPairs - 0 2.26 0.19 6
57 filterEq - 0 24.77 11.5 12
58 replications - 0 1.18 0.19 14
59 addElemsTwoLists - 0 74.56 66.52 10
60 sumSquares - 0 25.58 20.22 10
61 removeMax - 0 14.27 5.96 10
62 nandPair 30.95 4 8.91 3.84 10
63 allEqBool - 0 7.33 1.63 20
64 mapReverse - 0 6.0 0.73 10
65 allJust - 0 17.32 1.14 8
66 andListPairs - 0 7.9 1.05 20
67 sumPairEntries - 0 8.01 0.67 27
68 filterPairsTyClass - 0 - - 0
69 mapAddFloat - 0 - - 0
70 mapAddLarge - 0 - - 0

average 12.48 0.23 12.52 6.55 10.70

5.3 Answers to Research Questions
Given the results discussed in Section 5.2, we answer the two research questions as follows:
RQ1 The addition of the wildcard component did not lead to performance degradations.

Instead, the removal of constants resulted in performance improvements. From the
original Hoogle+ benchmarks, there is a single benchmark that Hoogle+ solves and
Hoogle⋆ cannot solve within the timeout, but it solves two that Hoogle+ does not
solve.

RQ2 Hoogle⋆ can solve many more new problems than Hoogle+, especially when con-
stants or λ-abstractions are required, which makes it able to solve new classes of problems.
We also found that in the cases that both synthesizers produce solutions, the solutions of
Hoogle⋆ are simpler, since they use fewer components.

6 Related Work

In this section, we compare our work to other research in program synthesis, unification, and
symbolic execution. Most of the related work has been already presented in the Hoogle+
original paper, so our focus is the work apart from this one.

6.1 Program Synthesis
Hoogle+ related work summary. The subjects most directly related to Hoogle+ are
type inhabitation and graph reachability. However, most of the related work on type
inhabitation is based on classical proof search, such as Agda [30], or produce solutions

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:23

that do not use all the arguments, such as Djinn [1]. In turn, the related work on graph
reachability only supports functions with a single parameter, such as Prospector [25],
or does not support polymorphism, such as SyPet [7]. When compared to other API
search tools, such as Hoogle [26], Hoogle+ is able to synthesize applications of multiple
components. Using statistical methods to improve the search, such as Slang [34], the authors
of Hoogle+ conjecture that it is not effective in functional languages, due to the “high
degree of compositionality”. There are also approaches to scalable proof search; however,
the search space is restricted to names of parameters, functions, or fields [32], or does not
support polymorphism, such as InSynth [15].

Synthesis from sketches. The idea of completing programs with holes, also known as
sketches, has already been used in Sketch [36] and Rosette [37], in which SAT/SMT
solvers infer integer constants. However, in our work, a hole can be replaced with an
expression of any algebraic type, or λ-abstractions. More recently, Smyth [24], an evaluator-
based program synthesizer, replaces holes with any expression, including case expressions, by
performing a search guided by input-output examples. However, it inherits scalability issues
from Myth [31], the base of Smyth, and the authors consider that Hoogle+ “might also be
incorporated into our approach in future work”. Scrybe [27] extends the approach of Smyth,
with example propagation, and can solve more problems than Smyth. However, we conjecture
that the scalability issues remain, as the evaluation uses specific component sets for each test
of at most 10 components [28], whereas the component set of Hoogle+ has 291 components.
GHC, a Haskell compiler, supports programs with missing expressions, suggesting valid
fits [9]. However, constants are excluded (apart from already defined constants, such as True)
and λ-abstractions. PropR [10] uses this GHC feature to replace faulty sub-expressions on
Haskell programs, and suggest constants, that, however, are limited to the ones contained in
the program to repair.

Component-based synthesis. Apart from the related work of Hoogle+, PetSy [38]
performs a top-down enumerative search, instead of using a Petri net encoding. Its evaluation
shows that, at least with 130 components, its performance is comparable to Hoogle+.
However, it does not synthesize constants. Hectare [23], a new synthesizer for Haskell that
uses a new graph data structure to represent the search space, has shown to be faster than
Hoogle+, but it does not support constants nor λ-abstractions.

6.2 Unification and Symbolic Execution
E-Unification. Unification is a process that, given two expressions, tries to replace the
symbols in both expressions, such that the resulting expressions are syntactically equal [2].
In our case, the goal is to make two expressions equal after evaluation. This leads us to
E-Unification, in which the equality of terms is established by a set of equations E: two
terms s, t are equal if and only if s ≈ t ∈ E [35]. There are several approaches to solving
E-Unification [8, 6], but we have not found any formulation that could be directly applied to
our context. The same can be stated about Huet’s algorithm [19], which solves the unification
problem for typed λ-calculus, from which Haskell’s Core language is an extension [21].

Symbolic execution. Symbolic execution tools explore multiple paths of a program to find
counterexamples for a given property [3] and the unification problem discussed in this article
can be reduced to finding a counterexample for esrc ̸= etgt. G2 [16] and G2Q [17] are two
symbolic execution tools for Haskell, but they do not support symbolic variables in place of

ECOOP 2023

4:24 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

functions, which is required for Hoogle⋆. Nebula [22], built on top of G2, supports symbols
in place of functions, and treats applications of symbolic variables in a way similar to our
approach: it replaces the application with a fresh symbol denoting the return value. However,
it does not fully evaluate the arguments, so it may treat two equivalent calls as different calls.
Nebula can prove the equivalence of Haskell programs, by combining symbolic execution and
coinduction, whereas our algorithm only finds assignments to symbolic variables. However, it
is one order of magnitude faster, which makes the difference in the performance of Hoogle⋆.
SCV [29] uses symbolic execution to validate software contracts in Racket programs and
supports symbols in place of functions, but instead of assigning applications of functions to
expressions, it generates candidate functions. However, while our algorithm supports infinite
structures, SCV does not, since Racket is a strict language.

7 Limitations

Using polymorphic abstractions, instead of the standard way of implementing typeclasses,
dictionary passing [33], simplifies the algorithm, especially when the term that determines
the version of the polymorphic function is a symbol. But, as a drawback, this approach
requires that each time a new monomorphic variant of a polymorphic operation is
provided, the existing code must be edited (the new implementation must be added
to each occurrence of the corresponding polymorphic abstraction). However, since the
component set is not expected to change, this does not impact the usage of Hoogle⋆.

Currying is not supported for practical reasons. Whenever a curried application is trans-
lated to λU , we need to replace it with a λ-abstraction: supposing that f takes n

arguments, we rewrite f e1 ... em as λ xm+1 ... xn . f e1 ... em xm+1 ... xn (with m < n).
Also, for practical reasons, data constructors are not treated as the left side of abstractions,
which means that a data constructor cannot be used as a function directly.

Data is represented by data constructors, which simplifies the algorithm, because all op-
erations can be written in λU and each value can be built incrementally, by choosing a
branch of each case expression. For instance, if we had to use the constant representation
of integers, the implementation of operators such as integer comparison could not be
expressed in λU , and expressions such as n1 ≤ n2 would have to be processed by an
SMT solver. A drawback of this representation is that real numbers are not supported
(benchmark 69), and, in some specific cases, large integers may lead to an intractable
search (if it is required to iterate the whole structure). Unifying a symbol with a large
number, which is the case of benchmark 47, simply requires the application of SNAL or
SAL; however, unifying s + 1 with N (similar to what happens in benchmark 70) requires
a depth greater than N , which, in the context of complex problems with large branching
factors, may become intractable.

Allow unused parameters. The Petri net does not synthesize functions that do not use all
parameters, but the wildcards could be replaced with expressions using the remaining para-
meters. For instance, Hoogle⋆ cannot synthesize \xs n -> filter (\x -> x < n) xs,
because \xs n -> filter wildcard xs does not use the parameter n.

Queries with typeclass constraints are not solved, as in benchmark 68, because the Petri
net becomes significantly slower when there are typeclass constraints (typeclass constraints
are treated as extra arguments of the type query).

Completeness, normal form, and soundness. We do not have a definition of normal form
for the terms of λU , nor proofs of completeness and of the guarantees of the inference
rules, stated in Section 3.2.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:25

8 Conclusion

In this work we developed a unification algorithm for a subset of the Haskell programming
language and extended Hoogle+, which can now synthesize constants and λ-abstractions.

Unification algorithm. To evaluate Hoogle⋆, we have encoded 92 functions from the
Haskell standard library8 in λU , and our algorithm successfully replaced the occurrences of
the wildcard component for constants. But it has other applications; for instance, it can be
used to compute inverses (by unifying f s1 ... sk with the output, s1 ... sk will be assigned to
the values of the arguments), or for software testing and verification, finding counterexamples
(for instance, if a function f is expected to always return a positive number, we can unify
the application of f to symbolic variables with 0, to search for inputs that eventually make
the function return 0).

Hoogle⋆. Hoogle⋆ can solve more problems than the original Hoogle+ as it successfully
synthesizes constants and λ-abstractions, without performance degradation. As explained in
Section 6, existing synthesizers do not synthesize constants and λ-abstractions, or do not
have the scalability that Petri nets give to Hoogle+. Hoogle⋆ can generate constants
and λ-abstractions while maintaining the scalability of Petri nets. Although we extended
Hoogle+, the contributions are not exclusive to this synthesizer, as they can be applied
to other Petri-net synthesizers, such as SyPet. As a program synthesizer, it can impact
science and industry in different ways: discovering new algorithms, allowing end users to
build programs, improving teaching or assisting programmers [11, 5].

Future work. The main lines of future work are: supporting the representation of real
numbers, as well as large integers; allowing the Petri net to synthesize functions that do
not use all parameters; improving the synthesis of queries involving typeclass constraints;
providing notions of completeness, normal forms, and a proof of the guarantees claimed in
Section 3.2; and incorporating typeclasses in the type-checker of synth-expr.

References

1 Lenart Augusstson. Djinn. URL: https://github.com/augustss/djinn.
2 Franz Baader. Unification theory. In Klaus U. Schulz, editor, Word Equations and Related

Topics, First International Workshop, IWWERT ’90, Tübingen, Germany, October 1-3, 1990,
Proceedings, volume 572 of Lecture Notes in Computer Science, pages 151–170. Springer, 1990.
doi:10.1007/3-540-55124-7_5.

3 Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Comput. Surv., 51(3):50:1–50:39, 2018.
doi:10.1145/3182657.

4 João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira.
Derivations with holes for concept-based program synthesis. In Proceedings of the 2022
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2022, pages 63–79, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3563835.3567658.

8 From the modules Data.Maybe, Data.Either, Data.Bool, GHC.List, Data.Ord and GHC.Num.

ECOOP 2023

https://github.com/augustss/djinn
https://doi.org/10.1007/3-540-55124-7_5
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3563835.3567658

4:26 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

5 Cristina David and Daniel Kroening. Program synthesis: challenges and opportunities.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 375(2104):20150403, 2017. doi:10.1098/rsta.2015.0403.

6 Daniel J. Dougherty and Patricia Johann. An improved general e-unification method. J. Symb.
Comput., 14(4):303–320, 1992. doi:10.1016/0747-7171(92)90010-2.

7 Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-based
synthesis for complex apis. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 599–612. ACM, 2017. doi:10.1145/3009837.
3009851.

8 Jean H. Gallier and Wayne Snyder. A general complete E-unification procedure. In Pierre
Lescanne, editor, Rewriting Techniques and Applications, 2nd International Conference, RTA-
87, Bordeaux, France, May 25-27, 1987, Proceedings, volume 256 of Lecture Notes in Computer
Science, pages 216–227. Springer, 1987. doi:10.1007/3-540-17220-3_19.

9 Matthías Páll Gissurarson. Suggesting valid hole fits for typed-holes (experience report). In
Nicolas Wu, editor, Proceedings of the 11th ACM SIGPLAN International Symposium on
Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018, pages 179–185.
ACM, 2018. doi:10.1145/3242744.3242760.

10 Matthías Páll Gissurarson, Leonhard Applis, Annibale Panichella, Arie van Deursen, and
David Sands. PROPR: property-based automatic program repair. In 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022, pages 1768–1780. ACM, 2022. doi:10.1145/3510003.3510620.

11 Sumit Gulwani. Dimensions in program synthesis. In Temur Kutsia, Wolfgang Schreiner, and
Maribel Fernández, editors, Proceedings of the 12th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, July 26-28, 2010, Hagenberg, Austria,
pages 13–24. ACM, 2010. doi:10.1145/1836089.1836091.

12 Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Found. Trends
Program. Lang., 4(1-2):1–119, 2017. doi:10.1561/2500000010.

13 Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, and Nadia Polikarpova.
Type-directed program synthesis for restful apis. In Ranjit Jhala and Isil Dillig, editors,
PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022, pages 122–136. ACM, 2022.
doi:10.1145/3519939.3523450.

14 Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia
Polikarpova. Program synthesis by type-guided abstraction refinement. Proc. ACM Program.
Lang., 4(POPL):12:1–12:28, 2020. doi:10.1145/3371080.

15 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, pages 27–38. ACM, 2013. doi:10.1145/2491956.2462192.

16 William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. Lazy
counterfactual symbolic execution. In Kathryn S. McKinley and Kathleen Fisher, editors,
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 411–424. ACM,
2019. doi:10.1145/3314221.3314618.

17 William T. Hallahan, Anton Xue, and Ruzica Piskac. G2Q: haskell constraint solving. In
Richard A. Eisenberg, editor, Proceedings of the 12th ACM SIGPLAN International Symposium
on Haskell, Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019, pages 44–57. ACM,
2019. doi:10.1145/3331545.3342590.

18 Paul Hudak and Joseph H. Fasel. A gentle introduction to haskell. ACM SIGPLAN Notices,
27(5):1, 1992. doi:10.1145/130697.130698.

https://doi.org/10.1098/rsta.2015.0403
https://doi.org/10.1016/0747-7171(92)90010-2
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1007/3-540-17220-3_19
https://doi.org/10.1145/3242744.3242760
https://doi.org/10.1145/3510003.3510620
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3519939.3523450
https://doi.org/10.1145/3371080
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/3331545.3342590
https://doi.org/10.1145/130697.130698

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:27

19 Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.,
1(1):27–57, 1975. doi:10.1016/0304-3975(75)90011-0.

20 Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and
Nadia Polikarpova. Digging for fold: synthesis-aided API discovery for haskell. Proc. ACM
Program. Lang., 4(OOPSLA):205:1–205:27, 2020. doi:10.1145/3428273.

21 SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip Wadler. The
glasgow haskell compiler: a technical overview. In Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference, volume 93, 1993.

22 John C. Kolesar, Ruzica Piskac, and William T. Hallahan. Checking equivalence in a non-strict
language. Proc. ACM Program. Lang., 6(OOPSLA2):1469–1496, 2022. doi:10.1145/3563340.

23 James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia Polikarpova.
Searching entangled program spaces. Proc. ACM Program. Lang., 6(ICFP):23–51, 2022.
doi:10.1145/3547622.

24 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. Program sketching with live
bidirectional evaluation. Proc. ACM Program. Lang., 4(ICFP):109:1–109:29, 2020. doi:
10.1145/3408991.

25 David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid mining: helping to
navigate the API jungle. In Vivek Sarkar and Mary W. Hall, editors, Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chicago,
IL, USA, June 12-15, 2005, pages 48–61. ACM, 2005. doi:10.1145/1065010.1065018.

26 Neil Mitchel. Hoogle. URL: https://hoogle.haskell.org/.
27 Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. Program synthesis using example

propagation. CoRR, abs/2210.13873, 2022. doi:10.48550/arXiv.2210.13873.
28 Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. Scrybe. https://github.com/NiekM/

scrybe, 2022.
29 Phuc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. Higher order symbolic execution

for contract verification and refutation. J. Funct. Program., 27:e3, 2017. doi:10.1017/
S0956796816000216.

30 Ulf Norell. Dependently typed programming in agda. In Pieter W. M. Koopman,
Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional Programming,
6th International School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lec-
tures, volume 5832 of Lecture Notes in Computer Science, pages 230–266. Springer, 2008.
doi:10.1007/978-3-642-04652-0_5.

31 Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In
David Grove and Stephen M. Blackburn, editors, Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, pages 619–630. ACM, 2015. doi:10.1145/2737924.2738007.

32 Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed completion
of partial expressions. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, pages 275–286. ACM, 2012. doi:10.1145/2254064.2254098.

33 John Peterson and Mark P. Jones. Implementing type classes. In Robert Cartwright, editor,
Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and
Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993, pages 227–236.
ACM, 1993. doi:10.1145/155090.155112.

34 Veselin Raychev, Martin T. Vechev, and Eran Yahav. Code completion with statistical language
models. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 419–428. ACM, 2014. doi:10.1145/2594291.2594321.

35 Jörg H. Siekmann. Unification theory. J. Symb. Comput., 7(3/4):207–274, 1989. doi:
10.1016/S0747-7171(89)80012-4.

ECOOP 2023

https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1145/3428273
https://doi.org/10.1145/3563340
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991
https://doi.org/10.1145/1065010.1065018
https://hoogle.haskell.org/
https://doi.org/10.48550/arXiv.2210.13873
https://github.com/NiekM/scrybe
https://github.com/NiekM/scrybe
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/155090.155112
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1016/S0747-7171(89)80012-4
https://doi.org/10.1016/S0747-7171(89)80012-4

4:28 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

36 Armando Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol. Transf., 15(5-6):475–
495, 2013. doi:10.1007/s10009-012-0249-7.

37 Emina Torlak and Rastislav Bodík. Growing solver-aided languages with rosette. In Antony L.
Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,
IN, USA, October 26-31, 2013, pages 135–152. ACM, 2013. doi:10.1145/2509578.2509586.

38 Darya Verzhbinsky and Daniel Wang. Petsy: Polymorphic enumerative type-guided synthesis.
POPL 2021 Student Research Competition, 2021.

https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/2509578.2509586

	1 Introduction
	2 Background
	2.1 Petri nets
	2.2 SyPet, Hoogle+ and Synthesis via Petri-net reachability

	3 Unification via Symbolic Execution
	3.1 Syntax
	3.2 Inference rules
	3.2.1 Unifying symbolic variables with expressions
	3.2.2 Unifying data constructors
	3.2.3 Unifying case expressions with expressions
	3.2.4 Unifying lambda-abstractions applications with expressions
	3.2.5 Unifying applications of symbols with expressions
	3.2.6 Unifying applications of polymorphic abstractions with expressions

	3.3 Lazyness
	3.4 Implementation

	4 Extension to Hoogle+: Hoogle*
	4.1 The wildcard component
	4.2 Replacing occurrences of the wildcard component
	4.2.1 The Complete function
	4.2.2 The synthesizer for lambda-abstractions

	5 Evaluation
	5.1 Evaluation Design
	5.2 Results
	5.3 Answers to Research Questions

	6 Related Work
	6.1 Program Synthesis
	6.2 Unification and Symbolic Execution

	7 Limitations
	8 Conclusion

