
On Using VeriFast, VerCors, Plural, and KeY
to Check Object Usage
João Mota #

NOVA LINCS and NOVA School of Science and Technology, Caparica, Portugal

Marco Giunti
NOVA LINCS and NOVA School of Science and Technology, Caparica, Portugal
School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, UK

António Ravara
NOVA LINCS and NOVA School of Science and Technology, Caparica, Portugal

Abstract

Typestates are a notion of behavioral types that describe protocols for stateful objects, specifying
the available methods for each state. Ensuring methods are called in the correct order (protocol
compliance), and that, if and when the program terminates, all objects are in the final state (protocol
completion) is crucial to write better and safer programs. Objects of this kind are commonly shared
among different clients or stored in collections, which may also be shared. However, statically
checking protocol compliance and completion when objects are shared is challenging. To evaluate
the support given by state of the art verification tools in checking the correct use of shared objects
with protocol, we present a survey on four tools for Java: VeriFast, VerCors, Plural, and KeY. We
describe the implementation of a file reader, linked-list, and iterator, check for each tool its ability to
statically guarantee protocol compliance and completion, even when objects are shared in collections,
and evaluate the programmer’s effort in making the code acceptable to these tools. With this study,
we motivate the need for lightweight methods to verify the presented kinds of programs.

2012 ACM Subject Classification Theory of computation → Program reasoning; Theory of compu-
tation → Logic and verification; Theory of computation → Separation logic

Keywords and phrases Java, Typestates, VeriFast, VerCors, Plural, KeY

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.40

Category Experience Paper

Related Version Extended Version: https://arxiv.org/abs/2209.05136

Supplementary Material
Software: https://github.com/jdmota/tools-examples/tree/ecoop-2023

archived at swh:1:dir:9b9f9f7a269c44c04c57d5f66ff27884de02d4bc

Funding Partially supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie
grant agreement No. 778233 (BehAPI) and NOVA LINCS (UIDB/04516/2020).
João Mota: Partially supported by FCT.IP (2021.05297.BD).
Marco Giunti: Partially supported by Dstl, reference: ACC2028868.

Acknowledgements We would like to thank several members of the developer teams for the detailed
responses and enlightening discussions, in particular, Bart Jacobs (VeriFast), Marieke Huisman
(VerCors), Lukas Armborst (VerCors), Reiner Hähnle (KeY), Eduard Kamburjan (KeY), and Richard
Bubel (KeY). Their feedback was indispensable for the development of this study.

© João Mota, Marco Giunti, and António Ravara;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 40; pp. 40:1–40:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jd.mota@campus.fct.unl.pt
https://orcid.org/0000-0003-3182-2245
https://orcid.org/0000-0002-7582-0308
https://orcid.org/0000-0001-8074-0380
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://arxiv.org/abs/2209.05136
https://github.com/jdmota/tools-examples/tree/ecoop-2023
https://archive.softwareheritage.org/swh:1:dir:9b9f9f7a269c44c04c57d5f66ff27884de02d4bc;origin=https://github.com/jdmota/tools-examples;visit=swh:1:snp:496bcb990b5b3592def261926ec4ffbe7c2d580e;anchor=swh:1:rev:8d8afc0f93ecb2effd2ed3566fd5e0873fac7e2a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

1 Introduction

In object-oriented programming, one naturally defines objects where their methods’ availabil-
ity depends on their internal state [49]. For example, the next method of an iterator can
only be called if there are items to be retrieved, otherwise it throws an exception. One might
represent their intended usage protocol with an automaton or a state machine [60, 61, 25].
Behavioral types [34, 3], when used for object-oriented languages, allow us to statically
check if all code of a program respects the protocol of each object, helping us to write
safer programs with fewer errors. The crucial properties verified are protocol compliance,
ensuring methods are called in the correct order, and protocol completion, guaranteeing
that if and when the program terminates, all the objects are in their final states, ensuring
required method calls are not forgotten, and that resources are freed, for example, that we
close all sockets. Bravetti et al. present a formal treatment of these properties [19].

In session types approaches, objects with protocols are usually forced to be used in a linear
way to avoid race conditions, which reduces concurrency and restricts what a programmer can
do [32, 34]. Given that sharing of objects is very common, it should be naturally supported,
without putting too much burden on the programmer. For example, pointer-based data
structures, like linked-lists, usually rely on internal sharing (i.e. aliasing). Such collections
may also be used to store an arbitrary number of objects in different states which need to
be tracked. Developing these data-types, and applications using them, is often challenging.
To our knowledge, there is no typestate-oriented support for tracking the states of objects
in collections, while ensuring protocol compliance and completion. Given this, the present
study has the objective of answering the following research question (in Section 3.4)

RQ: Are current static verification tools capable of verifying protocol compliance and
completion even when objects are shared in collections?

To study the contributions and limitations of the state of the art, we report our experience
in verifying protocol compliance and completion with four tools for Java: VeriFast [39, 38],
VerCors [33, 13], Plural [10], and KeY [1]. We picked these because of their rich features for
verification, and because they are actively maintained (with the exception of Plural). We
believe these cover the most used static analysis techniques which can be instructed to perform
typestate verification. VeriFast checks programs annotated with method contracts written
in separation logic [51, 55]. VerCors, however, uses permission-based concurrent
separation logic to check programs, inspired by Chalice [44, 45]. Plural verifies that the
protocols of objects are respected with typestates [59]. It introduces access permissions
which combine typestate and object aliasing information, allowing state to be tracked and
modified even when objects are shared, allowing for more uses beyond the “single writer
vs multiple readers” model of fractional permissions [17]. KeY verifies sequential Java
programs with specifications written in JML [43], based on first-order Java dynamic logic
(JavaDL) [27]. It supports a great number of Java features and provides an interactive theorem
prover with a high degree of automation and useful tactics to guide proofs. OpenJML is
another verification tool based on JML [22]. Given that the differences [16] are not significant
for our use case, and since KeY has an interactive prover, we focus our study on KeY.

To our knowledge, no such comparison study was previously done that focused on protocol
compliance and completion. As we will observe, the running examples may look simple but
constitute real challenges to these tools, especially since three of them are based on contracts,
not behavioral types. Our conclusions support advocating for lightweight verification methods
directed at these protocol related properties. The contributions of this paper are:

J. Mota, M. Giunti, and A. Ravara 40:3

Code implementations and examples of using file readers, linked-lists, and iterators
(when possible), similar in all four tools, and specifications appropriate to each tool to
verify the desired properties;
An assessment if the tools can check protocol compliance, and if they can guarantee
protocol completion, even with objects shared in collections;
An evaluation of the programmer’s effort in making the code examples acceptable to
each tool, justifying the need for lightweight methods to verify these kinds of programs.

With regards to our level of experience, we are knowledgeable in the concepts used, having
applied them in different settings, and have had practical experience with VeriFast before
conducting this study. Regarding the other tools, we report our experience in using them for
the first time. To validate this study, our assessments were shared with the development
teams. From the responses we got, they found the examples to be interesting and challenging.
All the received feedback was very valuable in helping us to refine and confirm our conclusions.

This paper is structured as follows: Section 2 provides an overview of each tool; Section 3
presents code implementations and specifications, and if they were accepted, thus
reporting our experience and answering the RQ (Section 3.4); Section 4 discusses our
assessments; Section 5 discusses relevant work; finally, Section 6 presents our conclusions.

2 Background

2.1 VeriFast
VeriFast is a modular verifier for (subsets of) C and Java programs annotated with method
contracts (pre- and post-conditions) written in separation logic [39, 38, 51, 55]. Besides the
points-to assertions from separation logic, specifications support the definition of inductive
data types, predicates, and fixpoint functions. Additionally, deductive reasoning [5] is
supported via the definition of lemmas and the insertion of assertions in key program points
to guide verification. Furthermore, it comes with an IDE allowing one to observe each
step of a proof when an error is encountered. VeriFast is then able to statically check that
contracts are respected during execution and that programs will not raise errors such as null
pointer exceptions or perform incorrect actions such as accessing illegal memory. Nonetheless,
VeriFast’s support for generics is still limited.1

When declaring predicates, one may also specify output parameters. These appear
after input parameters separated with a semicolon. Output parameters need to be precisely
defined in the predicate definition and allow its user to “extract” them. In Listing 1, the
parameter b is defined as an output parameter of the account predicate (line 1). It is
precisely defined to be the value of the balance field of the account object. The |-> symbol
represents the points-to assertion while &*& represents the separating conjunction binary
operator. This balance can then be “extracted” using the ? symbol in a pre-condition (line
5), existentially quantifying the name b, which can then be mentioned in the post-condition
(line 6), indicating the effect of a deposit given the current balance b.

Listing 1 Output parameters example.
1 //@ predicate account (Account a; int b) = a. balance |-> b &*& b >= 0;
2 class Account {
3 int balance ;
4 void deposit (int value)

1 https://github.com/verifast/verifast/issues/271

ECOOP 2023

https://github.com/verifast/verifast/issues/271

40:4 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

5 //@ requires account (this , ?b) &*& 0 < value;
6 //@ ensures account (this , b + value);
7 {
8 balance += value;
9 }

10 }

For the sharing of memory locations, VeriFast has built-in support for fractional per-
missions, associating a number coefficient between 0 (exclusive) and 1 (inclusive) to each
heap chunk [17]. By default, the coefficient is 1, which allows reads from and writes to a
memory location. A number less than 1 allows only for reads. The programmer may provide
coefficient patterns in the form of expressions, such as literal numbers or variables, or in
the form of existentially quantified names (like f in line 2 of Listing 2). These patterns
may be applied to points-to assertions but also to predicates. Applying a coefficient to a
predicate is equivalent to multiplying it by each coefficient of each heap chunk mentioned in
the predicate’s body. Additionally, VeriFast supports the automatic splitting and merging of
fractional permissions. Counting permissions are also supported via a trusted library [17].

Listing 2 Coefficient pattern example.
1 int getBalance ()
2 //@ requires [?f] account (this , _);
3 //@ ensures [f] account (this , result);
4 { return balance ; }

For C programs, VeriFast also supports leak checking: after consuming post-conditions,
the heap must be empty. However, the programmer can leak certain resources with the leak
command. For Java programs, leaking is always allowed.

2.2 VerCors
VerCors is a verifier for concurrent programs written in Java, C, OpenCL and PVL (Prototypal
Verification Language), and annotated with method contracts [33, 13]. The specifications
employ a logic based on permission-based concurrent separation logic [50]. The
verification procedure is modular, checking each method in isolation given a contract with
pre- and post-conditions. As in VeriFast, lemmas can be defined and assertions introduced
to guide verification. Although there are other tools that perform static verification on
annotated programs, VerCors focuses on supporting different concurrency patterns of high-
level languages, and is designed to be language-independent. Support for inheritance and
exceptions is still being worked upon based on theoretical work by Rubbens [56].2 Internally,
VerCors uses the Viper backend [48], which in turn uses Z3 [23].

VerCors supports two styles for specifying access to memory locations: permission
annotations, following the approach of Chalice [44, 45]; and points-to assertions of
separation logic, as in VeriFast. Both styles of specification have been shown to be equivalent
by Parkinson and Summers [53]. The equivalence is presented in Figure 1. On the left-hand-
side it is shown the use of a permission annotation, Perm, to request access to variable var,
with fractional permission p, and storing a value equal to val. The ** symbol represents the
separating conjunction operator. On the right-hand-side it is shown the equivalent PointsTo
assertion. Permission annotations are very useful because they allow us to refer to values in
variables without the need to use new names for them.

2 https://vercors.ewi.utwente.nl/wiki/#inheritance-1

https://vercors.ewi.utwente.nl/wiki/#inheritance-1

J. Mota, M. Giunti, and A. Ravara 40:5

Perm(var, p) ** var == val ≡ PointsTo(var, p, val)

Figure 1 Permission annotations equivalent to points-to assertions.

As an example, List. 3 shows a method contract which requires exclusive permission to
write in field val (line 2), and ensures that the new value is equal to the old one incremented
by one (line 3).

Listing 3 Permissions example.
1 /*@
2 requires Perm(val , 1);
3 ensures Perm(val , 1) ** val == \old(val) + 1;
4 @*/
5 void increment (){
6 val = val + 1;
7 }

VerCors also has support for ghost code, including ghost parameters and results in
methods. These are declared in methods’ contracts with the given and yields keywords,
respectively. When calling a method, one uses the with and then keywords to assign ghost
parameters and retrieve return values, respectively. These features are exemplified in Listing 4
where a sum method yields a ghost result given two ghost parameters, x and y. Line 13
shows how this method may be used. Ghost code is useful to keep track of intermediate
results, which only exist for the purpose of verification.

Listing 4 Ghost code example.
1 /*@
2 given int x;
3 given int y;
4 yields int res;
5 ensures res == x + y;
6 @*/
7 void sum () {
8 //@ ghost res = x + y;
9 }

10
11 void main () {
12 //@ ghost int result ;
13 sum () /*@ with {x=3; y=2;} then { result =res ;} @*/;
14 }

2.3 Plural
Bierhoff and Aldrich addressed the problem of substitutability of subtypes while guaranteeing
behavioral subtyping in a object-oriented language [9]. The specification technique models
protocols using abstract states, incorporating state refinements (allowing the definition of
substates, thus supporting substitutability of subtypes), state dimensions (which define
orthogonal states corresponding to AND-states in Statecharts [28]), and method refinements
(allowing methods in subclasses to accept more inputs and return more specific results). The
approach is similar to pre- and post-condition based ones but provides better information
hiding thanks to the typestate abstraction [59].

Bierhoff and Aldrich then built on previous work and developed a sound modular protocol
checking approach, based on typestates, to ensure at compile-time that clients follow the
usage protocols of objects even in the presence of aliasing [10]. For that, they developed the

ECOOP 2023

40:6 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

notion of access permissions which combine typestate and object aliasing information.
The approach was realized in Plural, a static verifier they developed for Java, as a plugin for
Eclipse. As far as we know, not all Java’s features are supported, such as exceptions. Although
it is not maintained any longer, one can install it in Eclipse Juno (an old version from 2012)
from its source. Given its support for rich access permissions, and direct application of the
typestate abstraction, we believe its study is still very relevant.

An access permission tracks how a reference is allowed to read and/or modify the
referenced object, how the object might be accessed through other references, and what is
currently known about the object’s typestate. To increase the precision of access permissions,
Bierhoff and Aldrich introduced weak permissions (such as share and pure), where an object
can be modified through other permissions. The proposed permissions include a state
guarantee which ensures that an object remains in that state even in the face of interference.
Additionally, they track temporary state assumptions which are discarded when they become
outdated. All kinds of permissions are described in Table 1. A comprehensive survey on
permission-based specifications was presented by Sadiq et al. [57].

Table 1 Permissions in Plural.

Kind Access to the referenced object Access other aliases may have
Full read and write read-only
Pure read-only read and write
Immutable read-only read-only
Unique read and write none
Shared read and write read and write

In Listing 5 is an example of an iterator. In lines 1-3, it is stated that this object may be
in two distinct states, available or end. These are defined as refinements, or subtypes, of
the root state alive, a state common to all objects. Then it is specified that the hasNext
method may be called in the alive state with just pure permission (line 5). If the method
returns true, we further know that the iterator is in the available state, allowing us to
refine our knowledge (line 6). Otherwise, the iterator is in the end state (line 7). The next
method requires full permission and that the object be in the available state, and then it
can only ensure it is in the alive state (line 10).

Listing 5 Iterator example.
1 @Refine ({
2 @States (value ={" available ", "end"}, refined ="alive")
3 })
4 interface Iterator <E> {
5 @Pure("alive")
6 @TrueIndicates (" available ")
7 @FalseIndicates ("end")
8 boolean hasNext ();
9

10 @Full(requires =" available ", ensures ="alive")
11 E next ();
12 }

These kinds of permissions may be split to allow sharing of an object, and joined back
together to allow one to potentially restore unique permission. Fractional permissions
are used to track how much a permission was split [18]. Furthermore, different fractions can
be mapped to different state guarantees through a fraction function, thus tracking for each
state guarantee separately how many other permissions rely on it.

https://www.eclipse.org/downloads/packages/release/juno
https://code.google.com/archive/p/pluralism/

J. Mota, M. Giunti, and A. Ravara 40:7

Beckman et al. extended the approach to verify the correctness of usage protocols in
concurrent programs, statically preventing races on the abstract state of an object as well
as preventing violations of state invariants [7]. This approach uses atomic blocks and was
also realized in Plural. In this solution, access permissions are used as an approximation
of the thread-sharedness of objects. For example, if pure or share permissions are used, it
means that other references can modify the object, and it is assumed that this includes
concurrent modifications. In this scenario, temporary state assumptions are discarded, unless
the access is synchronized. Furthermore, accessing fields of an object with share, pure, or
full permissions, must be performed inside atomic blocks.

Beckman later presented a similar approach which uses synchronization blocks instead
of atomic blocks as the mutual exclusion primitive, given that the former are in more wide
use [6]. Since programmers are required to synchronize on the receiver object, it becomes
implicit to the analysis which parts of the memory are exclusively available, so programmers
are not required to specify which parts of the memory are protected by which locks. However,
this also implies that private objects cannot be used for the purposes of mutual exclusion.

2.4 KeY
KeY is a verifier for sequential Java programs [1]. Specifications are provided in Java
comments in JML*, an extension of the Java Modeling Language (JML) [43]. JML is based
on the design by contract paradigm with class invariants and method contracts [46]. Class
invariants describe properties that must be preserved by all methods. Method contracts
are composed by pre-conditions, post-conditions, and frame conditions, indicating the heap
locations which a method may modify. With this, KeY can employ modular verification.

The example in Listing 6 uses a specification technique based on dynamic frames [40]
and is adapted from the Cell example by Smans et al. [58]. The cell’s specification starts by
declaring a set of locations called footprint (line 4) composed only by the x field (line 6).
The accessible annotation (line 5) specifies that the set footprint will only change if a
location in the set mentioned on the right-side of the colon changes. In this case, footprint
is constant. Then an invariant is stated (line 9) and it is specified that it only depends on
locations in footprint. The setX method will not throw exceptions (indicated with the
normal_behavior annotation in line 12), it assigns only to locations in the footprint (line
13), requires the parameter to be positive (line 14), and ensures the next call to getX will
return the given value (line 15). Since it does not perform reads from heap locations, the
accessible annotation is omitted.

Listing 6 JML specification example.
1 class Cell {
2 private int x;
3
4 /*@ model \ locset footprint ;
5 @ accessible footprint : \ nothing ;
6 @ represents footprint = x;
7 @*/
8
9 //@ invariant x > 0;

10 //@ accessible \inv: footprint ;
11
12 /*@ normal_behavior
13 @ assignable footprint ;
14 @ requires value > 0;
15 @ ensures getX () == value;
16 @*/

ECOOP 2023

40:8 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

17 void setX(int value) {
18 x = value;
19 }
20 }

As far as we know, KeY is the verification tool that supports the greatest number of Java
features among the other static verification tools for Java, allowing one to verify real programs
considering the actual Java runtime semantics. This includes reasoning about inheritance,
dynamic method lookup, runtime exceptions, and static initialization. A consequence of
this is that, as the members of the KeY team point out, KeY is not overly suitable for the
verification of algorithms that require abstracting away from the code since KeY’s main goal
is the verification of Java programs [20].

KeY’s is based on an interactive theorem prover for first-order Java dynamic logic
(JavaDL) [27], which can be seen as a generalization of Hoare logic [30]. An important part
in the construction of proofs in KeY is symbolic execution. This process takes every possible
execution branch and transforms the program leading to a set of constraints, which can then
be verified against the specification. KeY provides a semi-automated environment where the
user may choose to apply every step of the proof, apply a strategy macro, combining several
deductive steps, or execute an automated proof search strategy. As well as offering a high
degree of automation, KeY supports SMT solvers, such as Z3 [23], which are often useful to
solve arithmetical problems [20]. More details on how to use KeY may be found online.3

The most common strategy macros, which we have significantly used in our experiments,
are: propositional expansion (to apply propositional rules); finish symbolic execution (to apply
only rules for modal operators of dynamic logic, thus executing Java programs symbolically);
close provable goals (automatically close all goals that are provable, but do not apply any
rules to goals which cannot be closed).

3 Experiments

In this section, we start by giving an overview of the examples that are going to be used,
showing the object usage protocols and their implementations, as well as, client code using
the presented objects (in Section 3.1). The code is in Java, a language supported by all
the aforementioned tools, which given its object-oriented nature, is well-suited for building
objects with protocol where method calls act like transitions of a state-machine.

Then in Sections 3.2 and 3.3, the common Java code for the classes is annotated with the
appropriate specification for each tool capturing the intended object protocols.

Finally, in Section 3.4, we present annotated client code which uses the object code
defined before, and answer the RQ: can the tools check protocol compliance and completion,
even when objects are shared in a collection?

All code implemented is available online. Throughout the text, hyperlinks in blue point
directly to the lines of code relevant to what is being discussed in order to help the reader
and to avoid the need to download code. Nonetheless, crucial code parts are presented in
listings and discussed in detail. Additionally, a thorough discussion of the implementation is
also online for the interested reader.

3 https://www.key-project.org/docs/UsingKeyBook/

https://github.com/jdmota/tools-examples/tree/ecoop-2023
https://arxiv.org/abs/2209.05136
https://www.key-project.org/docs/UsingKeyBook/

J. Mota, M. Giunti, and A. Ravara 40:9

3.1 Running examples
In this study, the main objects with protocol we consider are file readers. Their usage protocol
is shown in Figure 2. Circles represent states, arrows denote transitions performed by method
calls, and diamonds represent a decision based on the return value of the preceding call. The
initial state is marked with an incoming arrow without an outgoing state. The final state is
marked with a thicker border. We refer the reader to [60, 61] for more information about
this kind of automata, called Deterministic Object Automata, and a tool generating those.

Figure 2 File reader’s protocol.

According to the file reader’s protocol, the open method must be initially called. Then,
one must call the eof method to check if the end of the file was reached. While it returns
false, read calls are allowed. Otherwise, the whole file was read and the close method
needs to be called to terminate the protocol. A usage example of a file reader exhibiting
protocol compliance and completion is shown in Listing 7.

Listing 7 FileReader’s usage example.
1 FileReader f = new FileReader ("file.txt");
2 f.open ();
3 while (!f.eof ()) {
4 f.read ();
5 }
6 f.close ();

To track the number of bytes still available to be read, the reader has an internal
remaining field. Additionally, we may use a state field to track the current state of the
object. This may be seen as unnatural and superfluous, but when there is no primitive notion
of typestates in the language, it is unavoidable. One example of this encoding of protocols
being employed is in the Casino contract presented in the VerifyThis event.4 Exemplifying
code is presented in Listing 8. Assume that methods prefixed with file_ perform actions on
the file system. Please note that in the tool specific implementations, files are not actually
read, so as to simplify the code for demonstration purposes.

Listing 8 FileReader’s code.
1 class FileReader {
2 String filename ; State state; int remaining ;
3
4 FileReader (String name) {
5 filename = name;
6 state = INIT;
7 }

4 https://verifythis.github.io/casino/

ECOOP 2023

https://verifythis.github.io/casino/

40:10 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

8
9 void open () {

10 assert (state == INIT);
11 remaining = file_size (filename);
12 state = OPENED ;
13 }
14
15 boolean eof () {
16 assert (state == OPENED);
17 return remaining == 0;
18 }
19
20 byte read () {
21 assert (state == OPENED && remaining > 0);
22 remaining --;
23 return file_byte_read (filename);
24 }
25
26 void close () {
27 assert (state == OPENED && remaining == 0);
28 file_close (filename);
29 state = CLOSED ;
30 }
31 }

After implementing and specifying the file readers, we implement a collection to store
these. The challenge is then to verify the collection and statically track the different states
of the stored file readers, while ensuring protocol compliance and completion.

For our collection, we implement a singly-linked-list, meaning that each node has a
reference only to the next node. This list has two fields: head and tail. The former points
to the first node, the latter points to the last node, as it is commonly implemented in
imperative languages. Items are added to the tail and removed from the head, following a
FIFO discipline. Having a tail field is crucial for efficiency, avoiding the need to iterate all
the nodes before adding a new node to the end. Code for it is presented in Listing 9.

Listing 9 Linked-list’s code.
1 class Node <T> {
2 T value; Node next = null; Node(T v) { value = v; }
3 }
4
5 class LinkedList <T> {
6 Node <T> head = null; Node <T> tail = null;
7
8 void add(T value) {
9 if (head == null) {

10 head = tail = new Node(value);
11 } else {
12 tail.next = new Node(value);
13 tail = tail.next;
14 }
15 }
16
17 T remove () {
18 assert (head != null);
19 T value = head.value;
20 if (head == tail) {
21 head = tail = null;
22 } else {
23 head = head.next;
24 }
25 return value;
26 }

J. Mota, M. Giunti, and A. Ravara 40:11

27
28 boolean isEmpty () { return head == null; }
29
30 LinkedListIterator <T> iterator () {
31 return new LinkedListIterator (head);
32 }
33 }

We believe implementing a linked-list is particularly relevant for a number of reasons.
Besides being a very common data structure, and quite simple in nature, its use of pointers
often creates challenges for type systems without support for deductive reasoning. For
example, in a type system with a strict ownership discipline, it is difficult to deal with
the aliasing between the tail field and the second to last node’s next field.5 Additionally,
matching the concrete structure of the collection (i.e. the linked nodes) with the abstract
representation, to be able to track the states of the stored objects, usually requires ghost
code and (again) deductive reasoning, as we will observe.

Although the number of values stored in the linked-list is arbitrary, we can define a finite
protocol (Figure 3) that over-approximates the possible states: the list may be empty, which
means that we are only allowed to add new values; or the list may be not empty, which
means that we can also remove at least one value.6 With just these two states it is unknown
if the list becomes empty or not after removing a value, so we need to encode this uncertainty
with an additional state and use the isEmpty method to check the emptiness of the list.

Figure 3 List’s protocol.

Similarly, we can define a protocol for an iterator over the linked-list (Figure 4) with
three states: one indicating that there are values to retrieve with the next method, another
to specify that we reached the end of the list, and finally, a state to encode the uncertainty
between the previous two, where the hasNext method may be used to check if there are still
values to return. Code for the iterator is presented in Listing 10.

Listing 10 Iterator’s code.
1 class LinkedListIterator <T> {
2 Node <T> curr;
3 LinkedListIterator (Node head) { curr = head; }

5 For instance, in Rust, the ownership discipline prevents one from creating linked-lists, unless unsafe
code is used. GhostCell, a recent solution to deal with this, allows for internal sharing but the collection
itself still has to respect the discipline [62]. It uses unsafe code for its implementation but was proven
safe with separation logic.

6 Context-free session types can be used to describe protocols which are not limited by the expressiveness
of regular languages [2].

ECOOP 2023

40:12 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

Figure 4 Iterator’s protocol.

4
5 boolean hasNext () {
6 return curr != null;
7 }
8
9 T next () {

10 assert (curr != null);
11 T value = curr.value;
12 curr = curr.next;
13 return value;
14 }
15 }

An example combining the three classes is shown in Listing 11. In this example, a number
of file readers in their initial state is added to the list (line 6). This collection is then passed
to the auxiliary method useFiles (line 7) which iterates through all the readers and, for each
one, follows their protocol to the end. The properties of protocol compliance and completion
hold for this program example.

Listing 11 Usage example in code.
1 void main () {
2 LinkedList list = new LinkedList ();
3 FileReader f1 = new FileReader ("a");
4 FileReader f2 = new FileReader ("b");
5 FileReader f3 = new FileReader ("c");
6 list.add(f1); list.add(f2); list.add(f3);
7 useFiles (list);
8 }
9

10 void useFiles (LinkedList <FileReader > list) {
11 LinkedListIterator it = list. iterator ();
12 while (it. hasNext ()) {
13 FileReader f = it.next ();
14 f.open ();
15 while (!f.eof ()) f.read ();
16 f.close ();
17 }
18 }

We will now report on our experience with each tool detailing the specification and
proof effort required, keeping the issues of protocol compliance and completion in mind. In
summary, we successfully verify the file reader class (Listing 8) and its use (Listing 7) in
all four tools. The linked-list and iterator implementations (Listing 9 and 10), as well as
their usages (Listing 11), are accepted by all except Plural. Protocol completion can be
guaranteed with workarounds in all tools except Plural.

J. Mota, M. Giunti, and A. Ravara 40:13

3.2 File reader specification
VeriFast

To implement the file reader, we use pre- and post-conditions in all public methods indicating
the required and the ensured states after the call (example in List. 12). The fields of this
object are state (to keep track of the current state), and remaining (to keep track of the
number of bytes still to read). Every time the state needs to change, we assign to the state
field. We use constants to identify different states, thus avoiding the use of literal numbers
in specifications. To request access to the fields of the object, and to enforce that remaining
is equal to or greater than zero, we define the filereader predicate.

Listing 12 close method in VeriFast.
1 public void close ()
2 //@ requires filereader (this , STATE_OPENED , 0);
3 //@ ensures filereader (this , STATE_CLOSED , 0);
4 {
5 this.state = STATE_CLOSED ;
6 }

VerCors

The implementation in VerCors is very similar to the one in VeriFast, except for these
differences: we do not define a predicate to abstract the contents of the object (instead we
keep access to the fields exposed for practical reasons); and since VerCors supports ghost
fields, we use one to track the state, using numbers to represent each state.

Plural

Given the support for typestates, we directly define three states, init, opened, and closed,
which refine (i.e. define a substate of) the root state alive, a state in which all objects
are in. Additionally, we define two states, eof and notEof, refining opened, indicating if we
have reached or not the end of the file, respectively. The file reader has a boolean field,
remaining, indicating if there is something to read. To enforce the relation between the
states eof and notEof, and the remaining field, we define invariants for these states. Due to
a limitation, we had to simplify the read method, making it read the file all at once.7 To
enforce the protocol, we declare for each method the required and ensured states as well as
the permissions needed to perform each call. The open, read, and close methods require
unique permission to the receiver object. Full permissions would be enough except for the
possibility of concurrent accesses, which would require methods to be synchronized. The
eof method only needs an immutable permission guaranteeing that we are in the opened
state, and returns a boolean value indicating if the end of the file was reached.

KeY

We also model the protocol with pre- and post-conditions in methods. The state is tracked
using an integer ghost field. As in VeriFast and VerCors, remaining stores the number
of bytes left to read, and we enforce the value to be equal or greater than zero with an

7 Ideally, remaining would store an integer, but the syntax remaining == 0 does not seem to be supported
in the invariants. In consequence, we cannot model the arbitrary number of bytes to read.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L11-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L11-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L7-L9
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L2-L3
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L44-L49
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java#L2
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L4
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L15
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L10-L11
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L24-L28
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L30-L34
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L46-L49
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L36-L44
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L7

40:14 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

invariant. The file reader has a footprint, composed by the state and remaining fields, and
each of its methods specifies which fields may be modified, according to the dynamic frames
technique [40]. To verify this class, we have to prove each method correct, according to each
specification, and the fact that nothing changes the footprint. Given its simplicity, all proofs
were automatically done using KeY’s default strategy.

Evaluation

As expected, we successfully modelled a protocol for a file reader in all four tools: in
Plural, the implementation was mostly straightforward given the support for typestates, but
annotations were required in all methods; in VeriFast, VerCors, and KeY, we used method
contracts, which also required some annotation burden. Thus, we motivate the need for more
natural ways to specify protocols, for example, via automata, which helps the programmer
visualize and design the protocol.

3.3 Linked-list and iterator specifications
VeriFast

The linked-list implementation is adapted and extended from a C implementation available
online. One key difference from the aforementioned C code is that when the linked-list is
empty, the head and tail fields have null values, instead of pointing to a dummy node.
This matches common implementations and makes verification more challenging because we
have to avoid null pointer errors.

To model the structure of the list, we define a predicate that holds access to the head
and tail fields and of all the nodes in the list (List. 13). The only input parameter is the
reference to the linked-list. The output parameters are the references to the head and tail,
and a ghost list to reason about the values in the list in an abstract way (line 1). This ghost
collection will be crucial to track the different states of the file readers stored in the list. Lines
3 and 4 ensure that if one of the fields is null, the other is also null, and the list is empty.
To ease the addition of new elements to the list, we request access to the sequence of nodes
between the head (inclusive) and the tail (exclusive), through the lseg predicate, and then
keep access to the tail node separately (line 5). The node predicate holds the permissions to
the next and value fields of a given node. Note that we do not hold permission to the fields
of the values stored. This is to allow them to change independently of the linked-list.

Listing 13 llist predicate in VeriFast.
1 predicate llist(LinkedList obj; Node h, Node t, list <FileReader > list) =
2 obj.head |-> h &*& obj.tail |-> t &*&
3 h == null ? t == null &*& list == nil :
4 t == null ? h == null &*& list == nil :
5 lseg(h, t, ?l) &*& node(t, null , ?value) &*&
6 list == append (l, cons(value , nil)) &*& list != nil;

The implementation of the remove and isEmpty methods is straightforward requiring only
the unfolding and folding of the llist and lseg predicates a few times. The add method
requires an auxiliary lemma (List. 14) stating that if we have a sequence of nodes plus the
final node, and we append another node in the end, we get a new sequence with all the nodes
from the previous sequence, the previous final node, and then the newly appended node.

Listing 14 add_lemma lemma in VeriFast.
1 lemma void add_lemma (Node n1 , Node n2 , Node n3)
2 requires lseg(n1 ,n2 ,?l) &*& node(n2 ,n3 ,? value) &*& node(n3 ,?n4 ,?v);
3 ensures lseg(n1 ,n3 , append (l,cons(value ,nil))) &*& node(n3 ,n4 ,v);

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L14
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L9-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java
https://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/iter.c
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L22-L26
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L19-L20
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L14-L15
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L22-L26
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L60-L78
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L80-L87
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L42-L58
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L7-L9

J. Mota, M. Giunti, and A. Ravara 40:15

To implement the iterator, we define a iterator predicate which holds access to the
current node field and all the nodes in the linked-list. Then, we split the permissions to
the nodes in two parts (List. 15): half of the permissions preserves the structure of the list
(line 4), and the other half holds the view of the iterator (line 5): a sequence of nodes from
the head (inclusive) to the current node (exclusive); and a sequence from the current node
(inclusive) to the final one. Both parts allow us to reason on the values already seen, and the
values still to be seen. This split occurs when the iterator is created. After iterating all the
nodes, the full permission to the nodes needs to be restored to the list, which is done via an
auxiliary lemma.

Listing 15 iterator_base predicate in VeriFast.
1 predicate iterator_base (LinkedList javalist , Node n;
2 list <FileReader > list , list <FileReader > a, list <FileReader > b) =
3 [1/2] javalist .head |-> ?h &*& [1/2] javalist .tail |-> ?t &*&
4 [1/2] llist(javalist , h, t, list) &*&
5 [1/2] lseg(h, n, a) &*& [1/2] nodes(n, b) &*& list == append (a, b);

The implementation of the hasNext method is straightforward. The implementation
of the next method requires unfolding and folding predicates, the use of a lemma showing
that the append function is associative (result already available in VeriFast), and the
iterator_advance lemma, which helps us advance the state of the iterator, moving the just
retrieved value from the “to see” list to the “seen” list (List. 16).

Listing 16 iterator_advance lemma in VeriFast.
1 lemma void iterator_advance (Node h, Node n, Node t)
2 requires [1/2] lseg(h, n, ?a) &*& [1/2] node(n, ?next , ?val1) &*&
3 [1/2] nodes(next , ?b) &*& [1/2] lseg(h, t, ?list) &*&
4 [1/2] node(t, null , ?val2);
5 ensures [1/2] lseg(h, next , append (a, cons(val1 , nil))) &*&
6 [1/2] nodes(next , b) &*& [1/2] lseg(h, t, list) &*&
7 [1/2] node(t, null , val2);

VerCors

The implementations of the linked-list and iterator closely follow the VeriFast’s ones, with
just some differences. Given that predicates in VerCors do not support output parameters,
we have predicates to request access to the needed memory locations, and then methods
to build the ghost lists that allow us to track the values. Additionally, we use given and
yields clauses in the methods to receive and return the necessary lists (lines 1-2 of List. 17).
Instead of using these clauses in methods, we would have preferred to rely on ghost fields
storing those lists. Unfortunately, it seems one cannot reason about the old value of a field if
its permission is inside a predicate. Using inline unfolding does not seem to work.

Listing 17 remove method’s contract in VerCors.
1 given seq <FileReader > oldList ;
2 yields seq <FileReader > newList ;
3 requires state(oldList) ** | oldList | > 0;
4 ensures state(newList) ** newList == tail(oldList);

Linked-lists and iterators have been implemented before for VerCors [14] but, to our
knowledge, there is no list implementation that uses a tail field, preferring instead a recursive
approach, with the “head” being the first value, and the “tail” being the rest of the list.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L7-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L24
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/Lemmas.java#L154-L166
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L7-L9
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L28-L38
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L40-L59
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/Lemmas.java#L42-L92
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedListIterator.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/unfold-old
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L183-L186

40:16 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

Plural

For the linked-list, we adapt a stack example from Plural’s repository.8 Naturally, we make
the appropriate changes since our linked-list follows a FIFO discipline, while a stack follows
a LIFO one. Since objects in Plural should be associated with typestates, both our Node and
LinkedList classes have protocols.

In the Node class, we define two orthogonal state dimensions, dimValue and dimNext,
which handle the value and next fields, respectively. In dimValue there are two states,
withValue and withoutValue, which indicate if the node has permission to the stored value
or not. In dimNext we have states withNext and withoutNext, which say if the node has
permission to the next node or if next is null. State dimensions avoid the need to reason
about all the combinations of having (or not) a value and having (or not) a next node. Since
direct field accesses are disallowed, we define getter and setter methods for both fields.

In the LinkedList class, we define two states: the empty and the non-empty. When it is
empty, the head and tail fields are null. When it is not empty, head and tail are not null
and there is unique permission to the first node, which is pointed by head. Since the head
points to the next node, and so on, we should have the required chain of nodes that builds
the linked-list. Adding and removing values from the list require unique permission to it.

Unfortunately, Plural did not accept either implementation. With regards to the Node
class, we had errors in all the methods indicating that the receiver could not be packed (i.e.
coerce from the concrete field view of the class to the abstract typestate view [24]) to match
the state specified by the ensures annotation parameter. Additionally, the invariant for the
withValue state had an error stating that the parametric permission kind we specified was
unknown, even though that was introduced with the appropriate annotation. In fact, we did
the same for the LinkedList class and we did not get these kinds of errors.

With regards to LinkedList, the only errors reported were in the add method. To
understand why, consider the case in which the list is not empty. In this case, the tail is
non-null, and we must call setNext on it to append a new node (line 8 of List. 18). However,
we do not have permission to do that. For this to work, we would need to have permission to
the last node that is owned by the second to last node. Unfortunately, we could not perform
such transferring of permissions. An alternative solution could be to use share permissions
instead of unique ones in the nodes. But this would require locking when accessing them,
because of the possibility of thread concurrency. Furthermore, we would lose track of the
memory footprint used by the list (since share permissions allow for unrestricted aliasing).
This can be an issue if we want to track all the references and ensure statically that all
resources are freed at end. Given this, we did not attempt to implement the iterator.

Listing 18 LinkedList’s add method in Plural.
1 @Unique (requires ="alive", ensures =" notEmpty ", use=Use. FIELDS)
2 public void add(@PolyVar (value="p", returned = false) T value) {
3 @Apply ("p") Node <T> n = new Node <T>(value);
4 if (head == null) {
5 head = n;
6 tail = n;
7 } else {
8 tail. setNext (n);
9 tail = n;

10 }
11 }

8 File pluralism/trunk/PluralTestsAndExamples/src/edu/cmu/cs/plural/polymorphism/ecoop/Stack.java

https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/Node.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/Node.java#L5-L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L26-L49
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L33
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L26-L36

J. Mota, M. Giunti, and A. Ravara 40:17

KeY

The linked-list implementation is heavily inspired in a tutorial by Hiep et al. which implements
a doubly-linked-list [29]. We declare several fields: head and tail; size, to count the number
of values; nodeList, containing a sequence of nodes; and values, containing a sequence of
values. The nodeList and values fields are ghost fields. As for the file reader, we define
the linked-list’s footprint, composed by its fields and the fields of all the nodes (line 5 of
List. 19). We also specify that the footprint itself only changes if the nodes sequence changes
(line 2), and that the list’s invariant only depends on the locations in the footprint (line 3).
The proof of the former was generated automatically by KeY using the default strategy. The
proof of the latter required some interactivity to guide the proof. Note that the footprints of
the values are not part of list’s footprint.

Listing 19 List’s footprint in KeY.
1 public model \ locset footprint ;
2 accessible footprint : nodeList ;
3 accessible \inv: footprint ;
4 represents footprint = size , head , tail , nodeList , values ,
5 (\ infinite_union \ bigint i; 0 <= i < nodeList . length ; ((Node) nodeList [i

]) .*);

The list’s invariant is the most verbose part of the specification. First, we specify that
size is equal to the number of nodes, which is then equal to the number of values. Then
we enforce that the values in the list are not null. We also use an existential quantifier,
indicating that in each position of the sequences, elements exist (lines 1-2 of List. 20). This
is necessary because KeY treats sequences in a way where they may occasionally contain
not-yet-created objects. Additionally, since the sequence declarations do not enforce the type
of their elements, we need to do it explicitly, either using an instanceof operator, or using
an existential quantifier. Furthermore, we need to cast the result of accessing a position in a
given sequence. Following that, we have to take into account that the list may be empty. So,
we define that either the nodes sequence is empty, and the head and tail fields are null, or
the nodes sequence is not empty, and the head points to the first node, and tail points to
the last one (lines 3-6). To ensure we have a linked-list, we enforce that the next field of
each node points to the following node in the sequence (lines 7-8). We also enforce that all
the nodes are distinct (lines 9-12). Finally, we specify that each value in the values sequence
corresponds to the value stored in each node in the same position.

Listing 20 List’s invariant in KeY.
1 (\ forall \ bigint i; 0 <= i < values . length ;
2 (\ exists FileReader f; f == values [i] && f != null)) &&
3 ((nodeList == \ seq_empty && head == null && tail == null)
4 || (nodeList != \ seq_empty && head != null && tail != null &&
5 tail.next == null && head == (Node) nodeList [0] &&
6 tail == (Node) nodeList [nodeList .length -1])) &&
7 (\ forall \ bigint i; 0 <= i < nodeList .length -1;
8 ((Node) nodeList [i]).next == (Node) nodeList [i+1]) &&
9 (\ forall \ bigint i; 0 <= i < nodeList . length ;

10 (\ forall \ bigint j; 0 <= j < nodeList . length ;
11 (Node) nodeList [i] == (Node) nodeList [j] ==> i == j
12)) && ...

The iterator has several fields: list, a reference to the list; curr, the current node;
index, the position of the current node in the nodes sequence; seen, the sequence of values
already iterated; and to_see, the sequence of values still to be iterated. The index, seen,
and to_see fields are ghost fields. As usual, we define the iterator’s footprint, composed only

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L2-L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L8-L13
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L8-L13
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L15-L35
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L21-L31
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L2-L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L8-L12

40:18 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

by its fields (line 4 of List. 21). We also specify that the footprint itself does not change (line
2), and that the iterator’s invariant depends on its footprint and on the list’s footprint (line
3). The proof of the former was done automatically. For the proof of the latter, KeY’s default
strategy was not enough. The reason for this was that KeY was applying multiple “cut”
tactics to try to close the proof for each possible value of size. Nonetheless, it was mostly
straightforward to guide the proof. We just had to use the “observerDependency” tactic to
establish that the iterator’s invariant does not change in the presence of heap updates on
locations that do not belong to its footprint or the list’s footprint.

Listing 21 Iterator’s footprint in KeY.
1 public model \ locset footprint ;
2 accessible footprint : \ nothing ;
3 accessible \inv: footprint , list. footprint ;
4 represents footprint = list , curr , index , seen , to_see ;

In the iterator’s invariant we first specify that index is a value between zero and the
number of values. This number may be equal to the number of values if and only if we have
already iterated through all values. Then we enforce that the values in both sequences are
not null. Following that, we define that the seen sequence corresponds to the values already
seen, from position zero (inclusive) to index (exclusive), and that to_see corresponds to the
values to see, from position index (inclusive) to the end. Since curr points to the current
node, we map it to position index in the nodes sequence, or we specify that it is null, when
iteration is done. Finally, we assert that the list’s invariant holds.

Regarding the linked-list, verifying the constructor, add, and iterator methods required
only the default strategy, but for the remove method, some interactivity was need, namely
to show that the first value was the value of the head. Regarding the iterator, we had to
guide the proof of the constructor, mostly to establish the invariants of the iterator and list,
since KeY was applying “cut” multiple times, as before. The hasNext method was verified
automatically with the default strategy. To verify the next method, we had to prove that:
1. only the list’s and iterator’s footprints are accessible; 2. the post-condition holds after
execution; 3. and that only the iterator’s footprint is modified. These proof requirements
required a lot of work, likely because of the relation between index and curr, which was
probably not obvious to the default strategy. Examples of goals which required some effort
to prove were: showing that the value of the current node was the first value in the “to see”
sequence, proving that such a value was a file reader, and that the new sequences respected
the invariant (after the current value was moved to the “seen” sequence).

Evaluation

In VeriFast, as well as in VerCors, the expressiveness of the logic allowed us to specify
a linked-list and an iterator. However, deductive reasoning was often required. In our
experience, we spent more time in proving results than in writing code, having to unfold and
fold predicates very often, revealing their definitions, having to define multiple lemmas, and
insert assertions to guide proofs. In VeriFast, we had to write about 160 lines of lemmas. In
VerCors, we wrote about 100 lines. Some of the time spent in VerCors with the proofs was
reduced because we could reuse the experience we had with VeriFast.

In Plural, we were not able to implement a linked-list. We believe the support for logical
predicates would be necessary to be able to specify structures with recursive properties.
Furthermore, as far as we can tell, there is no support for parametric typestates, even though
there is for fractional permissions, which could potentially allow one to model a list with
objects in different states that evolve.

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L8-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L14-L24
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/Lemmas.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L31-L142

J. Mota, M. Giunti, and A. Ravara 40:19

In KeY, we were able to implement and verify a linked-list and an iterator. Although
KeY supports interactivity, together with useful macros and a high degree of automation, we
spent some time proving properties about the heap. For example, we often had to prove that
the footprints of two objects were disjoint, which means we also had to account for possible
changes in the footprints themselves, which became very cumbersome. To do this, we had to
make the footprints public so that they could be opened in proofs, otherwise we are not sure
if we would have been able to finish the proofs. We believe this motivates the need to be
able to prove heap and functional properties separately.

Given the differences between the approaches presented, we believe simply comparing lines
of specification would not provide a meaningful comparison. Thus, we provide a qualitative
evaluation. In summary, we observe that these methods require an important effort especially
when one is learning the approaches. Not surprisingly, in VeriFast, VerCors, and KeY, the
specification took more space than the code, and was usually verbose. VeriFast and VerCors
also required a substantial amount of annotations to guide the proofs. With KeY, the space,
usually needed for proofs in the other two tools, was replaced by the time spent proving
results interactivity. Even if it turns out that with training, it is not that hard to specify,
implement, and verify the examples, it is certainly time consuming. We believe this motivates
further study on what we can delegate to static analysis to ease this effort. Plural has less
expressive power than the other tools, so it makes sense that the annotation effort was low.

3.4 RQ evaluation
We are able to produce examples of file readers usage, as presented in Section 3.1, where
we successfully ensure that the protocol is followed (i.e. only the allowed methods in each
state can be called), in all four tools: in VeriFast, VerCors, and KeY, thanks to the pre- and
post-conditions; and in Plural, thanks to the typestate abstraction directly supported. We
can also ensure protocol compliance when different file readers are stored within a linked-list,
in VeriFast (List. 22), VerCors, and KeY, but with significant annotation and proof effort, as
observed in the examples produced.

Listing 22 useFiles specification in VeriFast.
1 requires list != null &*& llist(list , _, _, ?l) &*& tracker (length (l))

&*& foreachp (l, INV(FileReader . STATE_INIT));
2 ensures list != null &*& llist(list , _, _, l) &*& tracker (0) &*& foreachp

(l, INV(FileReader . STATE_CLOSED));

In the rest of this section, we focus our presentation on the crucial property of protocol
completion, which guarantees that if and when the program terminates, all the objects are
in the final states of their protocols.

VeriFast

To ensure that all file readers created through the lifetime of the program reach the end
of their protocol, we define a tracker predicate in a .javaspec file which keeps hold of the
number of open file readers (List. 23). This proposed solution is based on a private exchange
with Jacobs [37]. Then, we augment the file reader’s specification to increment this counter
in the constructor, and decrement the counter in the close method. Finally, since we want
to guarantee protocol completion for all created objects, we assert in the pre-condition and
post-condition of the main method that the counter should be zero, given that main is the
starting (and ending) point of Java programs.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L51-L66
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java#L49-L64
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/Main.java#L79-L98
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L51-L67
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L25-L56
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/Main.java#L38-L68
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/Main.java#L33-L36
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L26-L27
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/rt/tracker.javaspec
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L8-L9
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L8-L9

40:20 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

Listing 23 tracker.javaspec file.
1 predicate tracker (int count);
2
3 lemma void increment_tracker ();
4 requires tracker (?n);
5 ensures tracker (n + 1);
6
7 lemma void decrement_tracker ();
8 requires tracker (?n);
9 ensures tracker (n - 1);

Unfortunately, it is possible to fail to ensure protocol completion if the programmer is
not careful. Firstly, one could forget to increment and decrement the counter when the
typestated-object is initialized and when its protocol finishes, respectively. Secondly, if one
forgets to include the post-condition in the main method, protocol completion will not be
actually enforced. So, we can guarantee protocol completion but only if the programmer
does not fall for these “traps”. Here we see that ghost code is useful to check properties, but
if such code is not correctly connected with the “real” code, then the property we desired to
establish is not actually guaranteed.

VerCors

To ensure protocol completion, we follow the previous idea, but instead of a “global counter”
defined through a predicate written in a specification file, we create a FileTracker object
which keeps hold of the number of open file readers using ghost code. When we augment
the file reader’s implementation to increment and decrement the counter in the appropriate
methods, we also have to pass the tracker using the given directive. Again, it is possible to
fall for the same “traps”: forgetting to increment and decrement the counter, and forgetting
to add the post-condition to the main method.

Since VerCors supports quantifiers, one could think of quantifying over all file readers
and ensuring they are all closed. Unfortunately, we would be quantifying over all possible
file readers, not just the ones actually allocated on the heap.

Plural

Although the typestate abstraction is directly supported, protocol completion is not guaran-
teed since permissions may be “dropped”, as seen in List. 24, where a unique permission for
an object is received but not used, without any error being reported. This was not an issue
in other tools, even though leaking resources is permitted, because the support for deductive
reasoning allowed us to count the number of active objects.

Listing 24 Dropping file reader in Plural.
1 void droppingObject (
2 @Unique (requires =" opened ", returned = false) FileReader f) {}

As far as we can tell, Plural’s specification language is based on linear logic, which would
imply that this would not be permitted. However, we understand why this is the case in
Java, since it is common for one to stop using an object and letting the garbage collector
reclaim memory. Nonetheless, we believe that ensuring protocol completion is crucial for
typestated-objects, to ensure that important method calls are not omitted and resources are
freed (e.g. closing a socket).

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/rt/tracker.javaspec
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileTracker.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/Main.java#L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L69-L71
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L69-L71

J. Mota, M. Giunti, and A. Ravara 40:21

KeY

To ensure that all file readers reach the end of their protocol, we define a contract for the
main method such that for all file readers created at some point in the program, they are
in the final state (line 2 of List. 25). Since KeY is not aware of the objects created or not
before, we define as pre-condition that no file readers exist when main is called (line 1). This
works because quantifiers in KeY only reason over objects in the heap. Given that main is
the first method called in a Java program, this requirement is actually an assumption.

Listing 25 main method’s contract with protocol completion in KeY.
1 requires !(\ exists FileReader f; true);
2 ensures (\ forall FileReader f; f.state == FileReader . STATE_CLOSED);

Thanks to first-order dynamic logic, we can use quantifiers to specify that all existing
file readers should have their protocol completed. Although this seems powerful, we have
to adapt all other methods to specify that no new file readers are created inside. This is
necessary because it would be possible for methods to create file readers only available in
the scope of their execution, which would exist in the heap as created objects, but for which
we would know nothing about. This post-condition, written as !(\exists FileReader f;
\fresh(f)), was added in all needed methods. In the file reader’s constructor, we also had
to say that f was different from this, since the newly created reference is fresh.

Evaluation

In the context of typestates, checking for protocol completion is crucial to ensure that
necessary method calls are not forgotten and that resources are freed, thus avoiding memory
leaks. Unfortunately, that concept is not built-in in any of the logics employed by all four
tools. We believe that protocol completion should be provided directly by the type system and
the programmer should not be required to remember to add this property to the specification.

One workaround we found for VeriFast and VerCors was to have a counter that keeps
track of all typestated-objects which are not in the final state. This requires keeping hold of
the aforementioned tracker in specifications, which can be a huge burden in bigger programs.
Ensuring protocol completion could be embedded in separation logic and such a feature
could even be possible in VeriFast. Given that VeriFast supports leak checking, one would
just need to incorporate notions of typestates and ensure that leaking would only be allowed
when objects are in their final states. In C, one would also need to enforce that claimed
memory is freed. In Java, leak checking would need to be enabled for typestated-objects.

For Plural, we did not find a way to ensure protocol completion. This could be supported
by asking the programmer to indicate which state of a given object is the final one and only
allowing permissions for ended objects to be “dropped”.

In KeY, we made use of the support for universal quantifiers and reasoning on heap-
dependent expressions. However, verifying the code against that specification can be cumber-
some, and requires augmenting the specifications of all other methods, ensuring no untracked
objects are added to the heap.

4 General assessment of the tools

In this section, we summarize our views about the tools, using the knowledge gained from
our experiments, and provide suggestions of what could be improved.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/protocol-completion/Main.java#L4-L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/protocol-completion/Main.java#L4-L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/protocol-completion/FileReader.java#L21

40:22 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

VeriFast

Separation logic, fractional permissions, and predicates, allow for rich and expressive specific-
ations that make it possible to verify complex programs. However, deductive reasoning is
often required when the specifications are more elaborate, as we have seen when implementing
the linked-list (Section 3.3). This is tedious and can be a barrier to less experienced users.
Although VeriFast’s IDE provides a way for one to look at each step of a proof when an error
is discovered, we believe that, at least in part, having a way to guide proofs (like one can do
with proof assistants such as Coq), would improve the user experience even more by: (1)
avoiding having to insert proof guiding assertions in the code implementation itself (allowing
for more separation of concerns); and (2) avoiding the need to rerun the tool every time
that occurs. In other words, when guiding the proofs, one would get immediate feedback.
Nonetheless, the IDE experience was still very useful in helping us prove several results.

Checking for protocol completion is crucial to ensure that essential method calls are
not omitted and that resources are freed. Unfortunately, that concept is not built-in in
separation logic (Section 3.4). Given that VeriFast supports leak checking, one would just
need to ensure that leaking would only be allowed when objects are in their final states.

VerCors

As in VeriFast, rich and expressive specifications are supported, but deductive reasoning is
(again) required. As we noted before, this can be tedious, as highlighted by the time and lines
of code we needed to prove results. Unfortunately, VerCors has no interactive experience so
we had to practice “trial and error” more often, guessing what could be wrong and rerunning
the tool every time we changed the code.

In terms of user experience, we think allowing for more separation between lemma and
predicate functions from code, instead of forcing these to belong to classes as static methods,
would help improve readability, as others have also noted [31]. We also believe the tool could
be more efficient: since specifications are self-framing (i.e. only depend on memory locations
that they themselves require to be accessible) and the checking process is modular, VerCors
could cache some results to avoid re-checking parts of the code that were not modified. We
also noticed that if we unfolded a predicate on which some truth depends on, that knowledge
would be lost. For example, the knowledge of the values stored in a sequence of nodes depends
on the permissions to those nodes, available in the nodes_until predicate. In principle,
unfolding this predicate should not invalidate the available information, but it does. To
workaround this, we had to use fractional permissions to keep hold of some fraction of the
original predicate, and only unfold the other fractional part.

Comparison between VeriFast and VerCors

Given the similarities between VeriFast and VerCors, we believe it is very relevant to provide
a comparison between both.

With respect to specifying access to memory locations, VeriFast only supports the points-
to assertions of separation logic, while VerCors also supports permission annotations, inspired
by Chalice [44, 45], allowing us to refer to values in variables without the need to use new
names for them, which was very useful when writing the specifications. Furthermore, VerCors
has built-in support for quantifiers, many different abstract data structures, and ghost code,
which VeriFast does not. We used a fair amount of ghost code in VerCors. Nonetheless,
VeriFast supports the definition of new inductive data types, fixpoint functions, higher-order
predicates, and counting permissions, which VerCors does not. Unfortunately, VerCors does

https://coq.inria.fr/
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L14-L17
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L132

J. Mota, M. Giunti, and A. Ravara 40:23

not support generics in Java. Regarding VeriFast, as Bart Jacobs points out, at the time of
writing, “support for Java generics in VeriFast is in its infancy”.

Both provide support for fractional permissions, which we have used. However, this
model only allows for read-only access when data is shared. In consequence, either locks
are required to mutate shared data (even in single-threaded code, where they are not really
necessary, resulting in inefficient code), or a complex specification workaround is needed. We
believe that the specifications and code should focus on the application’s logic, and the need
to modify them to help the verifier should be avoided as much as possible. VerCors lacks
support for counting permissions, which would allow permissions to be split in other ways.

Finally, we missed the support for output parameters which VeriFast has. To reproduce
the same concept in VerCors, we had to add ghost parameters in many methods and explicitly
pass values for those parameters when calling such methods. For example, when working
with the linked-list, we kept track of the sequence of values in the list through ghost code,
and always had to pass that sequence to each called method.

Plural

The rich set of access permissions allows objects’ state to be tracked even in the presence
of aliasing, and permits read/write and write/write operations, thanks to state guarantees.
Nonetheless, we could not specify structures such as the linked-list with double handle
(i.e. with head and tail fields), likely because of the lack of support for logical predicates.
Furthermore, to our knowledge, there is no support for parametric typestates.

The use of share permissions allows for unrestricted aliasing. Nonetheless, state assump-
tions need to be discarded because of the possibility that there might be other threads
attempting to modify the same reference. Although this thread-sharedness approximation
is sound, it forces the use of synchronization primitives even if a reference is only available
in one thread. Beckman et al. discuss the possibility of distinguishing permissions for
references that are only aliased locally from references that are shared between multiple
threads, allowing access to thread-local ones without the need for synchronization [7]. But
as far as we know, the idea was not realized.

Furthermore, there is no built-in guarantee of protocol completion. This could be provided
by only permitting permissions for ended objects to be “dropped” (Section 3.4).

KeY

The use of JML for specifications, a language for formally specifying behavior of Java
code, used by various tools, reduces the learning curve for those that already know JML.
Furthermore, KeY supports a great number of Java features, allowing one to verify real
programs considering the actual Java runtime semantics. Nonetheless, generics are not
supported, although there is an automated tool to remove generics from Java programs,
which can then be verified with KeY. Because of its focus on Java, KeY is not overly suitable
for the verification of algorithms that require abstracting away from the code [20].

One important aspect that makes KeY stand out from other tools is the support for
interactivity, which allows the programmer to guide the proofs. This is an aspect that we
missed when experimenting with other tools. Additionally, KeY provides useful macros and
a high degree of automation, as well as support for SMT solvers, such as Z3. We used Z3
often to more quickly close provable goals, specially those involving universal quantifiers.

Since KeY’s core is based on first-order dynamic logic, one can express heap-dependent
expressions: the heap is an explicitly object in the logic. Although this allows for much
expressiveness, it often becomes very difficult to verify programs, as our experience has shown

ECOOP 2023

https://github.com/verifast/verifast/issues/271#issuecomment-1134814121
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/Main.java#L16-L18
https://www.key-project.org/docs/user/RemoveGenerics/

40:24 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

(Section 3.3). We think that a variant of KeY that would instead use separation logic, to
abstract away the heaps and the notion of disjointness, would be very helpful, improving
readability and reducing verbosity.

Nonetheless, there are probably other alternatives to separation logic that would help in
solving the aforementioned issues. In a private conversation with KeY’s group leaders, they
point out that the connectives of separation logic “would get in the way of automation”,
a crucial feature of KeY. For example, it seems that “the heap separation rule tends to
split proofs too early” [35]. Furthermore, they mention that the problems we encountered
could be summarized in two main points: (1) insufficient abstract specification primitives;
(2) inability to prove heap and functional properties separately, in a modular fashion. KeY’s
team is aware of these issues and will address them in the future (at the time of writing).

As we pointed out above, we believe separation logic together with resource leaking
prevention (except for objects with completed protocol), could be used to ensure protocol
completion without the need for adding extraneous specifications. This would be another
reason why we believe separation logic would be preferable over first-order dynamic logic,
but it is possible there are other alternatives.

Finally, we enjoyed the user experience and appreciated that KeY comes with examples
to experiment with. Nonetheless, at the moment of writing, we believe there is room for
improvement. For more details, we refer the reader to a thorough discussion of the issues we
found and suggestions for improvements, which we shared with KeY’s team.

5 Related work

Penninckx et al. develop an approach to verify input/output properties of programs [54].
They encode I/O behavior using abstract permission-based predicates implemented in
VeriFast. The technique ensures that a program only performs the allowed I/O operations.
Additionally, it guarantees a terminated program has performed all desired operations with
a post-condition specifying the final state a program should be found in. Later, Jacobs
presented an approach to verify liveness properties [36]. Blom et al. verify the functional
behavior of concurrent software using histories, which record the actions taken by a concurrent
program [15]. The technique has been integrated in VerCors and experimentally added to
VeriFast. Similarly, Oortwijn integrated process algebra models [8] in VerCors to reason about
functional properties of shared-memory concurrent programs, including non-terminating
ones [52]. More recently, work has been developed to support the deductive verification of
JavaBIP models in VerCors [12]. In these models, Java classes are considered as components
where their behavior is described by finite state machines, and component interactions are
specified with synchronization annotations [11]. Kim et al. propose a technique to specify
protocols of Java classes by incorporating typestates into JML [41]. When translating their
extension to pure JML, multiple boolean fields for each state are declared which, when
true, indicate the object is in that given state. Multiple fields are needed to support
state refinements [9]. Cheon and Perumandla extend JML with a new specification clause
containing a regular expression-like notation to specify the sequences of method calls allowed
for a given class [21].

In this study, we focus on sequential examples and only present a simple protocol, which
does not require a complex encoding, so the aforementioned techniques would either not be
applicable or would introduce unnecessary verification overhead.

With respect to comparison studies, there are several that have been conducted. However,
as far as we know, no study was previously done that focused on the verification of protocol
compliance and completion. Nonetheless, we reference some works we found relevant to

https://arxiv.org/abs/2209.05136

J. Mota, M. Giunti, and A. Ravara 40:25

us. Lathouwers and Huisman examine the annotation effort in several tools, including
VeriFast and VerCors [42]. Hollander briefly discusses the differences between VeriFast
and VerCors [31]. Boerman et al. study the way in which KeY and OpenJML treat JML
specifications differently and the effort in switching between both tools [16].

6 Conclusions

In this paper, we address the RQ (Page 2) by reviewing four verification tools for Java.
In particular, we evaluated their ability to check the correct use of objects with protocol,
and if they were able to guarantee protocol completion, even when these were shared in
collections (Section 3.4). Additionally, we evaluated the programmer’s effort in making the
code acceptable to each, and provide suggestions for improvements (Section 4).

We were able to reach a general conclusion: stateful objects usually have protocols
representing their intended usage. In the tools we have studied, protocols are not first-class
entities; instead they need to be encoded with method contracts (even in Plural, annotations
on methods are required). In contrast, approaches based on behavioral types, where protocols
can be defined via automata [4, 47, 60], treat protocols as central, and provide a global view
of the intended usage of each object. By having this model, reasoning on relevant properties
becomes easier than on lower level encodings.

Now we summarize key points gathered from our experiments with each tool. Both
VeriFast and VerCors support rich and expressive specifications based on separation logic: this
allowed us to successfully address the RQ. However, deductive reasoning was often required.
This is very demanding and can be a barrier to less experienced users. We believe improved
interactive experiences for programmers are key to make these tools more approachable.
Furthermore, fractional permissions only allow for read-only access when data is shared.

Plural is different from these tools in two major ways: it does not support logical predicates
and so, specifications are less expressive in that regard, which prevented us from implementing
a linked-list. Nevertheless, access permissions support more kinds of sharing, but access to
thread-local shared data might require an unnatural use of locks.

KeY supports interactivity, automation, and the ability to reuse proofs. Nonetheless, the
fact that heaps are mentioned explicitly in assertions made it difficult to read the hypothesis
and proof goals. Additionally, we often had to show that certain footprints were disjoint.
So, although we successfully answered the RQ, again the effort was substantial. To fully
automate some proofs, KeY depends on finding the right specifications and proof search
settings, which is not easy. More abstract specification primitives, and the ability to separate
proofs of heap and functional properties, are crucial features to improve both readability
and ease of proving results.

So, we proved protocol compliance with some effort, but protocol completion, crucial
to ensure that necessary method calls are not forgotten and that resources are freed, is
not directly supported by any of these tools. Although there are workarounds in some, we
believe such guarantee should be supplied directly. This could be done by ensuring that no
permission to an object is “dropped” unless it is in the final state.

In conclusion, this study motivates the need for lightweight methods to statically guarantee
protocol compliance and completion in the presence of several patterns of sharing, like objects
with protocol stored in collections, including the following features: usage protocols as the
central entity defining objects’ behavior, more kinds of sharing beyond fractional permissions
also avoiding the need for locks in sequential code, and better techniques to reason about
permissions to heap locations.

For completion, this study could be complemented with OpenJML [22], and LiquidJava,
a recent tool that integrates liquid types in Java [26].

ECOOP 2023

40:26 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,

and Mattias Ulbrich, editors. Deductive Software Verification – The KeY Book – From
Theory to Practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016.
doi:10.1007/978-3-319-49812-6.

2 Bernardo Almeida, Andreia Mordido, Peter Thiemann, and Vasco T. Vasconcelos. Polymorphic
lambda calculus with context-free session types. Inf. Comput., 289(Part A), 2022. doi:
10.1016/j.ic.2022.104948.

3 Davide Ancona et al. Behavioral types in programming languages. Foundations and Trends in
Programming Languages, 3(2-3):95–230, 2016. doi:10.1561/2500000031.

4 Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara. A
Java typestate checker supporting inheritance. Sci. Comput. Program., 221, 2022. doi:
10.1016/j.scico.2022.102844.

5 Bernhard Beckert and Reiner Hähnle. Reasoning and Verification: State of the Art and
Current Trends. IEEE Intell. Syst., 29(1):20–29, 2014. doi:10.1109/MIS.2014.3.

6 Nels E. Beckman. Modular typestate checking in concurrent Java programs. In Companion
to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 737–738. ACM, 2009. doi:10.1145/1639950.1639990.

7 Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage of atomic
blocks and typestate. In Proceedings of the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 227–244. ACM,
2008. doi:10.1145/1449764.1449783.

8 Jan A. Bergstra and Jan Willem Klop. Process Algebra for Synchronous Communication. Inf.
Control., 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.

9 Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. In
Proceedings of the 10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 217–226.
ACM, 2005. doi:10.1145/1081706.1081741.

10 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 301–320. ACM, 2007. doi:10.1145/1297027.
1297050.

11 Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolotukhina. Exogenous
coordination of concurrent software components with JavaBIP. Softw. Pract. Exp., 47(11):1801–
1836, 2017. doi:10.1002/spe.2495.

12 Simon Bliudze, Petra van Den Bos, Marieke Huisman, Robert Rubbens, and Larisa Safina.
JavaBIP meets VerCors: Towards the Safety of Concurrent Software Systems in Java. In 26th
International Conference on Fundamental Approaches to Software Engineering, 2023.

13 Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The VerCors Tool
Set: Verification of Parallel and Concurrent Software. In Proceedings of Integrated Formal
Methods, volume 10510 of Lecture Notes in Computer Science, pages 102–110. Springer, 2017.
doi:10.1007/978-3-319-66845-1_7.

14 Stefan Blom and Marieke Huisman. Witnessing the elimination of magic wands. Int. J. Softw.
Tools Technol. Transf., 17(6):757–781, 2015. doi:10.1007/s10009-015-0372-3.

15 Stefan Blom, Marieke Huisman, and Marina Zaharieva-Stojanovski. History-Based Verific-
ation of Functional Behaviour of Concurrent Programs. In Radu Calinescu and Bernhard
Rumpe, editors, Software Engineering and Formal Methods – 13th International Conference,
Proceedings, volume 9276 of Lecture Notes in Computer Science, pages 84–98. Springer, 2015.
doi:10.1007/978-3-319-22969-0_6.

16 Jan Boerman, Marieke Huisman, and Sebastiaan J. C. Joosten. Reasoning About JML:
Differences Between KeY and OpenJML. In Integrated Formal Methods – 14th International
Conference, Proceedings, volume 11023 of Lecture Notes in Computer Science, pages 30–46.
Springer, 2018. doi:10.1007/978-3-319-98938-9_3.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.1561/2500000031
https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1145/1639950.1639990
https://doi.org/10.1145/1449764.1449783
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1145/1081706.1081741
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1002/spe.2495
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/s10009-015-0372-3
https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/978-3-319-98938-9_3

J. Mota, M. Giunti, and A. Ravara 40:27

17 Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission
accounting in separation logic. In The 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 259–270, 2005. doi:10.1145/1040305.1040327.

18 John Boyland. Checking Interference with Fractional Permissions. In Static Analysis, 10th
International Symposium, Proceedings, volume 2694 of Lecture Notes in Computer Science,
pages 55–72. Springer, 2003. doi:10.1007/3-540-44898-5_4.

19 Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel, Mathias Jakobsen,
Mikkel Kettunen, and António Ravara. Behavioural Types for Memory and Method Safety
in a Core Object-Oriented Language. In Asian Symposium on Programming Languages and
Systems, volume 12470 of Lecture Notes in Computer Science, pages 105–124. Springer, 2020.
doi:10.1007/978-3-030-64437-6_6.

20 Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich. Implementation-level verification
of algorithms with KeY. Int. J. Softw. Tools Technol. Transf., 17(6):729–744, 2015. doi:
10.1007/s10009-013-0293-y.

21 Yoonsik Cheon and Ashaveena Perumandla. Specifying and Checking Method Call Sequences
in JML. In Hamid R. Arabnia and Hassan Reza, editors, Proceedings of the International
Conference on Software Engineering Research and Practice, volume 2, pages 511–516. CSREA
Press, 2005.

22 David R. Cok. JML and OpenJML for Java 16. In FTfJP 2021: 23rd ACM International
Workshop on Formal Techniques for Java-like Programs, 2021, Proceedings, pages 65–67. ACM,
2021. doi:10.1145/3464971.3468417.

23 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

24 Robert DeLine and Manuel Fähndrich. Typestates for Objects. In 18th European Conference
on Object-Oriented Programming, Proceedings, volume 3086 of Lecture Notes in Computer
Science, pages 465–490. Springer, 2004. doi:10.1007/978-3-540-24851-4_21.

25 José Duarte and António Ravara. Retrofitting Typestates into Rust. In 25th Brazilian
Symposium on Programming Languages, pages 83–91. ACM, 2021. doi:10.1145/3475061.
3475082.

26 Catarina Gamboa, Paulo Alexandre Santos, Christopher Steven Timperley, and Alcides
Fonseca. User-driven Design and Evaluation of Liquid Types in Java. CoRR, abs/2110.05444,
2021. arXiv:2110.05444.

27 David Harel. Dynamic logic. In Handbook of philosophical logic, pages 497–604. Springer, 1984.
28 David Harel. Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program.,

8(3):231–274, 1987. doi:10.1016/0167-6423(87)90035-9.
29 Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, and Stijn de Gouw. A Tutorial on

Verifying LinkedList Using KeY. In Deductive Software Verification: Future Perspectives –
Reflections on the Occasion of 20 Years of KeY, volume 12345 of Lecture Notes in Computer
Science, pages 221–245. Springer, 2020. doi:10.1007/978-3-030-64354-6_9.

30 Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576–580, 1969. doi:10.1145/363235.363259.

31 J.P. Hollander. Verification of a model checking algorithm in VerCors, August 2021. URL:
http://essay.utwente.nl/88268/.

32 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language Primitives
and Type Discipline for Structured Communication-Based Programming. In Proceedings of
Programming Languages and Systems, volume 1381 of Lecture Notes in Computer Science,
pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

33 Marieke Huisman and Raúl E. Monti. On the Industrial Application of Critical Software
Verification with VerCors. In Proceedings of Leveraging Applications of Formal Methods,
volume 12478 of Lecture Notes in Computer Science, pages 273–292. Springer, 2020. doi:
10.1007/978-3-030-61467-6_18.

ECOOP 2023

https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/s10009-013-0293-y
https://doi.org/10.1007/s10009-013-0293-y
https://doi.org/10.1145/3464971.3468417
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/3475061.3475082
https://doi.org/10.1145/3475061.3475082
https://arxiv.org/abs/2110.05444
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-030-64354-6_9
https://doi.org/10.1145/363235.363259
http://essay.utwente.nl/88268/
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-030-61467-6_18
https://doi.org/10.1007/978-3-030-61467-6_18

40:28 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

34 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

35 Reiner Hähnle. Private communication, July 2022.
36 Bart Jacobs. Modular Verification of Liveness Properties of the I/O Behavior of Imperative

Programs. In Leveraging Applications of Formal Methods, Verification and Validation: Veri-
fication Principles, Proceedings, volume 12476 of Lecture Notes in Computer Science, pages
509–524. Springer, 2020. doi:10.1007/978-3-030-61362-4_29.

37 Bart Jacobs. Private communication, March 2022.
38 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank

Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA
Formal Methods – Third International Symposium, Proceedings, volume 6617 of Lecture Notes
in Computer Science, pages 41–55. Springer, 2011. doi:10.1007/978-3-642-20398-5_4.

39 Bart Jacobs, Jan Smans, and Frank Piessens. A Quick Tour of the VeriFast Program
Verifier. In Programming Languages and Systems – 8th Asian Symposium, Proceedings,
volume 6461 of Lecture Notes in Computer Science, pages 304–311. Springer, 2010. doi:
10.1007/978-3-642-17164-2_21.

40 Ioannis T. Kassios. Dynamic Frames: Support for Framing, Dependencies and Sharing Without
Restrictions. In Formal Methods, 14th International Symposium on Formal Methods, Hamilton,
Proceedings, volume 4085 of Lecture Notes in Computer Science, pages 268–283. Springer,
2006. doi:10.1007/11813040_19.

41 Taekgoo Kim, Kevin Bierhoff, Jonathan Aldrich, and Sungwon Kang. Typestate protocol
specification in JML. In Proceedings of the 8th International Workshop on Specification and
Verification of Component-Based Systems, pages 11–18. ACM, 2009. doi:10.1145/1596486.
1596490.

42 Sophie Lathouwers and Marieke Huisman. Formal Specifications Investigated: A Classification
and Analysis of Annotations for Deductive Verifiers. In 10th IEEE/ACM International
Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2022, pages 69–79.
ACM, 2022. doi:10.1145/3524482.3527652.

43 Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.
doi:10.1145/1127878.1127884.

44 K Rustan M Leino and Peter Müller. A basis for verifying multi-threaded programs.
In European Symposium on Programming, pages 378–393. Springer, 2009. doi:10.1007/
978-3-642-00590-9_27.

45 K Rustan M Leino, Peter Müller, and Jan Smans. Verification of concurrent programs with
Chalice. In Foundations of Security Analysis and Design V, pages 195–222. Springer, 2009.
doi:10.1007/978-3-642-03829-7_7.

46 Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40–51, 1992. doi:10.1109/
2.161279.

47 João Mota, Marco Giunti, and António Ravara. Java Typestate Checker. In Proc. of
Coordination Models and Languages (COORDINATION), volume 12717 of Lecture Notes in
Computer Science, pages 121–133. Springer, 2021. doi:10.1007/978-3-030-78142-2_8.

48 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A Verification Infra-
structure for Permission-Based Reasoning. In Proceedings of Verification, Model Checking,
and Abstract Interpretation, volume 9583 of Lecture Notes in Computer Science, pages 41–62.
Springer, 2016. doi:10.1007/978-3-662-49122-5_2.

49 Oscar Nierstrasz. Regular types for active objects. ACM sigplan Notices, 28(10):1–15, 1993.
50 Peter O’Hearn. Resources, concurrency, and local reasoning. Theoretical computer science,

375(1-3):271–307, 2007. doi:10.1016/j.tcs.2006.12.035.

https://doi.org/10.1145/2873052
https://doi.org/10.1007/978-3-030-61362-4_29
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/11813040_19
https://doi.org/10.1145/1596486.1596490
https://doi.org/10.1145/1596486.1596490
https://doi.org/10.1145/3524482.3527652
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1016/j.tcs.2006.12.035

J. Mota, M. Giunti, and A. Ravara 40:29

51 Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs that
alter data structures. In International Workshop on Computer Science Logic, pages 1–19.
Springer, 2001. doi:10.1007/3-540-44802-0_1.

52 Wytse Hendrikus Marinus Oortwijn. Deductive techniques for model-based concurrency verific-
ation. PhD thesis, University of Twente, 2019.

53 Matthew J. Parkinson and Alexander J. Summers. The Relationship between Separation
Logic and Implicit Dynamic Frames. In Proceedings of Programming Languages and Systems,
volume 6602 of Lecture Notes in Computer Science, pages 439–458. Springer, 2011. doi:
10.1007/978-3-642-19718-5_23.

54 Willem Penninckx, Bart Jacobs, and Frank Piessens. Sound, Modular and Compositional
Verification of the Input/Output Behavior of Programs. In Programming Languages and
Systems, Proceedings, volume 9032 of Lecture Notes in Computer Science, pages 158–182.
Springer, 2015. doi:10.1007/978-3-662-46669-8_7.

55 John C Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74. IEEE, 2002.
doi:10.1109/lics.2002.1029817.

56 R.B. Rubbens. Improving Support for Java Exceptions and Inheritance in VerCors. Master’s
thesis, University of Twente, 2020. URL: http://essay.utwente.nl/81338/.

57 Ayesha Sadiq, Yuan-Fang Li, and Sea Ling. A survey on the use of access permission-
based specifications for program verification. Journal of Systems and Software, 159, 2020.
doi:10.1016/j.jss.2019.110450.

58 Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An Automatic Verifier for
Java-Like Programs Based on Dynamic Frames. In Fundamental Approaches to Software
Engineering, 11th International Conference, Held as Part of the Joint European Conferences
on Theory and Practice of Software, Proceedings, volume 4961 of Lecture Notes in Computer
Science, pages 261–275. Springer, 2008. doi:10.1007/978-3-540-78743-3_19.

59 Robert E. Strom and Shaula Yemini. Typestate: A Programming Language Concept for
Enhancing Software Reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986. doi:
10.1109/TSE.1986.6312929.

60 André Trindade, João Mota, and António Ravara. Typestates to Automata and back: a
tool. In Proceedings 13th Interaction and Concurrency Experience, ICE 2020, volume 324 of
EPTCS, pages 25–42, 2020. doi:10.4204/EPTCS.324.4.

61 André Trindade, João Mota, and António Ravara. Typestate Editor. https://
typestate-editor.github.io/, 2022.

62 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. GhostCell: Separating
Permissions from Data in Rust. Proc. ACM Program. Lang., 5(ICFP):1–30, 2021. doi:
10.1145/3473597.

ECOOP 2023

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1109/lics.2002.1029817
http://essay.utwente.nl/81338/
https://doi.org/10.1016/j.jss.2019.110450
https://doi.org/10.1007/978-3-540-78743-3_19
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.4204/EPTCS.324.4
https://typestate-editor.github.io/
https://typestate-editor.github.io/
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597

	1 Introduction
	2 Background
	2.1 VeriFast
	2.2 VerCors
	2.3 Plural
	2.4 KeY

	3 Experiments
	3.1 Running examples
	3.2 File reader specification
	3.3 Linked-list and iterator specifications
	3.4 RQ evaluation

	4 General assessment of the tools
	5 Related work
	6 Conclusions

