
On the Rise of Modern Software Documentation
Marco Raglianti #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Csaba Nagy #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Roberto Minelli #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Bin Lin #

Radboud University, Nijmegen, The Netherlands

Michele Lanza #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract
Classical software documentation, as it was conceived and intended decades ago, is not the only
reality anymore. Official documentation from authoritative and official sources is being replaced by
real-time collaborative platforms and ecosystems that have seen a surge, influenced by changes in
society, technology, and best practices. These modern tools influence the way developers document
the conception, design, and implementation of software. As a by-product of these shifts, developers
are changing their way of communicating about software. Where once official documentation stood as
the only truth about a project, we now find a multitude of volatile and heterogeneous documentation
sources, forming a complex and ever-changing documentation landscape.

Software projects often include a top-level README file with important information, which
we leverage to identify their documentation landscape. Starting from ∼12K GitHub repositories,
we mine their README files to extract links to additional documentation sources. We present a
qualitative analysis, revealing multiple dimensions of the documentation landscape (e.g., content
type, source type), highlighting important insights. By analyzing instant messaging application
links (e.g., Gitter, Slack, Discord) in the histories of README files, we show how this part of the
landscape has grown and evolved in the last decade.

Our findings show that modern documentation encompasses communication platforms, which
are exploding in popularity. This is not a passing phenomenon: On the contrary, it entails a number
of unknowns and socio-technical problems the research community is currently ill-prepared to tackle.

2012 ACM Subject Classification Software and its engineering → Collaboration in software devel-
opment; Human-centered computing → Collaborative and social computing

Keywords and phrases software documentation landscape, GitHub README, instant messaging

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.43

Category Pearl/Brave New Idea

Supplementary Material Software: https://figshare.com/s/33c8af534dba61d72c41

Funding This work is supported by the Swiss National Science Foundation (SNSF) through the
project “INSTINCT” (SNF Project No. 190113).

Acknowledgements Marco Raglianti would also like to thank the Swiss Group for Original and
Outside-the-box Software Engineering (CHOOSE) for sponsoring the trip to the conference.

1 Introduction

Times are changing. This is even more true for software engineering. Major shifts have
occurred, induced by the emergence of platforms like GitHub and StackOverflow, fundament-
ally changing how developers (and users) communicate about software projects: Mailing lists
and forums are declining in favor of multi-media instant messaging platforms, such as Gitter,
Slack, Discord, and GitHub Discussions, e.g., [9, 18,27,30,33,45,46,49,50,56,58,66,67].

© Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 43; pp. 43:1–43:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.raglianti@usi.ch
https://orcid.org/0000-0002-6878-5604
mailto:csaba.nagy@usi.ch
https://orcid.org/0000-0001-8109-3293
mailto:roberto.minelli@usi.ch
https://orcid.org/0000-0002-1549-6489
mailto:bin.lin@ru.nl
https://orcid.org/0000-0001-6307-8460
mailto:michele.lanza@usi.ch
https://orcid.org/0000-0003-4391-0197
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://figshare.com/s/33c8af534dba61d72c41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 On the Rise of Modern Software Documentation

Software documentation, a critical asset for developers [3], has been studied extensively
with respect to its quality and usefulness [4, 10,14,19,21,54,61,79]. Nevertheless, the impact
of the subtle but constant drift induced by new platforms is still to be evaluated. What are
the implications for program comprehension if a tweet can influence how developers treat a
bug [38]? Can the tweets on the usage of an API also serve as documentation? Classical
software documentation, as we have known it, is being replaced by “communication”.

Documentation went from a clunky, and rather unloved, endeavor to becoming a fast-paced
and volatile side dish. The utopia of “on-demand documentation” by Robillard et al. [55], is
being replaced by a dystopia of an ever-changing landscape; documentation is waved away
with sentences like “check Discord” or “it’s in the pull request comments.”

This change is more than just cosmetic, it is considerably affected by the richness of
new media, influencing the cognitive processes that underlie communication [53]. Modern
media-rich platforms offer vastly different mechanisms which are simply not there in classical
electronic communication means. Moreover, developers do not only hold ephemeral discussions
that they must be able to access now. They share knowledge (e.g., code examples, screenshots,
howtos) that is important for them in the future, and they do not have (or rather: take) the
time to persist it in a classical software documentation form (e.g., Wiki). Instant messaging
is just too enticing for that. But, they will need long-term access to this knowledge and want
to keep it searchable1 [20] and organizable2 [44]. They choose their platforms accordingly,
for example, avoiding limitations in retrievable history [2], and are willing to pay significant
sums for such services [12].

As the cards on documentation are being reshuffled, things seem murky: What happens
to the body of knowledge contained in the repositories of classical communication platforms?
What is the impact on standard software documentation? How do developers use modern
platforms, and what does this imply?

The Spectrum Example. Spectrum, a multi-forum community hosting platform, was hosting
dozens of software related communities about frameworks (e.g., React, Laravel), UI design (e.g.,
Figma), front-end coding (e.g., CodePen), and developers’ networks in general (e.g., SpecFM).
On Aug 24, 2021, to preserve history while pushing forward the adoption of new communication
infrastructures, it was announced that “the time has come for the planned archival of Spectrum
to focus our efforts on GitHub Discussions” [36]. Spectrum has become “read-only – no 404s
or lost internet history.” The Spectrum team acknowledged the importance of conversations
held on the platform and tried to avoid the limitations of relying on the Internet Archive for
preservation [71]. Many Spectrum communities had already moved to GitHub Discussions, for
reliability and flexibility reasons: Having code and the community in the same place outweighed
other factors in the decision to change.

We present an overview of the documentation landscape (i.e., a map of potential doc-
umentation sources) emerging from the analysis of ∼12K GitHub projects. We explore
current trends in documentation platforms and the relationship between documentation and
communication platforms, exemplified by the tendency in a project’s README to include
the latter as an indirect source of the former.

We show the most representative values in different dimensions characterizing the land-
scape. We then proceed more in-depth with the history of modern communication platforms.
We show how some platforms have seen increasing adoption, reached a plateau, and finally
started their decline. Our analysis provides insights into the many implications of this

1 Especially for large communities, without limitations, as reported in this blog post.
2 As demonstrated by the presence of an ecosystem built on top of instant messaging applications.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:3

ongoing phenomenon for software documentation. Finally, we discuss possible features that
future platforms should have to mitigate some of the perils introduced by these continuous
shifts. We use the following icons to highlight salient points:

Û Insight � Idea/Future Work . Threat

DwarvenMail

Miner

Annotator

History Extractor

Community Extractor

README Communication Platforms
Extractor

README HistoriesSEART
GHS

Manually
Annotated

Dataset

GitHub

GitHub

Slack Discord

Sec.
6.1–6.2

Link Analysis

Communication
Platforms Analysis

Instant Messaging
Analysis

Community Size
Analysis

Sec. 2.1

Sec. 2.3

Sec.
3

Sec. 2.4

Sec. 2.6

Sec.
4–5

Sec.
6.3–6.4

Sec. 2.5

Sec. 2.2

Figure 1 DwarvenMail and Analyses Overview.

2 Dataset Creation and DwarvenMail

This section details the procedure and tool support (DwarvenMail) we implemented to
collect the data for our analyses (Figure 1). We present the initial dataset, the mining
procedure, our manual annotation, and details about the individual analyses we performed.

2.1 Project Mining
Starting from all repositories currently hosted on GitHub we used SEART-GHS [13] to
compose a relevant dataset, applying the following filtering criteria: at least 2,000 commits
(i.e., to eliminate toy projects), more than 10 contributors (i.e., to ensure that a certain
number of people need to interact with each other to tackle the development effort), and
more than 100 stars (i.e., to ensure that the projects are relevant to at least a handful of
people). We only considered projects created before July 1, 2022 and excluded forks [22].
SEART-GHS currently monitors about 1.2M GitHub repositories. Projects excluded in
SEART-GHS for having less than 10 stars [13] would have been excluded by the more
restrictive criterion we applied, removing projects with less than 100 stars.

ECOOP 2023

43:4 On the Rise of Modern Software Documentation

. Filtering based on the number of stars might not be sufficient to select relevant projects.
Nevertheless, starring can be important for project developers and mangers [8]. We used
this criterion as a common method for filtering out toy projects in GitHub (e.g., see [80]).

We performed the filtering on July 14, 2022, resulting in 12,461 projects exported as
JSON input for DwarvenMail. After removing 374 aliases and 6 renamed forks, the final
scraped dataset consists of 12,081 projects.

Table 1 presents an overview of the projects according to their languages. The All column
shows the total number of projects, the CP column the projects where we could identify
communication platforms (see Section 2.4), and the IM column the projects with instant
messaging platforms. Percentages are derived with respect to the All column, while ∆
percentages are relative to the Total row percentages.

Overall, 57.3% of the projects we analyzed feature at least one communication platform.
An interesting observation is that systems written in “lower level / traditional” languages (C,
PHP, Shell) tend to be below the overall average, while systems written in more “modern”
languages (C#, Go, Rust, TypeScript) are more inclined to feature communication platforms.
The difference is even more evident for recently popularized languages if we consider projects
with instant messaging platforms (e.g., Go and Rust increase from +8.1% to +11.6% and
from +9.5% to +16.7% respectively).

We performed multiple One Proportion Z-Tests (one for each language) and the difference
in the proportion of projects using communication platforms for each language (r) and
the overall dataset (r0) is statistically significant for C, C#, Go, PHP, Rust, Shell, and
TypeScript (H0 : r = r0, two-tailed Bonferroni corrected p-value < 0.0038). The same results
hold for projects with instant messaging platforms.

Table 1 Projects and Represented Languages.

Language Projects
All CP CP % ∆CP% IM IM % ∆IM%

C 1,240 548 44.2% -13.1% 248 20.0% -9.2%
C# 543 378 69.6% +12.3% 214 39.4% +10.2%
C++ 1,707 926 54.2% -3.1% 469 27.5% -1.7%
Go 677 443 65.4% +8.1% 276 40.8% +11.6%
Java 1,510 860 57.0% -0.4% 432 28.6% -0.6%
JavaScript 1,528 899 58.8% +1.5% 440 28.8% -0.4%
PHP 733 379 51.7% -5.6% 165 22.5% -6.7%
Python 1,806 1,094 60.6% +3.3% 557 30.8% +1.7%
Ruby 406 238 58.6% +1.3% 103 25.4% -3.8%
Rust 244 163 66.8% +9.5% 112 45.9% +16.7%
Shell 205 93 45.4% -11.9% 35 17.1% -12.1%
TypeScript 895 575 64.2% +6.9% 314 35.1% +5.9%
Other / Unspecified 587 328 55.9% -1.4% 160 27.3% -1.9%
Total 12,081 6,924 57.3% 3,525 29.2%

2.2 Tool Support: DwarvenMail
To support our analyses, we developed DwarvenMail, a Python application to scrape
GitHub and extract information about projects’ README files and their history. It features
an object-oriented domain model to facilitate the extraction of insights from exploration.

DwarvenMail also supports manual inspection, link extraction, and classification from
README files (see Section 2.3). DwarvenMail takes the list of projects in the dataset
and uses the REST API of GitHub and web scraping [81] to extract the information needed
to build its internal domain model. It is implemented as a multiprocess application to speed
up the scraping. Each process uses a different API key to access GitHub in parallel through

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:5

PyGitHub [23]. Parallelization is handled at project level: Each process gets a project from
a queue and starts to fetch the data. Processes are also responsible for not exceeding GitHub
rate limits associated with their API keys.

2.3 Manual Annotation
To examine the documentation sources and communication platforms of the projects, we
performed a qualitative analysis of their README files. We relied on open card sorting,
a well-established method for knowledge elicitation and classification [7, 41, 63, 76, 77], to
incrementally refine the list of possible sources with flexible categories.

We manually reviewed the README files of the projects, extracted their links to
documentation sources and organized them into categories. Given the considerable effort
needed to annotate README files manually, we opted for a saturation approach [57]. We
started with a sample set of 35 projects selected through stratified sampling, ensuring a
balanced distribution among programming languages.

Two authors independently annotated each project README. Then we repeated the
process in subsequent batches with 5 projects per batch until no new labels were added in
two consecutive batches. We reached saturation after annotating 60 projects. In the end,
we discussed conflicts and merged categories where needed. The process resulted in 2,349
links with 282 link types, which we discuss in Section 3. The creation of manually annotated
datasets was supported by the Annotator module of DwarvenMail (Figure 2).

Figure 2 DwarvenMail Annotator – Project Annotation Page.

An annotator ran the Flask application locally, pulled from Git the latest updates by
other annotators, started a batch of annotations, committed, and pushed the modified files.

The Annotator’s homepage shows a list of projects to annotate and the annotation status
(i.e., who annotated what). Selecting a project opens the project annotation page (Figure 2)
where one can browse the README of the selected project.

The project annotation page uses two side-by-side panes to present the README. The
left one represents the raw Markdown version of the README. The right pane shows a
partially rendered version (i.e., similar to what a user sees on GitHub).

ECOOP 2023

43:6 On the Rise of Modern Software Documentation

2.4 Parsing Links: Strategy & Heuristics
We performed a quantitative analysis of communication platforms in README files (Sec-
tions 4 and 5). To support automatic platform extraction in such a large number of projects
we used an approach based on Regular Expressions (RE).

For each communication platform that we discovered, we devised REs that would match
the link as closely as possible, while retaining sufficient generality to abstract specific aspects
(e.g., project name, internet domain, optional protocol). Possibly more than one RE has been
associated with each platform. To fine-tune the REs, DwarvenMail features a detailed log
generation for manual inspection of candidate and invalid links during the refinement.

DwarvenMail parses all the links in a README according to the set of identified REs.
When a link is found, specific exclusion criteria are applied. A set of rules removes links
to images, badge icons, platforms’ generic homepages, and partial or invalid URLs (e.g.,
shorthands for Markdown sections captured by the REs).

The remaining links are normalized in a standard format and duplicates are removed.
Platforms not directly linked in the README (e.g., collected in a list on the Community
page of the project website) are omitted by the employed scraping algorithm. To reduce the
false positive rate, DwarvenMail also verifies that links point to valid web pages (i.e., the
server does not respond with an HTTP 404 Not Found). After this refinement, we obtain the
final set of communication platforms referenced by the project READMEs.

2.5 Parsing README Histories
For projects referencing Gitter, Slack, and Discord as communication platforms, we analyzed
the history of their READMEs to discover when those platforms appeared for the first time.
In this case, the approach outlined above to exclude invalid links (Section 2.4) would not
produce the desired results, because a link that is not valid today could have been valid in
the past. This cannot be checked without an archive, or historical information. Hence, in
our approach we assume that links with proper format were valid in the past. To reduce
false positives, we used the most specific format able to capture the link.

2.6 Community Size
We include the Discord and Slack community size (i.e., number of members) in our domain
model. The most popular way to add people to a Discord server is through an invite link [15].
Clicking on an invite link, brings the user to a page with metadata about the server (e.g.,
number of total members, number of online members). We gathered Discord community
sizes by scraping the data from these invite pages. In the case of Slack, only 15% of the
projects in our dataset have information about the community size on the invite page.

� More effort is needed to explore communities that do not conform to a standard
and/or customize their invite link to pursue specific goals (e.g., authorization workflow,
authentication, spam prevention, analytics).

Extending the percentage of projects whose community size is correctly scraped could
improve the reliability of results discussed in Sections 6.3 and 6.4.

2.7 Data Availability and Replication Package
We provide a replication package, publicly available on Figshare [51], containing the source
code of DwarvenMail, the input dataset, the manually annotated projects, the serialized
domain model of the scraped dataset, charts and tables exported from DwarvenMail.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:7

3 Documentation Landscape

We define the documentation landscape of a software system as all the possible sources
of information able to support design, implementation, comprehension, maintenance, and
evolution of the system. Software documentation is a fundamental asset for developers and
practitioners [3], when it is correct and up-to-date [10,14,19,21,54,61], with its costs and
benefits [79]. Modern software documentation is an ever expanding field. New sources include
blogs [43], Twitter [72], StackOverflow [47], instant messaging applications [9,18,30,33,45,
46,49,50,56,58,66,67], news aggregators [6], and forums [27].

GitHub README files in Markdown (.md) format are a good starting point for a project
from where all relevant documentation should be reachable.

Documentation sources in README files can either be directly referred to or behind
multiple steps of indirection. An example of the former case is an invitation link that can
be copy/pasted directly in Discord to access the community server of the project. In the
latter case, the README could point to a community web page which in turn contains
links to the mailing list, a Slack channel for Q&A, and potentially other communication and
documentation sources.

The manual annotation presented in Section 2.3 produced 282 single type link tags. The
links can come in many flavors thanks to the markdown format, ranging from pure textual
hyperlinks to badges and images that link to external resources. We inspected them and
identified three key dimensions of the documentation landscape: content type, source type,
and source instance. We split single type tags into these three dimensions. We analyzed
examples of each link type to disambiguate or enrich the classification when the original
annotation had missing information.

Table 2 shows the top-15 most representative values for each dimension. The complete
list of tags is available in the replication package [51].

Û The three key dimensions we propose to describe the documentation landscape of a
software system are content type, source type, and source instance, exemplified as links
in GitHub READMEs.

Source type, source instance, and content type could describe a link like: “This link is in
the form of a Badge, it points to a Wiki on Travis.com, and contains information related
to CI / CD.” Each dimension is instantiated with one of the possible tags for that category,
forming a signature of the documentation source pointed by the link.

� Exploring these dimensions could improve the automatic extraction of links and their
features, to characterize and understand the (evolution of the) documentation landscape.

Link format. Link formats come in many flavors, also due to the fact that markdown
files, while being textual, are usually inspected using a (multimedia capable) web browser.
Badges, for example, are very common in GitHub README files, used to convey imminent
information through iconic representation of a summary of the pointed resource (e.g., build
status passing) where the link itself allows, if followed, to reach more extensive information
(e.g., build process report). Masked links are another common practice to add links (not
exclusively) to markdown documents.

. Not all links in a raw README file are human readable links in the rendered README.

Content type. This is the primary dimension of the documentation landscape, denoting
what kind of information is present in the landscape. There is a smooth gradient in content
types regarding the number of links, but it is worth noting that there is no “standard”, but

ECOOP 2023

43:8 On the Rise of Modern Software Documentation

Table 2 Top-15 Most Relevant Tags, Number of Projects, and Links for Each Dimension. The
percentage indicates the ratio of projects containing at least one link with the specified tag.

(a) Content Type.

Projects Content Type Links
36 (60%) General Community Hub 141
29 (48%) Official Documentation 97
28 (47%) License 68
25 (42%) Contributing 56
23 (38%) Issues 52
23 (38%) CI/CD 50
21 (35%) Project Repository 76
20 (33%) Relevant Projects 132
20 (33%) Dependency/Environment 84
19 (32%) Releases 60
16 (27%) In-Repository Resource 67
16 (27%) Package Repository 47
14 (23%) CI/CD > Testing 24
13 (22%) Installation Instructions 24
11 (18%) Code Coverage 22

(b) Source Type.

Projects Source Type Links
55 (92%) Homepage/Website 436
41 (68%) Collaborative Platform 188
36 (60%) Third Party Service 169
34 (57%) Wiki 125
32 (53%) Repository 166
28 (47%) Sourcefile/Sourcefolder 151
25 (42%) Instant Messaging 84
11 (18%) Auxiliary README 21
10 (17%) Readme Section/Anchor 44
9 (15%) Mailing List 27
9 (15%) Forum 20
8 (13%) Image/GIF 21
8 (13%) Blog 20
7 (12%) Email Address 12
6 (10%) Video 13

(c) Source Instance.

Projects Source Instance Links
33 (55%) GitHub 179
16 (27%) GitHub Workflows 50
13 (22%) GitHub Releases 27
12 (20%) Travis 22
11 (18%) Gitter 34
9 (15%) Google Groups 24
7 (12%) Discord 18
7 (12%) Codecov 14
7 (12%) Python Package Index 13
6 (10%) Twitter 12
6 (10%) StackOverflow 9
5 (8%) Slack 18
5 (8%) Maven 11
5 (8%) Read the Docs 5
4 (7%) GitHub Profile 108

rather project-specific landscapes. Most relevant are general community hubs: Discord servers,
Slack workspaces, Gitter rooms, IRC channels, mailing lists, and forums, with their internal
structure for different topics, dedicated to a general community of users and practitioners.

Û Content type is relevant to interpret what a piece of documentation is about. There is
no standard to the documentation landscape, each project develops its own. Even the
top content types (community hubs, official documentation) are present in only half of
the projects.

Source type. The source type dimension refers to the format of the content at the link’s
destination. This dimension is relevant for automatically extracting the documentation
landscape since it determines how the content can be retrieved and parsed. Homepage /
websites, the most relevant source type by a large margin, can be scraped with traditional web
scraping techniques. Collaborative platforms like GitHub and Bugzilla could be addressed
via their custom APIs. Image / GIF > Screenshots, further down in terms of relevance,
would benefit from image segmentation and analysis approaches to extract, for example,
documented user interface features. We also notice that links to mailing lists are fewer than
those to IM applications, a trend we analyze in more detail in Section 4.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:9

Û Source type captures how documentation is presented and how it can be accessed.
Almost all projects feature a head quarters website, i.e., the go-to place to learn about
a project. These starting points are then often complemented by a plethora of other
sources, ranging from Wikis to forums and instant messaging platforms.

When analyzing the evolution through time of a README file we detect in many cases
that the source types come and go, inducing “tectonic movements” in the landscape, as we
can observe in the example depicted in Figure 3.

Figure 3 Evolution of Communication Platforms in the “Scikit-learn” Project.

The Scikit-learn project, born in 2010, sees a mailing list as its initial documentation
landscape, complemented shortly after by an IRC channel (which stopped existing a decade
later). GitHub Issues is added within the project’s first year, while StackOverflow becomes
part of the landscape in 2017. It is within the past 2 years that the landscape experiences
an earthquake, with many new sources appearing, while the IRC channel is removed (it is
worth noting that IRC and its successor, Gitter, co-exist for a year). At the time of writing
the project in question features 11 different sources.

Û The documentation landscape of projects evolves together with the project. Especially
in the past few years the source types have exploded in number, rendering the landscape
highly dispersive.

. The fact that there are more sources does not imply that the overall documentation of
the system is better, on the contrary: We have observed an overall trend toward more
volatile sources, mostly due to the rise of instant multimedia messaging platforms.

Source instance. The third dimension is a derivate of source type. For each type we
can have multiple possible source instances, usually of a competing nature (see Section 5)
with a similar purpose. Rather unsurprisingly for GitHub projects, GitHub itself with
related instances of profiles, workflows, releases, and instant messaging (i.e., Gitter) takes top
three, the 5th, and the 15th places. Services for package repositories (e.g., Python Package
Index [48], Maven [62]) and CI/CD (e.g., Travis CI [73], Codecov [11]), messaging applications
like Slack [60]/Discord [16], and also articles on the Medium platform [1] represent interesting
research avenues.

Û Source instance can be seen as where (or by whom) documentation is “hosted.”

. Source instances vary wildly, and new players constantly enter the stage. For example,
recent changes in the pricing model of Slack might have influenced the ongoing mass
migration toward other instant messaging platforms, of which there are dozens, with
Discord quickly becoming the preferred alternative.

ECOOP 2023

43:10 On the Rise of Modern Software Documentation

� Tags in the three dimensions appear in different combinations, not all equally likely.
Further research on the most common patterns could shed light on form and content
interplay in software documentation.

4 Modern Communication Platforms

One of the recent major shifts in software development has been the emergence of various
multimedia instant messaging platforms, such as Slack [60], Discord [16], and Gitter [39].

They not only experienced an increase in popularity but also seem to be a major suspect
for the decline of other classical communication means, such as mailing lists and forums.
We start by analyzing the platforms actually used by projects in our dataset. The scraping,
based on regular expressions (see Section 2.4), took place between Aug 28 2022 at 21:01 and
Aug 30 2022 at 02:12, leading to 12,081 scraped projects. Of those, 6,924 (57.3%) mention at
least one such modern communication platform in their README files: 2,897 had 1 platform
link, while 4,027 had 2 or more platform links. The remaining 5,157 projects had no platform
links. The percentage is higher than the one reported by Käfer et al. [31] (57.3% vs. 46.7%),
which can be explained by the fact that their analysis dates back 4 years.

We grouped communication platforms into three main categories: asynchronous, instant
messaging, and social media.

Figure 4 summarizes number of links in READMEs (Links) and number of projects with
at least one link (Projects) for each type of platform.

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Asynchronous
Instant

Messaging
Social
Media

Projects

Links

Figure 4 Platform types.

Platform

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Pr

oj
ec

ts

G
ith

ub

Tw
itt

er

D
is

co
rd

G
itt

er

Fo
ru

m

M
ai

lin
g

Li
st

S
la

ck

Yo
uT

ub
e

IR
C

S
ta

ck
O

ve
rfl

ow

M
ed

iu
m

Te
le

gr
am

R
ed

di
t

M
at

rix

Yo
uT

ub
e

C
ha

nn
el

Fa
ce

bo
ok

Li
nk

ed
In

S
pe

ct
ru

m

M
ai

lto

Figure 5 Number of projects linking at least one platform.

There are Instant Messaging platforms (e.g., IRC, Slack, Discord), where communication
can happen in real-time. In Asynchronous platforms (e.g., forum, mailing list, GitHub issues
or discussions), communication usually takes some time to be processed and made available
to other community members. The boundary between the two types has been blurred in
the recent years by the technological improvements to the supporting infrastructure. We
also considered Social Media platforms (e.g., Facebook, Twitter, Youtube). While their
technical features can overlap with the other types, their huge user-base and ease of forming
social connections make them stand out. Table 3 shows a complete list of the platforms we
considered with a short description.

A project README can have multiple links to a single platform. This is particularly
true for Social Media links where Twitter accounts of the main contributors or maintainers
are all referenced.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:11

Table 3 Communication Platforms.

Platform Description
Discord [16] Voice, video, text messaging multimedia platform
Facebook [37] Social media and social networking service
Forum General category for web based discussion sites
GitHub [24] GitHub infrastructure for project development
Gitter [39] Voice, video, text messaging multimedia platform
IRC Text-based instant messaging chat system
Linkedin [35] Business social media & professional networking
Mailing List E-mail based communication among recipients
Matrix [70] Communication protocol implemented by clients
Medium [1] Online publishing platform and social journalism
Reddit [52] Social news aggregation, rating, discussion, and multimedia sharing
Slack [60] Voice, video, text messaging multimedia platform
Spectrum [36] Text-based web instant messaging chat system
StackOverflow [64] Question and Answer website
Telegram [69] Voice, video, text messaging multimedia platform
Twitter [75] Social media and social networking service
Youtube [25] Video hosting and sharing platform

In Figure 4, we see that the number of projects that use a specific platform is significantly
lower than the number of links. For example, project OpenAPITools/openapi-generator [42]
mentions 20 different Twitter accounts and 17 YouTube resources.

The identified categories are only a rough means to group similar platforms. In Figure 5
we show the number of projects having at least one reference to a specific platform.

Given our initial input set, it is not surprising to find GitHub to be the most referenced:
The infrastructure is integrated enough to warrant support for the community with its own
Issues and Discussions systems. This uniform consensus is followed by a more fragmented
mix of Twitter, Discord, Gitter, Forums, Mailing Lists, and others in decreasing order of
“popularity.” Far from being irrelevant, these platforms are used by hundreds of projects
exclusively or in synergy. The next section sheds light on these synergies, complementarities,
and on the competition between similar platforms.

5 Coexistence and Competition

Communication platforms can have different features and cater to different audiences. To
cover development or users’ needs, projects can opt for using multiple media at the same
time. What choices are made by core developers in terms of number and variety of platforms
to include in a README?

Figure 6 depicts a non-exhaustive list of examples of overlaps between communication
platforms (extracted with the REs presented in Section 2.4) used exclusively and side-by-side.

Around 38% of projects that use either Discord or Slack also include GitHub Issues in
their READMEs (Figure 6a).

. GitHub Issues can also be used without an explicit link in the README, as just a tab
of the project, if enabled. Some platforms may be implicitly assumed to be available
even if not present in the README.

Overall, 2,105 out of 3,208 projects (66%) using GitHub Issues, also have other commu-
nication platforms referenced in the README. Similar ratios are found, for example, for
Discord with 801 out of 1,187 projects (67%).

Û Multiple communication platforms of different types can and do coexist.

ECOOP 2023

43:12 On the Rise of Modern Software Documentation

Discord
Slack

GitHub Issues

(a)

Instant Messaging

GitHub Issues

Stack Overflow

(b)

Social Media

Instant MessagingAsynchronous

(c)

Discord
Slack

Gitter

(d)

Figure 6 Communication Platforms Overlaps.

GitHub has significant overlaps with the whole category of instant messaging, and with
specific asynchronous platforms (e.g., StackOverflow, see Figure 6b). However, 1,270 projects
rely only on the integrated support provided by GitHub.

In general, if we consider the three main categories, we find that asynchronous platforms
are used exclusively in 48% of projects, instant messaging follows with 35%, and social
platforms seem the most frequently used as a complementary option (76%, see Figure 6c).

. It is not clear if different categories are mutually exclusive and why in a considerable
amount of projects they tend to be used in conjunction.

� This analysis should be complemented by how the user-base is distributed over these
platforms.

6 Instant Messaging: A Deep Dive

What makes instant messaging platforms appealing to developers? The steady growth in
the number of projects including at least one platform of this kind is a piece of evidence
supporting the need for fast and rich communication.

Instant messaging platforms fulfill a very specific role: Providing communication in
real-time, possibly with rich media sharing capabilities (e.g., links, videos, files), and Voice
over IP conferencing (i.e., VoIP). Two instances of these platforms are seldom found together.
Similar characteristics, audiences, and usages make competition the prevailing paradigm.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:13

Figure 6d shows that 97% of projects opting for these platforms choose between one of the
three alternatives. Three projects include links (see Section 2.4) to all the platforms and also
other instant messaging (e.g., Spectrum), but only PowerShell/PowerShell has a significant
Discord community (more than 10k members).

Û Gitter, Discord, and Slack are selected by projects as alternatives, very seldom coexisting.
This can be a possible strategy for successful projects not to spread their community too
thin over multiple platforms with similar capabilities.

6.1 Gitter, Discord, and Slack: A Timeline

Based on README history and mining links for each version of the README as detailed
in Section 2.5, for each project, we look for the first appearance date of Gitter, Discord, and
Slack (Figure 7).

Date (Year)

1,200

1,000

800

600

400

200

0

N
um

be
r o

f P
ro

je
ct

s

Figure 7 Timeline of cumulative adoption date of Slack, Discord, and Gitter.

Gitter appeared for the first time at the end of 2013, followed one year later by Slack,
and then Discord after 8 months. All three platforms show a “ramp-up” period of slightly
more than one year after their first appearance, followed by a steady growth at different
rates. Both Gitter (in mid-2020) and Slack (in 2022) reached a plateau where just a handful
of projects added them to their communication platforms in the last year. Discord, on the
other hand, is still growing significantly.

Since the beginning of 2020, Discord consistently outperformed Slack in terms of number
of new projects adopting the platform for their community (Figure 8). The monthly growth
rate has been higher than the highest for Slack in the previous years. It has also been at
higher levels more consistently and for a longer period.

The comparison between additions of Gitter and Discord (Figure 9) shows a similar or
even more evident tendency. The decline of the former and the growth of the latter are
almost perfectly mirroring each other.

Û While one platform stops being added to projects, another is on the rise. This happened
in the past and is bound to happen again in the future.

There is no guarantee that the example of the Spectrum platform we highlighted in
Section 1 will be followed when Gitter goes out of fashion. It is also possible that the entire
history of discussions, bug fixing sessions, and design decisions will just disappear.

ECOOP 2023

43:14 On the Rise of Modern Software Documentation

2015 2016 2017 2018 2019 2020 2021 2022
Date (Year)

N
um

be
r o

f n
ew

 p
ro

je
ct

s

Figure 8 Monthly new projects adopting Discord and Slack.

2014 2015 2016 2017 2018 2019 2020 2021 2022
Date (Year)

N
um

be
r o

f n
ew

 p
ro

je
ct

s

Figure 9 Monthly new projects adopting Gitter and Discord.

6.2 Throughput and Volatility
We investigated four Discord communities. Reactiflux, Vue Land, and Angular.js are
respectively tied to React, Vue, and Angular (web development frameworks). We compared
them with each other and with the Discord.js community (Discord bot development).

In Figure 10, we show how the average number of messages per member in a sample
period of three months (i.e., May–July, 2022) has high variability. While this might be due
to a number of factors, we are interested in the sheer scale of the messages exchanged on
those platforms every day.

Around 550 messages are exchanged per day in Vue Land and Angular.js. In Discord.js,
instead, users exchange 305 messages each hour, totaling more than 7k messages a day.

The throughput of these servers means information is lost if one does not pay attention to
notifications. Only a few messages are visible at a time and they scroll up quickly, putting full
conversations behind the event horizon in a matter of minutes. Alert filters and community
policies (e.g., forbidden mentioning of server wide tags) can only partially mitigate this
problem. The trade-off between losing potentially interesting discussions and being constantly
interrupted by notifications is the choice many modern developers face when dealing with
these kinds of communities.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:15

Figure 10 Messages per day and average messages per day per member from May to July 2022
for four example Discord servers.

� Application of summarization, visualization, and information retrieval techniques is
fundamental to deal with scalability problems of these platforms.

6.3 Community Sizes

Discord communities in our dataset vary in size between 2 and 500,000 members. Figure 11
depicts Discord community size with respect to project age (i.e., days since creation).

Project Pairs
Sharing Community

Project Age (days)

Di
sc

or
d

C
om

m
un

ity
 S

ize

0 1,000 2,000 3,000 4,000 5,000

Figure 11 Discord community size with respect to project age (days from creation).

� This should be investigated more in-depth to see if it is a breakpoint at which particular
actions should be taken to keep the community growing.

ECOOP 2023

43:16 On the Rise of Modern Software Documentation

. Extraction of Slack community sizes has proven more difficult due to the high variance
in invite page formats. Gitter does not even have an invite page to scrape, and, to the
best of our knowledge, the community size cannot be automatically retrieved.

6.4 Different Projects, Same Community

Being in the same Discord community means sharing the same server (i.e., each project has
a link in the README, possibly with different formats, but pointing to the same Discord
server). We consider this a case of “different projects, same community”.

Figure 11 shows horizontal pairs in the top part of the scatterplot, suggesting that different
projects might share the same community: Our initial hypothesis that “same size of the
community means same community” might not apply, especially for smaller communities.
Nevertheless, it is unlikely for two different large communities to have the same number of
members at the same time. We manually inspected the projects in those pairs and they
are indeed different projects referring to the same wider community. For Discord we could
reliably use the community name to confirm our hypothesis, as parsed from the invitation
metadata (Section 2.4).

Figure 12 shows how many projects share a community with respect to community size.

Members

Pr
oj
ec

ts

Figure 12 Projects referencing the same community.

� Further analysis can show if projects are tightly coupled (e.g., different projects from
the same organization, new major versions of the same project) or if different projects
have an underlying reason to cater to the same audience.

6.5 Technical, Social, and Ethical Challenges

Some community platforms are public, some allow anonymous access, some require a form
of registration or access permission. We found communities with (automatic) procedures
to accept new members but, in general, it is hard to devise a general automatic “agent” to
explore all of them.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:17

The sheer amount of customization that is possible, even in a simple invite landing page
of Slack, has been an obstacle to getting reliable data about communities lying behind those
pages. Exploring a larger and more varied sample could shed light on platform dependent
similarities and differences.

� Machine readable APIs for communities can greatly benefit not only research in this
field, but also open new possibilities, e.g., the automatic migration of community-
generated content to preserve the history of projects when the underlying technologies
evolve.

Socio-ethical challenges. Communities usually are digital aggregations of people’s thoughts,
ideas, rants, strengths, and weaknesses. Collecting such information can be seen as poking
inside someone’s house. One can do it if having legitimate reasons to do so. One can be
welcome if providing benefits for the community. But one can also be faced with concerns
about privacy and legitimate use of collected information.

Companies owning the platform sometimes are more keen to share their data than
administrators of communities they host. While Slack has a monetization policy tied to its
history retrievability, Discord allows unlimited access to a wealth of historical information
via its API.

A big role in the extensibility of our study is played by the attitude of administrators of
interesting communities. While information might be public (i.e., anyone with a Discord
account can automatically join a server and browse its entire content), to comply with
Discord’s Terms of Service we need to ask for permission to add a bot to extract useful
information for DwarvenMail. In this crucial step a fundamental role is played by personal
beliefs and perceptions of the benefits of such a bot by the administrators and the community
itself.

. Accessibility of information is ever more beyond the fence of what is technically possible,
towards the barrier of what is ethically and socially accepted.

7 Threats to Validity

Our analyses are based on a dataset of public GitHub projects as the only source. This poses
a threat to the generalizability of our results with respect to the type of projects hosted on
GitHub. Open source projects developed in this social coding style might differ significantly
from closed source projects developed by a small team of hired developers. There are also no
guarantees that the results presented can be generalized to projects hosted on other similar
repositories (e.g., SourceForge).

The current study presents a limited generalizability with respect to the format of
README files. Although our sampling procedure (Section 2.3) ensures generalizability with
respect to the project’s main programming language, different README file formats could
provide different link types and formats not fully captured by our analysis.

Û We found evidence of more than 15 different README formats. While most share a
similar structure for external links, systematic analysis of these formats could improve
the generalizability of the results.

Limiting the extraction of the documentation landscape to what is reachable from the
main README file (i.e., ignoring links to other READMEs in submodules of a project) poses
a threat to construct validity. This threat is partially mitigated by the magnitude of the
phenomenon we highlighted, emerging despite the limited scope, and calling for discussion
and further investigation (i.e., also considering auxiliary documentation sources as a starting
point to map the landscape).

ECOOP 2023

43:18 On the Rise of Modern Software Documentation

Our analysis benefits from verifying the validity of links whenever possible (i.e., if the
resource referred by the link is still available we expect an HTTP 200 OK response). When
mining GitHub we verified the links we found in a two step process. The time interval
between the first pass for scraping and the second pass for verification was short enough to
guarantee that most links were in their intended state. Obsolete links may be possible and
are part of the present study.

. The analysis lacks accuracy when links are redirected or reused. Moreover, in the effort
to reconstruct link patterns for previous standard link formats of some platforms (e.g.,
Slack) we adopt a conservative approach where if the format follows reasonable patterns
it is accepted as a valid link in the history of a README file. We have no guarantee
nor a way to discover if the link was valid in the past.

The only possibility to study the evolution and validity of such links is to constantly
monitor README files and their evolution over a period of time. Link validity can be
checked as soon as the change in the README is triggered. This kind of study is outside of
the scope of the presented work.

� Semantic analysis of the pointed links could improve relatedness, reducing false positives
in link validity. Automatic link validity and relatedness to the source topic should be
investigated.

Links that are not visually represented in the rendered README are currently part of
the analyses. This threat to the validity of our conclusions is partially mitigated by the low
frequency of such occurrences. We found only 3 non-rendered links in 2 manually annotated
projects (0.1% of links, 3.3% of projects).

� We did not perform an analysis based on project types. Relationships between project
type, intended audience, and the resulting documentation landscape could provide
insights on how to leverage the landscape for projects of different natures and at
different maturity stages.

8 Related Work

Communication channels, especially those tightly coupled with collaborative development
platforms (e.g., GitHub), are fundamental for successful software development.

Hoegl et al. [29] and Lindsjørn et al. [34] found communication to be an essential
subcontract of teamwork quality. Tantisuwankul et al. analyzed the communication channels
of GitHub projects [68]. Studying 70k library projects in 7 ecosystems, they identified
13 communication channels as “a form of knowledge transfer or sharing” (e.g., licenses,
change logs). They found that GitHub projects adopt multiple channels, which change
over time, to capture new and update existing knowledge. Storey et al. [65] conducted
a large-scale survey with 1,449 GitHub users to understand the communication channels
developers find essential to their work. On average, developers indicated they use 11.7
channels across all their activities (e.g., email, chat, microblogging, Q&A websites). They
concluded that “communication channels shape and challenge the participatory culture in
software development.” Hata et al. [27] studied early adopters of GitHub Discussions, finding
that developers considered them useful and important. Lima et al. [32] used NLP to detect
related discussions of OSS communities in GitHub Discussions.

Treude and Storey [74] interviewed users of a community portal, finding that clients,
developers, and end-users are involved in the process of externalizing developer knowledge.

Nugroho et al. [40] studied how Eclipse developers utilize project forums, concluding that
forums are essential platforms for linking various resources in the Eclipse ecosystem besides
representing an important source of expert knowledge.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:19

Modern social media are becoming another information source for development activities.
Mezouar et al. [38] studied how tweets can improve the bug fixing process. They observed how
issues for Firefox and Chrome are usually reported earlier through Twitter than on tracking
systems. This can potentially decrease the lifespan of a bug. Guzman et al. [26] analyzed
the usage characteristics, content, and automatic classification of tweets about software
applications. They found that tweets contain useful information for software companies but
stressed the need for automatic filtering of irrelevant information.

Instant messaging platforms, from Internet Relay Chat (IRC) to Discord, went from
simple text messages to rich multimedia support with integrated DevOps workflows (i.e., Slack
integrations). Yu et al. [78] learned how real-time (i.e., IRC) and asynchronous (i.e., mailing
lists) communications were used and balanced across the GNOME GTK+ project. Shihab
et al. [59] analyzed IRC meeting logs and found that developers actively contributed through
meeting channels.

Lin et al. [33] argued Slack played an increasingly significant role, sometimes replacing
emails. They found various benefits of Slack over mailing lists. Developers use it for team-wide
purposes (e.g., communicating with teammates, file and code sharing), community support
(e.g., special interest groups), and personal benefits (e.g., networking, social activities). They
also observed that developers commonly used bots to support their work. Chatterjee et al. [9]
analyzed the conversations of developers from five Slack programming communities and
developers’ StackOverflow posts. They found prevalent useful information, including API
mentions and code snippets with descriptions in both sources.

Alkadhi et al. [5] examined “rationale” elements (i.e., discussed issues, alternatives, pro-
/con-arguments, decisions) in Atlassian HipChat messages of three software development
teams. They found frequent, valuable discussions with elements of rationale. However, they
also emphasized the need for automated tools due to the high volume of chat messages.

Shi et al. [58] conducted an empirical study on developers’ Gitter chats. They manually
analyzed 749 dialogs and performed an automated analysis of over 173K dialogs of OSS
communities. Interestingly, developers tend to converse more on Wednesdays and Thursdays.
They also found interaction patterns among conversations and noticed that developers tend
to discuss topics such as API usage and errors. They argue the need for better utilization
and mining of knowledge embedded in the massive chat history of OSS communities.

Hata et al. analyzed links in source code comments [28] in a large-scale study (∼10
million links) extracted from files of the main language of the project. We focus on README
file links, which are independent of the project language.

Ebert et al. [17] conducted an empirical study to understand which communication
channels are used in GitHub projects and how they are presented to the audience, finding
that the most common were chats, mail-related, social media, and GitHub channels. Käfer
et al. [31] analyzed GitHub communication channels, finding that “Mailing lists are being
replaced by modern enterprise chat systems in OSS development.” Our work broadens the
scope beyond communication channels and adds details needed to identify the current status,
understand how it has evolved, and obtain meaningful insights on why this is happening.

Each of the previously discussed studies focuses on a specific part of the documentation
landscape, recognizing the importance of the sources for knowledge management and doc-
umentation. What is still missing is a higher level understanding of the phenomenon that
shifts the relative importance of these sources over time, intra- and inter-project.

ECOOP 2023

43:20 On the Rise of Modern Software Documentation

9 Conclusions and Future Work

Classical software documentation is being replaced by “communication”. At least in open
source software on GitHub, it is supported by a plethora of platforms characterized by
high throughput, volatility, and heterogeneity. The original vision of on-demand developer
documentation [55] advocated for a paradigm shift. A shift did happen, but it was not in the
direction foreseen by Robillard et al. five years ago. The new communication platforms bring
new challenges and opportunities for modern software documentation. It is time to shed
light on new forms of documentation. A comparison with classical documentation and where
it survives, unscathed by the new media and the needs of modern software development,
might help rethink the role of documentation itself. Research efforts in this direction can
help maintain documentation useful for software comprehension, maintenance, and evolution,
independently of the form it will take.

To achieve this we need a better understanding of the phenomenon occurring to software
documentation sources. We regard the present work as scratching the surface of what
has turned into an emerging heterogeneous, complex, and ever-changing documentation
landscape, a terra incognita full of possibilities and threats.

References
1 A Medium Corporation. Medium. URL: https://medium.com/.
2 Tim Abbott. Why Slack’s free plan change is causing an exodus. URL: https://blog.zulip.

com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/.
3 Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, Michele

Lanza, and David C. Shepherd. Software documentation: The practitioners’ perspective. In
Proceedings of ICSE 2020 (International Conference on Software Engineering), pages 590–601.
ACM, 2020.

4 Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura
Moreno, Gabriele Bavota, and Michele Lanza. Software documentation issues unveiled. In
Proceedings of ICSE 2019 (International Conference on Software Engineering), pages 1199–
1210. IEEE/ACM, 2019.

5 Rana Alkadhi, Teodora Lata, Emitza Guzmany, and Bernd Bruegge. Rationale in development
chat messages: An exploratory study. In Proceedings of MSR 2017 (International Conference
on Mining Software Repositories), pages 436–446. IEEE/ACM, 2017.

6 Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto, Margaret-
Anne Storey, and Marco Aurélio Gerosa. How modern news aggregators help development
communities shape and share knowledge. In Proceedings of ICSE 2018 (International Confer-
ence on Software Engineering), pages 499–510. ACM, 2018.

7 Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of modern code
review. In Proceedings of ICSE 2013 (International Conference on Software Engineering),
pages 712–721. IEEE, 2013.

8 Hudson Borges and Marco Tulio Valente. What’s in a GitHub star? Understanding repository
starring practices in a social coding platform. Journal of Systems and Software, 146:112–129,
2018.

9 Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and Nicholas A Kraft.
Exploratory study of Slack Q&A chats as a mining source for software engineering tools. In
Proceedings of MSR 2019 (International Conference on Mining Software Repositories), pages
490–501. IEEE/ACM, 2019.

10 Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of software
development problem factors on software maintainability. Journal of Systems and Software,
82(6):981–992, 2009.

https://medium.com/
https://blog.zulip.com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/
https://blog.zulip.com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:21

11 Codecov. Codecov. URL: https://about.codecov.io/.
12 David Curry. Slack revenue and usage statistics (2022). URL: https://www.businessofapps.

com/data/slack-statistics/.
13 Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in GitHub for MSR stud-

ies. In Proceedings of MSR 2021 (International Conference on Mining Software Repositories),
pages 560–564. IEEE/ACM, 2021.

14 Barthélémy Dagenais and Martin P Robillard. Creating and evolving developer documenta-
tion: Understanding the decisions of open source contributors. In Proceedings of FSE 2010
(International Symposium on Foundations of Software Engineering), pages 127–136. ACM,
2010.

15 Discord. Invites 101. URL: https://support.discord.com/hc/en-us/articles/
208866998-Invites-101.

16 Discord, Inc. Discord. URL: https://discord.com/.
17 Verena Ebert, Daniel Graziotin, and Stefan Wagner. How are communication channels on

GitHub presented to their intended audience? – A thematic analysis. In Proceedings of EASE
2022 (International Conference on Evaluation and Assessment in Software Engineering), pages
40–49. ACM, 2022.

18 Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou. An empirical study of
developer discussions in the Gitter platform. Transactions on Software Engineering and
Methodology, 30(1):1–39, 2020.

19 Andrew Forward and Timothy C Lethbridge. The relevance of software documentation,
tools and technologies: A survey. In Proceedings of DocEng 2002 (Symposium on Document
Engineering), pages 26–33. ACM, 2002.

20 freeCodeCamp. Our experience with Slack. URL: https://www.freecodecamp.org/news/
so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81.

21 Golara Garousi, Vahid Garousi-Yusifoğlu, Guenther Ruhe, Junji Zhi, Mahmoud Moussavi,
and Brian Smith. Usage and usefulness of technical software documentation: An industrial
case study. Information and Software Technology, 57:664–682, 2015.

22 GitHub. Fork a repo. URL: https://docs.github.com/en/get-started/quickstart/
fork-a-repo.

23 GitHub. PyGithub. URL: https://github.com/PyGithub/PyGithub.
24 GitHub, Inc. GitHub. URL: https://github.com/.
25 Google, LLC. YouTube. URL: https://www.youtube.com/.
26 Emitza Guzman, Rana Alkadhi, and Norbert Seyff. A needle in a haystack: What do Twitter

users say about software? In Proceedings of RE 2016 (International Requirements Engineering
Conference), pages 96–105. IEEE, 2016.

27 Hideaki Hata, Nicole Novielli, Sebastian Baltes, Raula Gaikovina Kula, and Christoph Treude.
GitHub Discussions: An exploratory study of early adoption. Empirical Software Engineering,
27(1):1–32, 2022.

28 Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 9.6 million
links in source code comments: Purpose, evolution, and decay. In Proceedings of ICSE 2019
(International Conference on Software Engineering), pages 1211–1221. IEEE, 2019.

29 Martin Hoegl and Hans Gemuenden. Teamwork quality and the success of innovative projects:
A theoretical concept and empirical evidence. Organization Science, 12(4):435–449, 2001.

30 Jialun Aaron Jiang, Charles Kiene, Skyler Middler, Jed R. Brubaker, and Casey Fiesler.
Moderation challenges in voice-based online communities on Discord. Proceedings of HCI 2019
(Human-Computer Interaction), 3(CSCW):1–23, 2019.

31 Verena Käfer, Daniel Graziotin, Ivan Bogicevic, Stefan Wagner, and Jasmin Ramadani.
Communication in Open-Source projects – End of the e-mail era? In Proceedings of ICSE
2018 (International Conference on Software Engineering), pages 242–243. ACM, 2018.

32 Marcia Lima, Igor Steinmacher, Denae Ford, Evangeline Liu, Grace Vorreuter, Tayana Conte,
and Bruno Gadelha. Looking for related discussions on GitHub Discussions. In arXiv, 2022.

ECOOP 2023

https://about.codecov.io/
https://www.businessofapps.com/data/slack-statistics/
https://www.businessofapps.com/data/slack-statistics/
https://support.discord.com/hc/en-us/articles/208866998-Invites-101
https://support.discord.com/hc/en-us/articles/208866998-Invites-101
https://discord.com/
https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://github.com/PyGithub/PyGithub
https://github.com/
https://www.youtube.com/

43:22 On the Rise of Modern Software Documentation

33 Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. Why developers
are slacking off: Understanding how software teams use Slack. In Proceedings of CSCW/SCC
2016, pages 333–336. ACM, 2016.

34 Yngve Lindsjørn, Dag I.K. Sjøberg, Torgeir Dingsøyr, Gunnar R. Bergersen, and Tore Dybå.
Teamwork quality and project success in software development: A survey of agile development
teams. Journal of Systems and Software, 122:274–286, 2016.

35 LinkedIn Corporation. LinkedIn. URL: https://www.linkedin.com.
36 Brian Lovin. Join us on our new journey. URL: https://web.archive.org/web/

20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-
journey e4ca0386-f15c-4ba8-8184-21cf5fa39cf5.

37 Meta. Facebook. URL: https://www.facebook.com/.
38 Mariam El Mezouar, Feng Zhang, and Ying Zou. Are tweets useful in the bug fixing process?

An empirical study on Firefox and Chrome. Empirical Software Engineering, 23(3):1704–1742,
2018.

39 New Vector, Ltd. Gitter. URL: https://gitter.im/.
40 Yusuf Sulistyo Nugroho, Syful Islam, Keitaro Nakasai, Ifraz Rehman, Hideaki Hata,

Raula Gaikovina Kula, Meiyappan Nagappan, and Kenichi Matsumoto. How are project-
specific forums utilized? A study of participation, content, and sentiment in the Eclipse
ecosystem. Empirical Software Engineering, 26(6):132, 2021.

41 N. Nurmuliani, D. Zowghi, and S. P. Williams. Using card sorting technique to classify
requirements change. In Proceedings of IREC 2004 (International Requirements Engineering
Conference), pages 240–248. IEEE, 2004.

42 OpenAPI Tools. OpenAPI Generator. URL: https://github.com/OpenAPITools/
openapi-generator.

43 Dennis Pagano and Walid Maalej. How do developers blog? An exploratory study. In
Proceedings of MSR 2011 (Working Conference on Mining Software Repositories), pages
123–132. ACM, 2011.

44 Papyrs. Easy company intranet & internal team wiki for Slack. URL: https://papyrs.com/
slack-wiki-intranet/.

45 Esteban Parra, Mohammad Alahmadi, Ashley Ellis, and Sonia Haiduc. A comparative study
and analysis of developer communications on Slack and Gitter. Empirical Software Engineering,
27(2):1–33, 2022.

46 Esteban Parra, Ashley Ellis, and Sonia Haiduc. GitterCom: A dataset of Open Source
developer communications in Gitter. In Proceedings of MSR 2020 (International Conference
on Mining Software Repositories), pages 563–567. ACM, 2020.

47 Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza.
Mining StackOverflow to turn the IDE into a self-confident programming prompter. In
Proceedings of MSR 2014 (Working Conference on Mining Software Repositories), pages
102–111. IEEE/ACM, 2014.

48 Python Software Foundation. Python Package Index. URL: https://pypi.org/.
49 Marco Raglianti, Roberto Minelli, Csaba Nagy, and Michele Lanza. Visualizing Discord servers.

In Proceedings of VISSOFT 2021 (Working Conference on Software Visualization), pages
150–154. IEEE, 2021.

50 Marco Raglianti, Csaba Nagy, Roberto Minelli, and Michele Lanza. Using Discord conversations
as program comprehension aid. In Proceedings of ICPC 2022 (International Conference on
Program Comprehension), pages 597–601. ACM, 2022.

51 Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza. Replication
package. URL: https://figshare.com/s/33c8af534dba61d72c41.

52 Reddit. Reddit. URL: https://www.reddit.com/.
53 Lionel P Robert and Alan R Dennis. Paradox of richness: A cognitive model of media choice.

IEEE Transactions on Professional Communication, 48(1):10–21, 2005.

https://www.linkedin.com
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://www.facebook.com/
https://gitter.im/
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://papyrs.com/slack-wiki-intranet/
https://papyrs.com/slack-wiki-intranet/
https://pypi.org/
https://figshare.com/s/33c8af534dba61d72c41
https://www.reddit.com/

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:23

54 Martin P Robillard and Robert DeLine. A field study of API learning obstacles. Empirical
Software Engineering, 16(6):703–732, 2011.

55 Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro,
Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez,
Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund Wong. On-demand developer
documentation. In Proceedings of ICSME 2017 (International Conference on Software Main-
tenance and Evolution), pages 479–483. IEEE, 2017.

56 Hareem Sahar, Abram Hindle, and Cor-Paul Bezemer. How are issue reports discussed in
Gitter chat rooms? Journal of Systems and Software, 172:110852, 2021.

57 Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie Waterfield, Bernadette
Bartlam, Heather Burroughs, and Clare Jinks. Saturation in qualitative research: Exploring
its conceptualization and operationalization. Quality & Quantity, 52(4):1893–1907, 2018.

58 Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang. A first
look at developers’ live chat on Gitter. In Proceedings of ESEC/FSE 2021 (European Software
Engineering Conference and Symposium on the Foundations of Software Engineering), pages
391–403. ACM, 2021.

59 Emad Shihab, Zhen Ming Jiang, and Ahmed E Hassan. On the use of internet relay chat
(IRC) meetings by developers of the GNOME GTK+ project. In Proceedings of MSR 2009
(Working Conference on Mining Software Repositories), pages 107–110. IEEE, 2009.

60 Slack Technologies. Slack. URL: https://slack.com/.
61 Ian Sommerville. Software Engineering. Pearson, 10th edition, 2015.
62 Sonatype. Maven Central Repository. URL: https://central.sonatype.dev/.
63 Donna Spencer. Card Sorting: Designing Usable Categories. Rosenfeld Media, 2009.
64 Stack Exchange, Inc. Stack Overflow. URL: https://stackoverflow.com/.
65 Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and Daniel M.

German. How social and communication channels shape and challenge a participatory culture
in software development. IEEE Transactions on Software Engineering, 43(2):185–204, 2017.

66 Viktoria Stray and Nils Brede Moe. Understanding coordination in global software engineering:
A mixed-methods study on the use of meetings and Slack. Journal of Systems and Software,
170:110717, 2020.

67 Keerthana Muthu Subash, Lakshmi Prasanna Kumar, Sri Lakshmi Vadlamani, Preetha
Chatterjee, and Olga Baysal. DISCO: A dataset of Discord chat conversations for software
engineering research. In Proceedings of MSR 2022 (International Conference on Mining
Software Repositories), pages 227–231. IEEE/ACM, 2022.

68 Jirateep Tantisuwankul, Yusuf Sulistyo Nugroho, Raula Gaikovina Kula, Hideaki Hata, Arnon
Rungsawang, Pattara Leelaprute, and Kenichi Matsumoto. A topological analysis of commu-
nication channels for knowledge sharing in contemporary GitHub projects. Journal of Systems
and Software, 158:110416, 2019.

69 Telegram. Telegram. URL: https://telegram.org/.
70 The Matrix.org Foundation C.I.C. Matrix. URL: https://matrix.org/.
71 Mike Thelwall and Liwen Vaughan. A fair history of the web? Examining country balance in

the Internet Archive. Library & Information Science Research, 26(2):162–176, 2004.
72 Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, and Ee-Peng Lim.

What does software engineering community microblog about? In Proceedings of MSR 2012
(Working Conference on Mining Software Repositories), pages 247–250. IEEE, 2012.

73 Travis CI. Travis CI. URL: https://www.travis-ci.com/.
74 Christoph Treude and Margaret-Anne Storey. Effective communication of software development

knowledge through community portals. In Proceedings of ESEC/FSE 2011 (European Software
Engineering Conference and Symposium on the Foundations of Software Engineering), pages
91–101. ACM, 2011.

75 Twitter, Inc. Twitter. URL: https://twitter.com/.

ECOOP 2023

https://slack.com/
https://central.sonatype.dev/
https://stackoverflow.com/
https://telegram.org/
https://matrix.org/
https://www.travis-ci.com/
https://twitter.com/

43:24 On the Rise of Modern Software Documentation

76 Jed R Wood and Larry E Wood. Card sorting: Current practices and beyond. Journal of
Usability Studies, 4(1):1–6, 2008.

77 Zhou Yang, Chenyu Wang, Jieke Shi, Thong Hoang, Pavneet Kochhar, Qinghua Lu, Zhenchang
Xing, and David Lo. What do users ask in open-source AI repositories? An empirical study of
GitHub issues. arXiv preprint arXiv:2303.09795, 2023.

78 Liguo Yu, Srini Ramaswamy, Alok Mishra, and Deepti Mishra. Communications in global
software development: An empirical study using GTK+ OSS repository. In Proceedings of
OTM 2011 (On the Move to Meaningful Internet Systems), pages 218–227. Springer, 2011.

79 Junji Zhi, Vahid Garousi-Yusifoğlu, Bo Sun, Golara Garousi, Shawn Shahnewaz, and Guenther
Ruhe. Cost, benefits and quality of software development documentation: A systematic
mapping. Journal of Systems and Software, 99:175–198, 2015.

80 Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho. Mining the
usage of reactive programming APIs: A study on GitHub and Stack Overflow. In Proceedings
of MSR 2022 (International Conference on Mining Software Repositories), pages 203–214.
ACM, 2022.

81 Zyte. Scrapy. URL: https://scrapy.org.

https://scrapy.org

	1 Introduction
	2 Dataset Creation and DwarvenMail
	2.1 Project Mining
	2.2 Tool Support: DwarvenMail
	2.3 Manual Annotation
	2.4 Parsing Links: Strategy & Heuristics
	2.5 Parsing README Histories
	2.6 Community Size
	2.7 Data Availability and Replication Package

	3 Documentation Landscape
	4 Modern Communication Platforms
	5 Coexistence and Competition
	6 Instant Messaging: A Deep Dive
	6.1 Gitter, Discord, and Slack: A Timeline
	6.2 Throughput and Volatility
	6.3 Community Sizes
	6.4 Different Projects, Same Community
	6.5 Technical, Social, and Ethical Challenges

	7 Threats to Validity
	8 Related Work
	9 Conclusions and Future Work

