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Abstract
Multiparty Session Types (MPST) are a typing disciplines that guarantee the absence of deadlocks and
communication errors in concurrent and distributed systems. However, existing MPST frameworks
do not support protocols with dynamic unbounded participants, and cannot express many common
programming patterns that require the introduction of new participants into a protocol. This
poses a barrier for the adoption of MPST in languages that favour the creation of new participants
(processes, lightweight threads, etc) that communicate via message passing, such as Go or Erlang.

This paper proposes Dynamically Updatable Multiparty Session Protocols, a new MPST theory
(DMst) that supports protocols with an unbounded number of fresh participants, whose communication
topologies are dynamically updatable. We prove that DMst guarantees deadlock-freedom and liveness.
We implement a toolchain, GoScr (Go-Scribble), which generates Go implementations from DMst,
ensuring by construction, that the different participants will only perform I/O actions that comply
with a given protocol specification. We evaluate our toolchain by (1) implementing representative
parallel and concurrent algorithms from existing benchmarks, textbooks and literature; (2) showing
that GoScr does not introduce significant overheads compared to a naive implementation, for
computationally expensive benchmarks; and (3) building three realistic protocols (dynamic task
delegation, recursive Domain Name System, and a parallel Min-Max strategy) in GoScr that could
not be represented with previous theories of session types.
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1 Introduction

Multiparty Session Types. Multiparty Session Types (MPST) are typing disciplines that can
guarantee the absence of deadlocks and communication errors in concurrent and distributed
systems [21, 22]. MPST allow the specification of global communication protocols (global
types) among a number of participants. The projection operation extracts the local
communication protocols (local types), from the point of view of each participant in the
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6:2 Dynamically Updatable Multiparty Session Protocols

system. Projection only succeeds when the protocol is absent of deadlocks and communication
errors. These local types can then be used to typecheck processes [21], generate correct by
construction code [25, 3], or monitor to detect communication errors at runtime [8].

However, MPST have a severe limitation: they cannot model protocols in which new
participants join the system. Many important protocols rely on this. For example, Chord [54]
is a popular protocol for distributed hash tables where participants join a ring, and relies on
a stabilisation protocol to guarantee that each participant keeps up-to-date channels to their
successors and predecessors. To model such scenarios using MPST, it would be necessary
to interleave different sessions. But arbitrary session interleavings can lead to deadlocks,
so it must be restricted [2, 5]. This not only rules out the use of MPST for many realistic
scenarios, but also limits the applicability of MPST for languages that favour process creation
and message passing, such as Go, which is the main motivation of our work.

Dynamic (Unbounded) Participants in Go. Go is a concurrent programming language
designed in 2009 by Google, and it is increasingly popular among professional developers.
According to a 2020 Stack Overflow survey, Go is used by 9.4% of developers, and it is the
“third most wanted language” [52]. Go was also the 4th most active language in GitHub in
2020 [16], and it has been adopted in many large software systems such as Kubernetes [32],
gRPC [18] and Docker [13]. Its main features are explicit communication primitives, namely
channels and goroutines (lightweight threads), whose design comes from concurrent process
calculi [20, 40, 41]. Unfortunately, a recent empirical study reveals that over 50% of Go
concurrent bugs are caused by communication [56, 39, 61] (i.e., more than shared memory
bugs). While Go includes a global runtime deadlock detector, it is neither adequate to verify
applications with complex communication structures, nor can it detect deadlocks involving
only a strict subset of a program’s goroutines (partial deadlocks) [37].

Figure 1 illustrates Go’s core concurrency constructs. It shows a server (Master) that
processes client requests (Line 4), and sends responses back to the Client (Line 20). The
Master breaks down the request into different subtasks and delegates them to different Worker
goroutines (Lines 7–10). The Master then aggregates the Worker results (Lines 11–19). If
the Master receives an error message, it will forward it to the Client and stop processing any
new messages (Lines 16–19). This program uses a common Go computation pattern1, the
master-worker pattern, and the number of workers depends on a runtime value.

Unfortunately, there is a bug in the implementation in Figure 1. The implementation
uses synchronous channels. Since the Master goroutine stops processing Worker responses
after receiving the first error message, all other goroutines which have not sent their result or
error messages will be deadlocked, as they will be stuck waiting for the Master to process
their message. One might think that this error could be fixed by replacing the synchronous
channels in the implementation with asynchronous (buffered) channels. Unfortunately, this
approach leaves orphan messages which could introduce other concurrency bugs, e.g. the
Master may need to clean up resources after receiving a response from the Workers.

This example demonstrates how even in simple programs, message passing can introduce
concurrency bugs and channel leakage, violating deadlock-freedom and liveness. While,
in simple programs, these concurrency bugs can be fixed with relative ease, identifying and
fixing them is usually done during testing phase, which becomes increasingly harder as the
complexity of the program and the number of goroutines increases. Unfortunately, standard
MPST cannot model protocols such as Figure 1, since the number of participants is not fixed
at the start, and depends on a run-time value.

1 E.g. https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md

https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md
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keywordstylekeywordstyle keywordstyle1 func Worker(n int, resp chan int, err chan error) { ... } // Worker returns either result or error
keywordstylekeywordstyle keywordstyle2 func Master(reqCh chan int, respCh chan []int, cErrCh chan error) {
keywordstylekeywordstyle keywordstyle3 for {
keywordstylekeywordstyle keywordstyle4 ubound := <-reqCh // Receive request from Client
keywordstylekeywordstyle keywordstyle5 workerChs := make([]chan int, ubound) // Array to store worker result channels
keywordstylekeywordstyle keywordstyle6 errCh := make(chan error)
keywordstylekeywordstyle keywordstyle7 for i := 0; i < ubound; i++ { // n_workers depends on runtime value
keywordstylekeywordstyle keywordstyle8 workerChs[i ] = make(chan int) // Create worker channel
keywordstylekeywordstyle keywordstyle9 go Worker(i+1, workerChs[i ], errCh)
keywordstylekeywordstyle keywordstyle10 }
keywordstylekeywordstyle keywordstyle11 var res [] int
keywordstylekeywordstyle keywordstyle12 for i := 0; i < ubound; i++ { // Aggregate worker results
keywordstylekeywordstyle keywordstyle13 select {
keywordstylekeywordstyle keywordstyle14 case sqI := <-workerChs[i]: // Aggregate successful result
keywordstylekeywordstyle keywordstyle15 res = append(res, sqI )
keywordstylekeywordstyle keywordstyle16 case err := <-errCh: // Some worker failed
keywordstylekeywordstyle keywordstyle17 cErrCh <- err // Propagate error and
keywordstylekeywordstyle keywordstyle18 return // stop processing any further messages
keywordstylekeywordstyle keywordstyle19 }}
keywordstylekeywordstyle keywordstyle20 respCh <- res}} // Send final result to client

Figure 1 Dynamic task delegation implementation in Go (unsafe).

Adding dynamic participants to MPST. This paper introduces Dynamically Updatable
Multiparty Session Types (DMst), a new theory of MPST whose novel feature is to model
protocols in which participants can join an already existing session (dynamic participants).
DMst can guarantee deadlock-freedom and liveness (partial-deadlock-freedom) by construc-
tion in such protocols. We implement DMst as a tool, GoScr, which generates correct by
construction Go code, and we evaluate it on a number of representative algorithms in
Go, including a safe version of Figure 1 (see § 5.2(a)). While our target language is Go,
DMst is not Go specific and a part of GoScr (GoScr protocols, projection and local protocols
in Figure 2) is reusable for any language, as long as it supports (1) the creation of new
participants (threads or processes) and (2) communication between participants.

Contributions. DMst overcomes several bottlenecks of existing theories on session types
(A); and the two main lines of work (B,C) for static deadlock detection in Go:

(A) Dynamic Participants and Session Types. There are two main existing theoretical
lines of work related to dynamic MPST. Dynamic Multirole Session Types (MRST) [9] enable
a set of participants which belong to the same group (i.e. role) to join a multiparty session
type. The roles are fixed at the start, and can only join at specific points in the protocol,
e.g at the beginning of each protocol iteration. Nested MPST [7] model protocols with
unbounded new participants. Neither MRST nor Nested MPST can represent DMst protocols
(A-1) where participants join dynamically to recursive protocols, except at fixed points and
with fixed roles (see Example 6). In addition, (A-2) our theory provides stronger guarantees
than [7], while their global types are more complex, as they must be checked by a complex
typing system. Hence a safe version of Figure 1 cannot be represented by [7, 9]. Both of
[9, 7] are only theoretical, and lack any implementation or practical results. DMst’s global
types are not only more expressive than those in [9, 7], but also simpler, thus DMst is more
suitable for real language implementations. Other lines of work add session types to calculi
that allow dynamic participants, or extend MPST to specify where can participants join in a
protocol, e.g. [19, 57, 58, 30]. While these lines of work can add or replace participants to a
system, these participants must act according to known, fixed roles. Therefore, these lines of
work do not allow the specification of cyclic recursive topologies that change dynamically
with the introduction of new participants.

ECOOP 2023



6:4 Dynamically Updatable Multiparty Session Protocols

global protocol Fork
(role M; new role W) {
task(n:int) from M to W;
...}

local protocol M@Fork
(role M; new role W) {...}

local protocol W@Fork
(role M; new role W) {...}

fork/
channels/
callbacks/
protocol/

type MsgFork interface {...}

type ForkChan = chan MsgFork

type CtxM interface {...}

type CtxW interface {...}

func ForkM (c CtxM,...) {...}

func ForkW (c CtxW,...) {...}

GoScr Protocol Local Protocols Generated Go Packages

ChannelsCallbacksProtocol implementation

Projection

via GoScr
Generation

Figure 2 Overview of GoScr toolchain.

(B) Inference Approach. This approach verifies safety and liveness properties of Go
programs, by using model-checking on their inferred concurrent behavioural types [47, 36,
37, 14]. The major limitations of this approach are: (B-1) there is a gap between properties
of types and programs, i.e., there are cases where types satisfy liveness but programs do not,
leading to unsound verification, and (B-2) it cannot verify infinitely spawning goroutines
because either the theory is limited to bounded approximation [36] or a decidable set of
types are limited to finite-control (i.e. no parallel processes inside loops) [37, 14].

(C) Go Code Generation. Another approach is the generation of Go code from parameterised
multiparty session protocols [3]. However, the major limitation of [3] is that participants in
a protocol still need to be fixed at the start of a session, so it cannot express and generate
code for typical Go-style programs with goroutines – e.g. a safe version of Figure 1. There is
a subtle, but important distinction between dynamic participants and parameterised roles:
parameterised roles cannot depend on a run-time value that is exchanged in a message that
is part of the protocol, because in parameterised MPST approaches, all of the participants
must join the session at session initialisation, and are therefore fixed.

Our challenges are to overcome all these limitations with a scalable (implementable)
MPST theory. In summary, this work solves bottlenecks of the existing MPST work by
proposing a new theory, DMst, that allows the dynamic generation of an unbounded number
of participants in recursive protocols, overcoming expressiveness issues in [9, 7] (A) and (C);
unsoundness (B-1), but is not limited to a bounded analysis nor finite-control (B-2).

Outline. § 2 presents an overview of the GoScr toolchain; § 3 presents DMst, multiparty
session types extended with the ability to add unbounded participants dynamically during a
protocol execution, and proves its deadlock-freedom (Theorem 23), orphan message freedom,
and liveness (Theorem 29); § 4 describes the code generation process of GoScr, and how to
use it to implement DMst protocols; § 5 first measures the runtime overhead of the GoScr
backend, then demonstrate the expressiveness of DMst, comparing the expressiveness of
GoScr to (A) [47, 36, 37, 14] and (B) [3] with a number of case studies. We also implement
three use cases – dynamic task delegation, a recursive Domain Name System, a noughts and
crosses game with Min-Max strategy – to demonstrate the applicability of GoScr; § 6 gives
related work, and § 7 concludes with future work.
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2 Overview of GoScr

GoScr follows a typical Multiparty Session Types workflow (see diagram on the right). In this
workflow, the starting point is the definition of a global protocol (global type in MPST), which
describes a structured sequence of interactions between a number of participants. From this
global type, we extract automatically a number of local protocols (local types) that describe
the interactions (i.e. send or receive actions) from the point of view of every participant
in the protocol. This is done using the projection operation. If some participant is not
projectable, then we raise an error, since the protocol is not well-formed and can lead to
deadlocks or other communication errors. If the programmer provides a set of processes that
behaves as prescribed by each of the local types, then the whole system is safe. We take a
code generation approach, where we generate process code from their respective local types,
providing safety guarantees by construction.

G

L1 L2 . . . Ln

P1 P2 . . . Pn

projection

code
generation

Adding Participants Dynamically. GoScr is a code generation tool which extends nuScr [48]
with the theory of DMst, targeting the Go language. nuScr is a new implementation of
Scribble [51], aimed at experimenting with extensions to core MPST. Figure 2 presents an
overview of GoScr. We distinguish toolchain internals ( dashed boxes ) from tool inputs
( solid boxes ). Development starts by specifying a global protocol in GoScr [51, 23], a
programmer-friendly protocol description language based on MPST [22, 44]. GoScr validates
the well-formedness of the protocol, and produces a local type for each participant via
projection. GoScr generates protocol implementations from these sets of local types. We
provide an overview of the GoScr workflow using the dynamic recursive pipeline of Figure 3.
Intuitively, this pipeline introduces a new participant after each iteration.

Global Protocol Specification. The first key novel feature of GoScr is the ability to define
and call protocols (e.g. Line 1 in Figure 3) that may bring new participants to the protocol
dynamically, specified by the new keyword in the signature. These calls can be recursive,
allowing for an unbounded number of participants. Lines 1–14 declare UPipe, which requires
only participant M, and introduces a new participant W dynamically. Protocol calls create
any necessary new participants, as well as any necessary channels, before performing the
interactions described by the called protocol. The second key novel feature of GoScr is the
ability to modify a recursive protocol by combining (i.e. interleaving) its interactions with
those of a protocol call. In our syntax, this is specified by annotating recursion variables
with protocol calls. We call this updatable recursion, and an example of this can be found
in Line 5. The meaning of such calls is as follows. Suppose that processes r0 and r1 are
behaving as M and W (resp.) in UPipe. Just before the protocol jumps back to Line 2, process
r1 calls protocol UPipe(r1). This means that r1 will create a new participant r2, and r1 will
delegate to r2 a session to act as W in UPipe, with r1 acting as M. But at this point, r1 should
act as both M and W. To address this, r1 will combine its interactions acting as M and W. The
fact that r1 needs to change its behaviour to act as two distinct roles in UPipe will be reflected
in its local protocol specification (participant W in Figure 3).

ECOOP 2023



6:6 Dynamically Updatable Multiparty Session Protocols

keywordstylekeywordstyle keywordstyle1 global protocol UPipe(role M;new role W){
keywordstylekeywordstyle keywordstyle2 rec X {
keywordstylekeywordstyle keywordstyle3 choice at M {
keywordstylekeywordstyle keywordstyle4 (Put:int) from M to W;
keywordstylekeywordstyle keywordstyle5 continue X with W calls UPipe(W);
keywordstylekeywordstyle keywordstyle6 } or {
keywordstylekeywordstyle keywordstyle7 (Quit:int) from M to W; }}}
keywordstylekeywordstyle keywordstyle8 local protocol M@UPipe(role M;new role W){
keywordstylekeywordstyle keywordstyle9 rec X {
keywordstylekeywordstyle keywordstyle10 choice at M {
keywordstylekeywordstyle keywordstyle11 (Put:int) to W;
keywordstylekeywordstyle keywordstyle12 continue X;
keywordstylekeywordstyle keywordstyle13 } or {
keywordstylekeywordstyle keywordstyle14 (Quit:int) to W; }}}

keywordstylekeywordstyle keywordstyle1local protocol W@UPipe(role M;new role W){
keywordstylekeywordstyle keywordstyle2choice at M {
keywordstylekeywordstyle keywordstyle3(Put:int) from M;
keywordstylekeywordstyle keywordstyle4invite UPipe(self; new W2);
keywordstylekeywordstyle keywordstyle5rec X {
keywordstylekeywordstyle keywordstyle6choice at M {
keywordstylekeywordstyle keywordstyle7(Put:int) from M;
keywordstylekeywordstyle keywordstyle8(Put:int) to W2;
keywordstylekeywordstyle keywordstyle9continue X;
keywordstylekeywordstyle keywordstyle10} or {
keywordstylekeywordstyle keywordstyle11(Quit:int) from M;
keywordstylekeywordstyle keywordstyle12(Quit:int) to W2;
keywordstylekeywordstyle keywordstyle13}}
keywordstylekeywordstyle keywordstyle14} or { (Quit:int) from M; }}

Figure 3 Global and Local protocols for a dynamic recursive pipeline.

keywordstylekeywordstyle keywordstyle1 type Put int
keywordstylekeywordstyle keywordstyle2 type Quit int
keywordstylekeywordstyle keywordstyle3 type Ctx_UPipe_W interface {
keywordstylekeywordstyle keywordstyle4 Recv_M_Put(v_2 Put)
keywordstylekeywordstyle keywordstyle5 Init_W_UPipe() Ctx_UPipe_W
keywordstylekeywordstyle keywordstyle6 ...
keywordstylekeywordstyle keywordstyle7 Recv_M_Quit(v_2 Quit)
keywordstylekeywordstyle keywordstyle8 Quit() }
keywordstylekeywordstyle keywordstyle9 func UPipeW(ctx Ctx_UPipe_W,
keywordstylekeywordstyle keywordstyle10 wg *sync.WaitGroup, chMW chan MsgUPipe){
keywordstylekeywordstyle keywordstyle11 defer wg.Done()
keywordstylekeywordstyle keywordstyle12 x_1 := <- chMW

keywordstylekeywordstyle keywordstyle14 switch v_2 := x_1.(type) {
keywordstylekeywordstyle keywordstyle15 case Put:
keywordstylekeywordstyle keywordstyle16 ctx.Recv_M_Put(v_2)
keywordstylekeywordstyle keywordstyle17 ch_W_W_1 := make(chan MsgUPipe, 1)
keywordstylekeywordstyle keywordstyle18 ctx_1 := ctx.Init_W_UPipe_Ctx()
keywordstylekeywordstyle keywordstyle19 wg.Add(1)
keywordstylekeywordstyle keywordstyle20 go UPipeW(ctx_1,wg, ch_W_W_1)
keywordstylekeywordstyle keywordstyle21 MuX:
keywordstylekeywordstyle keywordstyle22 for {
keywordstylekeywordstyle keywordstyle23 ... }
keywordstylekeywordstyle keywordstyle24 case Quit:
keywordstylekeywordstyle keywordstyle25 ctx.Recv_M_Quit(v_2)
keywordstylekeywordstyle keywordstyle26 ctx.End() }}

Figure 4 Implementation and context of role W in UPipe in Figure 3.

Local Protocol Specification. GoScr extracts local protocol specifications from global
protocols using an operation called projection. Local protocols describe the structured
sequence of interactions, from the point of view of a single participant. Figure 3 lists local
protocols for M and W. Consider the point of view of the new participant W in protocol
UPipe from Figure 3. W first receives an integer, either with label Put or Quit from M. If W

receives Quit, then the protocol finishes. Otherwise, W performs a protocol call, bringing in a
new participant W2 to act as W in UPipe. In the subsequent interactions, from Line 5, W acts
as both M (with respect to W2) and W (with respect to M). These lines (5 – 13) appear as a
result of projecting Line 5 onto W. Notice that, if we have two participants, one acting as
M and another one acting as W, this will generate a pipeline with an unbounded number of
stages, until the first participant acting as M sends Quit. These kinds of protocols could not
be represented in previous MPST theories and frameworks.

Program Logic. From local protocol specifications, GoScr generates the implementation
of each role as a self-contained function. GoScr interleaves communication actions and
the program logic. Communication actions in Go are a direct translation of those in local
protocols: a send is a regular Go send, a receive is a regular Go receive, a choice is a type
switch on a label, etc. Programmer inputs at this stage are, therefore, protocol specifications
and program logic. We follow a callback approach similar to [42, 62] that guarantees
correctness of communication by construction, unlike other approaches that required runtime
linearity checks [3]. We discuss this approach in detail in §4. Figure 4 presents the code that
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GoScr generates for W in UPipe. The generated implementation requires that the programmer
implements the context interface Ctx_UPipe_W (Lines 3 – 8, Figure 4). This interface defines
all the necessary callbacks to implement the program logic. Programmers can use any type
definition to store a local state for each participant in the protocol, e.g.
keywordstylekeywordstyle keywordstyle1 type CtxW int // This type implements Ctx_UPipe_W, and stores the accumulated sum
keywordstylekeywordstyle keywordstyle2 func (c *CtxW) Recv_M_Put(v upipe.Put) { // upipe.Put is also an ’int’
keywordstylekeywordstyle keywordstyle3 *c += CtxW(v) }
keywordstylekeywordstyle keywordstyle4 ...

By using CtxW for implementing Ctx_UPipe_W, workers will store the sum of all the numbers
that they receive, and forward their accumulated sum to the next participant. The generated
code for W will signal when it has terminated (Line 11), and starts by receiving from M (Line
12). Depending on whether W receives Put or Quit, W continues with the corresponding branch
(Line 14). If M sends Put, then W creates a new participant that also acts as W (with respect to
the previous W). To create this participant, first a channel is created (Line 17), then a new
context is created (Line 18), the participant count is increased to guarantee that execution
does not end before all participants have ended (Line 19), and finally a new goroutine is
created (Line 20). Otherwise, if M sends Quit, the callback for ending is called, a last callback
to perform any necessary cleanup is called, and the participant ends (Lines 25 and 26).

As we show in Figure 2, from a global protocol specification GoScr produces an imple-
mentation of all of its participants. To run this generated implementation, programmers
must provide the necessary types to represent protocol contexts and their required callbacks.
Our code generation scheme statically ensures that implementations never lead to the errors
described in § 1, i.e. there will be no deadlocks and orphan messages.

3 Dynamically Updatable Unbounded Multiparty Session Protocols

This section introduces the theory of Dynamically Updatable Multiparty Session Types (DMst)
with examples, and proves that DMst satisfies deadlock-freedom and liveness. DMst is the
formalism that underlies GoScr. To illustrate our theory, consider the dynamic pipeline
of Figure 3. In this protocol, new participants are introduced into the protocol after each
iteration. In DMst, we write this dynamic pipeline as follows:

Pipe = λ⟨p; νq⟩.µt.(p → q:put[nat]. (t ♦ q ↪→ Pipe⟨q⟩)) + (p → q:quit. end)

This protocol definition requires two participants p and q. Participant q is annotated with ν

to specify that it is introduced dynamically (a dynamic participant). Participant p is called
a parameter participant. The body of the protocol specifies that it is a recursive protocol
(µt. . . .), with recursion variable t, where p sends to q either put or quit. This is a choice (+),
where each branch starts with p → q:put[nat] and p → q:quit respectively. If p sends put,
then both participants enter a new iteration, but q extends the protocol by performing call
to Pipe (q ↪→ Pipe⟨q⟩) before entering the new iteration. Note that although the signature
mentions two participants p and q, the call in the global type only needs to list the parameter
participants. This protocol call effectively brings in a new participant to the protocol (e.g.
r), creates and distributes the necessary additional channels, and extends the interactions of
the protocol with those of Pipe(q; r).

Introducing new interactions into an existing protocol requires to interleave them with
the actions of this existing protocol. For example, the interactions of Pipe(q; r) need to be
interleaved with the remaining interactions of Pipe(p; q). Our protocol specification allows
two forms of interleavings: (a) sequencing all the interactions of a protocol call with the
remaining interactions; and (b) alternating the actions of each iteration of two recursive
protocols. We introduce a protocol construct ♦ to specify the latter.

ECOOP 2023



6:8 Dynamically Updatable Multiparty Session Protocols

3.1 Global Types of DMst
The syntax of DMst global types (given in Definition 1) is an extension of the simplest version
of MPST [60]. The novel added features are highlighted.

▶ Definition 1 (DMst Global Types).

γ ::= p → q:m[U ] | p ↪→ x⟨q⃗⟩ G ::= end | γ.G |
∑

i∈I Gi | µt.G | t | G ♦ γ⃗

Prefixes (γ, γ′, . . .) represent individual interactions between participants, also called
roles2, (p, q, r, . . . ). There are two prefixes: messages and protocol calls. A message between
p and q with label m and payload type U (e.g. int, bool, . . . ) is written p → q:m[U ], or
p → q:m whenever the payload is not relevant, e.g. when U is unit. We write p ↪→ x⟨q⃗⟩ to
denote a call to protocol x by p, with participants q⃗ (= q1 . . . qn) (see protocol definitions
below). A protocol call prefix will introduce the new interactions described by x.

Global types (G, G′, . . . ) denote global protocols among participants. The syntax of
global types is mostly standard: end is termination and it is often omitted. t denotes
a recursive variable. Choice

∑
i∈I Gi chooses any Gi, depending on the first action of

each Gi (see Definition 3). Recursive protocol µt.G behaves as G, binding recursive
variable t to µt.G. Sequencing γ.G denotes the execution of a prefix γ, and a continuation
G. The new construct G ♦ γ⃗ denotes an updatable protocol, where G is extended with
the interactions and participants introduced by γ⃗ (if any). When G is a recursive variable
t (t ♦ γ⃗), we often call these updatable recursion, or updatable recursion variable. We use
updatable protocols to represent recursive protocols where subsequent iterations are extended
with new message exchanges and/or participants. We will show in Example 6 how to use
updatable recursion to represent the dynamic recursive pipeline of Figure 3.

Choice well-formedness. Standard MPST syntax only allows choices where a participant p
sends to another participant q a distinct label in each branch. This means that p and q can
use the label to distinguish each branch of the choice [21, 60]. DMst’s syntax is more flexible,
since branches can also be distinguished by distinct protocol calls. However, we still require
that a single participant either sends a distinct label, or performs a distinct protocol call as
the first interaction of each branch. We say that the choices that satisfy this condition are
directed. Checking that choices are directed is necessary for well-formedness, but it is not
sufficient. Protocol well-formedness is defined in a standard way later in Definition 15. To
refer to the interaction that occurs in a branch, we use the extended labels.

▶ Definition 2 (Extended Labels). We define extended labels, ℓ ::= m | i@x(p⃗; q⃗), where
i@x(p⃗; q⃗) identifies a protocol call as the i-th participant of x with participants p⃗; q⃗. We use
participant index instead of name, since x may give different names to p⃗ and q⃗.

▶ Definition 3 (Directed Choices). Then, we define dc (directed choice):

dc(p, {ℓi}i∈I ,
∑

i∈I γi.Gi) = (∀i ∈ I.inter(p, ℓi, γi)) with all ℓi ̸= ℓj for i ̸= j

The predicate inter(p, ℓi, γi) states that γi is an interaction initiated by p with extended
label ℓi: inter(p, i@x(p⃗; q⃗), p ↪→ x⟨q⃗⟩), if i ≤ size(p⃗q⃗), and inter(p, m, p → q:m[U ]).

2 A participant plays a role in the protocol, and this role is determined by the structured sequence of
interactions that are allowed by the global type.
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Protocol definitions (x = λ⟨q⃗; ν r⃗⟩.G) associate a protocol name x with a global type G,
given a sequence of parameter participants q⃗, and a sequence of new participants r⃗ (where “ν”
means “new” [41]) that join the protocol dynamically (we call these dynamic participants).
Any participant occurring in G must be bound by q⃗ or r⃗. Protocol call prefixes (x⟨q⃗⟩) only
specify the parameter participants, not the dynamic ones. To refer to the global type of a
definition, we write x(q⃗; r⃗), with parameter participants q⃗, and dynamic participants r⃗.

▶ Example 4 (Fibonacci). The following protocol represents the interactions of an unbounded
series of participants, that together compute the Fibonacci sequence:

Fib = λ⟨s, f1, f2; νf3⟩.f1 → f3:F[int].f2 → f3:F[int].f3 → s:NF[int].f3 ↪→ Fib⟨s, f2, f3⟩.end

Fib defines a protocol that recursively creates new participants (f3 in the global type) to
compute the next element of the Fibonacci sequence after receiving the results from the
previous two participants (f1 and f2). Participant s receives all the results. Intuitively, the
implementation of f3 starts by receiving from f1 and f2, sends the new Fibonacci number to
s, and then creates a new participant and continues with f2 acting as f1, and f3 as f2. The
code generated by a similar protocol is shown later in Figure 5.

Protocol calls can also be used to represent recursive protocols that are augmented
dynamically with new interactions and/or participants. To represent such protocols we use
updatable recursion variables. Intuitively, subsequent iterations of a recursive protocol µt.G

that contains an updatable recursion variable t♦p ↪→ x⟨q⃗⟩ will proceed as µt.G combined with
the global type defined by x. Global types are combined by interleaving their interactions.

▶ Definition 5 (Combining Recursive Global Types). Let cont be a function that computes
the set of final continuations, i.e. recursion variables or end, after executing all possible
prefixes: cont(γ. G) = cont(G), cont(µt.G) = cont(G) \ {t}, cont(

∑
i∈I Gi) = ∪i∈Icont(Gi),

cont(t) = {t}, cont(G ♦ γ) = cont(G), cont(end) = {end}. We define

(µt.
∑

i∈I G′
i) ♢ (µt.

∑
i∈I Gi) = µt.

∑
i∈I (G′

i ♢t Gi)

where G′ ♢t G = [G/t]G′ if cont(G′) = cont(G) = {t}, G′ ♢t G = [G/end]G′ if cont(G′) =
cont(G) = {end}, and is undefined otherwise.

The composition operator takes two recursive protocols with the same branching structure,
and combines each of the branches using G′ ♢t G. This operator simply appends the
interactions of G after the interactions of G′ by substituting either end or t by G. Both G

and G′ must finish with the same last continuation, either t or end. For example:
((γ1. end) + (γ2. t)) ♢t ((γ3. end) + (γ4. t)) = (γ1. γ3. end) + (γ2. γ4. t),

but the following case is undefined: ((γ1. end) + (γ2. t)) ♢t ((γ3. end) + (γ4. t′)) (if t ̸= t′)

▶ Example 6 (Dynamic Recursive Pipeline). Consider again the dynamic pipeline of Figure 3:
Pipe = λ⟨p; νq⟩.µt.(p → q:put[nat]. (t ♦ q ↪→ Pipe⟨q⟩)) + (p → q:quit. end)

A set of processes that runs according to this specification would proceed as follows. The
first iteration is the same as the first iteration of Pipe, but without updatable recursion. This
is equivalent to the following global type:

G0 = µt.(p → q:put[nat]. t) + (p → q:quit. end)

I.e. participant p would start by sending put or quit to q, and q would receive this message.
Subsequent iterations will combine G0, with the result of the protocol call (Pipe⟨q⟩). Given
a fresh participant r, this is as follows:
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G1 = G0 ♢ Pipe(q; r) = G0 ♢ (µt.(q → r:put[nat]. (t ♦ r ↪→ Pipe⟨r⟩)) + (q → r:quit. end))
= µt.(p → q:put[nat]. q → r:put[nat]. (t ♦ r ↪→ Pipe⟨r⟩)) + (p → q:quit. q → r:quit. end)

Note that ♢ plugs in the interactions of the first (second) branch of Pipe(q; r) after the first
(resp. second) branch of G0. This has the effect that, after each iteration of the protocol, a
new participant will join the pipeline, until the first participant sends message quit. Such
protocols could not be represented in previous MPST extensions. See §6 for a discussion.

▶ Example 7 (Dynamic Ring). DMst can also be used to model protocols, such a dynamic
ring, in which participants join a recursive ring protocol. Such dynamic rings are at the core
of some well-known protocols, such as Chord and its extensions. The protocol in DMst is as
follows, omitting choices and payload types for simplicity:

Ring = λ⟨i, p; νq⟩.µt.p → q:N. t ♦ (q → i:N. i ↪→ Ring⟨i, q⟩)

The entrypoint is Ring(p, p; q). Subsequent iterations would be combined with new protocol
calls (e.g. Ring(p, q; r)), producing the following sequences of interactions:

G0 = µt.p → q:N. q → p:N. t G1 = µt.p → q:N. q → q′:N. q′ → p:N. t G2 = . . .

3.2 Asynchronous Semantics of DMst Global Types
We guarantee the processes implementing all roles in a global type G indeed behave as G.
To characterise the set of behaviours that are allowed by G, we define the semantics of global
types as a Labelled State Transition System. The labels are the observable actions:

α ::= pq !ℓ | pq?ℓ | pq ν i@x (⃗r; s⃗)

Observable pq !ℓ is a send action from p to q with an extended label (either a label or
a protocol call, see Definition 2). Action pq?ℓ is receive and action pq ν i@x (⃗r; s⃗) is
participant creation which brings in q as a new participant acting as the i-th role in the
protocol specified by x (⃗r; s⃗). For simplicity, we sometimes write pq ν ℓ to refer to participant
creation, assuming that ℓ is of the form i@x (⃗r; s⃗), for some i, x, r⃗ and s⃗.

Extended Global Types. We extend the global types (Definition 1) with constructs that
capture intermediate states of the execution of a protocol. Note that these intermediate
states only appear as a result of applying the rules of the operational semantics, and these
will not need to be written by users specifying full protocols. Since extended global types
are a superset of Definition 1, we will use the same meta-variable G for both and, unless we
specify otherwise, all global types from now on are considered to be extended.

γ ::= . . . | p → q:ℓ[U ] | p⇝ q:ℓ[U ] | pν (⃗r : [i, j]@x(p⃗; q⃗)) | ▷[G]

Sending protocol call labels (e.g. p → q:i@x(p⃗; q⃗)) is a form of delegation that is used to
perform protocol calls (see Notations below). p⇝ q:ℓ[U ] means p has sent a message to q,
yet q has not received it. pν (⃗r : [i, j]@x(p⃗; q⃗)) represents that p creates new participants r⃗,
acting as the ith to jth participants in x , and ▷[G] is the nested protocol with global type G.
Intuitively, a nested protocol prefix ▷[G0]. G1 is equivalent to sequencing G0 and G1.
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Notations. We use notations to break down protocol calls into the individual interactions.
Suppose that q⃗ = (q1, . . . , qn) and r⃗ = (r1, . . . , rm). We define idx(p; q⃗) as {i}, if p = qi with
1 ≤ i ≤ n, or the empty set {} otherwise. We define the following shortcuts:

p → q⃗:⃗i@x(q⃗; r⃗) = p → q1:i1@x(q⃗; r⃗). . . . . p → qn:in@x(q⃗; r⃗)
p call x(q⃗; r⃗) = pν (⃗r : [n + 1, n + m]@x(q⃗; r⃗)). p → q⃗ \ {p}:([1, n] \ idx(p; q⃗))@x(q⃗; r⃗)

Notation p → q⃗:⃗i@x(q⃗; r⃗) represents a sequence of messages from p to each of the q ∈ q⃗
with the respective extended label. These are sometimes called invitations to x. Notation
p call x(q⃗; r⃗) is a sequence of actions, where p first creates r⃗, and then sends invitations to q⃗,
excluding itself to avoid self-communication.

Global Type Equivalence and LTS. We define the erasure of updatable recursive variables
as |t ♦ γ|t′ = t if t = t′; and |t ♦ γ|t′ = t ♦ γ otherwise (other cases are homomorphic).
The LTS is defined up to the equivalence: (1) pν(); G ≡ G; (2) ▷[end]. G ≡ G; (3) µt.G ≡
[µt.|G|t/t]G, and, assuming r⃗ fresh, (4) p ↪→ x⟨q⃗⟩. G ≡ p call x(q⃗; r⃗). ▷[x(q⃗; r⃗)]. G, and (5)

G ♦ (γ⃗. p ↪→ x⟨q⃗⟩) ≡ γ⃗. p call x(q⃗; r⃗). (G ♢ x(q⃗; r⃗)). Rules (1) and (2) capture that finished
prefixes (creating an empty list of participants, or a nested ended global type) can be skipped.
Rule (3) is recursion unrolling. Similarly to Example 6, subsequent iterations of the protocol
will combine the body of the recursion without updatable recursion variables, with the result
of the protocol calls. By this rule, recursion will be updated by protocol calls, and after the
first iteration, the protocol can continue as µt.|G|t (possibly combined with the result of a
protocol call). Rule (4) expands the sequence of a protocol call and a global type, and rule
(5) updates a global type by first executing the specified prefixes and then continuing with
G combined with the result of the protocol call. We guarantee that new roles are globally
fresh by adopting a Barendregt convention on all binders, i.e. each time we access a protocol
definition x , we alpha-rename the participants bound by ν r⃗ to avoid participant name clashes.
Without it, consecutive protocol calls could incorrectly introduce repeated participant names.

▶ Definition 8 (Active Participants). The active participants of a global type (prefix), pt(G)
(pt(γ)), is the set of participants that can perform an action in the protocol (or prefix).

pt(p → q:ℓ[U ]) = {p, q} pt(p ↪→ x⟨q⃗⟩) = {p} ∪ q⃗ pt(p⇝ q:ℓ[U ]) = {q} γ.G = pt(γ) ∪ pt(G)
pt(p ↪→ x⟨q⃗⟩) = {p} ∪ q⃗ pt(pν (⃗r : [i, j]@x(p⃗; q⃗))) = {p} ∪ r⃗ pt(▷[G]) = pt(G)

pt(end) = pt(t) = {} pt(µt.G) = pt(G) pt(
∑

i∈I
Gi) =

⋃
i∈I

pt(Gi) pt(G ♦ γ) = pt(G) ∪ pt(γ)

▶ Definition 9 (LTS for Global Types). Let the subject of an action denote the role that
performs it: p = subj(pq !ℓ) = subj(pq?ℓ) = subj(pq ν ℓ). The LTS for G:

[Br-a]
∀i ∈ I, Gi

α−→ G′
i∑

i∈I
Gi

α−→
∑

i∈I
G′

i

[Br-b]

Gj

pq !ℓj−−−→ G′
j dc(p, {ℓi}i,

∑
i∈I

Gi)∑
i∈I

Gi

pq !ℓj−−−→ G′
j

[Nest]
G1

α−→ G2

▷[G1]. G
α−→ ▷[G2]. G

[New] p(r, r⃗ : [i, j]@x(q⃗; r⃗′)). G
pr ν i@x(⃗q;⃗r′)−−−−−−−−→ p(⃗r : [i + 1, j]@x(q⃗; r⃗′)). G

[Send]
p → q:ℓ[U ]. G

pq !ℓ−−−→ p⇝ q:ℓ[U ]. G

[Recv]
p⇝ q:ℓ[U ]. G

qp?ℓ−−→ G
[Seq]

G
α−→ G′ subj(α) ̸∈ pt(γ)

γ.G
α−→ γ.G′

[Br-a] specifies that if an action can be taken in all branches of a choice, it can be taken
before the choice is decided. The reason is that if an action can be taken in all branches,
then it must be independent of the choice. [Br-b] states that if the sender of a choice does
an action that selects branch j, then the choice transitions to this branch. [Seq] states that
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an action can take place in a continuation, if the action does not involve the participants of
the prefix. In the prefix transitions, [Send] (resp. [Recv]) represents a send (resp. receive)
action. [New] specifies that a new participant r of the nested protocol is created, and [Nest]
represents the execution of an action in the nested global type.

▶ Example 10 (DMst Semantics). Consider the following protocol, cf. Example 6:

Pipe = λ⟨p; νq⟩.µt.G0 with G0 = (p → q:put[nat]. (t♦q ↪→ Pipe⟨q⟩))+(p → q:quit. end)

First, assuming two initial participants (p and q), we unfold recursion using ≡:

µt.G0 ≡ [µt.|G0|t/t]G0 = (p → q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩)) + (p → q:quit. end)

There are two allowed actions: sending put and sending quit. By [Br-b] and [Send],

[µt.|G0|t/t]G0
pq !put−−−−→ p⇝ q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩)

There are now two actions accepted. First, we can use [Recv]:

p⇝ q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩) qp?put−−−−→ µt.|G0|t ♦ q ↪→ Pipe⟨q⟩

To enable the second action, we use equivalences to unfold the updatable global type:

G1 = p⇝ q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩)
≡ p⇝ q:put[nat]. qν(r : 2@Pipe(q; r)). (µt.|G0|t ♢ Pipe(q; r))

Note that p is not in the set of active participants of the prefix, so p can take a step, using
repeated applications of [Seq], in (µt.|G0|t ♢ Pipe(q; r)).

µt.G2 = (µt.|G0|t ♢ Pipe(q; r))
= µt.(p → q:put[nat]. q → r:put[nat]. (t ♦ r ↪→ Pipe⟨r⟩)) + (p → q:quit. q → r:quit. end)
≡ (p → q:put[nat]. q → r:put[nat]. (µt.|G2|t ♦ r ↪→ Pipe⟨r⟩)) + (p → q:quit. q → r:quit. end)

Suppose that G2 proceeds by p sending quit: µt.G2
pq !quit−−−−→ (p⇝ q:quit. q → r:quit. end).

Then, G1 transitions to the following global type:

µt.G1
pq !quit−−−−→ p⇝ q:put[nat]. qν(r : 2@Pipe(q; r)). p⇝ q:quit. q → r:quit. end

After [Sq-a] and [Recv], the global type transitions to:

G3 = qν(r : 2@Pipe(q; r)). p⇝ q:quit. q → r:quit. end

With [Sq-a] and [New], the protocol transitions as follows:

G3
qr ν 2@Pipe(q;r)−−−−−−−−−−→ p⇝ q:quit. q → r:quit. end

At this stage, r is a new active participant of the protocol. The remaining global type can
run to completion via a sequence of [Recv], [Send], and finally [Recv].

3.3 Local Types
Local types describe the interactions of a protocol from the point of view of a single participant.

▶ Definition 11 (DMst Local Types). Let M ::= l[U ] | L. The syntax of local types is:
π ::= p !M | p?M | ν(p⃗ : L⃗) | ▷[L] L ::= end | π. L |

∑
i∈I Li | µt.L | t | L ♦ π⃗
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Local type syntax differs from that of global types in the prefixes (π instead of γ). Local
type prefixes are as follows: send p !M , receive p?M , new participant creation ν(p1 :
L1) · · · (pn : Ln), and the nested local type ▷[L]. We lift the definitions of directed choices,
updatable recursion erasure, and the composition operator from global types to local types.
Endpoint projection takes a global type G and a participant r, and produces the local
type (the local interactions) of r in G.

Similarly to global types, we introduce the notations for protocol calls. Assuming
q⃗ = q1, . . . , qn and r⃗ = r1, . . . , rm, we define these notations as follows:

q⃗ !⃗i@x(q⃗; r⃗) = q1 !i1@x(q⃗; r⃗). . . . . qn !in@x(q⃗; r⃗)
p call x(q⃗; r⃗) = ν (⃗r : [n + 1, n + m]@x(q⃗; r⃗)). q⃗ \ p !([1, n] \ idx(p; q⃗))@x(q⃗; r⃗)

▶ Definition 12 (Prefix Projection). Global type projection is defined in terms of prefix
projection. Prefix projection is a partial function that takes a global prefix, and produces a
possibly empty (ε) sequence of local prefixes. We give the two main rules:

p → q:l[U ] ↾ r

=


q ! l[U ] p = r ̸= q
p?l[U ] p ̸= r = q
ε p, r, q distinct

p ↪→ x⟨q⃗⟩ ↾ r (⃗r fresh)

=


p call x(q⃗; r⃗). ▷[i@x(q⃗; r⃗)] p = r ∈i q⃗
p call x(q⃗; r⃗) p = r ̸∈ q⃗
p?i@x(q⃗; r⃗). ▷[i@x(q⃗; r⃗)] p ̸= r ∈ q⃗
ε p ̸= r ̸∈ q⃗

The projection of p → q:l[U ] onto r is a send if r is p, and a receive if r is q, an empty
prefix if all roles are distinct, or undefined if r = p = q. The projection of p ↪→ x⟨q⃗⟩ follows a
similar pattern. If r is p, then the projected sequence of prefixes is the one that corresponds
to making the protocol call, i.e. delegating channels and creating new participants. If r is
the ith participant in q⃗, then r also takes part in the protocol, so the prefixes correspond to
the reception of the channel for acting as the ith participant in x , followed by the execution
of the nested local type for this ith participant in x, i@x(q⃗; r⃗). If r is both the protocol
caller p, and also takes part in it, then the prefix sequence is the sequence of prefixes for
making the protocol call, followed by the nested local type for i@x. Note that a participant
may call a protocol, and not take part in it. When this happens, the protocol caller simply
distributes the necessary channels for executing the nested protocol, and then proceeds to
the continuation, without entering the nested protocol.

▶ Definition 13 (Projection and Merging). Projection is defined as follows:

γ.G ↾ r = γ ↾ r. G ↾ r t ↾ r = t
end ↾ r = end G ♦ γ⃗ ↾ r =

{
G ↾ r (if r ̸∈ γ⃗)
G ↾ r ♦ (γ⃗ ↾ r) (if r ∈ γ⃗)

µt.G ↾ r =

µt.G ↾ r r ∈ pt(G) or
fv(µt.G) ̸= ∅

end otherwise

∑
i∈I

Gi ↾ r =
{∑

i∈I
(Gi ↾ r) dc(p, ℓ⃗,

∑
i∈I

Gi), r = p
d

i∈I(Gi ↾ r) dc(p, ℓ⃗,
∑

i∈I
Gi), r ̸= p

Projection is a partial function from global to local types. We lift the definition of directed
choices (Definition 3, dc) to local types. We define

d
i∈ILi as the merging operator:

(1) L ⊓ L = L (2) µt.L1 ⊓ µt.L2 = µt.(L1 ⊓ L2)
(3)

∑
i∈I

p?ℓi[Ui]. Li ⊓
∑

j∈J
p?ℓj [Uj ]. L′

j =∑
k∈I∩J

(p?ℓk[Uk]. Lk ⊓ L′
k) +

∑
i∈I\J

(p?ℓi[Ui]. Li) +
∑

j∈J\I
(p?ℓj [Uj ]. L′

j)

The projection rules are standard [60], except the choice. A choice is only defined if it is
directed. The projection of the participant that makes the choice is a local type choice of the
projection of the branches. The projection for all other participants is the merging of the
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projection of the branches. Local types can be merged in three cases: (1) they are the same,
(2) they are recursive local types whose bodies can be merged, or (3) they become aware of
which branch of the choice was taken (if necessary), by receive actions with distinct labels.
Case (3) implies that both local types are choices with a receive prefix as the first action,
where the continuations for the branches with the same labels can be merged.

It is standard in MPST to define well-formedness in terms of projectability [21]. This
means that if a global type is projectable onto all of its roles, then it is well-formed and
therefore live and deadlock-free. Unfortunately, the use of ♦ means that this is not possible
with DMst. E.g., the following global type is projectable, but it will get stuck:

Proto1 = λ⟨p; νr⟩.µt.(r → p:m1. end) + (r → p:m2. t)
IllFormed = λ⟨p; νq⟩.µt.(p → q:m1. end) + (p → q:m2. t ♦ (p ↪→ Proto1 ⟨p⟩))

Specifically, r in Proto1 will not become aware of the branch taken by p in IllFormed, so
after unfolding IllFormed once, we will obtain the following global type:

µt.(p → q:m1. r → p:m1. end) + (p → q:m2. r → p:m2. t)

But this protocol would not be projectable. To avoid such cases, we define a necessary
condition for well-formedness, the safe protocol update condition.

▶ Definition 14 (Safe Protocol Update). Suppose that C[ ] and C ′[ ] are 1-hole global type
contexts. A global type µt.C[t ♦ (γ⃗. p ↪→ x⟨q⃗⟩)] contains a safe update if its 1-unfolding
is some C ′[G ♦ (γ⃗. p ↪→ x⟨q⃗⟩)], such that given a sequence of fresh roles r⃗, G ♢ x(q⃗; r⃗) is
projectable.

▶ Definition 15 (Projection and Well-Formed Global Types). A global type G is projectable
if its projection G ↾ r is defined on all roles r ∈ G. A global type is well formed iff it is
projectable, and contains only safe protocol updates.

▶ Definition 16 (Projections of Protocol Definitions). Assume a definition x = λ⟨p⃗; νp⃗′⟩.G,
with participants p⃗ = (p1, . . . , pn) and with participants p⃗′ = (pn+1, . . . , pm). The projections
of x are the local protocol definitions that correspond to each of the participants in the protocol:

1@x = λ⟨p⃗; νp⃗′⟩.G ↾ p1 . . . m@x = λ⟨p⃗; νp⃗′⟩.G ↾ pm

▶ Example 17 (Directed Choices and Merging). BFib computes the n-th Fibonacci number:

BFib = λ⟨r, f1, f2; νf3⟩.f1 → f3:F[int].
f2 → f3:F[int].((f3 → r:NF[int]. f3 → f2:quit.end)+(f3 ↪→ BFib⟨r, f2, f3⟩. end))

This protocol is similar to that of Example 4, but instead of calling BFib indefinitely, the
protocol offers a choice: f3 will either reply to r with its Fibonacci number, or call BFib
recursively to compute the next number. Participant f3 selects the branch of the protocol
that is taken, and r offers the two branches. The choice has a single sender, and both
branches can be distinguished by the labels or protocol calls, so the choice is directed by f3,
with extended labels ℓ⃗ = NF, i@BFib(r, f2, f3; f4). In a directed choice, one participant decides
the branch. But how do the remaining participants know which branch was taken? Consider
f1 in BFib. Its part in both branches of the protocol is the same, end, so we can project
f1 in the choice as end. This is one of the cases of Definition 13: two local types can be
merged if they are the same.But f2’s behaviour is different in each branch: f3?quit. end and
f3?2@BFib(r, f2, f3; f4). end respectively. However, f2 is aware of the branch that was taken
by receiving either label quit or protocol call label 2@BFib(r, f2, f3; f4). This is case (3), as
explained after Definition 13:
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(f3?quit. end) ⊓ (f3?2@BFib(r, f2, f3; f4). end) = (f3?quit. end) + (f3?2@BFib(r, f2, f3; f4). end)

▶ Example 18 (Projecting Pipeline). Consider again Example 6. We are projecting the first
and second participants of x. The result of the syntactic projection is as follows:

x(p; q) = µt.(p → q:put[nat]. (t ♦ q ↪→ x⟨q⟩)) + (p → q:quit. end)
1@x(p; q) = µt.(q !put[nat]. t) + (q !put[nat]. end)
2@x(p; q) = µt.(p?put[nat]. (t ♦ (call x(q; r). q?q1@x(q; r). ▷[1@x(q; r)]))) + (p?quit. end)

3.4 Semantics of DMst Local Types and Correctness
The semantics for local types is defined for local type configurations. A configuration
is a pair of channel and participant environments, ⟨ ∆ ; Θ ⟩. The channel environment ∆
contains the shared channels used for the asynchronous communication between each pair of
participants, and the participant environment Θ is a set of the local types of all participants:

∆ = piqj :: w⃗1, . . . , pkql :: w⃗n w ::= ℓ[U ] Θ = {p1 :: L1, · · · , qm :: Lm}

w denotes a payload of a message. We consider the channel and participant environments
up to commutativity and associativity, since all entries must be disjoint. Channels pq are
channels of messages to p from q. We use ∆(pq) as notation for retrieving channel pq, and
∆[pq :: w⃗] for updating channel pq with w⃗. Θ does not impose the ordering between the
entries (like a set). We update the entry by writing Θ[p :: L] = p :: L, (Θ \ p).

The semantics of configurations is defined by the LTS of local types and given in
Definition 19, and it is defined up to local type equivalences, analogous to those of global
types: (1) µt.L ≡ π⃗. end if L = t♦ π⃗; (2) [µt.|L|t/t]L if L ̸= t♦ π⃗, (3) L♦ (π⃗. π) ≡ π⃗. π. L, if
π ̸= ▷[L′], and (4) L♦(π⃗. π) ≡ π⃗. (L♢L′), if π = ▷[L′]. The semantics of choices requires that
they are directed. At the local type, all branches start with a send/receive prefix to/from the
same participant p. We use the predicate dc(p, {ℓi}i,

∑
i∈I πi. Li), and define it analogously

to the predicate for global types.

▶ Definition 19 (LTS for Local Types). The LTS for local types is defined as follows:

[L-cong]
⟨ ∆ ; p :: L ⟩ α−→ ⟨ ∆′ ; Θ′ ⟩

⟨ ∆ ; p :: L, Θ ⟩ α−→ ⟨ ∆′ ; Θ′, Θ ⟩
[L-nest]

⟨ ∆ ; p :: L′ ⟩ α−→ ⟨ ∆′ ; p :: L′′, Θ ⟩
⟨ ∆ ; p :: ▷[L′]. L ⟩ α−→ ⟨ ∆′ ; p :: ▷[L′′]. L, Θ ⟩

[L-choice]
j ∈ I ⟨ ∆ ; p :: Lj ⟩ α−→ ⟨ ∆′ ; Θ ⟩ dc(q, ℓ⃗,

∑
i∈I

Li)

⟨ ∆ ; p ::
∑

i∈I
Li ⟩ α−→ ⟨ ∆′ ; Θ ⟩

[L-send] ⟨ ∆, qp :: w⃗ ; p :: q !ℓ[U ]. L ⟩ pq !ℓ−−−→ ⟨ ∆, qp :: w⃗ · ℓ[U ] ; p :: L ⟩

[L-recv] ⟨ ∆, pq :: ℓ[U ] · w⃗ ; p :: q?ℓ[U ]. L ⟩ pq?ℓ−−−→ ⟨ ∆, pq :: w⃗ ; p :: L ⟩

[L-new] ⟨ ∆ ; p :: ν(qi : Li) · · · (qj : Lj) ⟩ pqi ν Li−−−−−→ ⟨ ∆ ; qi :: Li, p :: ν(qi+1 : Li+1) · · · (qj : Lj) ⟩

[L-cong] specifies a step by a participant in the configuration. [L-recur] unfolds recursion,
and [L-choice] selects one branch of a choice by performing a step into one of the continuations.
In [L-choice], only one action can take place in one branch, because the labels of all branches
must be distinct for the choice to be directed. [L-send] executes a send prefix by enqueuing
the label and the payload type into the channel of the receiver, [L-recv] executes a receive
prefix by dequeuing the label and payload type from the corresponding channel, [L-new]
creates a new participant by composing its associated local type in parallel with the remainder
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of the local type environment, [L-nest] performs a step into a nested local type. We allow
the renaming of participants introduced by [L-new] to avoid participant name clashes. For
simplicity, we assume that ∆ always contains a (possibly empty) sequence of payloads for
every pair of roles. For example, if pq is not in ∆, we allow to match ∆ with ∆, pq :: ϵ.

We prove the correctness of DMst: (1) the global type semantics coincides with behaviours
of local endpoints, a well-formed global type is (2) deadlock-free and (3) live. (1) together with
(2) and (3) imply that the programs generated from local types projected from well-formed
global types are deadlock-free and live.

We define the projection of G as JGK = ⟨ [] ; p :: G ↾ p, . . . , q :: G ↾ q ⟩, for all p, . . . , q ∈
pt(G). A configuration is a subtype of another if it contains the same participants and their
local types are related under the standard subtyping relation [60], i.e., ⟨ ∆ ; Θ ⟩ ⩽ ⟨ ∆ ; Θ′ ⟩
implies that Θ(p) ⩽ Θ′(p) for all p.

▶ Theorem 20 (Trace Equivalence). If ⟨ ∆ ; Θ ⟩ ⩽ JGK, then Γ ⊢ G
α∗−−→ G′ if and only if

there exists ⟨ ∆′ ; Θ′ ⟩ such that ⟨ ∆ ; Θ ⟩ α∗−−→ ⟨ ∆′ ; Θ′ ⟩ and ⟨ ∆′ ; Θ′ ⟩ ⩽ JG′K.

Proof. The full proof uses the extended projection, that produces both local types and the
queue contents implicit in the intermediate forms. The core part of the proof is completed by
induction on the derivations for the global and local type LTS, using the fact that if G ≡ G′,
then G ↾ r ≡ G′ ↾ r. ◀

A configuration ⟨ ∆ ; Θ ⟩ is final if for all pq ∈ dom(∆), ∆(pq) = ε, and for all
p ∈ dom(Θ), Θ(pq) = end. The configuration is in a deadlock if it cannot make progress
and it is not final, i.e. the protocol has not ended, and all participants are stuck.

▶ Definition 21 (Deadlock). ⟨ ∆ ; Θ ⟩ is a deadlock configuration if there exists a sequence
of actions α∗ such that ⟨ ∆ ; Θ ⟩ α∗−−→ ⟨ ∆′ ; Θ′ ⟩, with ⟨ ∆′ ; Θ′ ⟩ not final and for all action
α, ⟨ ∆′ ; Θ′ ⟩ ̸α−→.

▶ Example 22 (Deadlock Configuration). A deadlock configuration is one in which the whole
system can get stuck and cannot progress. A usual example of this is a configuration where
all participants need to receive, but their messages have not been sent. We show below such
configuration, where after one action, it reaches a receive cycle:

⟨ [ ] ; p :: q ! l[U ]. q?l[U ]. L1, q :: r?l[U ]. L2, r :: p?l[U ]. L3 ⟩ pq ! l−−→
⟨ [qp :: l[U ]] ; p :: q?l[U ]. L1 , q :: r?l[U ]. L2, r :: p?l[U ]. L3 ⟩ ̸α−→

▶ Theorem 23 (Deadlock-Freedom). If ⟨ ∆ ; Θ ⟩ ⩽ JGK, then ⟨ ∆ ; Θ ⟩ is deadlock-free.

Proof. We show that either G is ended, or there is a step available for G, and use trace
equivalence to conclude this for ⟨ ∆ ; Θ ⟩ ⩽ JGK. ◀

Theorem 23 refers exclusively to the absence of global deadlocks, i.e. the whole system
will never get stuck. But DMst also guarantees the absence of local deadlocks, i.e. that
no participant in the system gets stuck. An example of such partial deadlocks is the usual
receive-cycle, where a subset of participants are waiting forever, and can never make progress.
DMst guarantees that this situation cannot happen. To prove this, we first show that DMst
guarantees orphan message freedom [10], which means that all messages are eventually
consumed without a type mismatch.

▶ Definition 24 (Orphan Message). ⟨ ∆ ; Θ ⟩ has an orphan message if there exists
w ∈ ∆(pq) but there exists no transition such that consumes it, i.e. there is no transition
⟨ ∆ ; Θ ⟩ α∗−−→⟨ ∆′ ; Θ′ ⟩ with pq?|w| ∈ α∗.
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▶ Example 25 (Orphan Message). Orphan messages can occur whenever a send prefix is not
coupled with the corresponding receive, thus leaving a message hanging in the corresponding
buffer. For example, the following situation contains an orphan message:

⟨ [ ] ; p :: q ! l[U ]. q?l[U ]. end, q :: p ! l[U ]. end ⟩ pq ! l−−→
⟨ [qp :: l[U ]] ; p :: q?l[U ]. end, q :: p ! l[U ]. end ⟩ qp ! l·pq?l−−−−−→ ⟨ [qp :: l[U ]] ; p :: end, q :: end ⟩

At the end of the execution, the configuration contains a non-empty buffer: qp :: l[U ].
Another example of orphan messages is one in which the reduction gets stuck because of

receiving a message of the wrong type or label, i.e. there is a reception error.

⟨ [ ] ; p :: q ! l[int]. end, q :: p?l[bool]. end ⟩ pq ! l−−→
⟨ [qp :: l[int]] ; p :: end, q :: p?l[bool]. end ⟩ ̸α−→

In this case, reduction cannot continue, and the message qp :: l[int] cannot be consumed,
because q is expecting payload type bool.

Proving that DMst guarantees the absence of orphan messages relies on the absence of blocked
local types. A blocked local type is a local type that contains a nested session that cannot ter-
minate, followed by a non-empty continuation. For example, if L = ▷[µt.q2 ! l′[U ′]. t]. p?l[U ],
then L is blocked, because it will enter the nested protocol (with local type µt.q2 ! l′[U ′]. t),
but it will never be able to continue executing p?l[U ].

▶ Definition 26 (Blocked Participant). A blocked local type is one that contains a continuation
of the form ▷[L1]. L2, where: (a) L1 is blocked, or (b) L2 ̸= end and end is not reachable
from L1.

▶ Definition 27 (Liveness). We say that ⟨ ∆ ; Θ ⟩ is live, if no participant is stuck. A
participant p is stuck in a configuration whenever it cannot progress, i.e. if Θ(p) = L with
L ̸= end, but there is no trace ⟨ ∆ ; Θ ⟩ α∗−−→ ⟨ ∆′ ; Θ′ ⟩ with p = subj(α) and α ∈ α∗.

▶ Example 28 (Stuck Participant). The following configuration is not live, because even if p
and q can continue interacting, r and s are stuck in a local receive cycle:

⟨ [] ; p :: µt.q ! l[U ]. t, q :: µt.p?l[U ]. t, r :: s?l[U ]. L3, s :: r?l[U ]. L4 ⟩ pq ! lqp?l−−−−−→
⟨ [] ; p :: µt.q ! l[U ]. t, q :: µt.p?l[U ]. t, r :: s?l[U ]. L3, s :: r?l[U ]. L4 ⟩ α∗−−→ . . .

No possible trace can contain rs?l or sr?l. Participants r and s are stuck. Note that, from
Definition 19, only receive prefixes can get stuck, since send prefixes will always succeed.

▶ Theorem 29 (Orphan Message Freedom and Liveness).
Suppose ⟨ ∆ ; Θ ⟩ ⩽ JGK, such that Θ contains no blocked participants. Then ⟨ ∆ ; Θ ⟩ is
free of orphan messages and live.

Proof. Liveness is a straightforward consequence of orphan message freedom. The prefix
of a local type can have two kinds of actions: outputs (sending data or invitations), or
inputs (receiving data, or accepting invitations). Every input is coupled with an output by
another participant (see Definition 13). Hence outputs can always be performed, in any
state. To prove that inputs can always be consumed, we use trace equivalence. We show
that any pending message can be received, since a step can only happen in a continuation
if its subject is not in any of the previous prefixes, and it is always possible to end nested
protocols, because they cannot be blocked. ◀

▶ Proposition 30. As a consequence of Theorems 23, 29 and 20, the global types of Example 10
are live and deadlock-free.
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4 GoScr Code Generation

This section describes the GoScr toolchain. GoScr is an extension of nuScr [48], which is a new
implementation of Scribble in OCaml. nuScr is designed with modularity and extensibility in
mind, so that extensions of the core MPST theory [60] can be easily integrated.

GoScr Global Protocols. The syntax of GoScr global protocols is given in Definition 31.

▶ Definition 31 (GoScr syntax).

P ::= global protocol x(role p1, . . . , role pn; new role q1, . . . , role qm) {P ∗ G}
g ::= m[U ] from p to q | p calls x(p1, . . . , pn)
G ::= choice at p {G1} or . . . or{Gn} | g; G | rec t {G} | continue t | end

| continue t with{g1; . . . gn; p calls x(p1, . . . , pn)} | do x(p1, . . . , pn); G

A GoScr module is a sequence of one or more global protocols. The last protocol definition is
the entry point. The constructs of GoScr were chosen to mirror those defined in Definition 1:
global protocol are protocol definitions (x = λ⟨p⃗; νq⃗⟩.G. . .; global protocol can be used for
protocol declarations with no new participants; choice at p defines directed choices from p
to the receiver of the first interaction in the Gi; do is a protocol call to a global protocol; and
the rest of the constructs correspond to those of DMst. Protocol definitions in GoScr can
start by defining other nested protocols, but this is simply a syntactic convenience, since we
require every role in a nested protocol to be bound by the protocol signature.

Steps for Code Generation. The steps of code generation in GoScr are: (1) lifting all nested
protocol definitions to the top-level; (2) obtaining the projections of all roles in all protocol
definitions; (3) preprocessing local types to deal with instances of ♦ (or continue . . . with . . .

in GoScr); and, (4) translating the local types to Go functions, where communication is
implemented using Go channels, interleaved with callbacks that will be used to implement
the program logic.

Step (1) is straightforward. Step (2) is an implementation of Definition 13. Step (3)
requires applying local type equivalences to unfold any updatable recursion. Step (4) traverses
the local types, and generates on demand the necessary channels and callback interfaces.
The type of the Go channels is an interface that represents the allowed payload types. Then,
for each labelled message exchange: (1) we add a new type declaration for the label and
payload type that implements the interface of allowed messages; (2) we search for a channel
for the required endpoints, creating it if necessary; (3) we create the necessary callbacks
before or after the interaction. The channels can be created either synchronous, or buffered
with a user-specified size. Choosing synchronous channels is safe, since the traces accepted
by using synchronous semantics is a subset of those accepted by our asynchronous semantics,
which implies that the same safety properties will hold.

Go Code Generation. The Go code for each role and protocol is generated in protocol/.
Communication is implemented using regular Go send/receive statements. There is no need to
explicitly send message labels, since labels are encoded as type declarations. Protocol choices
are encoded as type switches, either on the value returned from a previous callback (internal
choices), or on the received value (external choices). We only generate implementations for
branching choices that start with an explicit interaction.
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keywordstylekeywordstyle keywordstyle1 func BFib_F2(ctx Ctx_BFib_F2, wg *sync.WaitGroup, ch_F2_F3, ch_F3_F2 chan MsgBFib) {
keywordstylekeywordstyle keywordstyle2 x := ctx.Send_F3_BFib_Fib2() // Callback to generate payload
keywordstylekeywordstyle keywordstyle3 ch_F3_F2 <- x // Send payload to F3
keywordstylekeywordstyle keywordstyle4 x_1 := <- ch_F2_F3 // External choice by from F3
keywordstylekeywordstyle keywordstyle5 switch v := x_1.(type) {
keywordstylekeywordstyle keywordstyle6 case End: // F3 chooses to finish the protocol
keywordstylekeywordstyle keywordstyle7 ctx.Recv_F3_BFib_End(v) // Callback for processing label End
keywordstylekeywordstyle keywordstyle8 ctx.End()
keywordstylekeywordstyle keywordstyle9 return
keywordstylekeywordstyle keywordstyle10 case Call_F1_BFib: // F3 sends the channel for acting as F1 in BFib
keywordstylekeywordstyle keywordstyle11 ctx_1 := ctx.Init_F1_BFib_Ctx() // Initialise context for F1 in BFib
keywordstylekeywordstyle keywordstyle12 BFib_F1(ctx_1,wg,v) // Run code for F1 in BFib with channel [v]
keywordstylekeywordstyle keywordstyle13 ctx.End_F1_BFib_Ctx(ctx_1) // Close context for F1 in BFib
keywordstylekeywordstyle keywordstyle14 ctx.End()
keywordstylekeywordstyle keywordstyle15 return
keywordstylekeywordstyle keywordstyle16 } }

Figure 5 Implementation of role F2 in protocol BFib.

Calling a nested protocol is implemented as regular Go function calls. rec constructs
are generated as labelled for loops, where the body of the recursion is used to generate
the body of the for loop, and recursive variables are translated as continue to the label of
the corresponding variable. It is also possible to represent recursion using protocol calls.
However, protocol calls would need to create the necessary channels and send them to any
participant in the protocol, thus being less efficient than using rec and for.

4.1 Linearity and CFSM Code Generation
Program logic is defined through callbacks, similar to [42, 62], to avoid the linearity problem
of previous Communicating Finite State Machine approaches (e.g. [3]). In a CFSM approach,
code generation from a local protocol produces a series of interfaces that encode the protocol
states. Each protocol state exposes only the permitted actions (e.g. send/receive), and
returns the next state in the protocol. Programmers must use such states to implement their
program logic. The linearity problem arises from the fact that nothing prevents programmers
from mistakenly using the same protocol state again. For example, suppose that st0, st1, . . . ,
are protocol states that expose different send/recv actions. A programmer might (mistakenly)
save state st1 and perform its action twice in the implementation. In the Go code snippet
below, st1 is used both in Line 2 and Line 4, violating linearity:
keywordstylekeywordstyle keywordstyle1 st1 := st0.send_Msg_to_p(x)
keywordstylekeywordstyle keywordstyle2 st2 := st1.recv_Lbl_from_p(&z)
keywordstylekeywordstyle keywordstyle3 ...
keywordstylekeywordstyle keywordstyle4 stn := st1.recv_Lbl_from_p(&buffer) /* linearity error at st1 */

If participant p does not send any other message, then this implementation will deadlock. If
p does send another message, this might cause a run-time error. A callback-based approach
solves this problem by construction, since channels are not exposed to programmers [42, 62].

4.2 Example of Generated Go Code
Consider the following GoScr global type:

keywordstylekeywordstyle keywordstyle1 global protocol BFib(role Res, role F1, role F2; new role F3) {
keywordstylekeywordstyle keywordstyle2 Fib1(v:int) from F1 to F3; Fib2(v:int) from F2 to F3;
keywordstylekeywordstyle keywordstyle3 choice at F3 {
keywordstylekeywordstyle keywordstyle4 F3 calls BFib(Res, F2, F3);
keywordstylekeywordstyle keywordstyle5 } or {
keywordstylekeywordstyle keywordstyle6 Result(fib:int) from F3 to Res; End() from F3 to F2; }}
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This is a bounded version of Example 4, that computes the Fibonacci sequence up to an
upper bound. F1 and F2 send their respective n − 2 and n − 1 Fibonacci numbers to F3. Then,
F3 computes the n-th number, and makes a choice: compute the n + 1 number, or end the
protocol. If F3 decides to continue, then a recursive call to BFib happens. Otherwise, it sends
the result to Res, and notifies F2 that the protocol is ending. F3 needs to notify F2, because
depending on F3’s decision, F2 may needs to forward its n − 1 number.

Figure 5 shows the code for F2 in BFib. The parameters of BFib_F2 are: ctx is the local
state for F2; wg is used to ensure that the main thread does not resume execution until all
participants have finished executing; ch_A_B is the channel for communicating from B to A.
The first interaction of F2 is a message to F3. The payload for this message is generated
in Line 2, it is sent in Line 3. Then, F3 makes a choice: either it sends the result back to
Res and sends End to F2 to communicate the end of the protocol, or it calls BFib recursively.
F2 performs a type switch to check which branch it needs to take (Line 4). If the label it
receives is End (Line 6), then F2 processes this label and ends the protocol. Otherwise, F2

receives an invitation as F1 in BFib (Line 10); then F2 initialises a new context for F1 using
the callback on Line 11; it calls BFib_F1 with this new context, the waitgroup, and the received
channel (Line 12); F2 performs cleanup on the context for F1, gathering any necessary results
from the call (Line 13); and, finally F2 finishes.

Finally, GoScr generates the main protocol entrypoint, which creates the goroutines for
F1, F2 and F3, all the needed channels, and waits for the completion of the protocol.

Usability and GoScr Front-end. The tool requires the user to instantiate a large number
of callbacks and interfaces to allow running a protocol. Since the GoScr methodology is
top-down, the user must start by specifying a protocol. Therefore we expect an end-user to
be aware of the callbacks and contexts that need to be instantiated. However, many of such
instantiations are tedious, but straightforward, and can be automated in future work. We
discuss this improvement in Section 7.

Deadlock Freedom and Liveness. Since the generated code follows the behaviour of the
local types, it will satisfy both deadlock freedom and liveness (Theorems 23 and 29).
Although the generated code satisfies these properties, whether the final code that is run
also satisfies them depends on three requirements on the callbacks. These requirements are
not checked by GoScr, and must be guaranteed by GoScr users. The three requirements
that the callbacks must satisfy are: (1) callbacks must not have side-effects that interfere
with other participants (e.g. using channels to add communication that is not accounted
for in the protocol) (2) callbacks must be terminating, otherwise a participant may block
before a necessary interaction, in a non-terminating callback; and, (3) callbacks must ensure
that nested protocol calls that are not in tail position are terminating. Requirement (1) is
to guarantee that programmers do not use local synchronisation mechanisms that are not
accounted for in the protocol, and can cause blocking. Requirement (3) is to guarantee
that any interaction after a nested protocol call is eventually performed. GoScr checks that
local types are not blocked (Definition 26), so the code for nested calls that are not in tail
position will always contain a path that ends the protocol. However, whether the actual
code is terminating depends on the callback implementation that the users need to provide
satisfying Requirement (3). Provided that these requirements are met, and assuming a
fair scheduler, GoScr implementations will be deadlock free and live by construction. These
requirements are not unique to our implementation. Similar requirements must be satisfied
in other MPST code generation approaches.
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Figure 6 Execution time comparison (tbase / tGoScr), CLBG and Quicksort.

5 Evaluation

We evaluate three aspects of GoScr: (1) the runtime overhead of the GoScr backend (§ 5.1);
(2) the increased expressiveness with respect to related approaches (§ 5.3); and (3) the
applicability of GoScr for building realistic protocols, by implementing dynamic task del-
egation, a Domain Name System, and a parallel Min-Max strategy. We show that for
computation-intensive protocols, the runtime overhead of GoScr is negligible.

5.1 Runtime Overhead of GoScr

We use an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz processor with 4 physical cores, 16GB
RAM, running Ubuntu 16.04.7 and Go version go1.15.11. We use Golang’s time package to
measure execution times. There are two main sources of run-time overheads: (1) callbacks;
and (2) type switches and assertions. Our approach is to compare GoScr implementations
against baseline Go code. Baselines are taken from benchmarking repositories, and follow
similar communication patterns to the GoScr implementations. The measured time includes
session initialisation. We execute each benchmark for a minimum of 20 iterations and a
minimum of 20 seconds. The standard deviation for computationally expensive benchmarks
is less than 5%. Only the standard deviation of fibonacci and prime sieve with small inputs
(< 10th term, bound < 2000) remain high, at 70%. This is because these benchmarks with
very short execution times (in the order of nanoseconds) are highly dependent on the system
(e.g. channel creation, goroutine scheduling, etc). Our benchmarks are mainly taken from
the Computer Language Benchmarks Game [17], and we include a parallel Quicksort that
showcases the handling unbalanced workloads. Figure 6 shows the execution time of the Go
baseline relative to GoScr: tbase / tGoScr (below y = 1 is a slowdown, above is a speedup).
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keywordstylekeywordstyle keywordstyle1 global protocol DynTaskGen(role S;
keywordstylekeywordstyle keywordstyle2 new role W) {
keywordstylekeywordstyle keywordstyle3 choice at S {
keywordstylekeywordstyle keywordstyle4 Req(req: string) from S to W;
keywordstylekeywordstyle keywordstyle5 S calls DynTaskGen(S);
keywordstylekeywordstyle keywordstyle6 choice at W {
keywordstylekeywordstyle keywordstyle7 Resp(resp: string) from W to S;
keywordstylekeywordstyle keywordstyle8 } or {
keywordstylekeywordstyle keywordstyle9 Error(err: string) from W to S; }
keywordstylekeywordstyle keywordstyle10 } or {
keywordstylekeywordstyle keywordstyle11 LastReq(req: string) from S to W;
keywordstylekeywordstyle keywordstyle12 choice at W {
keywordstylekeywordstyle keywordstyle13 Resp(resp: string) from W to S;
keywordstylekeywordstyle keywordstyle14 } or {
keywordstylekeywordstyle keywordstyle15 Error(err: string) from W to S;
keywordstylekeywordstyle keywordstyle16 }}}

keywordstylekeywordstyle keywordstyle11 global protocol ClientServer(role C,
keywordstylekeywordstyle keywordstyle12 role S) {
keywordstylekeywordstyle keywordstyle13 rec REPEAT {
keywordstylekeywordstyle keywordstyle14 Req(req: string) from C to S;
keywordstylekeywordstyle keywordstyle15 S calls DynTaskGen(S);
keywordstylekeywordstyle keywordstyle16 choice at S {
keywordstylekeywordstyle keywordstyle17 Resp(resp: string) from S to C;
keywordstylekeywordstyle keywordstyle18 continue REPEAT;
keywordstylekeywordstyle keywordstyle19 } or {
keywordstylekeywordstyle keywordstyle20 Error(err: string) from S to C;
keywordstylekeywordstyle keywordstyle21 continue REPEAT;
keywordstylekeywordstyle keywordstyle22 }}}

Figure 7 GoScr protocol for Dynamic Task Generation.

Computer Language Benchmarks Game (CLBG). CLBG [17] is a repository of programs
used to compare the performance of different languages. We use four concurrent Go programs:
(1)fannkuch counts the maximum number of flips for a permutation of length n; (2)regex
matches regex patterns in a DNA string; (3)spect (spectral-norm) calculates the greatest
eigenvalue of a matrix; and (4)k-nuc (k-nucleotide) counts the occurrences of a molecule
sequence in a DNA string. We selected these benchmarks out of [17] because they parallelise
the work using goroutines and channels, following a similar scatter/gather approach that
depends on runtime values, and they could not be accurately captured by previous MPST
approaches. We use the CLBG implementations [17] as the Go baseline implementations,
and we extracted the communication structure of the baseline implementations as GoScr
protocols. A single execution for each of these protocols takes between 1 millisecond–10
seconds depending on the input size. Smaller input sizes imply smaller local computation
times, and therefore, the overhead introduced by GoScr will be more significant. We can
observe a slowdown of up to 50%, in fannkuch, for executions in the order of magnitude
of milliseconds. However, as the workload increases, the difference in the execution time
shrinks to the point of becoming negligible, as we can observe in Figure 6. The regex
baseline has a high standard deviation, which explains the small peak for the first result
of regex, since when the execution time is in the order of hundreds of microseconds, the
non-deterministic scheduling of the goroutines can significantly affect the results. spect
seems to show that for large enough values, the GoScr implementation performs better than
its naively implemented counterpart. However, the real difference in the execution time is
negligible, and it is explained by differences in the program structure, e.g. the baseline uses
a single shared channel, whereas GoScr generates different channels for every new goroutine.

Microbenchmarks. Bounded fibonacci (fibonacci) shows, as expected, that the overhead
of performing type switches and callbacks is relatively high when compared with a simple
addition. The baseline runs in in 40% of the execution time of GoScr. Bounded prime sieve
(prime) shows that, when the computation complexity increases slightly (modulus operation
on a stream of values), then the GoScr version performs in about 80% the execution time of
the baseline. In both cases, when we add more participants and interactions to the protocol
(larger values on the x-axis) the overhead remains constant, and does not increase.
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Unbalanced Workload. In Parallel QuickSort (qsort), workers either partition the array
and spawn two new workers, or apply a sequential Quicksort, depending on a threshold size
(T). The execution times are similar to the CLBG benchmarks (50 microseconds–2 seconds).
We observe a negligible difference in the execution time for different threshold sizes, and a
spike for small arrays due to the high standard deviation for array sizes under the threshold.
GoScr execution times are in the range of 1.05 and 0.95 times the baseline.

5.2 Use Cases
We demonstrate the expressiveness of GoScr using three applications, all of which require
dynamic participants, and could not be expressed by previous work [3, 37].
(a) Dynamic Task Generation: We present a correct implementation of the program in

Figure 1 using GoScr. It is a master-worker pattern with dynamic participants.
(b) Domain Name System (DNS) protocol: We demonstrate how GoScr can be used to

specify one of the core Internet protocols, modelling as dynamic participants the different
DNS servers which may need to be contacted in order to resolve a host’s IP address.

(c) Noughts and Crosses with Min-Max [49]: We implement a Min-Max strategy for
the well-known two-player game of Noughts and Crosses to demonstrate the suitability
of DMst to model a parallel Divide and Conquer paradigm.

Dynamic Task Generation. The aim of this program is to generate the first n square
numbers by delegating the calculation of each square number to a different worker goroutine.
The program uses a common computation in Go, the master-worker pattern, where goroutines
dynamically divide and delegate part of their tasks to other goroutines, aggregating their
partial results to produce the complete result. We highlighted in § 1 (Figure 1) how even in
such a simple example, incorrect management of channels can lead to orphan messages and
deadlocks. Figure 7 shows a GoScr protocol specification whose behaviour is a safe version
of the program in Figure 1. Notice how the behaviour of the select statement in Figure 1
is represented as a choice. In Figure 7, the ClientServer protocol models the behaviour of
the main loop of the program, where two roles, a client and a server, repeatedly exchange
requests (Line 14) and responses (Line 17). The server may also communicate an error in the
computation of the request to the client (Line 20). We model the master-worker pattern as
a call to protocol DynTaskGen (Line 15). Every call to the protocol introduces a new worker
(W), and the master (S) will delegate a task to each new worker (Lines 4,11). If there are
are more tasks to assign, it will assign those tasks to new workers through recursive calls to
DynTaskGen (Line 5). Once it has assigned the final task (Line 11), it will traverse the protocol
stack, aggregating the results from the different workers in reverse order (Lines 7,13). While
computing their subtask, the workers may encounter an error which they will communicate
back to the server (Lines 9, 15). As opposed to the original program in Figure 1, the server
will continue aggregating all the results from the workers even after encountering an error in
order to ensure that there are no orphan messages.

5.3 Expressiveness
We compare the expressiveness of GoScr against the parameterised Scribble [3] and the
static analysis framework of Go [37]. For a reference purpose, we also list comparisons with
theory-only work in [7, 9] (i.e., they are not implemented). See § 6 for more detailed
comparison with [7, 9]. In Table 1, we present the protocols that we implemented and
whether or how closely other approaches [37, 3] can represent them. All our DMst-based
implementations introduce dynamic, possibly unbounded participants. All representable
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Table 1 Comparison of Expressiveness.

Protocol Dyn Unb Inv DMst [3] [37] [7] [9]
1. Dynamic Ring   ✓ ✗ ✗ ✓ ✗
2. Dynamic Pipeline   ✓ ✗ ✗ ✓ ✗
3. Dynamic Recursive Pipeline   ✓ ✗ ✗ ✗ ✗
4. Dynamic Recursive Tree   ✓ ✗ ✗ ✗ ✗
5. Dynamic Recursive Task Gen.   ✓ ✗ ✗ ✗ ✗
6. Dynamic Fork-Join  ✓ ✗ ✗ ✓ ✗
7. Recursive Fork-Join  ✓ ✗ ✗ ✓ ✗
8. Bounded Fibonacci [3] # # ✓ △ △ ✓ ✗
9. Unbounded Fibonacci   ✓ ✗ ✗ ✓ ✗

10. Fannkuch-Redux [17] # # ✓ △ △ ✓ ✓
11. Spectral-Norm [17] # ✓ △ △ ✓ ✓
12. Regex-Redux [17] # ✓ ✓ ✓ ✓ ✓
13. K-Nucleotide [17] # ✓ ✓ ✓ ✓ ✓
14. Bounded Prime Sieve  ✓ ✗ ✗ ✓ ✗
15. Dynamic Task Generation   ✓ ✗ ✗ ✓ ✗
16. Domain Name System [28]   ✓ ✗ ✗ ✓ ✗
17. Noughts and Crosses [42, 49]   ✓ ✗ ✗ ✓ ✗

Dyn: Dynamic participants; Unb: Unbounded participants; Inv: Choice through invitations

protocols (✓) by DMst in Table 1 are deadlock-free and live. For protocols which can be
modified and re-implemented with [37] or [3], we use #. Protocol 3 cannot be captured by
any of the previous work, since it requires the dynamic introduction of participants to a
recursive protocol. [3, 37] could only precisely model Protocols 12 and 13, as they create
all the participants at the start. In Protocols 8, 10 and 11, the goroutines are spawned
and assigned tasks dynamically, but [3, 37] can model them by initialising all goroutines
at the start. We write △ to represent such changes to protocol structure. Three use cases
(Protocols 13–15) discussed in § 5.2, could not be expressed by [3, 37]. In summary, DMst is
more expressive than [3, 37], and capture more closely the typical Go programming style.

6 Related Work

There are a vast amount of studies of session types [27, 15, 1]. Due to the space limitations,
we only compare with the most closely related work on multiparty session types (MPST).

Binary Session Types. While Scalas et al. [50] prove that the MPST processes can be
mimicked by linearly typed processes with a continuation-passing style translation, in general,
it is not possible to guarantee deadlock-freedom for more than two interleaved binary session
processes unless one uses additional sophisticated means such as a global causal analysis on
channels (e.g. [12, 4, 5]), graph-connectivity analysis with extensions on fork primitives [29],
and event-driven constructs [57, 24, 34]. GV, a linear functional language with binary session
types, can guarantee deadlock freedom by relying on linear typing [58]. However, linear typing
prevents cyclic topologies that change dynamically, since this would require a participant
to drop their communication channels when new participants join, as in Example 7. There
are further substantial differences with our approach. First, GV is an end-point calculus,
whereas DMst’s global types are global specifications, from which we can extract endpoint Go
code (GoScr). Secondly, while both GV and DMst support similar programming patterns (e.g.
pipeline and tree-like topologies, and channel passing), there are two major differences. Both
GV and GoScr support sending effectful functions over channels (e.g. using chan func() type in
Go, and passing a generated protocol implementation), GV’s type system would guarantee
deadlock-freedom, but in Go, it would depend on how the function is used (requirements 1-3
in Section 4).
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Code Generation and Multiparty Session Types. We follow the standard MPST top-
down specification-guided methodology to guarantee safety and liveness properties
by construction using code generation, extending an extensible toolchain, nuScr [48].
Safety by construction via code generation is a common approach in MPST. Scribble is a
language/tool [51, 48] used for generating APIs for safely implementing distributed systems
written in the end-point programming language that are guaranteed to conform to a protocol,
and are therefore deadlock-free [25]. This approach has been applied to several languages,
e.g. Scala [50, 57], Java [33], F# [43], Go [3], TypeScript [42], F⋆ [62] and Rust [35, 6]. A
later extension of [25] proposed explicit connection actions as part of the Scribble protocol
[26], which is also recently applied to domain-specific language in [19]. This construction
specifies the point in the protocol where the different participants join, but the role of these
participants must be statically known. Hence it does not allow the unbounded participants
to change the protocol topology, as DMst does. Parameterised multiparty session types
extend MPST with a parametric number of participants [11]. One example is the work by
Castro-Perez et al. [3], discussed it in § 1. Pabble [46, 45] is another parameterised extension
of Scribble used for generating safe by construction C+MPI code. Zhou et al. [62] formalised
and implemented an extension of MPST with refinement types, which can specify constraints
in the messages. Their backend targets F⋆, and follows a similar callback approach to the one
in this paper. Miu et al. [42] define an extension of MPST for web programming in TypeScript
that uses the callback approach. Unlike DMst, the participants in all these approaches are
fixed from the start of the protocol. Viering et al. [57] present a theory and implementation
of MPST aimed at programming correct fault-tolerant distributed systems that supports
the dynamic replacement of participants in a protocol. In their work, the replacement of
participants must happen within some known roles, and their global types do not allow to
extend the current protocol interactions with those of new participants. Viering et al. [57]
use event handlers in their code generation, which allows safe session interleaving. Instead,
we use an operator to combine global types in a way that does not introduce deadlocks.
All previous work, unlike DMst, does not support dynamically growing protocols with an
unbounded number of participants such as Example 6. Jacobs et al. [30] extend GV, a binary
session typed calculus with multiparty session types. The calculus allows the introduction of
new participants, but the protocols themselves are restricted to a fixed set of participants.
Their use of linearity prevents the definition of recursive dynamic topologies, unlike DMst.

Dynamic Multiparty Session Types. Dynamic multirole session types (MRST) enable a
set of participants which belong to the same group (i.e. role) to join a multiparty session
type [9]. The major limitations are: (a) all the roles are fixed at the start (b) participants
can only join at specific points in the protocol: (1) at the beginning of each iteration of a
recursive protocol; or (2) at particular points marked with explicit barriers and locks. We
list a number of protocols that cannot be represented using MRST in Table 1. In contrast,
DMst allows any arbitrary role to join at any nested session call. A nested session call is
a form of delegation, which is not supported by MRST. Therefore, a protocol such as a
dynamically growing pipeline (e.g. Fibonacci in Example 4) cannot be represented by [9]
either, since it would require participants to evolve their behaviour through channel passing.
Nested multiparty session types [7] allow multiparty protocols with unbounded, dynamic
participants. However, [7] cannot represent recursive protocols that are updated with new
dynamic participants. Hence the main example of this paper, Example 6, is not representable
in [7]. Moreover, nested multiparty session types cannot prove liveness (our Theorem 29),
except for non-recursive protocols. Arbitrary session interleaving in [7] can introduce orphan
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messages. DMst has proven deadlock-freedom and liveness clearly identifying the conditions
(Definition 26). This limitation is stated in [7, Proposition 3], i.e. a protocol that violates
liveness will be accepted in [7], but not in DMst. Additionally, the theory of DMst has a
number of differences that make it better suited for implementing than nested MPST: (a)
DMst’s choices are more flexible than those in nested MPST, since DMst can also depend on
protocol calls; (b) the semantics of nested MPST is synchronous, while DMst is asynchronous;
(c) nested MPST does not prove trace equivalence between global types and local type
configurations; (d) The syntax of DMst’s global types are simpler than those in nested MPST,
but more expressive – this is because in nested MPST, protocol definitions are part of the
global type syntax, which requires the use of a kinding relation for checking well-formedness.
Nested MPST protocols do not allow the occurrence of free roles, and are therefore equivalent
to DMst’s global types with just top-level protocol definitions, which avoids the kinding
relation for checking well-formedness. Due to our simpler but more expressive treatment,
DMst is more suitable for real language implementations.

Verification of Go Programs. Our work aims at providing correctness by construction. The
comparison with the previous code generation approach in Go [3] can be found in (C) in § 1
and Expressiveness in § 5.3. All of the previous work is limited to bounded participants.
The following are several recent lines of work on a posteriori verification of message passing
in existing Go programs. All of them use whole-program techniques, and support only the
built-in Go channel primitives (i.e., intra-process messaging); none of them, however, support
a dynamic, unbounded number of participants. Gobra is an automated tool for the modular
verification of Go programs, based on separation logic [59]. Gobra is aimed at the functional
verification of Go programs, whereas our approach focuses on communication safety. GoScr
is fully automated, and aimed at building live and deadlock-free communicating systems by
construction. In contrast, Gobra is aimed at the verification of annotated Go code, and it
requires a high amount of invariant annotations.

Ng and Yoshida [47] extract graph-based protocol specifications [38] from Go programs
that are checked for deadlock-freedom; Stadtmüller et al. [53] extract regex-based protocol
specifications [55], checked for deadlock-freedom. Both approaches work only for programs
restricted to synchronous Go channels; the former also requires all goroutines to be spawned
before any communication among them occurs, and the latter has limited support for branch-
ing behaviours. Lange et al. [36, 37] (already compared in (B) in § 1 and Expressiveness
in § 5.3) statically infer channel communication patterns from Go programs as behavioural
types, that are checked for liveness properties. This was recently extended to analyse shared
memory concurrency [14]. Like previous work, their tool is also limited to verify finite
controlled programs, it is best-effort only due to the imprecision of the inference, and the
verification times (and timeouts) preclude practical checking on the fly during programming.
Liu et al. [39] present a tool that detects blocking misuse-of-channel bugs in Go and produces
bug fixes for Go programs. Unlike DMst, Liu et al. [39] focuses only on practice, and does
not formalise nor guarantee communication safety, deadlock-freedom nor liveness. Moreover
their tool produces both false positive and false negative errors.

7 Conclusion and Future Work

GoScr is the first implementation of multiparty session types with dynamic, unbounded
participants, from which we generate Go code with unbounded participants that is, by
construction, deadlock-free and live. GoScr focuses on correctness (Theorems 20, 23 and
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29), and it is strictly more expressive than previous Go verification frameworks (see § 1,
Table 1, § 6). Furthermore, we observe that whenever the computation time is large with
respect to the communication time, the performance overhead becomes negligible. GoScr
is therefore suitable for implementing systems where correctness is prioritised, or systems
where the computation times dominate over communication. Currently, DMst does not allow
a participant to communicate with an unbounded number of participants during protocol
execution. This is a limitation of the Go code generation, which we plan to address in future
work. We are also considering extending our back-end to use event-handlers in the style
of Viering et al. [57], and allow the arbitrary parallel composition of global types instead
of our combination operator. We are also planning to extend the back-end to disparate
transports (e.g. using TCP instead of Go channels), thus allowing the implementation of
distributed systems. The main challenge of this is integrating delegation, as it is required
by protocol invitations, in these disparate transports. Finally, to simplify usability, we plan
to extend the protocol specification with annotations to guide code generation, so we can
automatically generate trivial callback/context instantiation. We plan to draw inspiration
for such annotations from choreographies, e.g [31].
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