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Abstract
Quantitative Type-Systems support fine-grained reasoning about term usage in our programming
languages. Hardware Design Languages are another style of language in which quantitative typing
would be beneficial. When wiring components together we must ensure that there are no unused
ports, dangling wires, or accidental fan-ins and fan-outs. Although many wire usage checks are
detectable using static analysis tools, such as Verilator, quantitative typing supports making these
extrinsic checks an intrinsic aspect of the type-system. With quantitative typing of bound terms, we
can provide design-time checks that all wires and ports have been used, and ensure that all wiring
decisions are explicitly made, and are neither implicit nor accidental.

We showcase the use of quantitative types in hardware design languages by detailing how we can
retrofit quantitative types onto SystemVerilog netlists, and the impact that such a quantitative type-
system has when creating designs. Netlists are gate-level descriptions of hardware that are produced
as the result of synthesis, and it is from these netlists that hardware is generated (fabless or fabbed).
First, we present a simple structural type-system for a featherweight version of SystemVerilog netlists
that demonstrates how we can type netlists using standard structural techniques, and what it means
for netlists to be type-safe but still lead to ill-wired designs. We then detail how to retrofit the
language with quantitative types, make the type-system sub-structural, and detail how our new
type-safety result ensures that wires and ports are used once.

Our ideas have been proven both practically and formally by realising our work in Idris2, through
which we can construct a verified language implementation that can type-check existing designs.
From this work we can look to promote quantitative typing back up the synthesis chain to a
more comprehensive hardware description language; and to help develop new and better hardware
description languages with quantitative typing.
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1 Introduction

Quantitative Type System (QTS) support fine-grained reasoning about term usage in our
programming languages, such that we can control precisely how many times a bounded
term can be used. We are even starting to see QTSs being introduced into general purpose
programming languages, for example: Linear Haskell [7], Idris2 [10], and Granule [33]. Issues
around term usage are, however, not limited to programming languages.
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Widely used Hardware Description Languages (HDLs) capture not only how hardware
designs behave but also how they are physically structured. SystemVerilog is a leading
industry standard HDL that supports the modelling, verification, and fabrication of hardware
designs [14, 23]. Within SystemVerilog a hardware design consists of a high-level structural
description of hardware in which modules represent physical units of design, are connected with
wires, and each module contains descriptions of the modules behaviour. These behavioural
descriptions describe how values are either initially placed on a wire, modified, or distributed
through other channels. From this behavioural description, the design is verified (tested) to
ensure that it behaves as intended. Verification happens using a mixture of static analysis
tooling (to externally analyse the design), and testbench creation (in the same language) that
is then simulated. Once the design has been verified, a synthesis tool converts the high-level
description into a gate-level netlist; depending on the complexity of the described design,
synthesis can take hours to complete. Netlists sit at the end of the synthesis process that
takes high-level hardware designs and generates a single description from which hardware is
then generated for fabrication or deployed in fabless environments. These netlist descriptions
are also written in SystemVerilog, and the low-level gates offered can differ per hardware
platform.

Term usage within HDLs is, unfortunately, different to that seen in general purpose
programming languages. Bounded terms represent, quite literally, a physical resource that
is to be used. Figure 1 presents several illustrative valid hardware designs as specified in
Verilog, a subset of SystemVerilog. Each module has an explicit header (also known as a
portgroup) that details the module’s interface with the outside world. Portgroups detail
the typed ports in the interface and the direction that signals can flow through each port.
Within modules, we can connect ports to logic gates (or other synthesisable terms), introduce
internal wiring, and make direct assignments between ports. Now let us focus on the wiring
in our illustrative examples: Figure 1a presents a valid repeated use of a wire; Figure 1b
presents a potentially invalid fan-in in which the two inputting wires are negated and wired
into the outputting port; Figure 1c presents bit-vector indexing that requires repeated term
usage; and Figure 1d presents use of an intermediate variable to reroute part of a bit-vector,
and that the bit-vector’s last port is not used. All these examples are structurally valid
designs yet the wiring decisions (if a wire is to be used or not, and how often it is to be used)
are not always explicit. Existing tools, such as Verilator1, support external static analyses of
hardware designs that includes reasoning about wire usage. Such static analyses can detect,
amongst other things, if wires are unused, and if outputting ports are driven by multiple
wires. If such wiring issues are not resolved they could physically damage the hardware and
produce ill-behaved hardware.

An issue arising from using external tooling is that their checks are external to the design
being captured, thus allowing a time-of-check time-of-use issue to exist between when a
design is checked and when a design is used. With the rising popularity of QTS we must ask
ourselves: Can quantitative reasoning about term usage also be applied to HDLs? With such
quantitative reasoning we can start to embed wire usage constraints directly into our HDL’s
type-system, such that our external checks (using external tools) now become an intrinsic
aspect of the language design itself. By using a more expressive quantitative type-system we
can ensure that any and all wiring decisions are explicit, and that ill-wired designs cannot be
expressed as they are ruled out by the type-system as ill-typed designs.

1 https://verilator.org/

https://verilator.org/
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module Example(output logic c,
input logic a);

nand(c, a, a);
endmodule;
(a) Repeated Wire Use.

module Example(output logic c,
input logic a,b);

wire logic temp;
assign temp = b;
assign temp = a;
not(c, temp);

endmodule;
(b) Fan-In.

module Example(output logic c,
input logic[1:0] ab);

and(c, ab[0], ab[1]);
endmodule;
(c) Bit-Vector Indexing.

module Example(output logic c,
input logic[2:0] ab);

wire logic temp;
temp = ab[0];
and(c, temp, ab[1]);

endmodule;
(d) Intermediate Wiring.

Figure 1 Example (System)Verilog.

1.1 Contributions
Existing efforts in developing calculi for verifying hardware designs in Verilog-like languages
have not sought to reason about quantitative wire usage [28, 31, 26]. Leaning on the idea of
featherweight languages [21, 36, 34, 24] we have explored a type-based approach to reasoning
about linear wire usage for netlists using Quantitative Type Theory (QTT ) [4]. By capturing
a valid subset of Verilog we can type existing designs to ensure that all wires are used
exactly once, and showcase our approach. Moreover, we now have a foundation for future
work that can investigate ways in which the calculi can be extended up the synthesis chain
formally (inline with the formal specification); and safely (such that known properties of the
specification still hold).

Specifically, our contributions are:
We provide a formal unrestricted type-system (Circuits) for Verilog netlists, and in-
troduce notions of type-(un)safety based on denotational semantics relating to graph
topology.
We provide a formal restricted type-system (CirQTS) that is resource-oriented, and
detail how it provides fine-grained resource tracking for wires and ports without the need
for user annotations. Using CirQTS we ensure that wire and ports can only be connected
to once and we detail how we can supply new Verilog primitives that support explicit
weakening of a wire’s linearity safely. This weakening enables modelling of existing valid
designs, and ensure wiring decisions are explicitly made.
We put theory into practice by building a mechanised verified implementation of Circuits
and CirQTS in Idris2 such that we can type-check existing valid Verilog netlists (modulo
implementation restrictions and technology mapping) to detect wire usage violations.
The implementation of Circuits and CirQTS has been made freely available online,
and can also be found in the accompanying supplementary material.

With Circuits and CirQTS we have developed a better understanding of how to:
fundamentally type wiring in Verilog; and produce a type-system that makes wiring safer.
Moreover, with CirQTS we have also begun to understand what impact linear wire usage
has on circuit design. Although we can reason linearly about wire usage, we have found that

ECOOP 2023
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sometimes linear usage is too restrictive and dependent on the intended behaviour of the
design. It remains an open question over how best we can weaken linearity in more nuanced
ways needed for hardware design.

1.2 Outline
Section 2 details a formal abstract syntax for Verilog netlists that our two type-systems type.
Our unrestricted netlist language (Circuits) is formally presented in Section 3, and the
linearly wired variant (CirQTS) in Section 4. For both calculi we detail their wire-safety,
our approach to type-safety as an interpretation to a graph, and how Circuits is wire unsafe
but CirQTS is not. With linear wiring, wire endpoints and ports, cannot be reused. We
detail in Section 5 new easy-to-add primitives to Verilog (as primitive gates), that support
valid weakening of linearity to allow wires to be split and combined. Section 6 details how
we have mechanised our realisation of both languages in Idris2, and Section 7 discusses the
results of using CirQTS for designing netlists. From our experimentation we discuss the
efficacy of our approach in Section 7. We end by relating our contributions to the wider
world in Section 8.

2 A Syntax for Netlists

Figure 2 presents the shared abstract syntax for Circuits and CirQTS. Both languages
abstract over a subset of Verilog’s concrete syntax required for gate-level modelling. The
syntax is unremarkable, which highlights the simplicity that accompanies netlist language
design.

𝑛 :NF Natural Numbers
𝑑 :D F I | O | IO
𝑖 :I F Logic | [𝑖 ; 𝑛]

𝑔 F mux2 (𝑒, 𝑒, 𝑒, 𝑒) | 𝑏 (𝑒, 𝑒, 𝑒), 𝑏 ∈ {and, or, . . .} | 𝑢 (𝑒, 𝑒), 𝑢 ∈ {not, . . .}
𝑒 F 𝜑 | port 𝑖 𝑑 as 𝜑 in 𝑒 | gate 𝑔 as 𝜑 in 𝑒 | wire 𝑖 as 𝜑 in 𝑒 | assign 𝑒 ← 𝑒 in 𝑒

| stop | (index 𝑒 𝑛) | (cast 𝑒 𝑓 ) | (readFrom 𝑒) | (writeTo 𝑒)

Figure 2 Abstract Syntax for Circuits and CirQTS.

We restrict our modelling to simple synthesisable datatypes (I) as seen in Verilog: 4-state
logic bits and their aggregation into bit-vectors. The set of supported gates (𝑔) is indicative,
as many netlists are dependent on the technology (gates) as supported by the underlying
hardware. For our investigation we explored two input multiplexers, binary logic gates, and
unary logic gates, as this presents an expressive enough set of gates to create interesting
designs. Although we do not consider gates with n-ary outputs, such as demultiplexers, our
setting does support them as we shall see in Section 4.2. Whilst this language seems overly
restrictive when compared to state-of-the-art HDLs, the syntax and type-system can be
extended to deal with n-ary gate syntax, and new primitive gates added.

Most notable from Figure 2 is that the top-level module header is implicit, and sequencing
(recall that Verilog is imperative) of statements is realised as continuations on desired sub-
terms. Circuit designs represent a single module with a predefined set of ports (supporting
uni-directional and bi-directional signals), as such we can represent the module header as a
series of bespoke let-bindings that introduce bound terms (with variables being represented



J. de Muijnck-Hughes and W. Vanderbauwhede 8:5

by 𝜑) into the corresponding scope. Declarations for gates and internal wires follow this same
pattern, as does the direct assignment (connection) of ports and wires which is supported
by the assign statement. Verilog also supports anonymous gate declarations, to keep our
minimal calculi small we have purposefully not incorporated them into the syntax but note
their addition is straightforward. Finally, the stop expression indicates the end of the netlist
specification.

The final set of expressions are required to capture type-safe wiring of ports and wires to
gates. Naturally, bit-vectors can be indexed to access individual wires in the vector. We do
not support slicing as it can be elaborated/synthesised into our core syntax. The remaining
expressions are however, not explicit in Verilog’s concrete syntax. Nonetheless, they can be
inserted automatically through syntax elaboration.

The first of these hidden expressions supports the insertion of bi-directional ports into
gates. Gates only have ports that are inputting or outputting, but bound ports may be
bi-directional. Cast, like index, is an in-place operation on ports and endpoints, that supports
transformation of the given direction to supplied direction 𝑓 .

The final two expressions relate to inserting internal wires into declared gates. Verilog’s
concrete syntax does not discriminate between ports and wire endpoints. We thus introduce
two projection terms to support such access, one that supports reading from a channel, and
the other to support writing to a channel.

We end this section with Figure 3 that illustrates how Figure 1d is encoded in the shared
syntax.

port Logic O as 𝑐 in
port Logic I as ab in
wire Logic as temp

in assign (writeTo temp) ← (index ab 0)
in gate and (𝑐, (readFrom temp), (index ab 1)) as ga
in stop

Figure 3 Figure 1d in the shared Syntax.

3 A Structural Type-System

The abstract syntax from Section 2 helps direct well-formed netlists through its syntactical
structure. Nonetheless, a type-system will categorically ensure that the netlists are well-
formed. This section introduces a simple, yet flawed, type-system for Circuits in which term
usage is unrestricted, but nonetheless respects how netlists are typed. Practically speaking,
the flaw allows uncontrolled fan-ins and fan-outs to be inserted unchecked into the design,
and for ports and channels to be left dangling (unused). Section 4 details how quantitative
wire usage ensures that ports and channels are used exactly once.

3.1 Types and Contexts
Figure 4 details the (unsurprising) set of types and typing context for Circuits. Ports types
(P) are parameterised by how signals flow from ports, together with the port’s shape as
captured by the given datatype. Similarly, wire types (W) are parameterised by the wire’s
shape, the provided datatype. Further, gates are given their own type (G), and the unit type
(1) signifies the end of a design.

ECOOP 2023
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𝑡 : TypeF P (𝑖, 𝑑) | W (𝑖) | G | 1
Γ F ∅ | Γ + 𝑥 : 𝑡

Figure 4 Types and Contexts for Circuits.

3.2 Typing Rules

Figure 5 details the typing rules for Circuits. The introduction rules for natural numbers
and datatypes are not presented and are implicitly given in Figure 2. Much like the rest of the
definition of Circuits, the rules are for the most part unsurprising and follow standard norms.
Rule Stop introduces the unit type, signalling the end of the design. Rules Mux,Bin, & Un
type gates and, as in Verilog itself, gates present their output ports then their input ports such
that all ports have the same type, which for netlists will be: Logic. The Rules Port,Wire,
& Gate adapt the standard presentation for let-bindings in which the body is extended with
the introduced variable. Direct assignment (Rule Assign) of an output port to an input
port happens if they both have the same shape i.e. datatype. Indexing vector-shaped ports
(Rule Index) returns a single port from the array with the shape of the contained elements,
and the same signal flow. Further, a compile-time bounds check is required to ensure safe
vector-indexing.

Gates and direct assignment only support ports with flow input or output. Casting
(Rule Cast) supports safe transformation of a bidirectional port to either an input or output,
which we formally express as follows:

▶ Definition 1 (Valid Casting of Directions). Given 𝑎, 𝑏 :D the safe transformation of flow 𝑎

to 𝑏, which we denote as ValidCast (𝑎, 𝑏), is:

ValidCast (𝑎, 𝑏) I O IO
I × × ×
O × × ×
IO ✓ ✓ ×

We have purposefully presented a strict interpretation of casting, and do not include the
identity cast. During the mechanised elaboration of terms (Section 6), we wished to ensure
that casts are only inserted if the cast would change the direction. Inclusion of the identity
cast would not weaken our result.

The final two rules, Rules Read & Write detail how a wire’s endpoints are accessed by
projection. It is here that the typing rules become somewhat counter-intuitive. Intuition
tells us that projecting a wire to read its contents would return an outputting port, and
conversely writing to a wire would require its inputting port. Instead we have swapped the
directions: reading gives an input; writing gives an output. Such a swap supports the natural
typing rules when checking gates and direct assignments. That is, by swapping the expected
flow of information during projection we do not need to check if a port marked output will
go to an input and vice-versa. Checking for direction equality thus simplifies the typing rules,
and checking, for Circuits.
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Var
𝜑 : 𝑡 ∈ Γ
Γ ⊢ 𝜑 : 𝑡

Stop
Γ ⊢ stop :1

Mux
Γ ⊢ 𝑜 :P (Logic,O) Γ ⊢ 𝑐 :P (Logic, I) Γ ⊢ 𝑎 :P (Logic, I) Γ ⊢ 𝑏 :P (Logic, I)

Γ ⊢ mux2 (𝑜, 𝑐, 𝑎, 𝑏) :G

Bin
Γ ⊢ 𝑜 :P (Logic,O) Γ ⊢ 𝑥 :P (Logic, I) Γ ⊢ 𝑦 :P (Logic, I) 𝑏 ∈ {and, or, . . .}

Γ ⊢ 𝑏 (𝑜, 𝑥, 𝑦) :G

Un
Γ ⊢ 𝑜 :P (Logic,O) Γ ⊢ 𝑖 :P (Logic, I) 𝑢 ∈ {not, . . .}

Γ ⊢ 𝑢 (𝑜, 𝑖) :G

Port
𝑖 :I 𝑑 :D Γ + 𝜑 :P (𝑖, 𝑑) ⊢ 𝑏 :1

Γ ⊢ port 𝑖 𝑑 as 𝜑 in 𝑏 :1
Wire

𝑖 :I Γ + 𝜑 :W (𝑖) ⊢ 𝑏 :1
Γ ⊢ wire 𝑖 as 𝜑 in 𝑏 :1

Gate
Γ ⊢ 𝑔 :G Γ + 𝜑 :G ⊢ 𝑏 :1

Γ ⊢ gate 𝑔 as 𝜑 in 𝑏 :1

Assign
𝑑 :I Γ ⊢ 𝑖 :P (𝑑, I) Γ ⊢ 𝑜 :P (𝑑,O) Γ ⊢ 𝑏 :1

Γ ⊢ assign 𝑖 ← 𝑜 in 𝑏 :1

Index
𝑑 :I 𝑓 :D 𝑛 :N Γ ⊢ 𝑝 :P ([𝑑 ;𝑚], 𝑓 ) [𝑛 < 𝑚]

Γ ⊢ (index 𝑝 𝑛) :P (𝑑, 𝑓 )

Cast
𝑑 :I 𝑎, 𝑏 :D Γ ⊢ 𝑝 :P (𝑑, 𝑎) ValidCast (𝑎, 𝑏)

Γ ⊢ (cast 𝑝 𝑎) :P (𝑑, 𝑏)

Read
𝑑 :I Γ ⊢ 𝑐 :W (𝑑)

Γ ⊢ (readFrom 𝑐) :P (𝑑, I)
Write

𝑑 :I Γ ⊢ 𝑐 :W (𝑑)
Γ ⊢ (writeTo 𝑐) :P (𝑑,O)

Figure 5 Simple Typing Rules for Circuits.

3.3 Wire-(Un)Safety
As programming languages are computational it makes sense to reason about their type-safety
using their operational semantics: How they compute! Standard syntactic approaches require
that we describe how terms reduce (progress) during operation, and prove that once a value is
reached that the types have been preserved (preservation). HDLs on the other hand, not only
describe how signals flow across wires, but also the structure of the circuit itself. At the level
of netlists, HDLs are not computational languages and there is no reduction of terms. We
must, therefore be concerned with a design’s physical structure rather than its behaviour. As
such we will reason about our type system’s correctness based on its wire-safety, that is how
well the design has been wired together, as opposed to how the design behaves. Specifically,
we will use a denotational approach in which we use the circuit design as the instructions to

ECOOP 2023
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construct a graph, and assess the design’s wire-safety using the constructed graph’s topology.
We stress that these results provide assurances over how circuits are wired and not how they
behave. Behavioural safety requires more work [22, 28].

We remark that our denotational approach to wire-safety is inspired by the use of
definitional interpreters [38, 37] to prove type-soundness [3]. We elide technical details,
highlighting the main results only, and remark that the accompanying artefact (which
provides a mechanisation of our contributions, see Section 6) contains the full details.

As a reminder, the “safety” result we present here is purposefully unsafe to capture how
a structural type-system does not provide guarantees over the sub-structural property that
is wire-safety. The next section Section 4 describes a more (type) safe way to determine
wire-safety.

3.3.1 Graphs for Hardware
Digital circuits (netlists) are just multigraphs. Leaf vertices map to a netlist’s inputting and
outputting ports, and internal vertices represent logic gates. Wires too can be represented
by pairs of internal vertices (one for each endpoint, with a single edge to connect the two),
and edges in our graph model wiring between ports, channels, and gates. To better reason
about our graph’s topology we categorise leaf vertices as being sources (𝑆; output ports),
targets (𝑇 ; input ports), or unknown (𝑈; bidirectional ports). Internal nodes (𝑁) capture
gates, casting, and projection of wires. Figure 6 shows how Figures 1a and 1c can be viewed
as a hardware graph, and that the edges represent the wiring between ports, gates, and wires.
More formally we can describe such graphs as:

▶ Definition 2 (Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be a directed multigraph where 𝑣𝑠 is a
set of vertices, and 𝑒𝑠 is a list of edges. Vertices in 𝐻 will be labelled with an element of
{𝑆, 𝑇,𝑈, 𝑁}.

ab

S

ab[0]

ab[1]

N

N

and

N

c

T

(a) Figure 1c as a Hardware Graph.

a

S

nand

N

c

T

(b) Figure 1a as a Hardware Graph.

Figure 6 Example Hardware Graphs for Circuits.

To reason about wire usage we need to define what it means for our hardware graph to
be wired. We can determine the expected degree a vertex has directly from its categorisation:
source vertices will have zero incoming edges, and zero or more outgoing edges; leaf vertices
will have zero or more incoming edges, and zero outgoing edges; bi-directional vertices will
have zero or more incoming or outgoing edges; and internal vertices will have have zero or
more incoming or outgoing edges. Using deg+ (𝑣, 𝑒𝑠) and deg− (𝑣, 𝑒𝑠) to calculate the out
and in degrees for a vertex 𝑣 from a given list of edges 𝑒𝑠, we can compare the given degrees
with the expected degrees. If the relations hold then the circuit has been wired. We formally
present this definition as:
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▶ Definition 3 (A Wired Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be our hardware graph, the wiring
of 𝐻 is well-formed, C (𝐻), if:

∀𝑣 ∈ 𝑣𝑠


𝑆 deg+ (𝑆, 𝑒𝑠) ≥ 0 ∧ deg− (𝑆, 𝑒𝑠) ≡ 0
𝑇 deg+ (𝑇, 𝑒𝑠) ≡ 0 ∧ deg− (𝑇, 𝑒𝑠) ≥ 0
𝑈 deg+ (𝑈, 𝑒𝑠) ≥ 0 ∨ deg− (𝑈, 𝑒𝑠) ≥ 0
𝑁 deg+ (𝑁, 𝑒𝑠) ≥ 0 ∧ deg− (𝑁, 𝑒𝑠) ≥ 0

Interpretation of terms will result in either: an error related to binding; a hardware graph;
a vertex; the empty value (⊥) of the empty type. Port definitions are interpreted into leaf
vertices following the port’s direction, whereas gates, wires, and casts interpret into internal
nodes. The end of a specification is interpreted into the empty type. Port usages, and
channel projection, inserts edges into the graph. We can also strengthen the interpretation
by making it type-directed (represented by ⟦ 𝑡 ⟧𝑇), where terms from Circuits are mapped
to hardware graph concepts.

Formally we can denote the act of interpretation as follows:

▶ Definition 4 (Interpretation). Let Σ𝑖 be an interpretation environment and 𝐻𝑖 = ⟨𝑣𝑠, 𝑒𝑠⟩ be
a Hardware Graph. We denote the interpretation of Circuits specification (Γ ⊢ 𝑒 : 𝑡) as:

(Σ, 𝐻𝑖)⟦ 𝑒 ⟧F Error | Done (𝐻𝑜, 𝑣 : ⟦ 𝑡 ⟧𝑇 )

where 𝐻𝑜 is the resulting hardware graph.

The interpretation environment (Σ) stores the result of interpretation for bound terms
and is passed around as an input to interpretation explicitly. The accumulator graph (𝐻)
carries the resulting graph as we traverse sub-terms. Here subscripts 𝑖 and 𝑜 denote an
inputting and resulting value. We cannot just return a complete graph for each interpretation
step as not all terms return a graph. Take ports, for example, they return a vertex when
interpreted during the construction of edges, and stop returns the empty value.

More information about the interpretation can be found in the accompanying artefact
which contains the mechanisation (Section 6) of Circuits.

3.3.2 Well-Typed Circuits are Valid Hardware Graphs
With this high-level description of interpretation we can detail our strong interpretation
soundness result, which is our wire-safety result.

▶ Theorem 5 (Strong Interpretation Soundness).

∅ ⊢ 𝑒 :1 ⟦ 𝑒 ⟧ = Done (Σ, 𝐻, 𝑣)
Σ ≡ ∅ 𝑣 ≡ ⊥ C (𝐻)

Strong interpretation soundness states that interpretation of a closed specification will result
in a valid wired hardware graph. A weak soundness result would be that we can construct
just a valid hardware graph.

3.3.3 Proof Sketch
Our soundness proof needs to ensure that our interpretation will result in a valid hardware
graph. We can structure our proof using Siek’s “three easy lemmas” [41] but adapted for
interpretation as seen with existing work [3] and adapted to build hardware graphs. Siek’s
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approach requires that we divide the proof into three sub-lemmas that, when combined,
cover all aspects of the interpretation process: 1) interpreting primitives; 2) ensuring that
variables are well-scoped; and 3) that doing interpretation will produce a value.

The first lemma deals with typing primitives.
▶ Lemma 6 (Primitives). Well-typed primitives are not stuck and will interpret correctly.
Proof. By induction on typing derivations. ◀

The only primitive term in Circuits is stop, the rest contain interpretable sub-terms.
The term stop will always interpret.

The next lemma addresses environment lookups. As in existing work [3] we must first define
a consistency relation (⊨) between typing contexts and interpretation environments. Such a
relation ensures that as the typing context grows, so will the interpretation environment.
▶ Definition 7 (Consistent Interpretation Environments).

EmptyEnv

∅ ⊨ ∅

ExtendEnv
Γ ⊨ Σ

Γ + 𝜑 : 𝑡 ⊨ Σ + (𝜑, 𝑣 : ⟦ 𝑡 ⟧𝑇 )
Using our consistency relation (⊨) we can describe well-scoped environment lookups.

When given an interpretation environment that is consistent with a typing context, we
can map bound variables within the typing context to their equivalent bindings in the
corresponding interpretation environment. Thus when given a well-scoped variable 𝜑 ∈ Γ
such that 𝜑 has type 𝑡, then there is a value (𝑣 : ⟦ 𝑡 ⟧𝑇) in the interpretation environment
bound to 𝜑.
▶ Lemma 8 (Lookup). Well-typed interpretation environment lookups are not stuck and will
interpret correctly.

Γ ⊨ Σ 𝜑 : 𝑡 ∈ Γ 𝑥 ≡ ⟦ 𝑡 ⟧𝑇
(𝜑, 𝑣) ∈ Σ 𝑣 : 𝑥

Proof. By structural induction over the interpretation environment. ◀

As environment lookups are guided by the typing-context, interpretation will succeed
because all references to bound terms exist. Otherwise lookup will fail.

The final lemma, which we provide here, details interpretation.
▶ Lemma 9 (Interpretation). If the interpretation returns a result then the result is a valid
hardware graph.

Γ ⊢ 𝑒 : 𝑡 Γ |= Σ (Σ, 𝐻𝑖)⟦ 𝑒 ⟧F (Done res)
res = (𝐻𝑜, 𝑣) 𝑣 : 𝑡′ 𝑡′ ≡ ⟦ 𝑡 ⟧𝑇

Proof. By induction on typing derivations. ◀

We know that within definitional interpreters the strong soundness property [3] corre-
sponds to the classic strong soundness property used in proving type soundness [47]. With
our final lemma we can show that well-typed Circuits specifications will construct correctly
wired hardware graphs, if not an error will occur. Interpretation will finish when the term
stop is reached. The consistency relation ensures that the typing contexts and interpretation
environment remain consistent as we step across binders.

We only check the strong soundness result after the interpretation process has finished.
Sub-terms return components of a hardware graph, and not a complete graph itself, we need
to ensure that the soundness result is applied to a whole specification.
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3.4 Towards True Wire-Safety
Our definition of a wire-safety, and thus safety of Circuits type-system, is not one that
leads to designs that are inherently safely wired: Designs in which wires are used once, and
wire usage is clear. The type-system for Circuits is not sub-structural, and will admit
designs in which ports (and wires) are left dangling or partially used. We know this because
our definition for wiredness (C (𝐻)) is too loosely specified. We can show this by changing
the definition of C (𝐻) to one where the expected degree of leaf nodes is greater than zero to
equal to one. Such a change now invalidates various graphs in which ports and wires were
left dangling, and were once admitted by Circuits type-system.

Consider, for example, the netlist and its corresponding hardware graph in Figure 7. The
netlist has a dangling input b. It is unclear from the immediate context if b is supposed to
be dangling or included in the design; gates in Verilog are n-ary. The change in definition of
C (𝐻) supports identification of ill-wired designs, as the expected out degree of for 𝑏 is one
but its given degree is zero.

module Example(output logic c,
input logic a,b);

not(c,a);
endmodule;

(a) Verilog.

a

b

S

S

not

N

c

T

(b) Hardware Graph.

Figure 7 Example Netlist with Ambiguous Wiring.

Changing the definition of C (𝐻) is still, however, not enough to get safe designs. We
need to reason about bidirectional ports, remember that bit-vectors can be indexed, ensure
that channel endpoints are accessed once, and that gates are only wired into once. We need
a sub-structural type-system to reason about wire/port usage. We will show this in the
next section, and provide a better definition of what it means for a hardware graph to be
well-wired.

4 A Sub-Structural Type-System

The illustrative designs from Figure 1 are not linear in their bound term usage. There are
repeated variables, dangling wires, and parts of bit-vectors left unused. Trying to fit wire
usage constraints into existing quantitative systems is hard. Generally speaking, QTSs such
as Atkey’s QTT [4], and those based around linear logic [45, 44] and graded semirings [33],
are designed to reason about term usage within general purpose programming languages.
Specifically, linear systems require that bounded terms are used exactly once; affine systems
require that bounded terms are used at most once; graded systems require that bounded
terms are used at most n-times; and QTT allows bounded terms to be used linearly, and
unbounded terms have unrestricted usage. None-One-Tonne systems do not have a fine
grained usage modality. HDLs capture circuit behaviour as well as structure.

A key design challenge when linearising Circuits type-system is to know what usage
means for HDLs, as bounded terms do not have singular usage. Within Circuits wires have
two endpoints that are used in separate locations, and bit-vector shaped wires/ports can
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be indexed in strange and wonderful ways. Roughly, projection of endpoints and indexing
implies that each sub-term may be partially used in a design and type-checking needs to take
this into account. Further, while ports/wire have bounded usage, gates are unbounded. It is
not clear how QTT and Granule can be co-opted to encode these domain specific usages
as part of a semiring structure. Our approach to the type-system for CirQTS must be
different, for now.

4.1 Types and Usages
Figure 8 details the additional infrastructure required to make Circuits linear. Inspiration
is taken from QTT to base our system of usages (Figure 8a) on the none-one-tonne semiring.
Things are free until used, and some things will always be free to use i.e. unbounded usage.
In practice, however, this can be distilled to the ordinary boolean semiring as our usage
requirements are more conservative and constrained, and we make no link between compile
time and runtime quantities as QTT is used in practice [10].

𝑅 F 0 | 1 | 𝜔

(a) Usages.

𝑖 :I
𝑢 : Usage𝐷 (𝑖)

Init𝐷 (𝑢)

F Logic [𝑖 ; 𝑛]
F 𝑅 {𝑢 𝑗 : Usage𝐷 (𝑖) 𝑗∈1..𝑛}
F 1 {Init𝐷 (𝑢 𝑗 ) 𝑗∈1..𝑛}

(b) DataTypes.

𝑡 : Type
𝑢 : Usage𝑇 (𝑡)

Init𝑇 (𝑢)

F P (𝑖, 𝑑) W (𝑖) G 1

F Usage𝐷 (𝑖) (Usage𝐷 (𝑖),Usage𝐷 (𝑖)) 𝜔 𝜔

B Init𝐷 (𝑖) (Init𝐷 (𝑖), Init𝐷 (𝑖)) 𝜔 𝜔

(c) Types.

Γ F ∅ | Γ + (𝜑 : 𝑡, 𝑢 : Usage𝑇 (𝑡)) | Γ ± (𝜑 : 𝑡, 𝑢 : Usage𝑇 (𝑡))

(d) Contexts.

Γ𝑖 ⊢ 𝑒 : 𝑡 ⊣ Γ𝑜

(e) Judgements.

Figure 8 Types and Contexts for CirQTS.

Figure 8b presents how we capture datatype usage. Recall that the types for ports and
channels are indexed by a datatype. The shape of a port/wire’s datatype will direct the
usage we need to track. Logic-shaped ports and channels will have a single wire to use, and
bit-vectors an array of elements to use. Bit-vectors are, however, multidimensional and the
usages should reflect that when indexing bit-vectors. When initialising usages for datatypes
we set them to be free.

Figure 8c presents how we specify usages for bindable types. Ports will have to keep track
of their usage based on the usage of the datatype they are indexed by, and wires will have a
pair of usages (one for each endpoint). Gates (and unit) will be left unrestricted as their use
is unrestricted. The syntax for Circuits/CirQTS enforces that stop can only be used once.
For newly introduced ports and wires, their initial usage will be free.

Figure 8d details how we situate our usages in the type-system. Following existing
work [46] we must annotate our typing context to keep track of the usage of bounded terms.
Given the different shapes of our boundable types, we cannot use linear algebra to capture
usage updates. Instead we take a simpler approach by envisaging our types (and type-system)
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as a stateful resource in which the usage of bound term is a state. Specifically not only can
our context be extended, but we can also update the state of a bound term’s resource: its
usage.

We differ from standard linear typing approaches by not relying on context splitting.
Rather our judgement formation (Figure 8e), and typing rules, are more algorithmic. Success-
fully typing a term will may result in a new updated context. This mirrors the algorithmic
presentation of the Linear Lambda Calculus (LLC ) [45, Figure 1-6].

4.2 New Syntax for Indexing

(index 𝑒 𝑛) → (index 𝜑𝑝 {𝑛𝑖 𝑖∈1..𝑚})
(readFrom 𝑒) → (readFrom 𝜑𝑐) | (readFromAt 𝜑𝑐 idx)
(writeTo 𝑒) → (writeTo 𝜑𝑐) | (writeToAt 𝜑𝑐 idx)

Figure 9 Syntax Changes required for CirQTS.

We can now start to describe the typing rules for CirQTS as presented in Figure 10.
We must first realise, however, that the abstract syntax (Figure 2) is too expressive. The
trouble stems from n-dimensional indexing of bit-vectors. Type-checking each (sub)term in
our stateful typing updates the states held within the typing context. How do we know which
sub-usage of the bit-vector for which bound term in the typing-context needs to be updated?
Indexing a one-dimensional bit-vector is simple, but for deeper indexing (i.e. indexing a
projection or an index of an index) updating the state is impossible. We need the location
within the context. Thus, we must flatten nested indices to a single term, and have separate
terms for when wire endpoints are also projected. This transformation step occurs during
elaboration, and Figure 9 presents the replacement terms required. How we can adapt the
type-system to support nested indexing is not clear.

4.3 Typing Rules
Figure 10 presents the salient typing rules for CirQTS. Missing are the rules for the write
projection as they mirror the rules for the read projection. The presented rules are not too
dissimilar from those in Figure 5. For each rule we reason, using custom predicates, about
the state of the usage resource for each binder, or expect context transitions to enforce our
linear wiring property.

Rule Var ensures that bound variables are only used if they are completely free; ruling
out use of partially used variables that have been used through indexing. Such a predicate
means that once a port/wire has been indexed it can only be used through indexing.

Rule Stop describes the end conditions for each bound term’s usage, as dictated by the
CanStop (𝑡, 𝑢) predicate that requires that all bound terms must be totally used. That is
all ports and wires must be used for the design to type-check. How we define CanStop (𝑡, 𝑢)
impacts on what it means for a design to be totally used. Verilator, for example, does not
require output ports to be fully used in its static analysis. That is, Verilator is affine for
outputs but linear for inputs, whereas CirQTS is linear for all wires/ports. We stress that the
termination conditions for CirQTS are not closed for debate. Rather it supports discussing
the conditions under which ports and wires are said to be sufficiently used. Verilator’s
termination choice, for example, can be replicated by requiring that CanStop (𝑡, 𝑢) requires
inputting ports and wire endpoints be used.
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Var
(𝑥 : 𝑡, 𝑜) ∈ Γ [IsFree (𝑜)]
Γ ⊢ 𝑥 : 𝑡 ⊣ Γ ± (𝑥 : 𝑡,Use (𝑜))

Stop
{CanStop (𝑡, 𝑢) | (𝑥 : 𝑡, 𝑢) ∈ Γ}

Γ ⊢ stop :1 ⊣ ∅

Cast
𝑑 :I 𝑎, 𝑏 :D Γ1 ⊢ 𝑝 :P (𝑑, 𝑎) ⊣ Γ2 ValidCast (𝑎, 𝑏)

Γ1 ⊢ (cast 𝑝 𝑎) :P (𝑑, 𝑏) ⊣ Γ2

Mux

Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2
Γ2 ⊢ 𝑐 :P (Logic, I) ⊣ Γ3 Γ3 ⊢ 𝑎 :P (Logic, I) ⊣ Γ4 Γ4 ⊢ 𝑏 :P (Logic, I) ⊣ Γ5

Γ1 ⊢ mux2 (𝑜, 𝑐, 𝑎, 𝑏) :G ⊣ Γ5

Bin

Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2
Γ2 ⊢ 𝑥 :P (Logic, I) ⊣ Γ3 Γ3 ⊢ 𝑦 :P (Logic, I) ⊣ Γ4 𝑏 ∈ {and, or, . . .}

Γ1 ⊢ 𝑏 (𝑜, 𝑥, 𝑦) :G ⊣ Γ4

Un
Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2 Γ2 ⊢ 𝑖 :P (Logic, I) ⊣ Γ3 𝑢 ∈ {not, . . .}

Γ1 ⊢ 𝑢 (𝑜, 𝑖) :G ⊣ Γ3

Assign
𝑑 :I Γ1 ⊢ 𝑖 :P (𝑑, I) ⊣ Γ2 Γ2 ⊢ 𝑜 :P (𝑑,O) ⊣ Γ3 Γ3 ⊢ 𝑏 :1 ⊣ ∅

Γ1 ⊢ assign 𝑖 ← 𝑜 in 𝑏 :1 ⊣ ∅

Ports
𝑖 :I 𝑑 :D Γ + (𝜑 :P (𝑖, 𝑑), Init𝑇 (P (𝑖, 𝑑))) ⊢ 𝑏 :1 ⊣ ∅

Γ ⊢ port 𝑖 𝑑 as 𝜑 in 𝑏 :1 ⊣ ∅

Wire
𝑖 :I Γ + (𝜑 :W (𝑖), Init𝑇 (W (𝑖))) ⊢ 𝑏 :1 ⊣ ∅

Γ ⊢ wire 𝑖 as 𝜑 in 𝑏 :1 ⊣ ∅

Gate
Γ1 ⊢ 𝑔 :G ⊣ Γ2 Γ2 + (𝜑 :G, Init𝑇 (G)) ⊢ 𝑏 :1 ⊣ ∅

Γ1 ⊢ gate 𝑔 as 𝜑 in 𝑏 :1 ⊣ ∅

Index
𝑑 :I 𝑓 :D idx ≔ {𝑚𝑖

𝑖∈1.. 𝑗 } (𝜑𝑝 :P ([𝑑 ; 𝑛], 𝑓 ), 𝑢) ∈ Γ [IsFreeAt (𝑢, idx)]
Γ ⊢ (index 𝜑𝑝 idx) :P (HasTypeAt ( [𝑑 ; 𝑛], idx), 𝑓 ) ⊣ Γ ± (𝜑𝑝 :P ([𝑑 ; 𝑛], 𝑓 ),UseAt (𝑢, idx))

Read
𝑑 :I (𝜑𝑐 :W (𝑖), (𝑢𝑟 , 𝑢𝑤)) ∈ Γ [IsFree (𝑢𝑟 )]

Γ ⊢ (readFrom 𝜑𝑐) :P (𝑑, I) ⊣ Γ ± (𝜑𝑐 :W (𝑖), (Use (𝑢𝑟 ), 𝑢𝑤))

ReadAt
𝑑 :I idx ≔ {𝑚𝑖

𝑖∈1.. 𝑗 } (𝜑𝑐 :W (𝑖), (𝑢𝑟 , 𝑢𝑤)) ∈ Γ [IsFreeAt (𝑢𝑟 , idx)]
Γ ⊢ (readFromAt 𝜑𝑐 idx) :P (𝑑, I) ⊣ Γ ± (𝜑𝑐 :W ([𝑑 ; 𝑛]), (UseAt (𝑢𝑟 , idx), 𝑢𝑤))

Figure 10 Typing Rules for CirQTS.

The rules for gates (Rules Mux, Bin, & Un), casting (Rule Cast), and assignment
(Rule Assign) shows how the linearity checking can be propagated silently through the
type-system. Key to Rules Cast, Mux, Bin, & Un operation is that the premises for
ports updates the stateful typing-context. A port can only be used if it is either a variable
(Rule Var) or is the result of indexing a port, or a projection of a wire. Threading the
updated state left-to-right along the typing rules ensures that ports cannot be reused, as
each sub-term uses the latest version of the context possible.
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Terms that introduce binders (Rules Ports,Wires,& Gate) are not complicated, and
extend the typing-context with a new variable binding with a default usage state.

The final rules deal with indexing ports, and channel projection. Rule Index becomes a
variant of Rule Var in which the typing conditions require that instead of the referenced
port being completely free, the port must be free at the specified index. Importantly, the
return type in Rule Index is not the inner type of 𝜑𝑝 but is, instead, the type of element
at the end of the presented index. The rules for projection also follow on from Rule Var
in that they resolve references. Whereas Rule Read acts on a port entirely, Rule ReadAt
adapts the structure for Rule Index but the usage resource associated with the wire’s input
endpoint is analysed/updated. Writing to a wire (rules not shown) mirrors those for reading
but affect the other resource.

4.4 Wire-Safety
Our approach to reasoning about wire-safety in CirQTS does not differ much from Section 3.3.
The core differences relate to how Hardware Graphs are defined, and what it means for a
Hardware Graph to be well wired. We highlight the key differences in approach.

To better reason about our graph’s topology we extend the definition of Hardware Graph
from Definition 2 and label each vertex with its expected in/out degree. More formally:

▶ Definition 10 (Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be a directed multigraph graph where 𝑣𝑠

is a partitioned set of vertices, and 𝑒𝑠 a list of edges. Vertices in 𝐻 are labelled with their
minimum in/out degree, and are defined as 𝑣𝑜,𝑖 where: 𝑜 is the expected out-degree; 𝑖 the
expected in-degree; and the shape of each 𝑣 is taken from {𝑆 (𝑛,0) , 𝑇 (0,𝑛) ,𝑈 (𝑛,𝑛) , 𝑁 (𝑛, 𝑚) (𝑛,𝑚) }.

Like the previous definition of a hardware graph we must define what it means for such a
graph to be wired. Again, we do so by checking that the expected degrees for each vertex
must match the degrees as calculated from the set of edges. Our previous definition, however,
is too permissive. Must refine our definition to ensure that the given degrees will match
the expected degrees. Moreover, we must ensure that bi-directional ports are used in one
direction only, thus we require an exclusive disjunction (⊻) between the calculated in/out
degrees and the expected degrees. Formally we present his definition as:

▶ Definition 11 (Well-Wired Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be our hardware graph, the
wiring of 𝐻 is well-formed, W (𝐻), if ∀𝑣 (𝑜.𝑖) ∈ 𝑣𝑠:

𝑣 (𝑜.𝑖)



𝑆 (𝑜,0) deg+ (𝑆 (𝑜,0) , 𝑒𝑠) ≡ 𝑜 ∧ deg− (𝑆 (𝑜,0) , 𝑒𝑠) ≡ 0
𝑇 (0,𝑖) deg+ (𝑇 (0,𝑖) , 𝑒𝑠) ≡ 0 ∧ deg− (𝑇 (0,𝑖) , 𝑒𝑠) ≡ 𝑖

𝑈 (𝑜,𝑖) deg+ (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑜 ∧ deg− (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 0
⊻

deg+ (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 0 ∧ deg− (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑖

𝑁 (𝑜,𝑖) deg+ (𝑁 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑜 ∧ deg− (𝑁 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑖

Figure 11 shows how Figures 1a and 1c can be viewed using the amended hardware graph.
With the new hardware graph definition correspondences (Figure 11a) and discrepancies
(Figure 11b) can be seen between the expected and given degrees for the vertices in each
example. This demonstrates the ability of our new hardware graph definition to more
accurately reason about wiring. If we compare these graphs with those in Figure 6 we can
better see the accuracy. Both Figure 11a and Figure 6a presents graphs in which there are
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no discrepancies. Figure 11b, however, now shows a discrepancy for vertex 𝑎 in which its
expected out degree is one but its given out degree is two, this was not seen in Figure 6b as
there is insufficient information to decide.

ab

S(2,0)

ab[0]

ab[1]

N(1,1)

N(1,1)

and

N(1,2)

c

T(0,1)

(a) Figure 1c as a Hardware Graph.

a

S(1,0)

nand

N(1,2)

c

T(0,1)

(b) Figure 1a as a Hardware Graph.

Figure 11 Example Hardware Graphs for CirQTS.

Interpretation of Verliog to hardware graphs is as before, however, to reason more
accurately about bit-vector wiring we calculate the degree of a vertex based on the size of its
datatype. The shape logic has size one, and bit-vectors have the size of its element multiplied
by the size of the bit-vector. We also need to take into account that type-checking will alter
the state associated with bound types. Thus, we must return both the accumulated hardware
graph (𝐻𝑜) and the resulting interpretation environment (Σ𝑜).

▶ Definition 12 (Interpretation). Let Σ𝑖 be an interpretation environment and 𝐻𝑖 = ⟨𝑣𝑠, 𝑤𝑠⟩
be a Hardware Graph. We denote the interpretation of a CirQTS design (Γ𝑖 ⊢ 𝑒 : 𝑡 ⊣ Γ𝑜) as:

(Σ𝑖 , 𝐻𝑖)⟦ 𝑒 ⟧F Error | Done (Σ𝑜, 𝐻𝑜, 𝑣 : ⟦ 𝑡 ⟧𝑇 )

where Σ𝑜 and 𝐻𝑜 are the updated environment and resulting hardware graph.

With this new interpretation definition we must also update our interpretation soundness
result accordingly.

▶ Theorem 13 (Strong Interpretation Soundness).

∅ ⊢ 𝑒 :1 ⟦ 𝑒 ⟧ = Done (Σ, 𝐻, 𝑣)
Σ ≡ ∅ 𝑣 ≡ ⊥ W (𝐻)

and also the final lemma which details interpretation.

▶ Lemma 14 (Interpretation). Interpretation of a design is not stuck and will return a result
containing a valid hardware graph.

Γ𝑖 ⊢ 𝑒 : 𝑡 ⊣ Γ𝑜 Γ𝑖 |= Σ𝑖 (Σ𝑖 , 𝐻𝑖)⟦ 𝑒 ⟧F (Done res)
res = (Σ𝑜, 𝐻𝑜, 𝑣) Γ𝑜 |= Σ𝑜 𝑣 : 𝑡′ 𝑡′ ≡ ⟦ 𝑡 ⟧𝑇

Note that we also require a consistency relation on outgoing typing contexts and interpretation
environments, as well as the inputting ones. This is required, as stepping through each
sub-term modifies the type-level state, and returns a new interpretation environment. Further
we need to extend the consistency relation to account for context updates.

▶ Definition 15 (Consistent Interpretation Environments under Context Updates).
UpdateEnv

Γ ⊨ Σ

Γ ± 𝜑 : 𝑡 ⊨ Σ ± (𝜑, 𝑣 : ⟦ 𝑡 ⟧𝑇 )
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With these revised definitions we can now reason about the type system of CirQTS and
its linearity guarantees. The proof that well-typed designs are well-wired hardware graphs
does not change from the simply-typed proof sketch in Section 3.3.

An interesting aspect of our formulation, is that we can use the same wire-safety result
defined here to show that designs with Circuits specification will be unsafe as the resulting
hardware graphs are not linearly wired.

Unfortunately, we are still not done. CirQTS is too restrictive in its approach to linear
wiring. Our type-system, as it stands, will rule out valid designs by removing the ability to
fan-out and fan-in when it is benign to do so. Verilog designs require that we can split and
join wires together i.e. weaken linearity. The next section discusses how we can extend the
syntax to support this.

5 Weakening Linearity for Free with new Gates

Figure 12a presents a variant of Figure 1a with many potential linear violations, specifically
that the use of a is non-linear and that b is unused. From this example it is, however, unclear
what the designer’s intended wiring was. What was accidental: the repeated use of a, or
specification of b as an input? The linearity encoded within the type-system for CirQTS is
too restrictive. There will be valid cases, for example driving n-ary logic gates with the same
input (Figures 1a and 12a), in which we need to weaken linearity to support valid designs.
At the same time though, we need to report accidental dangling and repeated wiring.

module Example0(output logic c,
input logic a,b);

nand(c, a, a);
endmodule;
(a) Unclear usage.

module Example0(output logic c,
input logic a);

wire logic temp0, temp1;
split(temp0, temp1, a);
nand(c, temp0, temp1);

endmodule;
(b) Clear usage.

Figure 12 Example showing unclear usage violation, and new syntax to make usage explicit.

Figure 13 presents two new gate primitives that support wire duplication (splitting),
and wire joining (collection). With these new primitives designers must now explicitly state
when wires are to be duplicated (i.e. split) and when they are merged (i.e. drive the same
output). Presenting them as primitives addresses issues of backwards compatibility as the
SystemVerilog standard [23] supports new gate primitives to be introduced: No new syntax
changes are required! More so, our wire-safety result from Section 4.4 need not change either.

With the addition of these new primitives we can use internal wiring to rewrite Figure 12a
as Figure 12b if the duplication was required, and if not replace an a with the b. Again
we stress that the implicit wiring decision (duplication) is now an explicit one. Figure 14
illustrate this further by comparing the resulting hardware graph and circuit diagrams for
Figure 12b.

6 Mechanisation and Realisation in a Dependently-Typed Language

We have mechanised the implementations of Circuits and CirQTS using Idris2 [10, 9], a
general purpose dependently-typed language. Leveraging Idris2’s support for dependent types
we can provide both a verifiable practical type-checker for each language, but also formally
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𝑒 F . . . | collect (𝑒, 𝑒, 𝑒) | split (𝑒, 𝑒, 𝑒)

(a) Syntax.

Collect
Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2 Γ2 ⊢ 𝑖𝑎 :P (Logic, I) ⊣ Γ3 Γ3 ⊢ 𝑖𝑏 :P (Logic, I) ⊣ Γ4

Γ1 ⊢ collect (𝑜, 𝑖𝑎, 𝑖𝑏) :G ⊣ Γ4

Split
Γ1 ⊢ 𝑜𝑎 :P (Logic,O) ⊣ Γ2 Γ2 ⊢ 𝑜𝑏 :P (Logic,O) ⊣ Γ3 Γ3 ⊢ 𝑖 :P (Logic, I) ⊣ Γ4

Γ1 ⊢ split (𝑜𝑎, 𝑜𝑏, 𝑖) :G ⊣ Γ4

(b) Typing Rules.
primitive collect ( output logic o, input logic a, b);

assign o = a;
assign o = b;

endprimitive;

primitive split ( output logic a, b, input logic i);
assign a = i;
assign b = i;

endprimitive;
(c) Verilog Primitives.

Figure 13 New Primitive Gates to Safely “Weaken” Linearity.

a

S(1,0)

split

N(2,1)

writeTo

N(1,1)

writeTo

N(1,1)

nand

N(1,2)

readFrom

N(1,1)

readFrom

N(1,1)

c

T(0,1)

(a) As a Hardware Graph.

a c

(b) As a Circuit Diagram.

Figure 14 Figure 12b as a Hardware Graph and Circuit Diagram.
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reason about wire-safety. Thus, our implementations primarily support the type-checking
of netlists (modulo syntax restrictions from Section 2) written in Verilog. With Circuits
we can check if it is valid Verilog, with CirQTS we can check if the netlists are linearly
wired. Further, for both type-checkers we incorporated a soundness check (modelled on the
type-safety result from CirQTS) to show which designs accepted by Circuits are in-fact
wire unsafe.

Both Circuits and CirQTS have been realised as intrinsically well-typed well-scoped
Embedded Domain Specification Languages (EDSLs) within Idris2 using well documented
techniques [27, 2, 29, 25]. The terms, types, and usages for our languages translate directly
into standard dependently (and non-dependently) typed data structures. Reading of valid
Verilog netlists comes from a frontend Domain Specification Language (DSL) coupled with
an elaborator (also known as the type, scope, and usage checker) to construct intrinsically
typed terms.

There are three interesting aspects with our approach to the mechanisation: relation
between soundness check and our formal proof; intrinsic linearity checking; and error reporting.

Existing work has demonstrated how well-typed definitional interpreters can be realised
within dependently-typed languages [40, 35] to provide a mechanised runtime. We borrow
this approach to not only reason about our type-safety result (wire-safety) as code (i.e. its
mechanisation) but make the proof an integral aspect of our tool’s operation.

The core EDSLs representing CirQTS are intrinsically typed both structurally and
sub-structurally. Our approach is inspired by Leftover Typing [1] in which variable usage
updates a type-level state iff a variable is “free” to be used. We use a bespoke list quantifier
(presented in Figure 15) paired with a generic update datatype and decision procedure
(Figure 16) to provide a type-safe updating of the typing context respective to the predicate
being asserted. The type-level constraints that act on variables, that enable our linearity,
are instances of these decidable constructs.

data Elem : (p : type -> Type)
-> (x : type)
-> (xs : List type)
-> Type

where
Here : (prfSame : x = y)

-> (prfSat : p y)
-> Elem p x (y::xs)

There : (rest : Elem p x xs)
-> Elem p x (y::xs)

(a) Decidable Predicate.

isElemSat : DecEq type
=> (f : (x : type)

-> DecInfo (n x) (p x))
-> (x : type)
-> (xs : List type)

-> DecInfo (ElemNot n p x xs)
(Elem p x xs)

(b) Decision Procedure.

Figure 15 Quantification over Lists.

The standard decidable predicate (Dec) for decision procedures is lossy when reporting
errors, such that it is impossible to know at runtime why the procedure failed. Such
predicates are analogous to the Maybe datatype. We need an Either equivalent to help
report useful information when a decidable procedure fails: Dec needs to be decidedly
informative. Constructive negation is an interesting area of research that supports positive
information to be used when reporting errors [5]. Inspired by constructive negation we have
used DecInfo, which is similar to the definition for decidable but is further indexed by a
type that carries showable error messages as well as proofs of contradition. We see this in
the type signature for isElemSat in Figure 15, where ElemNot records why the procedure
failed and requires an informative decision procedure: empty list, or element does not satisfy
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data Update : (o,n : type -> Type)
-> (use : (x : type) -> (prfO : o x) -> (y : type) -> (prfN : n y) -> Type)
-> (old : List type) -> (prf : Elem o x old)
-> (new : List type)
-> Type

where
UHere : {0 u : (x : type) -> (pO : o x) -> (y : type) -> (pN : n y) -> Type}

-> (use : u x pX y pY)
-> Update o n u (x::xs) (Here Refl pX)

(y::xs)
UThere : (rest : Update o n u xs l ys)

-> Update o n u (x::xs) (There l) (x::ys)

(a) Instructions.

update : (use : {x : type} -> (prfO : o x) -> (y : type ** prfN : n y ** u x prfO y prfN))
-> (old : List type)
-> (prf : Elem o x old)
-> (new ** Update o n u old prf new)

(b) Procedure.

Figure 16 Safe List Updating.

the provided predicate. Sadly DecInfo is not truly positive as it carries a proof of void.
Making it positively negative, that is using only positive information to represent proofs and
refutations, is ongoing work.

Using Idris2 to construct our proof-of-concept type-checkers demonstrates the power of
mechanising our proofs in a practical general purpose language that supports dependent
types.

7 Evaluation

We investigated the efficacy of Circuits and CirQTS through creation of an illustrative
testbench. The testbench was designed to illustrate how well-known circuits can contain
implicit wiring decisions (checked against Circuits), and that by using CirQTS we can
make the wiring explicit. Other examples chosen were inspired by various online Verilog
tutorials and sought to test the ability of our type-systems to type-check existing designs
(Circuits) and to reason about quantitative wire usage for those designs (CirQTS). The
well-known designs chosen were flip flops, full and half adders, and gate-level multiplexers.
We provided normal and linear variants of these well-known designs, and Table 1 presents
salient modelling information comparing the two variants.

Table 1 Salient Modelling Information for Core Netlists used during Benchmarking.

Non-Linear Linear
Netlist Inputs Outputs Wires Gates Inputs Outputs Wires Gates

FlipFlopD 2 2 3 5 2 2 11 9
FullAdder 3 2 3 5 3 2 11 9
HalfAdder 2 2 0 2 2 2 4 4
Mux21 3 1 3 4 3 1 5 5

All examples presented were checked against: Circuits, CirQTS, and Verilator. We
performed these checks for two reasons. First, we wanted to show that designs that were
admitted by Circuits but failed the soundness checker, then failed to type check using
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CirQTS, and that valid linear designs could also be checked using Circuits. Second,
Verilator is a well-known open source static analysis and simulation tool for SystemVerilog.
Comparison against Verilator provides a validation step that CirQTS is comparable to
existing tooling and that, unlike commercial static analysis tools, can be incorporated into
our supplied artefact due to its small installation footprint and permissive licence.

For all examples, we found that type-checking time was negligible, and comparable to
Verilator, whether an error was found or not. From this experimentation we made the
following observations.

We can Retrofit Linear Types onto Verilog NetLists

The gate-level syntax is the last intermediate representation before fabrication (or deployment
to an FPGA). For this subset of Verilog chosen for our featherweight language, we have
been successful in introducing linear wirings. From this subset the challenge will be how to
promote linearity to the remainder of Verilog, and of course SystemVerilog.

Verbosely Made Implicit Wirings Explicit

The new primitives presented in Section 5 support valid weakening of linearity, specifically
splitting and joining of wires. Such weakening, however, comes at the cost of design verbosity.
Compare in Figure 17, for example, the implementations of a half-adder in both Circuits
and CirQTS. For each wire split, or joined, new wires must be presented.

module Example(output logic sum, carry
,input logic a b);

xor g1(sum,a,b);
and g2(carry,a,b);

endmodule;

(a) Circuits.

module Example(output logic sum, carry
,input logic a b);

wire logic a1,a2,b1,b2;

split sa(a1,a2,a);
split sb(b1,b2,b);

xor g1(sum,a1,b1);
and g2(carry,a2,b2);

endmodule;

(b) CirQTS.

Figure 17 Half-Adder in both Circuits and CirQTS.

Although in the linear setting such redundant wires can be optimised away, their addition
to the language makes it verbose. If we are to introduce such linear restrictions elsewhere
in SystemVerilog, that is for synthesisable terms, the end user will be presented with a
needlessly verbose language. Thus raising the question of how best to retrofit existing HDLs
with quantitative types such that linearity does not get in the way. Perhaps we should not
take this approach, and instead look at providing annotations as seen in other extensions to
Verilog [48].

Some Ports are Linear but Some are More Linear Than Others

One aspect we found interesting is that CirQTS performs more finegrained resource tracking
for inputting n-dimensional bit-vectors when compared to Verilator. Although Verilator can
identify unused inputs in designs, for logic and bit-vectors, it does not consistently report
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unused inputs for n-dimensional bit-vectors. Consider, for example, the following illustrative
netlists presented in Figure 18. The netlist within Figure 18a is caught by Verilator as the
output port (out) is not fully used. The netlist within Figure 18b is not caught by Verilator
even though the input port (bc) is not fully used.

module Example(output logic[1:0][1:0] out, input logic a,b);

and n1(out[0][1],a,b);

endmodule;
(a) Caught by Verilator.
module Example(output logic out, input logic[1:0][1:0] bc);

and n1(out, bc[0][1], bc[1][0]);

endmodule;
(b) Not Caught by Verilator.

Figure 18 Illustrative Netlists with sparsly used input and output ports.

We noted the potential discrepancy in Section 4.3 when discussing the stopping condition,
that is when and how we check for linear usage. Such difference is because unused signals can
be safely removed from the design. Specifically, inputting ports can be left unused if they are
never connected to anything else in the entire design, and module outputs need to be driven
as they could potentially be used later in the design to drive another part of the design.

Such differences in granularity of reporting between CirQTS and Verilator does raise
interesting questions about the semantics (veracity) of linear wiring. Whilst outputting ports
must be linear in usage, inputting ports are affine. Linear usage restrictions are incredibly
restrictive, terms must be used exactly once. In certain circuit designs it is okay to leave
the input of a circuit dangling. Perhaps our quantitative type-system requires fine-tuning to
ensure that we are affine for inputs, but linear for outputs, or even gradations to specify how
much a signal must be used as seen in Granule? Although we could also extend our syntax
to support “noops” primitives that consumes purposefully dangling wires. . . . That being
said, such allowed dangling is very much a behavioural aspect that requires more information
that we do not presently give in the type-system about the intended behaviour being realised.
Our use of quantitative typing is purely structural and not behavioural. More descriptive
behavioural typing is required, and that is a different kettle of fish entirely.

8 Related Work

Section 4 discussed the limitations of modelling linear wiring in existing QTS , and mentioned
that Verilator performs an extrinsic graph-based check. This section looks to the wider world
of HDL design and verification, and where our work resides.

8.1 Formal Models of Verilog
There have been several attempts at verifying the behaviour of Verilog designs [28, 31,
26]. Many of these works are limited by looking at the behaviour of modules in isolation
and not their composition. CirQTS complements these attempts by providing a formal
account for wiring. Integrating our type-system into existing behavioural semantics would
be advantageous.
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8.2 BlueSpecVerilog
Verilog-like languages view hardware in the traditional sense of wiring up boxes/gates that
communicate concurrently. BlueSpecVerilog (BSV ) [32] takes a different route by allowing
designers to take a slightly higher-level view of hardware and describe circuits as atomic
actions on stateful elements i.e. registers. BSV builds upon SystemVerilog with strong types
and known techniques lifted from the well-known functional language Haskell. Kami and
Kôika are two rule-based hardware description languages that capture core behavioural
semantics of BSV [11, 8]. Both languages are presented as EDSLs written in the Coq
Theorem Prover. Our approach to wire-safety can compliment existing work relating to BSV
by enforcing wiring decisions to be explicit rather than implicit. How our work intersects
practically is an area for future investigation.

8.3 High-Level Synthesis
Similar to the realisation of Kami and Kôika, High-Level Synthesis (HLS) typically approaches
hardware design as EDSLs in high-level languages such as Haskell and Scala that are then
synthesised into hardware descriptions i.e. netlists. Popular HDLs that take this approach are
PyRTL [13], Lava [20], Chisel [6], Delite [43], ReWrire [39], and C𝜆ash [42]. By embedding
their work in an existing general-purpose language these languages can take full advantage
of the host language’s eco-system to provide guarantees about program composition and
behaviour. For instance Wire Sorts [12] is an extension to PyRTL to reason about wirings.
Many of the approaches described here model circuit level designs as combinators, and treat
hardware components as functions that can be translated directly to SystemVerilog. Our
work intersects through provision of a means to account for how wires are generated and
used in the synthesised designs.

More interestingly are HDLs embedded in languages that are QTS aware e.g. Haskell. It
will be interesting to see how Linear Haskell can be used by the Lava and C𝜆ash to enforce
linear wiring.

8.4 Cava
Coq + Lava (Cava) is an industrial research project2 that looks at providing an easy to verify
HDL for “network-style” low level circuits, rather than higher level processor designs as
seen in BSV . Cava primarily looks to verify circuit behaviour. Much like Kami and Kôika,
Cava is an EDSL in the Coq Theorem Prover. Interestingly, Cava and Circuits/CirQTS
share similarities in that they both describe netlists. We differ in that Cava syntax is not
verilog-like when representing wiring but ours is.

8.5 Formal Models for High-Level Synthesis
We end our discussion of related work by looking at theoretical models for hardware. The
Geometry of Synthesis series [16, 19, 17, 15, 18] looks at leveraging Geometry of Interaction
style interpretation as a way to better understand the behavioural and structural aspects of
hardware design. Especially, they target a HLS combined with category theory to better
tell the synthesis story. Fortunately, existing work (Section 8.1) has looked at the synthesis
story for Verilog. We have not explored these stories to include QTS , we have short-circuited
this story by jumping straight to the end. That being said we are, however, interested in
exploring how our QTS can be included.

2 https://project-oak.github.io/silveroak/

ECOOP 2023

https://project-oak.github.io/silveroak/


8:24 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

9 Conclusion

CirQTS demonstrates that quantitative typing, specifically, the idea of linearity, is not just
for general purpose programming languages. We can use fancy types to be reason about
hardware design. With Verilog being so integral to hardware design, our efforts at formal
verification (through typing) of the language itself has helped move existing extrinsic checks
(as performed by static analyses and simulation, and also caught during synthesis) directly
into the type-system, and become an integral part of the language itself. With the correct
type-system, errors that were once caught late in the design process will now be caught
earlier helping to increase design productivity and enhance the trustworthiness of developed
designs.

A question remains though over what precise usage restrictions should be applied to
hardware terms, and presented to the system designer. Is it the case that all terms should be
restricted equally, or that some terms be restricted less equally than others? Moreover, we
have not required designers to annotate their designs. Would it be better to extend/embed
Verilog with linear annotations? If such restrictions are given, would some form of gradations
a la Granule on terms be better for specifying usage? These are all exciting open areas of
investigation.

A secondary area of interest is where we place usage information in CirQTS. We have
used usage annotations on binders, as is common in QTS . An alternative approach would be
to index types directly with their usage, rather than as usage annotations on binders. We
think this is an equally valid approach but will require further investigation over soundness
and suitability.

Regardless, we have demonstrated how to retrofit a sub-structural type-system onto
existing syntax modulo minor syntax elaboration. Retrofitting means that we do not need
new languages that existing designs must be ported to. However, looking at what syntax
changes are needed to make Verilog more conducive to linear wiring, or new primitives, is also
a worthy area of future investigation. Our retrofitting approach also opens up future work on
what else needs changing (in the type-system) when bringing quantitative typing back up the
synthesis to higher-levels of abstraction. A key aspect of which will be design composition
in the face of modules and interfaces, and the quasi-dependently-typed parameterisation of
modules and interfaces.

Finally, within Idris2 the none-one-tonne rig [30] provides a distinction between code
available at runtime (1, 𝜔) and its usage, and code only available at compiletime (0). We
have used elements of QTT to reason about wire usage, but not their movement through the
fourth dimension: time. Whereas we think of a program’s journey as going first through the
compiletime and then the runtime, SystemVerilog is a language where designs will journey
through many more “times”: design, testing, simulation, synthesis, placement & routing,
and execution. A fascinating area of investigation would be to see if QTT , or QTT -like
structures, can help to better reason about terms as they traverse through the many times
of SystemVerilog. Can terms be stratified according to when in time they are expected to
be? We hope so!
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