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Abstract
In an influential paper, Linial and Shraibman (STOC ’07) introduced the factorization norm as a
powerful tool for proving lower bounds against randomized and quantum communication complexities.
They showed that the logarithm of the approximate γ2-factorization norm is a lower bound for these
parameters and asked whether a stronger lower bound that replaces approximate γ2 norm with the
γ2 norm holds.

We answer the question of Linial and Shraibman in the negative by exhibiting a 2n × 2n Boolean
matrix with γ2 norm 2Ω(n) and randomized communication complexity O(log n).

As a corollary, we recover the recent result of Chattopadhyay, Lovett, and Vinyals (CCC ’19) that
deterministic protocols with access to an Equality oracle are exponentially weaker than (one-sided
error) randomized protocols. In fact, as a stronger consequence, our result implies an exponential
separation between the power of unambiguous nondeterministic protocols with access to Equality
oracle and (one-sided error) randomized protocols, which answers a question of Pitassi, Shirley, and
Shraibman (ITSC ’23).

Our result also implies a conjecture of Sherif (Ph.D. thesis) that the γ2 norm of the Integer Inner
Product function (IIP) in dimension 3 or higher is exponential in its input size.
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1 Introduction

The γ2-factorization norm is an important notion of matrix complexity that was initially
developed in Banach Space theory. In an influential paper, Linial and Shraibman [12]
introduced this norm to communication complexity. Subsequently, the factorization norm
and its approximate version found numerous applications in communication complexity and
other adjacent areas such as discrepancy theory [13] and differential privacy [14, 3, 7].

▶ Definition 1 (γ2-factorization norm). The γ2 norm of a real matrix A is

∥A∥γ2 := min
X,Y :A=XY

∥X∥row∥Y ∥col,

where ∥X∥row and ∥Y ∥col denote the largest ℓ2-norm of a row in X and the largest ℓ2 norm
of a column in Y , respectively.
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1:2 Separation of the Factorization Norm and Randomized Communication Complexity

▶ Definition 2 (Approximate γ2 norm). The approximate γ2 norm of A ∈ Rk×ℓ with error ϵ,
denoted by γ̃ϵ

2(A), is the minimum ∥B∥γ2 over all matrices B ∈ Rk×ℓ with ∥A − B∥∞ ≤ ϵ.

We use the notation γ̃ϵ
2(·) to emphasize that unlike the γ2 norm ∥ · ∥γ2 , the approximate γ2

norm is not a norm. The choice of the error parameter ϵ is mostly unimportant in the context
of communication complexity. Indeed, a constant-factor reduction in the error parameter
increases log γ̃ϵ

2(A) by a constant factor [1, Lemma 21]. Therefore, we use the standard
choice of ϵ = 1/3 and write γ̃2 for γ̃

1/3
2 . Both of the quantities γ̃2 and γ2 are polynomial-time

computable using semi-definite programming [12].
Linial and Shraibman [12] showed that log γ̃2(A) provides a lower bound on the public-coin

randomized communication complexity R(A) and the quantum communication complexity
with shared entanglement Q∗(A):

log γ̃2(A) ≲ Q∗(A) ≤ R(A). (1)

These lower bounds subsume the most well-known lower bounds on randomized and quantum
communication complexity, such as discrepancy, approximate trace norm [17], and entropy
of singular values [9].

Linial and Shraibman [12] state that “they cannot rule out the intriguing possibility that
the first inequality in Equation (1) is a tip of something bigger and randomized communication
complexity and the quantum communication complexity with shared entanglement are in
fact polynomially equivalent to log ∥A∥γ2 .”

▶ Question 1 ([12]). Is log ∥A∥γ2 ≤ Õ(R(A)) for every a Boolean matrix A : {0, 1}n ×
{0, 1}n → {0, 1}?

Here, the notation Õ(·) hides a factor of polylog(n), which is common in communication
complexity since the communication cost of polylog(n) is considered efficient.

Another motivation for Question 1 comes from the following observation. It is well-known
that the Equality function eq : {0, 1}n × {0, 1}n has R(eq) = O(1) (see e.g. [10]) but its
rank over the reals is 2n, and therefore eq witnesses the strongest possible separation (O(1)
versus 2n) between R and rank. On the other hand, as mentioned before, the γ2 norm can
be viewed as a smooth analogue of rank. However, the γ2 norm of the Equality function is 1,
and therefore, one naturally wonders whether there is a strong separation between R(·) and
the γ2 norm.

The purpose of the present paper is to give a strong negative answer to Question 1. In
fact, we work with a stronger parameter of R1

0(A) instead of R(A). This parameter is the
minimum cost of a one-sided public-coin randomized protocol. The protocol is not allowed
to have any error on 1 entries of A, but on the 0 entries, it can have a probability of error as
big as 1/3.

1.1 Main Result
Our main result establishes a strong separation between the γ2 norm and R1

0.

▶ Theorem 3 (Main Theorem). There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1}
with ∥M∥γ2 ≥ 2n/32 and R1

0(M) ≤ O(log n).

The construction in Theorem 3 is based on the point-line incidence matrix over the
integers. For integers 1 ≤ q ≤ p, let PL be the qp × qp Boolean matrix whose rows and
columns are indexed by the elements of [q] × {0, . . . , p − 1} and its entries are given as
PL[(x, x′), (y, y′)] = 1 iff xy + x′ = y′. We also define a variant of PL over Zp to simplify the
analysis. The matrix PLZp

is the qp×qp Boolean matrix whose rows and columns are indexed
by [q] × Zp and its entries are given as PLZp

[(x, x′), (y, y′)] = 1 iff xy + x′ ≡ y′ mod p.
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Recall that the trace norm of a matrix is the sum of its singular values (see Section 2.1).The-
orem 3 is immediate from the following theorem, which is our main technical contribution.

▶ Theorem 4 (Technical Statement of the Main Theorem). Let p be a prime.
(i) For 1 ≤ q ≤ √

p, we have

∥PLZp
∥Tr = Ω(pq9/8) and ∥PLZp

∥γ2 = Ω(q1/8) and R1
0(PLZp

) = O(log log p).

(ii) For 1 ≤ q ≤ p1/3, we have

∥PL∥Tr = Ω(pq9/8) and ∥PL∥γ2 = Ω(q1/8) and R1
0(PL) = O(log log p).

▶ Remark 5. The condition 1 ≤ q ≤ p1/3 in (ii) allows us to deduce (ii) from (i) since
∥PLZp

− PL∥Tr = o(pq9/8) in this range (see Lemma 15). On the other hand, the condition
1 ≤ q ≤ √

p in (i) is to guarantee R1
0(PLZp

) = O(log log p). Indeed, unlike PL, whose
randomized communication complexity is always small, the randomized communication
complexity of PLZp

is large when q is close to p. For example, for q = p, this follows from the
fact that all nontrivial eigenvalues of PLZp are at most

√
3p [19].

1.2 Consequences of the Main Theorem
As an immediate consequence, combining Theorem 3 with Equation (1) implies an exponential
separation between γ̃2(·) and ∥ · ∥γ2 . This corollary answers a question of Pitassi, Shirley,
and Shraibman [16, Open Question 3].

▶ Corollary 6. There is a Boolean matrix M : {0, 1}n ×{0, 1}n → {0, 1} with ∥M∥γ2 ≥ 2n/32

and γ̃2(M) ≤ O(poly(n)).

Another corollary of Theorem 3 concerns the deterministic communication complexity
with oracle access to the Equality function. We formally define this model in Section 2.2
and denote the corresponding complexity measure by Deq(·). The equality function, which
corresponds to the identity matrix, is the standard example of a problem with O(1) randomized
communication complexity but large deterministic communication complexity. This fact
makes Deq(·) an interesting complexity measure between randomized and deterministic
communication complexities.

log γ̃2(A) ≲ Q∗(A) ≤ R(A) ≲ Deq(A) ≤ D(A). (2)

Since the γ2 norm of the identity matrix is 1, it is not hard to see that [5, Proposition 3.1]
1
2 log ∥A∥γ2 ≤ Deq(A). (3)

In light of Equation (3), Theorem 3 implies the following.

▶ Corollary 7. There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1} with R1
0(M) ≤

O(log n) and Deq(M) = Ω(n).

The above corollary recovers the result of Chattopadhyay, Lovett, and Vinyals [2] separating
R and Deq. In fact, we obtain an exponential lower bound on a model stronger than Deq.
In complexity theory, unambiguous nondeterminism is similar to nondeterminism but with
the extra requirement that for every input, there is at most one accepting computational
path. Therefore, the power of unambiguous nondeterminism lies between determinism and
nondeterminism. For a Boolean matrix M , the unambiguous nondeterministic communication
complexity of M with access to an equality oracle is denoted by UPeq (see Section 2.2). It is
immediate that UPeq(·) ≤ Deq(·). Theorem 3 implies the following corollary, answering a
question of Pitassi, Shirley, and Shraibman [16, Open Question 2].

CCC 2023
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▶ Corollary 8. There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1} with R1
0(M) ≤

O(log n) and UPeq(M) = Ω(n).

The matrix PL that we consider in Theorem 4 is essentially a submatrix of the Integer Inner
Product matrix (IIP) used in the work of Chattopadhyay et al. [2]; however, the proof
technique here is entirely different.

▶ Definition 9. Let t ∈ N be a fixed constant. For a positive integer m = 2n, the Integer
Inner Product function IIPt : {−m, . . . , m}t × {−m, . . . , m}t → {0, 1} is defined as

IIPt[(x1, . . . , xt), (y1, . . . , yt)] = 1 iff x1y1 + . . . + xtyt = 0.

Since t is a fixed constant, the input size of IIPt is Θ(n)-bits as a communication problem.
Chattopadhyay, Lovett, and Vinyals proved that R1

0(IIPt) = O(log n), and Deq(IIPt) = Ω(n)
for t ≥ 6.

Later, Sherif [18] conjectured ∥IIPt∥γ2 = 2Ω(n) for t ≥ 6. Since the matrix PL is a
submatrix of IIP3, as a corollary of Theorem 4, we answer Sherif’s question in the affirmative.

▶ Corollary 10. For t ≥ 3,

∥IIPt∥γ2 = 2Ω(n).

Proof. Choose n such that 2n−1 ≤ p ≤ 2n and q = ⌈p1/3⌉. From Theorem 4, we obtain PL
as a submatrix of IIP3 with m = 2n such that ∥PL∥γ2 = Ω(2n/32). Since the γ2 norm cannot
increase when restricting to a submatrix, we conclude that

∥IIPt∥γ2 ≥ ∥IIP3∥γ2 ≥ ∥PL∥γ2 = 2Ω(n). ◀

▶ Remark 11. The condition t ≥ 3 is necessary as ∥IIP2∥γ2 = O(1). To prove the latter, we
use Equation (3) and show Deq(IIP2) = O(1). Note that if x1y1 + x2y2 = 0 and y1, x2 ̸= 0,
then x1

x2
= − y2

y1
. To check this equation, Alice and Bob can call the Equality oracle on

rational inputs x1
x2

and − y2
y1

.

1.3 Connections to Fourier Algebra Norm
The sum of the absolute values of the Fourier coefficients of a function f : Zn

2 → R is called
the algebra norm of f :

∥f∥A := ∥f̂∥1 =
∑

a∈Zn
2

|f̂(a)|.

For any error parameter ϵ ∈ (0, 1/2), the ϵ-approximate algebra norm of f : Zn
2 → {0, 1} is

Ãϵ(f) := inf{∥g∥A : ∥f − g∥∞ ≤ ϵ}.

It is possible to use the xor operation to lift these norms to the γ2 norm and the approximate
γ2 norm [12]: for the matrix F : Zn

2 × Zn
2 → {0, 1} defined by F (x, y) = f(x ⊕ y), we have

∥f∥A = ∥F∥γ2 and Ãϵ(f) = γ̃ϵ
2(F ).

The communication complexity measures of F are related to the parity query complexity
measures of f . For example, we have

R(F ) ≤ 2 rdt⊕(f),

where rdt⊕(f) denotes the randomized parity decision tree complexity of f (see [5]).
Therefore, the class of xor-lifted Boolean functions provide a rich collection of matrices

for which the questions about the factorization norm reduce to simpler questions about the
Fourier algebra norm. In this setting, one can ask the analog of Question 1.
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▶ Question 2 (Open Question). Is log ∥f∥A = Õ(rdt⊕(f)) for every Boolean function
f : Zn

2 → {0, 1}?

By the above discussion, if we find a counter-example f to Question 2, then F (x, y) :=
f(x ⊕ y) would be a counter-example to Question 1. However, Question 2 remains open.
Indeed, our counter-example to Question 1 is not an xor-lift.

Finally, let us comment on the stronger versions of Question 1 and Question 2, where we
do not tolerate a polylog(n) factor, i.e., replace Õ(·) with O(·). Let B(n, r) ⊆ {0, 1}n denote
the Hamming ball of radius r around the origin, i.e.,

B(n, r) :=
{

x ∈ {0, 1}n :
n∑

i=1
xi ≤ r

}
.

Note that the lifted function Fn,r(x, y) = 1B(n,r)(x⊕y) corresponds to the hamming distance
problem, whose communication complexity is well-understood. We have [8]

rdt⊕(1B(n,r)) ≤ O(r log r) and R(Fn,r) ≤ O(r log r).

On the other hand, for r ≤ n/2, the following bounds are known [5, Lemma 2.15] about the
Fourier algebra norm of 1B(n,r):

e−r

√√√√ r∑
i=0

(
n

i

)
≤

∥∥1B(n,r)
∥∥

A
= ∥Fn,r∥γ2 ≤

√√√√ r∑
i=0

(
n

i

)
.

Therefore, in the context of Question 2 and Question 1, taking r = O(1) provides examples
of f : {0, 1}n → {0, 1} and F : {0, 1}n × {0, 1}n → {0, 1} with

rdt⊕(f) = O(1) and log ∥f∥A = Θ(log n),

and

R(F ) = O(1) and log ∥F∥γ2 = Θ(log n).

Paper Organization

In Section 2, we discuss the preliminaries of matrix norms, communication complexity, and
Fourier analysis. We give a brief overview of the proof strategy in Section 3. We present
the proof of Theorem 4 in Sections 4 and 5. Finally, we discuss several open problems in
Section 6.

2 Notations and Preliminaries

For a positive integer k, we denote [k] := {1, . . . , k}. We use the shorthand notations a ≡p b

to denote a ≡ b mod p. For a set S, we use the indicator function notation 1S , which is
evaluated to 1 on x if x ∈ S and 0 otherwise. All the logarithms in this paper are in base 2.

We adopt the standard computer science asymptotic notations and use the tilde asymptotic
notations to hide poly-logarithmic factors. We write f ≲ g to denote f(n) = O(g(n)).

For a vector v ∈ Ck, we denote the ℓ2-norm of v by ∥v∥2 =
√∑

i |vi|2. We denote the
all-1 matrix by J.

CCC 2023
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2.1 Matrix Norms
For a complex-valued matrix A ∈ Ck×ℓ, we denote the singular values of A by

σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(k,ℓ)(A) ≥ 0.

We primarily work with the matrix norm family of Schatten norms. For p ∈ [1, ∞], the
Schatten-p norm of a matrix is the ℓp norm of the vector of its singular values. The particular
cases of p = 1, 2, ∞ are frequently used, and these norms are commonly known as trace norm,
Frobenius norm, and spectral norm respectively:

∥A∥Tr = ∥A∥S1 =
∑

i

σi

∥A∥F = ∥A∥S2 =
√∑

i

σ2
i =

√∑
i,j

|Aij |2

∥A∥ = ∥A∥S∞ = σ1 = max
x∈Cℓ:∥x∥2=1

∥Ax∥2 = max
u∈Ck,v∈Cℓ

∥u∥2=∥v∥2=1

u∗Av

Viewing Schatten p-norm as the ℓp norm of the singular value vector, one can obtain
several useful properties inherited from ℓp norms. One such property is the monotonicity of
Schatten p-norm in p: ∥A∥Sp

≥ ∥A∥Sq
for 1 ≤ p < q ≤ ∞.

Similar to the case of ℓp norm, for p, q ∈ [1, ∞] with 1
p + 1

q = 1, the dual norm of ∥ · ∥Sp

is ∥ · ∥Sq
. With the inner product on the matrix space Ck×ℓ defined by ⟨A, B⟩ = Tr(A∗B) =∑

ij AijBij , the Schatten p-norm admits the following dual norm characterization:

∥A∥Sp = max
∥B∥Sq =1

|⟨A, B⟩|.

For the particular case of p = 1, this yields

|⟨A, B⟩| ≤ ∥A∥Tr∥B∥.

In particular, by setting B = A, we have

∥A∥2
F ≤ ∥A∥Tr∥A∥. (4)

Next, we discuss a reformulation of the γ2 norm in terms of the trace norm. As shown in
[11], for A ∈ Rk×ℓ, we have

∥A∥γ2 = max
u∈Rk,v∈Rℓ

∥u∥2=∥v∥2=1

∥A ◦ uvT ∥Tr.

Here ◦ denotes the Hadamard (or entrywise) product of two matrices: for B, C ∈ Rk×ℓ, their
product B ◦ C is the m × n matrix defined by [B ◦ C]ij = BijCij for all i, j. It follows from
the trace norm formulation of the γ2 norm that

∥A∥γ2 ≥ 1√
kℓ

∥A∥Tr. (5)

2.2 Communication Complexity
In the standard communication model, there are two parties and problems are modelled by
functions f : X × Y → {0, 1} on finite domains X , Y. The two parties receive x ∈ X and
y ∈ Y , respectively, and they exchange messages to compute f(x, y). We often interpret f as
a Boolean matrix indexed by (x, y) ∈ X × Y.
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For a given ϵ ∈ (0, 1/2), we denote by Rϵ(f), the randomized communication complexity
of f in the public-coin model with two-sided error ϵ > 0. The one-sided versions, R1

ϵ (f) and
R1

0,ϵ(f), restrict the error to be one-sided: R1
ϵ(f) does not allow any error on the inputs in

f−1(0). Similarly, R1
0,ϵ(f) does not allow any error on the inputs in f−1(1). We refer the

reader to [10] for the formal definitions. We use the canonical choice of ϵ = 1/3 and drop ϵ

in the notations in such cases. This choice is without loss of generality since the probability
of error can be reduced to any constant ϵ′ > 0 by repeating the protocol a constant number
of times and outputting the majority.

As mentioned, approximate norms are useful tools for studying communication complexity.
The following well-known inequalities [6, Proposition A.2] connect approximate γ2 norm with
randomized communication complexity.

log γ̃2(A) ≤ R(A) ≤ O(γ̃2(A)2). (6)

Next, we define the deterministic communication complexity with access to an equality
oracle. In this model, a protocol computing a Boolean matrix AX ×Y corresponds to a binary
tree. Each non-leaf node v in the tree is labelled with two functions av : X → Z and
bv : Y → Z for a finite set Z. Such a node v corresponds to the query eq(av(x), bv(y)),
which returns 1 if av(x) = bv(y) and 0 otherwise. Every input (x, y) naturally corresponds
to a path from the tree’s root to a leaf, and the leaf must be labelled with the correct value
A(x, y). The cost of the protocol is the depth of the tree. The deterministic communication
complexity of the matrix A with access to an equality oracle, denoted by Deq(A), is the
smallest depth of such a protocol for A.

Consider a node v in an equality-oracle deterministic communication protocol as described
above. Note that the matrix Bv(x, y) := eq(av(x), bv(y)) consists of a collection of all-1
submatrices with rows and columns disjoint. Such matrices are dubbed blocky matrices
by [5]. The answer to the query at the node v will inform the parties whether the input
(x, y) belongs to the support of Bv or the support of J − Bv.

Consider a leaf ℓ of the protocol tree where the protocol outputs 1, and let v1, . . . , vd = ℓ

be the set of the nodes on the corresponding path from the root. The inputs that lead the
protocol to reach ℓ are the 1 entries of the matrix Mℓ := Cv1 ◦ . . . ◦ Cvd−1 with Cvi

= Bvi
or

Cvi
= J−Bvi

according to the outcome of the query at vi. Each matrix Cvi
is either a blocky

matrix or the difference of two blocky matrices. Since the γ2 norm of a Blocky matrix is at most
1, it follows that ∥Cvi

∥γ2 ≤ 2. Since γ2 is an algebra norm (i.e., ∥X ◦ Y ∥γ2 ≤ ∥X∥γ2∥Y ∥γ2),
we have ∥Mℓ∥γ2 ≤ 2d. Note that A =

∑
Mℓ where the sum is over all the leaves where the

protocol outputs 1. Hence,

∥A∥γ2 ≤ 4d. (7)

An unambiguous nondeterministic protocol with access to equality oracle is a collection of
2m deterministic equality-oracle protocols, each with depth at most d, such that on every
input, at most one of them returns 1. The cost of such a protocol is m + d. Consider such a
protocol for a Boolean matrix A, and let A1, . . . , A2m be the Boolean matrices computed
by the 2m deterministic equality-oracle protocols. We must have A =

∑2m

i=1 Ai, and in
particular, by Equation (7), we have

∥A∥γ2 ≤
2m∑
i=1

∥Ai∥γ2 ≤ 2m × 4d = 2m+2d.

We denote by UPeq(A), the smallest cost of an unambiguous nondeterministic equality-
oracle protocol for A. We conclude

1
2 log ∥A∥γ2 ≤ UPeq(A) ≤ Deq(A). (8)

CCC 2023
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2.3 Fourier Analysis of Zk
p

This section gives a basic overview of Fourier analysis on the finite Abelian group G := Zk
p

for p, k ∈ N. Consider the Hilbert space L2(G) with the inner product of two functions
f, g : G → C defined by

⟨f, g⟩ =
∑
x∈G

f(x)g(x).

The inner product defines the norm ∥f∥2 =
√

⟨f, f⟩.
Consider the principal p-th root of unity ω := e2πi/p. For every element a = (a1, . . . , ak) ∈

Zk
p, define the corresponding Fourier character χa : G → C as

χa(x) = ω

∑k

j=1
ajxj .

The Fourier characters form an orthogonal basis for L2(G):

⟨χa, χb⟩ =
∑
x∈G

χa−b(x) =
{

|G| if a = b

0 otherwise
.

Therefore, every function f : G → C has a unique expansion

f =
∑
a∈G

f̂(a)χa,

where

f̂(a) = 1
|G|

⟨f, χa⟩.

It follows from the orthogonality of the Fourier characters that for every f : G → C,∑
x∈G

|f(x)|2 = |G|
∑
a∈G

|f̂(a)|2. (9)

This identity is called Parseval’s identity.

3 Overview of the Proof of the Main Theorem

Let 1 ≤ q ≤ p, and let M be the ([q] × Zp) × ([q] × Zp) Boolean matrix defined as
M [(x, x′), (y, y′)] = 1 iff xy = x′ + y′. Note that M [(x, x′), (y, y′)] = PLZp

[(x, −x′), (y, y′)],
and thus M is just a row permutation of PLZp

. Therefore, ∥M∥Tr = ∥PLZp
∥Tr.

Let σ1 ≥ . . . ≥ σN be the singular values of M . Since M is a real symmetric matrix
and every row of M contains exactly q ones, the largest eigenvalue of M is σ1 = q, which
corresponds to the all-1 eigenvector. If M were a “pseudo-random” matrix in the sense that
all of its non-principal eigenvalues were small (i.e., σ2 < q1−ϵ), then one could easily show
that the trace norm of M is large. Indeed, the Frobenius norm of M is equal to√ ∑

(x,x′),(y,y′)

M [(x, x′), (y, y′)]2 =
√

qN,

therefore

∥M∥Tr ≥
N∑

i=2
σi ≥

∑N
i=2 σ2

i

σ2
= qN − q2

σ2
= Ω

(
qN

σ2

)
. (10)

However, we cannot expect M to be pseudo-random since pseudo-random matrices have
large randomized communication complexity and this is not the case for M .
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To prove a lower bound for ∥M∥Tr, there is nothing special about removing only the
largest singular value in Equation (10). One can take any subspace W ⊆ RN and apply
Equation (4) to the orthogonal projection of M to W . More precisely, let PW : RN → RN

be the orthogonal projection from RN to W . By Equation (4), we have

∥M∥Tr ≥ ∥P ∗
W ∥∥M∥Tr∥PW ∥ ≥ ∥P ∗

W MPW ∥Tr ≥ ∥P ∗
W MPW ∥2

F

∥P ∗
W MPW ∥

.

Taking W as the orthogonal complement of the principal eigenvector of M yields Equation (10).
The natural choice to strengthen this lower bound is to take W as the span of the eigenvectors
of M that correspond to small eigenvalues. Dropping the first k − 1 largest eigenvalues will

result in the lower bound ∥M∥Tr ≥
∑N

i=k
σ2

k

σk
. If a non-negligible mass of ∥M∥2

F is on the tail∑N
i=k σ2

k for some σk < q1−ϵ, then this approach provides a strong lower bound for ∥M∥Tr.
Unfortunately, the direct application of this method requires determining the eigenvectors

and eigenvalues of M , which seems difficult. To circumvent this difficult task, we employ
tools from Fourier analysis and show that there is a linear span of some Fourier characters
W ⊆ RN such that ∥P ∗

W MPW ∥F = Ω(∥M∥F ) and ∥P ∗
W MPW ∥ is small.

4 Randomized Communication Complexities of PL and PLZp

We divide the proof of Theorem 4 into two sections. In this section, we prove the upper
bounds of Theorem 4 on R1

0(PLZp
) and R1

0(PL).

▶ Proposition 12. For q ≤ √
p, we have R1

0(PLZp) = O(log log p). For every 1 ≤ q ≤ p, we
have R1

0(PL) = O(log log p).

Proof. We describe a randomized protocol that solves PLZp with cost O(log log p) that never
makes mistakes on inputs where PLZp

takes value 1. The same protocol also solves PL.
Suppose Alice and Bob have inputs (x, x′), (y, y′) ∈ [q] × Zp respectively. Since q ≤ √

p,
we have

[xy + x′ ≡p y′] ⇐⇒ [xy + x′ = y′] ∨ [xy + x′ = y′ + p].

In the rest of the proof, we show that each of the two equations on the right-hand side
can be verified with a protocol of cost at most O(log log p) and error at most 1/6, which then
implies a protocol of cost O(log log p) and error at most 1/3 for the matrix PLZp

. Suppose
Alice and Bob want to verify whether xy + x′ = y′; the case for xy + x′ = y′ + p is similar.
Alice picks a uniformly random prime r from the set of the first ⌈6 log(2p)⌉ primes P and
sends it to Bob. Alice and Bob exchange the values (x mod r), (x′ mod r), (y mod r), (y′

mod r) and check whether

(x mod r)(y mod r) + (x′ mod r) ≡r (y′ mod r),

or equivalently

xy + x′ ≡r y′.

The cost of this communication is at most O(log r) = O(log log p). Next, we show that the
probability of error (over the choice of r) is at most 1/6. Observe that an error can only
happen when xy + x′ ̸= y′ but xy + x′ ≡r y′. We want to show that

Pr
r∈P

[[xy + x′ ̸= y′] ∧ [xy + x′ ≡r y′]] ≤ 1
6 .
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Let B ⊆ P be the set of bad choices for r, namely

B = {r ∈ P : [xy + x′ ̸= y′] ∧ [xy + x′ ≡r y′]}.

Suppose towards a contradiction that |B| > |P|
6 . Define

m :=
∏
r∈B

r ≥ 2|B| > 2p.

Note that for all r ∈ B, we have xy + x′ ≡r y′. By the Chinese remainder theorem, we have
xy + x′ ≡m y′. This implies the contradiction that xy + x′ = y′ because 0 ≤ xy + x′, y′ <

2p < m. ◀

▶ Remark 13. Note that the protocol used in the proof Proposition 12 is in fact a private-coin
protocol, so the bounds in Proposition 12 hold in both private-coin and public-coin models.
▶ Remark 14. Combining Proposition 12 with Equation (6), we obtain

γ̃2(PLZp
) ≤ logO(1)(N). (11)

5 Trace Norms of PL and PLZp

This section is dedicated to proving the lower bounds on ∥PLZp
∥Tr and ∥PL∥Tr of Theorem 4.

The lower bounds on ∥PLZp
∥γ2 and ∥PL∥γ2 immediately follow from Equation (5).

▶ Lemma 15. For 1 ≤ q ≤ p, we have

∥PL − PLZp
∥Tr ≤ q4.

In particular, if q ≤ p1/3, then

∥PL − PLZp∥Tr = O(pq).

Proof. For (x, x′), (y, y′) ∈ [q] × {0, . . . , p − 1}, we have

PLZp [(x, x′), (y, y′)] = 1 iff [xy + x′ = y′] ∨ [xy + x′ = y′ + p].

Therefore, we can write PLZp
= PL + A, where A is defined as

A[(x, x′), (y, y′)] = 1 iff xy + x′ = y′ + p.

Because xy ≤ q2 and x′ < p, xy + x′ = y′ + p implies y′ < q2. Therefore, A has at most q4

non-zero entries. Consequently ∥A∥Tr ≤ q4. ◀

By Lemma 15, to complete the proof of Theorem 4, it suffices to prove ∥PLZp
∥Tr = Ω(pq9/8).

Since we want to apply Fourier analysis to study the trace norm of PLZp
, it is more convenient

to extend the rows and columns of PLZp
to G := Z2

p by adding all-zero rows and columns.
That is, we consider M : G × G → {0, 1}, defined as

M [(x, x′), (y, y′)] =
{

1 if x, y ∈ [q] and xy ≡p x′ + y′

0 otherwise
.

This definition of M is slightly different from the one used in the proof overview,
but all of the properties we want still hold. For x, y ∈ [q], we have M [(x, x′), (y, y′)] =
PLZp [(x, −x′), (y, y′)], and M is zero on the other entries. In other words, M is obtained
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from PLZp by first permuting the rows according to the change of variable x′ → −x′, then
adding several all-zero rows and columns. These operations do not change the matrix’s trace,
Frobenius, and spectral norm, and in particular,

∥PLZp
∥Tr = ∥M∥Tr.

For (α, β) ∈ G, let χα,β : G → C denote the corresponding character in Ĝ, defined as
χα,β : (x, x′) 7→ ωαx+βx′ where ω = e2πi/p.

Let S ⊆ Zp, and πS be the G × G matrix corresponding to the orthogonal projection
from L2(G) to the span of χα,β for (α, β) ∈ Zp × S. That is, for f : G → C,

πSf =
∑

α∈Zp

∑
β∈S

f̂(α, β)χα,β .

Denote MS := π∗
SMπS . Since πS is an orthogonal projection, we have πS = π∗

S and
∥πS∥ = ∥π∗

S∥ ≤ 1, and therefore,

∥MS∥Tr = ∥π∗
SMπS∥Tr ≤ ∥π∗

S∥∥M∥Tr∥πS∥ ≤ ∥M∥Tr.

Hence, we can use Equation (4) to obtain a lower bound for ∥M∥Tr:

∥M∥Tr ≥ ∥MS∥Tr ≥ ∥MS∥2
F

∥MS∥
.

First, we determine the value of ∥MS∥F .

▶ Lemma 16. For any S ⊆ Zp, ∥MS∥F = q
√

|S ∩ (−S)|.

Proof. Since 1√
|G|

χα,β ’s form an orthonormal basis for L2(G), for every matrix B ∈ CG×G,
we have

∥B∥2
F = 1

|G|2
∑

(α,β),(α′,β′)∈G

|⟨Bχα,β , χα′,β′⟩|2. (12)

For every α, α′, β, β′ ∈ Zp, we have

⟨MSχα,β , χα′,β′⟩ = ⟨MπSχα,β , πSχα′,β′⟩ =
{

⟨Mχα,β , χα′,β′⟩ if β, β′ ∈ S

0 otherwise

and therefore, by Equation (12),

∥MS∥2
F = 1

|G|2
∑

(α,β),(α′,β′)∈Zp×S

|⟨Mχα,β , χα′,β′⟩|2. (13)

For β ∈ S, define the matrix Fβ ∈ Cp×p as

Fβ(α, α′) =
∑

x,y∈[q]

ωαx+α′y+βxy. (14)

Let α, α′ ∈ Zp and β, β′ ∈ S. We have
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⟨Mχα,β , χα′,β′⟩ =
∑

x,y∈Zp

∑
x′,y′∈Zp

M [(y, y′), (x, x′)]χα,β(x, x′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
x′,y′∈Zp

M [(y, y′), (x, x′)]χα,β(x, x′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
y′∈Zp

χα,β(x, xy − y′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
y′∈Zp

ωαx+β(xy−y′)−α′y−β′y′

=
∑

x,y∈[q]

ωαx−α′y+βxy
∑

y′∈Zp

ω−(β+β′)y′

=
{

pFβ(α, −α′) if β = −β′

0 otherwise
.

Combining this with Equation (13) gives

∥MS∥2
F = p2

|G|2
∑

α,α′∈Zp

∑
β∈S∩(−S)

|Fβ(α, −α′)|2 = 1
|G|

∑
β∈S∩(−S)

∥Fβ∥2
F . (15)

Furthermore,

∥Fβ∥2
F =

∑
α,α′∈Zp

∑
x,y∈[q]

ωαx+α′y+βxy
∑

x′,y′∈[q]

ω−(αx′+α′y′+βx′y′)

=
∑

α,α′∈Zp

∑
x,y,x′,y′∈[q]

ωα(x−x′)+α′(y−y′)+β(xy−x′y′)

=
∑

x,y,x′,y′∈[q]

ωβ(xy−x′y′)
∑

α,α′∈Zp

ωα(x−x′)+α′(y−y′).

The inner sum is zero unless x = x′ and y = y′, in which case the inner sum is evaluated to
p2. Thus, for every β, we have ∥Fβ∥2

F = q2p2. We conclude that

∥MS∥2
F = |S ∩ (−S)|q2p2

|G|
= q2|S ∩ (−S)|. ◀

Next, we turn to the upper bound of the spectral norm of MS .

▶ Lemma 17. There is a set S ⊆ Zp, closed under negation and of size |S| ≥ p/2, such that
∥MS∥ ≤ 2q7/8.

Proof. We have

∥MS∥ = max
f,g:G→C

∥f∥2=∥g∥2=1

⟨MSf, g⟩ = max
f,g:G→C

∥f∥2=∥g∥2=1

⟨MπSf, πSg⟩.

Define f̂β , ĝβ ∈ Cp as f̂β(α) := f̂(α, β) and ĝβ(α) := ĝ(−α, −β) for each α ∈ Zp. Recalling
the definition of Fβ in Equation (14), we have
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⟨MπSf, πSg⟩ =
∑

β,β′∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(α′, β′)⟨Mχα,β , χα′,β′⟩

=
∑

β∈S∩(−S)

∑
α,α′∈Zp

f̂(α, β)ĝ(α′, −β)⟨Mχα,β , χα′,−β⟩

= p
∑
β∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(α′, −β)Fβ(α, −α′)

= p
∑
β∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(−α′, −β)Fβ(α, α′)

= p
∑
β∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(−α′, −β)Fβ(α′, α)

= p
∑
β∈S

∑
α,α′∈Zp

f̂β(α)ĝβ(α′)Fβ(α′, α)

= p
∑
β∈S

⟨Fβ f̂β , ĝβ⟩,

where at the third equality, we used the negation-closed property of S. By the definition of
spectral norm and Cauchy-Schwarz inequality,

|⟨MπSf, πSg⟩| ≤ p
∑
β∈S

|⟨Fβ f̂β , ĝβ⟩| ≤ p
∑
β∈S

∥Fβ∥∥f̂β∥2∥ĝβ∥2

≤ p max
β∈S

∥Fβ∥
√∑

β∈S

∥f̂β∥2
2

√∑
β∈S

∥ĝβ∥2
2 ≤ p

|G|
max
β∈S

∥Fβ∥,

where the last inequality follows from Parseval’s identity Equation (9) and ∥f∥2 = ∥g∥2 = 1:∑
β∈S

∥f̂β∥2
2 ≤

∑
β∈Zp

∥f̂β∥2
2 =

∑
(α,β)∈G

|f̂(α, β)|2 = 1
|G|

∑
(x,y)∈G

|f(x, y)|2 = 1
|G|

.

Next, we upper-bound the spectral norm of Fβ using the 4th moment of singular values:

∥Fβ∥4 ≤ ∥Fβ∥4
S4

= Tr
(
FβF ∗

β FβF ∗
β

)
=

∑
α1,α′

1,α2,α′
2∈Zp

Fβ(α1, α′
1)Fβ(α1, α′

2)Fβ(α2, α′
2)Fβ(α2, α′

1)

=
∑

α1,α′
1

α2,α′
2

∑
x1,...,x4
y1,...,y4

ωα1(x1−x2)+α2(x3−x4)+α′
1(y1−y4)+α′

2(y3−y2)ωβ(x1y1−x2y2+x3y3−x4y4)

=
∑

x1,...,x4
y1,...,y4

∑
α1,α′

1
α2,α′

2

ωα1(x1−x2)+α2(x3−x4)+α′
1(y1−y4)+α′

2(y3−y2)ωβ(x1y1−x2y2+x3y3−x4y4).

The inner sum is zero unless x1 = x2, x3 = x4, y1 = y4 and y2 = y3. This simplifies ∥Fβ∥4
S4

to

∥Fβ∥4
S4

= p4
∑

x,y,x′,y′∈[q]

ωβ(xy−xy′+x′y′−x′y) = p4r(β),

where

r(β) :=
∑

u⃗∈[q]4

ωβϕ(u⃗) with ϕ(u1, u2, u3, u4) := u1u2 − u1u4 + u3u4 − u3u2.
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For every z ∈ Zp and y ∈ Zp \ {0}, we have Prx∈[q][xy ≡p z] ∈ {0, 1/q}. Note that the
event {ϕ(u⃗) ≡p ϕ(v⃗)} is equivalent to {u1(u2 − u4) ≡p z}, where z = v1v2 − v1v4 + v3v4 −
v3v2 − u3u4 + u3u2. Consider uniform independent random variables u⃗, v⃗ ∈ [q]4. Conditioned
on u2 ≠ u4, which happens with probability 1 − 1/q, the probability that u1(u2 − u4) ≡p z

is at most 1/q. Therefore,

Pr[ϕ(u⃗) ≡p ϕ(v⃗)] ≤
(

1 − 1
q

)
× 1

q
+ 1

q
× 1 ≤ 2

q
,

implying that |{(u⃗, v⃗) : ϕ(u⃗) ≡p ϕ(v⃗)}| ≤ 2q7. Hence

E
β

|r(β)|2 = E
β

 ∑
u⃗,v⃗∈[q4]

ωβ(ϕ(u⃗)−ϕ(v⃗))

 =
∑
u⃗,v⃗

E
β

[
ωβ(ϕ(u⃗)−ϕ(v⃗))

]
=

∑
u⃗,v⃗

1{ϕ(u⃗)≡pϕ(v⃗)} ≤ 2q7.

From the above inequality, for t := 2q7/2, by Markov’s inequality we have

Pr
β

[|r(β)| ≥ t] ≤ 2q7

t2 = 1
2 .

As βϕ(u1, u2, u3, u4) = −βϕ(u1, u4, u3, u2), we have r(β) = r(−β) for any β, and so

S := {β ∈ Zp : |r(β)| < t}

is a subset of Zp closed under negation with |S| ≥ p/2. Therefore,

∥MS∥ ≤ p

|G|
max
β∈S

∥Fβ∥ ≤ p

|G|
max
β∈S

∥Fβ∥S4 ≤ p

|G|
max
β∈S

{p|r(β)|1/4} < t1/4 ≤ 2q7/8. ◀

By combining Lemma 16 and Lemma 17, we conclude that

∥M∥Tr ≥ ∥MS∥Tr ≥ ∥MS∥2
F

∥MS∥
≥ q2 × p/2

2q7/8 = Ω(pq9/8).

6 Concluding Remarks

We showed the existence of Boolean matrices MN×N with ∥M∥γ2 ≥ Ω(N1/32) and R(M) ≤
R1

0(M) ≤ O(log log N), displaying a double exponential separation between γ2 norm and
randomized communication complexity. We did not attempt to optimize the power of N in
the lower bound, and there is no reason to suspect that 1/32 is the best possible.

▶ Question 3. What is the largest c such that there exist Boolean matrices MN×N with
R(M) ≤ O(log log N) and ∥M∥γ2 ≥ Ω(N c)?

It is also natural to ask the analogue of Question 3 regarding the approximate γ2 norm.

▶ Question 4. What is the largest c such that there exist Boolean matrices MN×N with
γ̃2(M) ≤ polylog(N) and ∥M∥γ2 ≥ Ω(N c)?

We remark that in Question 4, one cannot hope to obtain a lower bound stronger than
Ω(N1/2) as ∥M∥γ2 ≤ γ̃2(M) + O(

√
N) for all M (see [12, Lemma 15]).

Whether or not the upper bounds in Question 3 and Question 4 can be improved is also
an interesting open problem. As we discussed in Section 1.3, there are Boolean matrices
MN×N with R(M) = O(1) but ∥M∥γ2 = polylog(N).
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▶ Question 5. Is there a Boolean matrix MN×N with R(M) = O(1) and ∥M∥γ2 = NΩ(1)?

We could not overrule the possibility that PL and IIP are such examples. Nevertheless, we
make the following conjecture.

▶ Conjecture 18. R(PL) = ω(1).

Another intriguing question is about the relationship between γ2 norm and the unbounded
error randomized communication complexity, denoted by U(·). It is well-known [15] that
U(M) = log rank±(M) ± O(1) where rank±(·) denotes the sign-rank a.k.a. dimension com-
plexity. The reader is referred to [6] for the definitions of U(·) and rank±. It is natural to
ask whether one can obtain an upper bound on sign-rank based solely on γ2 norm. In other
words, the following conjecture is intriguing.

▶ Conjecture 19. Suppose ∥M∥γ2 = O(1). Then rank±(M) = O(1).

A viable approach to settle the above question in the positive is by using the parameter
Deq(·). Hatami et al. [6] showed that if Deq(M) = O(1), then rank±(M) = O(1). On the
other hand, the following was conjectured in [5], which, if true, would imply Conjecture 19.

▶ Conjecture 20 ([5]). Suppose ∥M∥γ2 = O(1). Then Deq(M) = O(1).

In the special case where M is an XOR function, it is shown in [6] that Conjecture 20 is
true. The authors show that this follows from Green-Sanders’ quantitative version of Cohen’s
idempotent theorem [4].

References
1 Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical lower bounds

from quantum upper bounds. 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 339–349, 2018.

2 Arkadev Chattopadhyay, Shachar Lovett, and Marc Vinyals. Equality alone does not simulate
randomness. In 34th Computational Complexity Conference (CCC 2019), 2019.

3 Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. The power of factorization
mechanisms in local and central differential privacy. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pages 425–438, New York, NY, USA, June
2020. Association for Computing Machinery.

4 Ben Green and Tom Sanders. Boolean functions with small spectral norm. Geometric and
Functional Analysis, 18(1):144–162, 2008.

5 Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. Dimension-free bounds and
structural results in communication complexity. Israel J. Math., 2022. doi:10.1007/
s11856-022-2365-8.

6 Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower bound methods
for sign-rank and their limitations. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms a, volume 245, pages 22:1–22:24, 2022.

7 Monika Henzinger and Jalaj Upadhyay. Constant matters: Fine-grained complexity of
differentially private continual observation using completely bounded norms. arXiv preprint,
2022. arXiv:2202.11205.

8 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity of
the Hamming distance problem. Inform. Process. Lett., 99(4):149–153, 2006.

9 Hartmut Klauck. Lower bounds for quantum communication complexity. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science, pages 288–297. IEEE, 2001.

10 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
Cambridge, 1997.

CCC 2023

https://doi.org/10.1007/s11856-022-2365-8
https://doi.org/10.1007/s11856-022-2365-8
https://arxiv.org/abs/2202.11205


1:16 Separation of the Factorization Norm and Randomized Communication Complexity

11 Troy Lee, Adi Shraibman, and Robert Špalek. A direct product theorem for discrepancy.
In 2008 23rd Annual IEEE Conference on Computational Complexity, pages 71–80, 2008.
doi:10.1109/CCC.2008.25.

12 Nati Linial and Adi Shraibman. Lower bounds in communication complexity based on
factorization norms. Random Structures & Algorithms, 34(3):368–394, 2009.

13 Jiri Matousek, Aleksandar Nikolov, and Kunal Talwar. Factorization norms and hereditary
discrepancy. arXiv preprint, 2014. arXiv:1408.1376.

14 Shanmugavelayutham Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace
counting via discrepancy. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 1285–1292, 2012.

15 Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal of
Computer and System Sciences, 33(1):106–123, 1986.

16 Toniann Pitassi, Morgan Shirley, and Adi Shraibman. The strength of equality oracles in
communication. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 89:1–89:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITCS.2023.89.

17 Alexander A Razborov. Quantum communication complexity of symmetric predicates. Izvestiya:
Mathematics, 67(1):145, 2003.

18 Suhail Sherif. Communication Complexity and Quantum Optimization Lower Bounds via
Query Complexity. PhD thesis, Tata Institute of Fundamental Research, Mumbai, 2021.

19 József Solymosi. Incidences and the spectra of graphs. In Combinatorial number theory and
additive group theory, pages 299–314. Springer, 2009.

https://doi.org/10.1109/CCC.2008.25
https://arxiv.org/abs/1408.1376
https://doi.org/10.4230/LIPIcs.ITCS.2023.89

	1 Introduction
	1.1 Main Result
	1.2 Consequences of the Main Theorem
	1.3 Connections to Fourier Algebra Norm

	2 Notations and Preliminaries
	2.1 Matrix Norms
	2.2 Communication Complexity
	2.3 Fourier Analysis of Zpk̂

	3 Overview of the Proof of the Main Theorem
	4 Randomized Communication Complexities of PL and PLZp
	5 Trace Norms of PL and PLZp
	6 Concluding Remarks

