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Abstract
We prove a strengthening of the trickle down theorem for partite complexes. Given a (d + 1)-partite
d-dimensional simplicial complex, we show that if “on average” the links of faces of co-dimension 2
are 1−δ

d
-(one-sided) spectral expanders, then the link of any face of co-dimension k is an O( 1−δ

kδ
)-

(one-sided) spectral expander, for all 3 ≤ k ≤ d + 1. For an application, using our theorem as
a black-box, we show that links of faces of co-dimension k in recent constructions of bounded
degree high dimensional expanders have spectral expansion at most O(1/k) fraction of the spectral
expansion of the links of the worst faces of co-dimension 2.
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1 Introduction

A simplicial complex X on a finite ground set [n] = {0, . . . , n} is a downwards closed collection
of subsets of [n], i.e. if τ ∈ X and σ ⊂ τ , then σ ∈ X. The elements of X are called faces,
and the maximal faces are called facets. We say that a face τ is of dimension k if |τ | = k + 1
and write dim(τ) = k. A simplicial complex X is a pure d-dimensional complex if every facet
has dimension d. In this paper, all simplicial complexes are assumed to be pure. Given a
d-dimensional complex X, for any 0 ≤ i ≤ d, define X(i) = {τ ∈ X : dim(τ) = i}. Moreover,
the co-dimension of a face τ ∈ X is defined as codim(τ) = d − dim(τ). For a face τ ∈ X,
define the link of τ as the simplicial complex Xτ = {σ \ τ : σ ∈ X, σ ⊃ τ}. Note that Xτ is a
(codim(τ) − 1)- dimensional complex.

A (d + 1)-partite complex is a a d-dimensional complex such that X(0) can be (uniquely)
partitioned into sets T0 ∪ · · · ∪ Td such that for every facet τ ∈ X(d), we have |τ ∩ Ti| = 1
for all i ∈ [d]. The type of any face τ ∈ X is defined as type(τ) = {i ∈ [d] : |τ ∩ Ti| = 1}.
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10:2 An Improved Trickle down Theorem for Partite Complexes

We equip X with a probability distribution π supported on all facets of X and we denote
this pair by (X, π). For a face τ ∈ X, π induces a conditional distribution πτ on facets of
Xτ where for each facet σ ∈ Xτ ,

πτ (σ) = π(σ ∪ τ)∑
facet σ′∈Xτ

π(σ′ ∪ τ) .

For each face τ of co-dimension at least 2 the 1-skeleton of (Xτ , πτ ) is a weighted graph
with vertices Xτ (0), edges Xτ (1), and edge weights given by Pσ∼πτ [{x, y} ⊆ σ] for each edge
{x, y}. Note that when τ is of co-dimension 2, the complex (Xτ , πτ ) is itself a weighted
graph. We say that a complex X is totally connected if the 1-skeleton of the link of any face
τ of co-dimension at least 2 is connected.

▶ Definition 1 (Local Spectral High Dimensional Expander). We say that the link of a face τ

of co-dimension at least 2 of a d-dimensional (weighted) complex (X, π) is a λ-(one sided)
spectral expander if the second largest eigenvalue of the simple random walk on the 1-skeleton
of (Xτ , πτ ) is at most λ. We say that (X, π) is a (γ2, γ3, . . . , γd+1)-local spectral expander if
the link of any face τ of co-dimension at least 2 is a γcodim(τ)-spectral expander. When the
complex (X, π) is clear in the context, for an integer 2 ≤ k ≤ d + 1, we write γk to denote
the largest 2nd eigenvalue of the simple random walk on the 1-skeleton of all links of faces of
co-dimension k of the complex.

Over the last few years, the study of local spectral high dimensional expanders (HDX) has
revolutionized several areas of Math and theoretical computer science, namely in analysis of
Markov chains [4, 3, 6, 1], coding theory [9], and elsewhere [2, 11, 10]. One can generally divide
the family of HDXes studied in recent works into two groups: (i) Dense Complexes. Here, we
have a HDX with exponentially large number of facets, i.e., |X(0)|d. One typically encounters
these objects in studying Markov Chain Monte Carlo technique where we use a Markov
Chain to sample from an exponentially large probability distribution. Perhaps the simplest
such family is the complex of all independent sets of a matroid. (ii) Sparse/Ramanujan
Complexes. Here we have a HDX where every vertex (of X(0)) only appear in constant
number of facets, independent of |X(0)|. See, [15, 13, 17] for explicit constructions. These
objects have been useful in constructing double samplers [11], agreement testers [8, 7], or
locally testable codes [9].

One of the main aspects of local spectral expanders is their “local to global phenomenon”,
often referred to as the Garland’s method or the trickle down theorem [18].

▶ Theorem 2 (Trickle Down Theorem). Given a totally connected complex (X, π), if γ2 ≤ 1−δ
d

for some 0 < δ ≤ 1, then γk ≤ 1−δ
d−(k−2)(1−δ) ≤ 1−δ

dδ for all 2 ≤ k ≤ d.

The trickle down theorem has found numerous applications in proving bounds on local
spectral expansion of simplicial complexes. To invoke the theorem one needs to inspect all
faces of co-dimension 2 to find the worst 2nd eigenvalue. If we get lucky and this number
is below 1/d, then, the trickle down theorem kicks in and inductively bounds the spectral
expansion of all links of the complex.

There are, however, two pitfalls for the theorem: i) The required bound on γ2 is too
small and often not satisfiable. In particular, for many dense complexes in counting and
sampling applications that satisfy γk = O(1/k) for k ≥ Ω(d) (see e.g., [3, 6]), the links of
faces of co-dimension 2 are only Θ(1)-spectral expanders. ii) Even if γ2 ≪ 1/d, the trickle
down theorem only implies γk ≃ γ2, i.e., γk does not increase too much as k increases. This
is in contrast with the fact that, for many dense complexes, one can observe a steep decrease
in spectral expansion as the co-dimension increases, i.e., γk ≲ γ2/k.
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Such a decrease has not been known for any sparse complex. This led some experts to
conjecture that, perhaps, dense and sparse complexes exhibit a different pattern of local
spectral expansion; in particular, unlike dense HDX, local spectral expansion does not decay
for sparse complexes.

In this paper, we prove a generalization of the trickle down theorem for partite complexes
that shows that even if γ2 = Θ(1), but “on average” the links of faces of co-dimension 2 are
< 1/d-spectral expanders, then we have γk ≤ O(1/k) for all 3 ≤ k ≤ d + 1. Surprising to us,
our average condition is satisfied by some recent construction of (sparse) bounded degree
high dimensional expanders [13, 17]. In particular, as we explain below, one can use our
theorem to prove a significantly better local spectral expansion for the Kaufman-Opennheim
construction in a black-box manner.

1.1 Main Contribution

We start by stating two special cases of our theorem. We need the following definition.

▶ Definition 3. Given a (d + 1)-partite complex (X, π) with parts [d], for every i ∈ [d], define

∆(X,π)(i) = |{j ∈ [d] \ i : ∃τ of type(τ) = [d] \ {i, j} s.t. λ2(Pτ ) > 0}|,

i.e. ∆(X,π)(i) is the number of parts j ̸= i for which there exists a face of type [d] \ {i, j}
whose link is not a 0-spectral expander. Moreover, define ∆(X,π) = maxi∈[d] ∆(X,π)(i). We
drop the subscripts (X, π) when the complex is clear in the context.

▶ Theorem 4. Let (X, π) be a (d + 1)-partite (weighted) totally connected complex. For
some 0 < δ < 1, assume that

γ2 ≤ δ2

10(1 + ln ∆) and γ2 ≤ 1 − δ

∆ + ln ∆ .

Then, the link of any face τ of co-dimension k of X has spectral expansion{
c(1−δ)

kδ if k ≥ ∆,
c(1−δ) k+ln k

∆+ln ∆
kδ if k < ∆,

for some constant c ≤ 2 that depends on δ. .

Note that, for ∆ = d, this theorem retrieves Theorem 2 up to a lower order term in the
condition on γ2 and a constant in the bounds on local spectral expansions.

When ∆ ≪ d, this theorem is a significant improvement over Theorem 2. Roughly
speaking, this theorem says that, if the complex has many faces of co-dimension 2 whose links
are 0-expanders, one needs to satisfy a much weaker condition on γ2 to get O(1/k)-spectral
expansion for faces of co-dimension k. In other words, the faces of co-dimension 2 that have
perfect spectral expansion can compensate for faces of co-dimension 2 that have bad spectral
expansion.

Next, we state the second special case of our theorem. For every integers 1 ≤ n,
let Hn =

∑n
i=1

1
i be the n-th harmonic number. Moreover, for any 1 ≤ i ≤ n define

Hn(i) =
∑n

j=i
1
j and let Hn(0) = Hn(1).

CCC 2023
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▶ Theorem 5. Let (X, π) be a (d + 1)-partite (weighted) totally connected complex. For any
distinct i, j ∈ [d], let ϵ{i,j} = maxτ :type(τ)=[d]\{i,j} λ2(Pτ ) be the 2nd largest eigenvalue of the
simple random walk matrices on (Xτ , πτ ) for all τ of type [d] \ {i, j}. For some 0 < δ < 1,
assume that for every i ∈ [d],

ϵ{i,j} · Hd ≤ δ2

10 , ∀j ̸= i and
d∑

ℓ=1
ϵ{i,jℓ} · Hd(ℓ − 1)

d
≤ 1 − δ

d
,

where j0 . . . , jd is an ordering of [d] \ i such that ϵ{i,j0} ≤ · · · ≤ ϵ{i,jd}. Then, X is
( c(1−δ)

δ , . . . , c(1−δ)
dδ )-local spectral expander for some constant c ≤ 2 that depends on δ.

We remark that for every any i ∈ [d], 1 ≤
∑d

ℓ=1
Hd(ℓ−1)
d ≤ 1 + ln d

d . So, roughly speaking, the
latter condition can be seen as Ej [ϵ{i,j}] ≤ 1−δ

d for every i ∈ [d], where the expectation is
weighted according to Hd(.)

d . This is an improvement over the stronger condition in Theorem 2.
Now, we state the main theorem.

▶ Theorem 6 (Main). Let (X, π) be a (d+1)-partite (weighted) totally connected complex. For
any distinct i, j ∈ [d], let ϵ{i,j} = maxτ :type(τ)=[d]\{i,j} λ2(Pτ ) be the 2nd largest eigenvalue of
the simple random walk matrices on (Xτ , πτ ) for all τ of type [d] \ {i, j}. For some 0 < δ < 1,
assume that for every i ∈ [d],

ϵ{i,j} · H∆−1 ≤ δ2

10 , ∀j ̸= i and (1)
∆(i)∑
ℓ=1

ϵ{i,jℓ} · H∆(i)−1(ℓ − 1) ≤ 1 − δ, (2)

where j0 . . . , jd is an ordering of [d] \ i such that ϵ{i,j0} ≤ · · · ≤ ϵ{i,jd}. Then, (the link of the

emptyset of) X is a c(1−δ)
dδ -expander for c = 2(1+ δ2

10 )
(1+δ) .

▶ Remark 7. If, for some δ > 0, the conditions of the above theorem hold for a complex (X, π),
then the conditions also hold for the same δ for all links (Xτ , πτ ) (of faces of co-dimension
at least 2). Therefore, this theorem implies that X is ( c(1−δ)

δ , . . . , c(1−δ)
dδ )-local spectral

expander for c = 2(1+ δ2
10 )

(1+δ) . One can prove tighter bounds if they apply this theorem to any
link (Xτ , πτ ) individually and possibly use better bounds on ∆(Xτ ,πτ )(i).

Proof of Theorem 4. Fix a face τ of co-dimension k. For brevity we abuse notation and
write ∆τ denote ∆(Xτ ,πτ ). If k ≥ ∆ the statement follows from the above remark. In
particular, for any i, j ∈ [d]

ϵ{i,j} · H∆τ −1 ≤ γ2 · H∆−1 ≤ γ2 · (1 + ln ∆) ≤ δ2

10 ,

∆τ (i)∑
ℓ=1

ϵ{i,jℓ} · H∆τ (i)−1(ℓ − 1) ≤ γ2(∆ + ln ∆) ≤ 1 − δ.

So, we can apply Theorem 6.
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Otherwise, to bound the spectral expansion of (Xτ , πτ ), let δk = 1 − (1 − δ) k+ln k
∆+ln ∆ ≥ δ.

For i, j ∈ [d]

ϵ{i,j} · H∆τ −1 ≤ γ2 · Hk−1 ≤ δ2 · Hk−1

10(1 + ln ∆) ≤
δ≤δk

δ2
k

10 ,

∆τ (i)∑
ℓ=1

ϵ{i,jℓ} · H∆τ (i)−1 ≤
ϵi,jℓ

≤γ2,∆τ (i)≤k
γ2(k + ln k) ≤ (1 − δ)(k + ln k)

∆ + ln ∆ = 1 − δk.

Therefore, applying Theorem 6 to (Xτ , πτ ), we obtain that (Xτ , πτ ) is a c(1−δk)
kδ -expander. ◀

Applications to Graph Coloring

Consider a graph G = ([n], E) with degree function ∆ : [n] → Z≥0 and maximum degree
∆, paired with a collection of color lists {L(i)}i∈[n] satisfying L(i) ≥ ∆(i) + (1 + η)∆ for
all i ∈ [n] and for some 0 < η ≤ 0.9 such that 1+ln ∆

∆ ≤ η2,
40 . We define the (n + 1)-partite

coloring complex X(G, L) specified by the following facets: {i, σ(i)}i∈[n] is a facet if and
only if σ is a proper L-coloring of G, i.e. σ(i) ∈ L(i) for each i ∈ [n] and σ(i) ̸= σ(j) if
{i, j} ∈ E. It is not hard to see that if {i, j} /∈ E, then ϵ{i,j} = 0. Moreover, if {i, j} ∈ E,
then ϵ{i,j} ≤ 1

(1+η)∆ + 1
(1+η)2∆2 (see Theorem 4.4 in [1]). Once can verify that if we apply

the above theorem to the coloring complex X(G, L) with δ = η
2 , we get that X(G, L) is a(

4
η , 4

2η , . . . , 4
(|V |−1)·η

)
-local spectral expander, and thus the Glauber dynamics for sampling a

random proper coloring mixes in polynomial time. This retrieves (up to constants) a theorem
proved in [1].

Applications to Sparse High Dimensional Expanders

Kaufman and Oppenheim [13] obtained a simple construction of sparse (d + 1)-partite
complexes with |X(0)| ≥ ps for any integer s > d and prime power p such that every
x ∈ X(0) is in at most pO(d3) many facets (hence the degree is independent of s). They
argued that for any non-consecutive pair of parts i, j ∈ [d], i.e., j ̸= i + 1 and i ≠ j + 1 (mod
d + 1), we have ϵ{i,j} = 0 but ϵ{i,i+1} ≤ 1√

p for any i ∈ [d] (i + 1 is taken modulo d + 1).
Consequently, ∆(i) = 2 for any i ∈ [d]. Then, using Theorem 2, they show that the complex
is a ( 1√

p−(d−2) , . . . , 1√
p−d−2 )-local spectral expander for p > (d − 2)2. Simply plugging in

these values into the above theorem, for δ = 1 − 2√
p and p ≥ 193 (independent of d) the

assumptions of the theorem are satisfied. The resulting complex is ( 2c√
pδ , . . . , 2c

d
√

pδ )-local
spectral expander for c ≈ 1.15. In other words, not only does the Kaufman-Opennheim
construction give a HDX for constant values of p independent of d, but also its local spectral
expansion improves inverse linearly with the co-dimension.

O’Donnell and Pratt [17] constructed (d + 1)-partite (sparse) high-dimensional expanders,
with unbounded dimension d, via root systems of simple Lie Algebras, namely families Ad for
d ≥ 1, Bd for d ≥ 2, Cd for d ≥ 3 and Dd for d ≥ 4. For explicit descriptions of these root
systems, see e.g. [5, Sec. 3.6]. O’Donnell and Pratt [17] showed that, similar to the Kaufman-
Oppenheim construction, the resulting d-dimensional complex X satisfies |X(0)| ≥ pΘ(m)

whereas every vertex is only in pΘ(d2) many facets and for any i, j ∈ [d], ϵi,j ≤
√

2/p. Then,
using Theorem 2 they concluded that the complex is a ( 1√

p/2−d+1
, . . . , 1√

p/2−d+1
)-local

spectral expander. Upon further inspection of the explicit set of roots, one can verify that
∆ ≤ 2 for complexes based on Ad, Bd, Cd root systems and ∆ ≤ 3 for the Dd root system.
Plugging in these values in the above theorem and setting δ = 1 − 2

√
2/p for Ad, Bd, Cd

CCC 2023
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complexes and δ = 1 − 3.5
√

2/p for the Dd complex, if p ≥ 376 for Ad, Bd, Cd complexes and
p ≥ 729 for the Dd complex, we get that these complexes are ( c′

√
pδ , . . . , c′

d
√

pδ )-local spectral
expander for some constant c′ > 1.

The well known Ramanujan complexes, also known as LSV complexes, are generalizations
of Ramanujan graphs that were introduced by Lubotsky, Samuels, and Vishne in [14] and
explicitly constructed in [16]. Any d-dimenssional LSV complex X that is q-thick for some
fixed prime power q and d ≥ 2 has a bounded degree (the number of facets that contain each
x ∈ X(0) only deponents on q and d, and is constant in the size of the ground set n which
can be arbitrarily large) (e.g. see [12]). Moreover, the link of every proper face of type S

is a spherical building complex in which ∆(i) = |{j ̸= i : ϵ{i,j} > 0}| is at most 2 for every
i ∈ [d] \ S. Furthermore, the worst expansion among links co-dimension 2 is c√

q , for some
constant c independent of q, d, n. So, there is a constant q0 such that if q ≥ q0, Theorem 6
implies that the link of any (proper) face of X of co-dimension k is a c′

(k−1)√
q -spectral

expander for some constant c′ > 0 independent of q, d, n. This improves over the bound C(d)√
q

proved in [12], where C(d) ≥ 2d(d + 1)!.

1.2 Proof Overview

At a high-level, our proof builds on the matrix trickle down framework introduced in the work
of the authors with Liu [1]. The Oppenheim’s trickle down theorem follows from an inductive
argument that derives a bound on the second eigenvalue of the simple walk on 1-skeleton of
each link (Xτ , πτ ) using the largest second eigenvalue of the simple walk on the 1-skeleton
of links (Xτ ′ , πτ ′) for all faces τ ′ ⊃ τ of size |τ | + 1. The reason that one has to take the
largest 2nd eigenvalue as opposed to the average in each inductive step is that the eigenspaces
of these simple walks are very different. The matrix trickle down framework overcomes
this issue by substituting the scalar bounds on the second eigenvalues with matrices that
upper bound the transition probability matrices of the simple walks on the 1-skeletons of
links. However, as opposed to Oppenhiem’s trickle down theorem, the matrix trickle down
framework cannot be applied in a black-box manner to bound the spectral expansion of
the 1-skeletons of all links only by bounding the spectral expansion of the 1-skeletons of
links of faces of co-dimension 2. The main result of this paper can be seen as applying the
matrix trickle down framework with a carefully chosen set of upper-bound matrices to prove
an improved trickle down theorem for partite complexes that can be applied in the same
black-box fashion, just known an “average” second eigenvalue.

Our technical contribution in this paper are twofold: First, we observe that for any two
disjoint sets of parts S, T ⊆ [d], if the links of all faces of co-dimension 2 whose types intersect
with both S, T are 0-spectral expanders, then for any σ ∈ X of type S and τ of type T we get

Pη∼π[σ ⊂ η|τ ⊂ η] = Pη∼π[σ ⊂ η] and Pη∼π[τ ⊂ η|σ ⊂ η] = Pη∼π[τ ⊂ η],

namely, the conditional distributions on these types are independent (see Lemma 18 for
details). This observation significantly simplifies invoking the Matrix trickle down framework.
Armed with this tool, we invoke the matrix trickle down theorem using a carefully chosen
family of (diagonal) matrices as the matrix bounds. These matrices are recursively defined
based on an “average” of the spectral expansions of the links of all faces of co-dimension 2,
See the proof of Theorem 6 for the construction of these matrices.
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2 Preliminaries

For any integer n ≥ 0, let [n] = {0, . . . , n}. When it is clear from context, we write x to
denote a singleton {x}. Given a set S, we write v ∈ RS and M ∈ RS×S to respectively
denote a vector and a matrix indexed by S. Given a probability distributions µ over a set S,
we may view µ as a vector in RS

≥0. For a n × n matrix M with eigenvalues λ1, . . . , λn, define
ρ(A) = max1≤i≤n |λi|.

Graphs

Given a graph G = (V, E), for any v ∈ V , let ∆G(v) be the degree of v in G, and let ∆G

be the maximum degree of G. Moreover, given a subset S ⊆ V , G[S] denotes the induced
subgraph of G on the set of vertices S. For any S ⊆ V , define GS = G[V \ S]. For simplicity
of notation, when G is clear from context, we denote ∆G(v) by ∆(v) for any v ∈ V , and
for any S ⊆ V , we denote ∆GS

(v) by ∆S(v) for any v ∈ V \ S. Similarly, we denote the
maximum degree of G and GS by ∆ and ∆S respectively. Moreover, when G is clear from
context, we write u ∼ v if u, v are adjacent vertices in G and u ∼S v if u, v ∈ V \ S and
u ∼ v.

We say that a graph G = (V, E) paired with a weight function w : E → R≥0 is ϵ-
expander if λ2(P ) ≤ ϵ, where P ∈ RV ×V is the transition probability matrix of the simple
random walk on (G, w) defined as P (x, y) = w({x,y})∑

z
w({x,z})

for any x, y ∈ V . For such a
graph we write dw(x) =

∑
y∼x w({x, y}) to denote the weighted degree of a vertex x and

vol(S) =
∑

x∈S dw(x) to denote the volume of a set S ⊆ V .

2.1 Linear Algebra
▶ Lemma 8 (Cheeger’s Inequality). For any graph G = (V, E) with weights w : E → R≥0 and
any S ⊆ V ,

w(E(S, S))
min{vol(S), vol(S)}

≤
√

2(1 − λ2)

where λ2 is the second largest eigenvalue of the simple random walk on G

▶ Lemma 9 (Expander Mixing Lemma). Given a (weighted) graph G = (V, E, w), for any set
S ⊆ V ,∣∣∣∣w(E(S)) − vol(S)2

vol(V )

∣∣∣∣ ≤ λ2vol(S),

where λ2 is the second largest eigenvalue of the simple random walk on G.

2.2 Simplicial Complexes
We say that a simplicial complex X is gallery connected if for any face τ of co-dimension at least
2 and any pair of facets σ, σ′ of Xτ there is a sequence of facets of Xτ , σ = σ0, σ1, . . . , σℓ = σ′,
such that for all 0 ≤ i < ℓ, |σi∆σi+1| = 2. It is shown in [18, Prop 3.6] that if X is totally
connected, then it is gallery connected.

▶ Lemma 10. Consider a totally connected (d + 1)-partite complex X with parts indexed by
[d]. For any S ⊆ [d], The induced subgraph of the 1-skeleton of X on vertices of type S is
connected.

CCC 2023
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Proof. Take x, y of type i, j ∈ S and facets η, η′ such that x ∈ η, y ∈ η′. Total connectivity
implies that there is a sequence η = η1, . . . , ηt = η′ such that ηi ∩ηi+1 ̸= ∅ for all 1 ≤ i ≤ t−1.
Let σ1 ⊆ η1, . . . , σt ⊆ ηt be faces of type {i, j}. Then σ1, . . . , σt gives a path between x, y. ◀

Given a (weighted) complex (X, π), for integer −1 ≤ i ≤ dim(X) − 1, π induces a
distribution πi on X(i),

πi(σ) = 1(dim(X)+1
i+1

) Pr
τ∼π

[σ ⊂ τ ] ∀σ ∈ X(i).

Let P(X,π),τ ∈ RX(0)×X(0) denote the transition probability matrix of the simple random
walk on the 1-skeleton of (Xτ , πτ ) padded with zeros outside the Xτ (0) × Xτ (0) block, i.e.
P(X,π),τ (x, y) = Pσ∼πτ [{x,y}⊂σ]∑

z∈xτ (0)
Pσ∼πτ [{x,z}⊂σ]

for x, y ∈ Xτ (0), and Pτ (x, y) = 0 otherwise. When

the weighted complex (X, π) is clear from context, we write Pτ to denote P(X,π),τ . For any
τ of co-dimension at least 2, we define the diagonal matrix Π(X,π),τ ∈ RX(0)×X(0) as follows:
Π(X,π),τ (x, x) = πτ,0(x) for x ∈ Xτ (0), and Π(X,π),τ (x, x) = 0 otherwise. When (X, π) is
clear from context, we write Πτ to denote Π(X,π),τ . Note that Πτ Pτ is a symmetric matrix.

Given a (d + 1)-partite complex,
we say that an x ∈ X(0) is of type i and write type(x) = i if x ∈ Ti. Similarly, the type

of a face τ ∈ X is defined as type(τ) = {i ∈ [d] : |τ ∩ Ti| = 1}. The following facts hold for
weighted partite complexes.

▶ Observation 11. Consider a weighted (d + 1) partite complex (X, π) and a face τ of
co-dimension k ≥ 1. We have kπτ,0(x) = Prσ∼πτ

[x ∈ σ] for all x ∈ Xτ (0).

▶ Observation 12. Consider a weighted (d + 1) partite complex (X, π) with parts indexed by
[d] and a face τ of co-dimension k ≥ 1. For any i ∈ [d],

∑
x:type(x)=i Prσ∼πτ [x ∈ σ] = 1.

The following definition is useful for proving the main theorem.

▶ Definition 13. For any (d + 1)-partite complex (X, π) with parts indexed by [d], define a
graph G(X,π) on the set of vertices [d], where any distinct i, j ∈ [d] are adjacent in G(X,π) if
there exists τ of type [d] \ {i, j} such that the second eigenvalue of (Xτ , πτ ) is positive.

▶ Remark 14. For any (d + 1)-partite complex (X, π) with parts indexed by [d], for every
i ∈ [d], ∆(i) (see Definition 3) is the degree of i in graph G(X,π) and ∆ is the maximum
degree of G(X,π).
Note that if codim(τ) = k, the link Xτ is a k-partite complex with parts indexed by [d] \ S.
One can verify that given a face τ of type S, the set of edges of G(Xτ ,πτ ) is a subset of the
edges of (G(X,π))S , i.e., the induced subgraph of G(X,π) on [d] \ S. When (X, π) is clear from
context, we write G for G(X,π) and GS for (G(X,π))S .

Product of Weighted Complexes

Given weighted complexes (Y1, µ1), . . . , (Yℓ, µℓ) defined on disjoint ground sets and of di-
mensions d1, . . . , dℓ respectively, and a weighted complexes (X, π) of dimension d, we write
(X, π) = (Y1, µ1) × · · · × (Yℓ, µℓ) if X(d) = {∪i∈[ℓ]τi : τ1 ∈ Y1(d1), . . . , τℓ ∈ Yℓ(dℓ)} and
π(∪i∈[ℓ]τi) =

∏
i∈[ℓ] µi(τi) for all τ1 ∈ Y1(d1), . . . , τℓ ∈ Yℓ(dℓ). We denote the generating

polynomial of (X, π) by g(X,π), i.e. g(X,π) =
∑

τ∈X(d) π(τ)
∏

x∈τ zx. One can verify that
(X, π) = (X1, µ1) × · · · × (Xℓ, µℓ) if and only if g(X,π) = g(X1,µ1) × · · · × g(Xℓ,µℓ). Note
that this is true because we assume that for any weighted simplicial complex, the given
distribution on facets is non-zero on all facets.
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Matrix Trickle Down Theorem

We use the following theorem which is the main technical theorem in [1].

▶ Theorem 15 ([1, Thm III.5]). Let (X, π) be a totally connected weighted complex. Suppose
{Mτ ∈ RX(0)×X(0)}τ∈X(≤d−2) is a family of symmetric matrices satisfying the following:
1. Base Case: For every τ of co-dimension 2, we have the spectral inequality

Πτ Pτ − 2πτ,0π⊤
τ,0 ⪯ Mτ ⪯ 1

5Πτ .

2. Recursive Condition: For every τ of co-dimension at least k ≥ 3, at least one of the
following holds: Mτ satisfies

Mτ ⪯ k − 1
3k − 1Πτ and Ex∼πτ Mτ∪{x} ⪯ Mτ − k − 1

k − 2Mτ Π−1
τ Mτ . (3)

Or, (Xτ , πτ,k−1) is a product of weighted simplicial complexes (Y1, µ1), . . . , (Yt, µt) and
for every η ∈ Xτ (k − 1),

Mτ =
⊕

1≤i≤t:dYi
≥1

dYi(dYi + 1)
k(k − 1) Mτ∪η−i ,

where η−i = η \ Yi(0).
Then for every τ ∈ X(≤ d − 2), we have the bound λ2(Πτ Pτ ) ≤ ρ(Π−1

τ Mτ ).

3 Simplifying Matrix Trickle Down’s Conditions to Scalar Inequalities

In this section, given a (d + 1)-partite complex (X, π), we apply the matrix trickle down
theorem to derive a set of conditions on a family of vectors {fS ∈ R[d]}S⊂[d],|S|<d that will
guarantee that λ2(Pτ ) ≤ maxi∈[d] fS(i)

k−1 for all k ≥ 2 and τ of co-dimension k and type S. We
prove the following theorem.

▶ Theorem 16. Consider a totally connected (d+1)-partite complex (X, π) with parts indexed
by [d] and graph G = G(X,π). Suppose we are given a family of vectors {fS ∈ R[d]}S⊂[d],|S|<d

such that for all S ⊂ [d] of size (d + 1) − k, the support of fS is a subset of [d] \ S, and the
following holds:

If GS is disconnected, then fS =
∑

1≤i≤ℓ:|Ii|≥2 f[d]\Ii
, where I1 ∪ · · · ∪ Iℓ are the vertices

of the connected components of GS. Note that if all connected components are of size 1,
then fS = 0.
Otherwise if GS is connected, we have maxi∈[d] fS(i) ≤ (k−1)2

3k−1 and
(i) Base Case: If k = 2, then for every face τ of type S, λ2(Pτ ) ≤ maxi∈[d]\S fS(i).
(ii) Recursive Condition: If k ≥ 3, then∑

j∈[d]\(S∪i)

fS∪j(i) ≤ (k − 2)fS(i) − f2
S(i),

for all i ∈ [d] \ S.
Then, for all k ≥ 2 and τ of co-dimension k and type S, λ2(Pτ ) ≤ maxi∈[d] fS(i)

k−1 .

The main sets of conditions in the above theorem are the inequalities in Item i and Item ii.
To get some intuition about these conditions, it is helpful to compare the above with the
standard trickle down theorem (Theorem 2). There, one shows that if λ2(Pτ∪{x}) ≤ λ for all
x ∈ Xτ (0), then λ2(Pτ ) ≤ α, where satisfies

λ ≤ α − α2(1 − λ). (4)
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Then, Theorem 2 follows by recursively applying this inequalities.
In the above theorem, instead of a single upper bound on λ2(Pτ ) for faces τ of co-

dimension 2, one bounds the expansion of the links of all faces of co-dimension 2 of each type
separately, allowing higher degrees of freedom. For any face τ of type S and co-dimension
k = |S|, the function fS(.)

k−1 will serve as the digonal entries of a matrix upper-bound Pτ .

Then, the inequality
∑

j∈[d]\(S∪i)
fS∪j(i)

k−2 ≤ fS(i) − f2
S(i)

k−2 is the natural analogue of (4)
which requires fS to be at least “the average” of fS∪j for all j ∈ [d] \ S plus an square error
term.

Before proving the above theorem, we show that if GS is disconnected with parts
G[I1], . . . , G[Iℓ] for some S ⊂ [d] of size at most d − 1, then for any τ of type S, (Xτ , πτ,k−1)
can be written as a product of family of its links of types [d] \ Ii for all 1 ≤ i ≤ ℓ. This
allows us to prove a better upper-bound on λ2(Pτ ) for such faces τ by simply “concatenating”
upper-bounds on each connected component of GS .

▶ Lemma 17. Consider a 2-partite complex (X, π) with parts S, T . If (X, π) is 0-expander,
then (X, π) = (Xz, πz) × (Xy, πy) for any y ∈ S and z ∈ T .

Proof. Note that (X, π) is a weighted bipartite graph with parts S, T . Let A ∈ RX(0)×X(0)

be the adjacency matrix of (X, π). Let AS,T (y, z) = A(y, z) for y ∈ S, z ∈ T and 0 on
other entries. Moreover, let AT,S = A − AS,T . Then, for any vector v ∈ RX(0), we get
A = AS,T vT +AT,SvS , where vS , vT are respectively supported on S, T and v = vS +vT . Thus,
if Av = λv, then Av′ = −λv′, for v′ = (−vS +vT ). So if µ is an eigenvalue of A, then −µ is also
an eigenvalue of A. Thus, if (X, π) is 0-expander, the rank of A is 2. This implies that there
are vectors wS ∈ RS and wT ∈ RT such that π({y, z}) = A(y, z) = A(z, y) = wS(y)wT (z)
for y ∈ S, z ∈ T . Without loss of generality, assume ∥wS∥1 = ∥wT ∥1 = 1. Then, for any
y ∈ S and z ∈ T , we have πz(y) = π({y,z})∑

x∈S
π({x,z})

= wS(y). Similarly πy(z) = wT (z). Thus

π({y, z}) = πy(z)πz(y). This finishes the proof. ◀

▶ Lemma 18. Consider a totally connected (d + 1)-partite complex (X, π) with parts indexed
by [d] and its associated graph G = G(X,π). Let I1 ∪ · · · ∪ Iℓ be a partition of [d] such that
for any 1 ≤ i ≤ ℓ the induced graph G[Ii] is a connected component or the union of several
connected components of G. Then (X, π) = (Xσ−1 , πσ−1) × · · · × (Xσ−ℓ

, πσ−ℓ
), where σ−i is

an arbitrary face of type [d] \ Ii for any 1 ≤ i ≤ ℓ.

Proof. We prove the statement by induction on d. For d = 1, the statement simply follows
from Lemma 17. Now, assume that d > 1. If |Ii| = 1 for all 1 ≤ i ≤ ℓ, then ℓ ≥ 3. In this
case, let S = I1 ∪ I2. Otherwise, WLOG assume that |I1| ≥ 2 and let S = I1. First, we show
that g(X,π) can be written as g(X,π) = h · h′, where h is a polynomial in {zy : type(y) ∈ I \ S}
and h′ is a polynomial in terms of variables in {zy : type(y) ∈ S}. By induction hypothesis,
for any i ∈ S, x ∈ Ti, and any face σ ∈ X of type S such that x ∈ σ

∂zx
g(X,π) = fx · gx (5)

where fx is a polynomial in terms of variables in {zy : type(y) ∈ S \ i} and gx is a polynomial
in terms of variables in {zy : type(y) ∈ I \ S}. Now, take arbitrary i, j ∈ S such that i ̸= j.
Then, (5) implies that for any face {x, y} of type {i, j}

∂zx
∂zy

g(X,π) = (∂zy
fx)gx = (∂zx

fy)gy

It thus follows that gx is a multiple of gy. One can see this simply by substituting 1 for all
variables in {zy : type(y) ∈ S \ {i, j}}. Moreover, since gx and gy are generating polynomials
of distributions, i.e. the coefficients sum up to 1, we get gx = gy. Therefore, we get that
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for any distinct x, y such that type(x), type(y) ∈ S and {x, y} is a face, gx = gy. Applying
Lemma 10, we get gx = gy for all x, y ∈ ∪i∈STi. Thus, there exist a polynomial h in variables
{zy : type(y) ∈ I \ S} such that we can rewrite (5) for any x with type(x) ∈ S as

∂zx
g(X,π) = fx · h,

where fx is a polynomial in terms of variables in {zy : type(y) ∈ S \ i}. Finally, since X is a
partite complex,

|S|g(X,π) =
∑
i∈S

∑
x∈Ti

zx∂zx
g(X,π) = h ·

∑
i∈S

∑
x∈Ti

zxfx = h · h′, (6)

where h′ =
∑

i∈S

∑
x∈Ti

zxfx is a polynomial in {zy : type(y) ∈ S}. It remains to show
that for any face σ of type S, we have h = g(Xσ,πσ), and for any τ of type [d] \ S, we have
h′ = g(Xτ ,πτ ). Fix arbitrary faces σ of type S and τ of type [d] \ S. Noting that g(X,π) is a
multiple of h · h′, and that h′ is in variables associated to elements whose types are in S and
h is in variables associated to elements whose types are in [d] \ S, we conclude that h′ has a
monomial that is a multiple of

∏
x∈σ zx and h has a monomial that is a multiple of

∏
x∈τ zx.

First, take (
∏

x∈σ ∂zx) from both sides of (6). We get that g(Xσ,πσ) is a positive multiple
of h. Similarly, taking (

∏
x∈τ ∂zx

) from both sides of (6), we get that g(Xτ ,πτ ) is a positive
multiple of h′. Thus, noting that the coefficients of generating polynomials sum up to 1, we
get h = g(Xσ,πσ) and h′ = g(Xτ ,πτ ) as desired. Repeating the same argument inductively on
the complex (Xσ, πσ) proves the claim. ◀

Now we are ready to prove Theorem 16.

Proof of Theorem 16. We apply Theorem 15. For every S ⊂ [d] such that |S| < d, define
a diagonal matrix DS ∈ RX(0)×X(0) as DS(x, x) = fS(type(x)) for all x ∈ X(0). We prove
that the conditions of Theorem 15 hold for Mτ = Πτ DS

k−1 for an arbitrary face τ ∈ X of
co-dimension at least k ≥ 2 and type S. If GS is connected, maxi∈[d] fS(i) ≤ (k−1)2

3k−1 holds by
assumption. If GS is disconnected, maxi∈[d] fS(i) ≤ (k−1)2

3k−1 follows from the assumptions that
fS =

∑
1≤i≤ℓ:|Ii|≥2 f[d]\Ii

, where I1 ∪ · · · ∪ Iℓ are the vertices of connected components of GS .
That is because the supports of vectors f[d]\Ii

are disjoint by assumption and (k−1)2

3k−1 is an
increasing function for k ≥ 2. So, we get Dτ ⪯ (k−1)2

3k−1 I, and thus, Mτ ⪯ k−1
3k−1 Πτ . To prove

the rest of the conditions hold, first assume that k = 2. If GS is two disconnected vertices,
we get fS = 0, and therefore, DS = 0. Thus, we get Πτ Pτ − πτ,0π⊤

τ,0 ⪯ 0 = Πτ DS = Mτ , as
desired. If GS is connected, the base case assumption (Item i) implies that λ2(Pτ ) ≤ DS(x, x)
for all x ∈ Xτ (0). Therefore, Πτ Pτ − πτ,0π⊤

τ,0 ⪯ Πτ DS = Mτ . Now, assume k ≥ 3.
First assume that GS is disconnected and G[I1], . . . , G[Iℓ] are its connected components for
some partition I1 ∪ · · · ∪ Iℓ of [d] \ S. Fix any σ ∈ Xτ (k − 1). By Lemma 18, (Xτ , πτ ) =
(Xτ∪σ−1 , πτ∪σ−1)×· · ·×(Xτ∪σ−ℓ

, πτ∪σ−ℓ
) where for every 1 ≤ j ≤ ℓ, σ−j is a subset of σ that

has type [d] \ (S ∪ Ij). Therefore, we get Prη∼πτ∪σ−j
[x ∈ η] = Prη∼πτ [x ∈ η] for all 1 ≤ j ≤ ℓ

and x ∈ Xτ∪σ−j
(0). Combining this with Observation 11, we get kj ·πτ∪σ−j ,0(x) = k ·πτ,0(x),

where kj = |Ij | for all 1 ≤ j ≤ ℓ. Thus we can write∑
1≤j≤ℓ:|Ij |≥2

(kj − 1)kj

(k − 1)k Mτ∪σ−j =
def of Mτ∪σ−j

∑
1≤j≤ℓ:|Ij |≥2

(kj − 1)kj

(k − 1)k
Πτ∪σ−j

D[d]\Ij

kj − 1

=
∑

1≤j≤ℓ:|Ij |≥2

kj

k(k − 1)
k

kj
Πτ D[d]\Ij

= Πτ

k − 1
∑

1≤j≤ℓ:|Ij |≥2

D[d]\Ij
= Πτ DS

k − 1 = Mτ ,
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where in the second to last equality, we used the fact that
∑

1≤j≤ℓ:|Ij |≥2 f[d]\Ij
= fS , and

thus
∑

1≤j≤ℓ:|Ij |≥2 D[d]\Ij
= DS by definition of DS . Now, assume that GS is connected. It

is enough to show that Ex∼πτ,0Mτ∪x ⪯ Mτ − Mτ Π−1
τ Mτ . This is equivalent to showing that

for any x ∈ Xτ (0)

Ey∼πτ,0

[ (Π−1
τ Πτ∪yDS∪type(y))(x, x)

k − 2

]
≤ DS(x, x)

k − 1 − D2
S(x, x)

(k − 2)(k − 1) (7)

One can check that for any x ∈ Xτ (0) of type i

Ey∼πτ,0

[Π−1
τ Πτ∪yDS∪type(y)(x, x)

k − 2

]
=
∑

y∈Xτ∪x(0) Prσ∼πτ∪x
[y ∈ σ]DS∪type(y)(x, x)

(k − 1)(k − 2)

=
∑

j∈[d]\S

fτ∪j(i)
(k − 1)(k − 2)

∑
y∈X τ∪x(0):

type(y)=j

Pr
σ∼πτ∪x

[y ∈ σ]

=
∑

j∈[d]\S fτ∪j(i)
(k − 1)(k − 2) ,

where in the last equality, we used Observation 12. Thus, substituting DS(x, x) = fS(type(x))
in the RHS of (7), it is enough to show that for any i ∈ [d] \ S∑

j∈[d]\S fτ∪j(i)
(k − 1)(k − 2) ≤ fS(i)

k − 1 − f2
S(i)

(k − 1)(k − 2) ,

which holds by assumption Item ii. ◀

4 Proof of Main Theorem

We are ready to prove Theorem 6.

Proof of Theorem 6. We find a family of vectors {fS ∈ R[d]}S⊂[d]:|S|<d that satisfy the
conditions of theorem Theorem 16. Let G = G(X,π). Based on the conditions of Theorem 16,
vectors {fS ∈ R[d]}S⊂[d]:|S|<d can be defined as functions of {ϵ{i,j}}i,j∈[d],i̸=j . Recall that
edges of G capture pairs {i, j} for which ϵ{i,j} > 0. Assign every edge {i, j} of G with weight
ϵ{i,j}. We restrict our attention to functions that are very local with respect to G, i.e. for
every S and i ∈ [d] \ S, we assume fS(i) only depends on ∆S(i) and the weights of edges
adjacent to i in GS if ∆(i) > 1. It turns out that if ∆(i) = 1, we would need to also take
into account the degree of the unique neighbor of i. More formally, consider the following
family of vectors {fS ∈ R[d]}S⊂[d]:|S|<d: for any S ⊂ [d] such that |S| < d, let fS be of the
following form: for any i ∈ S, let fS(i) = 0, and for any i ∈ [d] \ S define

fS(i) =


0 if ∆S(i) = 0,

ϵ{i,j} · gi,j(∆S(j)) if ∆S(i) = 1andi ∼S j,∑
j∼Si ϵ{i,j} · hi (∆S(i)) if ∆S(i) ≥ 2,

where for every i ∈ [d] and j ∼ i, functions gi,j , hi : {1, . . . , ∆} → R≥0 are defined later in a
way that guarantees that {fS}S⊂[d]:|S|<d satisfies the assumptions of Theorem 16 (see (10),
(12)).
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First, consider the case that GS is disconnected. Note that for any S, S′ ⊂ [d] such that
|S|, |S′| < d, if {j ∈ [d] : j ∼S i} = {j ∈ [d] : j ∼S′ i} for some i /∈ S, S′, then fS(i) = fS′(i).
Let I1, . . . , Iℓ be the vertices of connected components of GS . Since the neighborhood of
each vertex in any connected component of GS is the same as its neighborhood in GS , we
get fS =

∑
1≤i≤ℓ:|Ii|≥2 f[d]\Ii

.
Now, assume GS is connected. Take an arbitrary k ≥ 2 and S ⊂ [d] of size (d + 1) − k.

First we verify the set of conditions given in Item i and Item ii. First, assume that k = 2. Let
[d] \ S = {i, j}. By definition of ϵ{i,j}, for any τ of type S, λ2(Pτ ) ≤ ϵ{i,j}. Thus, if we define
gℓ,t(1) = 1 for all distinct ℓ, t ∈ [d], then we get λ2(Pτ ) ≤ ϵ{i,j} = ϵ{i,j}gi,j(1) = fS(i) = fS(j),
as desired. Now, assume that k ≥ 3. Fix an arbitrary i ∈ [d] \ S. Our goal is to define
gi,j , hi : {1, . . . , ∆} → R≥0 for all j ∼ i such that gi,j(1) = 1 for all j ∼ i and the following
inequality is satisfied:∑

j∈[d]\(S∪i)

fS∪j(i) ≤ (k − 2)fS(i) − f2
S(i). (8)

To keep the notation concise, relabel the elements such that i is relabeled to 0 and ϵ{0,1} ≥
· · · ≥ ϵ{0,d}. Moreover, define ϵj = ϵ{0,j} for any j ∈ [d] \ 0.

Case 1: ∆S(0) = 1, and j ∼S 0. Since GS is connected and (d + 1) − |S| ≥ 3, we have
∆S(j) ≥ 2. Define t = ∆S(j). We have∑

ℓ∈[d]\(S∪0)

fS∪ℓ(0) = fS∪j(0) +
∑

ℓ∈[d]\(S∪0):ℓ∼Sj

fS∪ℓ(0) +
∑

ℓ∈[d]\(S∪0):ℓ ̸∼Sj,ℓ ̸=j

fS∪ℓ(0)

= 0 + (t − 1) · ϵj · g0,j(t − 1) + (k − t − 1) · ϵj · g0,j(t).

On the other hand, (k − 2)fS(0) − fS(0)2 = (k − 2) · ϵj · g0,j(t) − ϵ2
j · g2

0,j(t). So it is enough
to satisfy

(t − 1) · ϵj · (g0,j(t) − g0,j(t − 1)) ≥ ϵ2
j · g2

0,j(t). (9)

Now, define g0,j : {1, . . . , ∆} → R≥0 as follows: recall that we defined g0,j(1) = 1. For any
2 ≤ ℓ ≤ ∆, let

g0,j(ℓ) = 1 + 1.3 · ϵj · Hℓ−1. (10)

Using assumption (1), ϵjH∆−1 ≤ δ2

10 ≤ 1
10 . Thus

ϵ2
j · g2

0,j(t) ≤ ϵ2
j (1 + 1.3ϵj (1 + H∆−1))2

< 1.3ϵ2
j .

Substituting g0,j(t) according to (10) and using the above bound, one can verify that (9)
holds.

Case 2: ∆S(0) ≥ 2. For simplicity of notation, define t = ∆S(0) and α =
∑

j:j∼S0 ϵj .
Define h0(1) = maxj:j∼0 g0,j(∆).∑

j∈[d]\(S∪0)

fS∪j(0) =
∑

j∈[d]\(S∪0):j∼S0

fS∪j(0) +
∑

j∈[d]\(S∪0):j ̸∼S0

fS∪j(0)

≤

 ∑
j∈[d]\(S∪0):j∼S0

(α − ϵ{0,j})

 · h0(t − 1) + (k − t − 1) · α · h0(t)

= (t − 1) · α · h0(t − 1) + (k − t − 1) · α · h0(t).
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Note that if t ≥ 3, the first inequality is an equality by definition. If t = 2, the first inequality
follows from the definition of h0(1). Thus, it is enough to satisfy∑

j∈[d]\(S∪0)

fS∪j(0) = (t − 1) · α · h0(t − 1) + (k − t − 1) · α · h0(t)

≤ (k − 2) · α · h0(t) − α2 · h2
0(t) = (k − 2)fS(0) − f2

S(0).

Equivalently, it suffices to satisfy

(t − 1)(h0(t) − h0(t − 1)) ≥ α · h2
0(t). (11)

Now, define h0 : {1, . . . , ∆} → R≥0 as follows: recall that we defined h0(1) = maxj:j∼0 g0,j(∆).
For any 2 ≤ ℓ ≤ ∆, define

h0(ℓ) = h0(1)
1 − c

(∑ℓ
j=1 ϵjHℓ−1(j − 1)

) . (12)

We need to prove (11) for a carefully chosen c. Let β be such that h0(t) = h0(1)
β . We get

h0(t − 1) = h0(1)
β+c(

∑t

j=1

ϵj
t−1 )

, and thus,

(t − 1)(h0(t) − h0(t − 1)) =
h0(1) · c

∑t
j=1 ϵj

β · (β +
c
∑t

j=1
ϵj

t−1 )
.

Note that α · h2
0(t) = α·h2

0(1)
β2 . Thus, to satisfy (11), it is enough to show that

β · c ·

 t∑
j=1

ϵj

 ≥ α · h0(1) ·

(
β +

c
∑t

j=1 ϵj

t − 1

)
.

Note that

h0(1) ≤ max
j∼i

g0,j(∆) = 1 + 1.3ϵ1H∆−1 ≤
by (1)

1 + 1.3 δ2

10 . (13)

Moreover,
∑t

j=1 ϵj ≥
∑

j:j∼S0 ϵj = α. Thus, letting c = 1 + c′δ for some c′ > 0 that we
choose later, it is enough to show that

β · (c′ − 0.13δ)δ ≥ (1 + 0.13δ) ·
(1 + c′δ)

∑t
j=1 ϵj

t − 1 .

Using
∑t

j=1
ϵj

t−1 ≤ 2ϵ1 ≤
(1)

δ2

5 , it is enough to show that

β · (c′ − 0.13δ) ≥ (1 + 0.13δ)(1 + c′δ)δ

5 . (14)

On the other hand,

β ≥ 1 − (1 + c′δ)

∆(0)∑
j=1

ϵjH∆(0)−1(j − 1)

 ≥
(2)

1 − (1 + c′δ)(1 − δ) = δ(1 − c′ + c′δ), (15)
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Thus, to satisfy (14), it is enough to show that (1−c′ +c′δ)(c′ −0.13δ) ≥ (1+1.13δ)(1+c′δ) 1
5 .

Letting c′ = 1
2 , this inequality holds for every 0 < δ < 1. This establishes Equation (8). So

we verified conditions Item i and Item ii are satisfied.
To show that all conditions of Theorem 16 are satisfied, it remains to show that

maxi∈[d] fS(i) ≤ (k−1)2

3k−1 . Note that
∑

j:j∼i ϵ{i,j} ≤ ∆S · ϵ1 ≤
(1)

∆S · δ2

10 for all i ∈ [d] \ S.

Thus, we get maxi∈[d] fS(i) ≤ ∆S · δ2

10 maxi∈[d]\S ·hi(∆S(i)). Moreover, using (13) and (15)
with c′ = 1

2 (we can write this inequality for every i), we get

hi(∆S(i)) ≤ hi(∆(i)) ≤
1 + δ2

10
δ( 1

2 + δ
2 )

, (16)

Thus, we can write

max
i∈[d]

fS(i) ≤ ∆S · δ2

10
1 + δ2

10
δ( 1

2 + δ
2 )

≤ ∆S

5 ≤ k − 1
5 ≤ (k − 1)2

3k − 1 ,

as desired. So we proved that {fS}S⊂[d]:|S|<d satisfies the conditions of Theorem 16. Now,
we are ready to bound λ2(Pτ ) for any face τ of co-dimension k ≥ 2 and type S. First, we
show that for every i ∈ [d] \ S,

∑
j:j∼Si ϵ{i,j} ≤ 1 − δ. Note that

∆(i)∑
ℓ=1

H∆(i)−1(ℓ − 1) =
∆(i)∑
ℓ=2

ℓ

ℓ − 1 = 2 +
∆(i)∑
ℓ=3

ℓ

ℓ − 1 ≥ ∆(i).

Thus, we can write

∑
j:j∼Si

ϵ{i,j} ≤

∆(i)∑
ℓ=1

H∆(i)−1(ℓ − 1)
∆(i)

∑
j∼i

ϵ{i,j}

 ≤
∆(i)∑
ℓ=1

H∆(i)−1(ℓ − 1) · ϵ{i,jℓ} ≤ 1 − δ.

(17)

where we assumed that i1, . . . , jd is an ordering of [d] \ S such that ϵj1 ≤ · · · ≤ ϵjd
. Using

this inequality and (16), we get

λ2(Pτ ) ≤
maxi∈[d]\S fS(i)

k − 1 ≤
maxi∈[d](

∑
j∼Si ϵ{i,j}) · hi(∆S(i))

k − 1

≤
(1 − δ) · maxi∈[d] hi(∆(i))

k − 1 ≤
(1 − δ) · 2(1+ δ2

10 δ)
δ(δ+1)

k − 1 ,

as desired. ◀
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