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Abstract
Existing proofs that deduce BPL = L from circuit lower bounds convert randomized algorithms
into deterministic algorithms with large constant overhead in space. We study space-bounded
derandomization with minimal footprint, and ask what is the minimal possible space overhead for
derandomization. We show that BPSPACE[S] ⊆ DSPACE[c·S] for c ≈ 2, assuming space-efficient
cryptographic PRGs, and, either: (1) lower bounds against bounded-space algorithms with advice,
or: (2) lower bounds against certain uniform compression algorithms. Under additional assumptions
regarding the power of catalytic computation, in a new setting of parameters that was not studied
before, we are even able to get c ≈ 1.

Our results are constructive: Given a candidate hard function (and a candidate cryptographic
PRG) we show how to transform the randomized algorithm into an efficient deterministic one. This
follows from new PRGs and targeted PRGs for space-bounded algorithms, which we combine with
novel space-efficient evaluation methods. A central ingredient in all our constructions is hardness
amplification reductions in logspace-uniform TC0, that were not known before.
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1 Introduction

One of the greatest challenges in complexity theory is the derandomization of efficient
algorithms, or more broadly, understanding to what extent randomness is necessary or useful
for algorithms. In the time-bounded setting, can we simulate any randomized algorithm by
a deterministic one with a roughly similar runtime? In the space-bounded setting, can we
derandomize with only a small factor blowup in space?

Classical hardness-to-pseudorandomness results tell us that under plausible circuit lower
bounds, any randomized algorithm that runs in time T can be be simulated deterministically
by an algorithm running in time T c [37, 26], and any randomized algorithm that uses S
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11:2 Derandomization with Minimal Memory Footprint

space can be simulated deterministically in space c · S [31], where c is a large constant. In
the terminology of complexity classes, BPP = P and BPL = L follow from circuit lower
bounds.1

The constant c in the foregoing classical results can indeed be large to the point of
impracticality, for reasons that are inherent to the proof techniques. Therefore, a natural
question is whether these results can be made more efficient, by providing an explicit small
bound on the time or space overhead in derandomization. In other words, we ask what is
the precise, fine-grained value of randomness in various computational settings. Note that
this question is likely to be relevant even when the great goal of establishing BPP = P and
BPL = L without relying on hardness assumptions is achieved.

In recent years, starting with the work of Doron, Moshkovitz, Oh, and Zuckerman [13] and
continuing with the works of Chen and Tell [11, 10, 12], a study of fine-grained derandomization
led to a series of results:2

BPTIME[T ] ⊆ DTIME[T 2+α] assuming there exists a language in DTIME[2(1+α)n]
that is hard for certain randomized, non-deterministic circuits of size 2(1−α)n [13]. Chen
and Tell [11] showed that one can get rid of the circuits’ randomness by assuming that
the language is batch-computable.
BPTIME[T ] ⊆ DTIME[n1+α · T ], where n denotes the length of the input, assuming
that one-way functions exist, and there exists a language in DTIME[2k·n] that is hard
for DTIME[2(k−α)·n]/2(1−α)·n [11]. In a followup work, Chen and Tell [12] showed that
one can forgo the cryptographic assumption and replace it with [13]-style ones.
BPTIME[T ] ⊆ heurDTIME[nα · T ], meaning that the derandomization fails with
negligible probability with respect to all efficiently-samplable distributions [11]. This
result follows from uniform cryptographic assumptions and certain uniform hardness
assumptions for multi-bit output functions.
Derandomization of interactive proof systems with constantly many rounds, that either
has a (bounded) polynomial time overhead that depends on the number of rounds, or has
only nα time overhead and yields a deterministic (NP-style) argument system [12].

These results are often complemented with nearly matching conditional lower bounds (i.e.,
lower bounds assuming certain complexity-theoretic assumptions). In addition to derandom-
ization in nearly no cost, those results gave rise to new notions, tools, and techniques in
derandomization.

The space-bounded setting

In this work, we study efficient space-bounded derandomization under hardness assumptions,
asking what is the minimal possible space overhead for derandomization. That is, can we
transform randomized algorithms into deterministic ones that use roughly the same amount
of memory?

We note that unlike the time-bounded setting, wherein unconditional derandomiz-
ation results would lead to lower bounds that currently seem out of reach (see, e.g.,
[25, 28, 30, 47, 34, 44, 7, 8]), in the space-bounded setting we do have unconditional partial de-
randomization results. Savitch’s theorem [40] can be extended to show that BPSPACE[S] ⊆
DSPACE[O(S2)] (see also [5]). Nisan [35, 36] devised a time-efficient derandomization with

1 We also have equality between the promise classes. In fact, all our results in this paper will hold for the
corresponding promise classes as well, but for readability we will omit the promise problems notation.

2 In what follows, α > 0 is an arbitrarily small constant, but different appearances of α may (or should)
not be the same. We refer the reader to the relevant papers for the precise statements.
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a quadratic overhead in space, namely, BPL ⊆ DTISP[poly(n), O(log2 n)]. Focusing solely
on space, Saks and Zhou [39] cleverly built on Nisan’s work to deterministically simulate
space-S randomized algorithms in DSPACE[O(S2/3)]. The state-of-the-art is a recent
improvement by Hoza [23], giving a deterministic simulation in space O(S2/3/

√
log S).

Still, even when BPL = L is proven, it is very likely that the minimal-footprint deran-
domization question would remain: What is the minimal c for which

BPSPACE[S] ⊆ DSPACE[c · S]?

We will give assumptions under which c approaches 2, and further assumptions under which
c approaches 1! Moreover, the results in this paper are constructive. Namely, given a
candidate hard function (and a candidate cryptographic PRG), we show how to transform
the randomized algorithm into an efficient deterministic one.

We proceed to give an overview of our results. Throughout the paper, when we refer to a
nice space function, we mean a function S(n) ≥ c0 ·log(n) (where c0 ≥ 1 is a universal constant)
such that there exists a Turing machine that gets input (x, 1t) where t ≤ ⌈log(S(|x|))⌉, runs
in space O(log(|x|) + log(S(|x|))), and accepts if and only if t = ⌈log(S(|x|))⌉.

1.1 Setting the stage: A tighter hypothesis and improved local list
decoding

We first revisit the Klivans–van-Malkebeek result [31] that establishes BPL = L from
standard, nonuniform hardness assumptions. The [31] result, which goes along the line of [37],
states that given a language in DSPACE[O(n)] that is hard for circuits of size 2εn, then
BPL = L.3 Can we do better? In particular, can we work with a more restricted class of
circuits? We show:

▶ Theorem 1 (see also [14, Theorem 5.2]). Assume there exists a language L ∈
DSPACE[O(n)] that is hard for TC0 circuits of size 2εn, for some ε ∈ (0, 1), with or-
acle access to read-once branching programs of length and width 2εn. Then, for any nice
space function S,

BPSPACE[S] ⊆ DSPACE[O(S)].

While Theorem 1 is not needed for our minimal-footprint results, the main ingredient
that goes into the proof of Theorem 1 is a basic component in all of our results: We give a
new hardness amplification result in TC0, or equivalently, a new locally list decodable code
with TC0 decoding. We elaborate on it in Section 2.1.

1.2 Black-box derandomization with minimal footprint
Our first derandomization result follows from worst-case nonuniform hardness assumptions
and cryptographic assumptions. We begin with our hardness assumption, which asserts that
there is a language computable in linear space that is hard for algorithms that use smaller
linear space as well as non-uniform advice.

3 In [31] it is also stated that one can obtain BPL = L from a size-2εn lower bound on branching
programs. The proof of this statement is not spelled out there in full detail, and as far as we understand,
the branching programs referred to in the statement are non oblivious and non read once – a model
that lies between NC1 and AC1. Theorem 1 gives a stronger statement.
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11:4 Derandomization with Minimal Memory Footprint

▶ Assumption 1 (nonuniform hardness assumption). For a sufficiently large constant C there
exists a language L computable in deterministic space (C + 1) · n that is hard, on all but
finitely many input lengths, for algorithms that run in deterministic space C · n with 2n/2

bits of advice.

We note that the gap of C + 1 vs. C can be replaced by any constant gap (i.e., C + k vs.
C for any small constant k), at the cost of allowing a relatively minor additional overhead in
the derandomization; for the precise statement, see [14, Theorem 5.5]. We note that a small
gap between the space complexity of L and the space for which it is hard for, is inherent for
“super efficient” derandomization results merely due to space hierarchy theorems.

We continue with our cryptographic PRG.

▶ Assumption 2. There exists a polynomial-stretch PRG fooling circuits of arbitrary polyno-
mial size, computable in logarithmic space.4

One appealing candidate for a cryptographic PRG satisfying Assumption 2 is Goldreich’s
expander-based PRG [16], instantiated with expanders whose neighbor function is logspace-
computable; we elaborate on this below. However, in the assumption we can use any
cryptographic PRG with polynomial stretch, as long as its space complexity is as described.

Equipped with those two assumptions, we can state our efficient derandomization from
worst case hardness assumptions.

▶ Theorem 2 (see also [14, Theorem 5.5]). Suppose that Assumption 1 and Assumption 2
hold. Then, for any nice space function S, we have that

BPSPACE[S] ⊆ DSPACE
[(

2 + c

C

)
S

]
,

where c > 1 is some fixed universal constant.

As the section’s name suggests, the above result uses a space-efficient pseudorandom
generator (along the lines of [11]), which we combine with a new method to space-efficiently
evaluate a space-bounded machine over the PRG’s image, utilizing the machine’s own
configuration. See Section 2.2 for a discussion about the techniques.

On the hardness assumptions

The combination of two assumptions – one asserting hardness for non-uniform machines,
and an additional one that is either cryptographic or relies on hardness for non-deterministic
non-uniform machines (as in [13]) – is in line with previous works in the area (see [11, 12]).
However, previous works focused on time bounded algorithms, whereas the space bounded
model turns out to be more subtle, posing several additional challenges. Thus, the particular
hardness assumptions that we use above are more specialized. Let us elaborate.

First, note that the hypothesized lower bound in Assumption 1 is against space-bounded
Turing machines (with advice). One could have hoped for a hardness assumption that is
even closer to Theorem 1, namely, for read-once branching programs (or for TC0 circuits
with oracle access to such programs). In the technical section we show that Assumption 1
can indeed be relaxed to a seemingly weaker, branching programs based assumption, which
is a bit more involved to state (see [14, Section 5.3.2] for details).

4 That is, for any constants η and k we have a PRG Ccry : {0, 1}nη

→ {0, 1}nk

computable in space
O(log(nη) + log log(nk)) (see [14, Section 3.1]).
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Secondly, our cryptographic PRG is not just an arbitrary one, but has to be logspace-
computable. However, as mentioned above, we propose Goldreich’s PRG [16] as a natural
and well-studied candidate, that works as follows. Let Γ: [nC ]× [d]→ [nη] be the neighbor
function of a suitable lossless expander, and let P : {0, 1}d → {0, 1} be a predicate. Then,
given s ∈ {0, 1}nη and i ∈ [nC ], we define

Gexp(s)i = P
(

s↾Γ(i)

)
,

where s↾Γ(i) is the restriction of s to the set of right-neighbors of i the lossless expander. For
Γ, we use an explicit, space-efficient expander [22, 29]. We further discuss Goldreich’s PRG
and its security, including possible choices for P , in [14, Section 5.3.1].

1.3 Non black-box derandomization with minimal footprint
Next, we turn to minimal-footprint derandomization under uniform hardness assumptions.
Roughly speaking, we assume the existence of a function computable in space (C + 1) · n
that cannot be probabilistically “compressed” (even in slightly larger space) into a small
Turing machine that uses only C · n space and computes the function. Formally:

▶ Definition 1. We say that P ∈ {0, 1}⋆ is an S-space compressed version of f ∈ {0, 1}⋆ if
P is a description, of length

√
|f |, of a Turing machine M that satisfies the following: On

input x ∈ [|f |], the machine M runs in space S(log(|f |)) and outputs fx.

▶ Assumption 3. For a sufficiently large constant C, there exists a function f : {0, 1}⋆ →
{0, 1}⋆ mapping n bits to n2 bits, that is computable in space (C + 1) · log n, and satisfies the
following. For every probabilistic algorithm R running in space C · log n + O(log n)5 there
are at most finitely many x ∈ {0, 1}⋆ for which

Pr [R(x) prints a (C · log n)-space compressed version of f(x)] ≥ 2
3 .

Again, similarly to our comments after Assumption 1, the precise difference of C + 1 vs.
C is not crucial (i.e., we can use C + k vs. C for a fixed small universal k), and moreover the
precise “amount of compression” can also be relaxed (e.g., compressing to |f |0.01 instead of
to

√
|f |); see [14, Section 6] for the precise details.

▶ Theorem 3 (see also [14, Theorem 6.5]). Suppose that Assumption 3 and Assumption 2
hold. Then, for any nice space function S, we have that

BPSPACE[S] ∈ DSPACE
[(

2 + c

C

)
S

]
,

where c > 1 is some fixed universal constant.

The derandomization algorithm in Theorem 3 does not rely on a pseudorandom generator,
but instead works in a “non black-box” way that depends on the input. This follows an
approach in a recent line of works initiated in [10] (with origins dating back to [18, 17]). As
in previous works, the underlying hardness-to-randomness tradeoff is instance-wise, in the
sense that for every space-S machine M and any fixed input x, if a certain machine RM (x)
fails to print a compressed version of f(x), then the deterministic simulation of M succeeds
at the particular input x.

5 The constant hidden in the O() does not depend on C.

CCC 2023
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On the hardness assumption

The hardness assumption in Theorem 3 is different than the one in Theorem 2, but the
conclusion is identical. This lends additional support for the possibility of derandomization
with small footprint. Moreover, assuming hardness only for uniform algorithms (as in
Theorem 3) is preferable, and the notion of hardness on all but finitely many inputs is
necessary for derandomization and was used in several recent works (see, e.g., [10, 32, 33]).

Nevertheless, the particular notion of hardness of compressing f(x) is non standard,
and we elaborate on it. Recall that, by Kolmogorov-complexity-type arguments, almost all
strings do not have any concise representation, let alone one that represents a space-bounded
machine. (In particular, since such a representation does not exist, then certainly it is
impossible to efficiently find it as in Assumption 3.) The crux of the assumption is that
such representations are infeasible to find even for the outputs of the efficiently-computable
function f(x). We also note that an assumption reminiscent of “hardness of compressing
f(x) on all but finitely many inputs x” was recently used to characterize time-bounded
derandomization (i.e., it is equivalent to the statement prBPP = prP); see [32] for precise
details.

Lastly, since the underlying hardness-vs.-randomness tradeoff is instance-wise, the state-
ment of Theorem 3 is robust, in the following sense: If the hardness holds not on all n-bit
inputs, but rather only on 1− µ(n) fraction of the n-bit inputs over some distribution xn,
then the derandomization succeeds with precisely the same probability and over the same
distribution. Further details appear in [14, Section 6].

1.4 Catalytic computation towards an even smaller footprint
In the model of catalytic computation, introduced by Buhrman et al. [6], we enrich the
space-bounded model with an auxiliary memory, that initially already stores some data.
While we are allowed to use the auxiliary memory for our computation, in addition to the
standard work tape, the auxiliary memory needs to be restored to its original content after
use. Can such a seemingly restrictive usage be useful for computation? The work of [6] and
followup works showed that it is indeed the case. Here, we give a possible application of
catalytic space to derandomization, a connection that as far as we know, was not suggested
before.

Suppose that our hard language from Assumption 1 can be computed catalytically, that
is, most of the space used to compute it can be eventually restored. More concretely, consider
the following assumption:

▶ Assumption 4. The language from Assumption 1 is computable in space n using additional
C · n auxiliary catalytic space.

Then, we can show:

▶ Theorem 4. Suppose that Assumption 4 and Assumption 2 hold. Then, for any nice space
function S, we have that

BPSPACE[S] ⊆ DSPACE
[(

1 + c

C

)
S

]
for some fixed universal constant c.

The same conclusion holds when adapting Assumption 3 in similar fashion.
Theorem 4 brings us tantalizingly close to derandomization without added memory

footprint. Interestingly, the regime of parameters in Assumption 4, where the work space is
only a small constant fraction of the catalytic space, has not been studied in the catalytic
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computation literature. (So far, the focus has been on the particular case where the catalytic
space is exponential in the working space.) We thus view Assumption 3 also as a motivation
to study catalytic computation in other regimes of parameters, which are useful for the study
of derandomization.

2 Technical Overview

In Section 2.1 we describe the proof of Theorem 1, the main component of which (a new
error-correcting code – see Theorem 2) will be used in the subsequent proofs. Then, in
Section 2.2 we describe the proofs of Theorem 2 and Theorem 4. In particular, we show how
to eliminate derandomization overheads, using a new algorithmic idea for derandomization,
a particular type of cryptographic PRG, and an assumption about catalytic space. The
proof of Theorem 3 is described in Section 2.3, and requires the strengthening of all the
components described in Sections 2.1 and 2.2.

2.1 Warm-up: Hardness amplification for TC0 circuits in linear space
The proof of Theorem 1 relies on the standard hardness-vs.-randomness approach, follow-
ing [37, 26, 43]: Given an input x ∈ {0, 1}n the derandomization algorithm first computes
the truth-table f ∈ {0, 1}poly(n) of the hard function (on input length O(log n)); then it
transforms f into a truth-table f̄ ∈ {0, 1}poly(|f |) of a function that is hard on average,
using a locally list-decodable error-correcting code; and finally it uses the Nisan–Wigderson
generator to transform f̄ into pseudorandom strings on which the probabilistic machine is
evaluated with input x (see, e.g., [15, Chapters 7, 8], [4, Chapters 19, 20]).

The bottleneck in this approach is the worst-case to average-case reduction underlying the
transformation of f to f̄ . To prove that the derandomization works for logspace machines,
it suffices for f̄ to be hard on 1/2− 2−ε·m fraction of its inputs for ROBPs of width 2ε·m,
for some ε > 0 and where m = log(|f̄ |).6 In order to deduce this conclusion using the
standard argument of [43], we need to assume that f itself is hard (in the worst-case) for
C-procedures with oracle access to ROBPs of linear width, where C is the complexity of the
local list-decoding algorithm of the code.

Loosely speaking, to decode from distance 1/2 − δ (and deduce hardness on 1/2 − δ

fraction of the inputs), the procedure C needs to be able to compute the majority function
(on Θ(1/δ) bits, which in our setting would be Θ(2ε·m) bits; see [19]).7 Unfortunately, even
when allowing C = TC0, the best known decoder, from [19], only handles δ = 2−

√
m, which is

too large for us. The codes that are typically used for hardness amplification with δ = 2−ε·m

(i.e., the ones from [26, 43]) are not known to be locally list-decodable in complexity as low
as TC0.8

The key observation allowing us to bridge this gap is that for our application of hardness
amplification, we do not have to insist on the TC0 circuit being of size poly(ℓ), where
ℓ = log(|f |), as in the standard setting of local coding. In fact, in our setting we can allow a
circuit of size 2ε·ℓ. Given this relaxation, we construct the following suitable code.

6 This is actually an over-simplification, and what we actually need is for f̄ to be hard on 1/2 − 2−ε·m

fraction of the its inputs for AC0 circuits that have oracle access to an ROBPs of width 2ε·m (this
follows from the standard reconstruction argument of [37]). In this high-level overview we ignore the
AC0 overhead, for simplicity of presentation.

7 In fact, a similar statement holds for any “black-box” worst-case to average-case hardness amplifica-
tion [46, 41, 20].

8 The bottleneck in both cases is local list-decoding of the Reed-Muller code; see [10] for a recent
construction of a decoder in logspace-uniform NC.
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▶ Theorem 2 (see also [14, Theorem 4.2]). There exists a universal constant c > 1 such that
for any constant γ ∈ (0, 1) the following holds. For every k ∈ N and ε > 0, there exists a
logspace-computable code C : {0, 1}k → {0, 1}n, for n = (k

ε )c/γ, that is locally list decodable
from 1/2 + ε fraction of agreement by constant-depth threshold circuits of size kγ · (1/ε)c.

At a high level, the proof of Theorem 2 (wherein one should think of k = 2m) combines
three known code constructions:
1. A small modification of the code of [19], which uniquely decodes from agreement 1− 1

25
using TC0 circuits;

2. the derandomized direct-product code of [26], which (1− 1
25 )-approximately list-decodes

from agreement η = 2−O(ε·m) using a TC0 circuit of size 2O(ε·m); and,
3. the Hadamard code, which we concatenate with the direct product code and is list-

decodable from agreement 1
2 + 2−ε·m by TC0 circuits of size poly(m).

As a corollary, we obtain a TC0-computable worst-case to average-case reduction for
computing functions in DSPACE[O(n)]; see [14, Corollary 4.1]. This reduction handles the
“high-end” parameter regime, which previous reductions for functions in DSPACE[O(n)] did
not handle (see [42, 21, 19]), and is incomparable to reductions computable by probabilistic
(uniform) algorithms [45, 9].

The decoder’s complexity

For our results we crucially rely on the fact that the decoder can be implemented in TC0 (e.g.,
when deducing black-box derandomization from hardness for TC0 circuits with oracle access
to branching programs, or when deducing non-black-box derandomization). We suspect that
it is possible to construct a code with weaker guarantees – namely, a logspace decoder, rather
than a TC0 decoder – using simpler techniques (i.e., replacing the “outer” code of [19] by
more classical tools).

2.2 Derandomization with minimal footprint using PRGs
Let S = C · log n denote the space complexity of the machine M we wish to derandomize
(the result for arbitrary S will follow from padding). At a high-level, our construction follows
an approach first introduced in [11], which composes two “low-cost” PRGs:

An inner PRG that stretches O(log n) bits to nη bits for some tiny constant η > 0, and,
an outer PRG that stretches nη bits to nC bits.

Specifically, as in [10], we take the inner PRG, denoted by NW, to be an appropriately
parameterized Nisan-Wigderson PRG [37] with a hard truth-table f ∈ {0, 1}n2 , and the
outer PRG, denoted by Gcry, to be one that relies on a cryptographic assumption.

Unfortunately, materializing this approach in the current setting turns out to be signific-
antly more subtle than in [11]. To see this, observe that the final computation iterates over
seeds s ∈ {0, 1}O(log n), and for each s computes

M(x, Gcry(NWf (s))),

where f is the truth-table of the hypothesized hard function. To compute this using space-
efficient composition, we use the following chain of simulations:
1. Simulate M(x, ·), and whenever it queries its second input –
2. Simulate Gcry, and whenever it queries its input –
3. Simulate NWf (s), and whenever it queries f –
4. Compute the corresponding bit of f .
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Recall that, using space-efficient (emulative) composition, the complexity of the final
construction is additive in the space complexity of each of its components, plus additional
overheads that are logarithmic in the output length of each component. (The latter logarithmic
overhead is caused by the fact that we are simulating a virtual input head for each component.
See [14, Proposition 3.2].) A naive implementation of this approach yields space complexity
of 3S + Space(Gcry) + Space(NW), where Space(·) denotes the space complexity of the
corresponding algorithm, and we ignore factors of the form c · log n where c > 1 is a universal
constant that doesn’t depend on S.

A more efficient derandomization

Our first observation is that the standard way of derandomizing probabilistic space-S machine
is wasteful. There, we think of the probabilistic machine as reading a tape of random bits,
sequentially; and when simulating it deterministically, we keep track of a counter i ∈ [2S ],
and whenever the machine wishes to read a random bit, we answer using the i-th bit in the
pseudorandom output of the generator, and update i← i + 1.

It might (mistakenly) seem that using a dedicated counter is necessary, because we must
ensure that the machine reads each bit in the random (or pseudorandom) sequence exactly
once. However, this intuition turns out to be false: Instead of keeping a dedicated counter
i ∈ [2S ], we can use the machine’s own configuration as a counter. Specifically, recall that at
each step the machine has some configuration σ ∈ {0, 1}S describing the contents of its work
tapes, its current state, and the locations of its heads.9 Moreover, since for every input x

and fixed sequence r of coins, the execution of M(x, r) halts, any configuration σ ∈ {0, 1}S is
encountered at most once during the execution of M (see [14, Claim 3.3]). Thus, we consider
the following machine M̄ , which simulates M using oracle access to a sequence of random
coins but without the overhead of keeping a counter:

Simulate M , and whenever M tries to flip a random coin, access the sequence of
random coins at location σ, where σ is M ’s current configuration.

Since the functionality of M̄ and of M at any input x, with uniform coins, is identical, it
suffices to faithfully simulate M̄ with pseudorandom coins.

At this point the space complexity of the derandomization is essentially

2S + Space(Gcry) + Space(NW).

Since NW maps a truth-table f of length n2 to pseudorandom strings of length nη, it can be
computed in space c′ · log n for a universal c′ > 1 (see [14, Section 5.1]). Thus, our last step
is to bound the space complexity of Gcry.

We do so by relying on a specific PRG whose space complexity is logarithmic in its input
length nη and sub-logarithmic in its output length nC . A natural candidate for such a PRG
arises from the “cryptography in NC0” literature (see, e.g., [2, 27, 1, 38]), and in particular
we can use Goldreich’s PRG [16]. The latter PRG relies on a bipartite lossless expander
Γ: [nC ]× [d]→ [nη] with a small left-degree d, and on a predicate P : {0, 1}d → {0, 1}. For
s ∈ {0, 1}nη and i ∈ [nC ], the i-th output of Gcry(s) is

P
(
sΓ(i,1), ..., sΓ(i,d)

)
,

where Γ(i, 1), . . . , Γ(i, d) are the d neighbors of i in the expander.

9 Indeed, we count the location of the heads and the state in the configuration of the machine, and in
fact assume that they are written on dedicated worktapes; see [14, Section 3] for the precise details.
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11:10 Derandomization with Minimal Memory Footprint

In the cryptography literature, the graph is often taken to be a random one, but in our
setting we need a lossless expander whose neighbor function is computable in space c′′ · log n,
and also a predicate known to withstand existing attacks that is computable in space c′′ · log n,
where in both cases c′′ > 1 is a universal constant. We use the recent expander construction
of Kalev and Ta-Shma [29], whose degree is d = polylog(n) and whose neighbor function is
computable in space O(loglogn), and a predicate introduced by Applebaum and Raykov [3]
that is computable in space O(log d) = O(loglogn). See [14, Section 5.3.1] for further details.

This brings the complexity of the deterministic simulation of M on each particular seed
to be 2S + c · log n for some universal constant c, and after enumerating over all seeds and
taking the majority output, the space complexity increases only by an additive factor of, say,
at most c · log n.

The reconstruction argument

We prove that the derandomization works using a reconstruction argument. Specifically, in
the derandomization, we instantiate the NW generator with the code from Theorem 2, and
rely on the reconstruction argument of NW and on the local list-decoding algorithm of the
code to transform any ROBP distinguisher for the PRG (which arises from the computation
of the space-S machine M on a fixed input x) into an efficient procedure that computes f .

The details of the reconstruction procedure appear in [14, Theorem 5.1], so let us only
highlight the important points in the argument. First, our distinguisher is actually derived
from M̄ , the machine that reads bits according to its configuration. Secondly, by a standard
analysis of PRG composition, the distinguisher for NWf is not just the ROBP derived from
M̄ and x, but actually the composed procedure

D(r) = M̄Gcry(r)(x).

This increases the complexity of the distinguisher from a simple ROBP to a bounded-space
machine. Lastly, while the machine implementing D uses space at least S = C · log n, the
amount of non-uniform advice that it uses is much smaller than 2S = nC . Specifically, it
uses only |x| = n = 2log(|f |)/2 bits of advice.

To sum up, if the derandomization fails on some input x, then there exists a TC0 circuit
C of size nε, and a function D that is computable in space ≈ C · log n with n bits of advice,10

such that CD(i) = fi for all i ∈ [n2]. Finally, using the fact that C is a TC0 circuit, we
show that CD itself can be computed by a TM with advice, whose space complexity is only
slightly larger than the space complexity of D. This contradicts the hardness of f .

Obtaining a sub-double space overhead

The derandomization above takes 2S + c · log n space, where the increase from S to 2S

is caused by the space complexity of computing f . Indeed, it seems unavoidable that we
will need space larger than S to compute f , because we are assuming that it is hard for
algorithms running in space S.

The key observation to reducing this overhead is that if f is computable in catalytic space
S, we can roughly use the existing used worktape cells – which, at any point in time, contain
the current configuration of the derandomized machine – in order to compute each query of

10 The precise complexity of D is (C + 1 + ε) · log n, but in the high-level overview we ignore these minor
overheads, for simplicity of presentation.
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NW to f . Specifically, whenever the derandomization machine queries f at location i ∈ [n2],
we compute fi using (mostly) the existing space in a catalytic way. After the computation
of the bit fi ends, the original content of the worktapes is restored. The key point is that
since the configuration of the machine does not change during the computation of i 7→ fi,
nor is this computation dependent on the configuration in any way, the correctness of the
procedure is maintained.

Thus, under this strengthened hypothesis that f is computable in small catalytic space,
the final space complexity of the derandomization algorithm is just S + c · log n.

An alternative to Assumption 1

Recall that D(r) above can be computed by a bounded-space machine that uses |x| bits of
advice. While indeed D is not a read-once branching program, the computation of D(r) is
oblivious. Namely, computing Ccry can be done by a bounded-width branching program that
at each layer queries several locations of r, however these locations are determined only by
the underlying expander Γ. Thus, we can model CD as a TC0 circuit with (non-adaptive)
oracle access to branching programs of the aforementioned type. Moreover, we will later see
that the TC0 circuit can be space-efficiently generated using a short advice. The formal
assumption is given in [14, Assumption 5.10], and can replace Assumption 1 for both the
double and sub-double overhead results.

2.3 Non black-box derandomization with minimal memory footprint
Set S = C·log n and recall that we wish to obtain the same conclusions for BPSPACE[S] as in
Section 2.2, but from different assumptions. Specifically, we assume the existence of a function
f : {0, 1}n → {0, 1}n2 computable in space S′ = S +O(log n) such that for every probabilistic
algorithm R running in space SR = S′ + O(log n), and every x ∈ {0, 1}n, the algorithm R(x)
fails to print a compressed version of f(x) (except with small probability). In this context,
a compressed version means a Turing machine of description size O(n) = O(

√
|f(x)|) that

runs in space roughly S + log n < S′.
Following ideas from [10, 32], we will construct a targeted PRG, which is an algorithm

that maps any input x to a set of pseudorandom strings that will fool the machine M with
this particular input x. As in those previous works, our targeted PRG is based on the Nisan–
Wigderson generator, and we analyze it using an instance-wise hardness vs. randomness
tradeoff. Specifically, we show that if the derandomization fails on an input x, then a
probabilistic space-SR machine R succeeds in mapping the same fixed x to a compressed
version of f(x). This yields Theorem 3, and also the more general version mentioned after
the theorem’s statement: For every distribution x over the inputs, if the probability over
x ∼ x that R fails to print compressed version of f(x) is 1− µ, then the derandomization
succeeds on 1− µ of the inputs x ∼ x.

The derandomization itself is similar to the one from Section 2.2, with a minor difference
that is nevertheless crucial. Instead of instantiating NW with f that is the truth-table of a
hypothesized hard function, we instantiate NW with f = f(x) obtained from the input x.
That is, we compute the majority, over seeds s ∈ {0, 1}O(log n), of

M̄Gcry(NWf(x)(s))(x) .

Note that the complexity of the derandomization algorithm is essentially identical to that of
the algorithm from Section 2.2. Thus, the only question is – why does it work?
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Analysis

The main argument underlying Theorem 3 is proving that there exists a space-SR algorithm
R = RM satisfying the following: For any fixed x ∈ {0, 1}n, when NW is instantiated with
the code from Theorem 2, if NWf(x) does not fool M , then R(x) prints a compressed version
of f(x).

The intuition for why this might be possible dates back to [24], who showed that the
reconstruction algorithm of NW, which maps a distinguisher to a small circuit for the hard
truth-table, can be made uniform – as long as it is allowed to make queries to the hard
truth-table. Recall that in our setting, the algorithm R explicitly gets the input x, and we are
allowing R to run in space that is slightly larger than the space complexity of computing f(x).
Therefore, R can simulate the reconstruction algorithm, and whenever the latter queries an
index i of f(x), the algorithm R simply computes f(x) and returns the relevant bit.

The main technical challenge that we are faced with is making the algorithm R not
only uniform, but also a small-space algorithm, and doing so when the underlying code for
hardness amplification is the one from Theorem 2. The resulting statement appears in [14,
Theorem 6.1], and its proof is the most technically subtle argument in this paper. In the rest
of the section we describe the proof, at a high-level.

Low-space uniform reconstruction and decoding

We first strengthen the analysis of the code C from Theorem 2, to show that not only is
it locally list-decodable, but that it also has a probabilistic space-O(log n) uniform decoder,
which does not need non-uniform advice (but rather uses queries to the corrupt codeword).
The algorithm R will answer this decoder’s queries to the corrupt codeword C(f(x)) by
computing f(x) and then C, which it can do in its allotted space. We compose this uniform
decoder for C with a space-O(log n) reconstruction algorithm for NW.

We stress that the two algorithms underlying R – the decoder, and the NW reconstruction
– run in space O(log n), but print a procedure of description size nΩ(1). Thus, not only do
the two algorithms need to print a description of a procedure without remembering most of
the functionality of the machine that they printed so far – but also the algorithms cannot
even evaluate the procedures that they print.

The key observation is that in both cases, the decoding/reconstruction prints a procedure
almost all of which is a large, static, truth-table. To see this, let us focus for simplicity
on the NW reconstruction algorithm.11 Recall that this algorithm implements very simple
functionality, which can be described by a logspace-uniform constant-depth circuit of size
polylog(n), and that is hard-wired with “static” information of size nε that is mostly obtained
from queries to C(f(x)).12 With some low-level care, we can design an algorithm that queries
C(f(x)) and prints a machine that implements that functionality, and has states encoding
the foregoing static information. Thus, the algorithm which prints the machine does not
need to remember static information that is already printed.

A related complication arises because both the decoding algorithm of C and the reconstruc-
tion algorithm of NW actually succeed only with small probability. The standard approach
(e.g., in [24, 10, 32]) is for R to use queries to C(f(x)) to estimate the agreement of the

11 The computational bottleneck in the decoder for C is the decoder for the derandomized direct product
code of [26], which acts in a similar way to the reconstruction of NW. Thus, we use similar ideas to
handle both the reconstruction of NW and the decoder of C.

12 The information consists of an index i (used for a hybrid argument), of a combinatorial design, of values
for the seed outside the i-th set in the design, and of nη partial truth-tables.
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procedure that it outputs with C(f(x)), repeating the experiment until it gets a procedure
with sufficiently large agreement. Since in our case R cannot evaluate the procedure that
it prints, it cannot take this approach. Instead, R prints a procedure that performs this
“success amplification” functionality by itself. We leave the details to the technical section.

Composing the two algorithms

The description above refers vaguely to “the procedure” that R print, and being more
accurate, this procedure is a TC0 circuit C of size nε making queries to a space-S machine
D that uses n bits of advice. This is not enough, since our goal is for R to print a single
Turing machine of description size O(

√
|f(x)|) = O(n) running in space S + log n < S′.

Bridging this gap requires more care in composing the two algorithms. Specifically,
our algorithm R prints a machine whose states encode the circuit C, and that implements
the standard DFS-style emulation of NC1 ⊇ TC0 circuits in logspace, while reading the
description of the hard-coded C out of its own states. The space overhead of the emulation
itself is O(log |C|) = O(log(nε)), and the machine also needs to compute the values of the
gates along each DFS path. In particular, this means that we need to ensure that each path
contains at most one oracle call to D (otherwise the machine’s space complexity will be larger
than 2S). For this purpose, in our strengthened analysis of C we ensure that its decoding
procedure only makes non-adaptive queries. This allows us to bound the space complexity of
the machine that R prints by S + O(ε · log n) ≤ S + log n, as desired.
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