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Abstract
Carmosino, Impagliazzo, Kabanets, and Kolokolova (CCC, 2016) showed that the existence of natural
properties in the sense of Razborov and Rudich (JCSS, 1997) implies PAC learning algorithms
in the sense of Valiant (Comm. ACM, 1984), for boolean functions in P/poly, under the uniform
distribution and with membership queries. It is still an open problem to get from natural properties
learning algorithms that do not rely on membership queries but rather use randomly drawn labeled
examples.

Natural properties may be understood as an average-case version of MCSP, the problem of
deciding the minimum size of a circuit computing a given truth-table. Problems related to MCSP
include those concerning time-bounded Kolmogorov complexity. MKTP, for example, asks for the
KT-complexity of a given string. KT-complexity is a relaxation of circuit size, as it does away with
the requirement that a short description of a string be interpreted as a boolean circuit. In this work,
under assumptions of MKTP and the related problem MKtP being easy on average, we get learning
algorithms for boolean functions in P/poly that

work over any distribution D samplable by a family of polynomial-size circuits (given explicitly
in the case of MKTP),
only use randomly drawn labeled examples from D, and
are agnostic (do not require the target function to belong to the hypothesis class).

Our results build upon the recent work of Hirahara and Nanashima (FOCS, 2021) who showed
similar learning consequences but under a stronger assumption that NP is easy on average.
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1 Introduction

There is a deep connection between computational learning and pseudorandomness. Loosely
speaking, the goal of learning is to extract “structure” (a simple hypothesis) from a “random”
environment, whereas the goal of pseudorandom constructions is to hide “structure” within a
“random-looking” environment. Before mentioning any examples illustrating this antagonism
between learning and pseudorandomness, let us recall the definitions of some basic learning
models.

In Valiant’s Probably Approximately Correct (PAC) learning model [29], a learner tries
to learn an unknown concept c (say, a Boolean function) from a known class C of concepts,
with respect to some (arbitrary) distribution D over inputs to c. The learner gets to see
independently sampled labeled examples of the form (x, c(x)), where x is sampled by D, and
needs to output (with high probability) a hypothesis h that has just tiny disagreement with
c with respect to the distribution D. The agnostic PAC learning model [21] is a natural
generalization of the PAC model where an unknown concept f to be learned is not necessarily
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12:2 Improved Learning from Kolmogorov Complexity

from the concept class C. The learner gets to see independently sampled labeled examples of
the form (x, f(x)), with x sampled from some distribution D, and needs to output (with
high probability) a hypothesis h so that the disagreement between h and f with respect to
D is very close to the disagreement between f and the concept cf ∈ C that is closest to f

with respect to D. Classical (agnostic) PAC learning model is distribution-independent in
the sense that a successful PAC learning algorithm for a concept class C must work with
respect to any distribution D of examples. One also considers a distribution-specific setting
where a learning algorithm must work with respect to a single fixed distribution D, e.g., the
uniform distribution or a polytime-samplable distribution.

Impagliazzo and Levin [18] and Blum et al. [5] (see also [24]) show that breaking crypto-
graphic Pseudorandom Generators (PRGs) implies average-case PAC learning with respect
to polytime-samplable distributions; here, rather than learning every concept from some
concept class C, one gets to learn a significant fraction of concepts from C under a polytime-
samplable distribution over C. In contrast, Nisan and Wigderson [25] show that breaking
complexity-theoretic PRGs (namely, the NW generators) implies worst-case learning (of every
concept in a given concept class C) under the uniform distribution, but here the learning
algorithm needs to make membership queries (MQs) to the concept c ∈ C it is trying to learn,
i.e., the learner gets to ask the value c(x) for any input x of its choosing.

Where does one get an algorithm to break a given PRG in order to get a learning
algorithm? For the case of the NW PRG, Carmosino et al. [10] showed that a natural
property (in the sense of Razborov and Rudich [27]) for a (sufficiently expressive) circuit
class C yields a learning algorithm for C under the uniform distribution, with membership
queries; this was generalized to learning with respect to polytime-samplable distributions
by Binnendyk et al. [4]. Using a known natural property for the class AC0[p] of constant-
depth circuits with AND, OR, NOT, and mod-p counting gates (for any prime modulus
p) from [27], [10] obtained a quasipolynomial-time learning algorithm for AC0[p] over the
uniform distribution, using membership queries. Later, [11] generalized this framework to
show that one also gets agnostic learning algorithms from certain generalizations of natural
properties. It remains an important open problem to get from a natural property a learning
algorithm that uses only random labeled examples. In particular, it would be very interesting
to get an efficient learning algorithm for AC0[p] without membership queries, which would
rule out weak Pseudorandom Function Generator constructions in AC0[p]; see [6] for a recent
survey on pseudorandom functions.

A natural property for general circuits is an efficient average-case heuristic for Minimum
Circuit Size Problem (MCSP) over the uniform distribution, with one-sided error. Namely,
it should always accept the truth tables of Boolean functions of low circuit complexity (for
a given threshold size parameter s), and should reject at least a constant fraction of all
possible truth tables. MCSP is an example of a meta-complexity problem asking to estimate
the circuit size of a given truth table. There are closely related meta-complexity problems
for variants of time-bounded Kolmogorov complexity.

For example, MKTP (defined in [1]) asks if a given binary string x is efficiently locally
computable (outputting bit xi on any input i in at most t steps) by a universal Turing
machine with oracle access to some short binary string d, where one seeks to minimize the
sum |d| + t. As MCSP, MKTP asks for a description of a string x that allows one to compute
x locally, any bit xi at a time. However, such a description of x needn’t be a Boolean circuit
for the truth table x, the time t of an algorithm computing each xi is explicitly taken as part
of the complexity measure of x, and this reconstruction algorithm is given random access to
the description string d.
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We show that this extra flexibility of MKTP compared to MCSP leads to improved
learning algorithms from an assumed “natural property” (or one-sided error average-case
heuristic) for MKTP, where we get agnostic PAC learning algorithms over explicitly given
efficiently samplable distributions. Recall that SIZE[s(n)] denotes the set of all n-variate
Boolean functions computable by circuits of size at most s(n). We have the following.

▶ Theorem 1 (Learning from MKTP: Informal version). Suppose MKTP has an efficient
one-sided error average-case heuristic over the uniform distribution over inputs. Then for any
circuit size bound s(n) ≤ poly(n), the concept class C = SIZE[s(n)] is agnostic PAC-learnable
in polytime with respect to any explicitly given ensemble of polysize-samplable distributions
D = {Dn}.

Here an ensemble D of distributions Dn is polysize-samplable if there is a family of
polysize circuits Sampn that are samplers for Dn, i.e., the distribution of outputs of Sampn

on uniformly random inputs is Dn. Explicitness of D means that a learning algorithm,
when asked to learn some n-variate Boolean function, is explicitly given a description of
the sampling circuit Sampn for the distribution Dn. Note that this explicitness condition
for D = {Dn} is trivially satisfied by the uniform distribution or any polytime-samplable
distribution ensemble (in the latter case, one just needs a constant-size description of a
polytime Turing machine that samples according to Dn, for any given n).

For the learning setting over distributions D = {Dn} where D is polysize-samplable, but
the sampling circuits Sampn are not explicitly given to the learning algorithm (and only
their sizes are given), we can get efficient agnostic PAC learning from a “natural property” for
a different Kolmogorov-complexity measure, Kt. Recall that, for any time parameter t ∈ N,
Kt(x) is defined as the length of a shortest string d ∈ {0, 1}∗ such that a universal Turing
machine with input d outputs the string x within t steps. Note that, in contrast to KT, here
the time t to reconstruct a given string x is a parameter rather than part of the complexity
measure of x, and there is no requirement to compute x locally. The minimization version of
Kt, denoted MKtP, needs to decide, for a given binary string x and a size parameter s, if
Kt(x) ≤ s. We have the following.

▶ Theorem 2 (Learning from MKtP: Informal version). Suppose MKtP has an efficient one-
sided error average-case heuristic over the uniform distribution over inputs. Then for any
circuit size bound s(n) ≤ poly(n), the concept class C = SIZE[s(n)] is agnostic PAC-learnable
in polytime with respect to any ensemble of polysize-samplable distributions D = {Dn}.

The conclusion of Theorem 2 is stronger than that of Theorem 1, as it does away with
the requirement of explicitness of D. Though we cannot yet reach the same conclusion
under average-case easiness of MKTP, we make some partial progress; we show that under
worst-case easiness of MKTP, learning is possible without the sampling circuit explicitly
given.

▶ Theorem 3 (Learning from worst-case MKTP: Informal version). Suppose MKTP is decidable
by an efficient randomized algorithm. Then for any circuit size bound s(n) ≤ poly(n), the
concept class C = SIZE[s(n)] is agnostic PAC-learnable in polytime with respect to any
ensemble of polysize-samplable distributions D = {Dn}.

Below we explain our results and proof techniques in more detail.

1.1 Results
In this work, we present agnostic PAC-learners for polynomial-size circuits over efficienly
samplable distributions, under assumptions of problems of time-bounded Kolmogorov com-
plexity being easy on average. More specifically, we consider the problem of learning an

CCC 2023



12:4 Improved Learning from Kolmogorov Complexity

unknown target function f : {0, 1}n → {0, 1} with respect to a concept class C and a class
D of ensembles of distributions. Learnability here is agnostic in the sense that f does not
necessarily belong to C, and our learner is asked to learn f with error that is just a small
additive ε over the disagreement between f and the closest function in C to f , with high
probability. In this case, we say the algorithm achieves ε-agnostic learning; see Section 2.3
for more precise definitions.

We will typically take C to be SIZE[s(n)] for some function s : N → N: that is, the class of
functions computable by boolean circuits of size s(n). Our agnostic PAC-learners have access
to an example oracle EX(f, D), with each query returning an independent and identically
distributed pair (x, b), where x is sampled according to the distribution D and b = f(x).
The sample complexity of the learning algorithm is the number of queries made to EX(f, D).
Note that our learners may not ask membership queries of the target function f .

We will typically take D to be Samp[T (n)]/a(n) for some functions T, a : N → N, i.e., the
class of distributions samplable non-uniformly in time T (n) and with a(n) bits of advice.
We consider two different kinds of access to the target distribution D. The first is white-box
access, where the learner is explicitly given the a(n) bits of advice required to sample D (as
well as the parameters T (n) and a(n) that define the distribution class D). In this case, we
will say that C is agnostic PAC-learnable over w.b.-Samp[T (n)]/a(n). In the second kind of
access to D, the learner is not given the advice to sample D but is given the parameters
T (n) and a(n). In this case, we will simply say that C is agnostic PAC-learnable over
Samp[T (n)]/a(n).1

We also consider two different notions of time-bounded Kolmogorov complexity. The
minimum KT-complexity problem, MKTP, is the problem of deciding, given a string x ∈ {0, 1}∗

and a parameter s ∈ N, whether the KT-complexity of x is at most s. Roughly speaking,
KT-complexity is the minimum |d| + t such that a universal TM with oracle access to
d ∈ {0, 1}∗ can compute any individual bit of x in time t ∈ N. MKtP is defined analogously,
where Kt-complexity is the minimum description length |d| such that a universal TM U on
input d outputs (the whole string) x in time t. See Section 2.2 for formal definitions of these
measures of time-bounded Kolmogorov complexity and the associated decision problems.2

As mentioned earlier, our notion of an average-case heuristic over the uniform distribution
U over inputs for MKTP or MKtP mimics the one-sided error definition of a natural property
of [27], where all yes-instances must be accepted, and a constant fraction of all instances must
be rejected. Given the extreme sparsity of yes-instances of these problems over the uniform
distribution, we easily get required one-sided error average-case heuristics for these problems
from errorless average-case heuristics; the class of errorless randomized heuristics is denoted
by AvgBPP (see Section 2.1 for the precise definition). For example, our assumption that
there is an efficient errorless randomized heuristic for MKTP under the uniform distribution
over inputs will be denoted by (MKTP, U) ∈ AvgBPP.

Learning over explicitly given efficiently samplable distributions

Here we give a more formal statement of our Theorem 1.

1 For context, the first model is that employed in the recent work of [4], and the second model is
that employed in the recent work of [16]. In the original PAC-learning framework of [29], the target
distribution is allowed to be completely unknown and arbitrary.

2 MKtP has elsewhere been denoted MINKT.
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▶ Theorem 4. Suppose (MKTP, U) ∈ AvgBPP. Then for any time-constructible function
s : N → N, polynomials T, a : N → N, and ε ∈ (n−d, 1) for a constant d > 0, the concept class
SIZE[s(n)] is ε-agnostic PAC-learnable on w.b.-Samp[T (n)]/a(n)

in time poly(n, s(n), T (n), a(n), ε−1) and
with sample complexity ((s(n) + n)3 · ε−26)1+o(1).

Proof. The theorem follows by combining Theorem 19 and Theorem 36 below. ◀

Learning over unknown efficiently samplable distributions

Below we give a formal statement of our Theorem 2. For MKtP, as above, we allow errorless
randomized heuristics.

▶ Theorem 5. Suppose (MKtP, U) ∈ AvgBPP. Then for any time-constructible func-
tions s, T, a : N → N and ε ∈ (0, 1), the concept class SIZE[s(n)] is ε-agnostic learnable
on Samp[T (n)]/a(n)

in time poly(n, s(n), T (n), a(n), ε−1) and
with sample complexity ((s(n) + a(n) + log T (n))3 · ε−8)1+o(1).

Proof. The theorem follows by combining Theorem 19 and Theorem 38 below. ◀

Finally, we give a formal statement of our Theorem 3.

▶ Theorem 6. Suppose MKTP ∈ BPP. Then for any time-constructible functions
s, T, a : N → N and ε ∈ (0, 1), the concept class SIZE[s(n)] is ε-agnostic learnable on
Samp[T (n)]/a(n) in time and sample complexity poly(n, s(n), T (n), a(n), ε−1).

Proof. The theorem follows by combining Theorem 19 and Theorem 41 below. ◀

1.2 Techniques
All of our proofs work by way of the known reduction, due to Kothari and Livni [22], from
agnostic PAC-learning to the task of correlative RRHS-refutation. Consider polynomials
s(n), T (n), and a(n). Given a concept class SIZE[s(n)], a distribution class Samp[T (n)]/a(n),
and a tuple of labeled strings (⟨x(1), b(1)⟩, ..., ⟨x(m), b(m)⟩), where each x(i) ∼ Dn for some
distribution D ∈ Samp[T (n)]/a(n), a correlative RRHS-refuter R is asked to distinguish the
following two cases:

A “correlative case”, in which the labels b are correlated with the output of some s(n)-size
circuit f ; that is, for each 1 ≤ i ≤ m, independently,

Pr
x(i)∼D

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 ,

and a “random case”, in which the labels b(i) are sampled independently and uniformly
at random.

Kothari and Livni show that if there is a probabilistic polynomial-time algorithm R satisfying
the above conditions, then there is an agnostic learner for f over D. The proof of this
statement essentially uses distribution-specific boosting algorithms for the agnostic setting,
as given by Feldman [12] and Kalai and Kanade [20]. The fact that the distribution D

remains the same during polynomially many boosting stages is crucial as it keeps the circuit
complexity of the sampler for D polynomially bounded.

For our results, the key intuition is that the concatenated samples in the correlative
case will have lower time-bounded Kolmogorov complexity than those in the random case,
since the complexity of uniformly random labels (b(1), ..., b(m)) is close to its maximum value
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m + O(1) with very high probability. Choosing m = poly(n) sufficiently larger than the
circuit-complexity s(n) of the target function f yields the desired gap between the two cases.
In this way, a heuristic algorithm for computing time-bounded K-complexity may be used as
a correlative RRHS-refuter.

A first observation is that, regardless of the version of time-bounded K-complexity
available as a heuristic algorithm, it is easy to construct a correlative RRHS-refuter working
over the uniform distribution. For example, suppose (MKTP, U) ∈ AvgBPP. Let X :=
(x(1), ..., x(m)) ∈ {0, 1}nm and b := (b(1), ..., b(m)) ∈ {0, 1}m. On one hand, in the correlative
case, we will always have

KT(X, b) ≤ nm + ℓs(n) + δ · m,

where ℓs(n) ≤ O(s(n) log s(n)) is the length of an encoding of a circuit for f , and a further
δ · m bits for a constant δ < 1 are used to encode the discrepancy between the labels b and
the true outputs of f (see Lemma 34). In particular, given X, it is easy to construct b from
the outputs of f (and knowing which of the labels b(i) are incorrect). On the other hand, in
the random case, (X, b) ∼ Unm+m. Since the KT-complexity of uniformly random strings is
usually close to maximum, we have that with high probability,

KT(X, b) ≥ nm + m − 10.

It is not hard to see that our randomized heuristic for deciding KT-complexity will serve as
a randomized distinguisher between these two cases.

For distributions other than uniform, the situation is less straightforward. In particular,
our heuristic algorithms are only defined to work well over U ; moreover, KT(X, b) is not
necessarily likely to be large. In recent work, Hirahara and Nanashima [16] circumvent these
obstacles under the assumption that DistNP ⊆ AvgP. In particular, they use this assumption
to construct a worst-case algorithm approximating Kt within logarithmic additive error.
They also use it to prove a worst-case weak Symmetry of Information theorem for Kt, which
conditionally states that for some polynomial p, for every X ∈ {0, 1}∗,

Kt(X, b) ≥ Kp(t)(X) + |b| − O(log t)

with high probability over a uniformly random string b. The above inequality is used in the
random case of RRHS-refutation. In the correlative case, as above, it holds that

Kt(X, b) ≤ Kt′
(X) + ℓs(n) + δ · m

for some time-bound t′ < t. The authors then use the worst-case algorithm for Kt to approx-
imate the value of Kt(X, b) − Kτ (X) for an appropriate choice of τ , thereby distinguishing
the two cases. To overcome the technical issue of the different time bounds p(t) and t′ in the
expressions above, they show that such differences are immaterial in the expectation over
an efficiently samplable distribution:3 for any D ∈ Samp[mT (n)]/a(n) and sufficiently large
time bound t,

E
X∼D

[
Kt(X) − K(X)

]
≤ O(log(mT (n))) + a(n). (1)

In other words, both Kt(X) and Kt′(X) are likely close enough to K(X), and therefore close
enough to each other.

3 Note that for x(i) ∼ D, for D ∈ Samp[T (n)]/a(n), we have X = (x(1), ..., x(m)) ∼ D′, for D′ ∈
Samp[mT (n)]/a(n).



H. Goldberg and V. Kabanets 12:7

1.2.1 Learning from MKtP
To prove our result for MKtP, we show that similar arguments may be carried out under a
significantly weaker assumption. One issue is that [16] uses the assumption DistNP ⊆ AvgP
to achieve derandomization, as shown possible by [9]. Roughly speaking, one “encodes” a
string x into a distribution DP(x) such that any efficient algorithm distinguishing DP(x)
from uniform can be used to show that Kt(x) is small, a process that crucially relies on the
derandomization of the DP reconstruction. Such derandomization is not known to hold under
the assumption DistNP ⊆ AvgBPP, let alone our weaker assumption of (MKtP, U) ∈ AvgBPP,
where MKtP is not even known to be NP-hard. In our setting, compression via the DP
generator gives a randomized algorithm A that, for any string X and sufficiently large t ∈ N,
outputs a value s̃ ∈ N such that

pKpoly(t)(X) − O(log t) ≤ s̃ ≤ Kt(X),

where pKpoly(t) denotes a probabilistic measure of time-bounded Kolmogorov complexity. See
Section 2.2 for a definition. In general, pKt(X) could be much smaller that Kt(X), so the
algorithm A does not appear very useful a priori. However, as we outline below, it turns out
to be sufficient for the purposes of learning.

Another challenge in our setting is to argue for Eq. (1) above, which says that Kt(X) is close
to K(X) in the expectation. In [16], the proof of that statement relies on a conditional source-
coding theorem for Kt: if DistNP ⊆ AvgP, then for any distribution D ∈ Samp[mT (n)]/a(n)
and X ∈ supp(D),

Kpoly(mT (n))(X) ≲ log(1/D(X)), (2)

where D(X) denotes the probability of X under D, and “≲” hides the term O(log(mT (n))) +
a(n). Specifically, to prove Eq. (1) from this statement, one observes that

E
X∼D

[
Kt(X)

]
≲ E

X∼D
[log(1/D(X))]

= H(D)
≤ E

X∼D
[K(X)],

where H(D) denotes the Shannon entropy of the distribution D.
In our setting, without derandomization, Eq. (2) is not known to hold. Unconditionally,

it is only known that with high probability over r ∼ Upoly(mT (n)),

Kpoly(mT (n))(X, r) ≲ log(1/D(X)) + |r|. (3)

That is, source coding for Kt only holds in the presence of additional uniform randomness.
A statement of this kind was originally proved in [3]. In analogy with Eq (1), we may use
Eq. (3) to prove that

E
[
Kt(X, r) − K(X, r)

]
≤ O(log(mT (n))) + a(n), (4)

for X ∼ D and r ∼ Upoly(mT (n)).
We cope with the necessity of this additional randomness r by incorporating it into our

correlative RRHS-refuter R. That is, we use the randomness of R to uniformly sample
a string r, and rather than approximating Kτ (X) and Kt(X, b), we approximate Kτ (X, r)
and Kt(X, b, r). We show the analysis of the RRHS-refutation to be unharmed by this
modification.
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Importantly, Eq. (4) allows us to make use of our inferior approximation algorithm A

described at the beginning of this section. For any strings X and r, pKt(X, r) is known to be
lower-bounded by the time-unrestricted K(X, r). Eq. (4) then implies that the expected value
of Kt(X, r) − pKt(X, r) will be low, for X sampled from an efficiently samplable distribution
and r sampled uniformly at random. Intuitively, there is a “smoothing out” of the differences
between different measures of Kolmogorov complexity in the expectation, so the correlative
RRHS-refuter we construct may sometimes safely ignore such differences.

Finally, there is the issue of the Symmetry of Information theorem for Kt, which is not
known to hold in the absence of derandomization. To get around this, we observe that such a
statement is actually not necessary for our purposes. Rather, since Kt(X, b, r) will be close to
K(X, b, r) with high probability over X ∼ Dm

n , b ∼ Um, and r ∼ Upoly(mT (n)), we may simply
apply the well-known, unconditional Symmetry of Information theorem for time-unbounded
Kolmogorov complexity. This observation has the advantage of simplifying our proofs as well
as painting a clearer picture of the true prerequisites of learning.

1.2.2 Learning from MKTP
Many of the tools available in the Kt setting, such as compression via generator reconstruction
yielding a worst-to-average reduction, become unavailable in the setting of KT. For this
reason, we can no longer apply the framework of [16], and we obtain a model of learning
that requires a stronger form of access to the target distribution in question. In this setting,
we take advantage of the fact, as described above, that it is easy to learn via KT over
the uniform distribution. Our goal is then to reduce the task of learning over arbitrary
distributions in PSamp/poly to that of learning over the uniform distribution. Inspired by
a recent work of Binnendyk et al. [4], we employ the distributional inverters of [19]. A
distributional inverter for a function g : {0, 1}∗ → {0, 1}∗ is an algorithm that, given some
y = g(x), outputs a nearly uniformly random member of the set {z | g(z) = y}. It is already
known that (MKTP, U) ∈ AvgBPP implies the existence of such objects for every efficiently
computable g (see Section 2.4).

To construct a correlative RRHS-refuter for an arbitrary distribution D ∈ PSamp/poly,
we apply distributional inversion in the following way. Let I be a distributional inverter
for the sampler for D, which is a polynomial-size circuit C. Recall that in the problem of
correlative RRHS-refutation, we are provided labeled examples {(x(i), b(i))}, where either
the b(i)s are uniformly random, or they are correlated with the outputs f(x(i)) of the target
function f . Given such pairs {(x(i), b(i))}, we apply I to the first part to simulate pairs of the
form {(r(i), b(i))}, where the r(i)s are now from a distribution close to uniform, and the b(i)s
are either uniformly random, or they are correlated with the outputs f(C(r(i))) of the target
function f composed with the sampler C. Using a correlative RRHS-refuter for f ◦ C over
the uniform distribution, we can distinguish these two cases, thereby distinguishing the two
cases of the original problem over D. Because I must have oracle access to the non-uniform
circuit C it is inverting, the learner will ultimately require an explicit description of C, so
that the learner can output a circuit for f with no extra oracle gates.

1.3 Related Work
[16] proved a version of Theorem 2 under the assumption that DistNP ⊆ AvgP. In [13], the
authors adapted the learning result of [16] to the case of the randomized average-case easiness
assumption that DistNP ⊆ AvgBPP, by showing that the probabilistic Kolmogorov complexity
measure pKt may be used instead of Kt, and proving (under the same average-case easiness
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assumption) various results for pKt (e.g., the existence of a randomized approximation
algorithm for pKt, and the Symmetry of Information). Using [13], it is fairly straightforward
to get a learning algorithm from the assumption that MpKtP (the minimization problem for
pKt) is in AvgBPP, relying on the properties of pKt proved in [13]. However, in the present
paper, we use a weaker assumption that MKtP is in AvgBPP (under the uniform distribution),
and avoid using any nontrivial properties of pKt. Intuitively, the reason we are able to do
so is the “smoothing out” phenomenon mentioned above: the time-bounded Kolmogorov
complexity measures Kt and pKt are close to the time-unbounded measure K, in expectation
over appropriate efficiently samplable distributions.

Recall that Partial-MCSP is the problem of deciding, given a collection of pairs {(xi, bi)},
whether there is a small circuit C such that every C(xi) = bi. Ilango, Loff, and Oliveira
prove that under an average-case easiness assumption about Partial-MCSP, PAC-learning
without membership queries is possible over the uniform distribution [17]. This relies on a
reduction of Vadhan [28] from PAC-learning (in a distribution-independent sense) to the
problem of “RRHS-refutation”: namely, the simpler version of correlative RRHS-refutation
in which the labels bi are precisely the outputs of the target concept f applied to the samples
xi. We expect that by using the tools of this work, including correlative RRHS-refutation
and distributional inversion, the statement of [17] could be extended to the agnostic setting
and arbitrary efficiently samplable distributions, in the sense of our Theorem 1.

2 Preliminaries

2.1 Average-case Complexity
A distributional problem is a pair (L, D), where L ⊆ {0, 1}∗ is a language and D is a family of
distributions D = {Dn}n∈N. We denote by U the family of parameterized uniform distributions
{U⟨n,t1,...,tk⟩}n,t1,...,tk∈N, where k is a constant, each U⟨n,t1,...,tk⟩ := (Un, 1t1 , ..., 1tk ), and Un

is the uniform distribution over n-bit strings.4

▶ Definition 7 (AvgBPP [7]). A distributional problem (L, D) belongs to AvgBPP if there
is an algorithm A and polynomial p such that, on any n ∈ N, x ∈ supp(Dn), and δ > 0,
A(x; n, δ) runs in time at most p(n/δ), and
1. PrA [A(x; n, δ) /∈ {L(x), ⊥}] ≤ 1

10 ;
2. Prx∼Dn

[ PrA[A(x; n, δ) = ⊥] ≥ 1/10 ] ≤ δ(n).
Such an algorithm A is called a randomized errorless heuristic scheme for (L, D).

2.2 Time-bounded Kolmogorov Complexity
▶ Definition 8 (KT [1]). Fix a universal oracle TM U . For strings x, y ∈ {0, 1}∗, the
KT-complexity of x given y is defined as

KT(x | y) := min
d∈{0,1}∗, t∈N

{
|d| + t | ∀ 1 ≤ i ≤ N + 1, Ud,y(i) = xi in at most t steps

}
,

where xN+1 := ⊥, and the notation Ud,y means that U has random (oracle) access to strings
d and y.

4 Formally, ⟨t1, ..., tk⟩ denotes Enc(t1, ..., tk), where Enc : N∗ → N is an efficiently computable and
decodable encoding function. Such an encoding function is known to exist by standard techniques; see,
for example, [7].
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▶ Definition 9 (Kt). Fix a universal deterministic TM U . For strings x, y ∈ {0, 1}∗ and a
time bound t ∈ N, the t-time-bounded Kolmogorov complexity of x given y is defined as

Kt(x | y) := min
k∈N

{
k

∣∣ ∃ w ∈ {0, 1}k, U(w, y) outputs x within t steps
}

.

▶ Definition 10 (pKt
δ). Fix a universal deterministic TM U . For strings x, y ∈ {0, 1}∗, a

time bound t ∈ N, and δ ∈ [0, 1], the δ-probabilistic t-time-bounded Kolmogorov complexity of
x given y is defined as

pKt
δ(x | y) := min

k∈N

{
k

∣∣∣∣ Pr
r∼{0,1}t

[
∃ w ∈ {0, 1}k, U(w, y, r) outputs x within t steps

]
≥ δ

}
.

▶ Definition 11 (MKTP and MKtP). We define languages
MKTP := {(x, 1s) | x ∈ {0, 1}∗, s ∈ N, and KT(x) ≤ s};
MKtP := {(x, 1s, 1t) | x ∈ {0, 1}∗, s, t ∈ N, and Kt(x) ≤ s};

▶ Proposition 12. For any string x ∈ {0, 1}∗ and time bound t ∈ N,

pKt(x) ≤ Kt(x).

▶ Proposition 13 ([13]). There is a constant c such that, for any string x ∈ {0, 1}∗ and time
bound t ∈ N,

K(x | t) ≤ pKt(x) + c log |x|.

▶ Proposition 14. There is a constant c′ such that, for any string x ∈ {0, 1}∗ and time
bound t ∈ N,

Kt(x) ≤ |x| + c′.

▶ Lemma 15 (Symmetry of Information for Time-unbounded K-complexity [31]). For every
pair of strings x ∈ {0, 1}∗ and y ∈ {0, 1}∗,

K(xy) ≥ K(x) + K(y | x) − O(log |xy|).

2.3 Agnostic PAC-Learning and Correlative RRHS-Refutation
In the PAC-learning framework, one is asked to learn an unknown concept: namely, a Boolean
function f : {0, 1}n → {0, 1} for some n ∈ N. A concept class C refers to a set of such concepts,
and Cn denotes C ∩ {f : {0, 1}n → {0, 1}}. One may ask whether C is PAC-learnable over a
class D of ensembles D = {Dn}n≥1 of distributions Dn. Dn denotes {Dn | D ∈ D}. For a
hypothesis h : {0, 1}n → {0, 1}, define

errDn
(h, f) = Pr

x∼Dn

[h(x) ̸= f(x)].

We also define the minimum relative distance between f and C with respect to Dn as the
disagreement between f and the best-fitting hypothesis c ∈ C, i.e.,

optCn,Dn,f = min
c ∈ Cn

errDn
(c, f).

Learners are provided an example oracle EX(f, Dn) such that each query returns an inde-
pendently sampled pair (x, b), where x ∼ Dn and b = f(x). We will use the term sample
complexity to mean the number of queries made to EX(f, Dn).
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▶ Definition 16 (PAC learning [29]). Let C be a concept class, and let D be a class of
distributions. We say that C is PAC-learnable on D if there is an algorithm A with the
following property. For every n ≥ 1, ε > 0, δ > 0, distribution D ∈ Dn, and concept
f : {0, 1}n → {0, 1} belonging to Cn,

Pr
A, EX(f,D)

[
AEX(f,D)(n, ε, δ) outputs a hypothesis h such that errD(h, f) ≤ ε

]
≥ 1 − δ,

where the probability is over the internal randomness of A and random examples provided by
EX(f, D).

The following definition of agnostic PAC learning is a generalization of the PAC learning
definition above to the case where a function f to be learned is not necessarily from the
concept class C. In this case, the hypothesis h output by the learning algorithm should have
an error close to the minimum relative distance between f and the concept class C.

▶ Definition 17 (Agnostic PAC learning [21]). Let C be a concept class, and let D be a class
of distributions. We say that C is ε-agnostic PAC-learnable on D if there is an algorithm A

with the following property. For every n ≥ 1, ε > 0, δ > 0, distribution D ∈ Dn, and concept
f : {0, 1}n → {0, 1},

Pr
A, EX(f,D)

[
AEX(f,D)(n, ε, δ) outputs a hypothesis h such that errD(h, f) ≤ optCn,D,f +ε

]
≥ 1− δ.

▶ Definition 18 (Correlative RRHS-Refutation). Let C be a concept class, and let D = {Dn}n≥1
be an ensemble of distributions. A randomized algorithm R is a ε-correlative random-right-
hand-side-refuter (ε-correlative RRHS-refuter) for C on D with sample complexity m provided
it satisfies the following. Given input parameters n ∈ N and ε ∈ (0, 1), as well as a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, where x(i) ∈ {0, 1}n and b(i) ∈ {0, 1} for i ∈ [m];
Soundness: Suppose the samples S are i.i.d. from a distribution D′ on {0, 1}n × {0, 1}
such that the marginal on {0, 1}n equals Dn, and for some f ∈ Cn,

Pr
⟨x(i), b(i)⟩ ∼ D′

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 .

Then,

Pr
S,R

[R(n, ε, S) = correlative ] ≥ 2/3.

Completeness: Suppose the samples S are i.i.d. with x(1), . . . , x(m) ∼ Dn and
b(1), . . . , b(m) ∼ U . Then,

Pr
S,R

[R(n, ε, S) = random ] ≥ 2/3.

Kothari and Livni [22] prove an equivalence between distribution-specific agnostic PAC
learning and RRHS-refutation. We will be using the following direction from RRHS-refutation
to agnostic learning.

▶ Theorem 19 (Agnostic Learning from RRHS-Refutation [22]). Let C be a concept class, and
let D = {Dn}n≥1 be an ensemble of distributions. If there exists an ε-correlative RRHS-
refuter for C on D with sample complexity m(n, ε) and running time T (n, ε), then C is
(2ε)-agnostic PAC-learnable over D with

sample complexity O
(
m(n, ε/2)3 · ε−2)

, and
running time O

(
T (n, ε/2) · m(n, ε/2)2 · ε−2)

.
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The proof of the above theorem relies on distribution-specific boosting algorithms for the
agnostic setting, such as those of Feldman [12] and Kalai and Kanade [20]. These algorithms
transform a weak agnostic learner over some distribution into a strong agnostic learner over
that same distribution; they work by adaptively modifying the labels of example points rather
than the distributions on those points as is typically the case in boosting. Interestingly, in
the agnostic setting, it is possible to accomplish this without a superpolynomial increase in
the running time of the learner.

2.4 Inversion
In this section, we cover definitions of inversion of functions, which are the negations of
corresponding definitions of the existence of one-way functions. Throughout, we take the
word “function” to include auxiliary input functions in the sense of Ostrovsky and Wigderson,
in which both function and potential inverter have access to the same non-uniform input
(denoted y below) [26].

▶ Definition 20 (Invertible functions). Consider a function g(y, x) computable uniformly in
polynomial time. The function g is said to be weakly invertible if there is a probabilistic
polynomial-time Turing machine I and a constant b such that for every n ∈ N and for every
y ∈ {0, 1}∗,

Pr
x∼Un

[g(y, I(y, g(y, x))) = g(y, x)] ≥ 1
nb

.

The function g is said to be strongly invertible if for every constant d there is a probabilistic
polynomial-time Turing machine I such that for every n ∈ N and for every y ∈ {0, 1}∗,

Pr
x∼Un

[g(y, I(y, g(y, x))) = g(y, x)] ≥ 1 − 1
nd

.

▶ Definition 21 (Statistical Indistinguishability). Two probability distributions D and D′ are
statistically indistinguishable within δ if for all T ⊆ {0, 1}n,∣∣∣∣ Pr

x∼Dn

[x ∈ T ] − Pr
x∼D′

n

[x ∈ T ]
∣∣∣∣ ≤ δ.

We denote this as D ≡δ D′.

▶ Definition 22 (Distributionally invertible functions). Consider a function g(y, x) computable
uniformly in polynomial time. The function g is said to be distributionally invertible if for
every constant b > 0 there is a probabilistic polynomial-time oracle Turing Machine I such
that for every n ∈ N and y ∈ {0, 1}∗,

(x, g(y, x)) ≡n−b (I(y, g(y, x)), g(y, x)),

where x ∼ Un. We refer to the machine I as an n−b-distributional inverter.

▶ Lemma 23 ([30]). If every function computable in polynomial time is weakly invertible,
then every such function is strongly invertible.

▶ Lemma 24 ([19]). If every function computable in polynomial time is strongly invertible,
then every such function is distributionally invertible.

▶ Lemma 25 ([1]). If (MKTP, U) ∈ AvgBPP, then every function computable in polynomial
time is weakly invertible.

▶ Corollary 26. If (MKTP, U) ∈ AvgBPP, then every function computable in polynomial
time is distributionally invertible.
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2.5 Direct Product Generator and pKt-Compression
▶ Definition 27 (Direct Product Generator). For n, k ∈ N, the k-wise direct product generator
DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k is the function defined by

DPk(x; z1, ..., zk) = (z1, ..., zk; ⟨x, z1⟩, ..., ⟨x, zk⟩),

where ⟨−, −⟩ denotes the inner product ⟨x, y⟩ =
(∑|x|

i=1 xiyi

)
mod 2.

▶ Lemma 28 (Probabilistic pKt Reconstruction [13]). There is a polynomial p′ with the
following property. For ε > 0, x ∈ {0, 1}n, s ∈ N, and k ∈ N satisfying k ≤ 2n, let D be
a randomized algorithm that takes an advice string β, runs in time tD, and ε-distinguishes
DPk(x; Unk) from Unk+k. Then

pKp′(tD·n/ε)(x | β) ≤ k + log p′(tD · n/ε).

2.6 Source Coding Theorem
The following lemma is very similar to one of [3], but with a greater probability of success on
the right-hand side, which is necessary for the application in Lemma 37. For completeness,
we present a slight modification of a proof due to [2], which uses hashing.

▶ Lemma 29. The following holds unconditionally. There exist polynomials p and q such
that for any T, a : N → N, n ∈ N, D ∈ Samp[T (n)]/a(n), and x ∈ Supp(Dn),

Pr
r∼U3T (n)

[
Kp(T (n))(x, r) ≤ log(1/Dn(x)) + |r| + a(n) + log p(T (n))

]
≥ 1 − 1

4T (n) ,

where Dn(x) denotes the probability of x under Dn.

Proof. Let A be a non-uniform algorithm sampling D ∈ Samp[T (n)]/a(n). That is, there is
some α ∈ {0, 1}a(n) such that for any x ∈ supp(Dn),

Pr
w∼UT (n)

[A(w; α, 1n)] = Dn(x).

Let s be the smallest integer such that Dn(x) ≥ 2−s. Define ℓ := T (n) and k := ℓ − s −
log(8T (n)). Consider a universal hash function family H = {h : {0, 1}ℓ → {0, 1}k}. For each
h ∈ H and w ∈ {0, 1}T (n), h(w) = U · w + v for some binary Toeplitz matrix U of dimension
k × ℓ and binary vector v of dimension k. Define a set

Sx := {w ∈ {0, 1}T (n) | A(w; α, 1n) = x}.

For h ∼ H, define a random variable X := |Sx ∩ h−1(0k)|. Note that |Sx| = Dn(x) · 2T (n) ≥
2ℓ−s. Then |Sx|/2k ≥ 8T (n), and by universality,

Var[X] ≤ E[X] = |Sx|
2k

.

By Chebyshev’s Inequality,

Pr[X = 0] ≤ Pr [|X − E[X]| ≥ E[X]]
≤ Var[X]/E[X]2

≤ 1/8T (n).
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Now define a random variable Y = |h−1(0k)|, where h ∼ H. Note that E[Y ] = 2ℓ/2k =
2s+log(8T (n)). Then by Markov’s Inequality,

Pr[Y ≥ 2s+2 log(8T (n))] = Pr[Y ≥ 8T (n) · E[Y ]]
≤ 1/8T (n).

By a union bound,

Pr[X = 0 or Y ≥ 2s+2 log(8T (n))] ≤ 1/4T (n).

Assume X > 0 and Y < 2s+2 log(8T (n)). It is possible to represent x with descriptions of the
hash function h, the index of a string w ∈ Sx in the set h−1(0k), and the advice string α used
in the sampler A. In particular, x may be recovered by performing Gaussian elimination to
compute the set h−1(0k) from the description (U, v) of h, locating w in this set, and then
returning the output of A(w; α, 1n). This requires |(U, v)| < 3T (n) bits to describe h, at
most log Y ≤ s+ 2 log(8T (n)) ≤ log(1/Dn(x)) + 1 + 2 log(8T (n)) bits to describe the position
of w in h−1(0k), and |α| = a(n) bits to run the sampler A. Define the “random” string
r ∈ {0, 1}3T (n) as the description (U, v) of h. Overall, we have that with probability at least
1 − 1/4T (n) over r sampled uniformly,

Kp(T (n))(x, r) ≤ log(1/Dn(x)) + |r| + a(n) + log p(T (n))

for some polynomial p. ◀

3 Approximating Kt

▶ Lemma 30 (implicit in [15]). If (MKtP, U) ∈ AvgBPP, then there is a polynomial p such
that the following promise problem is in promiseBPP:

ΠYES :=
{(

x, 1s, 1t
)

| x ∈ {0, 1}∗, s, t ∈ N, t ≥ |x|, and Kt(x) ≤ s
}

,

ΠNO :=
{(

x, 1s, 1t
)

| x ∈ {0, 1}∗, s, t ∈ N, t ≥ |x|, and pKp(t)(x) > s + log p(t)
}

.

Proof. Let the input (x, 1s, 1t) be given, where x ∈ {0, 1}n and s ≤ n + O(1). Define

k := s + 2 log q(t), and
s′ := s + nk + log q(t),

where q is a polynomial chosen later.
Let B0 be a randomized errorless heuristic scheme for (MKtP, U), with failure probability

1/n. Let B be the modification of B0 that outputs “1” whenever B0 would output “⊥”. Note
that on yes-instances of MKtP, B errs with probability at most 1/10 over its own internal
randomness.

Define another algorithm B′ as follows:

On input (x, 1s, 1t), sample z ∼ Unk and then output B(DPk(x; z), 1s′
, 1q(t)).

In the remainder of the proof, we argue that B′ solves (ΠYES, ΠNO) correctly with high
probability in the worst case.
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First, suppose (x, 1s, 1t) ∈ ΠYES. Observe that for our choice of k, given any x ∈ {0, 1}n

and z ∈ {0, 1}nk+k, it is possible to compute DPk(x; z) in polynomial time. Thus, we let q

be a polynomial such that for any z ∈ {0, 1}nk and sufficiently large t ∈ N,

Kq(t)(DPk(x; z)) ≤ Kt(x) + |z| + log q(t)
≤ s + |z| + log q(t)
= s′.

Then by definition of B, for (x, 1s, 1t) ∈ ΠYES,

Pr[B′(x, 1s, 1t) = 1] ≥ 9/10,

where the above probability is over the inner randomness of B and z ∼ Unk.
Now suppose (x, 1s, 1t) ∈ ΠNO. For a contradiction, suppose

Pr[B′(x, 1s, 1t) = 1] = Pr
B,z

[B(DPk(x; z), 1s′
, 1q(t)) = 1] > 1/4. (5)

By a counting argument, for randomly selected w ∼ Unk+k,

Pr
w

[
Kq(t)(w) ≤ s′

]
≤ 2s′

2nk+k
= 1

q(t) .

Then by definition of B,

Pr
B,w

[
B(w, 1s′

, 1q(t)) = 1
]

= 1
10 + 1

n
+ 1

q(t)
< 1/8. (6)

Comparing Equations (5) and (6), we see that B(−, 1s′
, 1q(t)) (1/8)-distinguishes DPk(x; Unk)

from Unk+k. Then by Lemma 28, for some polynomial p′,

pKp′(t)(x) ≤ k + O(log t)
= s + O(log t).

In other words, for an appropriate choice of the polynomial p in the statement of the lemma,
(x, 1s, 1t) is not in ΠNO. This gives a contradiction. We conclude that for (x, 1s, 1t) ∈ ΠNO,

Pr
[
B′(x, 1s, 1t) = 1

]
≤ 1/4. ◀

▶ Lemma 31 ([15]). If (MKtP, U) ∈ AvgBPP, then there exists a polynomial p and a
randomized algorithm A that on input (x, 1t), where x ∈ {0, 1}n and t ∈ N, runs in time
poly(n, t) and with probability at least 1 − 2−n outputs an integer s̃ such that

pKtc

(x) − log p(t) ≤ s̃ ≤ Kt(x).

Proof. Consider the polynomial-time randomized algorithm B′ that solves the promise
problem from Lemma 30. By standard success amplification, we may assume that the error
of B′ is at most 2−2n on inputs satisfying the promise. Algorithm A runs B′ on (x, 1s, 1t)
for s = 1, 2, . . . , n + log n, and outputs the first s̃ such that B′(x, 1s̃, 1t) = 1. If B′ never
accepts, A simply outputs n + log n.

On one hand, if s = Kt(x), then (x, 1s, 1t) ∈ ΠYES, so Pr[B′(x, 1s, 1t) = 1] ≥ 1−2−2n. On
the other, if s < pKp(t)(x) − log p(t), then (x, 1s, 1t) ∈ ΠNO, so Pr[B′(x, 1s, 1t) = 1] ≤ 2−2n.

By a union bound, with probability at least 1 − 2−n, s̃ has the desired property. ◀
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4 Agnostic Learning from Heuristics for K-complexity

In what follows, for a distribution D and m ∈ N, Dm will denote the distribution
(x(1), ..., x(m)) where x(i) ∼ D for i ∈ [m]. Moreover, ℓs(n) ≤ O(s(n) log s(n)) will de-
note the number of bits needed to encode a function f ∈ SIZE[s(n)].

▶ Lemma 32 ([16]). There exists a polynomial t′ such that for any m ≥ n ∈ N, string
b ∈ {0, 1}m, function f : {0, 1}n → {0, 1}, X = (x(1), ..., x(m)) ∈ ({0, 1}n)m, and δ ∈ (0, 1)
satisfying∣∣∣{i ∈ [m] | bi = f(x(i))}

∣∣∣ ≥ (1/2 + δ) · m,

we have that for any r ∈ {0, 1}∗,

Kt′(m) (b | X, r) ≤ ℓs(n) +
(
1 − 2δ2)

· m.

Proof. Given X, we can compute f(x(1)), . . . , f(x(m)) in time poly(m · ℓs(n)) using the
encoding of f , which requires ℓs(n) bits. Note that b and f(x(1)), . . . , f(x(m)) disagree on at
most (1/2 − δ) · m coordinates. So to recover b, it suffices to encode the string e ∈ {0, 1}m

such that ei = 1 iff f(x(i)) ̸= bi. We will show that Kpoly(m)(e) ≤ (1 − 2δ2) · m, which will
conclude the proof of the lemma.

Note that e has hamming weight at most m′ = (1/2 − δ) · m. Every m′-size subset of
an m-size set can be represented using log2

(
m
m′

)
bits, via the combinatorial number system,

with both encoding and decoding algorithms running in time polynomial in m (see, e.g., [14]
for details). Using standard inequalities for binomial coefficients and the binary entropy
function H2, we get

log2

(
m

m′

)
≤ log2 2H2(m′/m)·m

= H2 (1/2 − δ) · m

≤
(
1 − 2δ2)

· m,

as required. ◀

We will also need a lemma similar to the above for the case of KT: that is, bounding the
KT-complexity of the labels b in the case that they correlate with a function f . Lemma 32 is
insufficient as-is, since the time bound t′(m) would render KT(b) trivial. To overcome this
issue, we use an encoding scheme from Golovnev et al. for strings of bounded hamming
weight.

▶ Lemma 33 ([14]). For some m, m′ ∈ N and e ∈ {0, 1}m, suppose e has hamming weight
at most m′. Then there is a string e′ of length at most log

(
m
m′

)
+ m3/4 such that for all

1 ≤ i ≤ m, ei can be computed with random access to e′ in time m2/3.

▶ Lemma 34. For any m, n ∈ N, string b ∈ {0, 1}m, function f : {0, 1}n → {0, 1},
X = (x(1), ..., x(m)) ∈ ({0, 1}n)m, r ∈ {0, 1}∗, and δ ∈ (0, 1) satisfying∣∣∣{i ∈ [m] | bi = f(x(i))}

∣∣∣ ≥ (1/2 + δ) · m,

we have that

KT (X, b, r) ≤ KT(X, f(x(1)), ..., f(x(m)), r) +
(
1 − 2δ2)

· m + 2m3/4.
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Proof. It is clear that any bit of X or r can be computed in time and description size
upper-bounded by KT(X, f(x(1)), ..., f(x(m)), r). To compute a bit bi of b, for i ∈ [m], we
observe the following. As in Lemma 32, let e ∈ {0, 1}m be such that ei = 1 iff f(x(i)) ̸= bi.
Then bi is f(x(i)) ⊕ ei. Note that the the hamming weight of e is at most m′ := (1/2 − δ) · m.
Applying Lemma 33, ei may be computed in time at most m2/3 from a description e′ of
length at most

log
(

m

m′

)
+ m3/4.

Arguing as in Lemma 32, we upper-bound the above by (1 − 2δ2) · m + m3/4.
To compute a bit bi, we first use time and description size KT(X, f(x(1)), ..., f(x(m)), r) to

obtain the corresponding f(x(i)). Then, given f(x(i)), bi may be computed in time at most
m2/3 + O(1) from a description of e′ of size at most

(
1 − 2δ2)

· m + m3/4. This concludes
the proof. ◀

4.1 Learning over the Uniform Distribution from MKTP
Here, we construct a correlative RRHS-refuter, working over distributions that are statistically
close to uniform, under the assumption that MKTP is easy on average. In the next section,
we will reduce the case of arbitrary efficiently samplable distributions to this case.

▶ Theorem 35. If (MKTP, U) ∈ AvgBPP, then for any time-constructible function s : N → N,
constants c, ζ > 0, and any family of distributions D such that Dn ≡n−c Un, there is an
ε-correlative RRHS-refuter for SIZE[s(n)] under Dn taking parameters n ∈ N and ε ∈ (0, 1)
with sample complexity

m(n, ε) :=
(

s(n) + n

ε8

)1+ζ

and running time poly
(
n, ε−1, s(n)

)
.

Proof. Let A0 be a randomized errorless heuristic scheme for (MKTP, U) with failure prob-
ability 1/n. Let A be the algorithm that simulates A0 and outputs “correlative” whenever
it would output “1” or “⊥”, and “random” whenever it would output “0”. Note that on
yes-instances of MKTP, A errs with probability at most 1/10 over its own internal randomness.

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, let X := (x(1), . . . , x(m)) and b := (b(1), . . . , b(m)). R is defined as follows.
1. Compute θ := mn + (1 − ε2/16) · m.
2. Evaluate A((X, b), 1θ). Output “correlative” if A accepts, and output “random” otherwise.

Correlative Case (Soundness). Suppose the labeled examples in S are sampled i.i.d from
some distribution D′ on {0, 1}n × {0, 1}, whose marginal on {0, 1}n is given by Dn, and there
exists f ∈ SIZE[s(n)] such that

Pr
⟨x(i), b(i)⟩ ∼ D′

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 .
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In this case, by a Chernoff bound, the probability over S ∼(D′)m that∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ < (1/2 + ε/4) · m

is at most exp(−2m(ε/4)2) ≤ o(1). So with probability 1 − o(1), the conditions of Lemma 34
are met. Now observe that

KT(X, f(x(1)), ..., f(x(m))) ≤ mn + 2ℓs(n) + 2n,

using an mn-bit description of X to obtain any bit of X in constant time, along with an
ℓs(n)-bit description of a circuit computing f to obtain any bit f(x(i)) from X in time at
most ℓs(n) + 2n. This, along with Lemma 34 (with r the empty string), implies that

KT(X, b) ≤ mn +
(
1 − ε2/8

)
· m + 2ℓs(n) + 2n + 2m3/4. (7)

Finally, by our choice of m = ω
(
(s(n) + n) · ε−8)

,

m >
32

(
ℓs(n) + n + m3/4)

ε2 ;

re-written and combined with Eq. (7),

KT(X, b) ≤ mn +
(
1 − ε2/8

)
· m + 2ℓs(n) + 2n + 2m3/4

< mn +
(
1 − ε2/16

)
· m

= θ.

By definition of A, R will output “correlative” with probability at least 9/10 − o(1) > 2/3.

Random Case (Completeness). Suppose (X, b) is sampled from the distribution (Dm
n , Um).

Note that for X ∼ Um
n and b ∼ Um, it holds that

Pr
X,b

[KT(X, b) > mn + m − 10] ≥ 9/10.

Then by the definition of statistical distance, with probability at least 9/10 − o(1) over
X ∼ Dm

n and b ∼ Um,

KT(X, b) > mn + m − 10
> θ.

In other words, ((X, b), 1θ) /∈ MKTP.
Now, since the failure probability of our heuristic A is at most 1/10 + 1/n over the

uniform distribution, the definition of statistical distance implies that its failure probability
is at most 1/10 + o(1) over the distribution (Dm

n , Um).
Overall, by a union bound, R outputs “random” with probability at least 4/5 − o(1) >

2/3. ◀

4.2 Learning over PSAMP/poly from MKTP
In this section, we generalize the previous theorem to give correlative RRHS-refuters working
over arbitrary efficiently samplable distributions. In particular, we reduce to the case of a
nearly-uniform distribution by inverting the circuit that samples our given target distribution.
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This requires distributional inversion as defined by Impagliazzo and Luby [19], which is
possible under the assumption of MKTP being easy on average.5

▶ Theorem 36. Suppose (MKTP, U) ∈ AvgBPP. Consider any time-constructible function
s : N → N, polynomials T, a : N → N, constant ζ > 0, and ε ∈ (n−d, 1) for a constant
d > 0. Let D = {Dn}n∈N be a family of distributions such that each Dn is samplable in time
T (n) with a(n) bits of non-uniform advice αn. There is an algorithm which, given αn and
parameters n ∈ N and ε, is an ε-correlative RRHS-refuter for SIZE[s(n)] under Dn. This
RRHS-refuter has sample complexity

m(n, ε) :=
(

s(n) + n

ε8

)1+ζ

and running time poly
(
n, T (n), a(n), s(n), ε−1)

.

Proof. By Corollary 26, every function g(y, x) computable in polynomial time is distribu-
tionally invertible. In particular, let I be a ε/4-distributional inverter for the function g that
evaluates the Boolean circuit y on the input string x. Let {Cn}n∈N be the family of circuits
that sample D. In particular, each Cn applies the T (n)-time sampler for Dn along with the
advice αn. By the definition of distributional inversion (Definition 22), we have that for all
sufficiently large n ∈ N,

(I(Cn, Cn(w)), Cn(w)) ≡ε/4 (w, Cn(w)), (8)

where w ∼ Uℓ, ℓ ≤ a(n), and I runs in time poly(T (n), a(n)).
Given labeled samples of the form (x, b), where x ∼ Dn = Cn(Uℓ), one may apply

I to the first part to simulate labeled samples of the form (r′, b), where r′ ∈ {0, 1}ℓ.
Specifically, r′ ∼ D′

ℓ, where D′
ℓ is the distribution I(Cn, Cn(Uℓ)) sampled by the circuit

C ′
ℓ(−) := I(Cn, Cn(−)). By Eq. (8), D′

ℓ ≡ε/4 Uℓ.
We will reduce to the case of a nearly-uniform distribution: namely, the case of Theorem 35.

Consider a target function f computable in SIZE[s(n)]. By Theorem 35, since D′ is statistically
close to uniform, there is a correlative RRHS-refuter R′ for f ◦Cn over D′ with parameter ε′ :=
ε/2 that has sample complexity m =

(
(s(n) + n)/ε8)1+ζ and running time poly(n, s(n), ε−1).

To get a correlative RRHS-refuter R for f over D, we simply return the output of this R′ on
the simulated examples (r′, b). Note that R takes time poly(n, T (n), a(n), s(n), ε−1) overall.

We now argue that in the “random” case of the original problem, R will output “random”
with high probability, and likewise for the “correlative” case. In the random case, the labels
b are simply sampled from the uniform distribution U , so R will output “random” with
probability at least 2/3, by the correctness of R′. In the correlative case, b is such that

Pr
x∼Dn

[b = f(x)] ≥ 1
2 + ε

2 . (9)

We would now like to show that the above probability is not too much smaller when x is
sampled from Cn(D′

ℓ) rather than Dn = Cn(Uℓ). Define a set

T := {(r, x) | x = Cn(r)}

5 Similar ideas are employed in the work of Binnendyk et al. [4], which shows that PAC-learning with
membership queries over arbitrary efficiently samplable distributions is possible under the existence of
natural properties.
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and note that samples from the distribution (r, Cn(r)), for r ∼ Uℓ, belong to T with probability
1. By the property of distributional inversion, ie. Eq. (8), samples from the distribution
(I(Cn, Cn(r)), Cn(r)) = (C ′

ℓ(r), Cn(r)), for r ∼ Uℓ, belong to the set T with probability at
least 1 − ε/4. Whenever this holds, by definition of T , we have that Cn(C ′

ℓ(r)) = Cn(r).
Particularly, f(Cn(r′)) = f(x), for r′ = C ′

ℓ(r) and x = Cn(r). Then by a union bound with
Eq. (9), in the correlative case of the original problem,

Pr
r′∼D′

ℓ

[b = f(Cn(r′))] ≥ 1
2 + ε

2 − ε

4 = 1
2 + ε′

2 .

Thus, R will output “correlative” with probability at least 2/3, by the correctness of R′.
This completes the proof of the theorem. ◀

4.3 Learning from MKtP
The following lemma is similar to one from [16], but accounts for a uniformly random
string r ∼ U3mT (n), which is essential given Lemma 29. This lemma states that in the
expectation, over an efficiently samplable distribution (along with the uniformly random
string r), the Kt-complexity of a string is close to its time-unbounded K-complexity. Note
that the lemma from [16] holds under the assumption that DistNP ⊆ AvgP whereas this one
holds unconditionally.

▶ Lemma 37. There exists a polynomial p1 : N × N → N such that for any T, a : N → N
and n, m ∈ N, the following holds unconditionally. Let Dn ∈ Samp[T (n)]/a(n). For every
t ≥ p1(T (n), m), X ∼ Dm

n , and r ∼ U3mT (n),

E
X,r

[Kt(X, r) − K(X, r)] ≤ a(n) + O (log m + log T (n)) .

Proof. Let p1 be the polynomial p in Lemma 29. Note that for Dn ∈ Samp[T (n)]/a(n), we
have Dm

n ∈ Samp[m · T (n)]/a(n). For every t ≥ p1 (T (n), m), for X ∼ Dm
n and r ∼ U3mT (n),

E
X,r

[
Kt(X, r)

]
≤ E

X,r

[
Kp1(T (n),m)(X, r)

]
≤ 1

4mT (n) · (mn + 3mT (n) + O(log mn)) (Proposition 14)

+ E
X

[log(1/Dm
n (X))] + |r| + a(n) + O(log(m) + log T (n))

(Lemma 29)
≤ H(Dm

n ) + |r| + a(n) + O(log(m) + log T (n))
≤ E

X,r
[K(X) + K(r | X)] + a(n) + O(log(m) + log T (n))

≤ E
X,r

[K(X, r)] + a(n) + O(log(m) + log T (n)) , (Time-unbounded S.o.I.)

where the second last inequality uses the fact that for any distribution D, the Shannon
entropy H(D) is at most E [K(x)] for x ∼ D (see [23, Theorem 8.1.1]), as well as a counting
argument showing that EX,r[K(r | X)] ≥ |r| − 3.

Rearranging the above, we get

E
X,r

[Kt(X, r) − K(X, r)] ≤ a(n) + O (log m + log T (n))

as desired. ◀
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▶ Theorem 38. If (MKtP, U) ∈ AvgBPP, then for any time-constructible functions
s, T, a : N → N, any ε ∈ (0, 1), and any constant ζ > 0, there is an ε-correlative RRHS-refuter
for SIZE[s(n)] under Samp[T (n)]/a(n) taking parameters n ∈ N and ε ∈ (0, 1) with sample
complexity

m :=
(

s(n) + a(n) + log T (n)
ε2

)1+ζ

and running time poly
(
n, ε−1, T (n), a(n), s(n)

)
.

Proof. The proof closely follows that of [16, Theorem 8].

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, let X := (x(1), . . . , x(m)) and b := (b(1), . . . , b(m)). R is defined as follows.
1. Compute t := p1(T (n), m), where p1 is the polynomial from Lemma 37. Also compute

t′ := t′(p(t)), where t′ is the polynomial from Lemma 32 and p is the polynomial from
Lemma 31.

2. Sample r ∼ U3mT (n).
3. Compute

β := A
(
(X, r), 1t

)
and

β′ := A
(

(X, b, r), 1t′
)

,

where A is the randomized algorithm from Lemma 31.
4. Output “correlative” if β′−β ≤ θ, where θ =

(
1 − ε2

16

)
m, and output “random” otherwise.

We now argue for the correctness of R. Consider any distribution Dn ∈ Samp[T (n)]/a(n).

Correlative Case (Soundness). Suppose the samples S are i.i.d. from a distribution D′ on
{0, 1}n × {0, 1} such that the marginal on {0, 1}n equals Dn, and there exists f ∈ SIZE[s(n)]
such that

Pr
⟨x(i), b(i)⟩ ∼ D′

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 .

Chernoff bounds imply that∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ ≥ (1/2 + ε/4) · m

holds with probability at least 1 − exp(−2m(ε/4)2) over the choice of samples S ∼(D′)m, in
which case the conditions of Lemma 32 are met.

Now, suppose that in Step 3 of R, β and β′ output by the algorithm A are good
approximations in terms of Lemma 31, which happens with probability at least 1 − o(1).
Moreover, by Lemma 37,

E
X,r

[
Kt(X, r) − pKp(t)(X, r)

]
≤ E

X,r

[
Kt(X, r) − K(X, r)

]
(Prop. 13)

≤ a(n) + O(log(mT (n))).
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Applying Markov’s inequality, with probability at least 3/4, there is a constant c such that

Kt(X, r) − pKp(t)(X, r) ≤ c · (a(n) + log(mT (n))). (10)

Thus, by a union bound, with probability at least 3/4 − o(1) > 2/3 over the samples
S ∼(D′)m and the internal randomness of R,

β′ − β ≤ Kt′
(X, b, r) − pKp(t)(X, r) + log p(t) (β′ and β are good approximations)

≤
(

Kt(X, r) − pKp(t)(X, r)
)

+ log p(t) + ℓs(n) +
(
1 − ε2/8

)
· m (Lemma 32)

≤ m ·
(
1 − ε2/8

)
+ c · (a(n) + log(mT (n))) + ℓs(n) (Eq. (10))

< θ.

For the last inequality, observe that by our choice of m = ω((s(n) + log T (n) + a(n)) · ε−2),

m > 16 ·
(

c · (a(n) + log m + log T (n)) + ℓs(n)
ε2

)
;

re-written,

m ·
(
1 − ε2/8

)
+ c · (a(n) + log(mT (n))) + ℓs(n) < m ·

(
1 − ε2/16

)
= θ.

Thus, R will output “correlative”.

Random Case (Completeness). Suppose the labels bi are sampled from U . For X ∼ Dm
n ,

r ∼ U3mT (n), and b ∼ Um, we get by Lemma 37 and Markov’s inequality, that, with
probability at least 3/4 over X, r,

Kt(X, r) − K(X, r) ≤ 4(a(n) + O(log mT (n))). (11)

Since β′ and β are good estimates with high probability, we get that, with probability at
least 3/4 − o(1) over X, r, b and the internal randomness of A,

β′ − β ≥ pKp(t′)(X, b, r) − Kt(X, r) − O(log(mT (n))) (β′, β good w.h.p.)
≥ K(X, b, r) − Kt(X, r) − O(log(mT (n))) (Prop. 13)
≥ K(X, r) + K(b | X, r) − Kt(X, r) − O(log(mT (n))) (Lemma 15)
= m −

(
Kt(X, r) − K(X, r)

)
− O(log(mT (n))) (b ∼ Um)

≥ m − 4 (a(n) + O(log(mT (n)))) (Eq. (11))
> θ,

and hence R outputs “random”. ◀

4.4 Learning from Worst-case Easiness of MKTP
In this section, we show that if MKTP is easy for efficient randomized algorithms in the worst
case, then it is possible to PAC learn without white-box access to the target distribution.

The following lemma is analogous to the source-coding lemma for Kt, Lemma 29, but with
some modifications to allow for KT-compression in the case that we have many independent
samples from the distribution Dn.
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▶ Lemma 39. For some constant d ∈ N, the following holds unconditionally. For any
T, a : N → N, m, n ∈ N, distribution D ∈ Samp[T (n)]/a(n), and string X = (x(1), ..., x(m)) ∈
Supp(Dm

n ),

KT(X, r) ≤ log(1/Dm
n (X)) + |r| + a(n) + d · m3/4 · T (n)3

holds with probability at least 1 − 1
6mT (n) over r ∼ U4mT (n).

Moreover, for any s : N → N and function f ∈ SIZE[s(n)],

KT(X, f(x(1)), ..., f(x(m)), r) ≤ log(1/Dm
n (X)) + 2ℓs(n) + |r| + a(n) + d · m3/4 · T (n)3

holds with probability at least 1 − 1
6mT (n) over r ∼ U4mT (n).

Proof. The proof is quite similar to that of Lemma 29, with some modifications (namely, the
partitioning of [m]) to get the bound for KT-complexity. Let A be a non-uniform algorithm
sampling D ∈ Samp[T (n)]/a(n). That is, there is some α ∈ {0, 1}a(n) such that for any
x ∈ supp(Dn),

Pr
w∼UT (n)

[A(w; α, 1n)] = Dn(x).

Consider any X = (x(1), ..., x(m)) ∈ Supp(Dm
n ). For N and L chosen later, we will partition

[m] into N blocks b1, ..., bN , each of size at most L. For every block bj , let sj be the largest
integer such that DL

n (x(j1), ..., x(jL)) ≤ 2−sj , where bj = {j1, ..., jL}, and let s =
∑

j∈[N ] sj .
For each bj , consider a universal hash function family Hj = {h : {0, 1}L·T (n) → {0, 1}kj },
where kj = L · T (n) − sj − log(12m2T (n)) − 1. As in Lemma 29, we represent hash functions
with Toeplitz matrices.

For each block bj , define a set

Sj := {(w1, ..., wL) ∈ ({0, 1}T (n))L | ∀l ∈ [L], A(wl; α, 1n) = x(jl)},

where jl denotes the lth element of bj . For each j ∈ [N ], define a random variable Xj :=
|Sj ∩ h−1(0kj )|, where h ∼ Hj . Arguing as in Lemma 29,

Pr[Xj = 0] ≤ 1
12m2T (n) .

Now, for each j ∈ [N ], define a random variable Yj = |h−1(0kj )|, where h ∼ Hj . Arguing as
in Lemma 29,

Pr[Yj ≥ 2sj+2 log(12m2T (n))+1] ≤ 1
12m2T (n) .

By a union bound, with probability at least 1 − 1/6mT (n), we have that for every j ∈ [N ],
Xj ̸= 0 and Yj < 2sj+2 log(12m2T (n))+1.

Assume the above holds. It is possible to obtain any bit of a substring x(i) of X, for i in
some block bj , from the description of the hash function h sampled from Hj , the index of a
string (w1, ..., wL) ∈ Sj in the set h−1(0kj ), and the advice string α used in the sampler A.
In particular, x(i) may be recovered by performing Gaussian elimination to compute the set
h−1(0kj ) from the description of h, locating wl in this set such that i is the lth element of
bj , and then returning the desired bit of A(wl; α, 1n) = x(i). Given h, this requires at most
log Yj ≤ sj + 2 log(12m2T (n)) + 1 bits to describe the position of (w1, ..., wL) in h−1(0kj )
and |α| = a(n) bits to run the sampler A. Define the “random” string rj ∈ {0, 1}3L·T (n) as
the description of h ∼ Hj . So, a description working for any block (and therefore any bit of
X) is of length
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∑
j∈[N ]

[
sj + 2 log(12m2T (n)) + 1

]
+ a(n) ≤ s + N · (2 log(12m2T (n)) + 1) + a(n)

given randomness r = (r1, ..., rN ) of length 3L · N · T (n). The amount of time required is
dominated by the Gaussian elimination step, at most O((L · T (n))3).

To obtain some bit f(x(i)), one may apply the above procedure to obtain x(i) and then
apply an ℓs(n)-bit description of a circuit computing f , taking additional time at most ℓs(n).

Overall, with probability at least 1 − 1/6mT (n) over r, we have that

KT(X, r) ≤ s + |r| + a(n) + N · O(log(mT (n))) + O((L · T (n))3)

and

KT(X, f(x(1)), ..., f(x(m)), r) ≤ s+ |r|+2ℓs(n)+a(n)+N ·O(log(mT (n)))+O((L ·T (n))3).

The lemma follows by setting L = m1/4 and N = ⌈m3/4⌉. ◀

The following lemma is analogous to Lemma 37, showing that KT and K complexities are
somewhat close in the expectation over efficiently sampled strings.

▶ Lemma 40. For any T, a : N → N, n, m ∈ N, Dn ∈ Samp[T (n)]/a(n), X ∼ Dm
n , b ∼ Um,

and r ∼ U4mT (n),

E
X,b,r

[KT(X, b, r) − K(X, b, r)] ≤ a(n) + 2d · m3/4 · T (n)3,

where d is the constant from Lemma 39.
Moreover, for any function f ∈ SIZE[s(n)],

E
X,r

[KT(X, f(x(1)), ..., f(x(1)), r)−K(X, f(x(1)), ..., f(x(1)), r)]

≤ a(n) + 2ℓs(n) + 2d · m3/4 · T (n)3.

Proof. The proof closely follows that of Lemma 37.

E
X,b,r

[KT(X, b, r)] ≤ E
X,r

[KT(X, r)] + |b| + log m

≤ 1
6mT (n) · (mn + 4mT (n) + m + O(log mn))

+ E
X

[log(1/Dm
n (X))] + |r| + a(n) + d · m3/4 · T (n)3 + |b| + log m

(Lemma 39)

≤ H(Dm
n ) + |r| + a(n) + d · m3/4 · T (n)3 + |b| + O(log m)

≤ E
X,b,r

[K(X) + K(b | X) + K(r | b, X)] + a(n) + d · m3/4 · T (n)3 + O(log m)

≤ E
X,b,r

[K(X, b, r)] + a(n) + 2d · m3/4 · T (n)3. (Time-unbounded S.o.I.)

Rearranging the above, we get

E
X,b,r

[KT(X, b, r) − K(X, b, r)] ≤ a(n) + 2d · m3/4 · T (n)3

as desired.
The proof of the “moreover” part of the lemma is very similar. It follows by applying the

“moreover” part of Lemma 39 in the second line, and in the last line using the simple fact
that K(X, r) ≤ K(X, f(x(1)), ..., f(x(1)), r). ◀



H. Goldberg and V. Kabanets 12:25

▶ Theorem 41. If MKTP ∈ BPP, then for any time-constructible functions s, T, a : N →
N, and any ε ∈ (0, 1), there is an ε-correlative RRHS-refuter for SIZE[s(n)] under
Samp[T (n)]/a(n) taking parameters n ∈ N and ε ∈ (0, 1) with sample complexity

m :=
(

s(n) + a(n) + T (n)12

ε8

)12

and running time poly
(
n, ε−1, T (n), a(n), s(n)

)
.

Proof. Let A0 be the assumed randomized algorithm for MKTP, and let A be the randomized
poly-time “search” algorithm that on input y runs A0(y, 1s) for s = 1, ..., |y| + log |y| and
outputs the smallest s on which A accepts. It is not hard to see, using standard techniques,
that A can be made to correctly compute KT(y) with probability 1 − 2−|y|.

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, let

k :=
(

s(n) + a(n) + T (n)12

ε8

)2

.

Partition the m = k6 samples S into k5 sets, each containing k samples. Denote these sets
Si, for i ∈ [k]. Then partition each Si into two equally sized sets,

S0
i =

(〈
x

(1)
i , b

(1)
i

〉
, . . . ,

〈
x

(k/2)
i , b

(k/2)
i

〉)
and S1

i =
(〈

x
(k/2+1)
i , b

(k/2+1)
i

〉
, . . . ,

〈
x

(k)
i , b

(k)
i

〉)
.

Let Zi := (x(1)
i , ..., x

(k/2)
i ), Xi := (x(k/2+1)

i , . . . , x
(k)
i ) and bi := (b(k/2+1)

i , . . . , b
(k)
i ).

R is defined as follows. We repeat the following k5 times: once on each set of samples Si.
For simplicity, we omit the subscripts i: denote (⟨x(1), b(1)⟩, . . . , ⟨x(k), b(k)⟩) := Si, Z := Zi,
X := Xi, and b := bi.
1. Sample r ∼ U2kT (n).
2. Sample u ∼ Uk/2, and using the first half of the samples Z, compute

γi := A(Z, u, r).

3. Using the second half of the samples X along with their given labels b, compute

βi := A (X, b, r) .

4. Let wi = γi − βi.
5. At the end, after k5 repetitions of the above, take the sum

w =
∑

i∈[k5]

wi.

Let d be the constant from Lemma 39. Output “correlative” if w ≥ k5 · θ, where
θ = 2 ·

(
a(n) + 4d · k3/4 · T (n)3)

, and output “random” otherwise.
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We begin by showing that the expected value of γi is roughly H(Dk/2
n ) + k/2 + |r|. On

one hand, we have

E
Z,u,r,A

[γi] ≤ E
Z,u,r

[KT(Z, u, r)] + O(1) (definition of A)

≤ E[K(Z, u, r)] + a(n) + 2d · k3/4 · T (n)3 + O(1) (Lemma 40)

≤
(

H(Dk/2
n ) + k/2 + |r|

)
+ a(n) + 3d · k3/4 · T (n)3, (12)

where the last line follows by a counting argument and the fact that E[K(Z)] ≤ H(Dk/2
n ).

On the other hand,

E
Z,u,r,A

[γi] ≥ E
Z,u,r

[KT(Z, u, r)] − O(1) (definition of A)

≥ E[K(Z, u, r)] − O(1)
≥ E[K(Z) + K(u | Z) + K(r | Z, u)] − O(log(kn)) (symmetry of information)

≥
(

H(Dk/2
n ) + k/2 + |r|

)
− O(log(kn)), (13)

where in the last line we use that E[K(Z)] ≥ H(Dk/2
n ) − O(log(kn)) [23, Theorem 8.1.1].

Correlative Case (Soundness). Suppose the samples S are i.i.d. from a distribution D′ on
{0, 1}n × {0, 1} such that the marginal on {0, 1}n equals Dn, and there exists f ∈ SIZE[s(n)]
such that

Pr
⟨x(j), b(j)⟩ ∼ D′

[
b(j) = f(x(j))

]
≥ 1

2 + ε

2 .

Chernoff bounds imply that∣∣∣{j ∈ {k/2 + 1, ..., k} | bi = f(x(j))}
∣∣∣ ≥ (1/2 + ε/4) · k/2

holds with probability at least 1 − exp(−k(ε/4)2/8) over the choice of samples S1
i , in which

case the conditions of Lemma 34 are met. Then,
E

X,b,r,A
[βi] ≤ E

X,b,r
[KT(X, b, r)] + O(1)

≤ E[KT(X, f(x(k/2+1)), ..., f(x(k)), r)] + (1 − ε2/8) · k/2 + 2k3/4 (Lemma 34)

≤ E[K(X, f(x(k/2+1)), ..., f(x(k)), r)] + (1 − ε2/8) · k/2 + a(n) + 2ℓs(n) + 3d · k3/4 · T (n)3

≤ H(Dk/2
n ) + (1 − ε2/8) · k/2 + |r| + a(n) + 3ℓs(n) + 3d · k3/4 · T (n)3,

where the second-last line uses Lemma 40, and the last line uses the observation that

K(f(x(k/2+1)), ..., f(x(k)) | X) ≤ ℓs(n).

Combining the above with Eq. (13), we have

E[γi − βi] ≥ ε2

16 · k −
(

a(n) + 3ℓs(n) + O(k3/4T (n)3)
)

≥ 2θ,

by our choices of k and θ.
After k5 trials of the above, we have E[w] ≥ 2k5θ. By Hoeffding’s inequality, with

probability at least 1 − 2−k, it holds that |2k5θ − w| ≤ k5θ, and so

w ≥ k5θ,

in which case R will output “correlative”.
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Random Case (Completeness). Suppose the labels bj are sampled from U . Arguing as in
Eq. (13),

E
X,b,r,A

[βi] ≥
(

H(Dk/2
n ) + k/2 + |r|

)
− O(log(kn)).

Combining the above with Eq. (12),

E[γi − βi] ≤ a(n) + 4d · k3/4 · T (n)3

= θ/2.

After k5 trials of the above, we have E[w] ≤ k5θ/2. By Hoeffding’s inequality, with probability
at least 1 − 2−k, it holds that |k5θ/2 − w| < k5θ/2, and so

w < k5θ,

in which case R will output “random”. ◀

5 Open questions

We showed that “natural propeties” for more expressive Kolmogorov-complexity relatives of
MCSP such as MKTP and MKtP allow one to cross the divide between learning algorithms
with membership queries and those without. An obvious disadvantage of relying on more
expressive Kolmogorov measures rather than MCSP is that it is difficult to get meaningful
circuit class restrictions when talking about MKTP or MKtP, and utilize the known circuit
lower bound proofs for these restricted circuit classes in order to derive a learning algorithm.
Can one use our understanding of AC0[2] circuit lower bounds (e.g., the known natural
property for AC0[2]) to get an RRHS-refuter for AC0[2] on uniform distribution? This
question is also very interesting from the point of view of cryptography in the context of
efficient constructions of weak PRFs; see, e.g., [8] for more discussion on this direction.

Another question is whether it is possible to bridge the gap between the assumptions
used in our two main theorems. More precisely, is it possible to get an agnostic PAC learning
algorithm over any not necessarily explicitly given polysize samplable distribution ensemble
D from a one-sided average-case heuristic for MKTP rather than MKtP?
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