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Abstract
Locally Decodable Codes (LDCs) are error-correcting codes C : Σn → Σm, encoding messages in Σn

to codewords in Σm, with super-fast decoding algorithms. They are important mathematical objects
in many areas of theoretical computer science, yet the best constructions so far have codeword length
m that is super-polynomial in n, for codes with constant query complexity and constant alphabet
size.

In a very surprising result, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (SICOMP 2006)
show how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost
linear codeword length over the binary alphabet, and used them to obtain significantly-improved
constructions of Probabilistically Checkable Proofs.

In this work, we study RLDCs in the standard Hamming-error setting, and introduce their
variants in the insertion and deletion (Insdel) error setting. Standard LDCs for Insdel errors were
first studied by Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015), and are
further motivated by recent advances in DNA random access bio-technologies.

Our first result is an exponential lower bound on the length of Hamming RLDCs making 2
queries (even adaptively), over the binary alphabet. This answers a question explicitly raised by
Gur and Lachish (SICOMP 2021) and is the first exponential lower bound for RLDCs. Combined
with the results of Ben-Sasson et al., our result exhibits a “phase-transition”-type behavior on
the codeword length for some constant-query complexity. We achieve these lower bounds via a
transformation of RLDCs to standard Hamming LDCs, using a careful analysis of restrictions of
message bits that fix codeword bits.

We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version.
On the one hand, we construct weak Insdel RLDCs with almost linear codeword length and constant
query complexity, matching the parameters of the Hamming variants. On the other hand, we prove
exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these
variants are equivalent in the Hamming setting, they are significantly different in the insdel setting.
Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs.
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1 Introduction

Locally Decodable Codes (LDCs) [55, 72] are error-correcting codes C : Σn → Σm that have
super-fast decoding algorithms that can recover individual symbols of a message x ∈ Σn, even
when worst-case errors are introduced in the codeword C(x). Similarly, Locally Correctable
Codes (LCCs) are error-correcting codes C : Σn → Σm for which there exist very fast decoding
algorithms that recover individual symbols of the codeword C(x) ∈ Σm, even when worst-case
errors are introduced. LDCs/LCCs were first discovered by Katz and Trevisan [55] and since
then have proven to be crucial tools in many areas of computer science, including private
information retrieval, probabilistically checkable proofs, self-correction, fault-tolerant circuits,
hardness amplification, and data structures (e.g., [2, 4, 17,18,20,28,62] and surveys [36,73]).

The parameters of interest of these codes are their rate, defined as the ratio between
the message length n and the codeword length m, their relative minimum distance, defined
as the minimum normalized Hamming distance between any pair of codewords, and their
locality or query complexity, defined as the number of queries a decoder makes to a received
word y ∈ Σm. Trade-offs between the achievable parameters of Hamming LDCs/LCCs have
been studied extensively over the last two decades [8–11,32–35,37,56,57,74,75,78,79] (see
also surveys by Yekhanin [79] and by Kopparty and Saraf [58]).

Specifically, for 2-query Hamming LDCs/LCCs it is known that m = 2Θ(n) [6, 11, 37,
56]. However, for q > 2 queries, the current gap between upper and lower bounds is
superpolynomial in n. In particular, the best constructions have super-polynomial codeword
length [32, 34, 78], while the most general lower bounds for q ≥ 3 are of the form m =
Ω(( n

log n )1+1/(⌈ q
2 ⌉−1)) [55,56]. In particular, for q = 3, [55] showed an m = Ω(n3/2) bound,

which was improved in [56] to m = Ω(n2/ log2 n). This was further improved by [75, 76]
to m = Ω(n2/ log n) for general codes and m = Ω(n2) for linear codes. [11] used new
combinatorial techniques to obtain the same m = Ω(n2/ log n) bound. A very recent
paper [1] breaks the quadratic barrier and proves that m = Ω(n3/ poly log n). We note that
the exponential lower bound on the length of 3-query LDCs from [35] holds only for some
restricted parameter regimes, and do not apply to the natural ranges of the known upper
bounds.

Motivated by this large gap in the constant-query regime, as well as by applications in
constructions of Probabilistically Checkable Proofs (PCPs), Ben-Sasson, Goldreich, Harsha,
Sudan, and Vadhan [7] introduced a relaxed version of LDCs for Hamming errors. Specifically,
the decoder is allowed to output a “decoding failure” answer (marked as “⊥”), as long as it errs
with some small probability. More precisely, a (q, δ, α, ρ)-relaxed LDC is an error-correcting
code satisfying the following properties.
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▶ Definition 1. A (q, δ, α, ρ)-Relaxed Locally Decodable Code C : Σn → Σm is a code for
which there exists a decoder that makes at most q queries to the received word y, and satisfies
the following further properties:
1. (Perfect completeness) For every i ∈ [n], if y = C(x) for some message x then the decoder,

on input i, outputs xi with probability 1.1

2. (Relaxed decoding) For every i ∈ [n], if y is such that dist(y, C(x)) ≤ δ for some unique
C(x), then the decoder, on input i, outputs xi or ⊥ with probability ≥ α.

3. (Success rate) For every y such that dist(y, C(x)) ≤ δ for some unique C(x), there is a
set I of size ≥ ρn such that for every i ∈ I the decoder, on input i, correctly outputs xi

with probability ≥ α.
We will call an RLDC that satisfies all 3 conditions by the notion of strong RLDC, and one
that satisfies just the first 2 conditions by the notion of weak RLDC, in which case it is called
a (q, δ, α)-RLDC. Furthermore, if the q queries are made in advance, before seeing entries of
the codeword, then the decoder is said to be non-adaptive; otherwise, it is called adaptive.

The above definition is quite general, in the sense that dist(a, b) can refer to several
different distance metrics. In the most natural setting, we use dist(a, b) to mean the
“relative” Hamming distance between a, b ∈ Σm, namely dist(a, b) = |{i : ai ̸= bi}|/m. This
corresponds to the standard RLDCs for Hamming errors. As it will be clear from the
context, we also use dist(a, b) to mean the “relative” Edit distance between a, b ∈ Σ∗, namely
dist(a, b) = ED(a, b)/(|a| + |b|), where ED(a, b) is the minimum number of insertions and
deletions to transform string a into b. This corresponds to the new notion introduced and
studied here, which we call Insdel RLDCs. Throughout this paper, we only consider the case
where Σ = {0, 1}.

Definition 1 has also been extended recently to the notion of Relaxed Locally Correctable
Codes (RLCCs) by Gur, Ramnarayan, and Rothblum [40]. RLDCs and RLCCs have been
studied in a sequence of exciting works, where new upper and lower bounds have emerged,
and new applications to probabilistic proof systems have been discovered [3, 27,29,38–40].

Surprisingly, [7] constructs strong RLDCs with q = O(1) queries and m = n1+O(1/
√

q), and
more recently Asadi and Shinkar [3] improve the bounds to m = n1+O(1/q), in stark contrast
with the state-of-the-art constructions of standard LDCs. Gur and Lachish [39] show that
these bounds are in fact tight, as for every q ≥ 2, every weak q-query RLDC must have length
m = n1+1/O(q2) for non-adaptive decoders. We remark that the lower bounds of [39] hold
even when the decoder does not have perfect completeness and in particular valid message
bits are decoded with success probability 2/3. Dall’Agnon, Gur, and Lachish [30] further
extend these bounds to the setting where the decoder is adaptive, with m = n1+1/O(q2 log2 q).

1.1 Our results
As discussed before, since the introduction of RLDCs, unlike standard LDCs, they displayed
a behaviour amenable to nearly linear-size constructions, with almost matching upper and
lower bounds. However, recently [39] conjecture that for q = 2 queries, there is in fact an
exponential lower bound, matching the bounds for standard LDCs.

1 We remark that the initial definition in [7] only requires that xi is output with probability 2/3 when
there are no errors. However, to the best of our knowledge, all constructions of RLDCs (and LDCs)
from the literature do satisfy perfect completeness. Moreover, some lower bounds (e.g., [11]) only hold
with respect to perfect completeness.

CCC 2023
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In this paper, our first contribution is a proof of their conjecture, namely to show that
Hamming 2-query RLDCs require exponential length. In fact, our exponential lower bound
for q = 2 applies even to weak RLDCs, which only satisfy the first two properties (perfect
completeness and relaxed decoding), and even for adaptive decoders.

▶ Theorem 2. Let C : {0, 1}n → {0, 1}m be a weak adaptive (2, δ, 1/2 + ε)-RLDC. Then
m = 2Ωδ,ε(n).

Our results are the first exponential bounds for RLDCs. Furthermore, combined with
the constructions with nearly linear codeword length for some constant number of queries
[3, 7], our results imply that RLDCs experience a “phase transition”-type phenomena, where
the codeword length drops from being exponential at q = 2 queries to being almost linear
at q = c queries for some constant c > 2. In particular, this also implies that there is a
query number q where the codeword length drops from being super-polynomial at q to being
polynomial at q + 1. Finding this exact threshold query complexity is an intriguing open
question.

As our second contribution, we introduce and study the notion of RLDCs correcting
insertions and deletions, namely Insdel RLDCs. The non-relaxed variants of Insdel LDCs
were first introduced in [68], and were further studied in [12,13,26]. Local decoding in the
Insdel setting is motivated in DNA storage [77], and in particular [5] show recent advances
in bio-technological aspects of random access to data in these precise settings.

In [13,68], the authors give Hamming to Insdel reductions which transform any Hamming
LDC into an Insdel LDC with rate reduced by a constant multiplicative factor, and locality
increased by a polylog(m) multiplicative factor. Unfortunately, these compilers do not imply
constant-query Insdel LDCs, whose existence is still an open question.

The results of [14] show strong lower bounds on the length of constant-query Insdel
LDCs. In particular, they show that linear Insdel LDCs with 2 queries do no exist, general
Insdel LDCs for q = 3 queries must have m = exp(Ω(

√
n)), and for q ≥ 4 they must have

m = exp(nΩ(1/q)).
In this work we continue the study of locally decodable codes in insertion and deletion

channels by proving the first upper and lower bounds regarding the relaxed variants of Insdel
LDCs. We first consider strong Insdel RLDCs, which satisfy all three properties of Definition
1 and where the notion of distance is now that of relative edit distance. We adapt and extend
the results of [14] to establish strong lower bounds on the codeword length of strong Insdel
RLDCs. In particular, we prove that m = exp(nΩ(1/q)) for any strong Insdel RLDC with
locality q.

▶ Theorem 3. Let C : {0, 1}n → {0, 1}m be a non-adaptive strong (q, δ, 1/2 + β, ρ)-Insdel
RLDC where β > 0. Then for every q ≥ 2 there is a constant c1 = c1(q, δ, β, ρ) such that

m = exp
(

c1 · nΩρ(β2/q)
)

.

Furthermore, the same bound holds even if C does not have perfect completeness. If C has
an adaptive decoder, the same bound holds with β replaced by β/2q−1. Formally, there exists
a constant c2 = c1(q, δ, β/2q−1, ρ) such that

m = exp
(

c2 · nΩρ(β2/(q22q))
)

.
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Our reduction shown in the proof of Theorem 2, together with the impossibility results
of standard linear or affine 2-query Insdel LDCs from [14] show a further impossibility result
for linear and for affine 2-query Insdel RLDCs. A linear code of length m is defined over a
finite field F and it is a linear subspace of the vector space Fm, while an affine code is an
affine subspace of Fm.

We then consider weak Insdel RLDCs that only satisfy the first two properties (perfect
completeness and relaxed decoding). In contrast with Theorem 3, we construct weak Insdel
RLDCs with constant locality q = O(1) and length m = n1+γ for some constant γ ∈ (0, 1).
To the best of our knowledge, this is the first positive result in the constant-query regime
and the Insdel setting. However, the existence of a constant-query standard Insdel LDC (or
even a constant-query strong Insdel RLDC) with any rate remains an open question. Finally,
it is easy to see that our exponential lower bound for weak Hamming RLDCs with locality
q = 2 still applies in the Insdel setting, since Insdel errors are more general than Hamming
error. Thus, in the Insdel setting we discover the same “phase transition”-type phenomena
as for Hamming RLDCs.

▶ Theorem 4. For any γ > 0 and ε ∈ (0, 1/2), there exist constants δ ∈ (0, 1/2) and
q = q(δ, ε, γ), and non-adaptive weak (q, δ, 1/2 + ε)-Insdel RLDCs C : {0, 1}n → {0, 1}m with
m = O(n1+γ).

We remark that in the Hamming setting, [7] shows that the first two properties of
Definition 1 imply the third property for codes with constant query complexity and which
can withstand a constant fraction of errors. Our results demonstrate that, in general, unlike
in the Hamming case, the first two properties do not imply the third property for Insdel
RLDCs from Definition 1. Indeed, while for strong Insdel RLDCs we have m = exp(nΩ(1/q))
for codes of locality q, there exists q = O(1) for which we have constructions of weak Insdel
RLDCs with m = n1+γ . This observation suggests that there are significant differences
between Hamming RLDCs and Insdel RLDCs.

We note that our construction of weak Insdel RLDCs can be modified to obtain strong
Insdel Relaxed Locally Correctable Codes (Insdel RLCCs). Informally, an Insdel RLCC
is a code for which codeword entries can be decoded to the correct value or ⊥ with high
probability, even in the presence of insdel errors (see the full version for a formal definition
of RLCC). We have the following corollary.

▶ Corollary 5. For any γ > 0 and ε ∈ (0, 1/2), there exist constants δ ∈ (0, 1/2) and
q = q(δ, ε, γ), and non-adaptive strong (q, δ, 1/2+ε, 1/2)-Insdel RLCCs C : {0, 1}n → {0, 1}m

with m = O(n1+γ).

1.2 Overview of techniques
1.2.1 Exponential Lower Bound for Weak Hamming RLDCs with q = 2
To simplify the presentation, we assume a non-adaptive decoder in this overview. While the
exact same arguments do not directly apply to adaptive decoders2, with a bit more care they
can be adapted to work in those settings.

2 For standard LDCs Katz and Trevisan [55] observed that an adaptive decoder could be converted into a
non-adaptive decoder by randomly guessing the output yj of the first query j to learn the second query
k. Now we non-adaptively query the received codeword for both yj and yk. If our guess for yj was
correct then we continue simulating the adaptive decoder. Otherwise, we simply guess the output xi.
If the adaptive decoder succeeds with probability at least p ≥ 1/2 + ϵ then the non-adaptive decoder
succeeds with probability p′ ≥ 1/4 + p/2 ≥ 1/2 + ϵ/2. Unfortunately, this reduction does not preserve
perfect completeness as required by our proofs for relaxed 2-query Hamming RLDCs i.e., if p = 1 then
p′ = 3/4.

CCC 2023
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At a high level we prove our lower bound by transforming any non-adaptive 2-query weak
Hamming RLDC for messages of length n and δ fraction of errors into a standard 2-query
Hamming LDC for messages of length n′ = Ω(n), with slightly reduced error tolerance of δ/2.
Kerenidis and de Wolf [56] proved that any 2-query Hamming LDC for messages of length n

must have codeword length m = exp(Ω(n)). Combining this result with our transformation,
it immediately follows that any 2-query weak Hamming RLDC must also have codeword
length m = exp(Ω(n)). While our transformation does not need the third property (success
rate) of a strong RLDC, we crucially rely on the property of perfect completeness, and that
the decoder only makes q = 2 queries.

Let C : {0, 1}n → {0, 1}m be a weak (2, δ, 1/2 + ε)-RLDC. For simplicity (and without
loss of generality), let us assume the decoder Dec works as follows. For message x and
input i ∈ [n], the decoder non-adaptively makes 2 random queries j, k ∈ [m], and outputs
f i

j,k(yj , yk) ∈ {0, 1, ⊥}, where yj , yk are answers to the queries from a received word y,
and f i

j,k : {0, 1}2 → {0, 1, ⊥} is a deterministic function. When there is no error, we have
yj = C(x)j and yk = C(x)k.

We present the main ideas below, and refer the readers to Section 4 for full details.

1.2.1.1 Fixable codeword bits

The starting point of our proof is to take a closer look at those functions f i
j,k with ⊥ entries

in their truth tables. It turns out that when f i
j,k has at least one ⊥ entry in the truth table,

C(x)j can be fixed to a constant by setting either xi = 0 or xi = 1, and same for C(x)k. To
see this, note that the property of perfect completeness forces f i

j,k to be 0 or 1 whenever
xi = 0 or xi = 1 and there is no error. Thus if neither xi = 0 nor xi = 1 fixes C(x)j , then
there must be two entries of 0 and two entries of 1 in the truth table of f i

j,k, which leaves no
space for ⊥ (see Claim 13). Thus, when there is at least one ⊥ entry in the truth table of
f i

j,k, we say that C(x)j and C(x)k are fixable by xi.
This motivates the definition of the set Si, which contains all indices j ∈ [m] such that

the codeword bits C(x)j are fixable by xi; and the definition of Tj , the set of all indices
i ∈ [n] such that C(x)j is fixable by the message bits xi. It is also natural to pay special
attention to queries j, k that are not both contained in Si, since in this case the function f i

j,k

never outputs ⊥.

1.2.1.2 The query structure

In general, a query set {j, k} falls into one of the following three cases: (1) both j, k lie
inside Si; (2) both j, k lie outside of Si; (3) one of them lies inside Si and the other lies
outside of Si. It turns out that case (3) essentially never occurs for a decoder with perfect
completeness. The reason is that when, say, j ∈ Si and k /∈ Si, one can effectively pin down
every entry in the truth table of f i

j,k by using the perfect completeness property, and observe
that the output of f i

j,k does not depend on yk at all (see Claim 14). Thus in this case we
can equivalently view the decoder as only querying yj where j ∈ Si, which leads us back to
case (1). In what follows, we denote by E1 the event that case (1) occurs, and by E2 the
event that case (2) occurs.

1.2.1.3 The transformation by polarizing conditional success probabilities

We now give a high level description of our transformation from a weak RLDC to a standard
LDC. Let y be a string which contains at most δm/2 errors from the codeword C(x). We
have established that the success probability of the weak RLDC decoder on y is an average
of two conditional probabilities
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Pr[Dec(i, y) ∈ {xi, ⊥}] = p1 · Pr[Dec(i, y) ∈ {xi, ⊥} | E1] + p2 · Pr[Dec(i, y) ∈ {xi, ⊥} | E2],

where p1 = Pr[E1] and p2 = Pr[E2]. Let us assume for the moment that Si has a small size,
e.g., |Si| ≤ δm/2. The idea in this step is to introduce additional errors to the Si-portion
of y, in a way that drops the conditional success probability Pr[Dec(i, y) ∈ {xi, ⊥} | E1] to
0 (see Lemma 15). In particular, we modify the bits in Si to make it consistent with the
encoding of any message x̂ with x̂i = 1 − xi. Perfect completeness thus forces the decoder to
output 1 − xi conditioned on E1. Note that we have introduced at most δm/2 + |Si| ≤ δm

errors in total, meaning that the decoder should still have an overall success probability of
1/2 + ε. Furthermore, now the conditional probability Pr[Dec(i, y) ∈ {xi, ⊥} | E2] takes all
credits for the overall success probability. Combined with the observation that Dec never
outputs ⊥ given E2, this suggests the following natural way to decode xi in the sense of a
standard LDC: sample queries j, k according to the conditional probability given E2 (i.e.,
both j, k lie outside Si) and output f i

j,k(yj , yk). This gives a decoding algorithm for standard
LDC, with success probability 1/2 + ε and error tolerance δm/2 (see Lemma 16), modulo
the assumption that |Si| ≤ δm/2.

1.2.1.4 Upper bounding |Si|

The final piece in our transformation from weak RLDC to standard LDC is to address the
assumption that |Si| ≤ δm/2. This turns out to be not true in general, but it would still
suffice to prove that |Si| ≤ δm/2 for n′ = Ω(n) of the message bits i. If we could show
that |Tj | is small for most j ∈ [m], then a double counting argument shows that |Si| is
small for most i ∈ [n]. Unfortunately, if we had C(x)j =

∧n
i=1 xi for m/2 of the codeword

bits j then we also have |Tj | = n for m/2 codeword bits and |Si| ≥ m/2 ≥ δm/2 for all
message bits i ∈ [n]. We address this challenge by first arguing that any weak RLDC for
n-bit messages can be transformed into another weak RLDC for Ω(n)-bit messages for which
we have |Tj | ≤ 3 ln(8/δ) for all but δm/4 codeword bits. The transformation works by fixing
some of the message bits and then eliminating codeword bits that are fixed to constants.
Intuitively, if some C(x)j is fixable by many message bits, it will have very low entropy
(e.g., C(x)j is the AND of many message bits) and hence contain very little information
and can (likely) be eliminated. We make this intuition rigorous through the idea of random
restriction: for each i ∈ [n], we fix xi = 0, xi = 1, or leave xi free, each with probability 1/3.
The probability that C(x)j is not fixed to a constant is at most (1 − 1/3)|Tj | ≤ δ/8, provided
that |Tj | ≥ 3 ln(8/δ). After eliminating codeword bits that are fixed to constants, we show
that with probability at least 1/2 at most δm/4 codeword bits C(x)j with |Tj | ≥ 3 ln(8/δ)
survived3. Note that with high probability the random restriction leaves at least n/6 message
bits free. Thus, there must exist a restriction which leaves at least n/6 message bits free
ensuring that |Tj | ≥ 3 ln(8/δ) for at most δm/4 of the remaining codeword bits C(x)j . We
can now apply the double counting argument to conclude that |Si| ≤ δm/2 for Ω(n) message
bits, completing the transformation.

3 We are oversimplifying a bit for ease of presentation. In particular, the random restriction process may
cause a codeword bit C(x)j to be fixable by a new message bit xi that did not belong to Tj before the
restriction – We thank an anonymous reviewer for pointing this out to us. Nevertheless, for our purpose
it is sufficient to eliminate codeword bits that initially have a large |Tj |. See the formal proof for more
details.

CCC 2023
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1.2.1.5 Adaptive decoders

For possibly adaptive decoders, we are going to follow the same proof strategy. The new
idea and main difference is that we focus on the first query made by the decoder, which is
always non-adaptive. We manage to show that the first query determines a similar query
structure, which is the key to the transformation to a standard LDC. More details can be
found in Section 4.2.

1.2.2 Lower Bounds for Strong Insdel RLDCs

We recall that a strong Insdel RLDC C is a weak Insdel RLDC which satisfies an additional
property: for every x ∈ {0, 1}n and y ∈ {0, 1}m′

such that ED(C(x), y) ≤ δ · 2m, there exists
a set Iy ⊆ [n] of size |Iy| ≥ ρn such that for every i ∈ Iy, we have Pr[Dec(i, y) = xi] ≥ α. In
other words, for ρ-fraction of the message bits, the decoder can correctly recover them with
high probability, just like in a standard Insdel LDC. Towards obtaining a lower bound on the
codeword length m, a natural idea would be to view C as a standard Insdel LDC just for that
ρ-fraction of message bits, and then apply the exponential lower bound for standard Insdel
LDCs from [14]. This idea would succeed if the message bits correctly decoded with high
probability were the same for all potential corrupted codewords y. However, it could be the
case that i ∈ Iy for some strings y, whereas i /∈ Iy′ for other strings y′. Indeed, allowing the
set Iy to depend on y is the main reason why very short constant-query Hamming RLDCs
exist.

We further develop this observation to obtain our lower bound. We use an averaging
argument to show the existence of a corruption-independent set I of message bits with
|I| = Ω(n), which the decoder can recover with high probability. To this end, we need to open
the “black box” of the lower bound result of Blocki et al. [14]. The proof in [14] starts by
constructing an error distribution E with several nice properties, and deduce the exponential
lower bound based solely on the fact that the Insdel LDC should, on average (i.e., for a
uniformly random message x), correctly recover each bit with high probability under E . One
of the nice properties of E is that it is oblivious to the decoding algorithm Dec. Therefore,
it makes sense to consider the average success rate against E , i.e., Pr[Dec(i, y) = xi], where
i ∈ [n] is a uniformly random index, x ∈ {0, 1}n is a uniformly random string, and y is a
random string obtained by applying E to C(x). By replacing ⊥ with a uniformly random bit
in the output of Dec, the average success rate is at least ρα + (1 − ρ)α/2 = (1 + ρ)α/2, since
there is a ρ-fraction of indices for which Dec can correctly recover with probability α, and
for the remaining (1 − ρ)-fraction of indices the random guess provides an additional success
rate of at least α/2. Assuming α is sufficiently close to 1, which we can achieve by repeating
the queries independently for a constant number of times and doing something similar to a
majority vote, the average success rate against E is strictly above 1/2. Therefore, there exist
a constant fraction of indices for which the success rate against E is still strictly above 1/2,
and the number of queries remains a constant. This is sufficient for the purpose of applying
the argument in [14] to get an exponential lower bound.

1.2.3 Constant-Query Weak Insdel RLDC

Our construction of a constant query weak Insdel RLDC uses code concatenation and two
building blocks: a weak Hamming RLDC (as the outer code) with constant query complexity,
constant error-tolerance, and codeword length k = O(n1+γ) for any γ > 0 [7], and the
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Schulman-Zuckerman [69] (from now on denoted by SZ) Insdel codes4 (as the inner code).
We let Cout : {0, 1}n → {0, 1}k and Cin : [k] × {0, 1} → {0, 1}t denote the outer and inner
codes, respectively. Our final concatenation code C will have codewords in {0, 1}m for
some m (to be determined shortly), will have constant query complexity, and will tolerate a
constant fraction of Insdel errors.

1.2.3.1 Code construction

Given a message x ∈ {0, 1}n, we first apply the outer code to obtain a Hamming codeword y =
y1 ◦ · · · ◦ yk = Cout(x) of length k, where each yi ∈ {0, 1} denotes a single bit of the codeword.
Then for each index i, we compute ci = Cin(i, yi) ∈ {0, 1}t as the encoding of the message
(i, yi) via the inner code. Finally, we output the codeword C(x) := c1 ◦ 0t ◦ c2 ◦ · · · ◦ 0t ◦ ck,
where 0t denotes a string of t zeros (which we later refer to as a buffer). Note that the
inner code is a constant-rate code, i.e., t = O(log(k)), and has constant error-tolerance
δin ∈ (0, 1/2). Thus, the final codeword has length m := (2t − 1)k = O(k log(k)) bits. For
any constant γ > 0 we have a constant query outer code with length k = O(n1+γ). Plugging
this into our construction we have codeword length m = O(n1+γ log n) which is O(n1+γ′) for
any constant γ′ > γ.

1.2.3.2 Decoding algorithm: intuition and challenges

Intuitively, our relaxed decoder will simulate the outer decoder. When the outer decoder
requests yi, the natural approach would be to find and decode the block ci to obtain (i, yi).
There are two challenges in this approach. First, if there were insertions or deletions, then we
do not know where the block ci is located; moreover, searching for this block can potentially
blow-up the query complexity by a multiplicative polylog(m) factor [13,68]. Second, even
if we knew where ci were located, because t = O(log k) and we want the decoder to have
constant locality, we cannot afford to recover the entire block ci.

We address the first challenge by attempting to locate block ci under the optimistic
assumption that there are no corruptions. If we detect any corruptions, then we may
immediately abort and output ⊥ since our goal is only to obtain a weak Insdel RLDC.
Assuming that there were no corruptions, we know exactly where the block ci is located, and
we know that ci can only take on two possible values: it is either the inner encoding of (i, 0)
or the inner encoding of (i, 1). If we find anything inconsistent with the inner encoding of
either (i, 0) or (i, 1), then we can immediately output ⊥.

Checking consistency with the inner encodings of (i, 0) and (i, 1) is exactly how we
address the second challenge. In place of reading the entire block ci, we instead only need
to determine whether (1) ci is (close to) the inner encoding of (i, 0), (2) ci is (close to) the
inner encoding of (i, 1), or (3) ci is not close to either string. In either case (1) or case
(2), we simply output the appropriate bit, and in case (3), we simply output ⊥. Thus, our
Insdel RLDC decoder simulates the outer decoder. Whenever the outer decoder request
yi, we determine the expected location for ci, randomly sub-sample a constant number of
indices from this block and compare with the inner encodings of (i, 0) and (i, 1) at the
corresponding indices. To ensure perfect completeness, we always ensure that at least one
of the sub-sampled indices is for a bit where the inner encodings of (i, 0) and (i, 1) differ.
If there are no corruptions, then whenever the simulated outer decoder requests yi we will
always respond with the correct bit. Perfect completeness of our Insdel RLDC now follows

4 In particular, these are classical/non-local codes.
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immediately from the perfect completeness of the outer decoder. Choosing a constant number
of indices to sub-sample ensures that the locality of our weak Insdel RLDC decoder is a
constant multiplicative factor larger than the outer decoder, which gives our Insdel RLDC
decoder constant locality overall.

1.2.3.3 Analysis of the decoding algorithm

The main technical challenge is proving that our Insdel RLDC still satisfies the second
condition of Definition 1, when the received word is not a correct encoding of the message
x. Recall that ci = Cin(i, yi), and suppose c̃i ̸= ci is the block of the received word that we
are going to check for consistency with the inner encodings of (i, 0) and (i, 1). Then, the
analysis of our decoder falls into three cases. In the first case, if c̃i is not too corrupted (i.e.,
ED(c̃i, ci) is not too large), then we can argue that the decoder outputs the correct bit yi or
⊥ with good probability. In the second case, if c̃i has high edit distance from both Cin(i, 0)
and Cin(i, 1), then we can argue that the decoder outputs ⊥ with good probability. The
third case is the most difficult case, which we describe as “dangerous”. We say that the block
c̃i is dangerous if the edit distance between c̃i and Cin(i, 1 − yi) is not too large; i.e., c̃i is
close to the encoding of the opposite bit 1 − yi.

The key insight to our decoding algorithm is that as long as the number of dangerous
blocks c̃i is upper bounded, then we can argue the overall probability that our decoder
outputs yi or ⊥ satisfies the relaxed decoding condition of Definition 1. Intuitively, we
can we think of our weak Insdel RLDC decoder as running the outer decoder on a string
ỹ = ỹ1 ◦ . . . ◦ ỹk, where each ỹi ∈ {0, 1, ⊥} and the outer decoder has been modified to output
⊥ whenever it queries for yi and receives ⊥. Observe that if δout is the error-tolerance of the
outer decoder, then as long as the set

∣∣{i : ỹi ̸= ⊥ ∧ ỹi ̸= yi}
∣∣ ≤ δoutk, the modified outer

decoder, on input j ∈ [n], will output either the correct value xj or ⊥ with high probability
(for appropriate choices of parameters). Intuitively, if a block is “dangerous” then we can
view ỹi = 1 − yi, and otherwise we have ỹi ∈ {yi, ⊥} with reasonably high probability. Thus,
as long as the number of “dangerous” block is at most δoutk/2, then our relaxed Insdel
decoder will satisfy the second property of Definition 1 and output either xj or ⊥ with high
probability for any j ∈ [n].

1.2.3.4 Upper bounding the number of dangerous blocks

To upper bound the number of “dangerous” blocks we utilize a matching argument based on
the longest common sub-sequence (LCS) between the original codeword and the received
(corrupted) word. Our matching argument utilizes a key feature of the SZ Insdel code. In
particular, the Hamming weight (i.e., number of non-zero symbols) of every substring c′

of an SZ codeword is at least
⌊
|c′|/2

⌋
. This ensures that the buffers 0t cannot be matched

with large portions of any SZ codeword. We additionally leverage a key lemma (full version,
Lemma 9) which states that the edit distance between the codeword Cin(i, 1 − yi) and any
substring of length less than 2t of the uncorrupted codeword C(x) has relative edit distance
at least δin/2. We use these two properties, along with key facts about the LCS matching,
to yield an upper bound on the number of dangerous blocks, completing the analysis of our
decoder.

1.2.3.5 Extension to relaxed locally correctable codes for insdel errors

Our construction also yields a strong Insdel Relaxed Locally Correctable Code (RLCC) with
constant locality if the outer code is a weak Hamming RLCC. First, observe that bits of
the codeword corresponding to the 0t buffers are very easy to predict without even making
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any queries to the corrupted codeword. Thus, if we are asked to recover the j’th bit of
the codeword and j corresponds to a buffer 0t, we can simply return 0 without making
any queries to the received word. Otherwise, if we are asked to recover the j’th bit of the
codeword and j corresponds to block ci, we can simulate the Hamming RLCC decoder (as
above) on input i to obtain yi (or ⊥). Assuming that yi ∈ {0, 1}, we can compute the
corresponding SZ encoding of (i, yi) and obtain the original value of the block ci and then
recover the j’th bit of the original codeword. The analysis of the RLCC decoder is analogous
to the RLDC decoder. See Section 6 in the full version for details on both our weak Insdel
RLDC and strong Insdel RLCC constructions.
▶ Remark 6. The “adaptiveness” of our constructed Insdel RLDC/RLCC decoder is identical
to that of the outer Hamming RLDC/RLCC decoder. In particular, the weak Hamming
RLDC of Ben-Sasson et al. [7] has a non-adaptive decoder, making our final decoder non-
adaptive as well. Similarly, we use a weak Hamming RLCC due to Asadi and Shinkar [3] for
our Insdel LCC, which is also a non-adaptive decoder.

2 Open Questions

Exact “phase-transition” thresholds

Our results show that both in the Hamming and Insdel setting there is a constant q such
that every q-query RLDC requires super-polynomial codeword length, while there exists
a (q + 1)-query RLDC of polynomial codeword length. Finding the precise q remains an
intriguing open question. Further, a more refined understanding of codeword length for
RLDCs making 3, 4, 5 queries is another important question, which has lead to much progress
in the understanding of the LDC variants.

Constant-query strong Insdel RLDCs/RLCCs

While we do construct the first weak RLDCs in the Insdel setting, the drawback of our
constructions is the fact that our codes do not satisfy the third property of Definition 1.
Building strong Insdel RLDCs remains an open question. We note that our lower bounds
imply that for a constant number of queries, such codes (if they exist) must have exponential
codeword length.

Applications of local Insdel codes

As previously mentioned, Hamming LDCs/RLDCs have so far found many applications
such as private information retrieval, probabilistically checkable proofs, self-correction, fault-
tolerant circuits, hardness amplification, and data structures. Are there analogous or new
applications of the Insdel variants in the broader computing area?

Lower bounds for Hamming RLDCs/LDCs

Our 2-query lower bound for Hamming RLDCs crucially uses the perfect completeness
property of the decoder. An immediate question is whether the bound still holds if we
allow the decoder to have imperfect completeness. We also note that the argument in our
exponential lower bounds for 2-query Hamming RLDCs fail to hold for alphabets other than
the binary alphabet, and we leave the extension to larger alphabet sizes as an open problem.
Another related question is to understand if one can leverage perfect completeness and/or
random restrictions to obtain improved lower bounds for q ≥ 3-query standard Hamming
LDCs. Perfect completeness has been explicitly used before to show exponential lower bounds
for 2-query LCCs [11].
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2.1 Further discussion about related work
Insdel codes

The study of error correcting codes for insertions and deletions was initiated by Levenstein [59].
While progress has been slow because constructing codes for insdel errors is strictly more
challenging than for Hamming errors, strong interest in these codes lately has led to many
exciting results [19, 21–25, 41–43, 45–49, 51, 61, 63, 69] (See also the excellent surveys of
[50,64,66,71]).

Insdel LDCs

[67] gave private-key constructions of LDCs with m = Θ(n) and locality polylog(n). [16]
extended the construction from [67] to settings where the sender/decoder do not share
randomness, but the adversarial channel is resource bounded. [12] applied the [13] compiler
to the private key Hamming LDC of [67] (resp. resource bounded LDCs of [16]) to obtain
private key Insdel LDCs (resp. resource bounded Insdel LDCs) with constant rate and
polylog(n) locality.

Insdel LDCs have also been recently studied in computationally bounded channels, in-
troduced in [60]. Such channels can perform a bounded number of adversarial errors, but
do not have unlimited computational power as the general Hamming channels. Instead,
such channels operate with bounded resources. As expected, in many such limited-resource
settings one can construct codes with strictly better parameters than what can be done
generally [31, 44, 65, 70]. LDCs in these channels under Hamming error were studied in
[15, 16, 52–54, 67]. [12] applied the [13] compiler to the Hamming LDC of [16] to obtain a
constant rate Insdel LDCs with polylog(n) locality for resource bounded channels. The work
of [26] proposes the notion of locally decodable codes with randomized encoding, in both
the Hamming and edit distance regimes, and in the setting where the channel is oblivious
to the encoded message, or the encoder and decoder share randomness. For edit error they
obtain codes with m = O(n) or m = n log n and polylog(n) query complexity. However, even
in settings with shared randomness or where the channel is oblivious or resource bounded,
there are no known constructions of Insdel LDCs with constant locality.

Locality in the study of insdel codes was also considered in [49], which constructs explicit
synchronization strings that can be locally decoded.

2.2 Organization
The remainder of the paper is organized as follows. We give general preliminaries and recall
some prior results used in our results in Section 3. Due to space limit, we only present the
proof of Theorem 2 in Section 4. The readers are pointed to the full version for proofs of
Theorem 3, Theorem 4 and Corollary 5.

3 Preliminaries

For natural number n ∈ N, we let [n] := {1, 2, . . . , n}. We let “◦” denote the standard string
concatenation operation. For a string x ∈ {0, 1}∗ of finite length, we let |x| denote the
length of x. For i ∈ [|x|], we let x[i] denote the i-th bit of x. Furthermore, for I ⊆ [|x|], we
let x[I] denote the subsequence x[i1] ◦ x[i2] ◦ · · · ◦ x[iℓ], where ij ∈ I and ℓ = |I|. For two
strings x, y ∈ {0, 1}n of length n, we let HAM(x, y) denote the Hamming Distance between
x and y; i.e., HAM(x, y) :=

∣∣{i ∈ [n] : xi ̸= yi}
∣∣. Similarly, we let ED(x, y) denote the Edit
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Distance between x and y; i.e., ED(x, y) is the minimum number of insertions and deletions
needed to transform string x into string y. We often discuss the relative Hamming Distance
(resp., relative Edit Distance) between x and y, which is simply the Hamming Distance
normalized by n, i.e., HAM(x, y)/n (resp., the Edit Distance normalized by |x| + |y|, i.e.,
ED(x, y)/(|x| + |y|)). Finally, the Hamming weight of a string x is the number of non-zero
entries of x, which we denote as wt(x) := |{i ∈ [|x|] : xi ̸= 0}|.

For completeness, we recall the definition of a classical locally decodable code, or just a
locally decodable code.
▶ Definition 7 (Locally Decodable Codes). A (q, δ, α)-Locally Decodable Code C : Σn → Σm is
a code for which there exists a randomized decoder that makes at most q queries to the received
word y and satisfies the following property: for every i ∈ [n], if y is such that dist(y, C(x)) ≤ δ

for some unique C(x), then the decoder, on input i, outputs xi with probability ≥ α. Here, the
randomness is taken over the random coins of the decoder, and dist is a normalized metric.

If dist is the relative Hamming distance, then we say that the code is a Hamming LDC;
similarly, if dist is the relative edit distance, then we say that the code is an Insdel LDC.

We recall the general 2-query Hamming LDC lower bound [6,56].
▶ Theorem 8 ([6,56]). For constants δ, ε ∈ (0, 1/2) there exists a constant c = c(δ, ε) ∈ (0, 1)
such that if C : {0, 1}n → {0, 1}m is a (2, δ, 1/2 + ε) Hamming LDC then m ≥ 2cn−1.

In our weak Insdel RLDC construction, we utilize a weak Hamming RLDC due to [7].
▶ Lemma 9 ([7]). For constants ε, δ ∈ (0, 1/2) and γ ∈ (0, 1), there exists a constant
q = Oδ,ε(1/γ2) and a weak (q, δ, 1/2 + ε)-Hamming RLDC C : {0, 1}n → {0, 1}m with
m = O(n1+γ). Moreover, the decoder of this code is non-adaptive.

Our construction additionally utilizes the well-known Schulman-Zuckerman Insdel
codes [69].
▶ Lemma 10 (Schulman-Zuckerman (SZ) Code [69]). There exists constants β ≥ 1 and δ > 0
such that for large enough values of t > 0, there exists a code C : {0, 1}t → {0, 1}βt capable of
decoding from δ-fraction of Insdel errors and the additional property that for every x ∈ {0, 1}t

and y = C(x), every substring y′ of y with length at least 2 has Hamming weight ≥
⌊
|y′|/2

⌋
.

Our strong Insdel RLCC construction relies on a weak Hamming RLCC. We utilize the
following weak Hamming RLCC implicit in [3].
▶ Lemma 11 (Implied by Theorem 1 of [3]). For every sufficiently large q ∈ N and ε ∈ (0, 1/2),
there is a constant δ such that there exists a weak (q, δ, 1/2 + ε)-relaxed Hamming Locally
Correctable Code C : {0, 1}n → {0, 1}m with m = n1+O(1/q). Moreover, the decoder of this
code is non-adaptive.

4 Lower Bounds for 2-Query Hamming RLDCs

We prove Theorem 2 in this section. As a reminder, a weak (q, δ, α)-RLDC satisfies the first
two conditions in Definition 1, and non-adaptive means the decoder makes queries according
to a distribution which is independent of the received string y. Here we are interested in the
case q = 2 and α = 1/2 + ε.

To avoid overloading first-time readers with heavy notations, we first present a proof of the
lower bound for non-adaptive decoders, i.e., decoders with a query distribution independent
of the received string. This proof will be easier to follow, while the crucial ideas behind it
remain the same. The proof for the most general case is presented in the last subsection,
with an emphasis on the nuances in dealing with adaptivity.
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4.1 A Warm-up: the lower bound for non-adaptive decoders
In the following, we fix a relaxed decoder Dec for C. In this subsection, we assume that Dec
is non-adaptive, and that it has the first two properties specified in Definition 1. To avoid
technical details, we also assume Dec always makes exactly 2 queries (otherwise add dummy
queries to make the query count exactly 2).

Given an index i ∈ [n] and queries j, k made by Dec(i, ·), in the most general setting
the output could be a random variable which depends on i and yj , yk, where yj , yk are the
answers to queries j, k, respectively. An equivalent view is that the decoder picks a random
function f according to some distribution and outputs f(yj , yk). Let DFi

j,k be the set of
all decoding functions f : {0, 1}2 → {0, 1, ⊥} which are selected by Dec(i, ·) with non-zero
probability when querying j, k. We partition the queries into the following two sets

F 0
i :=

{
{j, k} ⊆ [m] : ∀f ∈ DFi

j,k the truth table of f contains no “⊥”
}

,

F ≥1
i :=

{
{j, k} ⊆ [m] : ∃f ∈ DFi

j,k the truth table of f contains at least 1 “⊥”
}

.

Notations

Given a string w ∈ {0, 1}m and a subset S ⊆ [m], we denote w[S] := (wi)i∈S ∈ {0, 1}|S|.
Given a Boolean function f : {0, 1}n → {0, 1}, and σ ∈ {0, 1}, we write f ↾xi=σ to denote
the restriction of f to the domain

{
x ∈ {0, 1}n : xi = σ

}
. For a sequence of restrictions, we

simply write f ↾(xj1 ,...,xjk
)=(σ1,...,σk), or fJ|σ where J = [n]\{j1, . . . , jk} and σ = (σ1, . . . , σk).

Note that fJ|σ is a Boolean function over the domain {0, 1}J .
We will identify the encoding function of C as a collection of m Boolean functions

C :=
{

C1, . . . , Cm : ∀j ∈ [m], Cj : {0, 1}n → {0, 1}
}

.

Namely, C(x) = (C1(x), C2(x), . . . , Cm(x)) for all x ∈ {0, 1}n.
For j ∈ [m], we say Cj is fixable by xi if at least one of the restrictions Cj ↾xi=0 and

Cj ↾xi=1 is a constant function. Denote

Si :=
{

j ∈ [m] : Cj is fixable by xi

}
, Tj :=

{
i ∈ [n] : Cj is fixable by xi

}
,

and wj := |Tj |. Let

W :=
{

j ∈ [m] : wj ≥ 3 ln(8/δ)
}

.

For i ∈ [n] define the sets Si,+ := Si ∩ W , and Si,− := Si ∩ W .
Let J ⊆ [n] and ρ ∈ {0, 1}J . A code C : {0, 1}n → {0, 1}m restricted to xJ = ρ, denoted

by CJ|ρ, is specified by the following collection of Boolean functions

CJ|ρ :=
{

Cj ↾x
J

=ρ : j ∈ [m], Cj ↾x
J

=ρ is not a constant function
}

.

Namely, we restrict each function Cj in C to xJ = ρ, and eliminate those that have become
constant functions. CJ|ρ encodes n′-bit messages into m′-bit codewords, where n′ = |J | and
m′ =

∣∣∣CJ|ρ

∣∣∣ ≤ m.
We note that the local decoder Dec for C can also be used as a local decoder for CJ|ρ,

while preserving all the parameters. This is because, Dec never needs to really read a
codeword bit which has become a constant function under the restriction J |ρ.

The lemma below will be useful later in the proof. It shows that a constant fraction of
the message bits can be fixed so that most codeword bits Cj with large wj become constants.
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▶ Lemma 12. There exist a set J ⊆ [n] and assignments ρ ∈ {0, 1}J such that |J | ≥ n/6,
and |W \ A| ≤ δm/4, where A ⊆ W collects all codeword bits j ∈ W such that Cj ↾x

J
=ρ is a

constant function.

Proof. Let J be a random subset formed by selecting each i ∈ [n] independently with
probability 1/3. For each j ∈ J , set ρj = 0 or ρj = 1 with probability 1/2. We have E[|J |] =
n/3, and hence the Chernoff bound shows that |J | < n/6 with probability exp(−Ω(n)).
Furthermore, for each j ∈ W , Cj ↾x

J
=ρ becomes a constant function except with probability

δ/8. This is because for each i ∈ Tj , Cj ↾xi=0 or Cj ↾xi=1 is a constant function, and either
case happens with probability 1/3. Therefore

Pr
[
Cj ↾x

J
=ρ is not constant

]
≤

(
1 − 1

3

)|Tj |

< e−|Tj |/3 ≤ δ

8 ,

where the last inequality is due to wj = |Tj | ≥ 3 ln(8/δ), since j ∈ W .
By linearity of expectation and Markov’s inequality, we have

Pr

 ∑
j∈W

1
{

Cj ↾x
J

=ρ is not constant
}

≥ δ

4 |W |



≤
E

[∑
j∈W 1

{
Cj ↾x

J
=ρ is not constant

}]
δ|W |/4

=

∑
j∈W Pr

[
Cj ↾x

J
=ρ is not constant

]
δ|W |/4

≤δ/8 · |W |
δ|W |/4 ≤ 1

2 .

Applying a union bound gives

Pr

(
|J | < n/6

)
∨

 ∑
j∈W

1
{

Cj ↾x
J

=ρ is not constant
}

≥ δ

4 |W |




≤ exp
(
−Ω(n)

)
+ 1

2 < 1.

Finally, we can conclude that there exist J ⊆ [n] and ρ ∈ {0, 1}J such that |J | ≥ n/6, and
Cj ↾x

J
=ρ becomes a constant function for all but δ/4 fraction of j ∈ W . ◀

Let J ⊆ [n] and ρ ∈ {0, 1}J be given by the Lemma 12, and consider the restricted code
CJ|ρ. By rearranging the codeword bits, we may assume J = [n′] where n′ = |J | ≥ n/6.

Let A ⊆ [m] be the set of codeword bits which get fixed to constants under J |ρ. We
denote W ′ := W \ A, S′

i := Si \ A, S′
i,− := Si,− \ A, and S′

i,+ := Si,+ \ A. Note that
|W ′| = |W \ A| ≤ δm/4, and thus |S′

i,+| = |Si,+ ∩ W ′| ≤ δm/4 for all i ∈ [n′]. We emphasize
that S′

i does not necessarily contain all codeword bits fixable by xi in the restricted code
CJ|ρ, as fixing some message bits may cause more codeword bits to be fixable by xi.

We first show that the queries of C must have certain structures. The following claim
characterizes the queries in F ≥1

i .

▷ Claim 13. Suppose {j, k} ∈ F ≥1
i . Then we must have j, k ∈ Si.
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Proof. Let {j, k} ∈ F ≥1
i . Suppose for the sake of contradiction that j /∈ Si. This implies

there are partial assignments σ00, σ01, σ10, σ11 ∈ {0, 1}n−1 such that

Cj (x−i = σ00, xi = 0) = 0, Cj (x−i = σ01, xi = 1) = 0,

Cj (x−i = σ10, xi = 0) = 1, Cj (x−i = σ11, xi = 1) = 1,

where x−i is defined as
(
xt : t ∈ [n] \ {i}

)
.

Let C00, C01, C10, C11 be encodings of the corresponding assignments mentioned above.
Since the relaxed decoder has perfect completeness, when Dec(i, ·) is given access to C00 or
C10 it must output xi = 0. Note that the j-th bit is different in C00 and C10. Similarly,
when Dec(i, ·) is given access to C01 or C11 it must output xi = 1. However, this already
takes up 4 entries in the truth table of any decoding function f ∈ DFi

j,k, leaving no space for
any “⊥” entry. This contradicts with the assumption {j, k} ∈ F ≥1

i . ◁

Here is another way to view Claim 13 which will be useful later: Suppose {j, k} is a query
set such that j /∈ Si (or k /∈ Si), then {j, k} ∈ F 0

i . In other words, conditioned on the event
that some query is not contained in Si, the decoder never outputs ⊥.

The following claim characterizes the queries in F 0
i .

▷ Claim 14. Suppose {j, k} ∈ F 0
i , and j ∈ Si. Then one of the following three cases occur:

(1) k ∈ Si, (2) Cj = xi, or (3) Cj = ¬xi.

Proof. Since j ∈ Si, we may, without loss of generality, assume that Cj ↾xi=0 is a constant
function. Let us further assume it is the constant-zero function. The proofs for the other
cases are going to be similar.

Denote by f(yj , yk) the function returned by Dec(i, ·) conditioned on reading {j, k}. Any
function f ∈ DFi

j,k takes values in {0, 1} since {j, k} ∈ F 0
i . Suppose case (1) does not occur,

meaning that Ck ↾xi=0 is not a constant function. Then there must be partial assignments
σ00, σ01 ∈ {0, 1}n−1 such that

Ck(xi = 0, x−i = σ00) = 0, Ck(xi = 0, x−i = σ01) = 1.

Let C00 and C01 be the encodings of the corresponding assignments mentioned above. Due
to perfect completeness of Dec, it must always output xi = 0 when given access to C00 or
C01. That means f(0, 0) = f(0, 1) = 0.

Now we claim that Cj ↾xi=1 must be the constant-one function. Otherwise there is a
partial assignment σ10 ∈ {0, 1}n−1 such that

Cj(xi = 1, x−i = σ10) = 0.

Let C10 be the encoding of this assignment. On the one hand, due to perfect completeness
Dec(i, ·) should always output xi = 1 when given access to C10. On the other hand, Dec(i, ·)
outputs f((C10)j , 0) = f(0, 0) = 0. This contradiction shows that Cj ↾xi=1 must be the
constant-one function. Therefore Cj = xi, i.e., case (2) occurs.

Similarly, when Cj ↾xi=0 is the constant-one function, we can deduce that Cj = ¬xi, i.e.,
case (3) occurs. ◁

We remark that Claim 13 and Claim 14 jointly show that for any query set {j, k} made
by Dec(i, ·) there are 2 essentially different cases: (1) both j, k lie inside Si, and (2) both
j, k lie outside Si. The case j ∈ Si, k /∈ Si (k ∈ Si, j /∈ Si, resp.) means that k (j, resp.) is
a dummy query which is not used for decoding. Furthermore, conditioned on case (2), the
decoder never outputs ⊥.
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Another important observation is that all properties of the decoder discussed above hold
for the restricted code CJ|ρ, with Si replaced by S′

i. This is because CJ|ρ uses essentially
the same decoder, except that it does not actually query any codeword bit which became a
constant.

For a subset S ⊆ [m], we say “Dec(i, ·) reads S” if the event “j ∈ S and k ∈ S” occurs
where j, k ∈ [m] are the queries made by Dec(i, ·). The following lemma says that conditioned
on Dec(i, ·) reads some subset S, there is a way of modifying the bits in S that flips the
output of the decoder.

▶ Lemma 15. Let S ⊆ [m] be a subset such that Pr[Dec(i, ·) reads S] > 0. Then for
any string s ∈ {0, 1}m and any bit b ∈ {0, 1}, there exists a string z ∈ {0, 1}m such that
z[[m] \ S] = s[[m] \ S], and

Pr
[
Dec(i, z) = 1 − b | Dec(i, ·) reads S

]
= 1.

Proof. Let x ∈ {0, 1}n be a string with xi = 1 − b. Let z ∈ {0, 1}m be the string satisfying

z[S] = C(x)[S], z[[m] \ S] = s[[m] \ S].

Since Dec has perfect completeness, we have

1 = Pr
[
Dec(i, C(x)) = xi | Dec(i, ·) reads S

]
= Pr

[
Dec(i, z) = 1 − b | Dec(i, ·) reads S

]
.

◀

The next lemma is a key step in our proof. It roughly says that there is a local decoder
for xi in the standard sense as long as the size of Si is not too large.

▶ Lemma 16. Suppose i ∈ [n] is such that |Si| ≤ δm/2. Then there is a (2, δ/2, 1/2 + ε)-
local decoder Di for i. In other words, for any x ∈ {0, 1}n and y ∈ {0, 1}m such that
HAM(C(x), y) ≤ δm/2, we have

Pr
[
Di(y) = xi

]
≥ 1

2 + ε,

and Di makes at most 2 queries into y.

Proof. Let i ∈ [n] be such that |Si| ≤ δm/2. The local decoder Di works as follows. Given
x ∈ {0, 1}n and y ∈ {0, 1}m such that HAM(C(x), y) ≤ δm/2, Di obtains a query set Q

according to the query distribution of Dec(i, ·) conditioned on Q ⊆ [m] \ Si. Then Di finishes
by outputting the result returned by Dec(i, ·).

Denote by Ei the event “Dec(i, ·) reads [m]\Si”, i.e., both two queries made by Dec(i, ·) lie
outside Si. In order for the conditional distribution to be well-defined, we need to argue that
Ei occurs with non-zero probability. Suppose this is not the case, meaning that Q ∩ Si ̸= ∅
for all possible query set Q. Let z ∈ {0, 1}m be the string obtained by applying Lemma 15
with S = Si, s = C(x) and b = xi. Claim 13 and Claim 14 jointly show that either Q ⊆ Si,
or the decoder’s output does not depend on the answers to queries in Q \ Si. In any case,
the output of Dec(i, z) depends only on z[Si]. However, by the choice of z we now have a
contradiction since

1
2 + ε ≤ Pr

[
Dec(i, z) ∈ {xi, ⊥}

]
= Pr

[
Dec(i, z) ∈ {xi, ⊥} | Dec(i, ·) reads Si

]
= 0,

where the first inequality is due to HAM(C(x), z) ≤ |Si| < δm and the relaxed decoding
property of Dec.
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By definition of Di, it makes at most 2 queries into y. Its success rate is given by

Pr[Di(y) = xi] = Pr[Dec(i, y) = xi | Ei].

Therefore it remains to show that

Pr
[
Dec(i, y) = xi | Ei

]
≥ 1

2 + ε.

Let z be the string obtained by applying Lemma 15 with S = Si, s = y and b = xi. From
previous discussions we see that conditioned on Ei (i.e., the event Ei does not occur), the
output of Dec(i, z) only depends on z[Si]. Therefore

Pr
[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
= 1 − Pr

[
Dec(i, z) = 1 − xi | Ei

]
= 0. (1)

We also have that z is close to C(x) since

HAM(z, C(x)) ≤ HAM(z, y) + HAM(y, C(x)) ≤|Si| + δm/2 ≤ δm.

Thus, the relaxed decoding property of Dec gives

Pr
[
Dec(i, z) ∈ {xi, ⊥}

]
≥ 1

2 + ε.

On the other hand, we also have

Pr
[
Dec(i, z) ∈ {xi, ⊥}

]
= Pr

[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
· Pr

[
Ei

]
+ Pr

[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
· Pr [Ei]

= Pr
[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
· Pr

[
Ei

]
+ Pr

[
Dec(i, y) ∈ {xi, ⊥} | Ei

]
· Pr [Ei]

(z[[m] \ Si] = y[[m] \ Si])
= Pr

[
Dec(i, y) ∈ {xi, ⊥} | Ei

]
· Pr [Ei] (Equation (1))

≤ Pr
[
Dec(i, y) ∈ {xi, ⊥} | Ei

]
.

Note that by Claim 13, conditioned on Ei, Dec(i, ·) never outputs “⊥”. We thus have

Pr
[
Dec(i, y) = xi | Ei

]
≥ 1

2 + ε. ◀

We remark once again that the above lemma holds for the restricted code CJ|ρ, with Si

replaced by S′
i.

Below we prove an exponential lower bound for non-adaptive 2-query Hamming RLDCs.

▶ Proposition 17. Let C : {0, 1}n → {0, 1}m be a non-adaptive weak (2, δ, 1/2 + ε)-RLDC.
Then m = 2Ωδ,ε(n).

Proof. Let CJ|ρ : {0, 1}n′
→ {0, 1}m′

be the restricted code where J |ρ is given by Lemma 12,
and A ⊆ [m] be the set of codeword bits which get fixed to constants. We also let S′

i := Si \A,
S′

i,− = Si,− \ A, S′
i,+ = Si,+ \ A.

Denote T ′
j :=

{
i ∈ [n′] : j ∈ S′

i

}
. Since S′

i ⊆ Si for each i, we also have T ′
j ⊆ Tj for each

j. In particular, for each j /∈ W ′ ⊆ W , we have |T ′
j | ≤ |Tj | ≤ 3 ln(8/δ). Therefore

E
i∈[n′]

[
|S′

i,−|
]

= 1
n′

n′∑
i=1

|S′
i,−| = 1

n′

∑
j∈[m′]\W ′

|T ′
j | ≤ 3 ln(8/δ) · m′

n′ .
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Therefore by Markov’s inequality,

Pr
i∈[n′]

[
|S′

i,−| > δm′/4
]

≤ 12 ln(8/δ)
δn′ = Oδ

(
1
n′

)
.

In other words, there exists I ⊆ [n′] of size |I| ≥ n′ − Oδ(1) such that |S′
i,−| ≤ δm′/4 for

all i ∈ I. For any such i ∈ I, we have |S′
i| = |S′

i,−| + |S′
i,+| ≤ δm′/4 + δm′/4 = δm′/2. By

Lemma 16, we can view CJ|ρ as a (2, δ/2, 1/2 + ε)-LDC for message bits in I (for instance,
we can arbitrarily fix the message bits outside I), where |I| > n′ − Oδ(1) = Ω(n). Finally,
the statement of the proposition follows from Theorem 8. ◀

4.2 Lower bounds for adaptive 2-Query Hamming RLDCs
Now we turn to the actual proof, which still works for possibly adaptive decoders. Let C be
a weak (2, δ, 1/2 + ε)-RLDC with perfect completeness. We fix a relaxed decoder Dec for
C. Without loss of generality, we assume Dec works as follows: on input i ∈ [n], Dec(i, ·)
picks the first query j ∈ [m] according to a distribution Di. Let b ∈ {0, 1} be the answer to
this query. Then Dec picks the second query k ∈ [m] according to a distribution Di;j,b, and
obtains an answer b′ ∈ {0, 1}. Finally, Dec outputs a random variable Xi;j,b,k,b′ ∈ {0, 1, ⊥}.

We partition the support of Di into the following two sets:

F 0
i :=

{
j ∈ supp(Di) : ∀b, b′ ∈ {0, 1} , k ∈ supp(Di;j,b,k,b′), Pr[Xi;j,b,k,b′ =⊥] = 0

}
,

F >0
i :=

{
j ∈ supp(Di) : ∃b, b′ ∈ {0, 1} , k ∈ supp(Di;j,b,k,b′), Pr[Xi;j,b,k,b′ =⊥] > 0

}
.

We will still apply the restriction guaranteed by Lemma 12 to C. The sets Si, Tj , W ,
Si,−, Si,+ (are their counterparts for CJ|ρ) are defined in the exact same way.

The following claim is adapted from Claim 13.

▷ Claim 18. (supp(Di) \ Si) ⊆ F 0
i .

Proof. Let j ∈ supp(Di) \ Si and we will show j ∈ F 0
i . By the definition of Si, j /∈ Si means

that there are partial assignments σ00, σ01, σ10, σ11 ∈ {0, 1}n−1 such that

Cj (x−i = σ00, xi = 0) = 0, Cj (x−i = σ01, xi = 1) = 0,

Cj (x−i = σ10, xi = 0) = 1, Cj (x−i = σ11, xi = 1) = 1,

where x−i is defined as
(
xt : t ∈ [n] \ {i}

)
.

Let C00, C01, C10, C11 be encodings of the corresponding assignments mentioned above.
Consider an arbitrary query k ∈ supp(Di;j,0), and let b′

1, b′
2 be the k-th bit of C00 and C01,

respectively. We note that Xi;j,0,k,b′
1

is the output of Dec(i, C00) conditioned on the queries
j, k, and Xi;j,0,k,b′

2
is the output of Dec(i, C01) conditioned on the queries j, k. Due to perfect

completeness of Dec, we have

Pr[Xi;j,0,k,b′
1

= 0] = 1, Pr[Xi;j,0,k,b′
2

= 1] = 1.

Therefore, it must be the case that b′
1 ̸= b′

2, which implies that Pr[Xi;j,0,k,b′ =⊥] = 0 for any
b′ ∈ {0, 1}.

An identical argument shows that Pr[Xi;j,1,k,b′ =⊥] = 0 for any k ∈ supp(Di;j,1) and
b′ ∈ {0, 1}. Thus we have shown j ∈ F 0

i . ◁

We remark that the above claim also implies F >0
i ⊆ Si, since supp(Di) is a disjoint

union of F 0
i and F >0

i . In other words, conditioned on the event that the first query j is not
contained in Si, the decoder never outputs ⊥.

The next claim is adapted from Claim 14.
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▷ Claim 19. Let j ∈ supp(Di) ∩ Si. For any b ∈ {0, 1} one of the following three cases
occurs:
1. supp(Di;j,b) ⊆ Si;
2. For any k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = b] = Pr[Xi;j,b,k,1 = b] = 1;
3. For any k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = 1 − b] = Pr[Xi;j,b,k,1 = 1 − b] = 1.

Proof. Since j ∈ Si, we may, without loss of generality, assume that Cj ↾xi=0 is a constant
function. Let us further assume Cj ↾xi=0 ≡ 0. The proofs for the other cases are going to be
similar.

Suppose supp(Di;j,0) ̸⊆ Si, and let k ∈ supp(Di;j,0) \ Si. By the definition of Si, k /∈ Si

means that there are partial assignments σ00, σ01 ∈ {0, 1}n−1 such that

Ck(xi = 0, x−i = σ00) = 0, Ck(xi = 0, x−i = σ01) = 1.

Let C00 and C01 be the encodings of the corresponding assignments mentioned above. We
note that Xi;j,0,k,0 and Xi;j,0,k,1 are the outputs of Dec(i, C00) and Dec(i, C01), respectively,
conditioned on the queries j, k. Due to perfect completeness of Dec, we must have

Pr[Xi;j,0,k,0 = 0] = Pr[Xi;j,0,k,1 = 0] = 1,

since both C00 and C01 encode messages with xi = 0.
Now we claim that Cj ↾xi=1 ≡ 1 must hold. Otherwise there is a partial assignment

σ10 ∈ {0, 1}n−1 such that

Cj(xi = 1, x−i = σ10) = 0.

Let C10 be the encoding of this assignment, and let b′ ∈ {0, 1} be the k-th bit of C10. On
the one hand, Xi;j,0,k,b′ is the output Dec(i, C10) conditioned on the queries j, k, and we
have just established

Pr[Xi;j,0,k,b′ = 0] = 1.

On the other hand, Dec(i, C10) should output xi = 1 with probability 1 due to perfect
completeness. This contradiction shows that Cj ↾xi=1 ≡ 1.

Similarly, suppose supp(Di;j,1) ̸⊆ Si and let k ∈ supp(Di;j,1) \ Si, meaning that there are
partial assignments σ10, σ11 ∈ {0, 1}n−1 such that

Ck(xi = 1, x−i = σ10) = 0, Ck(xi = 1, x−i = σ11) = 1.

Let C10 and C11 be the corresponding encodings, and note that Xi;j,1,k,0 and Xi;j,1,k,1 are the
outputs of Dec(i, C10) and Dec(i, C11), respectively, conditioned on the queries j, k. Perfect
completeness of Dec implies

Pr[Xi;j,1,k,0 = 1] = Pr[Xi;j,1,k,1 = 1] = 1,

since both C10 and C11 encode messages with xi = 1.
So far we have shown that for any b ∈ {0, 1} such that supp(Di;j,b) ̸⊆ Si, it holds that

∀k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = b] = Pr[Xi;j,b,k,1 = b] = 1,

provided that Cj ↾xi=0 ≡ 0. In case of Cj ↾xi=0 ≡ 1, we can use an identical argument to
deduce that for any b ∈ {0, 1} such that supp(Di;j,b) ̸⊆ Si, it holds that

∀k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = 1 − b] = Pr[Xi;j,b,k,1 = 1 − b] = 1.◁
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Here is another way to view Claim 19: conditioned on the event that the first query j is
contained in Si, either the second query k is also contained in Si, or the output Xi;j,b,k,b′ is
independent of the answer b′ to query k. In either case, the decoder’s output depends solely
on the Si-portion of the received string.

Once again, the conclusions of Claim 18 and Claim 19 hold for CJ|ρ, with Si replaced
by S′

i.
Finally, we are ready to prove Theorem 2. We recall the Theorem below.

▶ Theorem 2. Let C : {0, 1}n → {0, 1}m be a weak adaptive (2, δ, 1/2 + ε)-RLDC. Then
m = 2Ωδ,ε(n).

Proof. The proof is almost identical to the one for Proposition 17. First, we can show that
there exists I ⊆ [n′] of size |I| ≥ n′ − Oδ(1) = Ω(n) such that |S′

i,−| ≤ δm/4 for all i ∈ I,
and hence |S′

i| = |S′
i,−| + |S′

i,+| ≤ δm/2. Second, similar to the proof of Lemma 16, for each
i ∈ I we can construct a decoder Di for xi as follows. Di restarts Dec(i, ·) until it makes a
first query j ∈ [m′] \ S′

i. Then Di finishes simulating Dec(i, ·) and returns its output. With
the help of Claim 18 and Claim 19, the same analysis in Lemma 16 shows that Di never
returns ⊥, and that the probability of returning xi is at least 1/2 + ε. Finally, the theorem
follows from Theorem 8. ◀
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