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Abstract

A fundamental question in computational complexity asks whether probabilistic polynomial-time
algorithms can be simulated deterministically with a small overhead in time (the BPP vs. P problem).
A corresponding question in the realm of interactive proofs asks whether Arthur-Merlin protocols
can be simulated nondeterministically with a small overhead in time (the AM vs. NP problem). Both
questions are intricately tied to lower bounds. Prominently, in both settings blackbox derandomization,
i.e., derandomization through pseudo-random generators, has been shown equivalent to lower bounds
for decision problems against circuits.

Recently, Chen and Tell (FOCS’21) established near-equivalences in the BPP setting between
whitebox derandomization and lower bounds for multi-bit functions against algorithms on almost-all
inputs. The key ingredient is a technique to translate hardness into targeted hitting sets in an
instance-wise fashion based on a layered arithmetization of the evaluation of a uniform circuit
computing the hard function f on the given instance.

In this paper we develop a corresponding technique for Arthur-Merlin protocols and establish
similar near-equivalences in the AM setting. As an example of our results in the hardness to
derandomization direction, consider a length-preserving function f computable by a nondeterministic
algorithm that runs in time na. We show that if every Arthur-Merlin protocol that runs in time
nc for c = O(log2 a) can only compute f correctly on finitely many inputs, then AM is in NP. Our
main technical contribution is the construction of suitable targeted hitting-set generators based on
probabilistically checkable proofs for nondeterministic computations.

As a byproduct of our constructions, we obtain the first result indicating that whitebox deran-
domization of AM may be equivalent to the existence of targeted hitting-set generators for AM, an
issue raised by Goldreich (LNCS, 2011). Byproducts in the average-case setting include the first
uniform hardness vs. randomness tradeoffs for AM, as well as an unconditional mild derandomization
result for AM.
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1 Introduction

The power of randomness constitutes a central theme in the theory of computing. In some
computational settings, randomness is indispensable for any algorithmic solution. In others,
it is provably needed for attaining efficiency. In yet others, the use of randomness leads to
algorithms that run faster than all known deterministic ones, but the question remains open:
Does an efficient deterministic algorithm exist?

In the context of decision problems, the key question is whether probabilistic polynomial-
time algorithms with bounded error (the class BPP) can be simulated deterministically
with a small overhead in time. In the realm of interactive verification protocols, the
corresponding question asks whether Arthur-Merlin protocols (the class AM) can be simulated
nondeterministically with a small overhead in time. In both settings, polynomial overhead is
conjectured to suffice but even subexponential overhead remains open. Both settings have
intricate connections to the quest for lower bounds, referred to as hardness vs. randomness
tradeoffs. In some cases equivalences are known. We first describe the situation for BPP and
then the one for AM, the focal point of this paper.

BPP setting. The first hardness vs. randomness tradeoffs were developed for blackbox
derandomization, where a pseudo-random generator (PRG) produces, in an input-oblivious
way, a small set of strings that “look random” to the process under consideration on every
input of a given length. A long line of research established tight equivalences between
blackbox derandomization of prBPP (the promise version of the class BPP) and nonuniform
lower bounds for exponential-time classes. At the low end of the derandomization spectrum,
subexponential-time blackbox derandomizations of prBPP are equivalent to super-polynomial
circuit lower bounds for EXP .= DTIME[2poly(n)] [2]. At the high end, polynomial-time
blackbox derandomizations of prBPP are equivalent to linear-exponential circuit lower bounds
for E .= DTIME[2O(n)] [15]. A smooth interpolation between the two extremes exists and
yields tight equivalences over the entire derandomization spectrum [27]. The results are also
robust in the sense that if the circuit lower bound holds at infinitely many input lengths
(equivalent to the separation EXP ̸⊆ P/poly at the low end), then the derandomization works
at infinitely many input lengths, and if the circuit lower bound holds at almost-all input
lengths, then the derandomization works at almost-all input lengths.

A uniformization of the underlying arguments led to equivalences between derandomiza-
tions that work on most inputs of a given length, and uniform lower bounds, i.e., lower bounds
against algorithms. This derandomization setting is often referred to as the average-case
setting.1 At the low end, there exist subexponential-time simulations of BPP that work on
all but a negligible fraction of the inputs of infinitely many lengths if and only if EXP ̸⊆ BPP
[16]. Unfortunately, the known construction does not scale well (see [26, 7, 6] for progress
toward an equivalence at the high end) and is not robust (a version for almost-all input
lengths remains open). On the other hand, the result holds for blackbox derandomization
as well as for general, “whitebox” derandomization, and implies an equivalence between
blackbox and whitebox derandomization in this setting: If derandomization is possible at all,
it can be done through pseudo-random generators.

This left open the setting of whitebox derandomizations that work for almost all inputs. For
prBPP, such derandomizations are equivalent to the construction of targeted pseudo-random
generators, which take an input x for the underlying randomized process, and produce a

1 The underlying distribution may be the uniform one or any other polynomial-time sampleable distribu-
tion.
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small set of strings that “look random” on that specific input x [9]. Recently, Chen and
Tell [8] raised the question of an equivalent lower bound condition, and proposed a candidate:
uniform lower bounds for multi-bit functions (rather than usual decision problems) that hold
on almost-all inputs in the following sense.

▶ Definition 1 (Hardness on almost-all inputs). A computational problem f is hard on almost-
all inputs against a class of algorithms if for every algorithm A in the class there is at most
a finite number of inputs on which A computes f correctly.

Chen and Tell started from the following observation about derandomization to hardness at
the high end of the spectrum.

▶ Proposition 2 (Chen and Tell [8]). If prBPP ⊆ P, then for every constant c there exists a
length-preserving function f that is computable in deterministic polynomial time and is hard
on almost-all inputs against prBPTIME[nc].

Remarkably, they also established a converse, albeit with an additional uniform-circuit depth
restriction on the hard function f . Their approach naturally yields a targeted hitting-set
generator (HSG), the counterpart of a pseudo-random generator for randomized decision
processes with one-sided error (the class RP and its promise version prRP).

▶ Theorem 3 (Chen and Tell [8]). Let f be a length-preserving function computable by
logspace-uniform circuits of polynomial size and depth nb for some constant b. If f is hard on
almost-all inputs against prBPTIME[nb+O(1)], where O(1) denotes some universal constant,
then prRP ⊆ P.

Note that the hardness hypothesis of Theorem 3 necessitates the depth nb of the uniform
circuits computing the function f to be significantly less than their size. Otherwise, there
exists even a deterministic algorithm that computes f in time nb+O(1).

The proof of Theorem 3 constructs a polynomial-time targeted hitting-set generator
for prRP, which generically implies a polynomial-time targeted pseudo-random generator
for prBPP, and thus that prBPP ⊆ P. Theorem 3 scales smoothly over the entire deran-
domization spectrum for prRP. Due to losses in the generic conversion from hitting sets
to derandomizations for two-sided error, the corresponding result for prBPP does not scale
that well. In particular, a low-end variant of Theorem 3 for prBPP remains open. That
said, the results are robust in a similar sense as above with respect to input lengths. In fact,
the approach inherently yields a much higher degree of robustness because it effectuates a
hardness vs. randomness tradeoff on an input-by-input basis, as we explain further in the
paragraph below about our techniques.

As a summary of the above discussion, Table 1 provides a qualitative overview of the
lower bound equivalences for each of the three types of derandomization considered. We
point out that, in the new setting of whitebox derandomizations that work on almost-all
inputs, an actual equivalence along the lines of Chen and Tell [8] remains open due to the
additional uniform-circuit depth requirement that is needed in the direction from hardness
to derandomization. We refer to such results as near-equivalences. Follow-up works managed
to obtain full-fledged equivalences in terms of other types of hardness, namely hardness of a
computational problem related to Levin-Kolmogorov complexity [19] and hardness in the
presence of efficiently-computable leakage [20].

AM setting. An equivalence corresponding to the first line of Table 1 is known throughout
the entire spectrum [17, 22, 24]. The role of EXP is now taken over by NEXP ∩ coNEXP,
and the circuits are nondeterministic (or single-valued nondeterministic, or deterministic

CCC 2023
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Table 1 Equivalences between various types of derandomization and lower bounds.

Derandomization Lower bound
blackbox, almost-all inputs non-uniform

most inputs uniform
whitebox, almost-all inputs uniform, almost-all inputs

with oracle access to an NP-complete problem like SAT). The simulations use hitting-set
generators for AM that are efficiently computable nondeterministically. Hitting-set generators
are the natural constructs in the setting of AM because every Arthur-Merlin protocol can
be efficiently transformed into an equivalent one with perfect completeness. As in the BPP
setting, the lower bound equivalences for blackbox derandomization of prAM scale smoothly
and are robust with respect to input lengths.

Regarding derandomizations that work on all but a negligible fraction of the inputs of
a given length (the second line in Table 1), no hardness vs. randomness tradeoffs for AM
were known prior to our work. What was known, are high-end results on derandomizations
where no efficient nondeterministic algorithm can locate inputs on which the simulation
is guaranteed to be incorrect [13, 25]. Indeed, the authors of [13] explicitly mention the
average-case setting and why their approach fails to yield average-case simulations that are
correct on a large fraction of the inputs. The setting corresponding to the third line in
Table 1 was not studied before.

Main results. As our main results, we obtain near-equivalences in this third setting, i.e.,
between whitebox derandomizations of Arthur-Merlin protocols that work on almost-all
inputs, on the one hand, and hardness on almost-all inputs against Arthur-Merlin protocols,
on the other hand.

We start from a similar observation in the derandomization to hardness direction as the
one Chen and Tell made for BPP at the high end of the spectrum.

▶ Proposition 4. If prAM ⊆ NP, then for every constant c there exists a length-preserving
function f that is computable in nondeterministic polynomial time with “a few” bits of advice,
and is hard on almost-all inputs against AMTIME[nc].

We refer to Section 5.1 for the quantification of “a few”.
Importantly, we are able to establish an almost-converse of Proposition 4. Under a slightly

stronger hardness assumption, we construct a targeted hitting-set generator for prAM that
is computable in nondeterministic polynomial time, yielding the following derandomization
result.

▶ Theorem 5. Let f be a length-preserving function computable in nondeterministic time
na for some constant a. If f is hard on almost-all inputs against prAMTIME[nc] for c =
O((log a)2), where O(·) hides some universal constant, then

prAM ⊆ NP.

Note that, in contrast to Theorem 3 in the BPP setting, Theorem 5 in the AM setting has no
uniform-circuit depth restriction on the function f . Together with Proposition 4, Theorem 5
represents a near-equivalence between prAM ⊆ NP and hardness on almost-all inputs of
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length-preserving2 functions against Arthur-Merlin protocols. Whereas in the BPP setting,
the remaining gap relates to uniform-circuit depth, in the AM setting the remaining gap
relates to the advice and the technical distinction between AM and prAM protocols. We
point out that the approaches in [19] and [20], which yield full-fledged equivalences in the
BPP setting, do not seem compatible with the AM setting [18].

Both Proposition 4 and Theorem 5 scale quite smoothly across the derandomization
spectrum. The generalization of Theorem 5 has the following form: Let f be a length-
preserving function computable in nondeterministic time T (n). If f is hard on almost-all
inputs against prAMTIME[t(n)], then prAM ⊆ NTIME[poly(T (n))]. Intuitively, we may think
of t(n) as only slightly smaller than T (n) for high-end results and much smaller for low-end
results. Pushing our techniques as far as possible toward the low end, we obtain the following
variant of Theorem 5.

▶ Theorem 6. Let f be a length-preserving function computable in nondeterministic expo-
nential time. If f is hard on almost-all inputs against prAMTIME[nb(log n)2 ] for all constants
b, then for some constant c

prAM ⊆ NTIME[2nc

]. (1)

As prAM ⊆ NEXP trivially holds, the conclusion (1) of Theorem 6 represents the very low
end of the derandomization spectrum. Note that a perfectly smooth scaling of Theorem 5
would only need a polynomial lower bound to arrive at the conclusion of Theorem 6, but the
hypothesis of Theorem 6 requires a lower bound of nω((log n)2). We remark that the same
discrepancy shows up in the current best-scaling uniform hardness vs. randomness tradeoffs
for AM [25]. We refer to Theorem 27 in Section 4 for the full scaling and to Table 2 in the
same section for other interesting instantiations.

Byproducts. Using our targeted hitting-set generators we are able to make progress on a
number of related topics. We mention three representative ones here; more are described in
the body of the paper.

First, there is the relationship between whitebox derandomization of prAM and the
existence of targeted hitting-set generators for prAM. In the paper [9] where Goldreich
introduced targeted pseudo-random generators for prBPP and showed that their existence
is equivalent to whitebox derandomization of prBPP, he asked about analogous results for
prAM. To the best of our knowledge, there have been no prior results along those lines. We
take a first step toward an equivalence in this setting.

▶ Theorem 7. If prAMTIME[2polylog(n)] ⊆ io-NEXP, then there exists a targeted hitting-set
generator for prAM that yields the simulation prAM ⊆ io-NTIME[2nc ]/nϵ for some constant
c and all ϵ > 0.

Second, we establish the first hardness vs. randomness tradeoffs for Arthur-Merlin
protocols in the average-case setting. Informally, under a high-end worst-case hardness
assumption, we obtain nondeterministic polynomial-time simulations of prAM that are
correct on all but a negligible fraction of the inputs.

2 The focus on length-preserving functions f in Proposition 4 and Theorem 5 is for concreteness. For
Proposition 4 to hold, the number of output bits needs to grow with n in an efficiently computable
fashion. For Theorem 5 any number of output bits suffices as long as there are not so many that the
function f becomes trivially hard for Arthur-Merlin protocols running in time nc.

CCC 2023
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▶ Theorem 8. If NTIME[2an]∩coNTIME[2an] ̸⊆ BPTIME[2(log(a+1))2n]SAT
|| for some constant

a > 0, then for every problem in prAM and all e > 0 there exists a simulation of the problem
in NP that is correct on all but a fraction 1/ne of the inputs of length n for infinitely many
lengths n.

The class BPTIME[t(n)]SAT
|| denotes probabilistic algorithms with bounded error that

run in time t(n) and can make parallel (i.e., non-adaptive) queries to an oracle for SAT.
Theorem 8 answers a question in [13], which presents results in the different but related
“pseudo” setting, where the simulation may err on many inputs of any given length, but no
polynomial-time nondeterministic algorithm can pinpoint an error at that length. We remark
that our technique also leads to identical results in the “pseudo” setting by replacing the
hardness assumption with hardness against AMTIME[t(n)].

The model prBPPSAT
|| was used as a proxy for prAM in the initial derandomization results

for Arthur-Merlin protocols [17] and is seemingly more powerful. However, derandomization
results for prAM typically translate into similar derandomization results for prBPPSAT

|| .
In particular, the conclusion prAM ⊆ NP of Theorem 5 implies that prBPPSAT

|| ⊆ PSAT
|| ,

and the conclusion prAM ⊆ NTIME[2nc ] for some constant c in Theorem 6 implies that
prBPPSAT

|| ⊆ DTIME[2nc ]SAT
|| for some constant c. In the case of Theorem 8, we argue that

the hardness assumption implies simulations of prBPPSAT
|| in PSAT

|| of the same strength as
the simulations of prAM in NP. This way, we obtain a hardness vs. randomness tradeoff in
which the hardness model and the model to-be-derandomized match, namely probabilistic
algorithms with bounded error and non-adaptive access to an oracle for SAT.

As our third byproduct, we present an unconditional mild derandomization result for
AM in the average-case setting. By a mild derandomization of AM we mean a nontrivial
simulation on Σ2-machines. Recall that AM ⊆ Π2P, and proving that AM ⊆ Σ2P is a
required step if we hope to show that AM ⊆ NP. It is known that AM can be simulated (at
infinitely many input lengths n) on Σ2-machines that run in subexponential time and take
nc bits of advice for some constant c [28]. It remains open whether AM can be simulated on
Σ2-machines in subexponential time with subpolynomial advice. Indeed, such a simulation
for prAM would imply lower bounds against nondeterministic circuits that are still open [1].
We show an unconditional subexponential-time and subpolynomial-advice Σ2-simulation for
prAM in the average-case setting.

▶ Theorem 9. For every problem in prAM and every constant ϵ > 0 there exists a simulation
of the problem in Σ2TIME[2nϵ ]/nϵ that is correct on all but a fraction 1/ne of the inputs of
length n, for all constants e and infinitely many lengths n.

In fact, we can extend Theorem 9 to prBPPSAT
|| in lieu of prAM.

Techniques. For our main result, we develop an instance-wise transformation of hardness
into targeted hitting sets tailored for AM. In the setting of BPP, Chen and Tell combine
the Nisan-Wigderson pseudo-random generator construction [23] with the doubly-efficient
proof systems of Goldwasser, Kalai, and Rothblum [12] (as simplified in [10]). The latter
allows them to capture the computation of a uniform circuit of size T and depth d for f on
a given input x by a downward self-reducible sequence of polynomials, which they use to
instantiate the NW generator. In case the derandomization of a one-sided error algorithm
on a given input x fails, a bootstrapping strategy à la [16], based on a learning property of
the NW generator, allows them to retrieve the value of f(x) in time O(d · polylog(T )). Thus,
provided the depth d is small compared to the size T , either the derandomization on input x

works or else the computation of f(x) can be sped up.



D. van Melkebeek and N. Mocelin Sdroievski 17:7

A similar approach based on [12] applies to the AM setting by replacing the NW construc-
tion with a hitting-set generator construction for AM that also has the learning property.
Like in the BPP setting, the construction is only of interest when the circuits for f have
relatively small depth. Moreover, the construction can only handle a limited amount of
nondeterminism in the computation for f , whereas the direction from derandomization to
hardness seems to require more.

In order to remedy both shortcomings, we develop a new method to extract hardness
from a nondeterministic computation on a given input x, based on probabilistically checkable
proofs rather than [12]. The soundness of our method presupposes some type of resilience of
the underlying regular pseudo-random generator. The required property was first identified
and used by Gutfreund, Shaltiel and Ta-Shma [13] for the Miltersen-Vinochandran generator
MV [22], and later by Shaltiel and Umans [25] for their recursive variant of the MV generator,
RMV. We combine RMV with the probabilistically checkable proofs of Ben-Sasson, Goldreich,
Harsha, Sudan, and Vadhan [4] to transform hardness into pseudo-randomness for AM in
an instance-wise fashion, without any uniform-circuit depth restriction or limitation on the
amount of nondeterminism.

We highlight one strong feature of all instance-wise approaches. If the hardness condition
holds on almost-all inputs, then the derandomization works on almost-all inputs. This is the
setting in which we stated the results of Chen and Tell and our main results. Similarly, if the
hardness condition holds on all inputs of a given length, then the derandomization works on
all inputs of that length. This is the robustness property that we alluded to earlier. However,
an instance-wise approach yields much more, including average-case derandomization results:
To obtain a nondeterministic simulation for some prAM problem that works with high
probability over any given distribution, it suffices to assume that every prAM protocol can
only compute the hard function f with low probability over that same distribution.

Our derandomization-to-hardness result follows by diagonalization, as does the one by
Chen and Tell. To obtain our byproducts, we combine our targeted hitting-set generator
with several other ingredients, including diagonalization, the “easy-witness” method and
traditional hardness vs. randomness tradeoffs. Our average-case derandomization results
require a modification of our targeted HSG so that it respects a stronger resilience property.
Along the way to our unconditional mild derandomization result, we establish an “easy
witness lemma” for Σ2 computations, which may be of independent interest.

Organization. In Section 2, we develop the ideas behind our results and relate them to
existing techniques. We start the formal treatment in Section 3 with definitions, notation,
and other preliminaries. In Section 4, we construct our targeted HSG and establish our
hardness-to-derandomization results that make use of it (Theorems 5 and 6). Section 5
presents the derandomization-to-hardness side of our near-equivalence, as well as a proof
of our byproduct on derandomization to targeted hitting-set generators (Theorem 7). In
Section 6, we derive our derandomization byproducts under uniform worst-case hardness
(the average-case simulation of Theorem 8 as well as a simulation that works on all inputs of
infinitely many lengths). Section 7 contains our unconditional mild derandomization result
for AM (Theorem 9).

2 Technical overview

In this section, we start with an overview of techniques used in prior hardness vs. randomness
tradeoffs for BPP and AM in a way that facilitates a high-level exposition of our main hardness-
to-derandomization result for AM. We also provide the intuition for our derandomization-to-
hardness result and for our byproducts.

CCC 2023
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2.1 Main results
We start with an overview of the techniques used for hardness-to-derandomization results
in the traditional setting for BPP (lines 1 and 2 in Table 1), followed by those in the new
setting (line 3 in Table 1). We then transition to AM, discuss the additional challenges, the
known techniques in the traditional setting and, finally, our results in the new setting.

Traditional setting for BPP. The key ingredient in all known hardness vs. randomness
tradeoffs is a pseudo-random generator construction G that takes a function h as an oracle and
produces a pseudo-random distribution Gh with the following property: Any statistical test
D that distinguishes Gh from uniform suffices as an oracle to efficiently learn h approximately
from a small number of queries. Thus, if Gh does not “look random” to an efficient randomized
process A on an input x, an approximation to h can be reconstructed efficiently when provided
with x and the values of h on a small number of points, as well as oracle access to the
distinguisher D(r) = A(x, r), where A(x, r) denotes the output of A on input x and random-
bit string r. If the function h can be self-corrected (e.g., by being random self-reducible or
by its truth table being a codeword in a locally-correctable error-correcting code), then the
exact function h can be reconstructed efficiently.

In order to obtain hardness vs. randomness tradeoffs from pseudo-random generator
constructions with the learning property, two questions need to be addressed:
1. How to obtain the distinguishers D?
2. How to obtain the answers to the learning queries?

The first question asks how to find inputs x on which the process A is not fooled by Gh.
In the non-uniform setting such an input can be included in the advice. In the uniform setting
for BPP, such inputs can be found by sampling x at random and testing for a difference in
behavior of D

.= A(x, ·) between the uniform and the pseudo-random distributions, which
can be done in prBPP.

Regarding the second question, in the non-uniform setting, the answers to the learning
queries can also be provided as advice. In the uniform setting, [16] employs a function h that
is not only random self-reducible but also downward self-reducible, and uses the downward
self-reduction to answer the learning queries for length n by evaluating the circuit that
resulted from the reconstruction for length n − 1. This bootstrapping strategy presupposes
that the reconstruction works at almost-all input lengths. This is why we only know how to
obtain simulations that are correct at infinitely many input lengths in the uniform setting
for BPP.

New setting for BPP. In the setting of line 3 in Table 1, the role of pseudo-random
generators is taken over by targeted pseudo-random generators. Whereas PRGs are oblivious
to x (beyond its length), targeted PRGs take x as an input and are only supposed to fool the
randomized process on that particular x. This approach obviates the problem of obtaining
the distinguisher D (question 1 above) as we can use D = A(x, ·) for the given x. Targeted
PRGs can be constructed from a PRG G by instantiating G with an oracle h = hx that
depends on x. This raises a third question in the application of a PRG for hardness vs.
randomness tradeoffs:
3. How to obtain the function hx from x?

Chen and Tell [8] use the doubly-efficient proof systems of Goldwasser, Kalai, and
Rothblum [12] (as simplified in [10]) to obtain hx from x and combine it with the Nisan-
Wigderson pseudo-random generator construction [23]. The GKR proof system takes a
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logspace-uniform family of circuits of size T (n) and depth d(n) computing a (multi-bit)
Boolean function f , and transforms the circuit for f on a given input x into a downward
self-reducible sequence of multi-variate low-degree polynomials ĝx,0 . . . , ĝx,d′(n) where d′(n) =
O(d(n) log (T (n))). The polynomial ĝx,0 is efficiently computable at any point given input x,
and the value of f(x) can be extracted efficiently from ĝx,d′(n). We refer to the sequence of
polynomials as a layered arithmetization of the circuit for f on input x.

Chen and Tell instantiate the NW generator with the Hadamard encoding of each of the
polynomials ĝx,i as the function h = hx,i, and follow a bootstrapping strategy similar to [16]
to construct ĝx,d′(n) from ĝx,0. For the strategy to work, the NW reconstructor needs to
succeed at every level. This is the reason why Chen and Tell only end up with a (targeted)
hitting-set generator rather than a pseudo-random generator. The time required by the
bootstrapping process is proportional to the number of layers and thus to the depth d(n) of
the circuit computing f . By setting the parameters of the arithmetization appropriately, the
dependency on the size T (n) is only polylogarithmic. This is what enables the reconstruction
to compute f(x) very quickly as long as the depth d(n) is not too large.

Liu and Pass [20] also use the NW generator but obtain hx as an encoding of the value
of f(x) itself, where f is an almost-all inputs leakage-resilient hard function (a function
that remains hard even if some efficiently-computable information about f(x) is leaked to
an attacker). The answers to the learning queries are provided as part of the information
about f(x) that is leaked, which allows them to reconstruct f(x) directly and efficiently.
This approach leads to a (targeted) pseudo-random generator since it only involves a single
instantiation of the NW generator. Reversing the hardness-to-derandomization direction
yields an equivalence between derandomization of prBPP and the existence of almost-all
inputs leakage-resilient hard functions.

Transition to AM. A number of changes are in order in terms of the requirements for
similar results for AM. First, we need to handle co-nondeterministic distinguisher circuits
D instead of deterministic ones. Co-nondeterministic circuits suffice because Arthur-Merlin
protocols can be assumed to have perfect completeness. The only requirement for a correct
derandomization is in the case of negative instances, in which case we want to hit the set of
Arthur’s random-bit strings for which Merlin cannot produce a witness. By the soundness
property of the Arthur-Merlin protocol, the set contains at least half of the random-bit
strings.

Second, we need to accommodate nondeterministic algorithms computing the function f .
This is because the direction from derandomization to hardness seems to need them (see
Proposition 4). On each input x, such an algorithm needs to have at least one successful
computation path, and on every successful computation path, the output should equal f(x).

Third, the algorithm for the targeted hitting-set generator can also be nondeterministic,
which is natural when the algorithm for f is nondeterministic. In the case of a generator,
the nondeterministic algorithm should still have at least one successful computation path on
every input, but it is fine to produce different outputs on different successful computation
paths. For any given x and D, on every successful computation path, the output should be a
hitting set for D. This allows us to nondeterministically simulate a promise Arthur-Merlin
protocol on input x as follows: Guess a computation path of the targeted HSG; if it succeeds,
say with output S, guess a computation path for the Arthur-Merlin protocol on input x

using each of the elements in S as the random-bit string, and accept if all of them accept;
otherwise, reject.
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Finally, we need to be able to run the reconstruction procedure as a (promise) Arthur-
Merlin protocol. This is because we want the model in which we can compute f(x) in case
of a failed derandomization on input x, to match the class we are trying to derandomize.
There are two requirements for the protocol to compute f(x) on input x:

Completeness demands that there exists a strategy for Merlin that leads Arthur to succeed
with output f(x) with high probability.
Soundness requires that, no matter what strategy Merlin uses, the probability for Arthur
to succeed with an output other than f(x) is small.

The reconstructor naturally needs the power of nondeterminism in order to simulate the
distinguisher D. Making sure the reconstructor is sound and needs no more power than
prAM is the challenge.

Traditional setting for AM. In reference to the first two questions above, the answer to
the one about obtaining a distinguisher D is similar as for BPP, except that in the uniform
setting we do not know how to check in prAM for a difference in behavior of D

.= A(x, ·)
between the uniform and the pseudo-random distributions. This is why average-case results
remain open for AM. Instead, one assumes that some nondeterministic algorithm produces,
on every successful computation path on input 1n, an input x of length n on which the
difference in behavior is guaranteed.

As for obtaining answers to the learning queries in the uniform setting for AM, we can
make use of the nondeterminism allowed during the reconstruction and ask Merlin to provide
the answers to the learning queries. However, we need to guard against a cheating Merlin.
A strategy proposed by Gutfreund, Shaltiel and Ta-Shma in [13] consists of employing a
function h that has a length-preserving instance checker. After Merlin has provided the
supposed answers to the learning queries, to compute h(z) for a given input z, we run the
instance checker on input z and answer the queries y of the instance checker by running the
evaluator part of the reconstruction process on input y. All the runs of the evaluator can be
executed in parallel, ensuring a bounded number of rounds overall, which can be reduced to
two in the standard way at the cost of a polynomial blowup in the running time [3].

To guarantee soundness, the reconstruction process needs to have an additional resilience
property, namely that it remains partial single-valued even when the learning queries are
answered incorrectly. Two hitting-set generators tailored for AM are known to have the
property: the Miltersen-Vinodchandran generator MV [22], which is geared toward the high
end, and a recursive version, RMV, developed by Shaltiel and Umans [25] to cover a broader
range. MV is used for the high end in [13], and RMV for the rest of the spectrum in [25].

New setting for AM. We build a targeted hitting-set generator for AM based on the RMV
hitting-set generator. To obtain hx from x, we make use of Probabilistically Checkable Proofs
(PCPs) for the nondeterministic computation of the string f(x) from x. Let V denote the
verifier for such a PCP system that uses O(log(T (n)) random bits and polylog(T (n)) queries
for nondeterministic computations that run in time T (n). On input x, our targeted HSG
guesses the value of f(x) and a candidate PCP witness yi for the i-th bit of f(x) for each i,
and runs all the checks of the verifier V on yi (by cycling through all random-bit strings for
V ). If all checks pass, our targeted HSG instantiates RMV with yi for each i as (the truth
table of) the oracle hx, and outputs the union of all the instantiations as the hitting set,
provided those nondeterministic computations all accept; otherwise, the targeted HSG fails.

For the reconstruction of the i-th bit of f(x), Arthur generates the learning queries of the
RMV reconstructor for the oracle yi, and Merlin provides the purported answers as well as
the value of the i-th bit of f(x). Arthur then runs some random checks of the verifier V on
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input x, answering the verifier queries by executing the evaluator of the RMV reconstructor.
All the executions of the evaluator can be performed in parallel, ensuring a bounded number
of rounds overall. The resilient partial single-valuedness property of the RMV reconstructor
guarantees that the verifier queries are all consistent with some candidate proof ỹi. The
completeness and soundness of the PCP then imply the completeness and soundness of the
reconstruction process for our targeted HSG. As V makes few queries and is very efficient,
the running time of the process is dominated by the running time of the RMV reconstructor.

Abstracting out the details of our construction and how the distinguisher D is obtained,
the result can be captured in two procedures: a nondeterministic one, H, which has at
least one successful computation path for every input and plays the role of a targeted
hitting-set generator, and a promise Arthur-Merlin protocol, R, which plays the role of a
reconstructor for the targeted hitting-set generator. H and R have access to the input x and
a co-nondeterministic circuit D, and have the following property.3

▶ Property 10. For every x ∈ {0, 1}∗ and for every co-nondeterministic circuit D that
accepts at least half of its inputs, at least one of the following holds:
1. H(x, D) outputs a hitting set for D on every successful computation path.
2. R(x, D) computes f(x) in a complete and sound fashion.

Theorem 5 follows by considering nondeterministic running time T (n) = na and co-
nondeterministic circuits D of size nc for some c > 1. In this regime, H runs in time
nO(a+c) and R in time nO(c(log a)2). Under the hypothesis of Theorem 5, the second item in
Property 10 cannot happen except for finitely many x of length n, so the first item needs to
hold. For any constant c′ < c, this yields a polynomial-time targeted hitting-set generator
for prAMTIME[nc′ ], which can be used for all of prAM by padding. Theorem 6 follows along
the same lines; the running time is dictated by the RMV reconstructor.

We point out that the approach of Chen and Tell can be ported to the AM setting by
replacing NW with a generator for AM that has the learning property and a reconstructor
running in prAM. The nondeterminism allows us to run the bootstrapping process in parallel,
so the number of rounds of Arthur and Merlin remains bounded, but the overall running time
remains proportional to the depth of the circuits for f . This means that, like in the setting of
BPP, this approach only yields meaningful results when the depth is small compared to the
size. Nondeterministic circuits for f can be accommodated in this approach by treating them
as deterministic circuits with nondeterministic guess bits as additional inputs. However, this
limits the amount of nondeterminism that can be handled. Our approach based on PCPs
remedies the limitations on depth as well as nondeterminism.

Derandomization to hardness. Our derandomization-to-hardness result is proven by diag-
onalization. Under the prAM ⊆ NP assumption, every fixed-polynomial time AM protocol
computing a length-preserving function can be simulated in nondeterministic fixed-polynomial
time. We would like to diagonalize against these simulating nondeterministic machines to
construct our hard function. Due to the lack of an almost-everywhere hierarchy result for
NTIME, we do not know how to do this efficiently for generic nondeterministic machines.
This is where the advice comes to rescue: We use advice to indicate which nondeterministic

3 The dependency of H on D is only through the number of input bits of D. For R, blackbox access to D
suffices (in addition to the input x). However, we may as well give both H and R full access to the
input x and the circuit D. In the intended application, the co-nondeterministic circuit D is obtained by
hardwiring the input x into the Arthur-Merlin protocol being derandomized, but this is not essential for
the construction.
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machines are single-valued at a particular input length. We only need to consider single-valued
machines, and diagonalizing against them is easy for a nondeterministic machine with a little
more running time, but figuring out which nondeterministic machines are single-valued at a
given input length is hard.

2.2 Byproducts
In this section, we develop the intuition for our byproducts.

Targeted hitting-set generators from derandomization (Theorem 7). To obtain a targeted
HSG from derandomization of prAM, we employ our targeted hitting-set generator in a win-win
argument. Either a complexity class separation holds, in which case a result of [14] guarantees
the existence of a regular (oblivious) hitting-set generator that yields the derandomization
result, or we get a strong complexity class collapse. The collapse allows us to bypass some of
the difficulties in diagonalizing against prAM protocols on almost-all inputs (one of the reasons
we require advice in the derandomization-to-hardness direction of our near-equivalence), thus
allowing us to do so efficiently and uniformly, and then instantiate our targeted hitting-set
generator construction.

Average-case derandomization (Theorem 8). Our average-case derandomization results
under worst-case hardness assumptions also make use of our targeted hitting-set generator
construction, but in a different way. They do not exploit the potential of the hitting sets
to depend on the input x. In fact, they set f(x) to the truth table of the worst-case hard
language L from the hypothesis at an input length determined by |x|. Instead, they hinge on
the strong resilient soundness properties of the reconstructor.

As we are considering the average-case derandomization setting, the problem of obtaining
the distinguisher D for the reconstruction resurfaces. Our approach is similar to the one for the
traditional average-case derandomization setting for BPP. If the simulation fails for protocol A

with noticeable probability over a random input, then we can sample multiple inputs x1, x2, . . .

and construct a list of “candidate distinguishers” Dx1
.= A(x1, ·), Dx2

.= A(x2, ·), . . . such
that the list contains, with high probability, at least one “true” distinguisher. Whereas in
the BPP setting one can test each candidate and discard, with high probability, the ones
that are not distinguishers, we do not know how to do that in the AM setting. Instead, we
employ a different approach: We run the reconstructor with each distinguisher with the hope
that every execution either fails or outputs the correct value.

This approach necessitates a stronger form of resilience than the one provided by the RMV
generator: That its reconstruction is sound when given as input any co-nondeterministic
circuit D, not just those that accept at least half of their inputs (as in Property 10). We
don’t know how to guarantee this with our prAM reconstruction, but we are able to do so in
prBPPSAT

|| by approximating the fraction of inputs that D accepts and outright failing if the
fraction is too low.

We point out that earlier works [13, 25] also manage to guarantee soundness of the
reconstructor for co-nondeterministic circuits D that accept at least half of their inputs,
based on the resilient partial single-valuedness of the reconstructor for MV or RMV. They
do so by running an instance checker, which limits the hard function f to classes for which
instance checkers are known to exist, such as complete problems for E and EXP. Instead, we
achieve soundness of the reconstructor based on the soundness of a PCP. As PCPs exist for
all nondeterministic computations, this makes our approach more suitable in this setting. In
particular, we do not know how to obtain Theorem 8 along the lines of [13, 25].
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Unconditional mild derandomization (Theorem 9). Our unconditional mild derandom-
ization result relies on a similar win-win argument as in the proof of Theorem 7: Either
some hardness assumption/class separation holds, in which case we get derandomization
right away, or we get a complexity collapse that we use to construct, by diagonalization, a
hard function f that has the efficiency requirements we need to obtain the derandomization
result using our targeted hitting-set generator.

Since our result is unconditional, we cannot use derandomization assumptions to make
diagonalizing against prAM protocols easier. Instead, we rely on the inclusion prAM ⊆ Π2P,
which allows for diagonalizing against such protocols in Σ2TIME[nω(1)]. Our generator,
however, requires the hard function to be computable by efficient nondeterministic algorithms.
To help bridge the gap, we prove an “easy witness lemma” for Σ2 computations that
guarantees a strong collapse in case the aforementioned hardness assumption does not hold.
The collapse then allows us to instantiate our targeted hitting-set generator construction
with the diagonalizing function.

3 Preliminaries

We assume familiarity with standard complexity classes such as NP, AM, and prAM. We
often consider inputs and outputs from non-Boolean domains, such as Fr for a field F and
r ∈ N. In such cases, we implicitly assume an efficient binary encoding for the elements of
these domains. Finally, as is customary, all time bounds considered are implicitly assumed
to be time-constructible.

3.1 Nondeterministic, co-nondeterministic and single-valued
computation

We make use of nondeterministic, co-nondeterministic, and single-valued circuits in our
results. A nondeterministic circuit is a Boolean circuit C with two sets of inputs, x and y.
We say that C accepts x if there exists some y such that C(x, y) = 1, and that C rejects x

otherwise. A co-nondeterministic circuit has a symmetric acceptance criterion: It accepts x if
for all y it holds that C(x, y) = 1, and rejects x otherwise. A partial single-valued circuit also
has two inputs, x and y; on input (x, y) it either fails (which we represent by C(x, y) = ⊥) or
succeeds and outputs a bit b = C(x, y). Moreover, we require that for all y, y′ such that both
C(x, y) and C(x, y′) succeed, C(x, y) = C(x, y′), i.e., the circuit computes a partial function
on its first input. If, furthermore, for all x there exists a y such that C(x, y) succeeds, we
call the circuit total single-valued or just single-valued.

We are also interested in nondeterministic algorithms that compute multi-bit functions
f : {0, 1}∗ → {0, 1}∗. Let T (n) be a time bound. We say that f ∈ NTIME[T (n)] if there
exists a nondeterministic algorithm N running in time O(T (n)) such that for all x ∈ {0, 1}∗,
there exists at least one computation path on which N(x) succeeds, and N(x) outputs f(x)
on all successful computation paths. Note, in particular, that if f ∈ NTIME[T (n)], then the
language Lf = {(x, i, b) | f(x)i = b} is in NTIME[T (n)].

3.2 Arthur-Merlin protocols
A promise Arthur-Merlin protocol P is a computational process in which Arthur and Merlin
receive a common input x and operate as follows in alternate rounds for a bounded number
of rounds. Arthur samples a random string and sends it to Merlin. Merlin sends a string that
depends on the input x and all prior communication from Arthur; the underlying function
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is referred to as Merlin’s strategy, which is computationally unrestricted. At the end of
the process, a deterministic computation on the input x and all communication determines
acceptance. The running time of the process is the running time of the final deterministic
computation.

Any promise Arthur-Merlin protocol can be transformed into an equivalent one with just
two rounds and Arthur going first, at the cost of a polynomial blow-up in running time,
where the degree of the polynomial depends on the number of rounds [3]. As such, we often
use the notation prAM to refer to promise Arthur-Merlin protocols with any bounded number
of rounds, even though, strictly speaking, the notation refers to a two-round protocol with
Arthur going first.

Promise Arthur-Merlin protocols can be simulated by probabilistic algorithms with oracle
access to SAT: Instead of interacting with Merlin, Arthur asks the SAT oracle whether there
exists a response of Merlin that would lead to acceptance. Similarly, PprAM

|| can be simulated
in BPPSAT

|| , the class of problems decidable by probabilistic polynomial-time algorithms with
bounded error and non-adaptive oracle access to SAT. In fact, a converse also holds and
helps to extend some of our results for prAM to the class prBPPSAT

|| .

▶ Lemma 11 ([5]). prBPPSAT
|| ⊆ PprAM

|| .

In Lemma 11, the deterministic machines with oracle access to prAM on the right-hand
side are guaranteed to work correctly irrespective of how the queries outside of the promise
are answered, even if those queries are answered inconsistently, i.e., different answers may be
given when the same query is made multiple times.

Arthur-Merlin protocols that output values. A promise Arthur-Merlin protocol P may
also output a value. In this case, at the end of the interaction, the deterministic computation
determines success/failure and, in case of success, an output value. We denote this value by
P (x, M), which is a random variable defined relative to a strategy M for Merlin. Similar to
the setting of circuits, we indicate failure by setting P (x, M) = ⊥, a symbol disjoint from
the set of intended output values. Our choice of using success and failure for protocols that
output values is to avoid confusion with the decisional notions of acceptance and rejection.

▶ Definition 12 (Arthur-Merlin protocol with output). Let P be a promise Arthur-Merlin
protocol. We say that on a given input x ∈ {0, 1}∗:

P outputs v with completeness c if there exists a Merlin strategy such that the probability
that P succeeds and outputs v is at least c. In symbols: (∃M) Pr[P (x, M) = v] ≥ c.
P outputs v with soundness s if, no matter what strategy Merlin uses, the probability that
P succeeds and outputs a value other than v is at most s. In symbols: (∀M) Pr[P (x, M) ̸∈
{v, ⊥}] ≤ s.
P has partial single-valuedness s if there exists a value v such that P outputs v with
soundness s. In symbols: (∃v)(∀M) Pr[P (x, M) ̸∈ {v, ⊥}] ≤ s.

Note that if P on input x outputs v with completeness c and has partial single-valuedness s,
then it outputs v with soundness s, provided s > 1 − c. If we omit c and s, then they take
their default values of c = 1 (perfect completeness) and s = 1/3.

For a given function f : X → {0, 1}∗ where X ⊆ {0, 1}∗, we say that P computes f

with completeness c(n) and soundness s(n) if on every input x ∈ X, P outputs f(x) with
completeness c(|x|) and soundness s(|x|). Note that P may behave arbitrarily on inputs
that are not in X. In contrast, an AM protocol computing f still computes some value in a
complete and sound fashion on inputs x /∈ X.



D. van Melkebeek and N. Mocelin Sdroievski 17:15

3.3 Learn-and-evaluate and commit-and-evaluate protocols
The reconstruction processes for hardness-based hitting-set generators for prAM are typically
special types of promise Arthur-Merlin protocols. We distinguish between two types.

A learn-and-evaluate protocol is composed of two phases: A learning phase followed by
an evaluation phase. In the learning phase, a probabilistic algorithm makes queries to a
function f and produces an output (which we call a sketch). The evaluation phase then
consists of a promise Arthur-Merlin protocol that computes f(x) correctly on every input x

when given the sketch as additional input.

▶ Definition 13 (Learn-and-evaluate protocol). A learn-and-evaluate protocol P consists
of a probabilistic oracle algorithm Alearn and a promise Arthur-Merlin protocol Peval. Let
f : X → {0, 1}∗ where X ⊆ {0, 1}∗. We say that P computes f with error e(n) for
completeness c(n) and soundness s(n) if on every input x ∈ X of length n the following hold:
The probability over the randomness of Alearn that Peval with input x and additional input
π = Af

learn(1n) outputs f(x) with completeness c(n) and soundness s(n) is at least 1 − e(n).

The learning phase of a learn-and-evaluate protocol can be simulated by an Arthur-Merlin
protocol with output, where Merlin guesses the queries that Alearn makes on a given random-
bit string and answers them in parallel, and the output is a sketch of f . In this view, a
learn-and-evaluate protocol becomes a pair of promise Arthur-Merlin protocols: one for the
learning phase, and one for the evaluation phase. Note that the quality of the evaluation
phase is only guaranteed when the learning queries are answered correctly, i.e., when Merlin
is honest in the learning phase.

A commit-and-evaluate protocol [25] has the syntactic structure of a pair of promise
Arthur-Merlin protocols without the restriction that Merlin in the first phase only answers
queries about f . Semantically, a commit-and-evaluate protocol is more constrained than a
learn-and-evaluate protocol. The first protocol of the pair now represents a commitment phase
instead of a learning phase. In this phase, Arthur and Merlin interact and produce an output
π, which we call a commitment. Similar to a learn-and-evaluate protocol, the commitment
is given as input to the protocol of the evaluation phase. Whereas in a learn-and-evaluate
protocol there are no guarantees whatsoever when Merlin is dishonest in the first phase,
in a commit-and-evaluate protocol there is a strong guarantee: With high probability over
Arthur’s randomness in the commitment phase, the evaluation protocol is partial single-
valued, meaning that Merlin cannot make Arthur output different values for the same input
x with high probability. The guarantee is referred to as resilient partial single-valuedness.

▶ Definition 14 (Commit-and-evaluate protocol). A commit-and-evaluate protocol is a pair
of promise Arthur-Merlin protocols P = (Pcommit, Peval). P has resilience r(n) for partial
single-valuedness s(n) on domain X ⊆ {0, 1}∗ if for all n, no matter what strategy Merlin
uses during the commit phase, the probability that in the commitment phase, on input 1n,
Pcommit succeeds and outputs a commitment π that fails to have the following property (2) is
at most r(n):

For every x of length n in X, Peval(x, π) has partial single-valuedness s(n). (2)

In symbols: (∀n)(∀Mcommit)

Pr[(∀x ∈ X ∩ {0, 1}n)Peval(x, π) has partial single-valuedness s(n)] ≥ 1 − r(n),

where π = Pcommit(1n, Mcommit).
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A commit-and-evaluate protocol naturally induces a promise Arthur-Merlin protocol: On
input x, run Pcommit on input 1|x|. If this process succeeds, let π denote its output and run
Peval on input (x, π).

3.4 Hitting-set generators and targeted hitting-set generators
In the setting of prBPP, Goldreich [11] discusses two equivalent definitions of targeted pseudo-
random generators: one for deterministic linear-time machines that take both the input
x and the random-bit string r as inputs, and one based on circuits D that only take the
random-bit string r as input. The circuit D can be obtained by first constructing a circuit C

that simulates the machine on inputs of length |x|, and then hardwiring the input x. The
difference between a regular and targeted pseudo-random generator lies in the dependency
of the output on x (in the first definition) or the circuit D (in the second definition): For
a regular PRG the output can only depend on |x| or the size of D, whereas for a targeted
PRG it can depend on x and D proper.

In the setting of prAM, without loss of generality, we can assume that promise Arthur-
Merlin protocols have perfect completeness. Therefore, we only need to consider targeted
hitting-set generators, the variant of targeted PRGs for one-sided error. Similar to the BPP
setting, there are two equivalent definitions of targeted HSGs for prAM. We propose a third,
hybrid, and also equivalent definition, where the targeted generator is given access to both
x and the circuit C. For prAM with perfect completeness the circuit C (as well as D) is
co-nondeterministic. For regular HSGs, the output can only depend on the size of C. Our
definition highlights that, in principle, there are two types of obliviousness that regular
PRGs/HSGs exhibit: With respect to the input (where only dependencies on its size are
allowed) and with respect to the algorithm being derandomized (where only dependencies on
its running time are allowed). Since the algorithm description can be incorporated as part of
the input, the dependency on C can be avoided. This is essentially why all three definitions
are equivalent. In our targeted hitting-set generator constructions the dependency will only
be through x and the size of C.

We start by defining hitting sets for co-nondeterministic circuits.

▶ Definition 15 (Hitting set for co-nondeterministic circuits). Let D be a co-nondeterministic
circuit of size m. A set S of strings of length m is a hitting set for D if there exists at least
one z ∈ S such that D(z) = 1 (where D might take a prefix of z as input if necessary). In
that case, we say that S hits D.

The notion allows us to define targeted hitting-set generators for prAM as follows, where
we assume, without loss of generality, perfect completeness and soundness 1/2. Regular
hitting-set generators are viewed as a special case.

▶ Definition 16 (Regular and targeted hitting-set generator for prAM). A targeted hitting-set
generator for prAM is a nondeterministic algorithm that, on input x ∈ {0, 1}∗ and a co-
nondeterministic circuit C, has at least one successful computation path, and if Prr[C(x, r) =
1] ≥ 1/2, outputs a hitting set for D(r) .= C(x, r) on every successful computation path. A
regular hitting-set generator for prAM is a targeted hitting-set generator where the output
only depends on the size of C.

For completeness, we state the standard way of obtaining the co-nondeterministic circuits
C and D capturing promise Arthur-Merlin protocols.
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▶ Proposition 17. There exists an algorithm that, on input 1n and the description of a
(Boolean output, two-round) prAMTIME[t(n)] protocol P , runs in time O(t(n)2) and outputs a
co-nondeterministic circuit C of size m = O(t(n)2) that simulates and negates the computation
of P for input length n, i.e., the input of C is comprised of x ∈ {0, 1}n and Arthur’s random-
bit string r, and it co-nondeterministically verifies that there is no Merlin message that would
lead to acceptance. In particular:

If P with input x accepts all random inputs, then Dx(r) .= C(x, r) rejects every input.
If P with input x rejects at least a fraction 1/2 of its random-bit strings, then Dx(r) .=
C(x, r) accepts at least a fraction 1/2 of its inputs.

3.5 PCPs and low-degree extensions
We use the following construction that follows from the PCP of proximity of Ben-Sasson,
Goldreich, Harsha, Sudan, and Vadhan [4].

▶ Lemma 18 ([4]). Let T be a time bound. For every s = s(n) : N → (0, 1] and every language
L ∈ NTIME[T (n)] there exists a PCP verifier V with perfect completeness, soundness s,
randomness complexity log (1/s) · (log T (n) + O(log log T (n))), non-adaptive query complexity
log (1/s) · polylog(T (n)), and verification time log (1/s) · poly(n, log T (n)). More precisely,

V has oracle access to a proof of length T (n) · polylog(T (n)), uses log (1/s) · (log T (n) +
O(log log T (n))) random bits in any execution, makes log (1/s)·polylog(T (n)) non-adaptive
queries to the proof and runs in time log (1/s) · poly(n, log T (n)).
If x ∈ L, |x| = n, then there exists y of length T (n) · polylog(T (n)) such that Pr[V y(x) =
1] = 1.
If x /∈ L, |x| = n, then for all y′ of length T (n) · polylog(T (n)), Pr[V y′(x) = 1] ≤ s.

We also need standard low-degree extensions. Let g : {0, 1}ℓ → {0, 1} be a function,
F = Fp be the field with p elements (for prime p) and h and r integers such that hr ≥ 2ℓ. The
low-degree extension of g with respect to p, h, r is the unique r-variate polynomial ĝ : Fr → F
with degree h − 1 in each variable, for which ĝ(v⃗) = g(y) for all v⃗ ∈ [h]r representing a
y ∈ {0, 1}ℓ and ĝ(v⃗) = 0 for the v⃗ ∈ [h]r that do not represent a string y. The total degree
of ĝ is ∆ = hr and ĝ is computable in time poly(hr, log p, r) given oracle access to g.

3.6 Average-case simulation
The instance-wise nature of our technique allows us to conclude derandomization on average
with respect to arbitrary distributions by assuming hardness with respect to that same
distribution. The notion of average-case simulation that we use is the one where the
simulation works correctly with high probability over inputs drawn from the distribution.
We typically want good simulations to exist with respect to every efficiently sampleable
distribution (where the simulation may depend on the distribution). This is usually referred
to as the “heuristic” setting.

▶ Definition 19 (Heuristic). Let Π be a promise-problem, µ : N → [0, 1), C a complexity class
and x = {xn}n∈N an ensemble of distributions where xn is supported on {0, 1}n and such
that for all n, every x in the support of xn satisfies the promise of Π. We write

Π ∈ Heurx,µC
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if there exists a language L ∈ C such that for all sufficiently large n, Prx∈xn [L(x) ̸= Π(x)] ≤
µ(n). We write

Π ∈ HeurµC

if the above property holds for every polynomial-time sampleable ensemble of distributions
with the above support restriction.

The notions of average-case simulation extend to the infinitely-often setting in the
natural way.

4 Targeted hitting-set generator construction

In this section, we develop our targeted HSG construction, which leads to our instance-wise
hardness vs. randomness tradeoffs for Arthur-Merlin protocols.

Our construction builds on the RMV generator due to Shaltiel and Umans [25], which is
a recursive variant of the MV generator that shares the desired resilience property with MV.
We start with the definition of the RMV generator in Section 4.1 and state its reconstruction
properties in terms of a commit-and-evaluate protocol. We present our construction and
analysis in Section 4.2 and the derandomization consequences in Section 4.3.

4.1 Recursive Miltersen-Vinodchandran generator
We need a couple of ingredients to describe how the RMV generator works. The first one
is a local extractor for the Reed-Müller code. A local extractor is a randomness extractor
that only needs to know a few bits of the sample. In the following definition the sample is
provided as an oracle, and the structured domain from which the sample is drawn is given as
an additional parameter.

▶ Definition 20 (Local extractor). Let S be a set. A (k, ϵ) local S-extractor is an oracle
function E : {0, 1}s → {0, 1}t that is computable in time poly(s, t) and has the following
property: For every random variable X distributed on S with min-entropy at least k, EX(Us)
is ϵ-close to uniform.

We make use of the following local extractor for Reed-Müller codes.

▶ Lemma 21 (Implicit in [24]). Fix parameters r < ∆, and let S be the set of polynomials
ĝ : Fr → F having total degree at most ∆, where F = Fp denotes the field with p elements.
There is a (k, 1/k) local S-extractor for k = ∆5 with seed length s = O(r log p) and output
length t = ∆.

Note that for every subcube with sides of size ∆
r and choice of values at its points, there

exists an interpolating polynomial ĝ with the parameters of Lemma 21. It takes (∆/r)r log p

bits to describe these polynomials, but the local extractor only accesses poly(∆, r, log p) bits.
When instantiated with a polynomial ĝ : Fr → F, the RMV generator groups variables

and operates over axis-parallel (combinatorial) lines over the grouped variables.4 Shaltiel
and Umans call these MV lines, which we define next.

4 In the original construction [25], the RMV generator is defined with the number d of groups of variables
as an additional parameter. Eventually, d is set to 2, which is the value we use for our results as well.
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▶ Definition 22 (MV line). Let F = Fp for a prime p. Given a function ĝ : Fr → F where r

is an even integer, we define B = Fr/2 and identify ĝ with a function from B2 to F. Given
a point a⃗ = (⃗a1, a⃗2) ∈ B2 and i ∈ {1, 2}, we define the line passing through a⃗ in direction i

to be the function L : B → B2 given by L(z⃗) = (z⃗, a⃗2) if i = 1 and L(z⃗) = (⃗a1, z⃗) if i = 2.
This is an axis-parallel, combinatorial line, and we call it an MV line. Given a function
ĝ : Fr → F and an MV line L we define the function ĝL : B → F by ĝL(z) = ĝ(L(z)).

The input for the RMV construction is a multivariate polynomial ĝ : Fr → F of total
degree at most ∆, and the output is a set of m-bit strings for m ≤ ∆1/100. The construction
is recursive and requires that r is a power of 2 and that p is a prime larger than ∆100

(say, between ∆100 and 2∆100). Let E be the (k, 1/k)-local extractor from Lemma 21 for
polynomials of degree ∆ in (r/2) variables over F. Remember that k = ∆5 and that the
extractor uses seed length O(r log p) and output length t = ∆ ≥ m. By using only a prefix
of the output, we have it output exactly m bits.

The operation of the RMV generator on input ĝ is as follows: Set B = Fr/2. For every
a⃗ ∈ B2 and i ∈ {1, 2}, let L : B → B2 be the MV line passing through a⃗ in direction i.
Compute EĝL(y) for all seeds y. For r = 2, output the set of all strings of length m obtained
over all a⃗ ∈ B2, MV lines L through a⃗, and seeds y. For r > 2, output the union of this
set and the sets output by the recursive calls RMV(ĝL) for each of the aforementioned MV
line L.

The construction runs in time pO(r) and therefore outputs at most that many strings. If
the set output by the procedure fails as a hitting set for a co-nondeterministic circuit D of
size m, then there exists an efficient commit-and-evaluate protocol P for ĝ with additional
input D. This is the main technical result of [25], which we present in a format that is
suitable for obtaining our results.5

▶ Lemma 23 ([25]). Let ∆, m, r, p be such that m ≤ ∆1/100, r is a power of 2 and p is a prime
between ∆100 and 2∆100. Let also F = Fp and s ∈ (0, 1]. There exists a commit-and-evaluate
protocol P = (Pcommit, Peval) with additional input D, where D is a co-nondeterministic
circuit of size m, such that the following holds for any polynomial ĝ : Fr → F of total degree
at most ∆.

Completeness: If D rejects every element output by RMV(ĝ) then there exists a strategy
Mcommit for Merlin in the commit phase such that Peval on input (z, D, π) outputs ĝ(z)
with completeness 1 for every z ∈ Fr, where π

.= Pcommit(1n, Mcommit).
Resilience: If D accepts at least a fraction 1/2 of its inputs then P has resilience s for
partial single-valuedness s on domain Fr.
Efficiency: Both Pcommit and Peval have two rounds. Pcommit runs in time log (1/s) ·
poly(∆, r) and Peval runs in time (log (1/s))2 · ∆O((log r)2).

P only needs blackbox access to the deterministic predicate that underlies D.

4.2 Targeted generator and reconstruction
In this section, we present our targeted HSG construction, which works as follows: On input
x and a co-nondeterministic circuit D of size m, it guesses a PCP (as in Lemma 18) for each
bit of f(x) and verifies each PCP deterministically by enumerating over the PCP verifier’s

5 Shaltiel and Umans present the evaluation protocol as a multi-round protocol (with log r rounds). We
collapse it into a two-round protocol by standard amplification (which also amplifies the crucial resilience
property) [3, 25].
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randomness. It encodes each PCP as a low-degree polynomial (as in Section 3.5), instantiates
the RMV generator with each of the polynomials and outputs the union of the outputs for
each instantiation. For the reconstruction, we have Merlin send a bit b and commit to the
low-degree extension of a proof that the i-th bit of f(x) equals b. Arthur then runs the PCP
verifier using the evaluation protocol to answer proof queries. The protocol succeeds and
outputs b if and only if the PCP verifier accepts. Here is the formal statement of the result.

▶ Theorem 24. Let T (n) be a time bound and f ∈ NTIME[T (n)]. There exists a non-
deterministic algorithm H (the generator) that always has at least one successful computation
path per input, and a promise Arthur-Merlin protocol R (the reconstructor) such that for
every x ∈ {0, 1}∗ and every co-nondeterministic circuit D that accepts at least half of its
inputs, at least one of the following holds.

1. H(x, D) outputs a hitting set for D on every successful computation path.
2. R(x, D) computes f(x) with completeness 1 and soundness 1/3.

The construction also has the following properties:
Resilient soundness: In either case, the probability that R(x, D) outputs a value other
than f(x) is at most 1/3.
Efficiency: On inputs x of length n and D of size m, H runs in time poly(T (n), m),
and R, given an additional index i, computes the i-th bit of f(x) in time poly(n) · (m ·
log T (n))O((log r)2) for r = O(log (T (n))/ log m).

Moreover, H(x, D) only depends on x and the size of D, and R(x, D) only needs blackbox
access to the deterministic predicate that underlies D.

Proof. Let f ∈ NTIME[T (n)], consider the language Lf = {(x, i, b) | f(x)i = b} and note
that Lf ∈ NTIME[T (n)]. Let V be the PCP verifier of Lemma 18 for Lf with soundness
s = s(n) = (100T (n)−1). Let also h = h(m) = m100, r = r(n, m) be the smallest power
of 2 such that hr is greater than the proof length of V on input length n and p = p(n, m)
be the smallest prime in the interval [∆100, 2∆100] for ∆ = h · r. Note, in particular, that
hr = poly(T (n), m) and r = O(log (T (n))/ log m).

Generator. The generator H, on input x and a co-nondeterministic circuit D of size m,
first guesses the value of z = f(x) and a proof yi of the correct length T (n) · polylog(T (n))
for the i-th bit of z for each i. Then it verifies that Pr[V yi(x, i, zi) = 1] = 1 for all i by
deterministically enumerating over the poly(T (n)) random-bit strings for V . If any of the
verifications fail, it fails. Otherwise, it views each yi as a function gi : {0, 1}ℓ → {0, 1} for
ℓ = log |yi| and outputs RMV(ĝi), where ĝi is the low-degree extension of gi with parameters
p, h and r. The initial verification step takes time poly(T (n)), and executing RMV(ĝ) takes
time pO(r) = poly(T (n), m) and outputs strings of length m. This culminates in a running
time of poly(T (n), m). Finally, since for the correct output z = f(x) there always exist proofs
yi that are accepted with probability 1 for each i, there always exists a nondeterministic
guess that leads the generator to succeed.

Reconstructor. We describe and analyze the prAM protocol R, which uses the commit-and-
evaluate protocol P = (Pcommit, Peval) of Lemma 23 with soundness parameter s′ = s′(n) =
(100T (n) · q)−1, where q = q(n) = polylog(T (n)) denotes the query complexity of V at input
length n. On inputs x, D and an index i, Arthur and Merlin play the commit phase Pcommit,
which produces a commitment πi to be fed into the evaluation phase. In parallel, Merlin also
sends a bit b to Arthur. The idea is for an honest Merlin to send b = f(x)i and commit to
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the low-degree extension ĝi of a proof yi that witnesses (x, i, b) ∈ Lf (or f(x)i = b), though
a dishonest Merlin may send a different bit and/or commit to some different function. Let γi

denote the function that Merlin committed to via Pcommit, which may be accessed with high
probability by executing the evaluation protocol Peval with input πi. The restriction of γi to
[h]r defines a candidate PCP proof ỹi. Arthur then runs the verifier V ỹi(x, i, b), employing
Merlin’s help to evaluate ỹi whenever V makes a query to it (where binary queries are first
converted into the respective v⃗ ∈ Fr

p and all queries are evaluated in parallel). If V ỹi(x, i, b)
accepts, then R succeeds and outputs b, otherwise it fails.

Completeness. If D is not hit by H(x, D), then for all indices i there exists at least one
proof yi that witnesses (x, i, f(x)i) ∈ Lf and such that RMV(ĝi) fails to hit D, where ĝi is
the low-degree extension of yi with parameters p, h and r. In that case, an honest Merlin
can commit to such a ĝi with probability 1 by the completeness property of Lemma 23 as
well as send the correct value of f(x)i during the first phase. Then perfect completeness of
V and Peval guarantee that R succeeds and outputs f(x)i with probability 1.

(Resilient) soundness. If D accepts at least half of its inputs, then for a fixed index i

the resilience property of P in Lemma 23 guarantees that with probability at least 1 − s′,
the commit phase is successful and thus the evaluation protocol with input πi has partial
single-valuedness s′. In that case, by a union bound over the at most q queries that V makes,
with probability at least 1 − (100T (n))−1 = 1 − s, every execution of the evaluation protocol
results in the evaluation of a fixed function γi : Fr → F. If Merlin sends the incorrect value
of b ̸= f(x)i in the first round (the only way he could try to have Arthur output the wrong
value), the soundness property of V in Lemma 18 guarantees that R fails with probability
at least 1 − s since (x, i, b) /∈ Lf . By a union bound over these three “bad” events, all of
which have probability at most s since s ≥ s′, for any fixed index i, R(x, D) with additional
input i either fails or outputs f(x)i with probability at least 1 − 3s. Finally, a union bound
over the at most T (n) possible indices i guarantees that R either fails or outputs f(x) with
soundness 1/3. In particular, if completeness also holds then R(x, D) computes f(x) with
completeness 1 and soundness 1/3.

Efficiency. The commit phase takes time log (1/s′) · poly(∆, r) = poly(m, log T (n)) and
two rounds of communication. Afterwards, evaluating each query made by V (x, i, b) with
Peval takes time (log (1/s′))2 · ∆O((log r)2) = (m · polylog(T (n)))O((log r)2). The verification
step for V takes time log (1/s) · poly(n, log T (n)) = poly(n, log T (n)), and it makes at most
log (1/s) ·polylog(T (n)) = polylog(T (n)) queries, resulting in a total running time of poly(n)+
(m · log T (n))O((log r)2). Moreover, because V is non-adaptive, each execution of the evaluation
protocol can be carried out in parallel, and thus the total number of rounds is four. Collapsing
this protocol into a two-round one [3] leads to a prAM protocol with running time poly(n) ·
(m · log T (n))O((log r)2).

For the moreover part, we observe that computing RMV(ĝi) for each i only requires
knowledge of m, the size of circuit D (instead of the circuit itself) and thus the generator H

also only requires knowledge of m. Similarly, the commit-and-evaluate protocol in Lemma 23
only requires blackbox access to the deterministic predicate that underlies the circuit D, and
thus so does our reconstructor R since it just gives D as input to P . ◀

We remark that we can amplify the resilient soundness property for the reconstructor so
that the probability that it outputs a value outside of {f(x)i, ⊥} is at most 2−t by running
it Θ(t) times in parallel and outputting ⊥ as soon as at least one of the answers is ⊥ or the
answers are inconsistent, and outputting the consistent answer bit otherwise.
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We also present a version of the generator with a stronger resilient soundness property at
the expense of increasing the complexity of the reconstructor from a promise Arthur-Merlin
protocol to a probabilistic algorithm with parallel access to SAT. This version is useful for
obtaining our byproducts in the average-case setting.

▶ Corollary 25. Let T (n) be a time bound and f ∈ NTIME[T (n)]. There exists a non-
deterministic algorithm H (the generator) and a probabilistic algorithm R (the reconstructor)
with parallel access to SAT that have the same properties as in Theorem 24 but such that the
resilient soundness property holds for every co-nondeterministic circuit.

In the setting of Corollary 25, item 2 of Theorem 24 should be interpreted as saying that
R(x, D) outputs f(x) with probability at least 2/3. We refer to the stronger resilience
property in Corollary 25 as strong resilient soundness.

The idea behind Corollary 25 is for the reconstructor to first check whether the co-
nondeterministic circuit D accepts at least somewhat less than half of its inputs. This is
where the parallel access to an oracle for SAT comes in; it allows us to distinguish with
high probability between the cases where the fraction of accepted inputs is, say, at most
1/3 and at least 1/2. In the former case, the new reconstructor indicates failure with high
probability. Otherwise, we boost the fraction of accepted inputs to at least 1/2 by trying
D on two independent inputs, and then run the old reconstructor on the corresponding
co-nondeterministic circuit D′.

Proof of Corollary 25. Let H ′ be the generator and R′ the reconstructor of Theorem 24
instantiated with function f and amplified to have (resilient) soundness 1/6.

Generator. The generator H, on input x and D of size m, first constructs the circuit
D′ of size 2m as D′(r1r2) = D(r1) ∨ D(r2). We then define H(x, D) as Left(H ′(x, D′)) ∪
Right(H ′(x, D′)), where Left(S) and Right(S) output the set of the left and right halves of
every string in S, respectively.

Reconstructor. On input (x, D) and an index i, the reconstructor R estimates up to error
1/12 and with probability of failure 1/6 the fraction of inputs accepted by D by evaluating
circuit D on O(1) random inputs of length m, which can be done in probabilistic time poly(m)
with O(1) parallel queries to a SAT oracle. If the estimated fraction is less than 5/12 (the
midpoint between 1/3 and 1/2), then R declares failure. In parallel, R builds the circuit D′

in the same way as H, samples Arthur’s randomness for protocol R′ with inputs (x, D′) and
i and makes three queries to the SAT oracle to obtain the protocol’s output: Whether there
is a Merlin response that leads to success and whether there are Merlin responses that lead
to outputting 0 and 1. If the first query is answered negatively, or the last two queries give
inconsistent answers, then R declares failure. Otherwise, R outputs whatever R′ does.

Strong resilient soundness. Consider two cases in relation to circuit D: Either D accepts
fewer than 1/3 of its inputs, or it accepts at least a 1/3 of its inputs. In the first case,
the initial verification fails with probability at least 5/6. In the second case, D′ accepts at
least 2/3 − 1/9 = 5/9 > 1/2 of its inputs. The resilient soundness property of protocol R′

guarantees that with probability at least 5/6, R either fails or outputs f(x) correctly. In
either case, it follows that R outputs an incorrect value for f(x) with probability at most
1/6 ≤ 2/3.
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Correctness. If a co-nondeterministic circuit D accepts at least half of its inputs, so does
the circuit D′. Moreover, if H(x, D) fails to hit D, then H ′(x, D′) fails to hit D′. The
correctness of protocol R′ then guarantees that there exists a strategy for Merlin that makes
R′ output f(x) with probability 1, and no strategy can make R′ output an incorrect value
for f(x) with probability at least 1/6. It follows that the second parallel phase of R yields
f(x) with probability at least 5/6. Accounting for the error probability of 1/6 in the initial
verification, we conclude that R outputs f(x) with probability at least 2/3.

Efficiency. The running time of H is asymptotically identical to that of H ′, and the running
time of R is polynomial in the running time of R′.

Finally, the moreover part follows right away from the moreover part of Theorem 24. ◀

Similar to the case of Theorem 24, we can amplify the strong resilient soundness property
for the reconstructor so that the probability that it outputs a value outside of {f(x)i, ⊥} (or
different from f(x)i in case D is not hit by the generator) is at most 2−t by running it Θ(t)
times in parallel and outputting the majority answer.

4.3 Derandomization consequences
First, we present a generic derandomization result for prAM that works under hardness
against arbitrary distributions.

▶ Theorem 26. There exists a constant c such that the following holds. Let t, T : N → N
be time bounds such that t(n) ≥ n, Π ∈ prAMTIME[t(n)] and {xn}n∈N be an ensemble of
distributions such that xn is supported over {0, 1}n and such that for all n, every x in the
support of xn satisfies the promise of Π. Assume that for µ : N → [0, 1) there exists a
length-preserving function f ∈ NTIME[T (n)] such that for every prAMTIME[t(n)O((log r)2)]
protocol P for r = O(log (T (n))/ log (t(n))), it holds that the probability over x ∼ xn that
P (x) = f(x) is at most µ(n) for all but finitely many n. Then, it holds that

Π ∈ Heurx,µNTIME[T (n)c].

Proof. First, notice that if t(n) ≤ log T (n), then the conclusion is trivial and if t(n) ≥ T (n)
then the premise is impossible, so we focus on the case that log T (n) ≤ t(n) ≤ T (n). Let
Π ∈ prAMTIME[t(n)] and let P be a two-round protocol for Π running in time O(t(n)) on
inputs of length n. On input x ∈ {0, 1}n, compute the circuit Dx of Proposition 17 with
protocol P , and note that Dx has size O(t(n)2). Then, instantiate the HSG of Theorem 24
with f . Feed H inputs x and Dx and run the usual derandomization procedure for protocol
P with the set output by H(x, Dx): For each string ρ ∈ H(x, Dx), nondeterministically
guess Merlin’s message yρ and compute the output of P with randomness ρ and message
yρ, accepting if and only if P accepts for every ρ ∈ H(x, Dx). The entire procedure runs in
nondeterministic time poly(T (n), t(n)) = O(T (n)c) for some constant c, since T (n) ≥ t(n).

Assume, with the intent of deriving a contradiction, that with probability at least µ(n)
over x ∼ xn, this derandomization fails for input x. First, notice that by the perfect
completeness of P it must be the case that such an x lies in ΠN and that P with input x

accepts every string in H(x, Dx). Therefore, Dx acts as a distinguisher for H(x, Dx), i.e., it
rejects every string output by Dx while accepting at least half of its inputs. By computing
Dx and feeding it to the prAM protocol R of Theorem 24, we obtain a prAM protocol that
computes individual bits of f(x) correctly for every x for which the derandomization fails,
i.e., with probability at least µ(n) over x ∼ xn. By running this protocol n times in parallel
to compute every bit of f(x), we obtain a prAM protocol that runs in time
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poly(n) · (t(n) · log T (n))O((log r)2) = t(n)O((log r)2)

since t(n) ≥ log T (n) and t(n) ≥ n. This is a contradiction to the hardness of f so we are
done. ◀

We remark that we require hardness not just against AM protocols but against prAM
protocols, which may not respect the completeness and/or soundness conditions on some
inputs. However, an input of length n only contributes to the success fraction µ(n) provided
the completeness and soundness conditions are met on that input.

As a consequence of Theorem 26, if the hardness assumption holds for almost-all inputs,
then we obtain full derandomization of prAM.

▶ Theorem 27. There exists a constant c such that the following holds. Let t, T : N → N be
time bounds such that t(n) ≥ n. If there is a length-preserving function f ∈ NTIME[T (n)] that
is hard on almost-all inputs against prAMTIME[t(n)O((log r)2)] for r = O(log (T (n))/ log (t(n)))
then

prAMTIME[t(n)] ⊆ NTIME[T (n)c].

Moreover, there exists a targeted hitting-set generator that achieves this derandomization
result.

Proof. The statement follows from Theorem 26 by noting that the assumption that f is
hard on almost-all inputs implies that f is hard for all possible distributions xn with success
probability µ(n) = 0. In particular, the following nondeterministic algorithm is a hitting-set
generator for prAM: On input x ∈ {0, 1}∗ and a co-nondeterministic circuit C of size m,
output H(x, D) where H is the generator of Theorem 24 and D

.= C(x, ·). This algorithm
has a successful computation path for any input and, on every successful computation path
on inputs where D accepts at least half of its inputs, it outputs a set that hits D. The
running time of the generator is poly(T (n), m). ◀

Table 2 Derandomization consequences that follow from different instantiations of Theorem 27.

Setting T (n) Hard for Derandomization
high end na nO((log a)2) prAM ⊆ NP

middle-of-the-road 2polylog(n) nO((log log n)2) prAM ⊆ NTIME[2polylog(n)]
low end 2no(1)

no((log n)2) prAM ⊆ NTIME[2no(1)
]

very low end 2poly(n) nb(log n)2
∀b ∃c prAM ⊆ NTIME[2nc

]

By setting parameters in Theorem 27, we obtain the derandomization results listed on
Table 2. In particular, the first line of Table 2 establishes Theorem 5 and the last line
establishes Theorem 6. We now provide more details on how to obtain each line of Table 2:

For the high end, set t(n) = n, in which case r = O(a). Then, prAMTIME[n] ⊆ NP follows
as long as f is hard on almost-all inputs against prAMTIME[nO((log a)2)]. The result for
prAM follows by padding.
For the middle-of-the-road result, set t(n) = n, in which case r = polylog(n). Then,
prAMTIME[n] ⊆ NTIME[2polylog(n)] follows as long as f is hard on almost-all inputs against
prAMTIME[nO((log log n)2)]. The result for prAM follows by padding.
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For the low end, let ν = ν(n) = o(1) be such that T (n) = 2nν and set t(n) = n. In this
case, r ≤ nν . Then, prAMTIME[n] ⊆ NTIME[poly(n, 2nν )] follows as long as f is hard
on almost-all inputs against prAMTIME[nO((ν log n)2)]. Since poly(n, 2nν ) = 2no(1) and
nO((ν log n)2) = no((log n)2), the result for prAM follows by padding.
For the very low end, set t(n) = nb for a constant b, in which case r = poly(n). Then,
prAMTIME[nb] ⊆ NTIME[2nc ] for some constant c follows as long as f is hard on almost-all
inputs against prAMTIME[nO(b(log n)2)]. To get the result for prAM, it suffices for hardness
to hold for all b.

5 Consequences of derandomization

In this section, we prove the derandomization-to-hardness and derandomization-to-targeted
HSGs directions of our near-equivalences.

5.1 Hardness on almost-all inputs
We start with our derandomization-to-hardness implication: If prAM ⊆ NP then for all
constants c there is a length-preserving function f computable in nondeterministic polynomial
time (with a few bits of advice) that is hard on almost-all inputs against AMTIME[nc]. The
basic idea is that, under the derandomization hypothesis, every (single-bit) AM protocol that
runs in time nc can be simulated by a single-valued nondeterministic machine without too
much time overhead. If we have as advice whether a particular nondeterministic machine is
single-valued or not at input length n, we can negate its input efficiently, obtaining a function
f computable in nondeterministic time poly(n) that is almost-all inputs hard against AM
protocols that run in time nc. We now state Proposition 4 formally.

▶ Proposition 28 (Formal version of Proposition 4). If prAM ⊆ NP, then for every constant
c and increasing function α : N → N there exists a length-preserving function f ∈ NP/α(n)
that is hard on almost-all inputs against AMTIME[nc].

Proof. Assume that prAM ⊆ NP and let c′ be a constant to be defined later (which depends
on c). The basic idea for the function f is as follows: On an input x of length n, we set its
i-th output bit (for 1 ≤ i ≤ min(n, α(n))) to the opposite of the i-th bit output by the i-th
nondeterministic Turing machine Ni on input x (if Ni is single-valued and halts in at most
nc′+2 steps at input length n), and otherwise we set it to 0. Formally, on input x of length n

and for 1 ≤ i ≤ n

f(x)i =
{

1 − Ni(x)i if i ≤ α(n), Ni is single-valued and halts in at most nc′+2 steps,
0 otherwise.

Note that f is computable by a single-valued nondeterministic machine running in time
O(nc′+3) with α(n) bits of advice (indicating whether Ni is single-valued and halts in at
most nc′+2 steps at input length n for 1 ≤ i ≤ α(n)).6 This holds because, when Ni is
single-valued, computing 1 − Ni(x)i can be done by guessing a path on which Ni succeeds,
which must result in the unique value Ni(x), and then outputting the opposite of the i-th
bit of that. Assume, with the intent of deriving a contradiction, that there exists an AM
protocol P that runs in time O(nc) and computes f on an infinite set of inputs X ⊆ {0, 1}∗.

6 The nondeterministic machine computing f is only guaranteed to be single-valued when given the
correct advice string.
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Consider the protocol P ′ that takes as regular input a triple (x, i, b) and accepts iff the i-th
bit of the output of protocol P with input x equals b (if i > |x| then P ′ rejects). Note that P ′

induces a language L in AMTIME[nc]. Since prAM ⊆ NP and prAMTIME[nc] has a complete
problem under linear-time reductions, it follows that there exists a constant c′ such that
AMTIME[nc] ⊆ NTIME[nc′ ].7 Let N be a nondeterministic machine that runs in time nc′

and computes L. Note that for every x ∈ {0, 1}∗ and 1 ≤ i ≤ |x|, N(x, i, b) = 1 for exactly
one b ∈ {0, 1}, and when x ∈ X, N(x, i, b) = 1 if and only if f(x)i = b.

Now consider the following procedure N ′: On input x ∈ {0, 1}n, guess a value bi and a
witness yi for each 1 ≤ i ≤ n and run N(x, i, bi; yi). If for all i, N(x, i, bi; yi) accepts, N ′

succeeds and prints the concatenation of the guessed bi’s, otherwise N ′ fails. Note that N ′ is
a nondeterministic machine that runs in time O(nc′+1). Moreover, by our assumption that P

is an AM protocol and that prAM ⊆ NP, N ′ is single-valued on every input. By construction,
the single value equals f(x) for all x ∈ X.

Let i be the index of N ′ in our enumeration, i.e., Ni = N ′. By definition of f , for
every input x ∈ {0, 1}∗ of sufficiently large length n ≥ α−1(i) (so that it has a chance to
negate the output of Ni), and in particular for all sufficiently large x ∈ X, we have that
f(x)i = 1 − N ′(x)i = 1 − f(x)i, which is a contradiction. ◀

This result extends to other parameter settings. As an example, we state a version of
Proposition 28 at the very low end.

▶ Proposition 29. If there exists a constant c such that that AM ⊆ NTIME[2nc ], then for
every increasing function α : N → N there exists a function f ∈ NEXP/α(n) that is hard on
almost-all inputs against AM protocols running in polynomial time.

Proof (Sketch). The proof is essentially identical to that of Proposition 28, but with a
different time bound. Since AM ⊆ NTIME[2nc ], the diagonalizing machine N needs to
diagonalize against single-valued nondeterministic algorithms running in time 2nc′

for some
fixed constant c′ > c, and thus we get a nondeterministic algorithm that runs in time O(2nk )
for any constant k > c′. ◀

We conclude this section by noting in more detail where the gaps between our hardness-
to-derandomization and derandomization-to-hardness results lie. The first gap lies in the
fact that in the derandomization-to-hardness direction, the hard function f we construct
requires a few bits of advice that we don’t know how to handle in the other direction. There
is, however, a subtler difference – In the hardness-to-derandomization direction, we require
hardness against prAM protocols, which may not obey the AM promise on all inputs (though
we only consider the protocol as computing f(x) on input x if it obeys the promise and
respects both completeness and soundness on input x). In the derandomization-to-hardness
direction, we can only guarantee hardness against AM protocols, which necessarily obey the
AM promise on all inputs. We remark that a similar problem shows up in other hardness
vs. randomness tradeoffs for AM [13, 25]. For example, to conclude almost-everywhere
derandomization of AM, the authors of [13] require hardness of EXP against AM protocols
for which completeness only holds infinitely-often. Finally, we also note that, while Chen
and Tell only state their derandomization-to-hardness result for BPP [8], in that setting one
can actually achieve hardness against prBPP (where the probabilistic algorithm might not
have a high-probability output for every input).

7 While our argument only requires that there exists a constant c′ such that AMTIME[nc] ⊆ NTIME[nc′
],

we use the assumption prAM ⊆ NP instead of AM ⊆ NP since it is unknown whether AMTIME[nc]
contains a complete problem under linear-time reductions.
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5.2 Targeted hitting-set generator
In this section, we prove Theorem 7 along the lines of the intuition provided in Section 2.2.
We make use of a win-win argument: Either the EXP ̸= NEXP hardness assumption holds, in
which case there is a regular (oblivious) HSG that guarantees the derandomization result [14].
Or else we may assume that EXP = NEXP, which allows us to construct a function f that is
hard against prAM protocols by diagonalization, with which we then instantiate Theorem 24
to obtain the targeted HSG.

We need the following result that follows from the “easy-witness” method.

▶ Lemma 30 ([14]). If NEXP ≠ EXP then prAM ⊆ io-NTIME[2nϵ ]/nϵ for every ϵ > 0.
Moreover, there exists a (regular) HSG that achieves this derandomization.

We now prove Theorem 7, which we restate here for convenience.

▶ Theorem 7. If prAMTIME[2polylog(n)] ⊆ io-NEXP, then there exists a targeted hitting-set
generator for prAM that yields the simulation prAM ⊆ io-NTIME[2nc ]/nϵ for some constant
c and all ϵ > 0.

Proof. If EXP ̸= NEXP, we are done by Lemma 30. Otherwise, it holds that NEXP = EXP.
We use this collapse to construct a length-preserving multi-bit function f ∈ EXP that is
hard against prAMTIME[n(log n)3 ]. We then instantiate Theorem 24 with f to obtain the
targeted HSG. Hardness against protocols running in this time bound suffices along the lines
of Theorem 6.

Before constructing f , we make an observation: Due to the instance-wise nature of our
construction, to obtain an infinitely-often derandomization result using Theorem 24 it suffices
to have an infinitely-often all-inputs hardness assumption. More precisely, we require the
following: For every prAMTIME[n(log n)3 ] protocol P , there exist infinitely many input lengths
n such that P fails to compute f for every x of length n. Thus, we construct a function f

with this requirement in mind.
Under the hypothesized derandomization assumption and because prAMTIME[n(log n)3 ]

has a complete problem under linear-time reductions, it follows that there exists a constant
k such that prAMTIME[n(log n)3 ] ⊆ io-NTIME[2nk ]. Since NTIME[2nk ] also has a complete
problem under linear-time reductions, under the assumption EXP = NEXP, there exists
a constant k′ such that prAMTIME[n(log n)3 ] ⊆ io-DTIME[2nk′

]. In that case, it suffices to
diagonalize against fixed-exponential time machines to construct f . Similar to Proposition 28,
we define the i-th bit of f(x) to be the opposite of the i-th bit output by Mi(x) when it runs
for at most 2|x|k′+1 steps, where Mi is the i-th deterministic Turing machine. Formally, on
input x of length n and for 1 ≤ i ≤ n,

f(x)i =
{

1 − Mi(x) if Mi(x) halts in at most 2nk′+1 steps,
0 otherwise.

Note that f is computable by a deterministic machine running in time O(n · 2nk′+1) and
thus f ∈ EXP.

Assume, with the intent of deriving a contradiction, that there exists a prAMTIME[n(log n)3 ]
protocol P such that for almost-all input lengths n, P computes f on at least one input
x ∈ {0, 1}n, and call the set of inputs where P computes f correctly X. Again, similar
to the proof of Proposition 28, P induces a problem Π in prAMTIME[n(log n)3 ], and by our
assumptions, there is a language L ∈ DTIME[2nk′

] such that L and Π agree on infinitely
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many input lengths. Let M be a deterministic Turing machine running in time O(2nk′

) that
decides L. Recall that yes-instances of Π are triples (x, i, b) such that x ∈ X and f(x)i = b

while no-instances have x ∈ X and f(x)i ̸= b. Let M ′ be the deterministic Turing machine
that, on input x of length n, outputs M ′(x) of length n such that M ′(x)i = 1 if and only if
M accepts (x, i, 1) for 1 ≤ i ≤ n. Note that M ′ runs in time 2nk′+1 . By construction and our
assumption on P , for infinitely many input lengths n there exists at least one x ∈ X ∩ {0, 1}n

such that M ′(x) = f(x).
Let i be the index of M ′ in our enumeration. By definition of f , for every input x ∈ {0, 1}∗

of sufficiently large length n ≥ i (so that it has a chance to negate the output of M ′), and in
particular for all sufficiently large inputs x ∈ X, we have that f(x)i = 1−M ′(x)i = 1−f(x)i,
a contradiction. Finally, we instantiate Theorem 26 with f to obtain a targeted HSG for
prAM that runs in exponential time, which suffices to obtain the conclusion. ◀

6 Derandomization under uniform worst-case hardness

Our technique also leads to new results in the traditional uniform worst-case setting. Under
worst-case hardness against probabilistic algorithms with non-adaptive oracle access to SAT,
we obtain average-case derandomization results for prAM. Moreover, by further strengthening
the hardness assumption, we may also conclude full (infinitely-often) derandomization of
prAM. As previously mentioned, these results extend to average-case derandomization of
prBPPSAT

|| .

6.1 Average-case simulation
In this section, we develop our average-case derandomization results for prAM under worst-
case uniform hardness assumptions (where hardness is against BPTIMESAT

|| ). Our results
in this setting work as follows: Assume there exists a hard language L ∈ NTIME[T (n)] ∩
coNTIME[T (n)]. To derandomize some prAM protocol P on input length n, we first consider
the hard language L at some suitable input length ℓ, which depends on the hardness of L

(for Theorem 8, for example, we take ℓ = Θ(log n)). Then we let f be the function that
maps any input x ∈ {0, 1}n to the truth table of L at input length ℓ, and it follows from
the complexity of L that f ∈ NTIME[2ℓ · T (ℓ)]. Finally, we instantiate our targeted HSG
construction H with f and use it to derandomize P .

For the reconstruction, we make use of the strong resilient soundness property of Corol-
lary 25. If the average-case derandomization fails, to decide whether z of length ℓ is in L, we
first sample multiple candidate “good” strings x that hopefully lead to a distinguisher Dx

for the generator (enough so that we expect at least one “good” x with high probability).
Then, we run the reconstruction for all of them, accepting if and only if at least one of
those outputs 1. By the strong resilient soundness property and amplification, with high
probability every execution either fails or outputs f(x)z = L(z), and in the high probability
case that we sample at least one “good” x, some execution outputs L(z), meaning we can
compute L efficiently on input length ℓ.

First, we present such a result at the high end of the derandomization spectrum.

▶ Theorem 31 (Strengthening of Theorem 8). If NTIME[2an] ∩ coNTIME[2an] is not included
in BPTIME[2(log(a+1))2n]SAT

|| for some constant a > 0, then for all e > 0 it holds that

prAM ⊆ io-Heur1/neNP
prBPPSAT

|| ⊆ io-Heur1/nePSAT
|| .
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Proof. We first argue the result for prAM. Consider derandomizing a prAM protocol P for a
problem Π running in time O(nk) for some constant k. Let S be an O(ns)-time sampler for
a distribution in {0, 1}n and e be a constant such that we want to “fool” S with probability
at least 1 − 1/ne. Let f be a function mapping every x ∈ {0, 1}n to the truth table of the
hard language L ∈ NTIME[2an] ∩ coNTIME[2an] at input length ℓ = ℓ(n) = Θ(log n) to be
set precisely later. Note that f ∈ NTIME[T (n)] for T (n) = 2(a+1)ℓ. Instantiate the generator
H of Corollary 25 with f , run H on input x = 0n (recall f maps every string in {0, 1}n to
the same truth table) and co-nondeterministic circuit size m = O(n2k), and use it to attempt
to derandomize P in nondeterministic time poly(T (n), n2k) = poly(n).

If the derandomization fails for almost-all input lengths, even heuristically, then for almost-
all input lengths n, S(1n) outputs with probability at least 1/ne a string x ∈ {0, 1}n such
that the simulation errs on x, i.e., the circuit Dx obtained from x and P using Proposition 17
is a distinguisher for H(0n, Dx). To compute L at input length ℓ, it then suffices to do
the following: On input z ∈ {0, 1}ℓ, first use S to sample t = Θ(ne) inputs x1, . . . , xt and
use these to construct a list Dx1 , . . . , Dxt

of candidate distinguishers for H(0n, Dx). With
high probability, this list contains an actual distinguisher for the generator. Let R be the
algorithm of Corollary 25, amplified by parallel repetition to have negligible soundness 2−n,
i.e., with probability at least 1 − 2n, the algorithm outputs either f(x) or ⊥. Finally, run
R with inputs 0n, index z (recall f(0n) equals the truth table of L at input length ℓ) and
Dxi

for every sampled input xi, and accept if and only if some execution outputs 1. To see
that this is correct, note that by a union bound, with high probability every execution of R

is successful in the sense that it either outputs f(0n)z = L(z) or ⊥. Conditioned on there
being a distinguisher in the list, we are guaranteed to output the correct value of L(z) with
high probability.

The running time for the reconstruction is O(ne+s) for generating the t = Θ(ne) samples,
and O(n2k)O((log r)2) per sample for running R, where r = O(((a + 1)ℓ)/(k log n)), for a total
of O(ne(ns + nO(k(log r)2))). By setting ℓ = dk log n, we have that r = O(d(a + 1)) and we
can upper bound the total running time by nO(e+s+k(log(d(a+1)))2). In terms of the input
length ℓ, this is 2(log(a+1))2ℓ when d is a sufficiently large constant depending on a, e, s. This
concludes the argument for prAM.

Now, we argue the result for prBPPSAT
|| . To do so, we use the containment prBPPSAT

|| ⊆
PprAM

|| [5]. It suffices to show that every deterministic polynomial-time algorithm with non-
adaptive oracle access to a paddable prAM-complete problem Γ ∈ prAMTIME[n] can be
simulated by deterministic polynomial-time algorithms with non-adaptive oracle access to
SAT. Let M be a deterministic algorithm with non-adaptive oracle access to Γ running in
time O(nb) and S be an O(ns)-time sampler that we want to “fool” with probability at least
1 − 1/ne. Since Γ is paddable, we may assume that every query made by M on inputs of
length n is of length O(nb) (at the expense of increasing its running time to O(n2b)). To
simulate M on input x, let f be a function mapping every x ∈ {0, 1}n to the truth table
of L at input length ℓ = ℓ(n) = Θ(log n). As before, f ∈ NTIME[2(a+1)ℓ]. Instantiate the
generator H of Corollary 25 with f and use it to derandomize Γ at input length O(nb) in
order to obtain a PSAT

|| simulation for M . Whenever M with input x queries Γ, we instead
query the SAT oracle whether the nondeterministic simulation of Γ using H with input 0n

and co-nondeterministic circuit size m = O(n2b) accepts. This simulation runs in PSAT
|| since

M is non-adaptive.
If this derandomization fails on almost-all input lengths n, then as before we can use S

to sample t = Θ(ne) inputs x1, . . . , xt such that with high probability the simulation fails on
some xi. Let Q(M, x) be the set of queries to Γ made by M on input x. If the simulation fails
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on xi, it must be the case that some query q in Q(M, xi) (and also in the promise of Γ) was
answered incorrectly. Since the protocol for Γ has perfect completeness, it must be the case
that q ∈ ΠN and that Dq is a distinguisher for H(0n, Dq). The reconstruction is as before
though we use the sets Q(M, xi) for i ∈ [t] to obtain the list of candidate generators, and
correctness follows by the same argument as in the prAM case. The running time analysis is
similar to the one for the case of prAM. ◀

At the low end, we are able to obtain a slightly stronger average-case derandomization
result. Instead of having a different simulation for each sampler, we obtain a single simula-
tion (depending on the problem in prAM/prBPPSAT

|| and the constant ϵ) that “fools” every
polynomial-time sampler.

▶ Theorem 32. If NEXP ∩ coNEXP ̸⊆ BPTIME[nb((log n)2)]SAT
|| for all b > 0, then for every

ϵ > 0 and all e > 0

prAM ⊆ io-Heur1/neNTIME[2nϵ

]

prBPPSAT
|| ⊆ io-Heur1/neDTIME[2nϵ

]SAT
|| .

Moreover, for any Π in prAM or prBPPSAT
|| and ϵ > 0, there is a single simulation that works

for all e > 0.

Proof. We begin with the argument for prAM. Let L be a hard language in NTIME[2na ] ∩
coNTIME[2na ] for some constant a ≥ 1. Consider derandomizing a protocol P for a problem
Π ∈ prAMTIME[nk] for constant k. Let ϵ > 0 and f be the function mapping every
x ∈ {0, 1}n to the truth table of L at input length ℓ = nϵ. Note that f ∈ NTIME[T (n)] for
T (n) = 2naϵ . Instantiate the generator H of Corollary 25 with f , run H on input x = 0n and
co-nondeterministic circuit size m = O(n2k), and use it to derandomize P . The simulation
runs in nondeterministic time poly(T (n), n2k), which is at most 2nϵ′

for any ϵ′ > 0 by taking
a sufficiently small ϵ > 0.

The reconstruction is identical to that of Theorem 31 but with ℓ = nϵ. The running
time is O(ne+s) to generate the samples and (n2k)O((log r)2) per sample for running R, where
r = O(log (T (n))/ log n), for a total of O(ne(ns + nO((log r)2))). Given our parameter choices,
r = O(naϵ), and the expression is upper bounded by O(ne(ns + nO((aϵ log n)2))). As the input
length is ℓ = nϵ for constant ϵ, there exists a constant b (depending on a, e, s, ϵ) such that the
running time is upper bounded by ℓb(log n)2 . If hardness holds for all b > 0, then the same
simulation works for any constant value of s and e, i.e., for any polynomial-time sampler and
any inverse-polynomial error probability.

The proof for prBPPSAT
|| is also almost identical to that of Theorem 31, where we de-

randomize the “oracle” Γ using the generator H from Corollary 25 instantiated with the
function f that maps every x ∈ {0, 1}n to the truth table of L at input length ℓ = nϵ and
use a set of queries instead of a set of inputs to obtain the list of candidate distinguishers
for the reconstruction. This approach naturally leads to a simulation in PNTIME[2nϵ

]
|| , and

we obtain the DTIME[2nϵ ]SAT
|| simulation by replacing the original queries with padded SAT

queries. ◀

6.2 Infinitely-often all-input simulation
By introducing nondeterminism in the algorithms we require hardness for, we are able to
extend Theorem 8 to conclude full (infinitely-often) derandomization of prAM. We have shown
that, if the HSG construction of Theorem 8 fails to obtain average-case derandomization
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of prAM, then we are able to efficiently sample candidate distinguishers with the hope that
at least one is “good”. However, if the HSG fails in the worst case, it is harder to pinpoint
exactly where it does so as to obtain a distinguisher. To solve this, we have Merlin send
a “good” input x. This necessitates a lower bound against MATIMESAT

|| , but allows for
concluding full (infinitely-often) derandomization of prAM and prBPPSAT

|| .

▶ Theorem 33. If NTIME[2an] ∩ coNTIME[2an] ̸⊆ MATIME[2(log (a+1))2ℓ)]SAT
|| for some con-

stant a > 0, then

prAM ⊆ io-NP
prBPPSAT

|| ⊆ io-PSAT
|| .

Proof. We argue the result for prAM first. Let Π ∈ prAMTIME[nk] for some constant k and
let L be a hard language in NTIME[2an] ∩ coNTIME[2an]. Let f be a function mapping every
string in {0, 1}n to the truth table of L at input length ℓ = Θ(log n) to be set precisely later.
Note that f ∈ NTIME[T (n)] for T (n) = 2(a+1)ℓ. Instantiate the generator H of Corollary 25
with f , run H on input 0n and co-nondeterministic circuit size m = O(n2k), and use it to
derandomize P in time poly(T (n), n) = poly(n).

If the simulation fails for some input of almost-all input lengths, then for almost-all input
lengths n there exists an x ∈ ΠN of length n such that the simulation errs on x, i.e., the
circuit Dx of Proposition 17 instantiated with the protocol for Π and x is a distinguisher for
H(0n, Dx). Let R be the reconstructor of Corollary 25 and consider the following Merlin-
Arthur protocol for L, where the protocol has parallel oracle access to SAT: On input
z ∈ {0, 1}ℓ, Merlin sends x, and Arthur runs R(0n, Dx) to compute the z-th bit of f(0n)
(which equals L(z)). If R outputs ⊥, then the protocol rejects, otherwise, it accepts if and
only if R outputs 1. Because R is a probabilistic algorithm with parallel access to an oracle
for SAT, Arthur can sample the randomness required for it and then run the underlying
deterministic parallel-SAT-oracle computation, meaning this is indeed a MASAT

|| protocol.
Completeness follows since Merlin can send a correct value of x, and soundness follows from
the strong resilience property of R: Even if Merlin sends a “bad” x′, R is still guaranteed to
either fail or output L(z) with high probability.

To finish the argument for prAM, note that the running time of the protocol is just the
running time of R, which is poly(n) · (m · log T (n))O((log r)2) for r = O(log (T (n))/ log m).
Since m = O(n2k) and setting ℓ = dk log n, we have r = O(d(a + 1)) and the running time
for the protocol is upper bounded by nO(k(log (d(a+1)))2). In terms of the input length ℓ, this
is 2(log (a+1))2ℓ) when d is a sufficiently large constant depending on a.

The simulation for prBPPSAT
|| is similar to before and the reconstruction is identical to

the prAM case: If the simulation fails, then there is a query q of length O(nk) (which results
in a distinguisher of size O(n2k)) that Merlin can send Arthur to make Arthur output L(z)
with high probability. Soundness also follows exactly as in the prAM case and the running
time is again 2(log (a+1))2ℓ). ◀

We only state the previous result for the high-end parameter setting because stronger
results are already known for the low end. For example, to conclude a subexponential
derandomization of prAM, it suffices for there to exist a language in NEXP ∩ coNEXP that
is hard for a subclass of MASAT

|| [1]. In comparison with ours, other results that conclude
the same derandomization either require hardness of nondeterministic algorithms against
much larger deterministic time bounds, e.g., NE ∩ coNE ̸⊆ DTIME[22nϵ

] for some ϵ > 0 [14]
or hardness of deterministic algorithms against slightly less space, e.g., E ̸⊆ SPACE[2ϵn] for
some ϵ > 0 [21].
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7 Unconditional mild derandomization

In this section, we establish our unconditional mild derandomization result for prAM and
extend it to prBPPSAT

|| . We employ a similar win-win argument to that of the proof of
Theorem 7: Either some hardness assumption/class separation holds (here, Σ2EXP ̸⊆
NP/poly), in which case we get derandomization right away. Or else we get a complexity
collapse which we can use to construct a hard function f that has the efficiency requirements
we need to apply one of our targeted hitting-set constructions (in this case Theorem 32,
which requires hardness against BPTIME[2polylog(n)]SAT

|| ).
As a first step toward the win-win argument, we prove an “easy-witness lemma” for Σ2EXP,

which allows for the collapse PΣ2EXP ⊆ EXP from the assumption that Σ2EXP ⊆ NP/poly.
Then we consider two cases:

Σ2EXP ̸⊆ NP/poly. In this case, the derandomization result follows from standard
hardness vs. randomness tradeoffs.
Σ2EXP ⊆ NP/poly. In this case, we diagonalize against BPTIME[2polylog(n)]SAT

|| in
PΣ2EXP = EXP, and then instantiate Theorem 32 to conclude the proof.

To diagonalize against BPTIME[2polylog(n)]SAT
|| , we make use of the inclusion prBPPSAT

|| ⊆
PprAM

|| and diagonalize against deterministic algorithms with non-adaptive oracle access to
prAM instead.

7.1 Nondeterministic easy witnesses
In this section, we prove our “easy witness lemma” for Σ2EXP. One way of thinking of Σ2
computations is as follows: On input x, guess a string y and then run a co-nondeterministic
verifier on input (x, y). This view allows us to abstract the co-nondeterministic verification
and think of y as a witness for x. In this section, we show that if Σ2EXP ⊆ NP/poly, then
every language in Σ2EXP has witnesses that are the truth tables of functions computed
by polynomial-size single-valued circuits. To do so, we use the following result to convert
hardness against single-valued circuits into hitting sets for co-nondeterministic circuits.

▶ Lemma 34 ([27]). There is a universal constant b and a deterministic polynomial-time
algorithm that, on input 1m and a truth table y of a function with single-valued circuit
complexity at least mb, outputs a set S of size O(|y|b) that hits co-nondeterministic circuits
of size m that accept at least half of their inputs.

We also need the following equivalence from [1].

▶ Lemma 35 ([1]). Σ2EXP ̸⊆ NP/poly if and only if prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all
ϵ > 0.

We are now ready to prove our easy witness result for Σ2EXP.

▶ Theorem 36. Assume Σ2EXP ⊆ NP/poly. Then Σ2EXP has single-valued witnesses
of polynomial size, i.e., for every L ∈ Σ2EXP and linear-time (in its input length) co-
nondeterministic verifier H for L, the following holds: For every x ∈ L, there exists a
single-valued circuit Cx of size poly(|x|) such that H(x, ·) accepts the exponential-length truth
table of Cx.

Proof. We show that Σ2E has single-valued witness circuits of size nc for some constant c.
The result for Σ2EXP then follows by padding.
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Assume that Σ2E does not have single-valued witness circuits of size nc for any constant
c. This implies that for all c ≥ 1, there is a co-nondeterministic verifier Hc that takes as
input a string x and a string y of length 2O(|x|), runs in time 2O(|x|), and has the following
property: For infinitely many n, there is a input x′ of length n such that Hc(x′, y′) accepts
for some y′, but every y accepted by Hc(x′, ·) has single-valued circuit complexity at least
nc. Thus, there are infinitely many n such that, if we give x′ as n bits of advice, guess a
string y of length 2O(n), and verify that Hc(x′, y) accepts (using co-nondeterminism), we are
guaranteed that y encodes the truth table of a function with single-valued circuit complexity
at least nc. This gives us a Σ2-procedure for obtaining hard functions, which we use to
derandomize prAM and obtain a contradiction to Lemma 35.

Let Π ∈ prAM and let P be a protocol for Π that runs in time O(ℓa) on input length ℓ. By
Proposition 17, to derandomize P it suffices to have a set S that hits any co-nondeterministic
circuit of size O(ℓ2a) that accepts at least half of its inputs. To obtain such a set using
Lemma 34, we need to first obtain a truth table of single-valued circuit complexity at least
Ω(ℓ2ab), where b is the constant from the lemma. Recall that our objective is to obtain a
subexponential (time 2nϵ for all ϵ > 0) simulation. To this end, let ϵ > 0 be sufficiently
small and consider the verifier Hc for c = 3ab/ϵ on inputs of length n = ℓϵ. If n is one of
the infinitely many input lengths for which there exists x′ such that every string accepted
by Hc(x′, ·) has single-valued circuit complexity at least nc = ℓ3ab, then we can obtain such
a hard string by having x′ as advice, guessing y ∈ {0, 1}2O(ℓϵ) and verifying that Hc(x′, y)
accepts.

In parallel, apply Lemma 34 to y to obtain a set S of size 2O(ℓϵ), and use S to derandomize
the prAM computation (guessing a Merlin response for each string in S). Finally, accept if
and only if both Hc(x′, y) and the prAM simulation accept. All of this can be carried out
in Σ2TIME[2O(ℓϵ)]/ℓϵ. Since ϵ is an arbitrarily small constant and the simulation works for
infinitely many input lengths ℓ, we obtain a contradiction to Lemma 35. ◀

Theorem 36 allows us to establish the following complexity class collapse in case Σ2EXP ⊆
NP/poly. The corollary represents the role our easy witness result plays in the proof of
Theorem 9.

▶ Corollary 37. If Σ2EXP ⊆ NP/poly, then PΣ2EXP = EXP.

Proof. Under the hypothesis from the statement, we show that Σ2EXP = coNEXP, which
suffices by combining Lemma 35 and Lemma 30. The hypothesis and Lemma 35 guarantee
the negation of prAM ⊆ io-Σ2TIME[2nϵ ]/nϵ for all ϵ, which in turn implies the negation of
prAM ⊆ io-NTIME[2nϵ ]/nϵ for all ϵ, and thus the contrapositive of Lemma 30 implies EXP =
NEXP and therefore Σ2EXP = coNEXP = EXP. Finally, we have PΣ2EXP = PEXP = EXP.

To show that Σ2EXP = coNEXP, by padding, it suffices to show that every L ∈ Σ2E is in
coNEXP. Fix L ∈ Σ2E. By Theorem 36, L has single-valued witnesses of size nc for some
constant c. On input x ∈ {0, 1}n, we cycle through all nondeterministic circuits C of size nc

and compute their truth tables in time O(2nc). For each truth table T , we then run V (x, T )
(where V is a co-nondeterministic verifier for L), accepting if and only if some verification
accepts. All of this runs in exponential co-nondeterministic time, so we are done. ◀

7.2 Simulation
We now execute our win-win strategy and establish Theorem 9 and its strengthening for
prBPPSAT

|| in lieu of prAM. We first consider the case where Σ2EXP ̸⊆ NP/poly. In this case
simulations of the required type that work on all inputs of a given length are provided by
Lemma 35 for prAM. We argue the same simulations follow for prBPPSAT

|| .
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▶ Lemma 38. If Σ2EXP ̸⊆ NP/poly, then for every ϵ > 0

prBPPSAT
|| ⊆ io-Σ2TIME[2nϵ

]/nϵ.

Proof. We use the inclusion prBPPSAT
|| ⊆ PprAM

|| . Let k be a constant and M be an O(nk)-time
deterministic machine with non-adaptive oracle access to a paddable prAM-complete problem
Γ ∈ prAMTIME[n]. We assume that all queries made by M on inputs of length n are of
length O(nk) at the expense of increasing M ’s running time to O(n2k).

Our approach is to use Lemma 34 to derandomize the queries made to Γ while making
sure that the overall simulation of M can be carried out in subexponential Σ2-time. To
derandomize Γ at input length O(nk) using the lemma, we need to obtain a truth table of
single-valued circuit complexity at least Ω(n2bk), where b is the constant from the lemma.
Let ϵ > 0 and L ∈ Σ2E be a language that has nondeterministic circuit complexity at least
n3bk/ϵ for infinitely many input lengths (which is guaranteed to exist by the hypothesis of
the theorem). The simulation of M on inputs x goes as follows: Given as advice the number
of strings of length nϵ that are in L, the Σ2 algorithm guesses the truth table of L at input
length nϵ, verifies it, and uses it as the string y in Lemma 34. More precisely, after guessing
the truth table, the algorithm performs the following operations in parallel:

It uses an existential and a universal guess to verify that the guessed truth table for L is
correct. This is possible because the algorithm has as advice the number of strings of
length nϵ that are in L, and thus it can existentially guess which strings are in L and
only verify those, with the guarantee that the others are not in L.
It guesses which of the queries to Γ that M makes on input x are answered positively and
which are answered negatively. For each query that is guessed to be answered positively,
it uses the set S from Lemma 34 and the existential phase to verify that there is a
random-bit string in S for which Merlin can provide a witness. Similarly, it uses S and
the universal phase to verify each query that is guessed to be answered negatively.

We note that the only existential computation paths that survive the computation are the
ones where the truth table of L at input length nϵ was guessed correctly. In this case, and in
the case that nϵ is one of the infinitely many input lengths where L has nondeterministic
circuit complexity at least n3bk/ϵ, it holds that the guessed truth table has high enough
(single-valued) nondeterministic circuit complexity such that S hits the co-nondeterministic
circuits given by Proposition 17 for negative instances of Γ at input length O(nk). This
further guarantees that the surviving existential computation paths are those that correctly
guess the answers to all queries M makes on input x that are in the promise of Γ. This
suffices to obtain a simulation of M that is correct on infinitely many input lengths since M

is insensitive to variations in answers to queries that are outside the promise (even when the
same query is answered differently on different occasions). Finally, we note that the entire
procedure runs in time 2O(nϵ), which can be made smaller than 2nϵ′

for any ϵ′ > 0 by taking
ϵ to be sufficiently small. ◀

The other case of the win-win analysis is when Σ2EXP ⊆ NP/poly. In this case, we
use the collapse PΣ2EXP = EXP given by Corollary 37 and our targeted hitting-generator
construction to obtain the desired simulation. We conclude:

▶ Theorem 39 (Strengthening of Theorem 9). For every ϵ > 0 and every e > 0

prBPPSAT
|| ⊆ io-Heur1/neΣ2TIME[2nϵ

]/nϵ.
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Proof. If Σ2EXP ̸⊆ NP/poly, then it follows that prBPPSAT
|| ⊆ Σ2TIME[2nϵ ]/nϵ for all ϵ > 0

by Lemma 38. Otherwise, by Corollary 37, we have that PΣ2EXP = EXP. By Theorem 31,
all we need to show is that PΣ2EXP ̸⊆

⋃
b∈N BPTIME[nb((log n)2)]SAT

|| . Given the containment
prBPPSAT

|| ⊆ PprAM
|| and a padding argument, it follows that

⋃
b∈N BPTIME[nb((log n)2)]SAT

|| ⊆
DTIME[2polylog(n)]prAM

|| . It remains to show that PΣ2EXP ̸⊆ DTIME[2polylog(n)]prAM
|| , which we

do by diagonalization.
Fix a prAM-complete problem Γ and note that if L ∈ DTIME[2polylog(n)]prAM

|| , then there
exists a Turing machine M running in time 2polylog(n) with non-adaptive oracle access to
Γ that computes L. Thus, it suffices to diagonalize against such machines with Γ as an
oracle. Let S be the following Σ2EXP-oracle machine: On input x ∈ {0, 1}n, interpret x as
a non-adaptive oracle Turing machine Mx with an oracle for Γ. Then, using binary search
and the Σ2EXP oracle, compute the number q of queries that Mx on input x makes that are
answered negatively, where we let Mx run for at most 2n steps. This is possible in PΣ2EXP

because prAM ⊆ Π2P, so we can verify negative instances in Σ2EXP. Once we know q, we can
simulate Mx(x) for at most 2n steps in Σ2EXP as follows: Guess which q queries are negative
and verify them in Σ2EXP (again using the fact that prAM ⊆ Π2P); then assume that the
other queries are answered positively and simulate Mx(x) directly with these answers. By
querying the Σ2EXP oracle S then outputs the opposite of this simulation. By construction,
the language of S is in PΣ2EXP \ DTIME[2polylog(n)]prAM

|| . ◀

This concludes our discussion of the byproducts of our main results.
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