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Abstract
VBP is the class of polynomial families that can be computed by the determinant of a symbolic
matrix of the form A0 +

∑n

i=1 Aixi where the size of each Ai is polynomial in the number of
variables (equivalently, computable by polynomial-sized algebraic branching programs (ABP)). A
major open problem in geometric complexity theory (GCT) is to determine whether VBP is closed
under approximation i.e. whether VBP ?= VBP. The power of approximation is well understood for
some restricted models of computation, e.g. the class of depth-two circuits, read-once oblivious ABPs
(ROABP), monotone ABPs, depth-three circuits of bounded top fan-in, and width-two ABPs. The
former three classes are known to be closed under approximation [4], whereas the approximative
closure of the last one captures the entire class of polynomial families computable by polynomial-sized
formulas [6].

In this work, we consider the subclass of VBP computed by the determinant of a symbolic matrix
of the form A0 +

∑n

i=1 Aixi where for each 1 ≤ i ≤ n, Ai is of rank one. This class has been studied
extensively [12, 13, 21] and efficient identity testing algorithms are known for it [17, 15]. We show
that this class is closed under approximation. In the language of algebraic geometry, we show that
the set obtained by taking coordinatewise products of pairs of points from (the Plücker embedding
of) a Grassmannian variety is closed.
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1 Introduction

The determinant polynomial plays a central role in the study of complexity theory. It is known
to be a complete polynomial i.e. every polynomial can be computed by some affine projection
of the determinant of a symbolic matrix. More precisely, for any polynomial f ∈ F[x1, . . . , xn],
there is some m and A0, A1, . . . , An in Fm×m such that f = detm(A0 +

∑n
i=1 Aixi). VBP

is defined as the class of polynomial families for which the size of such determinantal
representation is polynomially bounded in the number of variables (equivalently, such
polynomial families can be computed by polynomial-size algebraic branching programs
(ABP)).

The other polynomial of significant interest is the permanent polynomial, a close cousin
of the determinant polynomial. The permanent polynomial is also known to be a complete
polynomial. VNP is defined as the class of polynomial families for which the size of the
permanental representation is polynomially bounded in the number of variables. It is known
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that VBP ⊆ VNP. The goal of algebraic complexity theory is to separate VBP and VNP,
equivalently, to show a super-polynomial lower bound on the determinantal representation of
the permanent polynomial.

Even though we have witnessed some outstanding progress in our understanding of the
lower bound problem on various restricted models of computation in the last few years,
the fundamental problem in the general setting remains elusive. Geometric Complexity
Theory (GCT) was proposed as a possible approach to settle this question by showing
VNP ̸⊆ VBP [19] where VBP denotes the approximative closure of VBP. Let C be a circuits
class over F, F[ε] be the polynomial ring and F(ε) be the fraction field of F[ε]. We can define
C, the (approximative) closure of the circuit class C in the following equivalent ways.

(a) Approximative closure. A polynomial family {fn} is in the approximative closure of C
over F if there is a polynomial family {gn} in F[ε][x1, . . . , xn] computable in C over F(ε),
such that for every n,

gn(x1, . . . , xn) = fn(x1, . . . , xn) + ε · hn(x1, . . . , xn)

for some polynomial hn in F[ε][x1, . . . , xn]. We say, the polynomial family {fn} is approxim-
ated by the family {gn}.

(b) Euclidean closure. A polynomial family {fn} is in the Euclidean closure of C over F
if, for every n, there exists an infinite sequence of polynomials {gn,i} in C over F such that
the limit point of the sequence of coefficient vectors corresponding to {gn,i} is the coefficient
vector of fn. This definition is known to be equivalent to the previous definition when F is
R or C [7].

(c) Zariski closure. Another equivalent way is to define the approximative closure as a
Zariski closure [20]. For a circuit class C, consider the system of all polynomial equations
which are satisfied by the coefficient vector corresponding to each polynomial in C. Then, the
Zariski closure C consists of the polynomials such that the corresponding coefficient vectors
are satisfying assignments of the system of polynomial equations.

As all these definitions are equivalent, without loss of generality, we define C to be the
approximative closure of C. If C = C, we say C is closed under approximation.

One of the main objectives of geometric complexity theory is to decide whether VBP
is closed under approximation or not. Showing VBP = VBP would imply that showing
VBP ̸= VNP is equivalent to showing VNP ̸⊆ VBP. Though the complexity of VBP is
not well-understood, the power of approximation has been successfully studied for various
restricted models of computation. For example, it is known that the following classes are
closed under approximation: (a) ΣΠ i.e. the sparse polynomials, (b) Monotone ABPs [4], and
(c) Read-once oblivious ABPs (ROABP). Recently, the approximative closure of the depth
three circuits of bounded top fan-in is shown to be contained in VBP [10]. Surprisingly, even
a restricted circuit class can efficiently compute a much larger class under approximation.
For example, consider VBP2, the class of polynomials computed by the width-two ABPs.
Even though, there are families of polynomials that cannot be expressed by this class [1] ,
the approximative closure of this class contains VF, the class of polynomials computed by a
small formula. Indeed, it is known that VBP2 = VF [6].

It is interesting to notice that, for the circuit classes for which the approximative closure
is well-understood, we also know efficient identity testing algorithms. It motivates us to
study the class VBP under some natural restriction for which we already have an efficient
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identity testing algorithm. The class of our interest is the symbolic determinant under
rank one restriction. Recall that any n-variate polynomial in VBP can be computed as
det(A0 +

∑n
i=1 Aixi) where the size of each Ai is polynomially bounded in n. We consider the

class of polynomials of form det(A0+
∑n

i=1 Aixi) where for each 1 ≤ i ≤ n, rank(Ai) = 1. This
class has been studied extensively in contexts of polynomial identity testing, combinatorial
optimization, and matrix completion (see, for example [11, 17, 21]). It admits a deterministic
polynomial-time identity testing algorithm in the white-box setting [17] and a deterministic
quasi-polynomial-time algorithm in the black-box setting [15]. This class is equivalent to the
class of polynomial families computed by the determinant of symbolic matrices with each
variable occurring at most once, also known as read-once determinants [2] (as cited in [15,
Lemma 4.3]).. The expressive power of this class has also been studied. It strictly contains
some well-studied classes like the polynomials computed by a small read-once formula (see, for
example [3]). However, it is known that for large enough n, n-variate elementary symmetric
polynomials and the permanent polynomial cannot be expressed as det(A0 +

∑n
i=1 Aixi)

with rank(Ai) = 1 for each i ∈ [n] [3].
Another motivation to study the approximative closure of this class is the fact that the

approximative closure of the orbit of this class under the action of the general linear group
contains VBP [18, 24]. Therefore, understanding the approximative closure of this class may
shed new light on the VBP ?= VBP question.

Our Results

The main result of this paper is that the class of the determinant of symbolic matrices under
rank one restriction is closed under approximation. More precisely, we show the following
theorem, where we use F to denote R or C.

▶ Theorem 1. Given A0, A1, A2, . . . , An ∈ F(ε)r×r such that for each 1 ≤ i ≤ n,
rank(Ai) = 1 over F(ε). Let f = limε→0 det(A0 +

∑n
i=1 Aixi) be defined. Then, there exists

B0, B1, B2, . . . , Bn in F(n+r)×(n+r) such that f = det(B0 +
∑n

i=1 Bixi) and rank(Bi) = 1
over F for each i ∈ [n]. Moreover, if A0 = 0, then the matrices B1, B2, . . . , Bn lie in Fr×r.

Since this class is closed under approximation, the known hitting set and non-expressibility
results for this class also hold for its approximative closure.
▶ Remark 2. By using formal power series, we can extend this result to any arbitrary field.
For the sake of simplicity, we only work with C or R.

An algebraic geometry perspective on the result

Consider the simpler case of Theorem 1, when A0 = 0. Using known techniques, the statement
can be reduced to this simpler case. Now, suppose A1, A2, . . . , An are r × r matrices of rank
1. Let us write Ai = ui · viT for some vectors ui, vi ∈ Fr and define matrices U, V ∈ Fr×n

whose ith columns are ui and vi, respectively. It can be verified that

det(
∑

i

Aixi) =
∑

S

det(US) det(VS)
∏
j∈S

xj ,

where the sum is over all size-r subsets S of [n] and US (or VS) denotes the submatrix of U

(or V ) obtained by taking columns with indices in the set S. Hence, essentially our main
result says that the image of the map

(Fr×n)2 → F(n
r), (U, V ) 7→ (det(US) × det(VS))S

CCC 2023
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is Euclidean closed (and hence, Zariski closed). A closely related map

Fr×n → F(n
r), U 7→ (det(US))S

has been well-studied in algebraic geometry, which gives the Plücker coordinates of elements
in the Grassmannian variety. And hence, the image of this map is known to be a closed
set. Putting it another way, our result says that the set obtained by taking coordinatewise
products of pairs of points in the Grassmannian variety is closed.

Note that this is not a general phenomenon. It is easy to construct varieties where the
set obtained by taking coordinatewise products of pairs of points from the variety is not
closed. To see a simple example, consider the projective variety in P2 defined by

{[x : y : z] | xz + y2 − x2 = 0}.

Now, observe that the point (0, 1, 0) cannot be obtained as a coordinatewise product of two
points in the variety. On the other hand, it can be obtained as a limit of the product of
two points (ε, 1, ε − 1/ε) and (1, 1, 0). See [5] for a related notion called Hadamard power of
varieties.

Closure of a principal minor map

Our main result also implies the closure of the image of a principal minor map, as defined
below. The affine principal minor map ϕ : Cn2 −→ C2n is defined as

ϕ(A) = (det(AI))I⊆[n]

where is AI is the principal submatrix of A with rows and columns indexed by I. Lin and
Sturmfels [16] showed that for any n > 0, the image of ϕ on n × n matrices is closed. Our
result implies the closure result for a closely related map, which we refer to as the size k

principal minor map. For any k ≤ n, let us define the map ϕk : Cn2 −→ C(n
k) as

ϕk(A) = (det(AI))
I∈([n]

k )

where
([n]

k

)
is the set of all size-k subsets of [n]. We show that the image of ϕk on n × n

rank-k matrices is closed. Formally,

▶ Corollary 3. For any n > 0 and k ≤ n, the image of the size k principal minor map on
n × n matrices with rank at most k is closed in C(n

k).

One can define another similar map, where a rank-at-most-k matrix is mapped to the tuple
of its size-at-most-k principal minors. Note that the closure of the image of this map follows
easily from the result of Lin and Sturmfels [16]. However, to the best of our knowledge,
Corollary 3 does not follow from their result.

Proof idea of the main result

As we said, our goal is to show that the image of the map

(U, V ) 7→ (det(US) × det(VS))S

is closed under approximation. The idea is to start with any two given matrices U, V ∈
F(ε)r×n and construct matrices Û , V̂ ∈ Fr×n such that for each size-r subset S ⊆ [n], we
have

lim
ε→0

(det(US) det(VS)) = det(ÛS) det(V̂S).
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Of course, we can hope to construct such matrices only when the limit exists for every S.
Note that one cannot simply apply the limit operation on the matrix entries because the
matrix U and V can have rational functions in ε as entries.

We can view each term like det(US) as a Laurent series in ε. For any Laurent series f ,
one can define val(f) as the minimum exponent of ε appearing in f . Clearly, limε→0 f exists
if and only if val(f) ≥ 0. So let us assume that val(det(US) det(VS)) ≥ 0 for every S. In
other words,

min
S

{val(det(US) det(VS))} = min
S

{val(det(US)) + val(det(VS))} = 0.

Observe that only those sets S which achieve this minimum will give a nonzero term in the
limit. It would have been convenient if min operator was distributive over the sum, i.e.,

min
S

{val(det(US)) + val(det(VS))} = min
S

{val(det(US))} + min
S

{val(det(VS))},

but that is of course not true. Amazingly, it turns out that in the case of val function, it is
almost true. This comes from the fact that the val function satisfies a matroid like exchange
property: for any two distinct S, T ⊆ [n] of size r and any j ∈ T \ S, there exists a k ∈ S \ T

such that

val(det(US)) + val(det(UT )) ≥ val(det(US−k+j)) + val(det(UT −j+k)).

Based on this property, Dress and Wenzel [8] defined the so-called valuated matroids. More
interestingly, Murota [22] proved the valuated matroid splitting theorem, which says that the
min operator indeed distributes over the sum of two val functions, but with a “correction”
term which is a linear function. To be more precise, there is a tuple z ∈ Zn such that

min
S

{val(det(US)) + val(det(VS))} = min
S

{val(det(US)) +
∑
i∈S

zi}

+ min
S

{val(det(VS)) −
∑
i∈S

zi}.

The correction term is easy to handle because of linearity. Then basically, the problem breaks
into two independent problems on U and V . That is, given any two matrices U, V ∈ F(ε)r×n,
construct matrices Û , V̂ ∈ Fr×n such that for each size-r subset S ⊆ [n], we have

lim
ε→0

det(US) = det(ÛS) and lim
ε→0

det(VS) = det(V̂S).

The problem now becomes tractable essentially because the image of the map U 7→ (det(US))S

is known to be closed.

Discussion

As discussed earlier, showing that a class of polynomials is closed under approximation also
implies that it is Zariski closed. That is, the class of polynomials must be characterized
by a set of polynomial equations (in the coefficients of the polynomials in the class). It
would be interesting to find the set of characterizing equations for the class of determinant
of symbolic matrices under rank one restriction. Another natural class of polynomials for
which we can study the closure question is that of symbolic determinant under rank 2 (or
higher) restriction.

CCC 2023
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2 Preliminaries and Notations

We use N to denote the set of natural numbers, R to denote the set of real numbers, C to
denote the set of complex numbers, Z to denote the set of integers, and F to denote field R
or C, respectively. For a field F and an indeterminate ε, F(ε) denotes the fractional field.
For a positive integer n, [n] denotes the set {1, 2, . . . n}. For a set E, 2E denotes the family
of all possible subsets of E. For a subset S of E and an element a ∈ E, S − a and S + a

denote the set S \ {a} and S ∪ {a}, respectively. For any subset S of [n], 1S ∈ Fn denotes the
characteristic vector of the subset S. For a set E and a non-negative integer r,

(
E
r

)
denotes

the set family consisting of all subsets of E of size r.
Every element f in the fractional field F(ε) is of the form g/h where g, h ∈ F[ε] with

h ̸= 0. For a nonzero polynomial p ∈ F[ε], let mindeg(p) be the degree of the minimum
degree term in p. The function val from F(ε) to Z is defined as

val(f) :=
{

mindeg(g) − mindeg(h) if f ̸= 0
+∞ otherwise

▶ Proposition 4. The val function satisfies the following properties.
For any f, g ∈ F(ε), val(fg) = val(f) + val(g).
For any f, g ∈ F(ε), val(f + g) ≥ min{val(f), val(g)}.
For any g ∈ F(ε) \ {0}, val(1/g) = − val(g).
For an f ∈ F(ε), limε→0 f exists if and only if val(f) ≥ 0. Furthermore, limε→0 f = 0 if
and only if val(f) > 0.

For a polynomial P ∈ F(ε)[X] where X = {x1, x2, . . . , xn} is the set of variables, we say
limε→0 P exists if coefficient wise limit exists for every monomial of P at ε = 0. In other
words, for any coefficient f ∈ F(ε) of a monomial of P , val(f) ≥ 0.
For a matrix U ∈ Fr×n, i ∈ [r] and j ∈ [n], U [i, j] denotes the entry at ith row and jth
column of U . For a matrix U ∈ Fr×n and a subset S ⊆ [n], US denotes the submatrix of U

with columns indexed by S.
Next, we describe the Cauchy-Binet formula, which is an identity for the determinant of

the product of two rectangular matrices of transposed shape.

▶ Lemma 5 (Cauchy-Binet formula, [26]). Let n ≥ r be two positive integers. Let A and B

are two r × n and n × r matrices over F, respectively. Then

det(AB) =
∑

S∈([n]
r )

det(AS) · det(BS),

where BS denotes the submatrix of B with rows indexed by S.

Now we describe the Grassmann-Plücker identity.

▶ Lemma 6 (Equation 1.3 [9]). Let n ∈ N. Let a0, a1, . . . , an, b2, b3, . . . , bn be 2n vectors in
Fn. For all i ∈ {0, 1, . . . , n}, let Ui and Vi be the matrices (a0, . . . , ai−1, ai+1, . . . , an) and
(ai, b2, . . . , bn), respectively. Then,

n∑
i=0

det(Ui) · det(Vi) = 0.
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Matroids

A matroid M is a set family I defined on a ground set E such that I satisfies the following
two properties:
1. Closure under subsets: If X ∈ I and Y ⊂ X, then Y ∈ I.
2. Augmentation Property: If |X| > |Y | and X, Y ∈ I, then there exists x ∈ X \ Y such

that Y ∪ {x} ∈ I.
The set family I is called the independent set family M . The augmentation property ensures
that all the maximal independent sets of M have the same size. The collection B of all the
maximal independent sets is called the base family of M . The base family B satisfies the
following property:

Base exchange property: Let B, B′ ∈ B. Then for all a ∈ B \ B′ there exists a b ∈ B′ \ B

such that B − a + b is in B.

Given the base family B of a matroid M , its independent set family I = {I | ∃B ∈ B, I ⊆ B}.
Therefore, a matroid M can be represented as (E, I) or (E, B). In this work, we mostly
use M = (E, B) to represent a matroid. Every matroid M is associated with a function,
rank : 2E → N, defined as

rank(S) = max{|Y | | Y ⊆ S, Y ∈ I}.

The rank of the ground set E is called the rank of the matroid M . It is equal to the cardinality
of the bases. For more details on matroids, one can see some excellent textbooks like [23, 25].

Linear Matroids

A well-known example of matroids is the linear matroids. A linear matroid over a field F
is represented by an r × n matrix U over the field F with the full row rank. Assume that
the columns are indexed by [n], which is the ground set of the matroid. Let B = {B ⊆ [n] |
|B| = r, det(UB) ̸= 0}. It is not hard to prove that M = ([n], B) is a matroid with B as the
base family.

Matroid Intersection

Let M1 = (E, B1) and M2 = (E, B2) be two matroids defined on the same ground set E.
The problem of finding a common base is called matroid intersection problem. The problem
of perfect matching for bipartite graphs and many other problems can be formulated in the
language of the matroid intersection problem.

In this paper, we study symbolic matrix M =
∑n

i=1 Aixi with each Ai having rank one.
Next, we give an alternate representation of such symbolic matrices.

▶ Observation 7. Let M =
∑n

i=1 Aixi where each Ai is a r × r rank one matrix over F.
Then, there exist U, V ∈ Fr×n such that M = UXV T where X is the n × n diagonal matrix
with xi as its ith diagonal entry.

Proof. Since Ai is a rank one matrix over F, there exist ui, vi ∈ Fr such that Ai = ui·viT . Let
U and V be two r×n matrices such that the ith column of U and V are ui and vi, respectively,
for all i ∈ [n]. Then, for any p, q ∈ [r], UXV T [p, q] =

∑n
i=1 ui

pvi
qxi =

∑n
i=1 Ai[p, q]xi. This

implies that UXV T =
∑n

i=1 Aixi. ◀

CCC 2023
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Valuated Matroid

Dress and Wenzel [8, 9] introduced the notion of valuated matroid. Here, we discuss it as
described by Murota [22]. Suppose that M = (E, B) is a matroid with rank r. A valuation on
a matroid M is a function ω from B to Z∪ {+∞} such that for all B, B′ ∈ B and a ∈ B − B′

there exists b ∈ B′ − B such that B − a + b ∈ B, B′ − b + a ∈ B and

ω(B) + ω(B′) ≥ ω(B − a + b) + ω(B′ − b + a) (1)

A matroid M with a valuation function ω on it is called a valuated matroid, and we denote it
by the 3-tuple (E, B, ω). The definition of the valuated matroids by Dress and Wenzel [8, 9]
and in a subsequent work by Murota [22] consider the inequality in Equation 1 in the reverse
direction. The reason is that their work talks about maximization problems over valuated
matroids, but for our convenience, we describe their results in terms of minimization.

For a matrix, U ∈ F(ε)r×n, the following lemma defines a valuation on the linear matroid
represented by U . A very similar valuation has already been studied by Dress and Wenzel
[9] and by Murota [22, Example 3.2]. For an f ∈ F(ε) with g, h ∈ F[ε] and f = g/h, they
consider degε(f) instead of val(f) which is defined as the difference of degree of p and q.

▶ Lemma 8. Let U be an r × n matrix in F(ε)r×n with full row rank. Let B be the base
family of the linear matroid representable by U . Let ω be a function from B to Z ∪ {+∞},
defined as follows: for all B ∈ B,

ω(B) = val(det(UB)).

Then ([n], B, ω) forms a valuated matroid.

Proof. We prove the above lemma using the Grassmann-Plücker identity based technique
used in [9]. From Grassmann-Plücker identity (Lemma 6), for any two distinct S, T ⊆ [n] of
size r and any j ∈ T \ S,

det(US) · det(UT ) =
∑

i∈S\T

µi,j det(US−i+j) · det(UT −j+i),

where µi,j ∈ {1, −1}. Then, from Proposition 4, there exists a k ∈ S \ T such that

val(det(US)) + val(det(UT )) ≥ val(det(US−k+j)) + val(det(UT −j+k)).

This implies that if S, T ∈ B, then for any j ∈ T \ S there exists k ∈ S \ T such that both
T − j + k and S − k + j are in B and

ω(S) + ω(T ) ≥ ω(S − k + j) + ω(T − j + k).

Therefore, ([n], B, ω) forms a valuated matroid. ◀

Suppose that U1 = (E, B1, ω1) and U2 = (E, B2, ω2) are two valuated matroids over the
same ground set E. Let w : E → Z be a weight function. For any weight function, w on
the ground set E, it naturally extends to all the subsets of E as follows: for any S ⊆ E,
w(S) =

∑
a∈S w(a). Then, the valuated matroid intersection problem asks to find a common

base B ∈ B1 ∩ B2 that minimizes w(B) + ω1(B) + ω2(B). Like Frank’s weight splitting
theorem for weighted matroid intersection [14], Murota [22, Theorem 4.2] gave a weight
splitting theorem for the valuated matroid intersection. Here, we describe the result on the
minimization version of valuated matroid intersection whose proof can be deduced from the
result on the maximization version in a natural way.
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▶ Lemma 9 (Weight-splitting). Let U1 = (E, B1, ω1) and U2 = (E, B2, ω2) be two valuated
matroids and w be a function from E to Z. Then, there exist w1, w2 : E → Z such that a
common base B minimizes w(B) + ω1(B) + ω2(B) if and only if the following holds:
1. w(e) = w1(e) + w2(e) for all e ∈ E.
2. B is a minimum weight base for the matroid U1 = (E, B1) with respect to ω1 + w1.
3. B is a minimum weight base for the matroid U2 = (E, B2) with respect to ω2 + w2.

3 Proof of our closure results

In this section, we prove Theorem 1 and Corollary 3. First, we discuss some lemmas that we
use in the proof of our results. One of the ingredients of our proof is the fact that the maximal
minors of r × n matrices parameterize a variety (Plücker embedding of the Grassmannian).
Since a variety is Euclidean closed, we get that for any r × n matrix U over F(ε) whose r × r

minors approach a vector u ∈ F(n
r) as ε → 0, there exists an r × n matrix Û over F whose

r × r minors equal to u. The next lemma shows how such a matrix Û can be constructed.
For notations, see Section 2.

▶ Lemma 10. Let U be a matrix in F(ε)r×n such that for every S ⊆ [n] of size r,
limε→0 det(US) exists. Then, we can construct Û in Fr×n such that for every S ⊆ [n]
of size r the following holds:

lim
ε→0

det(US) = det(ÛS).

Proof. First consider the trivial case when limε→0 det(US) is zero for every S ⊆ [n] of size r.
In that case, Û can be defined as the matrix with all entries being zero. Now, we assume
that there exists a S ⊆ [n] of size r such that limε→0 det(US) is non-zero. Without loss of
generality, assume that limε→0 det(U[r]) is nonzero. Let

U ′ = U−1
[r] · U.

▷ Claim 11. For every S ⊆ [n] of size r, limε→0 det(U ′
S) exists.

Proof. Since U ′ = U−1
[r] · U , for any S ⊆ [n] of size r,

det(U ′
S) = det(U−1

[r] ) · det(US).

Since det(U−1
[r] ) = 1/ det(U[r]) and val(det(U[r])) = 0, from Proposition 4, val(det(U−1

[r] )) is
also zero. Therefore, applying Proposition 4, we get that limε→0 det(U−1

[r] ) is non-zero. The
hypothesis of the lemma ensures that limε→0 det(US) exists. Therefore,

lim
ε→0

det(U ′
S) = lim

ε→0
det(U−1

[r] ) · lim
ε→0

det(US).

This implies that limε→0 det(U ′
S) exists. ◁

▷ Claim 12. For every i ∈ [r] and j ∈ [n], limε→0 U ′[i, j] exists.

Proof. From the definition, U ′ = [Ir|A] where Ir is the r × r identity matrix. The claim
trivially follows for i, j ∈ [r]. For an i ∈ [r] and j ∈ [n] − [r], let T = [r] − {i} + {j}, and
U ′

T be the matrix obtained by replacing the ith column of Ir by the jth column of U ′. This
implies that the matrix U ′

T is of the following form:
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U ′
T =



1 0 0 . . . U ′[1, j] . . . 0
0 1 0 . . . U ′[2, j] . . . 0
...

...
...

. . .
...

...
...

0 0 0 . . . U ′[i, j] . . . 0
...

...
...

...
...

. . .
...

0 0 0 . . . U ′[r, j] . . . 1


.

Therefore, det(U ′
T ) = U ′[i, j]. From the hypothesis of the lemma combined with Proposition 4,

we know that val(det(U ′
T )) ≥ 0. Hence, val(U ′[i, j]) ≥ 0. Now applying Proposition 4,

limε→0 U ′[i, j] exists. ◁

Now we define the matrix Ũ ∈ Fr×n as follows: for all i ∈ [r] and j ∈ [n],

Ũ [i, j] := lim
ε→0

U ′[i, j].

From Claim 12, the entries of the matrix Ũ are well defined. Since determinant is a continuous
function,

lim
ε→0

det(U ′
S) = det(ŨS). (2)

Let limε→0 det(U[r]) = α. Consider the matrix Û ∈ Fr×n which exists by multiplying the
first row of Ũ by α, that is for all i ∈ [r] and j ∈ [n],

Û [i, j] =
{

α · Ũ [i, j] if i = 1
Ũ [i, j] otherwise.

The definition of Û implies that for any S ⊆ [n] of size r,

det(ÛS) = α · det(ŨS). (3)

From the definition of U ′,

lim
ε→0

det(US) = lim
ε→0

(det(U[r] · det(U ′
S)).

Applying Claim 11, limε→0 det(U ′
S) exists. Therefore,

lim
ε→0

det(US) = lim
ε→0

det(U[r]) · lim
ε→0

det(U ′
S)

= α · det(ŨS) [from Equation 2]

= det(ÛS) [from Equation 3].

This completes the proof of our lemma. ◀

Suppose that U, V are two matrices in F(ε)r×n with full row rank. Let limε→0(det(US) ·
det(VS)) exists for all S ⊆ [n] of size r. However, the limit value of det(US) and det(VS) at
ε = 0 individually may not exist for all S. Our next lemma shows that there exists two r × n

matrices Ũ and Ṽ such that the limit value of both det(US) ·det(VS) and det(ŨS) ·det(ṼS) at
ε = 0 are same and also the limit value of det(ŨS) and det(ṼS) at ε = 0 individually exists.

For a matrix U ∈ F(ε)r×n with full row rank, let us define

minval(U) := min
S∈([n]

r )
val(det(US)).
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▶ Lemma 13. Let U, V in F(ε)r×n with full row rank. Let limε→0 det(US) · det(VS) exists
for all S ⊆ [n] of size r. Then, there exist Ũ , Ṽ in F(ε)r×n such that for every S ⊆ [n] of
size r the following holds:

lim
ε→0

det(US) det(VS) =
(

lim
ε→0

det(ŨS)
)

·
(

lim
ε→0

det(ṼS)
)

.

Proof. When limε→0 det(US) det(VS) = 0 for all S ⊆ [n] of size r, the lemma is trivial
to prove. Now we consider the case when there exists an S ⊆ [n] of size r such that
limε→0 det(US) det(VS) ̸= 0. Next, we show that there exists a vector z ∈ Zn such that

minval(U · Diag(εz)) + minval(V · Diag(ε−z)) = 0,

where Diag(εz) is the diagonal matrix with (i, i)th entry as εzi . Let B1 and B2 be the base
families for the linear matroid represented by U and V , respectively. Let ω1 be a function
from 2[n] to Z ∪ {+∞} defined as follows: for all B ∈ 2[n],

ω1(B) =
{

val(det(UB)) if B ∈ B1
+∞ otherwise

Similarly, we can define ω2 : 2[n] → Z ∪ {+∞} for the matrix V . Now, from Lemma 8, both
([n], B1, ω1) and ([n], B2, ω2) are valuated matroids. Therefore, applying Lemma 9 with w as
the zero function on [n], there exists a weight function z : [n] −→ Z such that a common base
B ∈ B1 ∩ B2 minimizes ω1(B) + ω2(B) if and only if the following holds:
1. B is a minimum weight base for the matroid ([n], B1) with respect to ω1 + z.
2. B is a minimum weight base for the matroid ([n], B2) with respect to ω2 − z.
Abusing notation, let z also denote a vector in Zn with ith coordinate as z(i). Let U ′ =
U · Diag(εz) and V ′ = V · Diag(ε−z). From the definitions, minval(U ′) is the minimum weight
of a base of ([n], B1) with respect to ω1 + z. Similarly, minval(V ′) is the minimum weight of a
base of ([n], B2) with respect to ω2−z. Since for every S ⊆ [n] of size r, limε→0 det(US) det(VS)
exists, for all B ∈ B1 ∩ B2, val(det(UB)) + val(det(VB)) ≥ 0. On the other hand, from our
assumption, there exists an S ⊆ [n] of size r such that limε→0 det(US) det(VS) ̸= 0. Therefore,

min
B∈B1∩B2

val(det(UB)) + val(det(VB)) = 0.

This implies that

minval(U ′) + minval(V ′) = min
B∈B1

(ω1 + z)(B) + min
B∈B2

(ω2 − z)(B)

= min
B∈B1∩B2

ω1(B) + ω2(B)

= min
B∈B1∩B2

val(det(UB)) + val(det(VB))

= 0.

Let c = minval(U ′) = − minval(V ′). Let Ũ and Ṽ be the matrix obtained by multiplying the
first row of U ′ and V ′ by ε−c and εc, respectively. Thus, for all S ⊆ [n] of size r, we have
that

det(US) · det(VS) = det(U ′
S) · det(V ′

S) = det(ŨS) · det(ṼS),

and minval(Ũ) = minval(U ′) − c = 0. Similarly, minval(Ṽ ) = 0. This implies that for all
S ⊆ [n] of size r,

lim
ε→0

det(US) · det(VS) =
(

lim
ε→0

det(ŨS)
)

·
(

lim
ε→0

det(ṼS)
)

. ◀
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3.1 Proof of Theorem 1
In this subsection, we give the proof of Theorem 1. First, we prove for the case when A0 = 0.
From Observation 7, we get U, V ∈ F(ε)r×n such that

∑n
i=1 Aixi = UXV T where X is the

diagonal matrix with xi as its ith diagonal entry. Abusing notation, we use XS to denote∏
i∈S xi. Therefore,

f = lim
ε→0

det
(

n∑
i=1

Aixi

)
= lim

ε→0
det(UXV T )

= lim
ε→0

∑
S⊆[n],|S|=r

det(US) det(VS)XS [from Lemma 5]

=
∑

S⊆[n],|S|=r

(
lim
ε→0

det(US) det(VS)
)

XS .

In the last equality above, we can take the limit inside as f is defined if and only if the limit
exists for the coefficient of every monomial. Applying Lemma 13,

f =
∑

S⊆[n], |S|=r

(
lim
ε→0

det(ŨS)
)(

lim
ε→0

det(ṼS)
)

XS .

From Lemma 10, we have two r × n matrices Û and V̂ in Fr×n such that

f =
∑

S⊆[n], |S|=r

det(ÛS) det(V̂S)XS

= det(ÛXV̂ T ).

For all i ∈ [n], let Bi be the r × r rank one matrix defined as Û [i] · V̂ [i]T , where Û [i] and
V̂ [i] are the ith columns of Û and V̂ respectively. Then,

f = det(ÛXV̂ T ) = det(
n∑

i=1
Bixi).

This completes the proof of Theorem 1 where A0 = 0.
For the case when A0 ̸= 0, we first give the following lemma that essentially reduces it to

the previous case. This particular proof idea comes from Anderson, Shpilka, and Volk [2]
(see [15, Lemma 4.3]).

For positive integers m and n, let In denote the n × n identity matrix and 0m,n denote
the m × n rectangular matrix with all zeros.

▶ Lemma 14. Let P = det
(
A0 + UXV T

)
for some U, V in F(ε)r×n, A0 ∈ F(ε)r×r and X

is an n×n diagonal matrix with x1, x2, . . . , xn in the diagonal. Let X ′ be a (2n+r)× (2n+r)
diagonal matrix with x1, x2, . . . x2n+r in the diagonal. Then, there exist rectangular matrices
U ′, V ′ ∈ F(ε)(n+r)×(2n+r) such that the following holds:

Let Q be the polynomial in x1, x2, . . . xn obtained by putting xn+1, . . . , x2n+r equal to 1
in det(U ′X ′V ′T ). Then, P = Q.
If limε→0 P exists, then limε→0 det(U ′X ′V ′T ) also exists.

Proof. Let us define

U ′ =

 0n,n In V T

−U 0r,n A0

 and, V ′ =

 In In 0n,r

0r,n 0r,n Ir

 .
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Let X1 be a n × n diagonal matrix with xn+1, . . . , x2n in the diagonal and X2 be a r × r

diagonal matrix with x2n+1, . . . , x2n+r in the diagonal. We now consider U ′X ′V ′T . Notice
that,

U ′X ′V ′T =

 0n,n X1 V T X2

−UX 0r,n A0X2

·



In 0n,r

In 0n,r

0r,n Ir


=
[

X1 V T X2
−UX A0X2

]
.

Let A, B, C, D be matrices where A and D are square matrices and A is invertible. Then,
we have

det
(

A B

C D

)
= det(A). det(D − CA−1B)

Therefore,

det(U ′X ′V ′T ) = det(X1). det(A0X2 + UXX−1
1 V T X2)

= det(X1). det(A0 + UXX−1
1 V T ). det(X2).

It is easy to see that if we put the value of 1 to xn+1, . . . , x2n+r, we get det(A0 + UXV T ).
Also,

lim
ε→0

det(U ′X ′V ′T ) = det(X1). det(X2). lim
ε→0

det(A0 + UXX−1
1 V T ).

The second part of the lemma follows from the fact that if limε→0 P exists, then
limε→0 det(A0 + UXX−1

1 V T ) also exists as XX−1
1 can be treated as a diagonal matrix

with a different set of indeterminates. ◀

Now we prove for the case when A0 ̸= 0. Let f = det(A0 + UXV T ) and f ′ = det(U ′X ′V ′T ).
From the Lemma 14, limε→0 f ′ exists as it is given that limε→0 f exists. Just like we
discussed above for the case of A0 = 0, we can get Û ′, V̂ ′ ∈ F(n+r)×(2n+r) such that
limε→0 f ′ = det(Û ′X ′V̂ ′T ). For all i ∈ [2n+r], let Bi be the (n+r)×(n+r) rank one matrix
defined as Û ′[i] · V̂ ′[i]T , where Û ′[i] and V̂ ′[i] are the ith columns of Û ′ and V̂ ′ respectively.
Hence, limε→0 f ′ = det(

∑2n+r
i=1 Bixi). Let

∑2n+r
i=n+1 Bi = B0. From the first part of Lemma

14, limε→0 f = det(B0 +
∑n

i=1 Bixi).

3.2 Proof of Corollary 3
We will show the following lemma which directly implies Corollary 3.

▶ Lemma 15. Let A ∈ C(ε)n×n be a matrix of rank at most k and A[S] denote the minor
of A whose rows and columns are indexed by S ⊆ [n]. Let limε→0 A[S] exist for all subset
S ⊂ [n] of size k. Then, there exists B ∈ Cn×n such that for all S ⊂ [n] of size k,

lim
ε→0

A[S] = B[S]

Proof. The claim is trivial when rank(A) < k as all the minors are zero. Hence, we
assume that rank(A) = k. Let U, V ∈ C(ε)k×n such that UT , V is a rank-factorization of
A. This implies that A = UT .V and for any subset S ⊂ [n], A[S] = det(UT

S .VS). Since
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limε→0 A[S] = limε→0 det(US) det(VS) exists for all S ⊂ [n] of size k, from Lemma 13 there
exists Ũ , Ṽ in C(ε)r×n such that for every S ⊆ [n] of size k the following holds:

lim
ε→0

A[S] =
(

lim
ε→0

det(ŨS)
)

·
(

lim
ε→0

det(ṼS)
)

.

From Lemma 10, there exist two k × n matrices Û and V̂ ∈ Ck×n such that for all S ⊂ [n],
the following holds:

lim
ε→0

det(ŨS) = det(ÛS) and lim
ε→0

det(ṼS) = det(V̂S)

Let B = ÛT .V̂ . Hence, for all S ⊂ [n] of size k,

lim
ε→0

A[S] = det(ÛT
S ). det(V̂S) = det(ÛT

S .V̂S) = B[S]. ◀
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