
Reducing Tarski to Unique Tarski
(In the Black-Box Model)
Xi Chen #

Columbia University, New York, NY, USA

Yuhao Li #

Columbia University, New York, NY, USA

Mihalis Yannakakis #

Columbia University, New York, NY, USA

Abstract
We study the problem of finding a Tarski fixed point over the k-dimensional grid [n]k. We give a
black-box reduction from the Tarski problem to the same problem with an additional promise that
the input function has a unique fixed point. It implies that the Tarski problem and the unique
Tarski problem have exactly the same query complexity. Our reduction is based on a novel notion of
partial-information functions which we use to fool algorithms for the unique Tarski problem as if
they were working on a monotone function with a unique fixed point.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Exact and approximate computation of equilibria

Keywords and phrases Tarski fixed point, Query complexity, TFNP

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.21

Related Version ECCC Report: https://eccc.weizmann.ac.il/report/2023/073/

Funding Xi Chen: Supported by NSF grants IIS-1838154, CCF-2106429 and CCF-2107187.
Yuhao Li: Supported by NSF grants CCF-1563155, CCF-1703925, IIS-1838154, CCF-2106429 and
CCF-2107187.
Mihalis Yannakakis: Supported by NSF grants CCF-2107187 and CCF-2212233.

Acknowledgements We would like to thank anonymous CCC reviewers for their helpful comments
to improve the presentation of the paper.

1 Introduction

We start with the definition of monotone functions and state Tarski’s fixed point theorem [12]:

▶ Definition 1 (Monotone functions). Let (L,⪯) be a complete lattice. A function f : L → L
is said to be monotone if f(a) ⪯ f(b) for all a, b ∈ L with a ⪯ b.

▶ Theorem 2 (Tarski). For any complete lattice (L,⪯) and any monotone function f : L → L,
there must be a point x ∈ L such that f(x) = x, i.e., x is a fixed point. In fact, the fixed
points form a sublattice, with a greatest and a smallest element.

Tarski’s fixed point theorem has extensive applications in many fields, including for
example verification, semantics, game theory and economics. For example in game theory
there is an important class of games, called supermodular games (or games with strategic
complementarities) which model economic settings where a player’s best response is a
monotone function (or correspondence) of the other players’ actions [13, 14, 10]. These
games always have pure equilibria (in fact a lattice of pure equilibria) by Tarski’s theorem.
Computing a pure equilibrium in such a game corresponds to finding a Tarski fixed point.
In fact, as shown in [4], finding a pure equilibrium in supermodular games is essentially
equivalent to finding a fixed point of monotone functions.

© Xi Chen, Yuhao Li, and Mihalis Yannakakis;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xichen@cs.columbia.edu
mailto:yuhaoli@cs.columbia.edu
mailto:mihalis@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.21
https://eccc.weizmann.ac.il/report/2023/073/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Reducing Tarski to Unique Tarski (In the Black-Box Model)

There are several other types of games that reduce to the Tarski problem. For example,
Condon’s simple stochastic games [2] have been intensely studied both in theoretical computer
science as well as in the verification field (and they subsume other well-studied problems, such
as parity games); their complexity remains a notorious open problem. The problem can be
reduced to the Tarski problem of finding a fixed point of a given monotone function f , and in
fact in this case we can even guarantee that the function has a unique fixed point. A similar
property holds for the broader class of stochastic games defined originally by Shapley [11],
and studied extensively since then. These games have in general irrational solutions, but it
can be shown again that approximating the solution to any desired accuracy reduces to the
problem of computing a fixed point of a monotone function that is furthermore guaranteed to
have a unique fixed point (see [4] for more details). More generally, uniqueness of solutions
is a desirable property in many applications in game theory, economics, and other fields. For
sufficient conditions that ensure the uniqueness of Tarski fixed points, see [9] and references
therein.

Thus, these facts raise the question, how hard is it to find a fixed point of a given
monotone function? And if we know that the function has a unique fixed point, does this
make the problem easier?

In this paper, we study the deterministic query complexity of finding a fixed point of
a monotone function f over the complete lattice of a k-dimensional grid ([n]k,⪯), where
[n] denotes {1, . . . , n} and ⪯ denotes the natural partial order over Zk: a ⪯ b if and only
if ai ≤ bi for every i ∈ [k]. So a monotone function f : [n]k → [n]k satisfies f(a) ⪯ f(b)
for all a, b ∈ [n]k with a ⪯ b, and we write Fix(f) to denote the set of fixed points x of f

satisfying f(x) = x. In the applications, n is typically exponential in the input size and k is
polynomial. Thus, polynomial complexity in this context means polynomial in log n and k.
Under the query model, an algorithm has oracle access to an unknown monotone function
f : [n]k → [n]k. In each round, it can send a query x ∈ [n]k to the oracle to reveal f(x), and
it succeeds after making a query x that returns f(x) = x. We write Tarski(n, k) to denote
this problem.

Our understanding of the query complexity of Tarski(n, k) remains rather limited. On
the upper bound side, there are two basic algorithms. Tarski’s algorithm (or Kleene iteration
in a different literature) starts from the bottom element 1k of the lattice (or the top element
nk) and applies repeatedly f until it reaches a fixed point; the query complexity is Θ(nk) in
the worst case. Another algorithm by [3] applies a binary search strategy in a recursive way
and has query complexity O(logk n). More recently, [7] gave an algorithm for Tarski(n, k)
with O(log⌈2k/3⌉ n) queries, which was further improved to O(log⌈(k+1)/2⌉ n) in [1]. Both
algorithms of [7] and [1] are based on decomposition theorems that lead to more efficient
recursive schemes for Tarski fixed points.

On the lower bound side, [4] showed that Tarski(n, 2) requires Ω(log2 n) queries. Their
lower bound uses the family of “herringbone” functions which have a unique fixed point.
Therefore, the same Ω(log2 n) lower bound also holds for the unique Tarski fixed point
problem over [n]2, where the input function is not only monotone but also promised to have
a unique fixed point. Let UniqueTarski(n, k) denote the unique Tarski problem over [n]k.
Given that UniqueTarski(n, 2) is as hard as Tarski(n, 2), is it the case for general k? or
maybe UniqueTarski(n, k) is easier than Tarski(n, k) for larger k? This was posed as an
open question in [4].

Our main result is a black-box reduction from Tarski(n, k) to UniqueTarski(n, k),
which shows that the phenomenon observed in [4] between query complexities of Tarski(n, 2)
and UniqueTarski(n, 2) holds for general k.

X. Chen, Y. Li, and M. Yannakakis 21:3

▶ Theorem 3. Let qT(n, k) be the query complexity of Tarski(n, k) and qUT(n, k) be the
query complexity of UniqueTarski(n, k). Then qT(n, k) = qUT(n, k).

Remark. In fact, we will show that the query complexity of Tarski(n, k) is exactly the
same as that of a seemingly even easier (more structural) problem: finding a fixed point of a
monotone function over [n]k with the promise that every slice has a unique fixed point. See
Lemma 16 for more details.

Note that the query complexity of UniqueTarski(n, k) is trivially at most that of
Tarski(n, k). In the rest of the paper, we prove the other direction by giving a reduction
from Tarski(n, k) to UniqueTarski(n, k) via a novel framework we call partial information
reductions. We believe that this framework is of independent interest and we expect that it
can be applied to a wider range of search problems concerning their query complexities.

1.1 Sketch of the Reduction
Unlike standard reductions that map from instances to instances, our reduction transforms
any given algorithm for UniqueTarski (denoted by U) to an algorithm for Tarski (our
main algorithm, Algorithm 1) while keeping the query complexity the same. To the best of
our knowledge, we have not seen such a non-standard black-box reduction before, and we
view this as a conceptual contribution of this work. We would like to highlight the following
high-level roadmap: Algorithm 1 will simulate U , but provide it with modified answers to
its queries to the oracle. These modified answers are constructed adaptively on-the-fly, and
depend on what previous queries U has made. It may seem dangerous to modify the answers
to the queries in the first place, but our reduction makes sure that the answers fed to U are
always safe, in the sense that they always correspond to some monotone function with a
unique fixed point, and any fixed point that is found by U must also be a fixed point of the
original monotone function. Let’s explain the reduction in more detail next.

Let U be a deterministic query algorithm for UniqueTarski(n, k) with query complexity
q(n, k). Given any monotone function g : [n]k → [n]k that has a unique fixed point x∗, U
always finds x∗ by querying it within the first q(n, k) queries. At a high level, we would like
to simulate U to find a fixed point of any monotone function f : [n]k → [n]k as an input to
Tarski(n, k). But clearly we cannot run U on f directly since the latter may have multiple
fixed points and it is likely that after some queries, answers that U receives are not consistent
with any monotone function with a unique fixed point, in which case U may fail to find a
fixed point within q(n, k) queries. (See Figure 2 in Section 4 for an example.)

Instead, our reduction needs to serve as a surrogate between f and U to achieve the
following two goals that are seemingly contradictory to each other:

(i) On the one hand, we need to fool U by making sure that answers it receives during
the whole process are consistent with some monotone function that has a unique fixed
point.
So from U ’s point of view, the function it interacts with can totally be a monotone
function with a unique fixed point. Let’s refer to this function, which is made up by
our reduction, by g. Given that we cannot always return f(x) to each query x of U ,
the true input function f can potentially disagree significantly with the fake function g

that U interacts with (see the comparison of Figure 2b and 4d);
(ii) On the other hand, the way we answer queries to U (or the way we make up this fake

function g) needs to achieve that, whenever U finds a fixed point of the fake function g

(which always happens within q(n, k) queries if the first goal is met), the same point
must be a fixed point of the true input function f as well.

We achieve these goals using partial information functions (or PI functions in short).

CCC 2023

21:4 Reducing Tarski to Unique Tarski (In the Black-Box Model)

A PI function p over [n]k is a map from [n]k to {−1, 0, 1,≤,≥, ⋄}k. Intuitively a PI
function p reveals some partial information of an unknown function h : [n]k → [n]k. (For
example, p(x)i = 1 implies that h(x)i > xi, p(x)i =≥ implies that h(x)i ≥ xi and p(x)i = ⋄
implies no information about h(x)i; the connection will become cleaner after we introduce
the notion of simple functions at the beginning of Section 2.) Moreover, we say a PI function
p is monotone if it reveals some partial information of an unknown monotone function so
one should not be able to infer from p any violation to monotonicity; see Definition 7.

Let f : [n]k → [n]k be the input monotone function. Our main algorithm, Algorithm 1
solves Tarski(n, k) on f by simulating U round by round as follows: During the t-th round,
t = 1, 2, . . .,
1. Algorithm 1 runs U to obtain the t-th point qt ∈ [n]k that U would like to query;
2. Algorithm 1 queries f to obtain f(qt) and uses it to obtain the answer at ∈ [n]k to the

query. (As discussed earlier, at is not necessarily the same as f(qt); picking at based on
f(qt) and the query history is the part that heavily relies on the use of PI functions.)

3. Finally Algorithm 1 sends at to U as the result of its t-th query, and moves onto round
t + 1 (unless f(qt) = qt so a fixed point of f has already been found).

Algorithm 1 picks answers at to queries of U by maintaining a monotone PI function p

to connect f with U . After receiving the t-th query qt from U , Algorithm 1 uses f(qt) to
update the current PI function and then uses the updated PI function to set the answer
at to U . The design of the updating rule for the PI function (see the main subroutine
Generate-PI-Function in Section 3) to achieve both goals (i) and (ii) discussed earlier is
the most challenging part of the paper.

2 Partial-Information Functions

For a, b ∈ Zk with a ⪯ b, we write La,b to denote the set of points x ∈ Zk with a ⪯ x ⪯ b.
We say a function f : [n]k → [n]k is a simple function if it satisfies |f(x)i − xi| ≤ 1 for

all x ∈ [n]k and i ∈ [k] (i.e., f(x)i − xi ∈ {−1, 0, 1}). Let sgn(a) for a number a be 1, 0,−1
respectively if a > 0, a = 0, a < 0. We include the following folklore observations:

▶ Observation 4. For any monotone function f : [n]k → [n]k, let g : [n]k → [n]k be defined as

g(x)i := xi + sgn(f(x)i − xi), for all x ∈ [n]k and i ∈ [k].

Then g is a monotone simple function and satisfies Fix(g) = Fix(f).

It follows that for both Tarski and UniqueTarski, we may assume without loss of
generality that the input monotone function f : [n]k → [n]k is simple.

▶ Observation 5. A simple function f : [n]k → [n]k is monotone if and only if it satisfies
the following conditions:
(1) f(x)i = xi + 1 implies f(y)i = yi + 1 and f(y + ei)i ≥ yi + 1 for all y with x ⪯ y and

xi = yi;
(2) f(x)i = xi − 1 implies f(y)i = yi − 1 and f(y − ei)i ≤ yi − 1 for all y with x ⪰ y and

xi = yi; and
(3) f(x)i = xi implies (a) f(y)i ≤ yi for all y with x ⪰ y and xi = yi, and (b) f(y)i ≥ yi

for all y with x ⪯ y and xi = yi.

Observation 5 provides an alternative way to check the monotonicity of a simple function.
It will mainly serve to verify the monotonicity of the following introduced partial-information
functions. All functions from [n]k → [n]k we deal with from now on are assumed to be simple;
for convenience, we will skip the word “simple” in the rest of the paper.

X. Chen, Y. Li, and M. Yannakakis 21:5

⋄

≤ ≥

−1 0 1

Figure 1 The information partial order. Arrow means “dominates” or “more informative”.

Now we define partial-information (PI) functions. A PI function over [n]k is a function
from [n]k to {−1, 0, 1,≤,≥, ⋄}k. Intuitively a PI function reveals some partial information on
the values of an underlying function f : [n]k → [n]k; the next definition illustrates meanings
of symbols in {−1, 0, 1,≤,≥, ⋄}:

▶ Definition 6 (Consistency). A function g : [n]k → [n]k and a PI function p : [n]k →
{−1, 0, 1,≤,≥, ⋄}k are consistent if the following conditions hold for all x ∈ [n]k and i ∈ [k]:

p(x)i = −1 implies g(x)i − xi = −1;
p(x)i = 0 implies g(x)i − xi = 0;
p(x)i = 1 implies g(x)i − xi = 1;
p(x)i =≤ implies g(x)i − xi ∈ {−1, 0};
p(x)i =≥ implies g(x)i − xi ∈ {0, 1}; and
p(x)i = ⋄ implies nothing about g(x)i.

We introduce a natural partial order over symbols in {−1, 0, 1,≤,≥, ⋄}, illustrated in
Figure 1. We say α dominates β (or α is more informative than β, denoted by α⇒ β), for
some α, β ∈ {−1, 0, 1,≤,≥, ⋄}, if either α = β or there is a path from α to β. With this
notation, we have that g : [n]k → [n]k is consistent with a PI function p iff g(x)i−xi ⇒ p(x)i

for all x ∈ [n]k and i ∈ [k]. Given two PI functions p′, p : [n]k → {−1, 0, 1,≤,≥, ⋄}k, we say
p′ dominates p (or p′ is more informative than p, denoted by p′ ⇒ p) if p′(x)i ⇒ p(x)i for all
x ∈ [n]k and i ∈ [k].

Given that we are interested in monotone functions f : [n]k → [n]k, we introduce the
notion of monotone PI functions below. Intuitively a PI function p is monotone if it reveals
some partial information of a monotone function (so one cannot infer from p any violation to
monotonicity):

▶ Definition 7 (Monotone PI Functions). A PI function p : [n]k → {−1, 0, 1,≤,≥, ⋄}k is said
to be monotone if it satisfies the following conditions: For any x ∈ [n]k and i ∈ [k],
(1) p(x)i = 1 implies p(y)i = 1 and p(y + ei)i ∈ {1, 0,≥} for all y with x ⪯ y and xi = yi;
(2) p(x)i = −1 implies p(y)i = −1 and p(y − ei)i ∈ {−1, 0,≤} for all y with x ⪰ y and

xi = yi;
(3) p(x)i = 0 implies (a) p(y)i ∈ {0,−1,≤} for all y with x ⪰ y and xi = yi, and

(b) p(y)i ∈ {0, 1,≥} for all y with x ⪯ y and xi = yi;
(4) p(x)i =≤ implies p(y)i ∈ {−1,≤} for all y with x ⪰ y and xi = yi;
(5) p(x)i =≥ implies p(y)i ∈ {1,≥} for all y with x ⪯ y and xi = yi;
(6) If xi = 1, then p(x)i ∈ {0, 1,≥}; and
(7) If xi = n, then p(x)i ∈ {0,−1,≤}.
A PI function is weakly monotone if it satisfies (1)–(5) above, but not necessarily (6) and (7).

Note that items (6) and (7) are only about the boundary constraints. Weak monotonicity
will only appear for the simplicity of the proofs below and there are no technical details
behind them.

CCC 2023

21:6 Reducing Tarski to Unique Tarski (In the Black-Box Model)

The next lemma shows that every monotone PI function is consistent with at least one
monotone function. (Looking ahead, later in Section 3.2 we will give a sufficient condition for
a monotone PI function to be consistent with at least one monotone function with a unique
fixed point.)
▶ Lemma 8. For every monotone PI function p over [n]k, there exists a monotone function
g : [n]k → [n]k that is consistent with p.
Proof. Given p we define g : [n]k → [n]k as follows:

g(x)i :=
{

xi + p(x)i if p(x)i ∈ {−1, 0, 1};
xi otherwise.

We will prove g is a monotone function that is consistent with p by Observation 5.
Fix any point x and coordinate i.
Suppose that g(x)i = xi + 1, then we have p(x)i = 1. Since p(x)i = 1 implies p(y)i = 1

and p(y + ei)i ∈ {1, 0,≥} for all y such that x ⪯ y and xi = yi, we have g(x)i = xi + 1
implies g(y)i = yi + 1 and g(y + ei)i ≥ yi + 1 for all y such that x ⪯ y and xi = yi.

The proof of the case that g(x)i = xi − 1 is symmetric.
Suppose that g(x)i = xi, then we have p(x)i ∈ {0,≤,≥, ⋄}. This implies that (a) p(y)i ̸= 1

for all y such that x ⪰ y and xi = yi, and (b) p(y)i ̸= −1 for all y such that x ⪯ y and
xi = yi. So we have (a) g(y)i ≤ yi for all y such that x ⪰ y and xi = yi, and (b) g(y)i ≥ yi

for all y such that x ⪯ y and xi = yi. ◀

Given two elements α, β ∈ {−1, 0, 1,≤,≥, ⋄}, if their least upper bound (or join) in
the partial order exists, we write α ∩ β to denote it and say that α ∩ β is well defined;
otherwise (when their least upper bound does not exist), we say α ∩ β is not well defined.
(For example, ≥ ∩ ≤= 0 and ≥ ∩−1 is not well defined.) Given two PI functions p1, p2 :
[n]k → {−1, 0, 1,≤,≥, ⋄}k, we define their intersection p1 ∩ p2 to be the PI function p such
that p(x)i = p1(x)i ∩ p2(x)i for all x ∈ [n]k and i ∈ [k]. The intersection p1 ∩ p2 is well
defined only when p1(x)i ∩ p2(x)i is well defined for all x ∈ [n]k and i ∈ [k].

The reason that we introduce the operation of intersections is the following lemma which
we will often use to modify a given monotone PI function:
▶ Lemma 9. Let p1 be a monotone PI function and p2 be a weakly monotone PI function,
both over [n]k, such that p1 ∩ p2 is well defined. Then p1 ∩ p2 is also a monotone PI function
and it satisfies p1 ∩ p2 ⇒ p1.
Proof. The part about p1 ∩ p2 ⇒ p1 is trivial.

Note that p1 ∩ p2 satisfies (6) and (7) in Definition 7 since p1 is a monotone PI function.
So in what follows, we will verify (1)-(5) for p1 ∩ p2.

To show p1 ∩ p2 satisfies (1), fix x ∈ [n]k and i ∈ [k]. If p1 ∩ p2(x)i = 1, then either
p1(x)i = 1 or p2(x)i = 1. Suppose that pτ (x)i = 1 for τ ∈ {1, 2}. Then we have pτ (y)i = 1
and pτ (y + ei)i ∈ {1,≥} for all y ⪰ x and yi = xi. So we have p1 ∩ p2(y)i = 1 and
p1 ∩ p2(y + ei)i ∈ {1,≥} for all y ⪰ x and yi = xi.

Items (2)-(5) can be verified similarly. ◀

Given a monotone function f : [n]k → [n]k and a monotone PI function p over [n]k, we
define a function f |p : [n]k → [n]k as follows: For any x ∈ [n]k and i ∈ [k], let

f |p(x)i =


xi + p(x)i if p(x)i ∈ {−1, 0, 1};
max(f(x)i, xi) if p(x)i =≥;
min(f(x)i, xi) if p(x)i =≤;
f(x)i, if p(x)i = ⋄.

X. Chen, Y. Li, and M. Yannakakis 21:7

Note that f |p is a function that is consistent with p (but may disagree with f in general).
Looking ahead, our algorithm for Tarski running on f will maintain a monotone PI function
p and (essentially) use f |p to answer the next query from an algorithm for UniqueTarski it
simulates. As it will become clear in Section 3, using f |p (with a carefully updated p) instead
of f to answer queries is crucial in making sure answers to the algorithm for UniqueTarski
are consistent with a monotone function with a unique fixed point (given that the input
function f to Tarski can have multiple fixed points in general).

We record the following lemma about f |p:

▶ Lemma 10. Let f be a monotone function and p be a monotone PI function, both over
[n]k. Then f |p : [n]k → [n]k is also a monotone function and is consistent with p.

Proof. The part about f |p being consistent with p is easy, since f |p(x)i − xi = p(x)i when
p(x)i ∈ {−1, 0, 1}; f |p(x)i−xi ∈ {0, 1} when p(x)i =≥; f |p(x)i−xi ∈ {0,−1} when p(x)i =≤;
and f |p(x)i − xi ∈ {−1, 0, 1} when p(x)i = ⋄.

Note that since f is a function from [n]k to [n]k and p is a monotone PI function that
satisfies the boundary conditions (6) and (7), we have 1 ≤ f |p(x)i ≤ n for all x and i.

To show f |p is monotone, given any x ∈ [n]k and i ∈ [k], we consider three cases where
f |p(x)i = xi + 1, f |p(x)i = xi − 1, and f |p(x)i = xi.

Suppose that f |p(x)i = xi + 1. Then either f(x)i − xi = 1 or p(x)i = 1. If f(x)i − xi = 1
and p(x)i ∈ {1,≥, ⋄}, then we have (i) f(y)i − yi = 1 and f(y + ei)i ≥ yi + 1, and (ii)
p(y)i ∈ {1,≥, ⋄} and p(y + ei)i ̸= −1 for all y ⪰ x with yi = xi, which imply f |p(y)i − yi = 1
and f(y + ei)i ≥ yi + 1. The proof is similar in the case p(x)i = 1.

The proof of the case f |p(x)i = xi − 1 is symmetric.
Suppose that f |p(x)i = xi. Then one of the following four cases meets: (1) f(x)i = xi

and p(x)i ∈ {≤,≥, ⋄}; (2) p(x)i = 0; (3) f(x)i − xi = 1 and p(x)i =≤; (4) f(x)i − xi = −1
and p(x)i =≥. Let’s prove the first case and others are similar. Suppose that f(x)i = xi

and p(x)i ∈ {≤,≥, ⋄}, then we have f(y)i ≤ yi for all y ⪯ x with yi = xi and f(y)i ≥ yi for
all y ⪰ x with yi = xi. Since p(x)i ∈ {≤,≥, ⋄}, we have p(y)i ̸= 1 for all y ⪯ x with yi = xi

and p(y)i ̸= −1 for all y ⪰ x with yi = xi. This finishes the proof. ◀

Before moving to the main reduction, we need to introduce the notion of slices. We note
that the notion of slices was also used in the literature.

▶ Definition 11 (Slices). A slice of [n]k is specified by a tuple s ∈ ([n] ∪ {∗})k. Given s, we
write Ls to denote the set of points x such that xi = si for all i such that si ̸= ∗.

Given a monotone PI function p and a slice s, we say a point x ∈ Ls is a postfixed point
of p on the slice s if p(x)i ∈ {1, 0,≥} for all i with si = ∗ and a point x ∈ Ls is a prefixed
point of p on the slice s if p(x)i ∈ {−1, 0,≤} for all i with si = ∗.

We use Posts(p) to denote the set of postfixed points of p on s and Pres(p) to denote
the set of prefixed points of p on s.

▶ Lemma 12. Given a monotone PI function p, for any slice s, Posts(p) is a join-semilattice
and Pres(p) is a meet-semilattice.

Proof. Fix a slice s and consider any two points x, y ∈ Posts(p). Then we have p(x)i, p(y)i ∈
{1, 0,≥} for all i with si = ∗. Let z = x∨y be the join of x and y, namely, the coordinatewise
maximum of x and y. Then we have x ⪯ z and y ⪯ z and either zi = xi or zi = yi for all i

with si = ∗. So by the monotonicity of p, we have p(z)i ∈ {1, 0,≥}.
The proof of that Pres(p) is a meet-semilattice is similar. This finishes the proof. ◀

CCC 2023

21:8 Reducing Tarski to Unique Tarski (In the Black-Box Model)

Lemma 12 guarantees that the join of Posts(p) is well defined and the meet of Pres(p) is
well defined. We write Js(p) to denote the join of Posts(p) and Ms(p) to denote the meet of
Pres(p). When the context is clear, we may omit p for the simplicity of notations.

▶ Proposition 13. Given a monotone PI function p, for any slice s, we have p(Js)i ∈ {0,≥}
for all i with si = ∗ and p(Ms)i ∈ {0,≤} for all i with si = ∗.

Proof. Consider any point x ∈ Posts. Suppose that there exists i with si = ∗ such that
p(x)i = 1, then we have x + ei ∈ Posts as well. This means x can not be Js. So we have
p(Js)i ∈ {0,≥} for all i with si = ∗. The proof of p(Ms) is similar. ◀

3 The Partial-Information Reduction and Proof of Theorem 3

We prove Theorem 3 in this section. Let U be any query algorithm for UniqueTarski(n, k)
with query complexity q(n, k). We show that our main algorithm, Algorithm 1, can employ
U to solve Tarski(n, k) with the same number of queries.

Let’s continue from the sketch presented in Section 1.1 and elaborate more on how
Algorithm 1 works. Algorithm 1 computes the answer at to the t-th query qt of U by
maintaining a sequence of monotone PI functions p0, p1, . . ., where p0 is the initial monotone
PI function set by the boundary conditions (see line 2 of Algorithm 1) and pt is the monotone
PI function it maintains at the end of the t-th round. During the t-th round, Algorithm 1
first continues to run U to obtain the t-th query qt. It then queries f to obtain f(qt) and
uses the latter to update the PI function pt−1 to pt. Finally the answer at to U is set to be
f |pt(qt) ∈ [n]k.

The correctness of Algorithm 1 relies on the following list of properties of pt: For every t,
pt is a monotone PI function such that
1. pt(qj) + qj = aj for all j ∈ [t] (i.e., pt agrees with answers to all queries U has made so

far);
2. There is a monotone function g that is consistent with pt and has a unique fixed point;
3. Any fixed point of f |pt must be a fixed point of f .
To see that Algorithm 1 always finds a fixed point of f within q(n, k) queries, we note that
item 3 above implies that qt is a fixed point of f if at = f |pt(qt) is the same as qt. So the only
bad case is that at ̸= qt for all t = 1, . . . , q(n, k). However, this cannot happen because after
q(n, k) rounds, by item 2, there is a monotone function g that is consistent with pq(n,k) and
has a unique fixed point, and by item 1, g(qj) = aj for all j ∈ [q(n, k)]. So g is a monotone
function that has a unique fixed point, on which U fails to find a fixed point (since aj ̸= qj

for all j ∈ [q(n, k)]).

3.1 Subroutine Generate-PI-Function

The main challenge is about how to update the PI function pt−1 to pt during the t-th round
to maintain properties listed above for the correctness of the algorithm. This is done by
making calls to a subroutine called Generate-PI-Function (see Algorithm 1; in general it
may take k calls to Generate-PI-Function to obtain pt during the t-th round).

The subroutine Generate-PI-Function(p, q, ℓ, b) takes four inputs, namely, a PI function
p, a point q ∈ [n]k, an index ℓ ∈ [k], and a sign b ∈ {−1, 0, 1}, and returns a new PI
function. Before stating the main technical theorem about Generate-PI-Function, we need
the following definition:

▶ Definition 14. We say a monotone PI function p is safe if, for every slice s ∈ ([n]∪ {∗})k,
it satisfies

X. Chen, Y. Li, and M. Yannakakis 21:9

(1) for any point x ∈ Ls and x ≺ Js(p), p(x)i ∈ {−1, 0, 1} for all i with xi < Js(p)i and
p(x)i = 1 for some i with xi < Js(p)i; and

(2) for any point x ∈ Ls and x ≻Ms(p), p(x)i ∈ {−1, 0, 1} for all i with xi > Ms(p)i and
p(x)i = −1 for some i with xi > Ms(p)i.

We are now ready to state our main technical theorem:
▶ Theorem 15 (Main Technical Theorem). Given a monotone and safe PI function p, q ∈ [n]k,
ℓ ∈ [k], and b ∈ {−1, 0, 1} such that (p(q)ℓ, b) satisfies the following condition:

p(q)ℓ ∈ {≥, ⋄} if b = 1; p(q)ℓ ∈ {≤, ⋄} if b = −1; p(q)ℓ ∈ {≤,≥, ⋄} if b = 0, (1)

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisfies the following properties:
1. pr is also a monotone PI function;
2. pr ⇒ p;
3. pr(q)ℓ = b; and
4. pr remains safe.
Additionally, if f : [n]k → [n]k is a monotone function such that Fix(f |p) ⊆ Fix(f) and
f |p(q)ℓ = qℓ + b, then we have Fix(f |pr) ⊆ Fix(f |p) ⊆ Fix(f).

We prove Theorem 15 in the rest of the section. An important property of safe, monotone
PI functions is given in the following lemma which we prove in the next subsection.
▶ Lemma 16. If p is a monotone and safe PI function, then there is a monotone function g

that is consistent with p and has a unique fixed point in every slice s. In particular, g has a
unique fixed point in the whole lattice.

We can use Theorem 15 and Lemma 16 to prove the main theorem:

Proof of Theorem 3. Let f be the input function. We first note that every time Algorithm 1
obtains p(t,i) from p(t,i−1), either p(t,i) is the same as p(t,i−1) or p(t,i) is set to be

Generate-PI-Function
(
p(t,i−1), q, i, b

)
for some q, i, b that satisfy b = f |p(t,i−1)(q)i − qi and (1):

p(t,i−1)(q)i ∈ {≥, ⋄} if b = 1; p(t,i−1)(q)i ∈ {≤, ⋄} if b = −1; p(t,i−1)(q)i ∈ {≤, ≥, ⋄} if b = 0,

Given that p(1,0) = p0 is monotone and safe, it follows directly from an induction using
Theorem 15 that every PI function p in the following list:

p(1,0), . . . , p(1,k), p(2,0), . . . , p(2,k), . . . , p(t,0), . . . , p(t,k), . . .

is monotone and safe, and satisfies Fix(f |p) ⊆ Fix(f). Furthermore, every PI function p in
the list dominates all of its predecessors and p(t,i)(qt)i ∈ {−1, 0, 1} for all t, i. Combining
the latter with at = f |pt(qt), as well as that pt = p(t,k) dominates all of its predecessors, we
have at − qt = pt(qt). It follows that aj − qj = pt(qj) for all j ≤ t.

Let N = q(n, k). Consider the following two cases:
1. If at = qt for some t ∈ [N], then given that at = f |pt(qt) and Fix(f |pt) ⊆ Fix(f), we

have that qt is a fixed point of f . In this case Algorithm 1 succeeds within q(n, k) queries;
2. Otherwise, we have at ̸= qt for all t ∈ [N]. In this case, given that pN is both monotone

and safe, Lemma 16 implies that there exists a monotone function g that is consistent
with pN and has a unique fixed point. However, given that aj−qj = pN (qj) for all j ≤ N ,
we have that qj ̸= aj = g(qj) for all j ∈ [N]. As a result, U fails to find a fixed point of g

within its N queries q1, . . . , qN , which it should given that g is a monotone function with
a unique fixed point, a contradiction.

This finishes the proof of the theorem. ◀

CCC 2023

21:10 Reducing Tarski to Unique Tarski (In the Black-Box Model)

Algorithm 1 Algorithm for Tarski(n, k) via the algorithm U for UniqueTarski(n, k).

1 Let U be an algorithm for UniqueTarski(n, k).
2 Let p0 be an empty PI function with the initial boundary conditions, i.e., p0(x)i =≥

if xi = 1; p0(x)i =≤ if xi = n; and p0(x)i = ⋄ otherwise for all x ∈ [n]k and i ∈ [k].
3 Let t← 1 be the round number.
4 do
5 Let qt be the point queried by U and make one query to get f(qt).
6 Let p(t,0) ← pt−1.
7 for each i from 1 to k do
8 If p(t,i−1)(qt)i ∈ {−1, 0, 1}, let p(t,i) ← p(t,i−1).
9 Otherwise, let

p(t,i) ← Generate-PI-Function(p(t,i−1), qt, i, f |p(t,i−1)(qt)i − qt
i).

10 Let pt ← p(t,k) and use at ← f |pt(qt) as the answer to the algorithm U .
11 If qt = at, then return qt as the fixed point and terminate.
12 Else, let t← t + 1.
13 while;

Subroutine 2 Generate-PI-Function(p, q, ℓ, b).

1 If b = 1, then return Generate-PI-Function-Plus(p, q, ℓ).
2 If b = −1, then return Generate-PI-Function-Minus(p, q, ℓ).
3 If b = 0, then return Generate-PI-Function-Zero(p, q, ℓ).

Subroutine 3 Generate-PI-Function-Plus(p, q, ℓ).

1 Initialize p′ ← p.
2 Let p′(x)ℓ ← 1 and p′(x + eℓ)ℓ ← p′(x + eℓ)ℓ∩ ≥ for all x such that x ⪰ q and xℓ = qℓ.
3 Initialize p+(x)i ← ⋄ for all x and i as a weak PI function.
4 for each x ∈ [n]k and each i ∈ [k] do
5 if there exists y such that (a) x ⪯ y; (b) xi < yi; and (c) xj = yj for all j with

p′(y)j ̸∈ {1, 0,≥} then
6 If p′(x)i ∈ {1,≥, ⋄}, let p+(x)i ← 1 and p+(x + ei)i ← p+(x + ei)i∩ ≥.
7 If p′(x)i ∈ {0,≤}, let p+(x)i ←≥.

8 Let pr ← p′ ∩ p+.
9 return pr.

3.2 Consequences of PI Function Being Safe
The motivation to focus on Definition 14 is that they have nice properties given in the
following lemmas.

▶ Lemma 17. Suppose that a PI function p is monotone and safe, then we have
1. Js(p) ⪯Ms(p) for all slices s; and
2. g(x) ̸= x for any monotone function g that is consistent with p and any x such that there

exists s with x ̸∈ LJs,Ms .

Proof. We will prove the following claim, by which we will deduce this lemma.

X. Chen, Y. Li, and M. Yannakakis 21:11

Subroutine 4 Generate-PI-Function-Minus(p, q, ℓ).

1 Initialize p′ ← p.
2 Let p′(x)ℓ ← −1 and p′(x− eℓ)ℓ ← p′(x− eℓ)ℓ∩ ≤ for all x such that x ⪯ q and

xℓ = qℓ.
3 Initialize p−(x)i ← ⋄ for all x and i as a weak PI function.
4 for each x ∈ [n]k and each i ∈ [k] do
5 if there exists y such that (a) x ⪰ y; (b) xi > yi; and (c) xj = yj for all j with

p′(y)j ̸∈ {−1, 0,≤} then
6 If p′(x)i ∈ {−1,≤, ⋄}, let p−(x)i ← −1 and p−(x− ei)i ← p−(x− ei)i∩ ≤.
7 If p′(x)i ∈ {0,≥}, let p−(x)i ←≤.

8 Let pr ← p′ ∩ p−.
9 return pr.

Subroutine 5 Generate-PI-Function-Zero(p, q, ℓ).

1 Initialize pr ← p.
2 If qℓ > 1 and p(q − eℓ)ℓ ̸= 1, let pr ← Generate-PI-Function-Plus(pr, q − eℓ, ℓ).
3 If qℓ < n and p(q + eℓ)ℓ ̸= −1, let pr ← Generate-PI-Function-Minus(pr, q + eℓ, ℓ).
4 return pr.

▷ Claim 18. Given the PI function p is monotone and safe, we have
(a) for any point x ∈ Ls and x ̸⪯Ms(p), there exists i with si = ∗ and p(x)i = −1; and
(b) for any point x ∈ Ls and x ̸⪰ Js(p), there exists i with si = ∗ and p(x)i = 1.

Proof. We will show that the first item in Definition 14 implies item (b), and the second
item in Definition 14 implies item (a). Fix a slice s, a point x ∈ Ls and x ̸⪰ Js(p). We will
prove there exists i with si = ∗ and p(x)i = 1. The proof for the item (a) is similar.

Construct a sub-slice s′ as follows:

s′
i :=


si si ̸= ∗;
xi si = ∗ and xi ≥ Js(pr)i;
∗ otherwise (si = ∗ and xi < Js(pr)i).

Then we have s′
i = ∗ implies si = ∗ and x ∈ Ls′ . Let z be the join of x and Js(p). Note

that z ∈ Ls′ as well. In addition, we have xi < zi for all i with s′
i = ∗.

We will prove that z ∈ Posts′(p), so we will have z ⪯ Js′(p), which implies xi < Js′(p)i

for all i with s′
i. Since p is safe, we conclude that there exists i with s′

i = ∗ and p(x)i = 1.
Such an i also satisfies si = ∗.

The statement z ∈ Posts′(p) follows from the observation that whenever s′
i = ∗, we have

si = ∗ and zi = Js(p)i. Since p(Js)i ∈ {≥, 0}, we have p(z)i ∈ {1, 0,≥}. ◁

We show that each of items (a) and (b) is strong enough to deduce the first item
(Js(p) ⪯Ms(p) for all s). (This will be used in the proof of Lemma 22 below). Take item
(b) as an example: Given any point x ∈ Ls such that x ̸⪯Ms(p), since there exists i with
si = ∗ and p(x)i = −1, we have x ̸∈ Pres(p) by definition. So Js(p) must be somewhere that
is ⪯Ms(p).

For the second item, consider any point x such that there exists s with x ̸∈ LJs,Ms . Then
we know either x ̸⪯Ms(p) or x ̸⪰ Js(p). Since there exists i with p(x)i = −1 or p(x)i = 1,
we have g(x) ̸= x as long as g is a monotone function that is consistent with p. ◀

CCC 2023

21:12 Reducing Tarski to Unique Tarski (In the Black-Box Model)

We also present the proof of Lemma 16 in this subsection.

Proof of Lemma 16. We will refine p to a more informative monotone PI function p′ such
that every monotone function that is consistent with p′ has in each slice s only one fixed
point, Ms(p).

Consider a slice s, and let Ms = Ms(p) be the lowest prefixed point of p in the slice. By
Claim 18, for every point x ∈ Ls, if x ̸⪯ Ms, there exists i with si = ∗ and p(x)i = −1.
Consider a point x ∈ Ls where x ⪯ Ms, x ≠ Ms. If i is a coordinate with si = ∗ and
xi = (Ms)i then p(x)i ∈ {0,−1,≤} since p(Ms)i ∈ {0,−1,≤}. Since Ms is the lowest
prefixed point in Ls, there is a coordinate i such that si = ∗ and p(x)i ̸∈ {0,−1,≤}, therefore
p(x)i ∈ {1,≥, ⋄} and xi < (Ms)i.

Define p′ as follows. Initialize p′(x) = p(x) for all x ∈ [n]k. For each slice s and every point
x ∈ Ls where x ⪯Ms, x ̸= Ms, and each coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄},
set p′(x)i = 1, and for every y ⪰ x with yi = xi set p′(y)i = 1 and p′(y +ei)i = p′(y +ei)i∩ ≥.
(Note that p′(y + ei)i may be also updated due to other points x′, including possibly being
set to 1.)

We first claim that p′ is a well defined PI function and dominates (is more informative
than) p. Note that p′ changes the value of p(z)i for some points z and some coordinates
i by either setting the value to 1 or taking the join with ≥. Thus, to show the claim it
suffices to show that (i) p′ does not set the value to 1 for any point z and coordinate i such
that p(z)i ∈ {−1, 0,≤}, and (ii) it does not take the join with ≥ for any z and i such that
p(z)i = −1. To see this, consider any slice s, a point x ∈ Ls with x ⪯ Ms, x ̸= Ms, and a
coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄}. Since p(x)i ∈ {1,≥, ⋄}, the new value
p′(x)i = 1 dominates p(x)i. Consider any other point y ⪰ x with yi = xi. If p(y)i was in
{−1, 0,≤}, then p(x)i would also be in {−1, 0,≤} by Definition 7. We infer therefore that
p(y)i ∈ {1,≥, ⋄}, thus p′(y)i = 1 dominates p(y)i. Also, if p(y + ei)i was −1 then p(x)i

would be in {−1, 0,≤}. We infer therefore that p(y + ei)i ̸= −1, thus the join with ≥ exists,
it dominates p(y + ei)i, and is not −1. We conclude that p′ is well defined and dominates p.

We then claim that p′ is monotone. Consider any slice s, a point x ∈ Ls with x ⪯ Ms,
x ̸= Ms, and a coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄}. Then we know p′(x)i = 1.
Consider any other point y ⪰ x with yi = xi, we have p(y)i ∈ {1,≥, ⋄}, so p′(y)i would also
be 1. Also, since p(y + ei)i is not −1, we conclude that p′(y + ei)i ⇒ p(y + ei)i∩ ≥. Since
p′(y + ei)i is well defined, we infer therefore that p′(y + ei)i ∈ {≥, 0, 1}. For other points x

and coordinates i, we have p′(x)i = p(x)i and p′(x)i satisfying Definition 7 follow from the
monotonicity of p and p′ ⇒ p. We conclude that p′ is monotone.

The PI function p′ has the property that for every slice s and for every point x ∈ Ls with
x ̸= Ms, there exists a coordinate i such that either p′(x)i = −1 (this is the case if x ̸⪯Ms)
or p′(x)i = 1 (this is the case if x ⪯Ms). We conclude that any monotone function that is
consistent with p′ has only one fixed point in each slice s, namely, Ms. Since p′ dominates p,
any such monotone function is also consistent with p. In particular, there exists at least one
such monotone function, as constructed in Lemma 8. ◀

3.3 Preserving Monotonicity and Safety
In this subsection, we will prove items (1)–(4) of Theorem 15.

▶ Lemma 19 (Monotonicity Preserving of Subroutine 3). Given a monotone PI function p, a
point q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ {≥, ⋄} (which implies qℓ < n), we
have the PI function pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains monotone.
Furthermore, we have pr ⇒ p.

X. Chen, Y. Li, and M. Yannakakis 21:13

Proof. We start by proving the monotonicity of p′ on line 2. Since p(q)ℓ ∈ {≥, ⋄}, we have
p(x)ℓ ∈ {1,≥, ⋄} and p(x + eℓ)ℓ ∈ {0, 1,≤,≥, ⋄} for all x such that x ⪰ q and xℓ = qℓ. So
p(x + eℓ)ℓ∩ ≥ is well defined. The monotonicity of p′ follows from the observation that we
changed p′(q)ℓ ← 1 and maintained the consequences it should imply. Clearly, p′ ⇒ p.

After that, we will maintain a new function p+ from line 3 to line 7. Note that we will
update pr ← p′ ∩ p+ on line 8 and return it. So by Lemma 9, it suffices for us to prove p+ is
a weakly monotone PI function, and p′(x)i ∩ p+(x)i is well defined for all x and i at the end
of the for loop.

To this end, we will prove that, at the end of the for loop, item (1) in Definition 7 is true
for every point x and coordinate i such that p+(x)i = 1; and item (5) in Definition 7 is true
for every point x and coordinate i such that p+(x)i =≥. Before getting into details, we first
provide a clearer picture of the condition of if on line 5.

▷ Claim 20. Given a coordinate i and two points x ⪯ x′ such that xi = x′
i, if the if condition

on line 5 is true for x and i, then the if condition on line 5 is also true for x′ and i.

Proof. By definition, we know there exists y such that (a) x ⪯ y; (b) xi < yi; and (c)
xj = yj for all j with p′(y)j ̸∈ {1, 0,≥}. Now we explicitly show there also exists such a
y′ for x′. Let y′ be the join of x′ and y (i.e., y′

j = max(x′
j , yj) for all j). Then obviously

we have (a) x′ ⪯ y′. Since xi = x′
i, we have (b) y′

i = yi > xi = x′
i. For the last property

(c), note that y ⪯ y′. By the monotonicity, as long as y′
j = yj and p′(y)j ∈ {1, 0,≥}, we

have p′(y′)j ∈ {1, 0,≥}. The contrapositive tells us for every j such that p′(y′)j ̸∈ {1, 0,≥},
either y′

j ̸= yj (then y′
j = max(x′

j , yj) = x′
j) or p′(y)j ̸∈ {1, 0,≥} (then xj = yj , so

y′
j = max(x′

j , yj) = max(x′
j , xj) = x′

j), which is the statement of (c).
This finishes the existence of y′ for x′ and i. ◁

We divide the proof into two cases:
Case 1: item (1) in Definition 7. Fix a coordinate i and two points x ⪯ x′ such that

xi = x′
i. Suppose that p+(x)i = 1 (which means p′(x)i ∈ {1,≥, ⋄}). By monotonicity, we

have p′(x′)i ∈ {1,≥, ⋄} as well. Since the if condition on line 5 is true for x, by Claim 20,
we know that the if condition is also true for x′. Combining with p′(x′)i ∈ {1,≥, ⋄}, we
know that p+(x′)i ← 1 and p+(x′ + ei)i is updated by p+(x′ + ei)i∩ ≥ on line 6, which
means p+(x′)i = 1 and p+(x′ + ei)i ∈ {1,≥} at the end of the for loop.

Case 2: item (5) in Definition 7. Fix a coordinate i and two points x ⪯ x′ and xi = x′
i.

Suppose that p+(x)i =≥. We will prove p+(x′)i ∈ {1,≥} at the end of the for loop.
There are two possibilities: p+(x)i is updated on line 6 or line 7. If p+(x)i is updated on
line 6, then we have p+(x′ − ei)i = 1 and p+(x′)i ∈ {1,≥}. If p+(x)i is updated on line 7
(which means p′(x)i ∈ {0,≤}), then we have p′(x′)i ̸= −1. Meanwhile, by Claim 20, we
know that the if condition on line 5 is true. So p+(x′)i will be updated by either 1 or ≥.

This finishes the proof that p+ is a weakly monotone PI function before line 8.
The final step is to show that p′(x)i ∩ p+(x)i is well defined for all x and i, which follows

from the observation that p+(x)i = 1 only if p′(x)i ∈ {1,≥, ⋄} and p+(x)i =≥ only if
p′(x)i ∈ {0, 1,≤,≥, ⋄} for all x and i. ◀

Symmetrically, we conclude the following lemma.

▶ Lemma 21 (Monotonicity Preserving of Subroutine 4). Given a monotone PI function p, a
point q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ {≤, ⋄} (which implies qℓ > 1), we
have the function pr returned by Generate-PI-Function-Minus(p, q, ℓ) remains monotone.
Furthermore, we have pr ⇒ p.

CCC 2023

21:14 Reducing Tarski to Unique Tarski (In the Black-Box Model)

▶ Lemma 22 (Safety Preserving of Subroutine 3). Given a monotone and safe PI function
p : [n]k → {−1, 0, 1,≤,≥, ⋄}k, a point q and a coordinate ℓ such that p(q)ℓ ∈ {≥, ⋄}, we have
the PI function pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains safe.

Proof. Since p(q)ℓ ∈ {≥, ⋄}, we know that pr returned by Generate-PI-Function-
Plus(p, q, ℓ) is also monotone and pr ⇒ p by Lemma 19.

Note that in the subroutine Generate-PI-Function-Plus, pr is obtained by only adding
1 and ≥ on the function p. So we have Ms(pr) = Ms(p) for every slice s. By the same reason,
p is safe, and pr ⇒ p, we have for any point x ∈ Ls with x ≻Ms(pr), pr(x)i ∈ {−1, 0, 1} for
all i with xi > Ms(pr)i and pr(x)i = −1 for some i with xi > Ms(pr)i for all slices s. As
a corollary, we have Js(pr) ⪯Ms(pr) for all s, derived from the proof of Lemma 17. (This
corollary will be used in this proof later).

So we will focus on proving the first item in Definition 14 for pr, namely, we will prove
for any point x ∈ Ls with x ≺ Js(pr), pr(x)i ∈ {−1, 0, 1} for all i such that xi < Js(pr)i and
pr(x)i = 1 for some i with xi < Js(pr)i.

We first prove the first part: for any point x ∈ Ls and x ≺ Js(pr), pr(x)i ∈ {−1, 0, 1} for
all i such that xi < Js(pr)i. Fix arbitrarily a slice s, a point x ∈ Ls such that x ≺ Js(pr)
and i such that xi < Js(pr)i. We will show that the if condition on line 5 is true for
x and i. (Note that we need to show there exists a point y such that (a) x ⪯ y; (b)
xi < yi; and (c) xj = yj for all j with p′(y)j ̸∈ {1, 0,≥}. One may try to directly use
Js(pr) to serve as that y. But note that the definition of Js(pr) only guarantees that
xj = yj for all j with pr(y)j ̸∈ {1, 0,≥} instead of what we need in (c) (which concerns
p′(y)). So extra effort is needed here.)

Let Y := {y | there exists i′ such that Js(pr)− ei′ ⪯ y, (Js(pr)− ei′)i′ < yi′ and (Js(pr)−
ei′)j = yj for all j with p′(y)j ̸∈ {1, 0,≥}}. Let y∗ be the join of Y ∪ {Js(pr)}. Then we
prove the following claim.

▷ Claim 23. y∗ could serve as the y for the if condition on line 5 for x and i.

Proof. Since x ⪯ Js(pr) and xi < Js(pr)i, we have x ⪯ y∗ and xi < y∗
i . So in what follows,

we will show p′(y∗)j ∈ {1, 0,≥} for all j such that xj < y∗
j .

If Y = ∅, then we know that p+(Js(pr))i = ⋄ for all i (since any y ∈ Y along with the i′

should active the condition on line 5, which will update (Js(pr))i′). So we have pr(Js(pr))i =
p′(Js(pr))i for all i, which implies xj = Js(pr)j for all j with p′(Js(pr))j ̸∈ {1, 0,≥}. This
means y∗ = Js(pr) itself could serve as the y for the if condition on line 5 for x and i.

Now let’s consider the case Y ̸= ∅ and let j be such that xj < y∗
j . Let y ∈ Y be such

that yj = y∗
j (which must exist since Js(pr) ⪯ y for all y ∈ Y). Since Js(pr)j ≤ y∗

j , we have
(Js(pr)− ej)j < yj . So we have p′(y)j ∈ {1, 0,≥}, which implies p′(y∗)j ∈ {1, 0,≥} as well.

This finishes the proof. ◁

Claim 23 tells us that y∗ could serve as the y for the if condition on line 5 for x and i.
So we know that p+(x)i ∈ {1,≥}. Furthermore, p+(x)i =≥ only if p′(x)i ∈ {0,≤}, which
implies pr(x)i ∈ {−1, 0, 1}.

We then prove the second part: for any point x ∈ Ls and x ≺ Js(pr), pr(x)i = 1 for
some i with xi < Js(pr)i. Fix arbitrarily a slice s and a point x ∈ Ls such that x ≺ Js(pr).
Assume for the sake of contradiction that pr(x)i ∈ {−1, 0} for all i with xi < Js(pr)i. Then
construct a new slice s′ as follows:

s′
i :=


si si ̸= ∗;
xi si = ∗ and xi = Js(pr)i;
∗ otherwise (si = ∗ and xi < Js(pr)i).

X. Chen, Y. Li, and M. Yannakakis 21:15

Then clearly x, Js(pr) ∈ Ls′ and xi < (Js(pr))i for all i with s′
i = ∗. Note that pr(Js(pr))i ∈

{≥, 0} for all i with s′
i = ∗. However, we have pr(x)i ∈ {−1, 0} for all i with s′

i = ∗ by
assumption. This means Js′(pr) ̸⪯Ms′(pr), which leads to a contradiction.

This finishes the proof. ◀

Again, symmetrically, we conclude the following lemma.

▶ Lemma 24 (Safety Preserving of Subroutine 4). Given a monotone and safe PI function
p : [n]k → {−1, 0, 1,≤,≥, ⋄}, a point q and a coordinate i such that p(q)i ∈ {≤, ⋄}, we have
the PI function pr returned by Generate-PI-Function-Minus(p, q, i) remains safe.

Before proving the analogs for Generate-PI-Function-Zero, we first derive a simple
but crucial characterization for any 1-dimensional slice s from the safety.

▷ Claim 25. Given a monotone and safe PI function p, and any 1-dimensional slice s with
its free coordinate j, we have

p(x)j = 1 for all x ∈ Ls and x ≺ Js; and
p(x)j = −1 for all x ∈ Ls and x ≻Ms.

In addition, if Js = Ms then p(Js)j = p(Ms)j = 0; otherwise (Js ≺Ms), we have
p(x)j = ⋄ for all Js ≺ x ≺Ms; and
p(Js)j =≥ and p(Ms)j =≤.

Proof. Note that in 1-dimensional slice, for any point x ∈ Ls, x ̸⪰ Js is actually equivalent
to x ≺ Js. So by the first item of the Definition 14, we have p(x)j = 1 for all x ∈ Ls and
x ≺ Js. Symmetrically, we also have p(x)j = −1 for all x ∈ Ls and x ≻Ms.

Given that Js ⪯Ms by Lemma 17, we divide the proof into two simple cases.
Case 1: Js = Ms. Note that by Proposition 13, we have p(Js)j ∈ {0,≥} and p(Ms)j ∈
{0,≤}. Take the intersection then we have p(Js)j = p(Ms)j = 0;

Case 2: Js ≺ Ms. Given s is a 1-dimensional slice and Js(p) ≺ Ms(p), for any point
Js(p) ≺ x ≺Ms(p), the only way that is consistent with the definition of Js(p) and Ms(p)
is to have p(x)j = ⋄.

Then we move to p(Js)j . By Proposition 13, we have p(Js)j ∈ {0,≥}. Since Js ≺ Ms,
we know that p(Js)j =≥. Symmetrically, we have p(Ms)j =≤. ◁

Now we are ready to present the analogs for Generate-PI-Function-Zero.

▶ Lemma 26 (Monotonicity and Safety Preserving of Subroutine 5). Given a monotone and
safe PI function p : [n]k → {−1, 0, 1,≤,≥, ⋄}, a point q, and a coordinate ℓ such that p(q)ℓ ∈
{≤,≥, ⋄}, we have the PI function pr returned by Generate-PI-Function-Zero(p, q, ℓ) re-
mains monotone and safe. Furthermore, we have pr ⇒ p.

Proof. We first prove two easy cases.

Case 1: p(q)ℓ =≥. We note that in this case, line 2 (the call of Generate-PI-
Function-Plus) will be skipped, since we have either qℓ = 1 or p(q − eℓ)ℓ = 1 given p is
safe. So when we run line 3, either it is also skipped then nothing gets changed or this
lemma can be deduced directly by Lemma 21 and Lemma 24, whose conditions can be
verified easily.

Case 2: p(q)ℓ =≤. This case follows from a similar reason. It is easy to show line 3 (the
call of Generate-PI-Function-Minus) will be skipped and this lemma can be deduced
directly by Lemma 19 and Lemma 22.

CCC 2023

21:16 Reducing Tarski to Unique Tarski (In the Black-Box Model)

The following claim essentially proves the last trickier case.

▷ Claim 27. Suppose that we are given a monotone and safe PI function p : [n]k →
{−1, 0, 1,≤,≥, ⋄}, a point q and a coordinate ℓ such that 1 < qℓ < n and p(q)ℓ = ⋄. Let
pr be the PI function returned by Generate-PI-Function-Plus(p, q − eℓ, ℓ), then we have
pr(q)ℓ =≥ (so that pr(q + eℓ)ℓ ∈ {≤, ⋄}).

Proof. Note that p′(q)ℓ =≥ at the end of line 2. So it suffices for us to prove that p+(q)ℓ ̸= 1
at the end of for loop.

Assume that p+(q)ℓ = 1 for the sake of contradiction. Then we know there exists y such
that (a) q ⪯ y; (b) qℓ < yℓ; and (c) qj = yj for all j with p′(y)j ̸∈ {1, 0,≥}. Since qℓ < yℓ,
we have p′(y)j = p(y)j for all j. So we have (a) q ⪯ y; (b) qℓ < yℓ; and (c) qj = yj for all j

with p(y)j ̸∈ {1, 0,≥}. Define the slice s as follows:

sj :=
{

yj qj = yj ;
∗ otherwise .

Then we have q, y ∈ Ls and y ∈ Posts(p). Since q ⪯ y and qℓ < yℓ, by the first property in
Definition 14, we know that p(q)ℓ ̸= ⋄, which contradicts the condition that p(q)ℓ = ⋄.

This finishes the proof. ◁

Case 3: p(q)ℓ = ⋄.

This implies that 1 < qℓ < n. At the end of line 2, by Lemma 19 and Lemma 22, we have
pr remains monotone and safe. Furthermore, pr ⇒ p. Now by Claim 27, we know that
pr(q)ℓ =≥, which means pr(q + eℓ) ∈ {≤, ⋄} by Claim 25.

So at the end of line 3, by Lemma 21 and Lemma 24 (which need the condition of
pr(q + eℓ) ∈ {≤, ⋄}), we have pr remains monotone and safe. Furthermore, pr ⇒ p.

This finishes the proof. ◀

▶ Lemma 28. Given a monotone and safe PI function p, a point q ∈ [n]k, a coordinate
ℓ ∈ [k], and b ∈ {−1, 0, 1} such that (p(q)ℓ, b) satisfies the following condition:

p(q)ℓ ∈ {≥, ⋄} if b = 1; p(q)ℓ ∈ {≤, ⋄} if b = −1; p(q)ℓ ∈ {≤,≥, ⋄} if b = 0,

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisfies pr(q)ℓ = b.

Proof. When b = 1, we have p′(q)ℓ = 1 at the end of line 2. Since pr ⇒ p′, we have pr(q)ℓ = 1
as well. The case of b = −1 is similar.

If qℓ = 1, qℓ = n, or p(q)ℓ ̸= ⋄, then pr(q)ℓ = 0 can be derived by previous cases since at
most one of Generate-PI-Function-Plus and Generate-PI-Function-Minus is called. For
the case 1 < qℓ < n and p(q)ℓ = ⋄, by Claim 27, we have both Generate-PI-Function-Plus
and Generate-PI-Function-Minus are called and pr(q − eℓ)ℓ = 1 and pr(q − eℓ)ℓ = −1,
which forces pr(q)ℓ = 0 since p is monotone. ◀

3.4 Not Creating New Fixed Points
▶ Lemma 29 (Fixed Points of Subroutine 3). Given a monotone function f : [n]k → [n]k, a
PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;
p(q)ℓ ∈ {≥, ⋄};
f |p(q + eℓ)ℓ ≥ qℓ + 1; and
Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Plus(p, q, ℓ) satisfies Fix(f |pr) ⊆
Fix(f |p) ⊆ Fix(f).

X. Chen, Y. Li, and M. Yannakakis 21:17

Proof. Note that whenever we have pr(x)i ≠ p(x)i for some x and i, it must be the case that
pr(x)i = 1 or pr(x)i = p(x)i∩ ≥. If pr(x)i = 1, then we have f |pr (x) ̸= x, which means x is
not a fixed point of f |pr . So we only need to analyze the case that p(x)i ≠ pr(x)i = p(x)i∩ ≥.

Fix arbitrary z and i such that p(z)i ̸= pr(z)i = p(z)i∩ ≥. First consider the updating
rule on line 2, in which case i = ℓ and z = x + eℓ for some x ⪰ q and xℓ = qℓ, then we have
f |p(z)ℓ ≥ zℓ by the third condition. Note that it suffices for us to know f |p(x)i ≥ xi, since it
implies that either f |p(x)i = f |pr (x)i or f |pr (x)i = xi + 1 since pr(x)i ∈ {0, 1,≥} given that
pr(x)i = p(x)i∩ ≥.

Next, we consider the case that p+(z)i is updated on line 6 and 7, where we will show
f |pr (x) ̸= x. Let y be such that (a) z ⪯ y; (b) zi − 1 < yi (zi ≤ yi); and (c) zj = yj for all j

with p(y)j ̸∈ {1, 0,≥} on line 5. Define a slice s as follows:

sj :=
{

yj p(y)j ̸∈ {1, 0,≥};
∗ otherwise.

Then we have z, y ∈ Ls and z ⪯ Js(p) (given that z ⪯ y and y ⪯ Js(p)). Further note
that z ≠ Js(p), otherwise we have p(z)i = pr(z)i = p(z)i∩ ≥. So it suffices for us to argue
f |p(z) ̸= z for all z ≺ Js(p), which follows from that p is safe and Lemma 17.

This finishes the proof. ◀

We conclude the analog for Generate-PI-Function-Minus.

▶ Lemma 30 (Fixed Points Preserving of Subroutine 4). Given a monotone function f : [n]k →
[n]k, a PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;
p(q)ℓ ∈ {≤, ⋄};
f |p(q − eℓ)ℓ ≤ qℓ − 1; and
Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Minus(p, q, ℓ) satisfies Fix(f |pr) ⊆
Fix(f |p) ⊆ Fix(f).

▶ Lemma 31 (Fixed Points of Subroutine 5). Given a monotone function f : [n]k → [n]k, a
PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;
p(q)ℓ ∈ {≤,≥, ⋄};
f |p(q)ℓ = qℓ; and
Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Zero(p, q, ℓ) satisfies Fix(f |pr) ⊆
Fix(f |p) ⊆ Fix(f).

Proof. Let us consider the non-trivial case where both subroutines
Generate-PI-Function-Plus and Generate-PI-Function-Minus are called. Other-
wise, this lemma can be derived by either Lemma 29 or Lemma 30 (given that f |p(q)ℓ = qℓ).

Suppose that both subroutines are called, then we have 1 < qℓ < n and p(q)ℓ = ⋄. Since
f |p(q)ℓ = qℓ, we have f(q)ℓ = qℓ.

By Claim 27, we know that at the end of line 2, we have pr(q)ℓ =≥ and pr(q+eℓ)ℓ ∈ {≤, ⋄}.
At this time, we still have f |pr (q)ℓ = qℓ as well as other properties in the condition of this
lemma by Lemmas 19, 22, and 29. So this lemma can be derived by Lemmas 21, 24, and 30.

This finishes the proof. ◀

CCC 2023

21:18 Reducing Tarski to Unique Tarski (In the Black-Box Model)

4 An Illustrating Example

In this section, we illustrate how our reduction works in one concrete but tricky example.
Recall that we have to make sure our Algorithm 1 works for any monotone function and
any algorithm solving UniqueTarski. For simplicity, we pick the following 2D example:
a monotone function f : [6]2 → [6]2 with f(3, 4) = (4, 3) and f(4, 3) = (3, 4) as shown in
Figure 2a, as well as an algorithm U for UniqueTarski, which will first query (3, 4), given
the answer f(3, 4) = (4, 3), then query (4, 3).

(a) A monotone function f : [6]2 → [6]2 with
f(3, 4) = (4, 3) and f(4, 3) = (3, 4).

(b) The standard partial information derived by
(3, 4) and (4, 3), described in the light blue color.
The solid arrows mean −1 or 1 and the dashed
arrows mean ≤ or ≥ (the same rule applies below).

Figure 2 A 2D example for which after two queries the algorithm U for UniqueTarski will fail.

(a) The partial information by adding f(3, 4)1 = 4. (b) The safe PI function constructed by Algorithm 1.
The new information is described in the green color
(the same rule applies below).

(c) The partial information by adding f(3, 4)2 = 3. (d) The safe PI function constructed by Algorithm 1.

Figure 3 The evolution of PI function when adding f(3, 4)1 = 4 and f(3, 4)2 = 3.

X. Chen, Y. Li, and M. Yannakakis 21:19

(a) The partial information by adding f(4, 3)1 = 3. (b) The safe PI function constructed by Algorithm 1.

(c) The partial information by adding f(4, 3)2 = 4. (d) The safe PI function constructed by Algorithm 1.

Figure 4 The evolution of PI function when adding f(4, 3)1 = 3 and f(4, 3)2 = 4.

Note that the function (actually partial function) in Figure 2a does not violate monoton-
icity. But clearly, no monotone function that is consistent with Figure 2a has a unique fixed
point. This is because the partial information derived from f(3, 4) = (4, 3) and f(4, 3) = (3, 4)
is sufficient to conclude the existence of fixed points in both the bottom left corner and top
right corner, as shown in Figure 2b. Observe that if the algorithm U is not fooled, it could
immediately reject the function f and return “the underlying function has multiple fixed
points” once it gets the true answer f(4, 3) = (3, 4).

Perhaps surprisingly, our reduction will modify the answer the algorithm U gets when
querying (3, 4), by creating safe PI functions p that satisfy Fix(f |p) ⊆ Fix(f) (the formal
statement is in Theorem 15).

We show how the PI function evolves step by step in Figure 3 and 4. The figures on
the left-hand side are obtained by adding one piece of information (namely, f(3, 4)1 = 4,
f(3, 4)2 = 3, f(4, 3)1 = 3, and f(4, 3)2 = 4). The figures on the right-hand side are obtained
by the Subroutine Generate-PI-Function. Note that in the last step after Figure 4b, we
will try to add the last piece of information f(4, 3)2 = 4. However, since p(4, 3)2 =≤ already,
the algorithm U will get f |p(4, 3)2 = 3.

It is easy to verify that all PI functions of the figures on the right-hand side are safe and
satisfy Fix(f |p) ⊆ Fix(f). In particular, for Figure 4d, every point outside the bottom left
corner is certainly not a fixed point of f |p, and the fixed point(s) in the bottom left corner is
not affected.

CCC 2023

21:20 Reducing Tarski to Unique Tarski (In the Black-Box Model)

5 Promise Problem versus TFNP Version

The problems Tarski(n, k) and UniqueTarski(n, k) are promise problems. In the former,
we want to compute a fixed point of the given function under the promise (condition) that it
is monotone; in the latter the function is promised to be monotone and have a unique fixed
point.

From a promise problem, one can define a total search problem, where on any given
arbitrary input one seeks either a desired solution as in the promise problem, or a violation
certificate showing that the input does not satisfy the promise. The total search version of
the Tarski problem is formally the following search problem.

▶ Definition 32 (Total search version of Tarski(n, k)). Given a function f : [n]k → [n]k,
find one of the following:

a point x ∈ [n]k such that f(x) = x; or
two points x, y ∈ [n]k such that x ⪯ y and f(x) ̸⪯ f(y).

In the black box setting, the function f is given by a black box (an oracle). In the white box
setting, the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates
and k ∗ ⌈log n⌉ output gates.

The total search version of Tarski in the white box setting is in TFNP, in fact it is PLS
∩ PPAD. Any algorithm for the total search version of a promise problem (whether in the
white box or the black box setting) can be obviously used also to solve the promise problem,
so the total version is always at least as hard as the promise problem. In general the converse
may not hold, since in the total search version, the algorithm is not allowed to simply fail if
the input does not satisfy the promise, but it must provide a violation certificate (and in
general the complexity of the total problem may depend on the type of certificate that is
required). In the case of the Tarski problem in the black box setting however it is easy to
see that the total version is no harder than the promise problem. This is because of the
following property.

▶ Lemma 33. Let Q = {q1, . . . , qm} be a set of query points in [n]k and A = {a1, . . . , am}
the corresponding answers of the black box. There is a monotone function f that is consistent
with all the answers (i.e such that f(qi) = ai for all i ∈ [m]) if and only if there is no pair
i, j such that qi ⪯ qj and ai ̸⪯ aj.

Proof. If there is a pair i, j such that qi ⪯ qj and ai ̸⪯ aj then clearly there is no monotone
function f that is consistent with the answers. Suppose now that there is no such pair.
Define the function f as follows: For every point x ∈ [n]k and every coordinate i, set
f(x)i = min{aj

i | x ⪯ qj}; if the set on the right-hand side is empty then set f(x)i = n. We
have to show that f is monotone and is consistent with the answers.

Consider any two points x ⪯ y and any coordinate i. Then y ⪯ qj implies x ⪯ qj , thus
f(x)i = min{aj

i | x ⪯ qj} ≤ f(y)i = min{aj
i | y ⪯ qj}. Therefore, f is monotone.

By the definition of f , for any query point qt and coordinate i, f(qt)i = min{aj
i | qt ⪯

qj} ≤ at
i. If f(qt)i < at

i then there is another query point qj such that qt ⪯ qj and aj
i < at

i,
hence at ̸⪯ aj . ◀

▶ Corollary 34. In the black-box setting, suppose that Tarski(n, k) (the promise problem)
can be solved in q(n, k) queries and t(n, k) time, then total search version of Tarski(n, k)
can be solved in q(n, k) queries and O(t(n, k) + q(n, k)2 · k) time.

X. Chen, Y. Li, and M. Yannakakis 21:21

Proof. Run the algorithm for the promise problem. Either the algorithm will find a fixed
point within the query and time complexity of the promise problem, or two of the query
points provide a violation certificate. ◀

We showed that Tarski(n, k) reduces to UniqueTarski(n, k) with the same query
complexity. Therefore, we have.

▶ Corollary 35. Any black-box algorithm for UniqueTarski(n, k) (the promise problem) can
be used to solve also the total search version of Tarski(n, k) with the same query complexity.

We can define a total search version of UniqueTarski(n, k) that includes as a possible
answer also a violation certificate of uniqueness. One way to define it is as follows.

▶ Definition 36 (Total search version of UniqueTarski(n, k)). Given a function f : [n]k →
[n]k, find one of the following:

a point x ∈ [n]k such that f(x) = x; or
two points x, y ∈ [n]k such that x ⪯ y and f(x) ̸⪯ f(y); or
two points x, y ∈ [n]k such that x ⪯ f(x), y ⪰ f(y) and x ̸⪯ y.

In the black box setting, the function f is given by a black box (an oracle). In the white box
setting, the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates
and k ∗ ⌈log n⌉ output gates.

Note that if f is monotone and x ⪯ f(x) then f has a fixed point in Lx,nk , and if y ⪰ f(y)
then f has a fixed point in L1k,y. If x ̸⪯ y then L1k,y and Lx,nk are disjoint, and hence f

has at least two fixed points. Clearly, the total search version of Tarski(n, k) is at least as
hard as that of UniqueTarski(n, k), both in the white box and the black box setting, since
the latter includes one more option for an acceptable output. It is not much harder however.
Let T-Tarski(n, k) and T-UniqueTarski(n, k) denote the total search versions of the two
problems, as defined above.

▶ Theorem 37. If T-UniqueTarski(n, k) can be solved in q(n, k) queries in the black box
setting, then T-Tarski(n, k) can be solved in q(n, k) queries. If T-UniqueTarski(n, k) can
be solved in time t(n, k) in the black box (respectively, white box) setting, then T-Tarski(n, k)
can be solved in time O(t(n, k) ∗ (k · log n)) in the black box (resp. white box) setting.

Proof. The statement in the first sentence follows from Corollary 35. Next, we show the
statement in the second sentence.

Given a black-box or white-box algorithm U for T-UniqueTarski(n, k), the algorithm
for T-Tarski(n, k) in the same setting is as follows. Use the algorithm U to find a solution
of T-UniqueTarski(n, k). If the solution is a fixed point (i.e., a point x ∈ [n]k such that
f(x) = x) or a violation certificate of monotonicity (i.e., two points x, y ∈ [n]k such that
x ⪯ y and f(x) ̸⪯ f(y)) then we are done, since they are also solution of T-Tarski(n, k).
Otherwise, we find a solution that is a violation certificate of uniqueness (i.e., two points
x, y ∈ [n]k such that x ⪯ f(x), y ⪰ f(y) and x ̸⪯ y). Then there exists i such that xi > yi,
which means either xi > n/2 or yi ≤ n/2. If xi > n/2, then we shrink the search space to
Lx,nk and recursively call U to find a solution in Lx,nk ; If yi ≤ n/2, then we shrink the search
space to L1k,y and recursively call U to find a solution in L1k,y. The function f may map a
point q in the reduced space to a point outside the space; in that case the point q together
with either the top or the bottom point of the reduced space form a violation certificate for
monotonicity. In the black box setting, if the algorithm ever queries such a point q then we
immediately get a violation of monotonicity and can terminate. In the white box setting,

CCC 2023

21:22 Reducing Tarski to Unique Tarski (In the Black-Box Model)

when we recurse to the reduced space, we replace the circuit for f with a modified circuit for
a function f ′ which restricts the coordinates of the output point to lie in the reduced space.
When the recursive call returns a solution to T-Tarski for the reduced space, i.e. either a
fixed point x of f ′ or a pair of points x, y that certify that f ′ is not monotone, then we test
if f and f ′ have the same value on these points. If they do, then they constitute a solution
for f in the original space; if one of them does not, then that point with the bottom or the
top element provide a certificate for the violation of monotonicity of f .

The search space goes down by a factor of two after each call of U . So after at most
k · log n many rounds, we can find a solution of T-Tarski(n, k). ◀

6 Discussion and Open Problems

Our results resolve an open question in [4] and could potentially shed new light on the
upper bounds and lower bounds of the query complexity of Tarski(n, k). As we showed,
Tarski(n, k) is no harder, with respect to query complexity, than the special case of monotone
functions that have a unique fixed point in the lattice, and even further, have a unique fixed
point in every slice of the lattice. There is a lot of structure in such monotone functions. In
a function f with a unique fixed point, the least fixed point and the greatest fixed point
coincide. There is a path connecting the bottom element 1k of the lattice with the top
element nk, the fixed point lies on this path, and the function f on all points in this path
point in the direction of the fixed point. The same structure holds for every slice if the
function has a unique fixed point on all slices. This structure may well be useful in helping
to design an algorithm with low complexity. On the lower bound side, it may also provide a
useful framework; indeed the lower bound constructions for two dimensions in [4] use this
structure. Can we use uniqueness to improve the bounds on the query complexity of Tarski?

A second question concerns the time complexity of the algorithms in the black box setting.
Our reduction involves the maintenance of a partial information function p that is defined
over the whole lattice. A straightforward implementation would take of course exponential
time. Note however that we do not need to compute p on the whole domain; we only need to
be able to compute p on demand on specific points, namely the query points of the Unique
Tarski algorithm. Is it possible to implement the algorithm so that it runs in polynomial time
in the number of queries? More generally, does the black-box time complexity of Tarski(n, k)
reduce also to that of UniqueTarski(n, k)?

Regarding the white-box complexity, we know that the total search version of Tarski(n, k)
is in PLS ∩ PPAD [4] and thus by the results of [5, 8], it is in the classes CLS
(Continuous-Local-Search) and EOPL (End-of-Potential-Line). Is the total search version of
UniqueTarski in the class UEOPL (Unique-EOPL) [6]? Is it hard for UEOPL?

References
1 Xi Chen and Yuhao Li. Improved upper bounds for finding tarski fixed points. In Proceedings

of the 23rd ACM Conference on Economics and Computation, pages 1108–1118, 2022.
2 Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203–

224, 1992.
3 Chuangyin Dang, Qi Qi, and Yinyu Ye. Computational models and complexities of tarski’s

fixed points. Technical report, Stanford University, 2011.
4 Kousha Etessami, Christos Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis. Tarski’s

theorem, supermodular games, and the complexity of equilibria. In 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

X. Chen, Y. Li, and M. Yannakakis 21:23

5 John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The complexity of
gradient descent: CLS = PPAD ∩ PLS. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 46–59. ACM, 2021.

6 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential line.
J. Comput. Syst. Sci., 114:1–35, 2020.

7 John Fearnley, Dömötör Pálvölgyi, and Rahul Savani. A faster algorithm for finding tarski
fixed points. ACM Transactions on Algorithms (TALG), 18(3):1–23, 2022.

8 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Further collapses in TFNP. In 37th Computational Complexity
Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

9 Massimo Marinacci and Luigi Montrucchio. Unique tarski fixed points. Math. Oper. Res.,
44(4):1174–1191, 2019. doi:10.1287/moor.2018.0959.

10 Paul Milgrom and John Roberts. Rationalizability, learning, and equilibrium in games
with strategic complementarities. Econometrica: Journal of the Econometric Society, pages
1255–1277, 1990.

11 L. Shapley. Stochastic games. Proc. Nat. Acad. Sci., 39(10):1095–1100, 1953.
12 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of

Mathematics, 5(2):285–309, 1955.
13 Donald M Topkis. Equilibrium points in nonzero-sum n-person submodular games. Siam

Journal on control and optimization, 17(6):773–787, 1979.
14 Donald M Topkis. Supermodularity and Complementarity. Princeton University Press, 1998.

CCC 2023

https://doi.org/10.1287/moor.2018.0959

	1 Introduction
	1.1 Sketch of the Reduction

	2 Partial-Information Functions
	3 The Partial-Information Reduction and Proof of Theorem 3
	3.1 Subroutine Generate-PI-Function
	3.2 Consequences of PI Function Being Safe
	3.3 Preserving Monotonicity and Safety
	3.4 Not Creating New Fixed Points

	4 An Illustrating Example
	5 Promise Problem versus TFNP Version
	6 Discussion and Open Problems

