
Translationally Invariant Constraint Optimization
Problems
Dorit Aharonov #

Department of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Sandy Irani #

Department of Computer Science, University of California Irvine, CA, USA
The Simons Institute for the Theory of Computing, University of California Berkeley, CA, USA

Abstract
We study the complexity of classical constraint satisfaction problems on a 2D grid. Specifically, we
consider the computational complexity of function versions of such problems, with the additional
restriction that the constraints are translationally invariant, namely, the variables are located at
the vertices of a 2D grid and the constraint between every pair of adjacent variables is the same
in each dimension. The only input to the problem is thus the size of the grid. This problem is
equivalent to one of the most interesting problems in classical physics, namely, computing the lowest
energy of a classical system of particles on the grid. We provide a tight characterization of the
complexity of this problem, and show that it is complete for the class FPNEXP. Gottesman and
Irani (FOCS 2009) also studied classical constraint satisfaction problems using this strong notion of
translational-invariance; they show that the problem of deciding whether the cost of the optimal
assignment is below a given threshold is NEXP-complete. Our result is thus a strengthening of
their result from the decision version to the function version of the problem. Our result can also be
viewed as a generalization to the translationally invariant setting, of Krentel’s famous result from
1988, showing that the function version of SAT is complete for the class FPNP.

An essential ingredient in the proof is a study of the computational complexity of a gapped
variant of the problem. We show that it is NEXP-hard to approximate the cost of the optimal
assignment to within an additive error of Ω(N1/4), where the grid size is N × N . To the best of our
knowledge, no gapped result is known for CSPs on the grid, even in the non-translationally invariant
case. This might be of independent interest. As a byproduct of our results, we also show that a
decision version of the optimization problem which asks whether the cost of the optimal assignment
is odd or even is also complete for PNEXP.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Constraint satisfaction, Tiling, Translational-invariance

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.23

Related Version Full Version: https://arxiv.org/abs/2209.08731

Acknowledgements We are grateful to the Simons Institute for the Theory of Computing, at whose
program on the “The Quantum Wave in Computing” this collaboration began.

1 Introduction

More than half a century ago, Cook and Levin inaugurated the field of NP-completness.
The fact that the Constraint Satisfaction Problem (CSP) is NP-complete has been the
cornerstone of our understanding and approach to important optimization problems arising
in countless applications. However, the importance of CSP and its NP-completeness stems
not only from its central role in studying the complexity of optimization problems; in fact,
the computational complexity of CSP is of major importance to physics as well.

In classical many body physics, the most basic notion is the local Hamiltonian, which
expresses the total energy of a system of particles. It turns out that this local Hamiltonian
can be viewed as a CSP. The energy of the system is written in such a Hamiltonian as the

© Dorit Aharonov and Sandy Irani;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dorit.aharonov@gmail.com
mailto:irani@ics.uci.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.23
https://arxiv.org/abs/2209.08731
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Translationally Invariant Constraint Optimization Problems

sum of terms, each of which describes the energy interaction between constant-sized clusters
of particles. These terms can be viewed as local constraints and finding whether the lowest
energy state of such a system is below a given threshold or above it, is a special case of CSP.
The classical local Hamiltonian problem was famously shown to be NP-complete in many
cases by Barahona and others [6, 13], and the understanding of its complexity for a variety
of Hamiltonians such as the Ising model, the Potts model, and more, has had a fundamental
impact in several research areas in physics, including statistical mechanics and mathematical
physics.

The theory of NP-completeness also has a natural generalization to the quantum setting.
Like classical NP-completeness, the study of quantum NP-completeness has had a tremendous
impact on our understanding of the relevant field in physics, namely condensed matter physics.
More specifically, the Cook-Levin theorem was generalized by Kitaev [14] roughly 25 years
ago to show that the following problem is QMA-complete: Given a local Hamiltonian with
quantum energy interactions describing the energy in a quantum many-body system, decide
whether the ground energy is above some value or below another. This problem had been
intensely studied in recent years [14, 9, 16, 2]; importantly, over the past two decades, the
study of local Hamiltonians and their computational complexity has led to the birth of a new
field called “Hamiltonian complexity”, which studies problems related to condensed matter
physics, through the computational lens [9]. Both in classical statistical mechanics as well as
in condensed matter and many-body quantum physics, the importance of the computational
perspective has become one of the fundamental underpinnings of research today.

From the physics point of view, however, the general CSP setting commonly studied in
computer science, in which each constraint is specified separately and independently based
on the particular optimization problem of interest, seems quite contrived. By and large,
physicists study local Hamiltonians, be them classical or quantum, in a translational-invariant
(TI) setting. In this scenario, the particles are located at the vertices of a geometric lattice
and all the terms acting on adjacent pairs of particles along a particular dimension are
the same. Quantum and classical Hamiltonians are used to model the energy interactions
of particles in a material. If the material is uniform, then it is natural that the energy
interaction between particles would be the same throughout. Thus, in order for a theory of
CSPs to be relevant in physics, it must consider this translational-invariance requirement,
which introduces many new complexity challenges.

The model most relevant to physics is TI in a very strong sense: the dimension of the
individual particles and the Hamiltonian term acting on each pair of adjacent particles in a
lattice are fixed parameters of the problem. When considering finite systems, the only input
is an integer N indicating the size of the system. This set-up corresponds to the fact that in
physics, different Hamiltonians represent completely different physical systems. For example,
studying the ground energy (or some other quantity) in the so-called AKLT model [1] is
considered to be a completely different problem than studying the same quantity in, say, the
Ising model1.

Important progress on the computational complexity of translationally-invariant CSPs
has been made in recent years. In particular, Gottesman and Irani [12] studied TI CSPs
both in the classical and in the quantum setting, and showed hardness results in both cases.
Since the size of the grid can be given by logarithmically many bits, and there is no other
input, one encounters an exponential factor compared to the standard version of CSP. Thus

1 Some of the recent work on the quantum TI local Hamiltonian problem [7] adopt a weaker notion in
which the input also includes the Hamiltonian term that is applied to each pair of particles, allowing
the Hamiltonian to be tuned to the size of the system. This model is mainly considered in quantum
Hamiltonian complexity, but have not been a topic of study in physics.

D. Aharonov and S. Irani 23:3

the results in [12] show NEXP- and QMAEXP -completeness for the classical and quantum
variants of the problem, respectively. A tightly related line of work studies TI infinite
systems [3, 21, 8] and considers computability and computational complexity in that domain,
namely in the so-called thermodynamic limit. Although the focus in the current work is on
finite systems, constructions for finite systems have played an important role for the results
in the thermodynamic limit. In particular, all the results in [3, 21, 8] use a finite construction
layered on top of a certain type of aperiodic tiling of the infinite grid.

However, all the results mentioned above have studied a decision version of the CSP
problem. In contrast, in classical as well as in quantum physics, when considering the local
Hamiltonian, the main problem of interest is the problem of finding the lowest possible energy
for the Hamiltonian over all possible states – namely, the ground energy, which is one of the
most important notions in physics. Thus, when considering CSPs with a physics motivation
in mind, it seems that the function version of the CSP is a more relevant version of the
problem than the decision version. In this setting, the question is not whether all constraints
can be satisfied, but what is the maximum number of constraints that can be satisfied by
any assignment, or, in a weighted variant, what is the cost of the optimal assignment which
minimizes the weighted sum of violated constraints. We note that computing the cost of
the optimal solution is in fact also the more natural version of CSPs in many combinatorial
applications (to give just two examples, max-cut and max independent set).

What is known about the computational complexity of the function version of CSPs?
In 1988, Krentel [15] proved that the function problem for constraint satisfaction is FPNP-
complete. Krentel’s proof is significantly more involved technically than that of the Cook-
Levin’s theorem which characterizes the complexity of the decision variant of CSPs. In stark
contrast to the theory of decision problems and NP-completeness, the function version of
CSP seems to have received significantly less attention in the TCS literature.

In particular, to the best of our knowledge, the computational complexity of function
CSPs in the TI setting, has remained open. In this paper we provide a tight characterization
of its complexity, and show that the function version of TI CSP on a 2-dimensional grid is
complete for FPNEXP. This result thus strengthens Krentel’s construction for general CSPs
to apply even TI systems for two and higher dimensions. The result is also a generalization
of Gottesman-Irani who prove hardness for 2D TI systems for the standard decision problem,
where one only needs to determine if the ground energy is below a given threshold. One of
the key technical challenges in our result is to effectively create large (Θ(N ϵ)) costs on an
N × N grid using only two constant-sized terms which apply one in the horizontal and one in
the vertical direction. Thus, as a stepping stone to the more complex result for the function
version of TI 2D CSPs, we show a fault-tolerant result which we believe is of interest on its
own, namely that it is NEXP-complete to even approximate the ground energy of 2D TI
CSPs to within an additive Θ(N1/4).

2 Problem Definitions, Results and Main Challenges

It is most convenient to present our results using the language of the weighted tiling problem,
where we focus here on the two dimensional case2. In this tiling problem, one is asked to tile
an N × N 2D grid with a set of 1 × 1 tiles. The tiles come in different colors and only some
pairs of colors can be placed next to each other in either the horizontal or vertical directions.
More precisely, a set of tiling rules T is a triple (T, δH , δV), where T is a finite set of tile types

2 Our version of tiling is equivalent to the more common Wang tiles [19].

CCC 2023

23:4 Translationally Invariant Constraint Optimization Problems

T = {t1, . . . , td}, and δH and δV are functions from T × T to Z. For (t, t′) ∈ T × T , δh(t, t′)
is the cost of putting a tile of type t immediately to the left of a tile of type t′ and δv(t, t′) is
the cost of putting a tile of type t immediately above a tile of type t′. Let λ0(T (N)) be the
minimum cost of tiling an N × N grid with tiling rules T . The goal is to tile the grid with
minimal total cost. Note that this problem is directly analogous to a classical Hamiltonian
in 2D. We first define a function version of the problem.

▶ Definition 1. T -FWT (Function Weighted Tiling)
Input: An integer N specified with ⌊log N + 1⌋ bits
Output: λ0(T (N))

▶ Theorem 2. (Main) There exists a set of tiling rules T such that T -FWT is FPNEXP-
complete.

We note that the fact that the function problem is complete for 2D immediately implies
that it is complete for any grid of dimension at least 2 since the 2D construction can be
embedded into a higher dimensional grid. The 1D CSP case is poly-time computable using
dynamic programming.

The upper bound in Theorem 2 is easy: it can be achieved by binary search with access
to an oracle for the decision problem. For the lower bound, one encounters a challenge.
The reduction must encode in the tiling rules the computation of a polynomial time TM
(TM) with access to a NEXP oracle. If an instance given to the oracle is a yes instance, the
computation of the verifier can be encoded into the tiling rules. However no instances cannot
be directly verified in this way. Krentel’s proof that the function problem of weighted SAT is
FPNP-complete [15] overcomes this challenge; let us recall it and then explain the problem
in carrying it over to the TI setting. Krentel uses an accounting scheme [15, 17] that applies
a cost to every string z representing guesses for the sequence of responses to all the oracle
queries made. The accounting scheme needs to ensure that the minimum cost z is equal to
the correct sequence of oracle responses, z̃. yes and no guesses are treated differently, due to
the fact that the verifier can check yes instances (and thus incorrect yes guesses can incur a
very high cost), but no guesses, cannot be directly verified. In Krentel’s scheme, no guesses
incur a more modest cost, whether correct or not, and their cost must decrease exponentially.
This is because the oracle queries are adaptive; an incorrect oracle response could potentially
change all the oracle queries made in the future and so it is important that the penalty for
an incorrect guess on the ith query is higher than the cost that could potentially be saved
on all future queries. The weights on clauses that implement this accounting scheme are
multiplied by a large power of two to ensure that they are the dominant factor in determining
the optimal assignment.

The difficulty in applying Krentel’s accounting scheme in the TI setting is that the costs
must grow with the size of the input. Therefore, it is not possible to apply the costs directly
into the tiling rules which are of fixed constant size. A natural attempt to circumvent the
problem is to assign the required large penalty by many tiles, each of which would acquire a
constant penalty; however, the problem in implementing this approach is that Cook-Levin
type reductions from computations to tilings are very brittle, as a single error can potentially
derail the entire computation. For example, imagine inserting a row that does not have a
TM head. There will be a single fault where the head disappears from one row to the next,
but every row thereafter will contain the unchanging contents of the TM tape without a
head to execute a next step. This imposes a challenge since when enforcing large costs by
using many tiles, or constraints, we need to make sure that many of these constraints are
indeed violated in order to incur the required large penalty.

D. Aharonov and S. Irani 23:5

We provide a construction which circumvents this issue by exhibiting some fault tolerance
properties. We thus prove what can be viewed as a gapped version or a hardness of approxi-
mation result, which is then a natural stepping stone to implementing the more intricate
function required in Krentel’s accounting scheme. To this end we define an approximation
version of weighted tiling:

▶ Definition 3. (T , f)-GWT (Gapped Weighted Tiling)
Input: An integer N specified with ⌊log N + 1⌋ bits. Two integers a and b such that
b − a ≥ f(N).
Output: Determine whether λ0(T (N)) ≤ a or λ0(T (N)) ≥ b.

▶ Theorem 4. There exists a set of tiling rules T such that (T , f)-GWT is NEXP-complete
for a function f(n) = Ω(N1/4).

This shows that it is NEXP-hard to even approximate the cost of the optimal tiling to
within an additive error that is Ω(N1/4). This can be viewed as a gapped version of the
results of [12]; the proof constructs a reduction mapping the computation into a tiling such
that even in the presence of O(N1/4) faults, the computation encoded by the tiling is able to
proceed and produce approximately correct results.

Theorem 4 is of potential interest on its own. It might resemble a PCP type result, but
the model we consider differs from the standard PCP setting in two ways: the first is that
the underlying graph is a grid, rather than a graph with much higher connectivity, and the
second is translational-invariance. It is not possible to obtain a hardness of approximation
result with an additive error that is linear in N (as one has in the PCP theorem) on any
finite dimensional lattice because such graphs do not have the necessary expansion properties.
For example, in 2D, one could divide the grid into b × b squares for b = Θ(

√
log N) and

solve each square optimally in polynomial time. The resulting solution would be within an
additive N/

√
log N of the optimal solution. To the best of our knowledge, no gapped version

was proven before for CSP problem set on a constant dimensional grid, even without the TI
restriction.

Finally, our results provide tight characterizations of the complexity of the following
decision problem;

▶ Definition 5. T -PWT (Parity Weighted Tiling)
Input: An integer N specified with ⌊log N + 1⌋ bits
Output: Determine whether λ0(T (N)) is odd or even.

The proof is very similar to the proof of Theorem 2. The result on Parity Weighted Tiling
illustrates that decision problems related to CSP can be complete for an oracle class just like
the function problem. The crucial difference between the threshold decision problem (is the
cost of the optimal solution less than t?) which is NEXP-complete and the parity problem
which is PNEXP-complete is that the parity problem still seems to require determining the
optimal cost. This seems to make the characterization of its complexity as challenging as for
the function version of the problem.

Organization. We next proceed to an overview of the proofs. We start with the setup of
tiling rules and layers in Section 3. Overviews of the proofs of the Theorems are given in
subsection 4. We end with related work and open questions in Section 5. The complete
proofs are given in the full version of the paper [4].

CCC 2023

23:6 Translationally Invariant Constraint Optimization Problems

3 Tiling Rules and Layers

We assume that there is a special tile denoted by □ which must be placed around the
perimeter of the grid to be tiled. Moreover, no □ tile can be placed in the interior of the
grid. We will return later to enforcing this condition in the context of the different problems.
The tiles on the interior will be composed of multiple layers where each layer has its own set
of tile types. A tile type for an internal tile in the overall construction is described by a tile
type for each of the layers.

For ease of exposition, we allow our tiling rules to also apply to local squares of four tiles.
This can easily then be translated to two-local constraints on tiles, as in our definition of the
tiling problem. This simple transition is described in more detail in the full version. For the
remainder of the paper our tiling rules include constraints on local squares of four tiles, as
well as pairs of horizontal tiles.

If the four tiles in a square are all interior tiles, then each possible pattern of four square
tiles within a layer will be designated as legal or illegal. The overall cost of placing four
interior tiles in a local square together will be function of whether the square for each layer
is legal or illegal. For the Gapped Weighted Tiling, the cost will be just the number of layers
for which the square pattern is illegal. For the Function Weighted Tiling and Weighted Tiling
Parity, illegal squares at different layers will contribute different amounts to the cost.

In general, a no-cost tiling of each Layer represents a computational process where each
row represents the state of a TM. The computation reverses direction from one layer to the
next. The rows of a tiling of an N × N grid will be numbered r0 through rN−1 from bottom
to top. When referring to the rows in a particular layer, we will exclude the border rows and
order the rows according to the computation direction. So the first row of Layer 1, which
proceeds from bottom to top, is row r1 and the last row of Layer 1 is rN−2. Layer 2 proceeds
from top to bottom, so the first row for Layer 2 is rN−2 and the last row is r1.

For the most part, the rules governing the tiling apply to the tile types within each
individual layer. The different layers only interact at the lower and upper border of the grid.
This is how the output of one process (on Layer i) is translated into the input for the next
process (on Layer i + 1). For example, a square may be illegal if the two lower tiles are □ □,
and the two upper tiles violate certain constraints between the Layer i and Layer i + 1 types.
Some of the layers will also have additional constraints on which tiles can be next to each
other in the horizontal direction. Each type of violated constraint is given a name described
below.

▶ Definition 6 (Faults in a Tiling). An occurrence of any of the illegal patterns described
in the constructions is called a fault. A tiling with no faults, will correspond to a fault-free
computation.

There will be some additional costs (described later) associated with a computation
ending in a rejecting state. These are not considered faults because they can happen in
correct computations. Figure 1 illustrates the different types of tiling constraints.

Illegal Computation Squares: For each layer, every pattern of four tile types will be desig-
nated as a legal computation square or an illegal computation square. In general, these
rules enforce that the tiling within the layer represents a consistent execution of a TM.
The full version of the paper [4] gives a set of rules to translate the rules of a TM into
legal and illegal computation squares.

Illegal Pairs: Some of the layers will have additional constraints on which tiles can be placed
next to each other in the horizontal direction. Each ordered pair of tiles types for that
layer will be designated as a legal pair or an illegal pair.

D. Aharonov and S. Irani 23:7

Illegal Initialization Squares: For each layer, there are also some initialization rules that
constrain the initial configuration of the TM. If the layer runs bottom to top, then these
rules apply to r0, which consists of all □ tiles, and the first row of the layer. For example,
if tile t1 can not be immediately to the left of t2 in the first row of Layer i, then the
square with □ □ directly below t1 t2 is an illegal initialization square for Layer i. If the
TM for the layer runs top to bottom, then the square with □ □ directly above t1 t2 in
Layer i is illegal.

Illegal Translation Squares: Finally, we add rules that control how the last row of Layer i

is translated to the first row of Layer i + 1. If Layer i runs top to bottom, then the rules
apply to rows r0 and r1. For example, if tile t in Layer i cannot be translated to t′ in
Layer i + 1, then any square with a □ directly below a tile whose Layer i type is t and
whose Layer i + 1 type is t′ would be illegal. The translation rules can also apply to pairs
of adjacent tiles. E.g., it could be illegal to have a square whose bottom two tiles are
□ □ and whose top two tiles have t1 t2 in Layer i and t3 t4 in Layer i + 1.

(a) Compu-
tation.

(b) Illegal
pairs.

(c) Transla-
tion.

(d) Initial-
ization.

Figure 1 Interior tiles have four layers. Border tiles have one layer and are labeled with the □
symbol. (a) An illegal computation square for Layer 2. The constraint applies to the four tile types
for Layer 2 shown in gray. (b) An illegal pair for Layer 2. The constraint applies to the two adjacent
tile types for Layer 2 shown in gray. (c) An illegal translation square from Layer 2 to Layer 3. The
constraint applies to two border tiles and the tile types for Layers 2 and 3 for the other two interior
tiles. (d) An illegal initialization square for Layer 2. The constraint applies to two border tiles and
the Layer 2 tile types for the other two interior tiles.

4 Overview of Proofs

Thoeorem 4: Gapped Weighted Tiling. Recall that the standard encoding of a TM into
tiling rules is very brittle in that a single fault can derail the entire computation. The most
straight forward way to overcome this is using a construction which embeds many repetitions
of the computation, so that many faults would be required to derail a large number of
those computations. Multiple computations thus need to be set up and initiated, using
a single faulty TM with TI rules. In our construction, this is achieved by a first stage of
the computation (implemented in Layer 1, as we describe below), which, roughly, creates
intervals in the top row of Layer 1, such that the independent repetitions of the computations
will occur in different strips on the grid; the boundaries of the strips are determined by those
intervals. The difficulty is how to implement the initial set up using a single TM, in a fault
tolerant way. We now describe the details.

The tiling rules for the first two layers, as well as the reduction mapping x to N are
independent of the language L ∈ NEXP, the language we are reducing from. Let V denote
the exponential time verifier for L. In general tiles will be either tape tiles which encode a
single symbol from the TM’s tape alphabet or head tiles which encode both the state of the
TM as well as the current tape symbol to which the head is pointing.

CCC 2023

23:8 Translationally Invariant Constraint Optimization Problems

The TM computation represented in Layer 1 starts with two non-blank symbols and
proceeds to write a sequence of intervals on the tape, where an interval is a sequence of B

symbols bracketed on either side by a delimiter tile from the set {X, X,◁,▷}. The TM just
repeatedly executes a single loop which we refer to as the Outer Loop. In one iteration of
the Outer Loop, an additional B symbol is inserted into every interval and a new interval
with no B’s in the middle is added to the right end of the non-blank symbols. In a fault-free
execution of the TM, after m iterations of the loop, there are m + 1 intervals. The number of
symbols in each interval (including the delimiter tiles on either end) is m + 2, m + 1, m, . . . , 2.
For m = 4, the row should look like:

□ (q/ ◁) B B B X B B X B X ▷ # # · · · # □

When the top row of Layer 1 is translated to Layer 2, the head tile for the Layer 1 TM is
translated to a tape tile (so the state information is lost) and a head tile is inserted on the
left end of every interval. For example, an interval X B B B · · · B X at the end of Layer 1
is translated to X (qs/S) B B · · · B T X in the first row of Layer 2. In Layers 2 and 3 the
sizes and locations of the intervals do not change within a row unless the interval contains
an illegal square. Thus, a single interval over all the rows of Layer 2 forms a vertical strip of
tiles, and a separate, independent computation takes place within each strip. See Figure 2
for an example. Once the intervals are created on Layer 1, each computation on Layers 2
and 3 is fault-free unless the strip contains an illegal square. Thus, the number of illegal
squares is at least the number of strips that fail to complete their computation correctly.

In Layer 2, the computation is just a binary counter TM that continually increments
a binary counter. All the strips that do not contain an illegal square will have the same
string x represented in the final row of Layer 2. The string x then serves as the input to the
computation in Layer 3. The binary counter TM in Layer 2 runs for exactly N − 3 steps.
The reduction is the function that maps x to N , where the string x is written on the tape of
a binary counting TM after N − 3 steps. The full version [4] gives an exact formula mapping
x to N and shows that the value of the number represented by the string x is Θ(N), the
dimension of the grid. The idea of using a binary counting TM to translate the size of the
grid to a binary input for a computation was used previously in [12]. Although since the
construction in [12] had a gap of 1, only a single execution of the verifier was needed. Since
we are trying to produce a gap of f(N), we need at least f(N) separate computations each
of which simulates the verifier on input x.

Each interval X (qs/S) x B · · · B T X is translated unchanged to Layer 3. The
computation in each strip in Layer 3 simulates the verifier on input x using a witness that is
guessed in the tiling. There is a final cost for any rejecting computation. If x ∈ L, it will be
possible to tile each strip at 0 cost. If x ̸∈ L, every strip will contain an illegal square or will
incur a cost for the correct rejecting computation. Thus, the gap is essentially created by
these parallel computations, each of which contributes a constant cost if x ̸∈ L.

Since the sizes of the intervals go down to 0, some of the intervals will be too narrow to
complete the computation in either Layers 2 or 3. If the head ever hits the right end of its
interval, it transitions to an infinite loop, causing no additional cost. A standard padding
argument (provided in detail in the full version [4]) guarantees that an interval need only be
Θ(N1/4) wide to complete the computations in Layers 2 and 3. The analysis of Layer 1 then
needs to guarantee that despite the faults, there will be sufficiently many sufficiently wide
intervals.

The main challenge in the proof is in making the computation in Layer 1 fault-tolerant,
meaning that each illegal pair or square cannot derail the computation too much. The
horizontal rules in Layer 1 are critical for enforcing that this cannot happen. We show that
a row in the tiling that has no illegal pairs corresponds to a sensible configuration of the TM.

D. Aharonov and S. Irani 23:9

In particular such a row has exactly one head tile that lies in between the ◁ and ▷ tiles.
Note that faults can still alter the computation in potentially strange ways. Nonetheless,
we also show that starting from a row with no illegal pairs, the Layer 1 TM will be able
to make progress, and after a sequence of fault-free steps (corresponding to a sequence of
rows containing no illegal squares), the computation will perform a complete iteration of the
loop. Since the number of illegal pairs and squares is bounded by O(N1/4), there are enough
complete iterations of the loop to ensure that the last row of Layer 1 has enough intervals
that are wide enough to complete the computations in Layers 2, 3.

By far the most technically involved part of the paper is the analysis of Layer 1. All
of the results make use of a tight characterization of the difference between the final row
in Layer 1 of a fault-free tiling and the final row of a tiling with faults. In fact, the result
on Gapped Weighted Tiling could be established with looser bounds, but we provide the
analysis once in a form that can be used for all the results in the paper. Section 4 describes
more fully how this tight characterization is accomplished.

Theorem 2: Weighted Tiling Function. The hardness reduction for Function Weighted
Tiling reduces from an oracle class. The function f is computed by a polynomial time TM
M with access to an oracle for language L′ ∈ NEXP. Let V denote the exponential time
verifier for L′. Using a standard padding argument (see for example Lemma 2.30 from [3])
we can assume that for a constant c of our choice, for every |x| = n, there is a n ≤ cn, such
that the size of f(x) is at most n, and M makes at most n oracle calls to L′. Let z denote
an n-bit string denoting the responses to the oracle queries made on input x. With x and z

fixed, the set of inputs to the oracle (o1, . . . , on) is also determined. V (oj) is an indicator
function denoting whether oj is in L′. Note that since L′ is in NEXP, if V (oj) = 1, there
exists a witness that will cause the verifier to accept and if V (oj) = 0, V will always reject
regardless of the witness. Define:

C(x, z) =
n∑

j=1

[
(1 − zj) · 2n−j + zj · (1 − V (oj)) · 2n

]
(1)

Let f(x, z) be the output of TM M on input x with oracle responses z. Note that since
|f(x, z)| ≤ n, f(x, z) ≤ 2n. The construction will ensure that the minimum cost tiling for
a particular x and z will be 2n+5C(x, z) + 23 · f(x, z). Note that C(x, z) represented in the
n high-order bits of the cost has the necessary structure where the costs for a no oracle
response decrease exponentially in j, the index of the oracle query. The cost for a yes guess
will be 0 if the input to the oracle oj is in fact in L′ (i.e., V (oj) = 1) and will be a very
large cost of 22n+5 if oj is not in L′. This function will guarantee that the overall cost is
minimized when z is the correct string of oracle responses. In addition, the low order bits
encode the output of the function f(x, z). So if the minimum cost tiling can be computed,
this will correspond to f(x), which is f(x, z̄), where z̄ is the string of correct oracle responses.
The factor of 8 ensures that even if the minimum cost is off by ±3, the value of f(x) can
still be recovered.

So far what we have described just implementing the original accounting scheme devised
by Krentel. The challenge is to implement this cost function in 2D with TI terms. Note that
since the tiling rules are fixed parameters of the problem, it is not possible to encode the cost
function directly into the penalty terms. As with the Gapped Weighted Tiling problem the
function is collectively computed by a set of parallel processes within each strip created by
the intervals from Layer 1. However, instead of a threshold function which is either +f(N)
or 0, the parallel processes must collectively compute the more intricate function described
above, which requires that the individual processes have some additional information.

CCC 2023

23:10 Translationally Invariant Constraint Optimization Problems

We will describe first what happens in a fault-free computation (with no illegal pairs
or computation squares) and then describe how fault-tolerance is enforced and proven. A
schematic view of the construction ins given in Figure 2. The construction for Layers 1 and
2 are exactly the same as for the Gapped Weighted Tiling problem. Layer 1 creates a set of
intervals. We definite the function µ(N) to denote the number of intervals on the tape if the
TM for Layer 1 executes N − 3 steps. If after N − 3 steps, the computation just happens to
finish at the end of an execution of the Outer Loop then the intervals have sizes (from left to
right) µ(N) + 1, µ(N), . . . , 2. If the computation finishes in the middle of an execution of the
Outer Loop, the actual sequence of interval sizes will be close to µ(N) + 1, µ(N), . . . , 2. The
largest interval could have size µ(N) + 2 and there may be a couple missing values in the
range where the current interval is being increased. A complete description of the possible
deviations is given in the full version [4]. µ(N) is Θ(N1/4) and we show using a standard
padding argument that for the constant c of our choice, all of the computations require at
most cµ(N) space. This allows us to establish that at least half of the intervals will be large
enough to complete the required computations.

As in the previous construction, Layer 2 then executes a binary counting TM which
results in the string x written to the left of each interval which is large enough to complete
the computation. Note that Layer 1 is a global TM which executes a single process across
the entire grid, while Layer 2 represents local computations within each strip. When x is
translated from Layer 2 to Layer 3 it is augmented with a guess string z for the oracle queries.
x. However, there is no guarantee that the guess for each interval is the same. Note that
z can be arbitrary but it must be consistently the same for each interval. Layer 3 then
executes a global TM which imposes a high penalty if the z strings in each strip are not all
the same. This penalty is higher than the cost function for any z, so the lowest cost tiling
will correspond to a configuration in which each strip has the same x and z.

Finally, in Layer 4, there is a local computation in each interval, each of which makes a
+1 or 0 contribution towards the overall cost. The computation within each interval requires
a unique tag in order to determine which term of the cost it will contribute to. The tag
comes from the size of the interval. The computation begins with counting the number of
locations in the interval. This can be accomplished by having the head shuttle back and
forth between the two ends of the interval implementing both a unary and binary counter
until the unary counter extends across the entire interval. The head returns to the left end
of the interval and begins the next phase of the computation. Since the size of an interval is
at most O(N1/4) this phase of the computation will take at most O(N1/2) steps.

Now each computation has the same pair (x, z) and a its own integer r indicating the
size of the interval. From x, the values of N and µ(N) can be determined. In a fault-free
computation, the sizes of the intervals will decrease from left to right. Moreover, all interval
sizes are in the set {µ(N) + 2, µ(N) + 1, . . . , 2} with at most one missing value from that
set and at most two duplicates. Thus, the value µ(N) − r + 2, will be an almost unique
identifier for each interval, starting with 0 or 1 on the left and increasing to the right. Using
this tag, each interval determines which portion of the cost it will contribute to. The number
of intervals assigned to compute a particular term in the cost will depend on the value of
the term since each interval can contribute at most 1 to the overall cost. If an interval is
assigned to check a yes guess (zk = 1) the computation uses x and z to determine the kth

input to the oracle ok, guesses a witness and simulates V on input ok with the guessed
witness. There is a cost of +1 if V rejects and 0 if V accepts. If ok is in fact in L′, there is a
witness which will allow for a zero cost tiling withing that interval. If ok ̸∈ L, then every
witness will lead to a +1 cost. Thus, the optimal set of witnesses will result in the minimum

D. Aharonov and S. Irani 23:11

(a) In Layer 1 a single fault-tolerant TM creates
the intervals that mark off the width of each strip
where independent computations will take place
in subsequent layers. The top row of Layer 1
is mapped onto the top row of Layer 2. The
computation proceeds upwards from bottom to
the top.

(b) In Layer 2, an independent computation takes
place in each strip. The computation proceeds
from top to bottom. Each strip executes a binary
counter TM, so the height of the square is trans-
lated into a string x, which serve as the input to
the computational problem.

(c) The bottom row of Layer 2 containing the
string x is translated to Layer 3. In addition the
tiling contains a guess y for the responses to the
oracle query. Layer 3 then executes a global TM
that proceeds from bottom to top. The computa-
tion results in a high cost if the guess strings y in
each strip are not all the same.

(d) The independent computations in each strip
collectively incur a total cost of 2n+5C(x, z) + 23 ·
f(x, z), where C(x, z) is denoted in Equation (1).

Figure 2 Schematic image showing the four layers in the construcion.

value for 2n+5C(x, z). In addition, exactly 23f(x, z) of the intervals will just transition to
the rejecting state, incurring a cost of +1. The total cost due to those intervals is 23f(x, z).
For the remaining intervals, no cost is incurred.

The cost of a computation fault (illegal pair or square) is a constant that is larger than the
cost of ending in a rejecting computation. Therefore, for each independent computation (in
Layers 2 and 4) the optimal tiling will correspond to a correct computation which may or may
not incur a cost for ending in a rejecting state. Technically, the most challenging part of the
proof is to show that the process on Layer 1 which creates the intervals is fault-tolerant. The
proof for Function Weighted Tiling requires stronger conditions than for Gapped Weighted

CCC 2023

23:12 Translationally Invariant Constraint Optimization Problems

Tiling since we not only have to show that there are a large number of large intervals at the
end of Layer 1 but we need to establish that the sequence of interval sizes is close to what
one would have in a fault-free computation. To this end, we use a potential function A which
captures how much a sequence of interval sizes (s1, s2, . . . , sm) deviates from the expected
sequence (m + 1, m, m − 1, . . . , 2). The main part of the proof is to show that each illegal
square or pair can cause the value of A to increase by at most a constant amount. At the
end of Layer 1, the ideal sequence of interval sizes is (µ(N) + 1, µ(N), . . . , 2). Every interval
size that is missing from the actual sequence of interval sizes has caused A to increase by at
least a fixed amount which in turn corresponds to faults incurred in the computation. Thus,
we show that it is more cost-effective to complete the computation correctly (and not incur
the higher cost of a fault) and incur the smaller potential cost of a rejecting computation.

The most important measure of progress of the tiling/computation in Layer 1 is the
number of times the encoded TM completes an iteration of the Outer Loop in which the size
of every interval increases by 1 and a new interval of size 2 is added. Faults can potentially
cause an iteration of the Outer Loop to take longer as they may force the head to shuttle
back and forth more times which in turn could result in fewer iterations. Even in a fault-free
computation, the number of steps per iteration increases with each iteration because there
are more intervals. The analysis in the full version provides a lower bound on the number
of times the loop is completed in relation to the number of completed loops in a fault-free
computation. The proof is a delicate inductive argument which uses the fact that the increase
in the running time of a loop is not accelerated too much with each additional fault.

Proof Overview for Parity Weighted Tiling. The proof for parity weighted tiling is very
similar to the function problem. Suppose that a language L ∈ PNEXP is computed by a
TM M with access to an oracle for L′ ∈ NEXP. Let M(x, z) be the indicator function that
is 0 if M(x, z) accepts and 1 if M(x, z) rejects. The overall cost computed by the collective
computations is: 4C(x, z) + M(x, z). The left-most interval computes M(x, z) and results in
a +1 cost in the case that M rejects. The remaining intervals which collectively compute
Krentel’s cost function all impose costs of +2 or 0. Thus the expression 4C(x, z) + M(x, z)
will guarantee that the minimum C(c, z) corresponds to the correct guess z̄. Furthermore,
the rightmost bit will be M(x, z) which will cause the minimum cost to be odd or even,
depending on whether M accepts.

5 Discussion, Related Work, and Open Problems

Despite the fact that the function version of classical local-Hamiltonians describes the task
of the computational (classical) physicist much more naturally than decision problems,
complexity of function problems was hardly studied even in the non-TI setting, in the
literature of classical theory of computer science.

Recently, related results were discovered in the domain of quantum computational
complexity. In particular, in [3], Aharonov and Irani use a construction for the function
version of (finite) quantum local Hamiltonian as a component for a hardness result for the
infinite 2D grid. More specifically, they prove that the problem of estimating the ground
energy of a local Hamiltonian on a finite 2D grid, is hard for FPNP. Importantly, their
results do not imply the hardness result presented in this paper, and it seems impossible
to extend their proof to deduce the classical hardness result of Theorem 2. Like [3] we
implement Krentel’s cost function using a fixed Hamiltonian term, but since their construction
is quantum (as opposed to the classical construction in this paper), they are able to prove the

D. Aharonov and S. Irani 23:13

result using a completely different set of tools which do not carry over to the classical case.
In quantum constructions, the lowest energy is an eigenvalue of a general Hermitian matrix
and the matrix can be constructed to fine tune the ground energy to an inverse polynomial
precision. In classical constructions, the total energy will be a sum over terms where each
term is chosen from a constant-sized set of values determined by the finite horizontal and
vertical tiling rules. This allows far less control in the classical setting over the precision of
the minimum cost tiling.

Incidentally, note that the results for the quantum case proven in [3] are not tight, which
follows from the fact that they use a quantum construction to obtain hardness for FPNEXP,
a classical complexity class. It seems challenging to make the characterization tight in the
quantum case. In contrast to the class NP, the class QMA is a class of promise-problems
and in simulating a PQMA machine, there is no guarantee that the queries sent to the QMA
oracle will be valid queries. The cost/energy applied for a particular query will depend on the
probability that a QMA verifier accepts on the provided input. If the input is invalid, then
the probability of acceptance can be arbitrary. Thus, Krentel’s cost function will potentially
be an uncontrolled quantity. Typically in a reduction where we want to embed the output of
a function into the value of the minimum energy, the low order bits of the energy are used
to encode the output of the function. It’s not clear how to do this without being able to
control the binary representation of the minimum energy. Note that by embedding a classical
computation in the Hamiltonian, the issue of invalid queries is circumvented.

Both [3] and [21] study the complexity of computing the ground energy density of infinite
TI Hamiltonians to within a desired precision making use of the technique introduced
by Cubitt, Prerez-Garcia, and Wolf which embeds finite Hamiltonian constructions of
exponentially increasing sizes, into the 2D infinite lattice, using Robinson tiles. Robinson
tiling rules [18] force an aperiodic structure on the tiling of the infinite plane, with squares of
exponentially increasing size. The quantum construction of [3] layers a TI 1D Hamiltonian on
top of one of the sides of all the squares. The classical construction of [21] layers a classical
finite construction on each square. Neither work obtains tight results due to the same issue
with invalid queries, although the two papers compromise in completely different ways. The
primary technical innovation introduced in [21] is to devise a more robust version of Robinson
tiles which ensures that the lowest energy state corresponds to a correct Robinson tiling, even
though the cost of the classical finite construction layered on top may introduce a penalty. If
it were possible to obtain an even more robust version of Robinson tiles, one potentially could
layer the finite construction from the current paper on top the more robust constructions in
the hopes of showing that computing the ground energy density of a classical TI Hamiltonian
in the thermodynamic limit is complete for EXPNEXP under Karp reductions.

The results in this paper are also related to the work of Ambainis [5] which characterizes
the complexity of measuring local observables of ground states of local Hamiltonians (APX-
SIM), showing that the problem is complete for PQMA[log n]. PQMA[log n] contains those
problems that can be solved by a polynomial time classical TM with access to O(log n)
queries to a QMA oracle. This type of question (determining a property of the ground
state) is similar to our classical result about determining whether the cost of the optimal
tiling is odd or even. The results on APX-SIM [5, 11, 10] are not hindered by the issue of
invalid queries because the quantity being measured is not the actual energy itself. Note
that the important point here is the property that distinguishes the state to be measured
(minimum energy) is different than the local observable applied to the measured state. By
contrast, computing the energy of the lowest energy state appears to be more difficult. The
issue of invalid queries appears to be an obstacle, even when the Hamiltonian terms are
position-dependent as in the constructions of [11, 10], as well as in the TI constructions
in [3, 20].

CCC 2023

23:14 Translationally Invariant Constraint Optimization Problems

Finally, it was mentioned earlier that the approximation problem considered here differs
from the standard PCP setting in that the underlying graph is a grid and the terms are TI.
It remains an open question as to whether there is a family of TI instances of constraint
satisfaction on general graphs for which it is hard to estimate the optimal solution to within
an additive Θ(N).

References
1 Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki. Rigorous results on valence-

bond ground states in antiferromagnets. Phys. Rev. Lett., 59:799–802, August 1987. doi:
10.1103/PhysRevLett.59.799.

2 Dorit Aharonov, Daniel Gottesman, Sandy Irani, and Julia Kempe. The power of quantum
systems on a line. Communications in Mathematical Physics, 287(1):41–65, January 2009.
doi:10.1007/s00220-008-0710-3.

3 Dorit Aharonov and Sandy Irani. Hamiltonian complexity in the thermodynamic limit. In
Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 750–763. ACM,
2022. doi:10.1145/3519935.3520067.

4 Dorit Aharonov and Sandy Irani. Translationally invariant constraint optimization problems,
2022. arXiv:2209.08731.

5 Andris Ambainis. On physical problems that are slightly more difficult than qma. In
2014 IEEE 29th Conference on Computational Complexity (CCC), pages 32–43, 2014. doi:
10.1109/CCC.2014.12.

6 F Baharona. On the computational complexity of ising spin glass models. Journal of Physics
A: Mathematical and General, 15(10):3241–3253, 1982.

7 Johannes Bausch, Toby Cubitt, and Maris Ozols. The complexity of translationally invariant
spin chains with low local dimension. Annales Henri Poincaré, 18(11):3449–3513, October
2017. doi:10.1007/s00023-017-0609-7.

8 Toby S. Cubitt, David Perez-Garcia, and Michael M. Wolf. Undecidability of the spectral gap.
Nature, 528(7581):207–211, December 2015. doi:10.1038/nature16059.

9 Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum hamiltonian
complexity. Foundations and Trends® in Theoretical Computer Science, 10(3):159–282, 2015.
doi:10.1561/0400000066.

10 Sevag Gharibian, Stephen Piddock, and Justin Yirka. Oracle complexity classes and local
measurements on physical hamiltonians. arXiv, 2019. arXiv:1909.05981.

11 Sevag Gharibian and Justin Yirka. The complexity of simulating local measurements on
quantum systems. Quantum, 3:189, September 2019. doi:10.22331/q-2019-09-30-189.

12 Daniel Gottesman and Sandy Irani. The quantum and classical complexity of translationally
invariant tiling and hamiltonian problems. Theory of Computing, 9(2):31–116, 2013. doi:
10.4086/toc.2013.v009a002.

13 Sorin Istrail. Statistical mechanics, three-dimensionality and np-completeness. i. universality
of intractability for the partition function of the ising model across non-planar lattices. In
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May
21-23, 2000, Portland, OR, USA, pages 87–96, January 2000. doi:10.1145/335305.335316.

14 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. American
Mathematical Society, USA, 2002.

15 Mark W. Krentel. The complexity of optimization problems. In Alan L. Selman, editor,
Structure in Complexity Theory, pages 218–218, Berlin, Heidelberg, 1986. Springer Berlin
Heidelberg.

16 R. Oliveira and B. Terhal. The complexity of quantum spin systems on a two-dimensional
square lattice. arXiv, 2005. arXiv:quant-ph/0504050.

17 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1007/s00220-008-0710-3
https://doi.org/10.1145/3519935.3520067
https://arxiv.org/abs/2209.08731
https://doi.org/10.1109/CCC.2014.12
https://doi.org/10.1109/CCC.2014.12
https://doi.org/10.1007/s00023-017-0609-7
https://doi.org/10.1038/nature16059
https://doi.org/10.1561/0400000066
https://arxiv.org/abs/1909.05981
https://doi.org/10.22331/q-2019-09-30-189
https://doi.org/10.4086/toc.2013.v009a002
https://doi.org/10.4086/toc.2013.v009a002
https://doi.org/10.1145/335305.335316
https://arxiv.org/abs/quant-ph/0504050

D. Aharonov and S. Irani 23:15

18 Raphael Robinson. Undecidability and nonperiodicity for the tilings of the plane. Invent.
Math., 12:177–209, 1971.

19 Hao Wang. Proving theorems by pattern recognition. Communications of the ACM, 3(4):220–
234, 1960.

20 James D. Watson, Johannes Bausch, and Sevag Gharibian. The complexity of translationally
invariant problems beyond ground state energies. arXiv, 2020. arXiv:2012.12717.

21 James D. Watson and Toby S. Cubitt. Computational complexity of the ground state energy
density problem. arXiv, 2021. arXiv:2107.05060.

CCC 2023

https://arxiv.org/abs/2012.12717
https://arxiv.org/abs/2107.05060

	1 Introduction
	2 Problem Definitions, Results and Main Challenges
	3 Tiling Rules and Layers
	4 Overview of Proofs
	5 Discussion, Related Work, and Open Problems

