
An Exponential Separation Between Quantum
Query Complexity and the Polynomial Degree
Andris Ambainis #

Faculty of Computing, University of Latvia, Riga, Latvia

Aleksandrs Belovs #

Faculty of Computing, University of Latvia, Riga, Latvia

Abstract
While it is known that there is at most a polynomial separation between quantum query complexity
and the polynomial degree for total functions, the precise relationship between the two is not clear
for partial functions.

In this paper, we demonstrate an exponential separation between exact polynomial degree and
approximate quantum query complexity for a partial Boolean function. For an unbounded alphabet
size, we have a constant versus polynomial separation.

2012 ACM Subject Classification Theory of computation → Quantum query complexity

Keywords and phrases Polynomials, Quantum Adversary Bound, Separations in Query Complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.24

Funding This work has been supported by the ERDF project number 1.1.1.5/18/A/020 “Quantum
algorithms: from complexity theory to experiment.”

Acknowledgements We thank Scott Aaronson for writing the open problem survey [2] which attracted
our attention to this problem. We also thank the anonymous reviewers at the CCC conference for
their numerous valuable suggestions on the presentation of the paper.

1 Introduction

A polynomial method is an established tool for proving lower bounds for classical [19, 20] and
quantum [9] query complexity. In the quantum case, this method is based on an observation
that a quantum query algorithm can be turned into an approximating polynomial whose
degree is at most twice the query complexity of the algorithm. Showing that a function cannot
be approximated by a low-degree polynomial implies that it cannot be solved query-efficiently
on a quantum computer. This method was used early on to establish important results
like the precise characterisation of quantum query complexity of total symmetric Boolean
functions [9] and the optimal lower bound for the collision problem [5]. It was also used
recently to prove strong lower bounds on k-distinctness and image size testing [14, 17].

The question of how good this lower bound technique is has gathered attention. Nisan
and Szegedy [20] proved that Q(f) = O

(
deg(f)8)

for total Boolean f , where deg(f) is the
exact degree, and Q(f) is the quantum query complexity.1 This was subsequently improved
to Q(f) = O

(
deg(f)4)

(attributed to Nisan and Smolensky in [13]), and Q(f) = O
(
deg(f)3)

by Midrijānis [18].2 Concerning the approximate degree d̃eg(f), Beals, Buhrman, Cleve,

1 Actually, it was shown that D(f) = O
(
deg(f)8

)
, where D(f) is the deterministic decision tree complexity.

Here we use that D(f) upper bounds approximate (and, actually, even exact) quantum query complexity.
Similar comments apply to other upper bounds below.

2 Stated as D(f) = O
(
deg(f)4

)
and D(f) = O

(
deg(f)3

)
, respectively.

© Andris Ambainis and Aleksandrs Belovs;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ambainis@lu.lv
mailto:aleksandrs.belovs@lu.lv
https://doi.org/10.4230/LIPIcs.CCC.2023.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Separation Between Quantum Query Complexity and Polynomial Degree

Mosca, and de Wolf [9] showed that Q(f) = O
(
d̃eg(f)6)

for total Boolean functions.3 This
was improved by Aaronson, Ben-David, Kothari, Rao, and Tal [4] to Q(f) = O

(
d̃eg(f)4)

for
all total Boolean functions.4

On the other hand, Ambainis [7] constructed a total Boolean function with superlinear
but subquadratic separation between the exact degree deg(f) and quantum query complexity
Q(f). This also implies a similar separation between d̃eg(f) and Q(f) as d̃eg(f) ≤ deg(f).
Aaronson, Ben-David, and Kothari [3] demonstrated an almost quartic separation between
Q(f) and d̃eg(f) as well as an almost quadratic separation between Q(f) and deg(f) for a
total Boolean function. The former separation is optimal due to the aforementioned result
by Aaronson et al. [4].

In order to prove a separation between quantum query complexity and the polynomial
degree, one has to use a different tool than the polynomial method to prove lower bounds
on quantum query complexity. A popular alternative is the adversary method. Indeed,
Ambainis [7] used his, recent at the time, adversary method [6]. Aaronson et al. [3] used
their cheat sheet technique, but also relied on the lower bound for the k-sum problem [12],
which used the negative-weight adversary [15], as well as other tools.

Note that all these results consider total Boolean functions. Up to our knowledge, the
question of obtaining a separation between quantum query complexity and the polynomial
degree for partial functions has not been studied. This is interesting, as partial functions
usually allow for much larger separations. This question was raised as an open problem in a
recent survey by Aaronson [2].

And indeed, Q(f) versus deg(f) is not an exception, as we will prove the following two
results in our paper (see Section 2.1 for the precise definition of the polynomial degree):

▶ Theorem 1. For every q ≥ n12, there exists a partial function f : D → {0, 1} with
D ⊆ [q]3n with the following properties:

its exact polynomial degree is at most 9;
its quantum query complexity is Ω(n1/3).

Take q as the smallest power of 2 exceeding n12. By replacing each variable of the function
with log q Boolean variables, we get the following corollary.

▶ Corollary 2. There exists a family of partial Boolean functions f : D → {0, 1} with
D ⊆ {0, 1}n satisfying the following two properties:

its exact polynomial degree is O(log n);
its quantum query complexity is Ω̃(n1/3).

In Section 3, we formulate the problem and prove the upper bound on its polynomial
degree. In Section 4, we prove the lower bound on its quantum query complexity. We also
use the adversary method in our proof of the lower bound. The corresponding function is
closely related to a function studied previously by Belovs and Rosmanis [11].

Finally, let us note that we have to use the negative-weight formulation of the adversary
bound in our separation, and not the easier-to-apply positive-weight, which was used, for
instance, by Ambainis in his aforementioned separation [7]. This is because of the result by
Anshu, Ben-David, and Kundu [8] stating at most quadratic separation between positive-
weight quantum adversary and the polynomial degree even for partial functions.

3 Again, stated as D(f) = O
(
d̃eg(f)6

)
. It is also often cited as D(f) = O

(
Q(f)6

)
4 Although the result is stated as D(f) = O

(
Q(f)4

)
, what is actually proven in the paper is D(f) =

O
(
d̃eg(f)4

)
. See also the corresponding cell in Table 1 of the paper.

A. Ambainis and A. Belovs 24:3

2 Preliminaries

For a positive integer m, let [m] denote the set {1, 2, ..., m}. Notation Zm denotes the additive
group modulo m. For a predicate P , we write 1P to denote the indicator variable that is 1 is
P is true, and 0 otherwise.

For an X × Y -matrix A, x ∈ X, and y ∈ Y , we denote by A[[x, y]] its (x, y)-th entry. For
X ′ ⊆ X and Y ′ ⊆ Y , A[[X ′, Y ′]] denotes the corresponding submatrix. Similar notation is
also used for vectors. Next, ∥·∥ denotes the spectral norm (the largest singular value), and ◦
denotes the Hadamard (i.e., entry-wise) product of matrices.

We say that a linear operator A : L → K is an isometry from L′ into K if its coimage is
L′ ⊆ L and ∥Av∥ = ∥v∥ for all v ∈ L′. In other words, all the singular values of A are 1, and
the span of its right singular vectors is L′.

2.1 Polynomials
For a (partial) Boolean function f : D → {0, 1} with D ⊆ {0, 1}n, a representing polynomial
is defined as a real multivariate polynomial P in variables x1, . . . , xn, treated as elements of
R, such that

P (x1, . . . , xn) = f(x1, . . . , xn) for every x ∈ D;
0 ≤ P (x1, . . . , xn) ≤ 1 for all x ∈ {0, 1}n.

The motivation behind this definition is that, as shown in [9], every quantum query algorithm
evaluating f in T queries exactly can be turned into a representing polynomial for f of degree
at most 2T .

The notion of representing polynomial can be generalised for functions with larger input
alphabets as well. Let f : D → {0, 1} with D ⊆ [q]n be a (partial) function with alphabet
size q. Then, we can define its representing polynomial (see, e.g., [1]) as a polynomial in
nq Boolean variables 1xi=a, where i ranges over [n] and a over [q]. Namely, it is a real
multivariate polynomial P satisfying the following properties:

P (1x1=1, . . . , 1xn=q) = f(x1, . . . , xn) for every x ∈ D;
0 ≤ P (1x1=1, . . . , 1xn=q) ≤ 1 for all x ∈ [q]n.

The motivation is similar to the Boolean case.
It may seem that the two definitions do not match for q = 2, but in this case we have the

identity 1xi=2 = 1 − 1xi=1, which allows us to remove the variables 1xi=2, giving essentially
the same definition.

The exact polynomial degree of a function f is the minimal degree of its representing
polynomial. Similarly, one can define an approximating polynomial and the approximate
degree, but we will not need these notions in the paper.

Assume for simplicity that q = 2ℓ is a power of two. In this case, we can convert a function
f with domain in [q]n into a function f̃ with domain in {0, 1}nℓ by replacing each a ∈ [q]
by a bit-string (a1, . . . , aℓ) ∈ {0, 1}ℓ and each variable xi ∈ [q] with ℓ Boolean variables
xi,1, . . . , xi,ℓ. We have

1xi=a = 1xi,1=a11xi,2=a2 · · · 1xi,ℓ=aℓ
.

Therefore, every representing polynomial for f of degree d can be turned into a representing
polynomial for the function f̃ of degree dℓ.

2.2 Adversary Bound
In the paper, we only use the (negative-weight) adversary bound for decision problems, which
is defined as follows.

CCC 2023

24:4 Separation Between Quantum Query Complexity and Polynomial Degree

Let f : D → {0, 1} with D ⊆ [q]n. An adversary matrix for f is a real f−1(1) × f−1(0)-
matrix Γ. For any j ∈ [n], the f−1(1) × f−1(0)-matrix ∆j is defined by

∆j [[x, y]] =
{

0, if xj = yj ;
1, if xj ̸= yj .

(1)

▶ Theorem 3 (Adversary bound [15, 16]). In the above notation, the quantum query complexity
of the function f is Θ

(
ADV±(f)

)
, where ADV±(f) is the optimal value of the semi-definite

program

maximise ∥Γ∥ (2a)
subject to ∥∆j ◦ Γ∥ ≤ 1 for all j ∈ [n]. (2b)

Here maximisation is over all adversary matrices Γ for f .

We can choose any adversary matrix Γ and scale it down so that the condition ∥∆j ◦ Γ∥ ≤ 1
holds. Thus, we can use the condition ∥∆j ◦ Γ∥ = O(1) instead of ∥∆j ◦ Γ∥ ≤ 1.

Working with the matrix ∆j ◦ Γ might be cumbersome, so the following trick can be
applied. We write Γ ∆j7−→ Γj if Γ ◦ ∆j = Γj ◦ ∆j . In other words, we modify the entries Γ[[x, y]]
with xj = yj to obtain Γj . As shown in [16], ∥∆j ◦ Γ∥ ≤ 2∥Γj∥, hence we can replace ∆j ◦ Γ
with Γj in (2b).

3 The Problem and the Polynomial Upper Bound

The function for which we give the separation is defined in the following way.
Assume we have 3n input variables x1, x2, . . . , x3n ∈ [q]. We treat them as the elements

of Zq. Divide the set of indices into three subsets: A = {1, . . . , n}, B = {n + 1, . . . , 2n} and
C = {2n + 1, . . . , 3n}. Consider the following system of n3 linear equations modulo q:

xa + xb + xc = ra,b,c, for a ∈ A, b ∈ B and c ∈ C, (3)

where ra,b,c ∈ Zq are some fixed values. We call the individual equations in (3) tripartite
equations, and the whole system of n3 equations the tripartite system.

▶ Definition 4. In the threshold satisfiability problem, given x1, x2, . . . , x3n, the task is to
distinguish the following two cases:

there is no equation satisfied in the tripartite system (3) (negative case); and
there are exactly n equations satisfied in the tripartite system (3) (positive case).

Note that threshold satisfiability problem depends on parameters ra,b,c, which are not
parts of the input, but specify a particular instance of the problem.

Although the tripartite system (3) has n3 equations, the largest number of simultaneously
satisfiable equations usually is much smaller.

▶ Proposition 5. Assume q ≥ n12. Then, there exists a choice of ra,b,c ∈ Zq such that, for
every input x, less than 4n of the equations in (3) are satisfied.

Proof. This is a simple application of the probabilistic method. In the following, all the
probabilities are with respect to the uniform distribution over ra,b,c.

Let S be a subset of the equations in (3) of size 4n. As the number of variables is 3n, we
get that

Pr
[
All the equations in S can be satisfied

]
≤ q3n−|S| = q−n.

A. Ambainis and A. Belovs 24:5

Therefore, by the union bound, the probability that it possible to satisfy at least 4n equations
in (3) is at most(

n3

4n

)
q−n < n12nq−n ≤ 1

by our choice of q. ◀

We will call such a choice of the right-hand sides ra,b,c good.

▶ Theorem 6. If ra,b,c are good, the exact polynomial degree of the threshold satisfiability
function is at most 9.

Proof. Consider the following function

K(x) =
∑

a∈A, b∈B, c∈C

1xa+xb+xc=ra,b,c
,

which counts the number of satisfied equations in (3). We have that

1xa+xb+xc=r =
∑

s,t∈Zq

1xa=s1xb=t1xc=r−s−t,

hence, the degree of K is 3. Take the univariate cubic polynomial

T (z) = 1
4z3 − 3

2z2 + 9
4z.

The following is a plot of this polynomial. It has the following properties: T (0) = 0, T (1) = 1
and 0 ≤ T (z) ≤ 1 for all 0 ≤ z ≤ 4.

0 0.5 1 1.5 2 2.5 3 3.5 40
0.2
0.4
0.6
0.8

1

The polynomial T
(

K(x)
n

)
satisfies all the requirements. ◀

4 Quantum Lower Bound

We prove a slightly stronger result, as we prove a lower bound for an easier function. For
s, t ∈ [n], let

µs,t =
{

(j, n + 1 + (j + s mod n), 2n + 1 + (j + t mod n))
∣∣ j ∈ [n]

}
. (4)

Each µs,t is a tripartite matching between A = {1, . . . , n}, B = {n + 1, . . . , 2n} and
C = {2n + 1, . . . , 3n}. We call it a shifted tripartite matching. We use

M = {µs,t | s, t ∈ [n]}.

to denote the set of all shifted tripartite matchings (for a fixed value of n).

CCC 2023

24:6 Separation Between Quantum Query Complexity and Polynomial Degree

▶ Definition 7. In the tripartite shift problem, given x1, x2, . . . , x3n, the task is to distinguish
the following two cases:

there is no equation satisfied in the tripartite system (3) (negative case); and
there exists a shifted tripartite matching µ ∈ M such that an equation xa +xb +xc = ra,b,c

from (3) is satisfied if and only if (a, b, c) ∈ µ (positive case).

Since each shifted tripartite matching specifies n tripartite equations, the tripartite shift
problem is a restriction of the threshold satisfiability problem. Therefore, any lower bound
for the former is a lower bound for the latter.

A closely related problem was studied in [11]. It was like in Definition 7, but with the
following two modifications:

all ra,b,c = 0; and
in the positive case, it is not required that xa + xb + xc ̸= ra,b,c for (a, b, c) /∈ µ.

Therefore, our result is a strengthening of [11]. We obtain a similar lower bound.

▶ Theorem 8. If q ≥ 4n3, the quantum query complexity of the tripartite shift problem is
Ω(n1/3) for any choice of ra,b,c.

Essentially the same proof goes through. Since the differences are nonetheless substantial,
we reproduce the proof in the remaining part of this section.

4.1 Input-Related Sets
We begin with defining some input-related sets. Let

Ñ = [q]3n be the set of all inputs;
N be the set of negative inputs; and
P be the set of positive inputs.

For (a, b, c) ∈ A × B × C, let

P̃ a,b,c =
{

x ∈ [q]{a,b,c} | xa + xb + xc = ra,b,c

}
,

be the solution set of the corresponding tripartite equation. For µ ∈ M , let

P̃ µ =
∏

(a,b,c)∈µ

P̃ a,b,c. (5)

In other words, x ∈ [q]3n belongs to P̃ µ if and only if all the equations of the tripartite
system (3) with (a, b, c) ∈ µ are satisfied. Some of the remaining equations may be satisfied
as well. Finally,

P̃ =
⊔

µ∈M

P̃ µ.

We use the disjoint union here because an input x ∈ [q]3n can belong to several P̃ µ at once.
We can define P̃ more precisely as the set of pairs

{
(µ, x) | µ ∈ M, x ∈ P̃ µ

}
. We consider P

as a subset of P̃ , which is well-defined since x ∈ P belongs to exactly one P̃ µ. The reason
for introducing the set P̃ is the decomposition property (5), which P lacks.

As one can guess from the notation, we use Ñ and P̃ as proxies for N and P , respectively.
We show that their sizes do not differ too much.

▷ Claim 9. Under the assumption q ≥ 4n3, we have |N | ≥ 3|Ñ |/4 and |P | ≥ 3|P̃ |/4.

A. Ambainis and A. Belovs 24:7

Proof. We first prove the claim for N and Ñ . Take x ∈ Ñ = [q]3n uniformly at random.
There are n3 equations in (3). The probability x satisfies one fixed equation from this list is
1/q. By the union bound, the probability x satisfies some equation from the list is n3/q ≤ 1/4.
This proves |N | ≥ 3|Ñ |/4.

We can write P =
⊔

µ∈M P µ, where P µ = P ∩ P̃ µ is the set of inputs satisfying precisely
the equations (3) with (a, b, c) ∈ µ. We prove |P µ| ≥ 3|P̃ µ|/4, from which the claim follows.
To do so, we can use the same reasoning as above, because the probability a uniformly
random x ∈ P̃ µ satisfies a fixed equation from (3) with (a, b, c) /∈ µ is also 1/q. ◁

4.2 Overview of the Proof
Now let us describe the general structure of the proof. It follows the proof from [11], and is
based on the ideas from [10]. The following collection α = α(µ, S) of real coefficients will be
important:

α(µ, S), where µ ∈ M and S ⊆ [3n] is such that
∣∣S ∩ {a, b, c}

∣∣ ≤ 1 for all (a, b, c) ∈ µ. (6)

If S satisfies the condition in (6), we say that S is good for µ. We will implicitly assume that
α(µ, S) = 0 if S is not good for µ.

Let us define

∥α∥ = max
S⊆[3n]

√∑
µ∈M

α(µ, S)2. (7)

And, for j ∈ [3n], we define the following operation ∂j on α:

∂jα(µ, S) =
{

α(µ, S) − α(µ, S ∪ {j}), if j /∈ S;
0, if j ∈ S.

For α as in (6), we will define a P̃ × Ñ matrix G(α). It satisfies the following two
properties

∥G(α)∥ = ∥α∥ and G(α) ∆j7−→ G(∂jα) for all j ∈ [3n]. (8)

The piece of notation ∥α∥ in (7) was chosen precisely because of the first equation above.
We will construct an explicit α that satisfies the following conditions:

∥α∥ = n1/3 and ∥∂jα∥ = O(1) for all j ∈ [3n]. (9)

We define the adversary matrix Γ as G(α)[[P, N]]. On the one hand, Γ ∆j7−→ G(∂jα)[[P, N]],
which has norm O(1) by the above. On the other hand, ∥G(α)∥ = n1/3, and using that P

and N are close to P̃ and Ñ , respectively, we get that ∥Γ∥ = Ω(n1/3). Theorem 8 follows
then from Theorem 3.

4.3 Fourier Basis
We denote H = Cq and, for a set T , use notation HT = C[q]T = H⊗T . We often write Ha,b,c

instead of H{a,b,c} and similarly for related notions.
Let χ0, . . . , χq−1 be the Fourier basis of H. Recall that it is an orthonormal basis given

by χi[[j]] = 1√
q ωij

q , where ωq = e2πi/q. The most important of them is

χ0 = 1
√

q


1
1
...
1

 .

CCC 2023

24:8 Separation Between Quantum Query Complexity and Polynomial Degree

The Fourier basis of HT is given by tensor products χs =
⊗

j∈T χsj , where each sj ∈
{0, . . . , q − 1}. The support of χs is {j ∈ T | sj ̸= 0}.

Define two orthogonal projectors in H:

Π0 = χ0χ∗
0 and Π1 = I − Π0 =

q−1∑
i=1

χiχ
∗
i .

An important relation is

Π0
∆7−→ Π0 and Π1

∆7−→ −Π0, (10)

where ∆ is as in (1) and acts on the sole variable, and ∆7−→ is consequently defined as at the
end of Section 2.2. For S ⊆ T , define the projector ΠT

S in the space HT by

ΠT
S =

⊗
j∈T

Π1j∈S
. (11)

Let HT
S be its image. It is equal to the span of all the Fourier basis elements of HT with

support equal to S. For a fixed T , the set of all HT
S gives an orthogonal decomposition of

HT .
We have the following properties of ΠT

S . First, from the definition, we get the union
property

ΠT
S ⊗ ΠT ′

S′ = ΠT ∪T ′

S∪S′ (12)

whenever T and T ′ are disjoint. Next, by (10), we get the reduction property

ΠT
S

∆j7−→

{
ΠT

S , if j /∈ S;
−ΠT

S\{j}, if j ∈ S.
(13)

4.4 The Building Blocks
Now let us describe the building blocks our matrices are comprised of. Assume that
(a, b, c) ∈ A × B × C, and S ⊂ {a, b, c} is of size |S| ≤ 1. We define

Ψa,b,c
S = √

q Πa,b,c
S [[P̃ a,b,c, [q]{a,b,c}]]. (14)

These are the matrices from (11) with T = {a, b, c} whose rows have been restricted to
the solution set P̃ a,b,c of the corresponding tripartite equation. The factor √

q is due to
normalisation purposes.

▷ Claim 10. The operator Ψa,b,c
S is an isometry from Ha,b,c

S into CP̃ a,b,c . Moreover, the
operators Ψa,b,c

∅ , Ψa,b,c
{a} , Ψa,b,c

{b} , and Ψa,b,c
{c} have pairwise orthogonal ranges.

Proof. From the definition, it is clear that the coimage of Ψa,b,c
S is contained in the coimage of

Πa,b,c
S , which is Ha,b,c

S . The operators Ψa,b,c
∅ , Ψa,b,c

{a} , Ψa,b,c
{b} , and Ψa,b,c

{c} map the corresponding
Fourier basis elements

χ0 ⊗ χ0 ⊗ χ0, χsa ⊗ χ0 ⊗ χ0, χ0 ⊗ χsb
⊗ χ0, χ0 ⊗ χ0 ⊗ χsc ,

where sa, sb, sc are non-zero, into the vectors

A. Ambainis and A. Belovs 24:9

√
q(χ0 ⊗ χ0 ⊗ χ0)[[P̃ a,b,c]], √

q(χsa ⊗ χ0 ⊗ χ0)[[P̃ a,b,c]],
√

q(χ0 ⊗ χsb
⊗ χ0)[[P̃ a,b,c]], √

q(χ0 ⊗ χ0 ⊗ χsc
)[[P̃ a,b,c]],

(15)

respectively. It remains to prove that all these vectors together form an orthonormal system
in CP̃ a,b,c .

We can identify x ∈ P̃ a,b,c with x ∈ [q]{a,b} as the third element xc is uniquely determined
by xc = ra,b,c − xa − xb. Therefore, we may treat the vectors from (15) as belonging to Ha,b.
Under this assumption, the first three vectors in (15) become

χ0 ⊗ χ0, χsa
⊗ χ0, and χ0 ⊗ χsb

. (16)

(Here we used the √
q prefactor to compensate for one missing χ0.) Considering the last

vector, its entry corresponding to x ∈ P̃ a,b,c is

1
q ωscxc

q = 1
q ω

sc(ra,b,c−xa−xb)
q = ω

scra,b,c
q

q ω−scxa−scxb
q .

Hence, the last vector of (15) becomes

ω
scra,b,c
q χ−sc

⊗ χ−sc
. (17)

Clearly, the vectors in (16) and (17) form an orthonormal system. ◁

Now, let µ ∈ M , and S ⊆ [3n] be good for µ, i.e., |S ∩ {a, b, c}| ≤ 1 for every (a, b, c) ∈ µ.
We define the operator

Ψµ
S = qn/2Π[3n]

S [[P̃ µ, Ñ]] =
⊗

(a,b,c)∈µ

Ψa,b,c
S∩{a,b,c}, (18)

where the equality follows from the union property (12) and the definition (5) of P̃ µ.

▷ Claim 11 (Orthogonal Isometry Claim). The operator Ψµ
S is an isometry from H[3n]

S into
CP̃ µ . Moreover, for a fixed µ, the ranges of Ψµ

S are pairwise orthogonal.

Proof. This follows from Claim 10 and the second definition of Ψµ
S in (18). ◁

Also, from (13) and the first definition of Ψµ
S in (18), we get the reduction property

Ψµ
S

∆j7−→

{
Ψµ

S , if j /∈ S;
−Ψµ

S\{j}, if j ∈ S.
(19)

4.5 The Matrix G(α)
Now we are able to define the matrix G(α) for α from (6). It is a P̃ × Ñ -matrix defined as
the vertical stack of matrices

G(α) =

Gµ1,1(α)
...

Gµn,n(α)

 , (20)

where we have one block

Gµ(α) =
∑

S⊆[3n]

α(µ, S)Ψµ
S

CCC 2023

24:10 Separation Between Quantum Query Complexity and Polynomial Degree

for each shifted tripartite matching µ ∈ M . Recall that we implicitly assume that α(µ, S) = 0
if S is not good for µ, therefore, the Ψµ

S that appear in the latter sum are well-defined (satisfy
the conditions above (18)).

For two α and α′ as in (6), we can define α + α′ element-wise, and G(α) is linear in α:
G(α + α′) = G(α) + G(α′).

▷ Claim 12. Thus defined matrix G(α) satisfies the claims in (8): ∥G(α)∥ = ∥α∥ and
G(α) ∆j7−→ G(∂jα) for all j ∈ [3n].

Proof. Let us start with the first claim. We can write G(α) =
∑

S G(α|S), where

α|S(µ, S′) =
{

α(µ, S′), if S′ = S

0, otherwise.
(21)

We have that Gµ(α|S) = α(µ, S)Ψµ
S . Since by the Orthogonal Isometry Claim 11, each Ψµ

S is
an isometry from H[3n]

S , we get∥∥G(α|S)
∥∥ =

√∑
µ∈M

α(µ, S)2.

By the same Claim 11, the ranges and coimages of all G(α|S) are pairwise orthogonal. Hence,
∥G(α)∥ = maxS

∥∥G(α|S)
∥∥ = ∥α∥ as defined in (7).

By the reduction property (19), the second claim holds for each block of G(α), that is:

Gµ(α) ∆j7−→ Gµ(∂jα).

Therefore, it holds for the whole matrix G(α). ◁

4.6 Construction of α

We define

α(µ, S) = 1
n

max
{

n1/3 − |S|, 0
}

(22)

if S is good for µ. Otherwise, we assume α(µ, S) = 0.

▷ Claim 13. The α as defined in (22) satisfies the conditions in (9): ∥α∥ = n1/3 and
∥∂jα∥ = O(1) for all j ∈ [3n].

Proof. The value ∥α∥ = n1/3 is attained at S = ∅.
Now let us prove the second property. It suffices to check that, for all S and j ∈ [3n] \ S,∑

µ∈M

(
α(µ, S) − α(µ, S ∪ {j})

)2 = O(1). (23)

Fix S and j. If |S| ≥ n1/3, then (23) is zero, so we may assume |S| ≤ n1/3. There are n2

choices of µ ∈ M . They fall into three categories:
S is not good for µ. Then, S ∪ {j} is also not good for µ and

α(µ, S) − α(µ, S ∪ {j}) = 0.

S ∪ {j} is good for µ. Then, S is also good for µ, and∣∣α(µ, S) − α(µ, S ∪ {j})
∣∣ ≤ 1

n
.

(The ≤ case may hold for |S| =
⌊
n1/3⌋

. Otherwise, we have equality.)

A. Ambainis and A. Belovs 24:11

S is good for µ, but S ∪ {j} is not good for µ. In this case, we have an upper bound of∣∣α(µ, S) − α(µ, S ∪ {j})
∣∣ =

∣∣α(µ, S)
∣∣ ≤ n−2/3.

Let us estimate for how many µ the third option above holds. This happens only if
there is (a, b, c) ∈ µ such that j ∈ {a, b, c} and

∣∣S ∩ {a, b, c}
∣∣ = 1. Assume for concreteness

j = a ∈ A = {1, . . . , n}, the other two cases being similar. Let µ = µs,t as defined in (4). We
get that the third option holds only if

either n + 1 + (j + s mod n) or 2n + 1 + (j + t mod n) belongs to S.

There are at most |S|n ≤ n4/3 choices of s and t that satisfy the above condition. Therefore,∑
µ∈M

(
α(µ, S) − α(µ, S ∪ {j})

)2 ≤ n2 · 1
n2 + n4/3 · n−4/3 = O(1). ◁

4.7 Finishing the Proof
As mentioned previously, we define the adversary matrix as

Γ = G(α)[[P, N]]

with the choice of α from (22). Then, Γ ∆j7−→ G(∂jα)[[P, N]] and for the latter matrix by (8)
and (9), we have∥∥G(∂jα)[[P, N]]

∥∥ ≤
∥∥G(∂jα)

∥∥ = ∥∂jα∥ = O(1).

It remains to lower bound ∥Γ∥. We can write α = α′ + α′′ where α′ = α|∅ as in (21) and
α′′ = α − α′. Let uP , u

P̃
, uN , and u

Ñ
denote the uniform unit vectors in CP , CP̃ , CN and

CÑ , respectively. That is, uP [[x]] = 1/
√

|P | for all x ∈ P , and similarly for other vectors.
We have

∥Γ∥ ≥ u∗
P ΓuN = u∗

P

(
G(α′)[[P, N]]

)
uN + u∗

P

(
G(α′′)[[P, N]]

)
uN . (24)

We bound both terms separately.
By construction, G(α′) is an P̃ × Ñ matrix which is a vertical stack of matrices (20),

where each block is n−2/3Ψµ
∅ . Each Ψµ

∅ has all its entries equal (to q−5n/2). Thus,

u∗
P̃

G(α′)u
Ñ

= ∥G(α′)∥ = ∥α′∥ = n1/3.

Using Claim 9, we get

u∗
P

(
G(α′)[[P, N]]

)
uN =

√
|P | · |N |
|P̃ | · |Ñ |

u∗
P̃

G(α′)u
Ñ

≥ 3n1/3

4 . (25)

Now consider the second term. First, we have

∥G(α′′)∥ = ∥α′′∥ < n1/3.

Next, by Claim 11, the vector u
P̃

is orthogonal to the range of G(α′′). Therefore,

u∗
P̃

G(α′′)[[P̃ , N]] = 0.

CCC 2023

24:12 Separation Between Quantum Query Complexity and Polynomial Degree

We will use the vector ũ =
√

|P̃ |/|P |u
P̃

. It has the property ũ[[P]] = uP . Also, by
Claim 9,

∥∥ũ[[P̃ \ P]]
∥∥ ≤ 1/

√
3. Thus,

u∗
P

(
G(α′′)[[P, N]]

)
uN = ũ∗(

G(α′′)[[P̃ , N]]
)
uN − ũ[[P̃ \ P]]∗

(
G(α′′)[[P̃ \ P, N]]

)
uN

≥ −
∥∥ũ[[P̃ \ P]]

∥∥ ·
∥∥G(α′′)[[P̃ \ P, N]]

∥∥ ≥ −n1/3/
√

3.
(26)

Combining Eq. (24), (25) and (26), we get

∥Γ∥ ≥
(3

4 − 1√
3

)
n1/3 = Ω(n1/3).

5 Discussion

The choice of the problem (3) has been chiefly motivated by the availability of a relatively
simple lower bound in [11]. In principle, it is possible to analyse other problems. For instance,
consider a problem of the form

xa + xb = ra,b, for a ̸= b in [2n], (27)

and take M as consisting of all perfect matchings in [2n].
If + is the bit-wise xor and all ra,b are zeroes, we get the collision problem. The lower

bound on its quantum query complexity is Ω(n1/3) and it was obtained by Aaronson and
Shi [5] using the polynomial method. We see no reason to expect the non-homogeneous case
(with ra,b non-zero) to be any simpler, but the argument of Section 3 shows that it completely
breaks down Aaronson’s and Shi’s lower bound. For the adversary method, which we used in
Section 4, there was essentially no difference between the homogeneous case of [11] and the
non-homogeneous case of the current paper. The right-hand sides ra,b,c of (3) manifested
themselves as the phases in (17), which are irrelevant to the proof. It would be interesting to
establish lower bounds for the problem in (27). This would improve the constants in our
lower bounds.

Concerning Corollary 2, it is not clear whether O(log n) can be improved to something
better, thus resulting in a superexponential separation.

References
1 Scott Aaronson. Quantum lower bound for the collision problem. In Proc. of 34th ACM STOC,

pages 635–642, 2002. doi:10.1145/509907.509999.
2 Scott Aaronson. Open problems related to quantum query complexity. ACM Transactions on

Quantum Computing, 2(4):1–9, 2021. doi:10.1145/3488559.
3 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity

using cheat sheets. In Proc. of 48th ACM STOC, pages 863–876, 2016. doi:10.1145/2897518.
2897644.

4 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of Huang’s sensitivity theorem. In Proc. of
53rd ACM STOC, pages 1330–1342, 2021. doi:10.1145/3406325.3451047.

5 Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM, 51(4):595–605, 2004. doi:10.1145/1008731.
1008735.

6 Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences, 64(4):750–767, 2002. doi:10.1006/jcss.2002.1826.

https://doi.org/10.1145/509907.509999
https://doi.org/10.1145/3488559
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/3406325.3451047
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1006/jcss.2002.1826

A. Ambainis and A. Belovs 24:13

7 Andris Ambainis. Polynomial degree vs. quantum query complexity. In Proc. of 44th IEEE
FOCS, pages 230–239, 2003. doi:10.1109/SFCS.2003.1238197.

8 Anurag Anshu, Shalev Ben-David, and Srijita Kundu. On query-to-communication lifting for
adversary bounds. In Proc. of 36th IEEE CCC, volume 200 of LIPIcs, pages 30:1–30:39, 2021.
doi:10.4230/LIPIcs.CCC.2021.30.

9 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.
502097.

10 Aleksandrs Belovs and Ansis Rosmanis. On the power of non-adaptive learning graphs.
Computational Complexity, 23(2):323–354, 2014. doi:10.1007/s00037-014-0084-1.

11 Aleksandrs Belovs and Ansis Rosmanis. Quantum lower bounds for tripartite versions of the
hidden shift and the set equality problems. In Proc. of 13th TQC, volume 111 of LIPIcs, pages
3:1–3:15. Dagstuhl, 2018. doi:10.4230/LIPIcs.TQC.2018.3.

12 Aleksandrs Belovs and Robert Špalek. Adversary lower bound for the k-sum problem. In Proc.
of 4th ACM ITCS, pages 323–328, 2013. doi:10.1145/2422436.2422474.

13 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288:21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

14 Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes back: Tight
quantum query bounds via dual polynomials. In Proc. of 50th ACM STOC, pages 297–310,
2018. doi:10.1145/3188745.3188784.

15 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In
Proc. of 39th ACM STOC, pages 526–535, 2007. doi:10.1145/1250790.1250867.

16 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proc. of 52nd IEEE FOCS, pages 344–353, 2011.
doi:10.1109/FOCS.2011.75.

17 Nikhil S. Mande, Justin Thaler, and Shuchen Zhu. Improved approximate degree bounds
for k-distinctness. In Proc. of 15th TQC, volume 158 of LIPIcs, pages 2:1–2:22, 2020. doi:
10.4230/LIPIcs.TQC.2020.2.

18 Gatis Midrijānis. Exact quantum query complexity for total Boolean functions. quant-
ph/0403168, 2004.

19 Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–1007,
1991. doi:10.1137/0220062.

20 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, 1994. doi:10.1007/BF01263419.

CCC 2023

https://doi.org/10.1109/SFCS.2003.1238197
https://doi.org/10.4230/LIPIcs.CCC.2021.30
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1007/s00037-014-0084-1
https://doi.org/10.4230/LIPIcs.TQC.2018.3
https://doi.org/10.1145/2422436.2422474
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1145/3188745.3188784
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.4230/LIPIcs.TQC.2020.2
https://doi.org/10.4230/LIPIcs.TQC.2020.2
https://doi.org/10.1137/0220062
https://doi.org/10.1007/BF01263419

	1 Introduction
	2 Preliminaries
	2.1 Polynomials
	2.2 Adversary Bound

	3 The Problem and the Polynomial Upper Bound
	4 Quantum Lower Bound
	4.1 Input-Related Sets
	4.2 Overview of the Proof
	4.3 Fourier Basis
	4.4 The Building Blocks
	4.5 The Matrix G(alpha)
	4.6 Construction of alpha
	4.7 Finishing the Proof

	5 Discussion

