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Abstract
We define a novel notion of “non-backtracking” matrix associated to any symmetric matrix, and we
prove a “Ihara-Bass” type formula for it.

We use this theory to prove new results on polynomial-time strong refutations of random
constraint satisfaction problems with 𝑘 variables per constraints (k-CSPs). For a random k-CSP
instance constructed out of a constraint that is satisfied by a 𝑝 fraction of assignments, if the
instance contains 𝑛 variables and 𝑛𝑘/2/𝜖2 constraints, we can efficiently compute a certificate that
the optimum satisfies at most a 𝑝 + 𝑂𝑘(𝜖) fraction of constraints.

Previously, this was known for even 𝑘, but for odd 𝑘 one needed 𝑛𝑘/2(log 𝑛)𝑂(1)/𝜖2 random
constraints to achieve the same conclusion.

Although the improvement is only polylogarithmic, it overcomes a significant barrier to these
types of results. Strong refutation results based on current approaches construct a certificate that a
certain matrix associated to the k-CSP instance is quasirandom. Such certificate can come from
a Feige-Ofek type argument, from an application of Grothendieck’s inequality, or from a spectral
bound obtained with a trace argument. The first two approaches require a union bound that cannot
work when the number of constraints is 𝑜(𝑛 ⌈𝑘/2⌉ ) and the third one cannot work when the number
of constraints is 𝑜(𝑛𝑘/2√log 𝑛).

We further apply our techniques to obtain a new PTAS finding assignments for 𝑘-CSP instances
with 𝑛𝑘/2/𝜖2 constraints in the semi-random settings where the constraints are random, but the
sign patterns are adversarial.
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1 Introduction

If we take a random instance of 3SAT with 𝑛 variables and 𝑚 ≥ 𝑐𝑛 clauses where 𝑐 is a
sufficiently large constant, then almost surely the instance is not satisfiable. Indeed, an
instance of random 3SAT with 𝑛 variables and 𝑛/𝜖2 clauses is almost surely such that at
most a 7/8 + 𝑂(𝜖) fraction of clauses can be simultanously satisfied by the best assignment.
Finding a certificate that a specific random formula exhibits such behaviour is, however,
believed to be quite hard.
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27:2 Strong Refutations of Random CSPs

In 2002, Feige [8] formulated the hypothesis that it is computationally intractable to
find strong refutations of random 3-SAT formulas when the number of clauses is slightly
superlinear in the number of variables. A strong refutation of a 3-SAT formula is a certificate,
verifiable in polynomial time, that every assignment fails to satisfy a constant fraction of
the clauses. Feige proved that his hypothesis has several consequences for the hardness of
approximation of various problems.

Because of its centrality to the theories of proof complexity and of average-case complexity,
and its connection to other questions in cryptography, computational complexity, and
statistical physics, the complexity of strong refutations for random 3SAT and other random
constraint satisfaction problems has been extensively studied since the 1980s.

Among several important algorithmic milestones, we mention the idea of using spectral
techniques to find refutations and strong refutations (introduced in [13, 12] and then refined
in subsequent work) and a reduction from the problem of finding strong refutations for
random 3SAT to the problem of finding strong refutations for random 3XOR (introduced
in [8] and then refined in subsequent work).

The state of the art concerning polynomial-time computable strong refutations of random
constraint satisfaction problems is a 2015 paper by Allen, O’Donnell and Witmer [2]. We refer
the reader to the introduction of [2] for an extended survey of algorithmic ideas and results
related to refutations of random constraint satisfaction problems. Allen, O’Donnell and
Witmer [2] show how to obtain strong refutations for random 𝑘-XOR constraint satisfaction
problems on 𝑛 variables and 𝑛𝑘/2(log 𝑛)𝑂(1) constraints. When 𝑘 is even, 𝑂(𝑛𝑘/2) constraints
suffice. Thanks to a reduction from arbitrary constraint satisfaction to 𝑘-XOR (of which we
provide a self-contained simpler proof in the full version of the paper), similar bounds hold
for any constraint satisfaction problem over 𝑘 variables.

To illustrate the difference between odd 𝑘 and even 𝑘, we briefly discuss how a strong
refutation for random 4-XOR and random 3-XOR instances is constructed.

In general, if we have an instance of 𝑘-XOR with 𝑚 constraints and 𝑛 variables, a strong
refutation is a certificate that

max
𝑥∈{−1,1}𝑛

∑
𝑖1 ,...,𝑖𝑘

𝑇𝑖1 ,...,𝑖𝑘 𝑥𝑖1 · · · 𝑥𝑖𝑘 ≤ 𝜖𝑚

where 𝑇 is a symmetric tensor of order 𝑘 such that 𝑇𝑖1 ,...,𝑖𝑘 = 0 if there is no constraint on the
𝑘-tuple of variables 𝑥𝑖1 , . . . , 𝑥𝑖𝑘 , and otherwise 𝑇𝑖1 ,...,𝑖𝑘 = ±1 depending on the right-hand-side
of the constraint.

When 𝑘 = 4, we can flatten the tensor to an 𝑛2 × 𝑛2 symmetric matrix 𝑀 (where
𝑀(𝑎,𝑏),(𝑐,𝑑) = 𝑇𝑎,𝑏,𝑐,𝑑) and we have

max
𝑥∈{−1,1}𝑛

∑
𝑖1 ,...,𝑖4

𝑇𝑖1 ,...,𝑖4𝑥𝑖1 · · · 𝑥𝑖4 = max
𝑥∈{−1,1}𝑛

(𝑥⊗2)T𝑀𝑥⊗2

Now we can relax the right-hand side to a maximization over arbitrary 𝑛2-dimensional
Boolean vectors and further relax to the ∞-to-1 norm:

max
𝑥∈{−1,1}𝑛

(𝑥⊗2)T𝑀𝑥⊗2 ≤ max
𝑦∈{−1,1}𝑛2

𝑦T𝑀𝑦 ≤ max
𝑦,𝑧∈{−1,1}𝑛2

𝑦T𝑀𝑧 = | |𝑀 | |∞→1

Finally, the last expression above can be upper bounded by 𝜖𝑚, by using Chernoff bounds
and a union bound over all the 22𝑛2 possible choices for 𝑦 and 𝑧, which is possible if 𝑚 is a
sufficiently large constant times 𝑛2/𝜖2. Finally, we can use Grothendieck’s inequality to get
us a certified upper bound of the ∞ → 1 norm in polynomial time up to a constant factor.
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For 3-XOR, the idea is to apply a Cauchy-Schwarz step to reduce the problem of bounding
a degree-4 problem, and then to flatten the resulting 4-tensor to an 𝑛2 × 𝑛2 matrix 𝑀 such
that

max
𝑥∈{−1,1}𝑛

∑
𝑖1 ,𝑖2 ,𝑖4

𝑇𝑖1 ,𝑖2 ,𝑖3𝑥𝑖1𝑥𝑖2𝑥𝑖3 ≤
√
𝑛 ·

√
max
𝑥∈{±1}𝑛

(𝑥⊗2)T𝑀𝑥⊗2 ≤
√
𝑛 ·

√
max

𝑦,𝑧∈{±1}𝑛2
𝑦T𝑀𝑧

Unfortunately, now it is not possible any more to bound the maximum on the above
right-hand via a union bound over 22𝑛2 cases. Indeed, for this to be possible, we would need
our distribution to have at least order of 𝑛2 bits of entropy, and so we would need to have
order of 𝑛2 constraints.

The alternative is to obtain a bound in terms of the spectral norm of 𝑀, using the fact
that

max
𝑦,𝑧∈{±1}𝑛2

𝑦T𝑀𝑧 ≤ 𝑛2 · | |𝑀 | | .

But for a sparse matrix to have a non-trivial bound on its spectral norm, we have to
have at least poly log 𝑛 non-zero entries per row on average1, and for this to happen the
number of constraints has to be at least of the order of 𝑛1.5poly log 𝑛. In the regime of
𝑛1.5poly log 𝑛 random 3-XOR constraints, a spectral norm bound on 𝑀 can be established
via trace methods, and this is how the results of [2] are proved in the case of odd 𝑘.

Semi-random CSPs

The complementary question to that of certifying strong refutations, concerns the design
of algorithms that satisfy as-many-as-possible clauses in the given CSP instance. As for
refutations, complexity theory paints a grim picture for (approximately) solving worst case
instances [18, 6, 11]. But, in the average case, polynomial time approximation schemes are
known [3, 1] when the number of clauses is of the order 𝑛𝑘/2(log 𝑛)𝑂(1) .

The algorithmic techniques behind these PTAS are closely related to those used for
refutations and, in particular, again boils down to studying the spectrum of the flattened
tensor representing the instance.

Remarkably, groundbreaking work [15], showed that a similar picture holds in the
significantly more general settings of smoothed CSPs: where both the literal negation
patterns and clauses are chosen arbitrarily, but then signs are randomly flipped with a small,
yet constant, probability.2.

1.1 Our Results

Strong refutations

Our first result breaks the 𝑛𝑘/2poly log 𝑛 barrier for strong refutations of random 𝑘-XOR
instances, with odd 𝑘.

1 This is similar to the phenomenon that the quasirandomness of a 𝐺𝑛,𝑝 random graphs can be certified
in terms of the non-trivial eigenvalues of the adjacency matrix only if the average degree is at least
logarithmic. We will return to the graph analogy shortly.

2 Smoothed CSPs were first introduced in [9]
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27:4 Strong Refutations of Random CSPs

▶ Theorem 1 (Strong refutations of random 𝑘-XOR). There exists an efficient algorithm that,
given an instance 𝓘 of random 𝑘-XOR with 𝑛𝑘/2/𝜖2 constraints, with probability at least
0.99, finds strong refutation of 𝓘 , that is, a certificate that

Opt𝓘 ≤ 1
2 + 𝑂(𝜖) .

Using the known reduction of general 𝑘-CSP to 𝑘-XOR, of which we provide a simple
self-contained proof, we have the following consequence.

▶ Theorem 2 (Strong refutations of random CSPs). Let 𝑃 : {−1,+1}𝑘 → {0, 1} be a Boolean
𝑘-ary predicate, and call 𝔼𝑃 the probability that 𝑃 is satisfied by a random assignment.
There exists a polynomial time algorithm that given a random instance 𝐶𝑆𝑃(𝑃) instances
𝓘 , over 𝑛 variables, with at least 𝑛𝑘/2/𝜖2 constraints, with probability at least 0.99, finds a
strong refutation of 𝓘 , that is, a certificate that

Opt𝓘 ≤ 𝔼𝑃 + 𝑂(𝜖) .

Robust approximation algorithms against adversarial sign patterns

Our techniques can be further applied to design efficient algorithms finding an assignment
with value Opt − 𝑂(𝜖) beyond the 𝑛𝑘/2 polylog 𝑛 barrier. Our sharp results not only works
for random instances, but also in the semi-random settings where: first, clauses are sampled
randomly, and second, given the instance, the sign pattern of each clause is adversarially
perturbed. Such perturbations are not captured by the smooth models of [9, 15] and hence
require different algorithmic challenges. In the special case of even 𝑘, [17] provided a PTAS
whenever 𝑝 ≥ 𝑛𝑘/2 polylog 𝑛 .

▶ Theorem 3 (Algorithm for k-XOR with adversarial patterns). Let 𝑛 , 𝑘 be positive integers,
𝜖 > 0 , 𝑛 and 𝑛−𝑘/2/𝜖2 < 1. Let ℐ be a 𝑘-XOR instance constructed through the following
process:

Sample a random 𝑘-XOR instance 𝓘
′ with at least 𝑛𝑘/2/𝜖2 constraints.

Given 𝓘
′, arbitrarily (possibly adversarially) replace the sign of each clause in 𝓘

′ .
There exists a randomized algorithm, running in time 𝑛𝑂(𝑘/𝜖2), that returns an assignment x̂
with value

Valℐ (x̂) ≥ Optℐ − 𝑂(𝜖) ,

with probability at least 0.99.

As in the case of strong refutations, Theorem 3 can be extended to 𝑘-CSPs.

▶ Theorem 4 (Algorithm for semi-random k-CSPs). Let 𝑛 , 𝑘 be positive integers, 𝜖 > 0 , 𝑛 and
𝑛−𝑘/2/𝜖2 < 1. Let 𝑃 : {−1,+1}𝑘 → {0, 1} be a Boolean 𝑘-ary predicate. Let ℐ be a 𝐶𝑆𝑃(𝑃)
instance constructed through the following process:

Sample a random 𝐶𝑆𝑃(𝑃) instance 𝓘
′ with at least 𝑛𝑘/2/𝜖2 constraints.

Given 𝓘
′, for each clause in 𝓘

′, replace the sign pattern with an arbitrary (possibly
adversarial) sign pattern.

There exists a randomized algorithm, running in time 𝑛𝑂(𝑘/𝜖2), that returns an assignment x̂
with value

Valℐ (x̂) ≥ Optℐ − 𝑂(𝜖) ,

with probability at least 0.99.
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1.2 Our Techniques

We develop new techniques to bound3

max
𝑥∈{±1}𝑁

𝑥TM𝑥 (1)

when M is a random 𝑁 ×𝑁 matrix with only a constant expected number of non-zero entries
per row and per column, and in which such entries are not independent.

A toy problem

Before we explain our ideas, consider the following question, which models some of the
difficulties that we encounter: suppose that we are given a random graph on 𝑁 vertices, and
such that every edge exists with probability 𝑑/𝑁 , where 𝑑 is a constant, but the edges are
only known to be poly log𝑁-wise independent, and not fully independent. Can we certify
that the graph has interesting quasirandom properties, for example can we certify that the
Max Cut optimum is at most a 1/2 + 𝑂(1/

√
𝑑) fraction of edges?

One approach could be to bound | |A −𝔼A| |∞→1 where A is the adjacency matrix of the
graph. If the graph has mutually independent random edges, that is, if it is sampled from an
Erdős-Reniy distribution 𝐺𝑁, 𝑑𝑁 , then we can use a union bound over 22𝑁 cases to argue that
with high probability

| |A −𝔼A| |∞→1 ≤ 𝑂(
√
𝑑𝑁)

which is certifiable in polynomial time, up to a constant factor loss, using Grothendieck’s
inequality and which certifies that the Max Cut optimum is at most 1/2 + 𝑂(1/

√
𝑑). Unfor-

tunately, if the edges are only polylog𝑁-wise independent, then it is not possible to take
such union bound.

Another option in the fully independent case is to use the results of Feige and Ofek [10],
which show that, after removing nodes of degree larger than, say, 10𝑑, the adjacency matrix of
the residual graph has second eigenvalue at most 𝑂(

√
𝑑) with high probability. Unfortunately

the proof of Feige and Ofek also relies on a union bound over 2𝑂(𝑁) cases, and so it cannot
work in the polylog𝑁-wise independent case.

A trace argument can be used to prove that, with high probability, we have

| |A −𝔼A| | ≤ 𝑂(
√
𝑑 log𝑁)

which provides a polynomial time certificate that the Max Cut optimum is at most 1/2 +
𝑂(

√
log𝑁/

√
𝑑), and the trace calculation only requires 𝑂(log𝑁)-wise independence. It does,

however, introduce an extra logarithmic factor, which is unavoidable because the spectral
norm of | |A −𝔼A| | is Ω̃(

√
log𝑁) when 𝑑 is constant.

It is conceivable that one could prove the result of Feige and Ofek (that the adjacency
matrix has second largest eigenvalue 𝑂(

√
𝑑) after the removal of high-degree vertices) through

a trace bound on the adjacency matrix of the truncated graph, although it seems very difficult
to deal with the conditional distribution of edges given that the edges survive the truncation.

3 We use boldface to denote random variables.
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27:6 Strong Refutations of Random CSPs

A solution to the toy problem

Although all standard techniques fail, there is a way to combine certain recent results to solve
our toy problem. The starting point is the fact that, given an undirected graph 𝐺 = (𝑉, 𝐸),
we can define the “non-backtracking” 2|𝐸 | × 2|𝐸 | matrix 𝐵 of 𝐺, and that this matrix satisfies
the Ihara-Bass equation

det(Id − 𝑥𝐵) = (1 − 𝑥2)|𝐸 |−|𝑉 | · det(Id − 𝑥𝐴 + 𝑥2(𝐷 − Id))

where 𝐴 is the adjacency matrix of the graph, 𝐷 is the diagonal matrix of degrees, and the
above equation holds as an identity of polynomials of degree 2|𝐸 | in 𝑥. See the survey of
Horton [16] for an exposition of these definitions and results.

Fan and Montanari [7] show that bounds on the spectral radius of 𝐵 imply useful PSD
inequalities on 𝐴. In particular, if 𝜆min is the smallest real eigenvalue of 𝐵, then we have

𝐴 ⪰ −|𝜆min | · Id − 1
|𝜆min |

· (𝐷 − Id)

In the context of their work on the Stochastic Block Model, Bordenave, Lalarge and Massoulié
[5] use a trace argument to prove a result that implies that 𝜆min ≥ −(1 + 𝑜(1)) ·

√
𝑑 in 𝐺𝑁, 𝑑𝑁

random graphs, and so all these results together imply that the Max Cut of a 𝐺𝑁, 𝑑𝑁 random
graph is with high probability at most 1/2 + (1 + 𝑜(1))/

√
𝑑, and that this upper bound is

efficiently certifiable, for example by the dual of the Goemans-Williamson relaxation.
The key point is that there was never a union bound over 2𝑂(𝑁) cases in the above

argument and that, in fact, everything works assuming polylog𝑁-wise independence of the
edges.4

From unweighted graphs to general symmetric matrices

Our goal is to develop an analog of this argument where we work with the 𝑛2 × 𝑛2 matrix
𝑀 that comes up in the analysis of 3-XOR (or, in general, with the 𝑛 ⌈𝑘/2⌉ × 𝑛 ⌈𝑘/2⌉ matrix
that comes up in the analysis of 𝑘-XOR when 𝑘 is odd) instead of the adjacency matrix 𝐴 of
the pseudorandom graph analysed above.

The first challenge in carrying out this program is that the original notion of non-
backtracking matrix is defined only with respect to 0/1 Boolean symmetric matrices, while
we want to study matrices with positive and negative entries that can be arbitrary integers.

A certain generalization of non-backtracking matrices was already introduced in [20, 7],
however for technical reasons we were not able to use it to carry out our program. We thus
introduce a novel theory of “non-backtracking” matrices associated to any given symmetric
matrix. In Section 3, given a symmetric 𝑁 ×𝑁 matrix 𝑀 with 𝑁𝑧 non-zero entries, we define
an 𝑁𝑧 × 𝑁𝑧 “non-backtracking” matrix 𝐵𝑀 associated to 𝑀, and we prove (see Theorem 7)
an Ihara-Bass-type identity

det(Id − 𝑥𝐵𝑀 + 𝑥(𝐿𝑀 − 𝐽𝑀)) = (1 − 𝑥2)𝑁𝑧/2−𝑁 · det(Id − 𝑥𝑀 + 𝑥2(𝐷𝑀 − Id))

4 Incidentally, this combination of Fan-Montanari ideas and Bordenave-Lalarge-Massouli’s bounds, also
implies that if 𝐴′ is the adjacency matrix of a graph 𝐺 sampled from a distribution in which edges have
probability 𝑑/𝑁 and are polylog𝑁 wise independent, and then truncated by removing all vertices of
degree more than, say, 10𝑑, then we have with high probability 𝐴′ ⪰ −𝑂(

√
𝑑) · 𝐼, proving a one-sided

version of the result of Feige and Ofek.
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where 𝐷𝑀 , 𝐿𝑀 and 𝐽𝑀 are certain matrices that are associated to 𝑀. When 𝑀 is Boolean,
𝐿𝑀 = 𝐽𝑀 and 𝐷𝑀 is the diagonal matrix such that (𝐷𝑀)𝑖 ,𝑖 =

∑
𝑗 𝑀𝑖 , 𝑗 , so our equation

becomes the standard Ihara-Bass equation in the case of Boolean 𝑀. Conveniently, closed
non-backtracking walks 𝑊 arising from the definition of 𝐵𝑀 take value in {±∏

(𝑖 , 𝑗)∈𝑊 𝑀𝑖 𝑗},
allowing one to easily mimic arguments used for standard non-backtracking matrices.

Now, given a bound on the spectral radius of 𝐵𝑀 − 𝐿𝑀 + 𝐽𝑀 , it is possible, with an
argument in the style of Fan and Montanari, to deduce a certifiable bound on the ∞-to-1
norm of 𝑀.

Bounding the spectral radius via weighted hyper-walks

Studying the spectral radius of 𝐵M − 𝐿M + 𝐽M –matrices associated to the matrix M coming
from random 𝑘-XOR instances– is the main technical challenge of this work.

Our bound relies on a trace argument of 𝐵M. However, compared to Bordenave, Lalarge
and Massoulié [5] our setup presents a number of new technical challenges.

One challenge comes from the extra terms that we have in the non-Boolean case. In
particular, our non-backtracking matrix 𝐵M has entries that are the absolute values of certain
entries of M. To compute an expectation of the trace of the symmetrization of a power of
𝐵M, we replace absolute values with squares, and bound the error that we incur because of
this.

Perhaps the most important challenge comes from the fact that the trace bound ultimately
boils down to a weighted count of certain closed “hypergraph walks” performed on the
hypergraph corresponding to constraints of the 𝑘-XOR instance. These objects arise from
our notion of non-backtracking walks on the symmetric matrix M obtained from the instance.
This count is performed by showing that such walks can be encoded with a small number of
bits. It is enough to count walks in which every hyperedge is repeated at least twice, and
the crux of the argument is that the second time we see a hyperedge we can encode that
hyperedge in a compact way. A naive way of doing that would point back to the previous step
in the walk in which that hyperedge appeared, and this costs log ℓ bits where ℓ is the length
of the walk. To obtain the right result, however, repeated hyperedges have to be represented
with an amortized constant number of bits per occurrence. The argument of Bordenave,
Lalarge and Massoulié [5] relies on the assumption, which is true with high probability, that
the graph is “tangle-free,” meaning that small subgraphs have at most one cycle. We have to
work with a looser notion of tangle-free hypergraph in order to prove that it holds with high
probability, but we are still able to obtain the desired bound.

From spectral bounds to algorithms

It is clear that an algorithm certifying tight bounds on Equation (1) for the matrix 𝑀

obtained from 𝑘-XOR instances can be used for strong refutations. Instead, to obtain
Theorem 3 additional ideas are needed.

Our starting point is the local-to-global rounding paradigm of [3]. As it is often the case,
the odd settings are significantly more challenging than the regimes with 𝑘 even. Hence
consider first a 2-XOR random instance 𝓘 . Up to the signs of the clauses, this may be
represented as a graph G over 𝑛 vertices. Now, for a distribution 𝜈 over assignments, one
may define the local and global correlations as

CCC 2023



27:8 Strong Refutations of Random CSPs

LCG(𝜈) = 𝔼
(a,b)∼𝐸(G)

���Cov𝜈

(
xa , xb

)���
GC(𝜈) = 𝔼

(a,b)∼[𝑛]×[𝑛]

���Cov𝜈

(
xa , xb

)��� .
If the local correlation is bounded by 𝜖, it is possible to obtain an assignment with value
Opt𝑰 − 𝑂(𝜖) simply looking at the first moment of 𝜈. Moreover, one can always transform 𝜈
into a distribution with small global correlation in polynomial time.

With these observations, the argument of [3] comes down to: (i) bounding the difference
between local and global correlation in terms of the spectral radius 𝜌G of the centered
adjacency matrix of the graph G, (ii) showing that one can always find, in time 𝑛𝑂(1/𝜖2), a
degree 𝑂(1) pseudo-distribution over the hypercube with global correlation at most 𝜖. As
we only required low-degree moments to obtain the desired assignment, the argument goes
through in this case as well.

To combine this approach with the bounds previously illustrated and extend the argument
to random 𝑘-XOR instances with 𝑚 ≥ Ω(𝑛𝑘/2/𝜖2) clauses, we need to introduce two novel
ingredients. First, we need new notions of local and global correlations which difference can
be bounded studying the matrix M arising from the instance. Second, we need to bound this
difference not in term of the eigenvalues of M but rather in terms of Equation (1).

A careful Cauchy-Schwarz application allows us to formulate notions of local and global
correlations in terms of M. Its squaring step, further allows us to get rid of absolute values,
thus providing an avenue to bound the difference between local and global correlation in
terms of max𝑥∈{±1}𝑛 𝑥

TM𝑥 .

Finally, since the adversarial perturbations in Theorem 3 cannot alter the “hypergraph
walks” required to prove our bound, we are able to generalize our result to these settings.

1.3 Perspective

Several results on the average-case complexity of Sum-of-Square relaxations rely on proving
that sparse matrices with non-independent entries are “quasirandom” in an appropriate
sense. We have introduced a new approach to prove results of this form, which applies to
very sparse matrices that have only a constant expected number of non-zero entries per row
and per column. We hope that our ideas will find further application, for example to the
context of semi-random instances of constraint satisfaction problems [14] or of higher-degree
Sum-of-Square relaxations of random constraint satisfaction problems [19, 21].

Our theory could also be useful to study problems on random weighted graphs.
Our certificates prove certain PSD inequalities, and can be seen as Semidefinite Duals of

certain Sum-of-Squares relaxations, but the computation of the certificate only requires an
eigenvalue computation of a certain matrix, and does not require the solution of an SDP.
There might be other ways to apply our theory so that one uses SDP relaxations only in the
analysis, but the algorithm itself is purely spectral.

1.4 Organization

In the rest of the paper we first introduce preliminary notions, including those of CSPs and
strong refutation, then present a proof of our generalized Ihara-Bass formula. We show the
proofs of our main Theorems in the full version of the paper.
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2 Preliminaries

We introduce some notation, useful facts and needed preliminary notions. We denote random
variables in bold. We use lower case letters 𝑎, 𝑏, 𝑐, 𝑑, . . . to denote indices or scalars (the
use willl be clear from context). We use the greek letters 𝛼, 𝛽, 𝜂 to denote multi-indices.
The cardinality of a multi-index 𝛼 is |𝛼 |. The 𝑖-th index in 𝛼 is 𝛼(𝑖). We may thus write a
monomial (with coefficient 𝑐) in indeterminates 𝑥1 , . . . , 𝑥𝑛 as 𝑐 · 𝑥𝛼. For two multi indices
𝛼, 𝛽 ∈ [𝑛]𝑘 we denote by (𝛼, 𝛽) the multi-index obtained concatenating 𝛼 and 𝛽. Multi-indices
𝛼, 𝛽 ∈ [𝑛]𝑘 satisfy 𝛼 = 𝛽 if at each position the corresponding indices are identical. We use
𝑆(𝛼) to denote the unordered multi-set of indices in 𝛼. We use 𝑛 to denote our ambient
dimension. For functions 𝑓 , 𝑔 : ℝ → ℝ we write 𝑓 = 𝑜(𝑔) and 𝑔 = 𝜔( 𝑓 ) if lim𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 0.

Matrices

For a matrix 𝑀 ∈ ℝ𝑛×𝑛 , we denote by 𝜆1(𝑀) ≥ . . . ≥ 𝜆𝑛(𝑀) its eigenvalues. Then
𝜌(𝑀) := max𝑖 |𝜆𝑖(𝑀)| is the spectral radius of 𝑀. W When the context is clear we simply
write 𝜆1 , . . . ,𝜆𝑛 . The spectral radius of a matrix satisfies the following inequality.

▶ Lemma 5 (Gelfand’s Formula). Let 𝑀 ∈ ℝ𝑛×𝑛 and let ∥·∥∗ be a norm. Then for any
positive integer 𝑧

𝜌(𝑀) ≤ ∥𝑀𝑧 ∥1/𝑧
∗ .

We write ∥𝑀∥ for the spectral norm of a matrix 𝑀, ∥𝑀∥F for its Frobenius norm ∥𝑀∥∞→1 :=
max𝑥,𝑦∈{±1}𝑛 ⟨𝑀, 𝑥𝑦T⟩ and ∥𝑀∥max := max𝑖 𝑗

��𝑀𝑖 𝑗

�� . Furthermore, we let

∥𝑀∥Gr = max {⟨𝑀, 𝑋⟩ | 𝑋 ⪰ 0, 𝑋𝑖𝑖 ≤ 1 ,∀𝑖 ∈ [𝑛]} .

We denote by |𝑀 | the matrix with entries (|𝑀 |)𝑖 𝑗 :=
��𝑀𝑖 𝑗

��. We write Id𝑡 for the 𝑡-by-𝑡 identity
matrix, 0 for the zero matrix and 𝐽 for the all-ones matrix.

Graphs

For a graph 𝐺, 𝑉(𝐺) and 𝐸(𝐺) denotes respectively its set of vertices and edges. ®𝐸(𝐺) :=
{(𝑢, 𝑣) : 𝑢 ≠ 𝑣 ∈ 𝑉(𝐺) , 𝑢𝑣 ∈ 𝐸(𝐺)} is the set of all its ordered pairs such that {𝑢, 𝑣} ∈ 𝐸(𝐺).
For 𝑒 ∈ ®𝐸(𝐺), 𝑠(𝑒) and 𝑡(𝑒) are respectively the source and target of the oriented edge. We
write 𝑒−1 for its inverse. We also write 𝐾𝑛 for the complete graph over 𝑛 vertices. For a graph
𝐺 with 𝑛 vertices, we write 𝐴(𝐺) ∈ ℝ𝑛×𝑛 for its adjacency matrix. For a vertex 𝑣 ∈ 𝑉(𝐺),
we denote by deg𝐺(𝑣) its degree. We denote by 𝑁𝐺,𝑡(𝑣) the set of vertices in 𝐺 at distance 𝑡
from 𝑣. We and drop the subscript 𝐺 when the context is clear. If the graph 𝐺 is weighted
with weights given by 𝑤 : 𝑉(𝐺) × 𝑉(𝐺) → ℝ, then 𝐴𝑢𝑣 = 𝑤({𝑢𝑣}). If 𝑒 ≠ 𝐸(𝐺), then we
assume 𝑤(𝑒) = 0. A walk 𝑊 in a graph 𝐺 is a sequence of vertices (𝑣1 , . . . , 𝑣𝑧+1). A walk
𝑣1 , . . . , 𝑣𝑧+1 is said to be non-backtracking if for any 𝑖 ≤ 𝑧 − 1, 𝑣𝑖 ≠ 𝑣𝑖+2.

2.1 CSPs, k-XOR and strong refutations
k-XOR

A random 𝑘-XOR instance 𝓘 with 𝑛 variables and 𝑝
(𝑛
𝑘

)
(1 ± 𝑜(1)) clauses can be generated

by picking a random symmetric tensor T, with independent entries, such that T𝛼 = 0 if the
indices in the multi-index 𝛼 ∈ [𝑛]𝑘 are not distinct and otherwise:
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T𝛼 =


0 with probability 1 − 𝑝 ,
+1 with probability 𝑝/2 ,
−1 with probability 𝑝/2 .

We denote by 𝑚 the exact number of clauses in the instance. Then 𝓘 consists of the 𝑚 𝑘-XOR
predicates 𝑘-XOR(𝛼) = 1−𝑥𝛼(−T)𝛼

2 where T𝛼 is non-zero. We use ℱ𝑘-XOR(𝑛,𝑝) to denote such
distribution and 𝓘 ∼ ℱ𝑘-XOR(𝑛,𝑝) to denote a random instance. We let Val𝓘 (𝑥) be the fraction
of constrained satisfied by the assignment 𝑥 ∈ {±1}𝑛 and Opt𝓘 := max𝑥∈{±1}𝑛 Val𝑰 (𝑥). For
any assignment 𝑥 ∈ {±1}𝑛 we have

Val𝓘 (𝑥) = 1
2 + 1

𝑚(𝓘 )
∑

𝛼∈[𝑛]𝑘

𝑥𝛼T𝛼

2 .

Notice that since 𝑚 will be (1 ± 𝑜(1))𝑝
(𝑛
𝑘

)
with overwhelming probability, we blur the

distinction between these parameters. Then the max 𝑘-XOR problem is that of finding an
assignment with value

max
𝑥∈{±1}𝑛

∑
𝛼∈[𝑛]𝑘

T𝛼𝑥
𝛼 . (2)

This is captured by the following proposition.

▶ Proposition 6. Let 𝓘 ∼ ℱ𝑘-XOR(𝑛,𝑝) and let T be the associated 𝑘-th order tensor. Then
with overwhelming probability

Opt𝓘 ≤ 1
2 + (1 + 𝑜(1))

((
𝑛

𝑘

)
· 𝑝

)−1
·
∑

𝛼∈[𝑛]𝑘
T𝛼𝑥

𝛼 .

Throughout the paper we assume 𝑘 to be an odd integer as for the even case sharp refutation
algorithms are already known (e.g see [2]).

A random 𝑘-XOR instance 𝓘 with 𝑛 variables and exactly 𝑚 clauses can be generated by
picking 𝑚 times a clause at random out of the

(𝑛
𝑘

)
possible 𝑘-XOR-clause. It is possible to

show that a refutation algorithm for 𝓘 ∼ ℱ𝑘-XOR(𝑛,𝑝) can also be used for refutation of 𝑘-XOR
instances sampled through this second process. For this reason, we blur the distinction
between these two processes. We direct the reader interested in a formal reduction to [2]
(Appendix D).

CSPs

Given a predicate 𝑃 : {−1, 1}𝑘 → {0, 1}, an instance ℐ of the CSP(P) problem over variables
𝑥1 , . . . , 𝑥𝑛 is a multi-set of pairs (𝑐, 𝛼) representing constraints of the form 𝑃(𝑐 ◦ 𝑥𝛼) :=
𝑃(𝑐1𝑥

𝛼(1) , . . . , 𝑐𝑘𝑥𝛼(𝑘)) = 1 where 𝛼 ∈ [𝑛]𝑘 is the scope and 𝑐 ∈ {±1}𝑘 is the negation pattern.
We can represent the predicate 𝑃 as a multi-linear polynomial of degree 𝑘 in indeterminates
𝑐1𝑥

𝛼(1) , . . . , 𝑐𝑘𝑥𝛼(𝑘),

𝑃(𝑐 ◦ 𝑥𝛼) =
∑
𝑑≤𝑘

𝑃𝑑(𝑐 ◦ 𝑥𝛼) ,

where 𝑃𝑑 denotes the degree 𝑑 part of the predicate. In particular 𝑃0 := 𝑃0(𝑐 ◦ 𝑥𝛼) denotes
the constant part of the polynomial, which does not depend on the assignment.
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The fraction of all possible assignments that satisfy 𝑃 is given by 𝔼z𝑢.𝑎.𝑟∼ {±1}𝑘 [𝑃(z)]. For
any assignment 𝑥 ∈ {±1}𝑛 and an instance ℐ over 𝑚 constraints we have

Valℐ (𝑥) = 1
𝑚

∑
(𝑐,𝛼)∈ℐ

𝑃(𝑐 ◦ 𝑥𝛼)

and Optℐ = max
𝑥∈{±1}𝑛

Valℐ (𝑥) .

A random CSP(P) instance 𝓘 with (1 + 𝑜(1))𝑚 = 𝑝 · 2𝑘 · 𝑛𝑘 constraints can be generated as
follows:

(i) Pick independently with probability 𝑝 each pair (c, 𝜶) where c is a random negation
pattern from {−1,+1}𝑘 and 𝛼 is a multi-index from [𝑛]𝑘 ,

(ii) For each such pair (c, 𝜶) add the constraint 𝑃(c ◦ 𝑥𝜶) = 1 to 𝓘 .
Notice that we do not rule out predicates with same multi-index but different negation
pattern as multi-indices in which an index appears multple time. We also do not assume 𝑃
to be symmetric. We denote such distribution by ℱCSP(P)(𝑛, 𝑝).

As in the case of 𝑘-XOR a random CSP(P) instance 𝓘 with 𝑛 variables and exactly 𝑚
clauses can be generated by picking 𝑚 times a clause and a negation pattern at random.
Again it is possible to show that a refutation algorithm for 𝓘 ∼ ℱCSP(P)(𝑛, 𝑝) can also be
used for refutation of instances sampled through this second process (see Appendix D in [2]).

Refutation and certification

We say that 𝒜 is a 𝛿-refutation algorithm for random CSP(P) if 𝒜 has the following
properties:

(i) on all instances ℐ the output of 𝒜 si either Optℐ ≤ 1 − 𝛿 or “fail”,
(ii) if Optℐ > 1 − 𝛿 then 𝒜 never outputs Optℐ ≤ 1 − 𝛿.

More generally, for an set of possible inputs 𝒮 and a property 𝑝 over instances in 𝒮, we say
that an algorithm 𝒜 certifies 𝑝 if:

(i) on all inputs ℐ ∈ 𝒮 the output of 𝒜 is either “ℐ satisfies 𝑝” or “fail”,
(ii) if ℐ ∈ 𝒮 does not satisfy 𝑝 then 𝒜 never outputs “ℐ satisfies 𝑝”.

In the context of random CSP(P) (and hence 𝑘-XOR), a strong refutation is a 𝛿-
refutation for 1 − 𝛿 ≤ 𝔼x𝑢.𝑎.𝑟∼ {±1}𝑘 [𝑃(x)] + 𝑜(1).

3 A generalized Ihara-Bass formula

In this section we present an extension of the Ihara-Bass theorem (see [16] and references
therein) to arbitrary real symmetric matrices. We remark that our extension differs from the
one in [7].

Throughout the section we assume to be given a symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛 with 2𝑚
non-zero entries and zeroed diagonal. We use the following notation. We will use letters
𝑢, 𝑣 to denote indices in [𝑛] and 𝑒 , 𝑓 for indices in [2𝑚]. We conveniently think of 𝐴 as
the adjacency matrix of a weighted undirected graph 𝐺 with 𝑛 vertices and 2𝑚 oriented
edges. Then 𝑢𝑣 ∈ 𝐸(𝐺) if 𝐴𝑢𝑣 ≠ 0, moreover then the inverse edge 𝑣𝑢 is also in 𝐸(𝐺) since
𝐴𝑢𝑣 = 𝐴𝑣𝑢 by definition. Recall for an edge 𝑒 ∈ 𝐸(𝐺) we write 𝑒−1 for its inverse and for a
vertex 𝑣 ∈ 𝑉(𝐺) we write 𝑁+(𝑣) (respectively 𝑁−(𝑣)) for its set of outgoing (resp. incoming)
oriented edges in 𝐺. We write 𝜎𝑢𝑣 = sign(𝐴𝑢𝑣). To reason about the spectrum of 𝐴, we
introduce several matrices: the diagonal matrices
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𝐷(𝐴) ∈ ℝ𝑛×𝑛 , with 𝐷𝑢𝑣(𝐴) =
{∑

𝑤 |𝐴𝑢𝑤 | 𝑢 = 𝑣

0 otherwise.

𝑄(𝐴) ∈ ℝ𝑚×𝑚 , with 𝑄𝑒 𝑓 (𝐴) =
{
|𝐴𝑒 | 𝑒 = 𝑓

0 otherwise.

the block matrices

𝐽(𝐴) =
(

0 Id𝑚
Id𝑚 0

)
∈ ℝ2𝑚×2𝑚

𝐿(𝐴) =
(

0 𝑄(𝐴)
𝑄(𝐴) 0

)
∈ ℝ2𝑚×2𝑚

and the source, target and non-backtracking matrices

𝑆(𝐴) ∈ ℝ𝑛×2𝑚 , with 𝑆𝑢𝑒(𝐴) =


𝜎𝑢𝑣

√
|𝐴𝑢𝑣 | if 𝑢 is the source of 𝑒 = 𝑢𝑣 and 𝑢 < 𝑣√

|𝐴𝑢𝑣 | if 𝑢 is the source of 𝑒 = 𝑢𝑣 and 𝑢 > 𝑣

0 otherwise.

𝑇(𝐴) ∈ ℝ𝑛×2𝑚 , with 𝑇𝑢𝑒(𝐴) =


𝜎𝑢𝑣

√
|𝐴𝑢𝑣 | if 𝑢 is the target of 𝑒 = 𝑣𝑢 and 𝑢 < 𝑣√

|𝐴𝑢𝑣 | if 𝑢 is the target of 𝑒 = 𝑣𝑢 and 𝑢 > 𝑣

0 otherwise.

𝐵(𝐴) ∈ ℝ2𝑚×2𝑚 , with 𝐵𝑒 𝑓 (𝐴) =



𝜎𝑒𝜎 𝑓

√��𝐴𝑒𝐴 𝑓

�� if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑣 < 𝑢, 𝑤

𝜎𝑒

√��𝐴𝑒𝐴 𝑓

�� if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑤 < 𝑣 < 𝑢

𝜎 𝑓

√��𝐴𝑒𝐴 𝑓

�� if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑢 < 𝑣 < 𝑤√��𝐴𝑒𝐴 𝑓

��
if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑣 > 𝑢, 𝑤

0 otherwise.

When the context is clear we simply write 𝐵 for 𝐵(𝐴) (analogously for the other matrices).
To gain intuition on these linear maps, it is instructive to consider the case when 𝐴 is the
adjacency matrix of an unweighted graph 𝐺. Then 𝐷 is the degree diagonal matrix with
𝐷𝑢𝑢 = 𝑑𝑒𝑔𝐺(𝑢), 𝐿 = 𝐽 and 𝐵 corresponds to the non-backtracking matrix of 𝐺.

Throughout the other sections of the paper, for a given non-backtracking matrix 𝐵 ∈
ℝ2𝑚×2𝑚 , we will consider the related extension matrix 𝐵∗ ∈ ℝ2𝑛2×2𝑛2 with entries

𝐵∗
𝑒 𝑓 =

{
𝐵𝑒 𝑓 if 𝑒 , 𝑓 ∈ 𝐸(𝐺)
0 otherwise.

For simplicity of the notation, we will often denote 𝐵∗ simply by 𝐵. The context will always
be clarified by the ambient dimension. We can now state the main result of the section.
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▶ Theorem 7 (Generalized Ihara-Bass Theorem). Let 𝑛, 𝑚 be integers and let 𝐴 ∈ ℝ𝑛×𝑛 be a
symmetric matrix with 𝑚 non-zero entries, all off-diagonal. Let 𝐵, 𝐿, 𝐽 , 𝐷 defined as above.
Then, for any 𝑢 ∈ ℝ,

det (Id2𝑚 − 𝑢(𝐵 + 𝐿 − 𝐽)) = (1 − 𝑢2)𝑚−𝑛 (Id𝑛 − 𝑢𝐴 + 𝑢2𝐷 − 𝑢2Id𝑛
)
.

Our proof of Theorem 7 closely resembles the proof of Bass [4]. We first observe that the
matrices above satisfy several useful identities, than tackle the theorem.

▶ Lemma 8. Using the definitions above:
i) 𝑆𝐽 = 𝑇 and 𝑇𝐽 = 𝑆 ,
ii) 𝐴 = 𝑆𝑇T ,

iii) 𝐷 = 𝑆𝑆T = 𝑇𝑇T ,

iv) 𝐵 + 𝐿 = 𝑇T𝑆 .

Proof. For i), notice that 𝑆𝐽 ∈ ℝ𝑛×2𝑚 and 𝑆𝐽𝑢𝑒 = ⟨𝑆𝑢,− , 𝐽−,𝑒⟩ = 𝑆𝑢𝑒−1 = 𝑇𝑢𝑒 , where in the
third step we used symmetry of 𝐴. A similar argument can be made to show 𝑇𝐽 = 𝑆. For ii)
observe that

𝐴𝑢𝑣 = ⟨𝑆𝑢,− , 𝑇𝑣,−⟩ =
∑
𝑒

𝑆𝑢𝑒𝑇𝑣𝑒

which is nonzero only when 𝑒 = 𝑢𝑣. In that case, by definition 𝐴𝑢𝑣 = 𝜎𝑢𝑣 |𝐴𝑢𝑣 | = 𝑆𝑢𝑒𝑇𝑣𝑒
since either 𝑢 < 𝑣 or 𝑢 > 𝑣. Consider now 𝑆𝑆T, the matrix is diagonal since each edge has at
most one source vertex, then

(𝑆𝑆T)𝑢𝑢 =
∑
𝑒

𝑆2
𝑢𝑒 =

∑
𝑣∈𝑁+(𝑢)

|𝐴𝑢𝑣 | = 𝐷𝑢𝑢 .

A symmetric derivation shows 𝐷𝑢𝑢 = (𝑇𝑇T)𝑢𝑢 . It remains to prove iv). It is trivial to check
that

(𝑇T𝑆)𝑒𝑒 = ⟨𝑇−,𝑒 , 𝑆−,𝑒⟩ =
∑
𝑢

𝑇𝑢𝑒𝑆𝑢𝑒 = 0 ,

since there are no self-loops in the graph. For distinct 𝑒 , 𝑓 ∈ [2𝑚]

(𝑇T𝑆)𝑒 𝑓 =
∑
𝑢

𝑇𝑢𝑒𝑆𝑢 𝑓 .

There is at most one non-zero element in the sum, corresponding to the case when 𝑢 is the
target vertex of 𝑒 and the source of 𝑓 , which means 𝑒 𝑓 is a walk of length 2 in 𝐺. If 𝑒 𝑓 is
a non-backtracking walk (that is, 𝑒 ≠ 𝑓 −1) then 𝐵𝑒 𝑓 = (𝑇T𝑆)𝑒 𝑓 and 𝐿𝑒 𝑓 = 0. Conversely, if
𝑒 = 𝑓 −1 then 𝐵𝑒 𝑓 = 0 and 𝐿𝑒 𝑓 = (𝑇T𝑆)𝑒 𝑓 . Finally, signs can be checked case by case. ◀

We are now ready to prove Theorem 7.

Proof of Theorem 7. In the following identities all matrices are (𝑛 + 2𝑚) × (𝑛 + 2𝑚) block
matrices where the first block has size 𝑛 × 𝑛. Let 𝑢 ∈ ℝ,(

Id𝑛 0
𝑇T Id2𝑚

) (
Id𝑛(1 − 𝑢2) 𝑆𝑢

0 Id2𝑚 − (𝐵 + 𝐿 − 𝐽)𝑢

)
(3)

=

(
Id(1 − 𝑢2) 𝑆𝑢

𝑇T(1 − 𝑢2) 𝑇T𝑆𝑢 + Id2𝑚 − (𝐵 + 𝐿 − 𝐽)𝑢

)
=

(
Id(1 − 𝑢2) 𝑆𝑢

𝑇T(1 − 𝑢2) Id2𝑚 + 𝐽𝑢

)
.
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On the other hand(
Id𝑛(1 − 𝑢2) − 𝐴𝑢 + 𝐷𝑢2 𝑆𝑢

0 Id2𝑚 + 𝐽𝑢

) (
Id𝑛 0

𝑇T − 𝑆T𝑢 Id2𝑚

)
(4)

=

(
Id𝑛(1 − 𝑢2) − 𝐴𝑢 + 𝐷𝑢2 + 𝑆𝑇T𝑢 − 𝑆𝑆T𝑢2 𝑆𝑢

𝑇T − 𝑆T𝑢 + 𝐽𝑇T𝑢 − 𝐽𝑆T𝑢2 Id2𝑚 + 𝐽𝑢

)
=

(
Id𝑛(1 − 𝑢2) 𝑆𝑢

𝑇T(1 − 𝑢2) Id2𝑚 + 𝐽𝑢

)
.

Putting Equation (3) and Equation (4) together and taking determinants we get

(1 − 𝑢2)𝑛 det (Id2𝑚 − (𝐵 + 𝐿 − 𝐽)𝑢) = det
(
Id𝑛(1 − 𝑢2) − 𝐴𝑢 + 𝐷𝑢2) det (Id2𝑚 + 𝐽𝑢) .

Now notice that

Id2𝑚 + 𝐽𝑢 =

(
Id𝑚 Id𝑚𝑢

Id𝑚𝑢 Id𝑚

)
and thus det (Id2𝑚 + 𝐽𝑢) = (1 − 𝑢2)𝑚 . Rearranging, the result follows. ◀

3.1 Norm bounds via the Ihara-Bass formula
In this section we show how Theorem 7 can be used to study the spectrum of a real symmetric
matrix 𝐴 via the spectrum of related matrices. The central tool is the theorem below.

▶ Theorem 9. Let 𝐴 ∈ ℝ𝑛×𝑛 a symmetric matrix with zero diagonal. Let 𝐵 , 𝐿 , 𝐽 , 𝐷 be as
defined in Section 3. Let 𝜆min be the smallest eigenvalue of the matrix 𝐵 + 𝐿 − 𝐽 ∈ ℝ2𝑚×2𝑚.
Then for any 𝜆 ≤ 𝜆min

𝐴 ⪰ − |𝜆| Id𝑛 − |𝜆|−1 (𝐷 − Id𝑛) .

Proof. Let 𝜆min be the smallest real eigenvalue of 𝐵 + 𝐿 − 𝐽. By Theorem 7 we know −1 is
a real eigenvalue of 𝐵 + 𝐿 − 𝐽 and thus 𝜆min ≤ −1. Moreover, for every 𝜆 < 𝜆min we have
det

(
Id2𝑚 − 𝜆−1𝐵 + 𝜆−1𝐿 − 𝜆−1𝐽

)
≠ 0 otherwise 𝜆 would be an eigenvalue smaller than 𝜆min.

Define the matrix

𝑀𝜆 := Id𝑛 − 𝜆−1𝐴 + 𝜆−2(𝐷 − Id𝑛) .

By the same reasoning as in Theorem 7, det(𝑀𝜆) ≠ 0 as long as 𝜆 < 𝜆min. We make the
stronger claim

∀𝜆, 𝜆min : 𝑀𝜆 ≻ 0 .

To prove the above claim, suppose toward a contradiction that 𝜆′ < 𝜆min is such that 𝑀𝜆′

has a negative eigenvalue. Since 𝑀𝜆 tends to Id𝑛 when 𝜆 → −∞, there is a value 𝜆𝑃𝐷 < 𝜆′

such that 𝑀𝜆𝑃𝐷 is strictly positive definite. Consider now the smallest eigenvalue of 𝑀𝜆 for
values of 𝜆 in the range (𝜆𝑃𝐷 ,𝜆′). The smallest eigenvalue of 𝑀𝜆 varies continuously with 𝜆,
it is positive for 𝜆 = 𝜆𝑃𝐷 and it is negative for 𝜆 = 𝜆′, so it must be equal to zero for some
𝜆∗ ≤ 𝜆′ < 𝜆min. But this means that det(𝑀𝜆∗) = 0 and so 𝜆∗ is an eigenvalue of 𝐵 + 𝐿 − 𝐽,
which contradicts the definition of 𝜆min. We have thus established our claim. Rearranging
the result follows. ◀
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A crucial consequence of Theorem 9 is that, exploiting the diagonal structure of the
matrices 𝐷 , Id𝑛 one can bound the norm ∥𝐴∥∞→1 as a function of the smallest eigenvalue of
the associated non-backtracking matrix.

▶ Corollary 10. Let 𝐴 ∈ ℝ𝑛×𝑛 a symmetric matrix with zero diagonal. Let 𝜆min and
𝜆′

min be respectively the smallest eigenvalue of the matrix 𝐵(𝐴) + 𝐿(𝐴) − 𝐽(𝐴) ∈ ℝ2𝑚×2𝑚

and 𝐵(−𝐴) + 𝐿(𝐴) − 𝐽(𝐴) ∈ ℝ2𝑚×2𝑚, for 𝐵 , 𝐿 , 𝐽 , 𝐷 as defined in Section 3. Then, for any
𝜆 ≥ max

{
|𝜆min | ,

��𝜆′
min

��},

∥𝐴∥∞→1 ≤ 2 Tr
�� (𝜆Id𝑛 + 𝜆−1(𝐷(𝐴) − Id𝑛)

) ��
Proof. Define

𝑅 :=
��𝜆Id𝑛 + 𝜆−1(𝐷(𝐴) − Id𝑛)

�� .
By Theorem 9 for any 𝑥 ∈ {±1}𝑛 we have

��𝑥T𝐴𝑥
�� ≤ ��𝑥T𝑅𝑥

��. For any 𝑦 ∈ {±1}𝑛 we can write

2
��𝑥T𝐴𝑦

�� ≤ ��(𝑥 + 𝑦)T𝐴(𝑥 + 𝑦) − 𝑥T𝐴𝑥 − 𝑦T𝐴𝑦
��

≤
��(𝑥 + 𝑦)T𝐴(𝑥 + 𝑦)�� + ��𝑥T𝐴𝑥

�� + ��𝑦T𝐴𝑦
�� .

Now 𝑥 + 𝑦 ∈ {−2, 0,+2}𝑛 and thus��(𝑥 + 𝑦)T𝐴(𝑥 + 𝑦)�� ≤ 4 max
𝑧∈{±1}𝑛

𝑧T𝑅𝑧 ,

the result follows by definition of 𝑅. ◀
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