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Abstract

We establish new separations between the power of monotone and general (non-monotone) Boolean
circuits:

For every k ≥ 1, there is a monotone function in AC0 (constant-depth poly-size circuits) that
requires monotone circuits of depth Ω(logk n). This significantly extends a classical result of
Okol’nishnikova [49] and Ajtai and Gurevich [1]. In addition, our separation holds for a monotone
graph property, which was unknown even in the context of AC0 versus mAC0.

For every k ≥ 1, there is a monotone function in AC0[⊕] (constant-depth poly-size circuits
extended with parity gates) that requires monotone circuits of size exp(Ω(logk n)). This makes
progress towards a question posed by Grigni and Sipser [32].

These results show that constant-depth circuits can be more efficient than monotone formulas and
monotone circuits when computing monotone functions.

In the opposite direction, we observe that non-trivial simulations are possible in the absence of
parity gates: every monotone function computed by an AC0 circuit of size s and depth d can be
computed by a monotone circuit of size 2n−n/O(log s)d−1

. We show that the existence of significantly
faster monotone simulations would lead to breakthrough circuit lower bounds. In particular, if every
monotone function in AC0 admits a polynomial size monotone circuit, then NC2 is not contained
in NC1.

Finally, we revisit our separation result against monotone circuit size and investigate the limits
of our approach, which is based on a monotone lower bound for constraint satisfaction problems
(CSPs) established by Göös, Kamath, Robere and Sokolov [31] via lifting techniques. Adapting
results of Schaefer [67] and Allender, Bauland, Immerman, Schnoor and Vollmer [4], we obtain an
unconditional classification of the monotone circuit complexity of Boolean-valued CSPs via their
polymorphisms. This result and the consequences we derive from it might be of independent interest.
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1 Introduction

A Boolean function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) whenever xi ≤ yi for each
coordinate 1 ≤ i ≤ n. Monotone Boolean functions, and the monotone Boolean circuits1 that
compute them, have been extensively investigated for decades due to their relevance in circuit
complexity [58], cryptography [10], learning theory [14], proof complexity [45, 54], property
testing [28], pseudorandomness [22], optimisation [30], hazard-free computations [37], and
meta-complexity [36], among other topics. In addition, over the last few years a number of
results have further highlighted the importance of monotone complexity as a central topic
in the study of propositional proofs, total search problems, communication protocols, and
related areas (see [26] for a recent survey).

Some of the most fundamental results about monotone functions deal with their com-
plexities with respect to different classes of Boolean circuits, such as the monotone circuit
lower bound of Razborov [59] for Matching and the constant-depth circuit lower bound of
Rossman [64] for k-Clique. Particularly important to our discussion is a related strand of
research that contrasts the computational power of monotone circuits relative to general
(non-monotone) AND/OR/NOT circuits, which we review next.

Weakness of Monotone Circuits. The study of monotone simulations of non-monotone
computations and associated separation results has a long and rich history. In a sequence
of celebrated results, [59, 8, 7, 69] showed the existence of monotone functions that can be
computed by circuits of polynomial size but require monotone circuits of size 2nΩ(1) . In
other words, the use of negations can significantly speedup the computation of monotone
functions. More recently, Göös, Kamath, Robere and Sokolov [31] considerably strengthened
this separation by showing that some monotone functions in NC2 (poly-size O(log2 n)-depth
fan-in two circuits) require monotone circuits of size 2nΩ(1) . (An earlier weaker separation
against monotone depth nΩ(1) was established in [57].) Therefore, negations can also allow
monotone functions to be efficiently computed in parallel.

Similar separations about the limitations of monotone circuits are also known at the low-
complexity end of the spectrum: Okol’nishnikova [49] and (independently) Ajtai and Gurevich
[1] exhibited monotone functions in AC0 (i.e., constant-depth poly-size AND/OR/NOT cir-
cuits) that require monotone AC0 circuits (composed of only AND/OR gates) of super-
polynomial size.2 This result has been extended to an exponential separation in [24], which
shows the existence of a monotone function in AC0 that requires monotone depth-d circuits
of size 2Ω̃(n1/d) even if MAJ (majority) gates are allowed in addition to AND/OR gates.3

Strength of Monotone Circuits. In contrast to these results, in many settings negations do
not offer a significant speedup and monotone computations can be unexpectedly powerful. For
instance, monotone circuits are able to efficiently implement several non-trivial algorithms,
such as solving constraint satisfaction problems using treewidth bounds (see, e.g., [50,

1 Recall that in a monotone Boolean circuit the gate set is limited to {AND, OR} and input gates are
labelled by elements from {x1, . . . , xn, 0, 1}.

2 We refer to [13] for an alternate exposition of this result.
3 Separations between monotone and non-monotone devices have also been extensively investigated in

other settings. This includes average-case complexity [12], different computational models, such as span
programs [9, 62] and algebraic complexity (see [21] and references therein), and separations in first-order
logic [68, 46, 47]. We restrict our attention to worst-case separations for Boolean circuits in this paper.
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Chapter 3]). As another example, in the context of cryptography, it has been proved that if
one-way functions exist, then there are monotone one-way functions [29]. Below we describe
results that are more closely related to the separations investigated in our paper.

In the extremely constrained setting of depth-2 circuits, Quine [55] showed that monotone
functions computed by size-s DNFs (resp., CNFs) can always be computed by size-s monotone
DNFs (resp., CNFs). Some results along this line are known for larger circuit depth, but
with respect to more structured classes of monotone Boolean functions. Rossman [63, 66]
showed that any homomorphism-preserving graph property computed by AC0 circuits is also
computed by monotone AC0 circuits.4 Under no circuit depth restriction, Berkowitz [11]
proved that the monotone and non-monotone circuit size complexities of every slice function
are polynomially related.5

Despite much progress and sustained efforts, these two classes of results leave open
tantalising problems about the power of cancellations in computation.6 In particular, they
suggest the following basic question about the contrast between the weakness of monotone
computations and the strength of negations:

What is the largest computational gap between the power of monotone and
general (non-monotone) Boolean circuits?

A concrete formalisation of this question dates back to the seminal work on monotone
complexity of Grigni and Sipser [32] in the early nineties. They asked if there are monotone
functions in AC0 that require super-polynomial size monotone Boolean circuits, i.e., if
AC0 ∩ Mono ⊈ mSIZE[poly]. In case this separation holds, it would exhibit the largest
qualitative gap between monotone and general Boolean circuits, i.e., even extremely parallel
non-monotone computations can be more efficient than arbitrary monotone computations.

1.1 Results
Our results show that, with respect to the computation of monotone functions, highly parallel
(non-monotone) Boolean circuits can be super-polynomially more efficient than unrestricted
monotone circuits. Before providing a precise formulation of these results, we introduce some
notation.

For a function d : N → N, let mDEPTH[d] denote the class of Boolean functions computed
by monotone fan-in two AND/OR Boolean circuits of depth O(d(n)). Similarly, we use
mSIZE[s] to denote the class of Boolean functions computed by monotone circuits of size
O(s(n)). More generally, for a circuit class C, we let mC denote its natural monotone analogue.
Finally, for a Boolean function f : {0, 1}n → {0, 1}, we use mSIZE(f) and mDEPTH(f) to
denote its monotone circuit size and depth complexities, respectively. We refer to Jukna [42]
for standard background on circuit complexity theory.

4 A function f : {0, 1}(n

2) → {0, 1} is called a graph property if f(G) = f(H) whenever G and H
are isomorphic graphs, and homomorphism-preserving if f(G) ≤ f(H) whenever there is a graph
homomorphism from G to H. It is easy to see that every homomorphism-preserving graph property is
monotone.

5 A function f : {0, 1}(n

2) → {0, 1} is a slice function if there is i ≥ 0 such that f(x) is 0 on inputs of
Hamming weight less than i and 1 on inputs of Hamming weight larger than i.

6 Any non-monotone circuit can be written as an XOR (parity) of distinct monotone sub-circuits (see, e.g.,
[33, Appendix A.1]), so negations can be seen as a way of combining, or cancelling, different monotone
computations. See also a related discussion in Valiant [71].

CCC 2023
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1.1.1 Constant-depth circuits vs. monotone circuits
Recall that the Okol’nishnikova-Ajtai-Gurevich [49, 1] theorem states that AC0 ∩ Mono ⊈
mAC0. In contrast, as our main result, we establish a separation between constant-depth
Boolean circuits and monotone circuits of much larger depth. In particular, we show that
constant-depth circuits with negations can be significantly more efficient than monotone
formulas.

▶ Theorem 1 (Polynomial-size constant-depth vs. larger monotone depth). For every k ≥ 1,
we have AC0 ∩ Mono ̸⊆ mDEPTH[(logn)k]. Moreover, this separation holds for a monotone
graph property.

In a more constrained setting, Kuperberg [46, 47] exhibited a monotone graph property
expressible in first-order logic that cannot be expressed in positive first-order logic. A
separation that holds for a monotone graph property was unknown even in the context of
AC0 versus mAC0.

Let HomPreserving denote the class of all homomorphism-preserving graph properties,
and recall that Rossman [63, 66] established that AC0 ∩ HomPreserving ⊆ mAC0. Theorem 1
implies that this efficient monotone simulation does not extend to the larger class of monotone
graph properties, even if super-logarithmic depth is allowed.

Our argument is completely different from those of [49, 1, 13, 24] and their counterparts in
first-order logic [68, 46, 47]. In particular, it allows us to break the O(logn) monotone depth
barrier present in previous separations with an AC0 upper bound, which rely on lower bounds
against monotone circuits of depth d and size (at most) 2nO(1/d) . We defer the discussion of
our techniques to Section 1.2.

In our next result, we consider monotone circuits of unbounded depth.

▶ Theorem 2 (Polynomial-size constant-depth vs. larger monotone size). For every k ≥ 1, we
have AC0[⊕] ∩ Mono ̸⊆ mSIZE[2(log n)k ].

Theorem 1 and Theorem 2 are incomparable: while the monotone lower bound is stronger
in the latter, its constant-depth upper bound requires parity gates. Theorem 2 provides the
first separation between constant-depth circuits and monotone circuits of polynomial size,
coming remarkably close to a solution to the question considered by Grigni and Sipser [32].

We note that in both of our results the family of monotone functions is explicit and has
a simple description (see Section 1.2).

1.1.2 Non-trivial monotone simulations and their consequences
While Theorem 1 and Theorem 2 provide more evidence for the existence of monotone
functions in AC0 which require monotone circuits of super-polynomial size, they still leave
open the intriguing possibility that unbounded fan-in ⊕-gates might be crucial to achieve the
utmost cancellations (speedups) provided by constant-depth circuits. This further motivates
the investigation of efficient monotone simulations of constant-depth circuits without parity
gates, which we consider next.

For convenience, let AC0
d[s] denote the class of Boolean functions computed by AC0 circuits

of depth ≤ d and size ≤ s(n). (We might omit s(n) and/or d when implicitly quantifying
over all families of polynomial size circuits and/or all constant depths.)

We observe that a non-trivial monotone simulation is possible in the absence of parity
gates. Indeed, by combining existing results from circuit complexity theory, it is not hard to
show that AC0

d[s] ∩ Mono ⊆ mSIZE[2n(1−1/O(log s)d−1)] (see Section 4.1). Moreover, this upper
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bound is achieved by monotone DNFs of the same size. This is the best upper bound we can
currently show for the class of all monotone functions when the depth d ≥ 3. (Negations offer
no speedup at depths d ≤ 2 [55].) In contrast, we prove that a significantly faster monotone
simulation would lead to new (non-monotone) lower bounds in complexity theory. Recall
that it is a notorious open problem to obtain explicit lower bounds against depth-d circuits
of size 2ω(n1/(d−1)), for any fixed d ≥ 3. We denote by GraphProperties the set of all Boolean
functions which are graph properties.

▶ Theorem 3 (New circuit lower bounds from monotone simulations). There exists ε > 0 such
that the following holds.
1. If AC0

3 ∩ Mono ⊆ mNC1, then NP ̸⊆ AC0
3[2o(n)].

2. If AC0
4 ∩ Mono ⊆ mSIZE[poly], then NP ̸⊆ AC0

4[2o(
√

n/ log n)].
3. If AC0 ∩ Mono ⊆ mSIZE[poly], then NC2 ̸⊆ NC1.
4. If NC1 ∩ Mono ⊆ mSIZE[2O(nε)], then NC2 ̸⊆ NC1.
5. If AC0 ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP ̸⊆ NC1.
6. If NC1 ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then L ̸⊆ NC1.

Item (3) of Theorem 3 implies in particular that, if the upper bound of Theorem 2 cannot
be improved to AC0 (i.e., the question asked by [32] has a negative answer), then NC2 ̸⊆ NC1.
It also improves a result from [23] showing the weaker conclusion NP ⊈ NC1 under the same
assumption.

Even if it’s impossible to efficiently simulate AC0 circuits computing monotone functions
using unbounded depth monotone circuits, it could still be the case that a simulation
exists for certain classes of monotone functions with additional structure. As explained
above, Rossman’s result [63, 66] achieves this for graph properties that are preserved under
homomorphisms. Items (5) and (6) of Theorem 3 show that a simulation that holds for all
monotone graph properties is sufficient to get new separations in computational complexity.

1.1.3 Monotone complexity of constraint satisfaction problems
Recall that [31] showed the existence of a monotone function fGKRS in NC2 that is not in
mSIZE[2nΩ(1) ]. As opposed to classical results [59, 8, 7, 69] that rely on the approximation
method, their monotone circuit lower bound employs a lifting technique from communication
complexity. It is thus natural to consider if their approach can be adapted to provide a
monotone function g that is efficiently computable by constant-depth circuits but is not in
mSIZE[poly].

As remarked in [31, 26], all monotone lower bounds obtained from lifting theorems so
far also hold for monotone encodings of constraint satisfaction problems (CSPs). Next, we
introduce a class of monotone Boolean functions CSP-SATS which capture the framework
and lower bound of [31].

Encoding CSPs as monotone Boolean functions. Let R ⊆ {0, 1}k be a relation. We call
k the arity of R. Let V = (i1, . . . , ik) ∈ [n]k, and let fR,V : {0, 1}n → {0, 1} be the function
that accepts a string x ∈ {0, 1}n if (xi1 , . . . , xik

) ∈ R. We call fR,V a constraint application of
R on n variables. (A different choice of the sequence V gives a different constraint application
of R.) If S is a finite set of Boolean relations, we call any set of constraint applications of
relations from S on a fixed set of variables an S-formula. In particular, we can describe an
S-formula through a set of pairs (V,R). We say that an S-formula F is satisfiable if there
exists an assignment to the variables of F which satisfies all the constraints of F .

CCC 2023
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Let S = {R1, . . . , Rk} be a finite set of Boolean relations. Let ℓi be the arity of the
relation Ri. Note that there are nℓi possible constraint applications of the relation Ri on
n variables. Let N :=

∑k
i=1 n

ℓi . We can identify each S-formula F on a fixed set of n
variables with a corresponding string wF ∈ {0, 1}N , where wF

j = 1 if and only if the j-th
possible constraint application (corresponding to one of the N pairs (V,R)) appears in F .
Let CSP-SATn

S : {0, 1}N → {0, 1} be the Boolean function which accepts a given S-formula
F if F is unsatisfiable. Note that this is a monotone function. When n is clear from
the context or we view {CSP-SATn

S}n≥1 as a sequence of functions, we simply write CSP-SATS .

The function fGKRS from [31] is simply CSP-SATS for S = {⊕0
3,⊕1

3}, where we write
⊕b

3(x1, x2, x3) = 1 if and only if
∑

i xi = b (mod 2). More generally, for any finite set S
of Boolean relations, their framework shows how to lift a Resolution width (resp. depth)
lower bound for an arbitrary unsatisfiable S-formula F over m variables into a corresponding
monotone circuit size (resp. depth) lower bound for CSP-SATn

S , where n = poly(m).
Despite the generality of the technique from [31] and the vast number of possibilities

for S, we prove that a direct application of their approach cannot establish Theorem 1 and
Theorem 2. This is formalised as follows. (We refer to Section 5 for much stronger forms of
the result.)

▶ Theorem 4 (Limits of the direct approach via lifting and CSPs). Let S be a finite set of
Boolean relations. The following holds.
1. If CSP-SATS /∈ mSIZE[poly] then CSP-SATS is ⊕L-hard under ≤AC0

m reductions.
2. If CSP-SATS /∈ mNC1 then CSP-SATS is L-hard under ≤AC0

m reductions.

In particular, since there are functions (e.g., Majority) computable in logarithmic space
that are not in AC0[⊕], Theorem 4 (Part 2) implies that any CSP-SATS function that is
hard for poly-size monotone formulas (mNC1) must lie outside AC0[⊕]. Observe that this
can also be interpreted as a monotone simulation: for any finite set S of Boolean relations, if
CSP-SATS ∈ AC0[⊕] then CSP-SATS ∈ mNC1.7

Theorem 4 is a corollary of a general result that completely classifies the monotone circuit
complexity of Boolean-valued constraint satisfaction problems based on the set Pol(S) of
polymorphisms of S, a standard concept in the investigation of CSPs.8 We present next a
simplified version of this result, which shows a dichotomy for the monotone circuit size and
depth of Boolean-valued constraint satisfaction problems. We refer to Section 5 for a more
general formulation and additional consequences.

▶ Theorem 5 (Dichotomies for the monotone complexity of Boolean-valued CSPs). Let S be a
finite set of Boolean relations. The following holds.
1. Monotone Size Dichotomy: If Pol(S) ⊆ L3 there is ε > 0 such that mSIZE(CSP-SATS) =

2Ω(nε). Otherwise, mSIZE(CSP-SATS) = nO(1).
2. Monotone Depth Dichotomy: If Pol(S) ⊆ L3 or Pol(S) ⊆ V2 or Pol(S) ⊆ E2, there is

ε > 0 such that mDEPTH(CSP-SATS) = Ω(nε). Otherwise, CSP-SATS ∈ mNC2.

7 Jumping ahead, our proof of Theorem 2 still relies in a crucial way on the monotone lower bound
obtained by [31]. However, our argument requires an extra ingredient and does not follow from a direct
application of their template. We provide more details about it in Section 1.2 below. Interestingly, the
proof of Theorem 1 was discovered by trying to avoid the “barrier” posed by Theorem 4.

8 Roughly speaking, Pol(S) captures the amount of symmetry in S, and a larger set Pol(S) implies that
solving CSP-SATS is computationally easier. We refer the reader to Section 5 for more details and for a
discussion of Post’s lattice, which is relevant in the next statement.
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We note that previous papers of Schaefer [67] and Allender, Bauland, Immerman, Schnoor
and Vollmer [4] provided a conditional classification of the complexity of such CSPs. The-
orem 5 and its extensions, which build on their results and techniques, paint a complete and
unconditional picture of their monotone complexity.9

1.2 Techniques
Our arguments combine in novel ways several previously unrelated ideas from the literature.
The exposition below follows the order in which the results appear above, except for the
overview of the proof of Theorem 1, which appears last. We discuss this result after explaining
the proof of Theorem 2 and the classification of the monotone complexity of CSPs (Theorem 4
and Theorem 5), as this sheds light into how the proof of Theorem 1 was discovered and into
the nature of the argument.

A monotone circuit size lower bound for a function in AC0[⊕]. We first give an overview
of the proof of Theorem 2.

The lower bound of [31]. We begin by providing more details about the aforementioned
monotone circuit lower bound of [31], since their result is a key ingredient in our separation
(see [26] for a more detailed overview). Recall that their function fGKRS corresponds to
CSP-SATS for S = {⊕0

3,⊕1
3}. Following their notation, this is simply the Boolean function

3-XOR-SATn : {0, 1}2n3
→ {0, 1} which uses each input bit to indicate the presence of a

linear equation with exactly 3 variables. This (monotone) function accepts a given linear
system over F2 if the system is unsatisfiable. As one of their main results, [31] employed
a lifting technique from communication complexity to show the existence of a constant
ε > 0 such that mSIZE(3-XOR-SATn) = 2nε . (We show in Appendix A that a weaker
super-polynomial monotone circuit size lower bound for 3-XOR-SATn can also be obtained
using the approximation method and a reduction.)

Sketch of the proof of Theorem 2. Since 3-XOR-SATn ∈ NC2 (see, e.g, [31]), their result
implies that NC2 ∩ Mono ⊈ mSIZE[2nΩ(1) ]. On the other hand, we are after a separation
between constant-depth (non-monotone) circuits and polynomial-size (unbounded depth)
monotone circuits. There are two natural ways that one might try to approach this challenge,
as discussed next.

First, the lifting framework explored by [31] offers in principle the possibility that by
carefully picking a different set S of Boolean relations, one might be able to reduce the
non-monotone depth complexity of CSP-SATS while retaining super-polynomial monotone
hardness. However, Theorem 4 shows that this is impossible, as explained above.

A second possibility is to combine the exponential 2nε monotone circuit size lower bound
for 3-XOR-SATn and a padding argument, since we only need super-polynomial hardness.
Indeed, this argument can be used to define a monotone function g : {0, 1}n → {0, 1} that
is computed by polynomial-size fan-in two circuits of depth poly(log logn) but requires
monotone circuit of size nω(1). However, it is clear that no padding argument alone can
reduce the non-monotone circuit depth bound to O(1) while retaining the desired monotone
hardness.

9 We remark that only recently has Schaefer’s classification been extended to the non-Boolean case [72, 15].
Though the refined classification of [4] is conjectured to hold analogously in the case of non-Boolean
CSPs [48], this is still open (see the discussion in [16, Section 7]).

CCC 2023
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Given that both the classical widely investigated approximation method for monotone
lower bounds and the more recent lifting technique do not appear to work in their current
forms, for some time it seemed to us that, if true, a significantly new technique would be
needed to establish a separation similar to the one in Theorem 2.

Perhaps surprisingly, it turns out that a more clever approach that combines padding with
a non-trivial circuit upper bound can be used to obtain the result. The first key observation,
already present in [31] and other papers, is that 3-XOR-SATn can be computed not only in
NC2 but actually by polynomial-size span programs over F2. On the other hand, it is known
that this model is equivalent in power to parity branching programs [44], which correspond
to the non-uniform version of ⊕L, i.e., counting modulo 2 the number of accepting paths
of a nondeterministic Turing machine that uses O(logn) space. A second key idea is that
such a computation can be simulated by AC0[⊕] circuits of sub-exponential size and large
depth. More precisely, similarly to an existing simulation of NL (nondeterministic logspace)
by AC0 circuits of depth d and size 2nO(1/d) via a “guess-and-verify” approach, it is possible
to achieve an analogous simulation of ⊕L using AC0[⊕] circuits (this folklore result appears
implicit in [6] and [51]). Putting everything together, it follows that for a large enough but
constant depth, 3-XOR-SATn can be computed by AC0[⊕] circuits of size 2nε/2 . Since this
function is hard against monotone circuits of size 2nε , a padding argument can now be used
to establish a separation between AC0[⊕] and mSIZE[poly]. (A careful choice of parameters
provides the slightly stronger statement in Theorem 2.)

Non-trivial monotone simulations and their consequences. In order to conclude that
significantly stronger monotone simulations imply new complexity separations (Theorem 3),
we argue contrapositively. By supposing a complexity collapse, we can exploit known
monotone circuit lower bounds to conclude that a hard monotone function exists in a lower
complexity class. For instance, if NC2 ⊆ NC1, then 3-XOR-SAT ∈ NC1, and we can conclude
by standard depth-reduction for NC1 and padding, together with the exponential lower bound
for 3-XOR-SAT due to [31], that there exists a monotone function in AC0 which is hard for
polynomial-size monotone circuits. The other implications are argued in a similar fashion.
In particular, we avoid the more complicated use of hardness magnification from [23] to
establish this kind of result, while also getting a stronger consequence.

A little more work is required in the case of graph properties (Theorem 3 Items 5 and
6), as padding the function computing a graph property does not yield a graph property.
We give a general lemma that allows us to pad monotone graph properties while preserving
their structure (Lemma 12). We then argue as in the case for general functions, using known
monotone lower bounds for graph properties. We note that Lemma 12 is also important
in the proof of Theorem 1, which will be discussed below. We believe that our padding
technique for graph properties might find additional applications.

Monotone complexity of CSPs. These are the most technical results of the paper. Since
explaining the corresponding proofs requires more background and case analysis, here we
only briefly describe the main ideas and references behind Theorem 4, Theorem 5, and the
extensions discussed in Section 5.

A seminal work of Schaefer [67] proved that any Boolean CSP is either solvable in
polynomial-time or it is NP-complete. Later, Jeavons [38] observed that the complexity
of deciding if a given set of constraint applications of S is satisfiable depends exclusively
on the set Pol(S) of polymorphisms of S. Intuitively, the set of polymorphisms of a set
of relations is a measure of its symmetry. The more symmetric a set of relations is, the
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lesser is its expressive power. Jeavons formally proves this intuition by showing that, if
Pol(S) ⊆ Pol(S′), then the problem of deciding the satisfiability of a given S′-formula can be
reduced in polynomial-time to that of deciding the satisfiability of a given S-formula. This
allows Jeavons to reprove Schaefer’s result.

Existing proofs and classification results for constraint satisfaction problems do not
encode the satisfiability problem as a monotone Boolean function CSP-SATS , in the way
we described above. We reexamine Schaefer’s and Jeavons’s proofs and establish that the
reduction from CSP-SATS′ to CSP-SATS can also be done with efficient monotone circuits.
Making use of and adapting parts of the refined results and analysis of [4], which builds
on the earlier dichotomy result of [67] and provides a detailed picture of the computational
complexity of Boolean-valued CSPs, we prove in fact that the underlying reductions can all
be done in monotone nondeterministic logspace.

Finally, using known upper and lower bounds for monotone circuits together with a direct
analysis of some basic cases, and inspecting Post’s lattice [53, 18, 19], we are able to show
that CSP-SATS is hard for monotone circuits only when CSP-SATS is ⊕L-complete, as in
Theorem 4 Part 1.

A monotone circuit depth lower bound for a function in AC0. Next, we combine insights
obtained from the monotone lower bound of [31], our proof of Theorem 2 via a guess-and-verify
depth reduction and padding, and the statement of Theorem 4 (limits of the direct approach
via CSPs) to get the separation in Theorem 1. As alluded to above, our approach differs
from those of [49, 1, 13, 24] and related results in the context of first-order logic [68, 46, 47].

Recall that the [31] framework lifts a Resolution width lower bound for an unsatisfiable
S-formula F into a corresponding monotone circuit size lower bound for CSP-SATS . On the
other hand, Theorem 4 rules out separating constant-depth circuits from monotone circuits
of polynomial size via CSP-SATS functions. In particular, we cannot directly apply the chain
of reductions from [31] to obtain the desired separation result. Instead, we extract from the
specific S-formula F that they use a structural property that will allow us to improve the
AC0[⊕] upper from Theorem 2 to the desired AC0 upper bound in Theorem 1.

In [31] the formula F is a Tseitin contradiction, a well-known class of unsatisfiable CNFs
with a number of applications in proof complexity. For an undirected graph G, the Tseitin
formula T (G) encodes a system of linear equations modulo 2 as follows: each edge e ∈ E(G)
becomes a Boolean variable xe, and each vertex v ∈ V (G) corresponds to a constraint
(linear equation) Cv stating that

∑
u∈NG(v) x{v,u} = 1 (mod 2), where NG(v) denotes the

set of neighbours of v in G. Crucially, T (G) does not encode an arbitrary system of linear
equations, i.e., the following key structural property holds: every variable xe appears in
exactly 2 equations.

On a technical level, this property is not preserved when obtaining a (total) monotone
function CSP-SATS by the gadget composition employed in the lifting framework and its
reductions. However, we can still hope to explore this property in a somewhat different
argument with the goal of obtaining CSP instances that lie in a complexity class weaker
than ⊕L, which is the main bottleneck in the proof of Theorem 2 yielding AC0[⊕] circuits
instead of AC0. At the same time, considering this structural property immediately takes us
outside the domain of Theorem 4, which does not impose structural conditions over the CSP
instances.

We can capture the computational problem corresponding to this type of system of linear
equations using the following Boolean function. Let OddFactorn : {0, 1}(n

2) → {0, 1} be the
function that accepts a given graph G if the formula T (G) described above is satisfiable.
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(Equivalently, if G admits a spanning subgraph in which the degree of every vertex is odd.)
Note that OddFactorn is a monotone Boolean function: adding edges to G cannot make a
satisfiable system unsatisfiable, since we can always set a new edge variable xe to 0.

While 3-XOR-SAT (the corresponding CSP-SATS function obtained from an appropriate
Tseitin formula via the framework of [31]) admits a ⊕L upper bound, we observe that
OddFactorn can be computed in L thanks to its more structured class of input instances.
Indeed, one can prove that the formula T (G) is satisfiable if and only if every connected
component of G has an even number of vertices.10 In turn, the latter condition can be
checked in logarithmic space using Reingold’s algorithm for undirected s-t-connectivity [60].
(We note that related ideas appear in an unpublished note of Johannsen [40].) This is the
first application of Reingold’s algorithm to this kind of separation.

At the same time, OddFactorn retains at least part of the monotone hardness of 3-XOR-SAT.
Using a different reduction from a communication complexity lower bound, [9] proved that
the monotone circuit depth of OddFactorn is nΩ(1). Altogether, we obtain a monotone
Boolean function (indeed a graph property) that lies in L but is not in mDEPTH[no(1)].
Applying a guess-and-verify depth reduction for L and using (graph) padding (analogously
to the proof sketch of Theorem 2), we get a monotone graph property in AC0 that is not in
mDEPTH[logk n]. This completes the sketch of the proof of Theorem 1.

1.3 Directions and open problems

Constant-depth circuits and monotone circuits are possibly the two most widely investigated
models in circuit complexity theory. Although our results provide new insights about the
relation between them, there are exceptionally basic questions that remain open.

While [55] showed that negations can be efficiently eliminated from circuits of depth d ≤ 2
that compute monotone functions, already at depth d = 3 the situation is much less clear.
Theorem 19 (see Section 4.1) implies that every monotone function in depth-3 AC0 admits a
monotone circuit of size 2n−Ω(n/ log2 n). It is unclear to us if this is optimal. While [24] rules
out an efficient constant-depth monotone simulation, it is still possible (and consistent with
Theorem 1) that AC0

3 ∩ Mono ⊆ mNC1. Is there a significantly better monotone circuit size
upper bound for monotone functions computed by polynomial-size depth-3 circuits?

Our results come close to solving the question posed by Grigni and Sipser [32]. Using
our approach, it would be sufficient to show that OddFactorn requires monotone circuits
of size exp(nΩ(1)). This is closely related to the challenge of obtaining an exponential
monotone circuit size lower bound for Matchingn, a longstanding open problem in monotone
complexity (see [42, Section 9.11]).11 Indeed, it’s possible to reduce OddFactor to Matching
using monotone AC0 circuits (see [3, Lemma 6.18]).

Incidentally, the algebraic complexity variant of the AC0 vs. mSIZE[poly] problem has been
recently settled in a strong way through a new separation result obtained by Chattopadhyay,
Datta, and Mukhopadhyay [21]. Could some of their techniques be useful to attack the more
elusive Boolean case?

10 A simple parity argument shows that odd-sized components cannot be satisfied. On the other hand,
we can always satisfy an even-sized component by starting with an arbitrary assignment, which must
satisfy an even number of constraints by a parity argument, and flipping the values of the edges in a
path between unsatisfied nodes, until all nodes in the connected component are satisfied.

11 Note that in OddFactor we are concerned with the existence of a spanning subgraph where the degree of
every vertex is odd, while in Matching the degree should be exactly 1.



B. P. Cavalar and I. C. Oliveira 29:11

Finally, it would be interesting to develop a more general theory able to explain when
cancellations can speedup the computation of monotone Boolean functions. Our investigation
of monotone simulations and separations for different classes of monotone functions (graph
properties and constraint satisfaction problems) can be seen as a further step in this direction.

2 Preliminaries

2.1 Notation

Boolean functions. We denote by Mono the set of all monotone Boolean functions. We
define poly =

{
n 7→ nC : C ∈ N

}
. A Boolean function f : {0, 1}(n

2) → {0, 1} is said to be a
graph property if f(G) = f(H) for any two isomorphic graphs G and H. Let F = {fn}n∈N
be a sequence of graph properties, where fn is defined over undirected graphs on n vertices.
We say that F is preserved under homomorphisms if, whenever there is a homomorphism
from a graph G to a graph H, we have F(G) ≤ F(H). We denote by HomPreserving
the set of all graph properties which are preserved under homomorphisms. Note that
HomPreserving ⊆ Mono.

Boolean circuits. We denote by AC0
d[s] the family of Boolean functions computed by

size-s, depth-d Boolean circuits with unbounded fan-in {∧,∨}-gates and input literals from
{x1, x1, . . . , xn, xn}. We write AC0[s] as a shorthand for

⋃∞
d=1 AC0

d[s], and AC0 as a shorthand
of AC0[nO(1)] = AC0[poly]. We will also refer to AC0

d[poly] by AC0
d. We write DNF[s] to denote

the family of Boolean functions computed by size-s DNFs, where size is measured by number
of terms. We write CNF[s] analogously. We write SIZE[s] to denote the family of Boolean
functions computed by size-s circuits. We write DEPTH[d] to denote the family of Boolean
functions computed by fan-in 2 circuits of depth d. We denote by AC0[⊕] the family of
Boolean functions computed by polynomial-size AC0 circuits with unbounded fan-in ⊕-gates.

We denote by L the family of Boolean functions computed by logspace machines, and
by NL the family of Boolean functions computed by polynomial-time nondeterministic
logspace machines. Moreover, we denote by ⊕L the family of Boolean functions computed by
polynomial-time nondeterministic logspace machines with a parity acceptance condition (i.e.,
an input is accepted if the number of accepting paths is odd).

Circuit complexity. Given a circuit class C, we write mC to denote the monotone version
of C. Given a function f , we write mSIZE(f) to denote the size of the smallest monotone
circuit computing f and mDEPTH(f) to denote the smallest depth of a fan-in 2 monotone
circuit computing f . Given two Boolean functions f, g, we write f ≤mProj

m g if there exists a
many-one reduction from f to g in which each bit of the reduction is a monotone projection12

of the input.

Miscellanea. Let α ∈ {0, 1}n . We define |α|1 :=
∑n

i=1 αi. We call |α|1 the Hamming
weight of α. We let supp(α) = {i ∈ [n] : αi = 1}. We let THRk,n : {0, 1}n → {0, 1} be the
Boolean function such that THRk,n(x) = 1 ⇐⇒ |x|1 ≥ k.

12 A monotone projection is a projection without negations.
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2.2 Background results
The next lemma, which is proved via a standard “guess-and-verify” approach, shows that
nondeterministic logspace computations can be simulated by circuits of size 2nε and of depth
d = Oε(1).

▶ Lemma 6 (Folklore; see, e.g., [5, Lemma 8.1]). For all ε > 0, we have NL ⊆ AC0[2nε ].

3 Constant-Depth Circuits vs. Monotone Circuits

In this section, we prove Theorems 1 and 2. For the upper bounds, we require the logspace
graph connectivity algorithm due to [60] and the ⊕L algorithm for solving linear systems
over F2 due to [17], as well as the depth-reduction techniques of [6, 5]. On the lower bounds
side, our proofs rely on previous monotone circuit and depth lower bounds from [9, 31]. In
order to obtain a monotone formula lower bound for a graph property, we prove a graph
padding lemma in Section 3.2.

3.1 A monotone size lower bound for a function in AC0[⊕]
In this section, we prove Theorem 2. We first recall the monotone circuit lower bound
of [31] and a depth-reduction lemma implicit in [6] and [51], whose full proof we give below
for completeness. We remark that similar arguments can be employed to prove Lemma 6,
essentially by replacing the ⊕ gates by ∨ gates.

As explained in Section 1.2, in its strongest form the separation result from [31] can be
stated as follows.

▶ Theorem 7 ([31]). There exists ε > 0 such that ⊕L ∩ Mono ̸⊆ mSIZE[2o(nε)]. Moreover,
this separation is witnessed by 3-XOR-SAT.

▶ Lemma 8 (Folklore; see, e.g., [6, 51]). Let f : {0, 1}n → {0, 1} be a Boolean function
computed by a ⊕L machine. For every δ > 0, there exists an AC0[⊕] circuit of size 2nδ that
computes f .

Proof. Let M be a ⊕L-machine computing f . Without loss of generality, we may assume
that each configuration in the configuration graph G of M is time-stamped – in other words,
each configuration carries the information of the number of computational steps it takes
to arrive at it.13 We may also assume that every accepting computation takes exactly the
same amount of time, which means that every path from the starting configuration vstart to
the accepting configuration vaccept has the same length in the configuration graph. These
assumptions imply that the configuration graph is layered (because a configuration with
time-stamp t can only point to configurations with time-stamp t+ 1) and acyclic. Note that,
for a fixed machine, the configuration graph can be computed from the input string using a
projection.

Let m = nO(1) be the time that an accepting computation takes. We now show how
to count (modulo 2) the number of accepting paths from vstart to vaccept with a depth-d
AC0[⊕] circuit. First, choose m1/d − 1 configurations v1, . . . , vm1/d−1 (henceforth called

13 Formally, we can define a ⊕L-machine M ′ such that the configurations of M ′ are (C, t), where C is a
configuration of M , and t = 0, 1, . . . , m = nO(1) is a number denoting the time in which the configuration
was achieved. A configuration (C, t) can only reach a configuration (C′, t + 1) in the configuration graph
of M ′.
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“checkpoints”) from V (G), such that the configuration vi is at the level i · m1−1/d in the
configuration graph (i.e., it takes i ·m1−1/d time steps to arrive at vi). For convenience, we
let v0 = vstart and vm1/d = vaccept. We then count the number of paths from from vstart to
vaccept that go through v1, . . . , vm1/d−1, and sum over all possible choices of the checkpoints.
Since the graph is layered and each path from v0 to vm1/d has length exactly m, there is
only one choice of checkpoints that witnesses a given path from v0 to vm1/d , so no path is
counted twice in this summation. Letting #paths(s, t, ℓ) denote the number of paths between
configurations s and t with distance exactly ℓ, we obtain

#paths(v0, vm1/d ,m) =
∑

v1,...,v
m1/d−1

m1/d−1∏
i=0

#paths(vi, vi+1,m
1−1/d).

The above calculation can be done in modulo 2 with an unbounded fan-in XOR gate (replacing
the summation) and an unbounded fan-in AND gate (replacing the product). Note that
the formula above is recursive. Repeating the same computation for calculating (modulo 2)
the expression #paths(vi, vi+1,m

1−1/d) for each i, we obtain a depth-2d AC0[⊕] circuit for
calculating the number of paths from vstart to vaccept (modulo 2). Clearly, the total size of
the circuit is 2O(m1/d·log m), which is smaller than 2nδ for a large enough constant d. ◀

We now restate Theorem 2 and prove it by combining Theorem 7 and Lemma 8 with a
padding trick.

▶ Theorem 2 (Polynomial-size constant-depth vs. larger monotone size). For every k ≥ 1, we
have AC0[⊕] ∩ Mono ̸⊆ mSIZE[2(log n)k ].

Proof. By Theorem 7, there exists ε > 0 and a monotone function f ∈ ⊕L such that any
monotone circuit computing f has size 2Ω(nε).

Let δ = ε/k and let m = 2nδ . Let g : {0, 1}n × {0, 1}m → {0, 1} be the Boolean
function defined as g(x, y) = f(x). Note that g is a function on N := m + n = 2Θ(nδ)

bits. By Lemma 8, there exists an AC0[⊕] circuit computing f of size 2nδ = NO(1). The
same circuit computes g. On the other hand, any monotone circuit computing g has size
2Ω(nε) = 2Ω((log N)ε/δ) = 2Ω((log N)k). ◀

3.2 A monotone depth lower bound for a graph property in AC0

In this section, we prove Theorem 1. We prove moreover that the function that separates
AC0 ∩ Mono and mNCi can be taken to be a graph property. We state our result in its full
generality below.

▶ Theorem 9. For every i ≥ 1, we have AC0 ∩ Mono ∩ GraphProperties ̸⊆ mDEPTH[(logn)i].
In particular, we have AC0 ∩ Mono ∩ GraphProperties ̸⊆ mNCi.

First, we recall a result of [9], which proves monotone lower bounds for the following
function. Let OddFactorn : {0, 1}(n

2) → {0, 1} be the function that accepts a given graph if it
contains an odd factor – in other words, a spanning subgraph in which the degree of every
vertex is odd. Babai, Gál and Wigderson [9] proved the following result:

▶ Theorem 10 ([9]). Any monotone formula computing OddFactorn has size 2Ω(n), and any
monotone circuit computing OddFactorn has size nΩ(log n).
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The proof in [9] is actually for the case of bipartite graphs, but it easily extends to general
graphs, since the bipartite case reduces to the general case by a monotone projection. The
formula lower bound stated above is slightly stronger because it makes use of asymptotically
optimal lower bounds on the randomized communication complexity of DISJn [43], which
were not available to [9]. We remark that, with a different language, a monotone circuit
lower bound for OddFactor is also implicitly proved in Feder and Vardi [27, Theorem 30].

We now recall an upper bound for OddFactor, implicitly proved in an unpublished note
due to Johannsen [40].

▶ Theorem 11 ([40]). We have OddFactor ∈ L.

Proof. We first recall the following observation about the OddFactor function, which appears
in different forms in the literature (see [70, Lemma 4.1] or [42, Lemma 18.16]; see also [40,
Proposition 1] for a different proof.)

▷ Claim. A graph G has an odd factor if and only if every connected component of G has
an even number of vertices.

Proof. If a graph G has an odd factor, we can conclude that every connected component of
G has an even number of vertices from the well-known observation that in every graph there
is an even number of vertices of odd degree.

Now suppose that every connected component of G has an even number of vertices. We
will iteratively construct an odd factor F of G. We begin with the empty graph. We take any
two vertices u, v in the same connected component of G which currently have even degree in
F , and consider any path P = (x1, . . . , xk) between u and v, where x1 = u and xk = v. If
the edge xixi+1 is currently in F , we remove xixi+1 from F ; otherwise, we add xixi+1 to
F . It’s easy to check that, in every iteration of this procedure, only the vertices u and v

have the parity of their degree changed in F ; the degree of every other vertex stays the same
(modulo 2). Since every connected component has an even number of vertices, this means
that, eventually, every vertex in F will have odd degree. ◁

Now it’s easy to check in logspace if every connected component of G has an even number of
vertices using Reingold’s algorithm for undirected connectivity [60]. It suffices to check if,
for every vertex v of G, the number of vertices reachable from v is odd. ◀

Now, if we only desire to obtain a function in AC0 not computed by monotone circuits of
depth (logn)i, we can follow the same argument of Theorem 2, using Lemma 6 instead of
Lemma 8. In order to obtain moreover a monotone graph property witnessing this separation,
we will need the following lemma, which enables us to obtain a graph property after “padding”
a graph property. We defer the proof of this lemma to the end of this section.

▶ Lemma 12. Let f : {0, 1}(n
2) → {0, 1} be a monotone graph property on graphs of n

vertices. The following holds.
1. If f ∈ NCi for some i > 1, then there exists a monotone graph property g on graphs of

N = 2(log n)i vertices such that g ∈ NC1 and f ≤mProj
m g.

2. If f ∈ NL, then for all ε > 0 there exists a monotone graph property g on graphs of
N = 2nε vertices such that g can be computed by AC0 circuits of size N2+o(1) and
f ≤mProj

m g.
3. If f ∈ ⊕L, then for all ε > 0 there exists a monotone graph property g on graphs of

N = 2nε vertices such that g can be computed by AC0[⊕] circuits of size N2+o(1) and
f ≤mProj

m g.
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We are now ready to prove Theorem 9.

Proof of Theorem 9. Fix n ∈ N and take an ε < 1/i. Observing that L ⊆ NL, from
Theorem 11 and item (2) of Lemma 12 we conclude that there exists a monotone graph
property f on N = 2nε vertices such that f ∈ AC0 and OddFactorn ≤mProj

m f . By Theorem 10,
any monotone circuit computing f has depth Ω(n) = Ω((logN)1/ε) ≫ (logN)i. ◀

Raz and Wigderson [57] observed that there exists a monotone function f ∈ NC1 \ mNC.
Using Lemma 12, we observe moreover that it’s possible to obtain this separation with a
monotone graph property.

▶ Proposition 13. We have NC1 ∩ Mono ∩ GraphProperties ̸⊆ mNC.

Proof. Observing that L ⊆ NC2, we conclude from Theorem 11 and item (1) of Lemma 12
that there exists a monotone graph property f on N = 2(log n)2 vertices such that f ∈ NC1

and OddFactorn ≤mProj
m f . By Theorem 10, any monotone circuit computing f has depth

Ω(n) = Ω(2
√

log N ), which implies f ̸∈ mNC. ◀

3.3 Efficient monotone padding for graph properties
We will now prove Lemma 12. We first recall some low-depth circuits for computing threshold
functions, which we will use to design a circuit for efficiently computing the adjacency matrix
of induced subgraphs.

▶ Theorem 14 ([35]). Let d > 0 be a constant. The function THR(log n)d,n can be computed
by an AC0 circuit of size no(1) and depth d+O(1).

▶ Theorem 15 ([2]). For every k ∈ [n], the function THRk,n can be computed by a circuit
of depth O(logn) and size nO(1).

▶ Lemma 16. There exists a circuit Ck
n with

(
n
2
)

+ n inputs and
(

k
2
)

outputs which, when
given as input an adjacency matrix of a graph G on n vertices and a characteristic vector
of a set S ⊆ [n] such that |S| ≤ k, outputs the adjacency matrix of the graph G[S], padded
with isolated vertices when |S| < k. The circuit has constant-depth and size n2+o(1) when
k = polylog(n), and size nO(1) and depth O(logn) otherwise.

Proof. Let {xij}i,j∈[n] encode the adjacency matrix of G. Let α ∈ {0, 1}n be the character-
istic vector of S. Let i, j ∈ [k]. Note that {i, j} ∈ E(G[S]) if and only if there exists a, b ∈ [n]
such that

αa is the i-th non-zero entry of α,
αb is the j-th non-zero entry of α, and
xab = 1 (i.e., a and b are connected in G).

We first consider the case k = polylog(n). In this case, the first two conditions can be
checked with circuits of size no(1) using Theorem 14. Therefore, we can compute if i and j

are adjacent using n2+o(1) gates and constant depth. As there are at most (logn)O(1) such
pairs, we can output G[S] with at most n2+o(1) gates.

For any k, the first two conditions can be checked with an NC1 circuit by Theorem 15.
Since there are at most n2 pairs i, j, the entire adjacency matrix can be computed with a
O(logn)-depth and polynomial-size circuit. ◀

We are ready to prove Lemma 12.

CCC 2023



29:16 Constant-Depth Circuits vs. Monotone Circuits

Proof of Lemma 12. We first prove (1). Fix n ∈ N and let N = 2(log n)i . For a graph G on
N vertices such that |E(G)| ≤

(
n
2
)
, let Gclean be the graph obtained from G by removing

isolated vertices from G one-by-one, in lexicographic order, until one of the following two
conditions are satisfied: (1) there are no more isolated vertices in Gclean, or (2) Gclean has
exactly n vertices. Let g : {0, 1}(N

2 ) → {0, 1} be the monotone graph property defined as
follows:

g(G) :=
(

|E(G)| >
(
n

2

))
∨ (|V (Gclean)| > n) ∨ (f(Gclean) = 1).

Note that g accepts a graph G if and only if at least one of the following three conditions are
satisfied:
1. G has at most

(
n
2
)

edges, Gclean has exactly n vertices and f(Gclean) = 1, or
2. G has more than

(
n
2
)

edges, or
3. Gclean has more than n vertices.
We observe that the monotonicity of g follows from the monotonicity of f . We also claim that
g is a graph property. Indeed, the graph Gclean is the same (up to isomorphism), irrespective
of the order according to which the isolated vertices are removed from G. Moreover, the
function f is also a graph property. Because of this, all the three conditions above are
preserved under isomorphisms.

We first observe that f is a monotone projection of g. Indeed, given a graph G on n

vertices, we can easily construct by a monotone projection a graph G′ on N vertices and at
most

(
n
2
)

edges such that f(G) = g(G′). We just let G′ have a planted copy of G, and all other
vertices are isolated. Then G′

clean = G (up to isomorphism) and g(G′) = f(Gclean) = f(G).
We now show how to compute g in NC1. Let {xij}i,j∈[N ] be the input bits of g, corres-

ponding to the adjacency matrix of a graph G. The circuit computes as follows.

1. If |E(G)| >
(

n
2
)
, accept the graph G.

2. Compute the characteristic vector α ∈ {0, 1}N of the set of all non-isolated vertices of G.
If |α|1 > n, accept the graph G.

3. Compute Gclean and output f(Gclean).

Note that checking if |E(G)| >
(

n
2
)

can be done in NC1 by Theorem 15. Moreover, for all
i ∈ [N ], we have αi =

∨
j∈[N ] xij , and therefore αi can be computed by a circuit of depth

O(logN) and O(N) gates. In total, the vector α can be computed with O(N2) gates and
O(logN) depth. Finally, we can check if |α|1 > n in NC1 with a threshold circuit.

For the final step, we compute Gclean. If |α|1 = n, note that Gclean = G[supp(α)]. When
|α|1 < n, then Gclean is G[supp(α)] padded with isolated vertices. We can therefore compute
Gclean with the circuit Cn

N of Lemma 16. Moreover, since f ∈ NCi, we have that f can be
computed by a circuit of size nO(1) = No(1) and depth O((logn)i) = O(logN). Therefore,
computing f(Gclean) can be done in NC1. Overall, we get that g ∈ NC1.

In order to prove (2), it suffices to modify the proof above. The modification can be briefly
described as follows. We let N = 2nε . Every time Lemma 16 is applied, we use the AC0

circuit instead of the NC1 circuit, since n = polylog(N). This ammounts to N2+o(1) many
gates with unbounded fan-in. Moreover, since by assumption f ∈ NL, applying Lemma 6 we
obtain an AC0 circuit for f of size 2nε/2 = No(1), so we can compute f(Gclean) in constant
depth with No(1) gates.

Finally, for (3) it suffices to apply the same argument used for (2), replacing an application
of Lemma 6 by an application of Lemma 8. ◀
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4 Non-Trivial Monotone Simulations and Their Consequences

In contrast to Section 3, in this section we observe that a non-trivial simulation of AC0

circuits by monotone circuits is possible. This follows from a refined version of the switching
lemma proved by Rossman [65]. As a proof of concept, we use this simulation result to
reprove a well-known AC0 lower bound for Majority.

In the second part of this section, we show that if much faster simulations are possible, then
even stronger non-monotone circuit lower bounds follow. We also show that this implication
is true even if the simulation only holds for graph properties. Monotone simulations for graph
properties are motivated by a result of Rossman [63], which shows that very strong monotone
simulations are possible for homomorphism-preserving graph properties. The lower bounds
from monotone simulations are proved with the simulation result and padding argument
used in the previous section (Lemmas 6 and 12).

4.1 A non-trivial simulation for bounded-depth circuits
The earliest monotone simulation result was proved for DNFs by Quine [55].

▶ Theorem 17 (Quine [55]). For all s : N → N, we have DNF[s] ∩ Mono ⊆ mDNF[s].

Proof. If a given DNF computes a monotone Boolean function, simply removing the negative
literals continues to compute the same function. ◀

Let DTsize(f) denote the size of a smallest decision-tree computing f . We will need a
result obtained by Rossman [65].

▶ Theorem 18 ([65]). If f : {0, 1}n → {0, 1} is computable by an AC0 circuit of depth d and
size s, then DTsize(f) = 2(1−1/O(log s)d−1)n.

▶ Theorem 19. Let s : N → N and d ≥ 1. We have AC0
d[s] ∩ Mono ⊆ mSIZE[t], where

t = n · 2n(1−1/O(log s)d−1). Moreover, this upper bound is achieved by monotone DNFs of size
t/n.

Proof. Let f be a monotone function computable by an AC0 circuit of depth d and size s.
By Theorem 18, there exists a decision tree of size 2(1−1/O(log s)d−1)n computing f . Therefore,
there exists a DNF of the same size computing f , which can be taken to be monotone by by
Theorem 17. This can be converted into a monotone circuit of size n · 2(1−1/O(log s)d−1)n. ◀

We observe that it is possible to immediately deduce an AC0 lower bound for Majority
using this simulation theorem. Even though near-optimal lower bounds for Majority have
been known for a long time [34] and the proof of the main technical tool (Theorem 18) behind
our simulation result is similar to the one used by [34], the argument below illustrates how a
monotone simulation can lead to non-monotone circuit lower bounds.

▶ Corollary 20. Any depth-d AC0 circuit computing Majority has size 2Ω((n/ log n)1/(d−1)).

Proof. Note that Majority has
(

n
n/2

)
= Ω(2n/

√
n) minterms. Therefore, any monotone DNF

computing Majority has size at least Ω(2n/
√
n). By Theorem 19, it follows that the size s of

a depth-d AC0 computing Majority satisfies the following inequality:

2n(1−1/O(log s)d−1) = Ω(2n− 1
2 log n).

From this equation we obtain s = 2Ω((n/ log n)1/(d−1)). ◀
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4.2 Non-monotone lower bounds from monotone simulations
We now show that if monotone circuits are able to efficiently simulate non-monotone circuits
computing monotone Boolean functions, then striking complexity separations follow. We
also show a result of this kind for simulations of graph properties. We first prove a lemma
connecting the simulation of AC0 circuits with the simulation of NL machines.

▶ Lemma 21. For all constants ε > 0 and C ≥ 1, if AC0 ∩ Mono ⊆ mSIZE[2O((log n)C )], then
NL ∩ Mono ⊆ mSIZE[2o(nε)].

Proof. We prove the contrapositive. Suppose that there exists ε > 0 such that NL ∩ Mono ̸⊆
mSIZE[2o(nε)]. This means that there exists a monotone function f such that f ∈ NL and
any monotone circuit computing f has size 2Ω(nε).

Let δ = ε/(2C) and let m = 2nδ . Let g : {0, 1}n × {0, 1}m → {0, 1} be the Boolean
function defined as g(x, y) = f(x). Note that g is a function on N := m+ n = 2Θ(nδ) bits.
By Lemma 6, there exists an AC0 circuit computing f of size 2nδ = NO(1). Moreover, any
monotone circuit computing g has size 2Ω(nε) = 2Ω((log N)ε/δ) = 2Ω((log N)2C ). ◀

Next, we recall the strongest known monotone circuit and formula lower bounds for a
monotone function in NP.

▶ Theorem 22 ([52]). NP ∩ Mono ̸⊆ mDEPTH[o(n)].

▶ Theorem 23 ([20]). NP ∩ Mono ̸⊆ mSIZE[2o(
√

n/ log n)].

We are now ready to state and prove our first result regarding new complexity separations
from monotone simulations. Recall that obtaining explicit lower bounds against depth-3
AC0 circuits of size 2ω(n1/2) is a major challenge in circuit complexity theory, while the best
lower bound on the size of depth-4 AC0 circuits computing a function in NP is currently
2Ω(n1/3) [34]. Moreover, no strict separation is known in the following sequence of inclusions
of complexity classes: ACC ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ ⊕L ⊆ NC2. We show that efficient
monotone simulations would bring new results in both of these fronts. (We stress that
all lower bound consequences appearing below refer to separations against non-uniform
circuits.)14

▶ Theorem 24. Let C be a class of circuits. There exists ε > 0 such that the following holds:
1. If AC0

3 ∩ Mono ⊆ mNC1, then NP ̸⊆ AC0
3[2o(n)].

2. If AC0
4 ∩ Mono ⊆ mSIZE[poly], then NP ̸⊆ AC0

4[2o(
√

n/ log n)].
3. If C ∩ Mono ⊆ mSIZE[2O(nε)], then NC2 ̸⊆ C.
4. If AC0 ∩ Mono ⊆ mSIZE[poly], then NC2 ̸⊆ NC1.

Proof. We will prove each item separately.
Proof of 1. Let us assume that AC0

3 ∩ Mono ⊆ mNC1. Let f be the function of Theorem 22.
For a contradiction, suppose that f ∈ AC0

3[2o(n)]. Let α : N → N be such that α(n) →n ∞
and f has a depth-3 AC0 circuit of size 2n/α. Let m = 2n/(10·α) and let g : {0, 1}n ×
{0, 1}m → {0, 1} be the function g(x, y) = f(x). Let N = n + m = (1 + o(1))2n/(10·α).
Clearly, the function g has a depth-3 AC0 circuit of size 2n/α = NO(1). Since g is
monotone, we conclude from the assumption that g is computed by a polynomial-size
monotone formula. Now, since f(x) = g(x, 1m), we obtain a monotone formula of size
NO(1) = 2o(n) for computing f , which contradicts the lower bound of Theorem 22.

14 In other words, all upper bounds are uniform, but the lower bounds hold even for non-uniform circuits.
Note that this is stronger than lower bounds for uniform circuits.
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Proof of 2. Similar to the proof of item (1), but using Theorem 23 instead.
Proof of 3. Suppose that NC2 ⊆ C. By Theorem 7, there exists a monotone function f ∈ NC2

on n bits and a number ε > 0 such that f /∈ mSIZE[2o(nε)]. Therefore, for any δ > 0 such
that δ < ε, we have f /∈ mSIZE[2O(nδ)]. Since, by assumption, we have f ∈ NC2 ⊆ C, we
obtain C ∩ Mono ̸⊆ mSIZE[2O(nδ)].

Proof of 4. If NC2 ⊆ NC1, then, by item (3), we get NC1 ∩ Mono ̸⊆ mSIZE[2o(nε)]. From
Lemma 21, we obtain AC0 ∩ Mono ̸⊆ mSIZE[poly]. ◀

As a motivation to the ensuing discussion, we recall a result of Rossman [63], who
showed that any homomorphism-preserving graph property computed by AC0 circuits is also
computed by monotone AC0 circuits.

▶ Theorem 25 ([63]). AC0 ∩ HomPreserving ⊆ mDNF[poly].

This inspires the question of whether general graph properties can also be efficiently
simulated by monotone circuits. We show that, if true, such simulations would imply strong
complexity separations. Let us first recall an exponential monotone circuit lower bound for
monotone graph properties, and we will be ready to state and prove our main result.

▶ Theorem 26 ([7]). There exists ε > 0 such that NP ∩ Mono ∩ GraphProperties ̸⊆
mSIZE[2o(nε)].

▶ Theorem 27. Let C be a class of circuits. The following holds:
1. If C ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then L ̸⊆ C.
2. If C ∩ Mono ∩ GraphProperties ⊆ mDEPTH[o(

√
n)], where n denotes the number of input

bits, then L ̸⊆ C.
3. If AC0 ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP ̸⊆ NC1.

Proof. We will prove each item separately.

Proof of 1. Suppose that L ⊆ C. By Theorem 10, the monotone graph property OddFactor
satisfies OddFactor /∈ mSIZE[poly]. Moreover, we have the upper bound OddFactor ∈
L by Theorem 11. Since, by assumption, we have OddFactor ∈ L ⊆ C, we obtain
C ∩ Mono ∩ GraphProperties ̸⊆ mSIZE[poly].

Proof of 2. Suppose that L ⊆ C. By Theorems 10 and 11, there exists a monotone graph
property f ∈ L such that f /∈ mDEPTH[o(

√
n)]. Since, by assumption, we have f ∈ L ⊆ C,

we obtain C ∩ Mono ∩ GraphProperties ̸⊆ mDEPTH[o(
√
n)].

Proof of 3. Suppose that NP ⊆ NC1. By Theorem 26, there exists a monotone graph
property f ∈ NC1 such that mSIZE(f) = 2Ω(nε) for some ε > 0. Let δ = ε/2. By Lemma 12
(Item 2), there exists a monotone graph property g on N = 2nδ vertices computed by an
AC0 circuit of size N2+o(1) such that f is a monotone projection of g. Theorem 26 implies
that any monotone circuit computing f has size 2Ω(nε) = 2Ω((log N)2) = Nω(1). ◀

5 Monotone Complexity of Constraint Satisfaction Problems

In this section, we study the monotone complexity of Boolean-valued CSPs. Our goal is to
classify which types of Boolean CSPs are hard for monotone circuit size and monotone circuit
depth, eventually proving Theorems 4 and 5.

We will first spend some time recalling standard definitions and concepts in the theory of
CSPs (Section 5.1), as well as a few results about CSPs that were proved in previous works
[67, 38, 18, 19, 4] (Section 5.2). We will then prove Theorem 5 in Section 5.3, and we will
finally prove Theorem 4 in Section 5.5 after proving some auxiliary results in Section 5.4.
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5.1 Definitions
For a good introduction to the concepts defined below, we refer the reader to [18, 19]. We
also refer the reader to Section 1.1.3 for the definition of the family of functions CSP-SATS ,
as well as the terms constraint application, S-formula and satisfiable formula.

We denote by pn
i : {0, 1}n → {0, 1} the i-th projection function on n variables, whose

operation is defined as pn
i (x) = xi. For a set of Boolean functions B, we denote by [B] the

closure of B, defined as follows: a Boolean function f is in [B] if and only if f ∈ B∪{Identity}
or if there exists g ∈ B and h1, . . . , hk such that f = g(h1, . . . , hk), where each hi is either
a projection function or a function from [B]. We can equivalently define [B] as the set of
all Boolean functions that can be computed by circuits using the functions of B as gates.
Note that [B] necessarily contains an infinite number of Boolean functions, since pn

1 ∈ [B] for
every n ∈ N; moreover, the constant functions are not necessarily in [B]. We say that B is a
clone if B = [B]. A few prominent examples of clones are the set of all Boolean functions
(equal to [{∧,¬}]), monotone functions (equal to [{∧,∨, 0, 1}]), and linear functions (equal
to [{⊕, 1}]).
▶ Remark 28. The set of all clones forms a lattice, known as Post’s lattice, under the
operations [A] ⊓ [B] := [A] ∩ [B] and [A] ⊔ [B] := [A ∪B]. From the next section onwards,
we will refer to the clones defined in [18] (such as I0, I1, etc.), assuming the reader is familiar
with them. For the unfamiliar reader, we refer to Appendix C and Figures 1 and 4, which
contain all the definitions of the clones we will need, as well as the entire Post’s lattice in
graphical representation.

To avoid confusion, we will always refer to clones with normal-Roman font (e.g., S1, I0,
etc).

Let S be a finite set of Boolean relations. We denote by CNF(S) the set of all S-formulas.
We denote by COQ(S) the set of all relations which can be expressed with the following type
of formula φ:

φ(x1, . . . , xk) = ∃y1, . . . , yℓ ψ(x1, . . . , xk, y1, . . . , yℓ),

where ψ ∈ CNF(S). The relations in COQ(S) will also be referred as conjunctive queries over
S. We denote by ⟨S⟩ the set of relations defined as ⟨S⟩ := COQ(S ∪ {=}). If S = ⟨S⟩, we
say that S is a co-clone. We define

CSP = {CSP-SATS : S is a finite set of relations} .

We say that CSP-SATS is trivial if CSP-SATS is a constant function.
Let R be a k-ary Boolean relation and let f : {0, 1}ℓ → {0, 1} be a Boolean function. For

x ∈ R and i ∈ [k], we denote by x[i] the i-th bit of x.

▶ Definition 29. We say that f is a polymorphism of R, and R is an invariant of f , if, for
all x1, . . . , xℓ ∈ R, we have

(f(x1[1], . . . , xℓ[1]), f(x2[2], . . . , xℓ[2]), . . . , f(xk[k], . . . , xℓ[k])) ∈ R.

We denote the set of all polymorphisms of R by Pol(R). For a set of relations S, we denote
by Pol(S) the set of Boolean functions which are polymorphisms of all the relations of S. For
a set of Boolean functions, we denote by Inv(B) the set of all Boolean relations which are
invariant under all functions of B (i.e., Inv(B) = {R : B ⊆ Pol(R)}).

The following summarises the important facts about clones, co-clones and polymorphisms
that are relevant to the study of CSPs [39].
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▶ Lemma 30. Let S and S′ be sets of Boolean relations and let B and B′ be sets of Boolean
functions. We have

(i) Pol(S) is a clone and Inv(B) is a co-clone;
(ii) If S ⊆ S′, then Pol(S′) ⊆ Pol(S);
(iii) If B ⊆ B′, then Inv(B′) ⊆ Inv(B);
(iv) COQ(COQ(S)) = COQ(S);
(v) If S ⊆ S′, then COQ(S) ⊆ COQ(S′);
(vi) Inv(Pol(S)) = ⟨S⟩;
(vii) Pol(Inv(B)) = [B].

We now define different types of reductions. We say that a reduction is a monotone OR-
reduction if every bit of the reduction is either constant or can be computed by a monotone
disjunction on the input variables. We write f ≤mOR

m g if there exists a many-one monotone
OR-reduction from f to g. We also write f ≤AC0

m g if there exists a many-one AC0 reduction
from f to g, and f ≤mNL

m g if there exists a many-one mNL reduction from f to g15. Unless
otherwise specified, every reduction we consider will generate an instance of polynomial size
on the length of the input.

Finally, we denote by ORk and NANDk the k-ary OR and NAND relations, respectively.

5.2 Basic facts about CSP-SAT
We state here basic facts about the CSP-SAT function. These facts are proved in the original
paper of Schaefer [67], as well as in later papers [38, 18, 19, 4].

Lemma 31 below is one of the most important lemmas of this section and will be used
many times. It states that Pol(S) characterises the monotone complexity of CSP-SATS , in
the sense that the sets of relations with few polymorphisms give rise to the hardest instances
of CSPs. A non-monotone version of this result was proved in [38, 19, Theorem 2.4], and we
check in Appendix B.2 that their proofs also hold in the monotone case.

▶ Lemma 31 (Polymorphisms characterise the complexity of CSPs [38, 19, Theorem 2.4]). If
Pol(S2) ⊆ Pol(S1), then CSP-SATn

S1
≤mNL

m CSP-SATpoly(n)
S2

.

Theorem 32 gives monotone circuit upper bounds for some instances of CSP-SATS . Non-
monotone variants of this upper bound were originally obtained in the seminal paper of
Schaefer [67], and we again check that the monotone variants work in Appendix B.3.

▶ Theorem 32 (Monotone version of the upper bounds for CSP-SAT [67, 4]). Let S be a finite
set of relations. The following holds.
1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].
2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

Finally, we state here a result of [4], which classifies the non-monotone complexity of
CSP-SATS under ≤AC0

m reductions. The classification of the complexity of CSP-SATS is based
solely on Pol(S). See Figure 1 for a graphical representation.

15 A many-one AC0 (resp. mNL) reduction is one in which each bit of the reduction is either constant
or can be computed with a polynomial-size AC0 circuit (resp. monotone nondeterministic branching
program). Recall that a monotone nondeterministic branching program is a directed acyclic graph
G with two distinguished vertices s and t, in which each edge e is labelled with an input function
ρe ∈ {1, x1, . . . , xn}. Given an input x, the program accepts if there exists a path from s to t in the
subgraph Gx of G in which an edge e appears if ρe(x) = 1.
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▶ Theorem 33 (Refined classification of CSP problems [4, Theorem 3.1]). Let S be a finite set
of Boolean relations. The following holds.

If I0 ⊆ Pol(S) or I1 ⊆ Pol(S), then CSP-SATS is trivial.
If Pol(S) ∈ {I2,N2}, then CSP-SATS is ≤AC0

m -complete for NP.
If Pol(S) ∈ {V2,E2}, then CSP-SATS is ≤AC0

m -complete for P.
If Pol(S) ∈ {L2,L3}, then CSP-SATS is ≤AC0

m -complete for ⊕L.
If S00 ⊆ Pol(S) ⊆ S00

2 or S10 ⊆ Pol(S) ⊆ S10
2 or Pol(S) ∈ {D2,M2}, then CSP-SATS is

≤AC0

m -complete for NL.
If Pol(S) ∈ {D1,D}, then CSP-SATS is ≤AC0

m -complete for L.
If S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, then either CSP-SATS ∈ AC0 or CSP-SATS

is ≤AC0

m -complete for L.

5.3 A monotone dichotomy for CSP-SAT
In this section, we prove Theorem 5. We first prove Part (1) of the theorem (the dichotomy
for circuit size), and then we prove Part (2) of the theorem (the dichotomy for circuit depth).

Dichotomy for circuits. To prove the dichotomy for circuits, we first show that, for any set
of relations S whose set of polymorphisms is contained in L3, we can monotonically reduce
3-XOR-SAT to CSP-SATS .

▶ Lemma 34. Let S be a finite set of relations. If Pol(S) ⊆ L3, then 3-XOR-SAT ≤mNL
m

CSP-SATS.

Proof. Inspecting Post’s lattice (Figure 1), note that the only clones strictly contained in L3
are L2,N2 and I2. We will first show that the reduction holds for the case Pol(S) = L2 and
then prove that the reduction also holds for the case Pol(S) = L3. Lemma 31 will then imply
the cases Pol(S) ∈ {N2, I2}, since I2 ⊆ N2 ⊆ L3.

It’s not hard to check that, if Pol(S) = L2, then Pol(S) ⊆ Pol(3-XOR-SAT) (it suffices to
observe that bitwise XORing three satisfying assignments to a linear equation gives rise to a
new satisfying assignment to the same equation). Therefore, from Lemma 31 we deduce that
3-XOR-SAT admits a reduction to CSP-SATS in mNL. In order to prove the case Pol(S) = L3,
we first prove the following claim.

▷ Claim ([4, Lemma 3.11]). Let S be a finite set of relations such that Pol(S) = L2. There
exists a finite set of relations S′ such that Pol(S′) = L3 and CSP-SATn

S ≤mProj
m CSP-SATn+1

S′ .

Proof. We describe the proof of Lemma 3.11 in [4] and observe that it gives a monotone
reduction.

For a relation R ∈ S, let R′ = {(¬x1, . . . ,¬xk) : (x1, . . . , xk) ∈ R}. Let also S′ =
{R′ : R ∈ S}. It’s not hard to check that Pol(S′) = L3, since S′ is an invariant of L2 and N2,
and L3 is the smallest clone containing both L2 and N2; moreover, if ρ ∈ Pol(S′) and ρ is a
Boolean function on at least two bits, then ρ ∈ Pol(S) = L2.

Now let F be a instance of CSP-SATn
S . For every constraint C = R(x1, . . . , xk) in F , we

add the constraint C ′ = R′(α, x1, . . . , xk) to the S′-formula F ′, where α is a new variable.
Note that F ′ is a S′-formula, defined on n+ 1 variables, which is satisfiable if and only if
F is satisfiable. Moreover, the construction of F ′ from F can be done with a monotone
projection. ◁

Since the case Pol(S) = L2 holds, the case Pol(S) = L3 now follows from Lemma 31 and
the Claim. Finally, from Lemma 31 we conclude that the reduction also holds for the case
Pol(S) ∈ {N2, I2}, since I2 ⊆ N2 ⊆ L3. ◀
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Figure 1 Graph of all closed classes of Boolean functions. The vertices are colored with the
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.
Trivial CSPs are those that correspond to constant functions. Every hardness result is proved under
≤AC0

m reductions. See Theorem 33 for details. A similar figure appears in [4, Figure 1].
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▶ Theorem 35 (Dichotomy for monotone circuits). Let S be a finite set of relations. If
Pol(S) ⊆ L3 then there exists a constant ε > 0 such that mSIZE(CSP-SATS) = 2Ω(nε).
Otherwise, we have mSIZE(CSP-SATS) = nO(1).

Proof. If Pol(S) ⊆ L3, the lower bound follows from the ’moreover’ part of Theorem 7, and
Lemma 34. For the upper bound, we inspect Post’s lattice (Figure 1). Observe that, if
Pol(S) ̸⊆ L3, the following are the only possible cases:
1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.
2. E2 ⊆ Pol(S) or V2 ⊆ Pol(S). In this case, CSP-SATS ∈ mSIZE[poly] by Theorem 32.
3. D2 ⊆ Pol(S). In this case, CSP-SATS ∈ mNL ⊆ mSIZE[poly] by Theorem 32. ◀

▶ Remark 36. We remark that the lifting theorem of [31] (which is an ingredient in the
proof of Theorem 7) is only used to prove that the monotone complexity of CSP-SATS is
exponential when Pol(S) ⊆ L3. If we only care to show a superpolynomial separation, then it
suffices to apply the superpolynomial lower bound for CSPs with counting proved in [27, 9]
using the approximation method. Indeed, we give an explicit proof in Appendix A. The same
holds for the consequences of this theorem (see Theorem 46).

Dichotomy for formulas. Define 3-Horn-SATn : {0, 1}2n3+n → {0, 1} as 3-Horn-SATn =
CSP-SATn

H3 , where

H3 = {(¬x1 ∨ ¬x2 ∨ x3), (¬x1 ∨ ¬x2 ∨ ¬x3), (x)} .

The following is proved in [56, 31].

▶ Theorem 37 ([56, 31]). There exists ε > 0 such that 3-Horn-SAT ∈ mSIZE[poly] \
mDEPTH[o(nε)].

Proof sketch. Since E2 ⊆ Pol(H3) (see, e.g., [25, Lemma 4.8]), the upper bound follows
from Theorem 32. The lower bound follows from a lifting theorem of [56, 31]. They show that
the monotone circuit-depth of 3-Horn-SAT is at least the depth of the smallest Resolution-tree
refuting a so-called pebbling formula. Since this formula requires Resolution-trees of depth
nε, the lower bound follows. ◀

Analogously to the previous section, we show that 3-Horn-SAT reduces to CSP-SATS

whenever Pol(S) is small enough, in a precise sense stated below. We then deduce the
dichotomy for formulas with a similar argument.

▶ Lemma 38. Let S be a finite set of relations. If Pol(S) ⊆ E2 or Pol(S) ⊆ V2, then
3-Horn-SAT ≤mNL

m CSP-SATS.

Proof. We first consider the case Pol(S) ⊆ E2. Note that E2 ⊆ Pol(3-Horn-SAT) (see, e.g.,
[25, Lemma 4.8]). Therefore, from Lemma 31 we deduce that 3-Horn-SAT admits a reduction
to CSP-SATS in mNL.

Now let 3-AntiHorn-SAT = CSP-SATA3 , where A3 =
{(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)}. Observe that a H3-formula φ is satisfiable
if and only if the A3-formula φ(¬x1, . . . ,¬xn) is satisfiable. Therefore, we have
3-Horn-SAT ≤mProj

m 3-AntiHorn-SAT. Observing that V2 ⊆ Pol(A3) (again, see e.g. [25,
Lemma 4.8]), the result now follows from Lemma 31 and the previous paragraph. ◀

▶ Theorem 39 (Dichotomy for monotone formulas). Let S be a finite set of relations. If
Pol(S) ⊆ L3, or Pol(S) ⊆ V2, or Pol(S) ⊆ E2, then there is a constant ε > 0 such
that mDEPTH(CSP-SATS) = Ω(nε). Otherwise, we have CSP-SATS ∈ mNL ⊆ mNC2 ⊆
mDEPTH[log2 n].
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Figure 2 Illustration of Theorem 35. The vertices are colored with the monotone circuit size
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.
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Proof. We will first prove the lower bound. If Pol(S) ⊆ L3, the lower bound follows from
Theorem 35. If Pol(S) ⊆ V2 or Pol(S) ⊆ E2, the lower bound follows from Theorem 37
and Lemma 38.

By inspecting Post’s lattice (Remark 28), we see that the remaning cases are:
1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.
2. S00 ⊆ Pol(S), or S10 ⊆ Pol(S), or D2 ⊆ Pol(S). In all of those three cases, we have

CSP-SATS ∈ mNL by Theorem 32. ◀

5.4 Some auxiliary results
In this section, we prove auxiliary results needed in the proof of a more general form of
Theorem 4. In particular, we will prove that all CSP-SATS which are in AC0 are also contained
in mAC0 ⊆ mNC1. Moreover, we show that, if CSP-SATS /∈ mNC1, then CSP-SATS is L-hard
under ≤AC0

m reductions.
We first observe that, when COQ(S1) ⊆ COQ(S2), there exists an efficient low-depth

reduction from CSP-SATS1 to CSP-SATS2 . This reduction, which will be useful in this section,
is more refined than the one given by Lemma 31. A proof of the non-monotone version of
this statement is found in [19, Proposition 2.3], and we give a monotone version of this proof
in Appendix B.2.

▶ Lemma 40 ([19, Proposition 2.3]). If COQ(S1) ⊆ COQ(S2), then there exists a constant
C ∈ N such that CSP-SATn

S1
≤mOR

m CSP-SATCn
S2

.

Proof. We defer the proof to Appendix B.2. ◀

We now recall some lemmas from [4], and prove a few consequences from them. We say
that a set S of relations can express equality if {=} ⊆ COQ(S).

▶ Lemma 41 ([4]). Let S be a finite set of relations. Suppose S02 ⊆ Pol(S) (S12 ⊆
Pol(S), resp.) and that S cannot express equality. Then there exists k ≥ 2 such that
S ⊆ COQ(

{
ORk, x,¬x

}
) (S ⊆ COQ(

{
NANDk, x,¬x

}
), resp.).

Proof. Follows from the proof of Lemma 3.8 of [4]. ◀

▶ Lemma 42. Let S be a finite set of relations such that Pol(S) ⊆ R2. If S02 ⊆ Pol(S) or
S12 ⊆ Pol(S), and S cannot express equality, then CSP-SATS ∈ mAC0

3.

Proof. We write the proof in the case S02 ⊆ Pol(S). The other case is analogous.
From Lemmas 40 and 41 and Items iv and v of Lemma 30, we get that there is a

monotone OR-reduction from CSP-SATS to CSP-SAT{ORk,x,¬x} for some k. However, an{
ORk, x,¬x

}
-formula is unsatisfiable iff there exists a literal and its negation as a constraint

in the formula, or if there exists a disjunction in the formula such that every one of its literals
appears negatively as a constraint. This condition can be easily checked by a polynomial-size
monotone DNF. Composing the monotone DNF with the monotone OR-reduction, we obtain
a depth-3 AC0 circuit computing CSP-SATS . ◀

▶ Lemma 43 ([4, Lemma 3.8]). Let S be a finite set of relations such that Pol(S) ⊆ R2. If
S02 ⊆ Pol(S) or S12 ⊆ Pol(S), and S can express equality, then CSP-SATS is L-hard under
≤AC0

m reductions.

▶ Lemma 44. Let S be a finite set of relations. If S02 ̸⊆ Pol(S) and S12 ̸⊆ Pol(S), then
CSP-SATS is L-hard or trivial.
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Figure 3 Illustration of Theorem 39. The vertices are colored with the monotone circuit depth
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.
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Proof. This follows by inspecting Post’s lattice (Figure 1) and the classification theorem (The-
orem 33). ◀

We may now prove the main result of this subsection.

▶ Theorem 45. We have CSP ∩ AC0 ⊆ mAC0
3. Moreover, if CSP-SATS /∈ mAC0

3, then
CSP-SATS is L-hard under ≤AC0

m reductions.

Proof. Let S be a finite set of relations. If CSP-SATS ̸∈ mAC0
3, then, by Lemma 42, at least

one of the following cases hold:
1. S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, and S can express the equality relation;
2. S02 ̸⊆ Pol(S) ⊆ R2 and S12 ̸⊆ Pol(S) ⊆ R2.
3. Pol(S) ̸⊆ R2.
Since CSP-SATS is not trivial, we obtain that CSP-SATS is L-hard in the first two cases
by Lemmas 43 and 44, and it’s easy to check that CSP-SATS is also L-hard in the third
case by inspecting Post’s lattice (Figure 1) and the classification theorem (Theorem 33).
Since L ̸⊆ AC0, this also implies that, if CSP-SATS ∈ AC0, then S02 ⊆ Pol(S) ⊆ R2 or
S12 ⊆ Pol(S) ⊆ R2, and S cannot express the equality relation. Lemma 42 again gives
CSP-SATS ∈ mAC0

3. ◀

5.5 Consequences for monotone circuit lower bounds via lifting
We now prove a stronger form of Theorem 4. In the previous section, we showed that
CSP∩AC0 ⊆ mAC0. In particular, this means that there does not exist a finite set of relations
S such that CSP-SATS separates AC0 and mNC1, a separation which we proved in Theorem 1.
We will also observe that, if CSP-SATS /∈ mNC2, then CSP-SATS is ⊕L-hard.

▶ Theorem 46. Let S be a finite set of Boolean relations.
1. If CSP-SATS /∈ mAC0

3 then CSP-SATS is L-hard under ≤AC0

m reductions.
2. If CSP-SATS /∈ mNC2, then CSP-SATS is ⊕L-hard under ≤AC0

m reductions.

Proof. Item (1) follows from Theorem 45. To prove item (2), suppose that
mDEPTH(CSP-SATS) = ω(log2 n). Then, by Theorem 39, we conclude that Pol(S) ⊆ L3, or
Pol(S) ⊆ V2, or Pol(S) ⊆ E2. Theorem 33 implies that CSP-SATS is ⊕L-hard. ◀

Further Discussion. We recall the discussion of Section 1.1.3. We introduced and defined
the functions CSP-SATS in that section, as a way to capture monotone circuit lower bounds
proved via lifting. This in particular captures the monotone function 3-XOR-SAT, which
was proved in [31] to require monotone circuit lower bounds of size 2nΩ(1) to compute, even
though ⊕L-machines running in polynomial-time can compute it. Theorem 46 proves that this
separation between monotone and non-monotone circuit lower bounds cannot be improved
by varying the set of relations S, as we argue below.

There are two ways one could try to find a function in AC0 with large monotone complexity
using a CSP-SAT function. First, one could try to define a set of relations S such that
CSP-SATS ∈ AC0, but the monotone complexity of CSP-SATS is large. However, Item (1)
of Theorem 46 proves that this is impossible, as any CSP-SAT function outside of mAC0 is
L-hard under simple reductions and, therefore, cannot be computed in AC0.

Secondly, one could try to be apply the arguments of Section 3, consisting of a padding
trick and a simulation theorem. When S is the set of 3XOR relations, then indeed we
obtain a function in AC0[⊕] with superpolynomial monotone circuit complexity, as proved
in Theorem 7. However, Item (2) of Theorem 46 proves that this is best possible, as any
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CSP-SAT function which admits a superpolynomial monotone circuit lower bound must be
⊕L-hard and, therefore, at least as hard as 3-XOR-SAT for non-monotone circuits. Item (2)
also shows that even CSP-SAT functions with a ω(log2 n) monotone depth lower bound must
be ⊕L-hard, which suggests that the arguments of Section 3 applied to a CSP-SAT function
are not able to prove the separation of Theorem 9.

A caveat to these impossibility results is in order. First, we only study Boolean-valued
CSPs here, though the framework of lifting can also be applied in the context of non-Boolean
CSPs. It’s not clear if non-Boolean CSPs exhibit the same dichotomies for monotone
computation we proved in this section. We remark that Schaefer’s dichotomy for Boolean-
valued CSPs [67] has been extended to non-Boolean CSPs [72, 15].

Secondly, the instances of CSP-SAT generated by lifting do not cover the entirety of
the minterms and maxterms of CSP-SAT. In particular, our results do not rule out the
possibility that a clever interpolation of the instances generated by lifting may give rise to
a function that is easier to compute by non-monotone circuits, and therefore bypasses the
hardness results of Theorem 46. One example is the Tardós function [69]. A lifting theorem
applied to a Pigeonhole Principle formula can be used to prove a lower bound on the size of
monotone circuits that accept cliques of size k and reject graphs that are (k − 1)-colorable,
for some k = nε [56, 61]. A natural interpolation for these instances would be the k-Clique
function, which, being NP-complete, would be related to an NP-complete CSP-SAT. However,
as proved by [69], there is a monotone function in P which has the same output behaviour
over these instances.
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First, we recall the function OddFactorn : {0, 1}(n
2) → {0, 1} of Section 3.2, which accepts

a given graph if the graph contains an odd factor, which is a spanning subgraph in which the
degree of every vertex is odd. For convenience, in this section we consider a weaker version of
OddFactor, which takes as an input a bipartite graph with n vertices on each part, and accepts
if the graph contains an odd factor. Let Bipartite-OddFactorn : {0, 1}n2

→ {0, 1} be this
function. We remark that the lower bounds of Babai, Gál and Wigderson [9] for OddFactor
(Theorem 10) also hold for Bipartite-OddFactor. The proof of the monotone circuit lower
bound in particular is essentially Razborov’s lower bound for Matching via the approximation
method [59].

▶ Theorem 47 ([9]). We have

mSIZE(Bipartite-OddFactorn) = nΩ(log n) and mDEPTH(Bipartite-OddFactorn) = Ω(n).

We can reduce Bipartite-OddFactor to 3-XOR-SAT by noting that computing
Bipartite-OddFactorn(M) on a given matrix M ∈ {0, 1}n2

is computationally equivalent
to deciding the satisfiability of the following F2 linear system over variables {xij}:

For all i ∈ [n]:
⊕n

k=1 xik = 1;
For all j ∈ [n]:

⊕n
k=1 xkj = 1;

For all i, j ∈ [n] such that Mij = 0: xij = 0.

We can then use a circuit for 3-XOR-SAT to solve this system by using a standard trick
of introducing new variables to reduce the number of variables that appear in each equation,
as done in the textbook reduction from SAT to 3-SAT. As the corresponding reductions turn
out to be monotone, this implies monotone circuit and formula lower bounds for 3-XOR-SAT.
We note that a somewhat similar argument (in the non-monotone setting) appears in Feder
and Vardi [27, Theorem 30] regarding constraint satisfaction problems with the ability to
count.

In order to formalise this argument, we will need the following definition and results.

▶ Definition 48. Let f be a Boolean function. We define dual(f) : x 7→ ¬f(¬x) as the dual
of f .

▶ Lemma 49. Let f be a monotone Boolean function. We have mSIZE(f) = mSIZE(dual(f))
and mDEPTH(f) = mDEPTH(dual(f)).

Proof. The idea is to push negations to the bottom and eliminate double negations at the
input layer. In other words, applying De Morgan rules, we can convert any {∧,∨}-circuit
computing f into a circuit computing dual(f) by swapping ∧-gates for ∨-gates, and vice-versa.
Moreover, this transformation preserves the depth of the circuit. ◀

We are ready to describe a monotone reduction from the function Bipartite-OddFactorn

to 3-XOR-SAT, which implies the desired lower bounds.

▶ Theorem 50. There exists ε > 0 such that

mSIZE(3-XOR-SAT) = nΩ(log n) and mDEPTH(3-XOR-SAT) = Ω(nε).

Proof. Recall that the value of the function Bipartite-OddFactorn(M) on a given matrix
M ∈ {0, 1}n2

is equal to 1 if the following system is satisfiable:
For all i ∈ [n]:

⊕n
k=1 xik = 1;

For all j ∈ [n]:
⊕n

k=1 xkj = 1;
For all i, j ∈ [n] such that Mij = 0: xij = 0.
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We introduce some extra variables to reduce the number of variables in each equation in the
following way. For every i ∈ [n], introduce variables zi1, . . . , zi(n−1) and the equations

zi1 = xi1 ⊕ xi2,

zi2 = zi1 ⊕ xi3,

. . .

zi,(n−1) = zi,(n−2) ⊕ xi,n,

zi,(n−1) = 1.

Now note that these equations imply zi,(n−2) =
⊕n

k=1 xik = 1. For each “column” equation⊕n
k=1 xkj = 1, we also add variables wj1, . . . , wj(n−1) as above. In total, we add at most

2n2 variables and 2n2 equations. Therefore, there is a system of linear equations on O(n2)
variables, where each constraint contains at most 3 variables, which is satisfiable if and only
if Bipartite-OddFactorn(M) = 1. Moreover, it is easy to see that the characteristic vector α of
the set of equations of this system can be computed from M by an anti-monotone projection,
as we activate a constraint that depends on the input when Mij = 0.

Now let f = dual(3-XOR-SAT) and β = ¬α. Since, by definition, 3-XOR-SAT accepts
unsatisfiable systems, we get Bipartite-OddFactorn(M) = ¬3-XOR-SAT(α) = f(β) and that
β is a monotone projection of M . Therefore, by Lemma 49, we obtain

mSIZE(Bipartite-OddFactorn) ≤ mSIZE(3-XOR-SAT)

and

mDEPTH(Bipartite-OddFactorn) ≤ mDEPTH(3-XOR-SAT). ◀

B Schaefer’s Theorem in Monotone Complexity

B.1 Connectivity and generation functions
We recall the definitions of two prominent monotone Boolean functions that have efficient
monotone circuits. Let ST-CONN : {0, 1}n2

→ {0, 1} be the function that outputs 1 on a
given directed graph G if there exists a path from 1 to n in G. Let GEN : {0, 1}n3

→ {0, 1}
be the Boolean function which receives a set T of triples (i, j, k) ∈ [n3], and outputs 1 if
n ∈ S, where S ⊆ [n] is the set generated with the following rules:

Axiom: 1 ∈ S,
Generation: If i, j ∈ S and (i, j, k) ∈ T , then k ∈ S.

The following upper bounds are well-known and easy to prove.

▶ Theorem 51 ([42, Exercise 7.3], [56]). We have ST-CONN ∈ mNL and GEN ∈ mSIZE[poly].

B.2 Proof of reduction lemmas
Here we present monotonised versions of the proofs of [19, Propositions 2.2 - 2.4], which give
a simplified presentation of the results of [67].

▶ Lemma 40 ([19, Proposition 2.3]). If COQ(S1) ⊆ COQ(S2), then there exists a constant
C ∈ N such that CSP-SATn

S1
≤mOR

m CSP-SATCn
S2

.

Proof. If COQ(S1) ⊆ COQ(S2), then each relation of S1 can be represented as a conjunctive
query over S2. Let F1 be a S1-formula. For each constraint C1 of F1, there exists a formula
φ(C1) in CNF(S2) such that C1 is a projection of φ(C1) (i.e., C1 is a conjunctive query of
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φ(C1)). However, note that C1 is satisfiable if and only if φ(C1) is satisfiable. So we can
replace the constraint C1 by the set of constraints in φ(C1). Doing this for every constraint
in F1, we obtain an S2-formula F2 which is satisfiable iff F1 is satisfiable.

Now note that, to decide if a given constraint application C of S2 is in the reduction,
it suffices to check if there exists a S1-constraint C1 in F1 such that C is in φ(C1). Using
non-uniformity, this can be easily done by an OR over the relevant input bits.

Finally, we observe that, since the arities of each relation in S1 and S2 are constant, we
only add a constant number of variables for each constraint to represent S1-formulas with
conjunctive queries over S2-formulas. ◀

▶ Lemma 52. Let S be a set of Boolean relations. We have CSP-SATS∪{=} ≤mNL
m CSP-SATS.

Proof. Let F be a (S ∪ {=})-formula on n variables given as an input. Remember that F
is given as a Boolean vector α, where each bit of α represents the presence of a constraint
application on n variables from S ∪ {=}. We first build an undirected graph G with the
variables x1, . . . , xn as vertices, and we put an edge between xi and xj if the constraint
xi = xj appears in F . Note that G can be constructed by a monotone projection from F .

Let R ∈ S and let C = R(x1, . . . , xn) be a constraint application of R. If C appears
in F , we add to the system every constraint of the form C ′ = R(y1, . . . , yn) such that, for
every i ∈ [n], there exists a path from xi to yi in the graph G. In this case, we say that C
generates C ′. Let F2 be the formula that contains all non-equality constraints of F , and all
the non-equality constraints generated by a constraint in F . It’s not hard to see that F is
satisfiable if and only if F2 is satisfiable, and therefore the reduction is correct.

Moreover, the reduction can be done in monotone NL using the monotone NL algorithm
for ST-CONN (Theorem 51). Indeed, there are at most nk constraint applications of a given
relation R of arity k. Therefore, to decide if a constraint C ′ = R(y1, . . . , yn) appears in F2,
it suffices to check if there exists a constraint application of R in F which generates C ′. This
can be checked with nk calls to ST-CONN. ◀

▶ Lemma 31 (Polymorphisms characterise the complexity of CSPs [38, 19, Theorem 2.4]). If
Pol(S2) ⊆ Pol(S1), then CSP-SATn

S1
≤mNL

m CSP-SATpoly(n)
S2

.

Proof. If Pol(S2) ⊆ Pol(S1), then from Lemma 30 (Items iii, v, and vi) we obtain COQ(S1) ⊆
⟨S1⟩ ⊆ ⟨S2⟩ = COQ(S2 ∪ {=}). Therefore, by Lemmas 40 and 52 we can do the following
chain of reductions in monotone NL:

CSP-SATS1 ≤mOR
m CSP-SATS2∪{=} ≤mNL

m CSP-SATS2 . ◀

B.3 Monotone circuit upper bounds
We restate and prove the theorem.

▶ Theorem 32 (Monotone version of the upper bounds for CSP-SAT [67, 4]). Let S be a finite
set of relations. The following holds.
1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].
2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

Proof. We prove each case separately.
Proof of 1. We first observe that 3-Horn-SAT (see definition in Section 5.3, Dichotomy for

formulas) can be solved by a reduction to GEN ∈ mSIZE[poly]. Indeed, we interpret each
constraint of the form (¬xi ∨ ¬xj ∨xk) (which is equivalent to xi ∧xj =⇒ xk) as a triple
(i, j, k), and constraints of the form xi as a triple (0, 0, i). Let S ⊆ {0, 1, 2 . . . , n} be the

CCC 2023



29:36 Constant-Depth Circuits vs. Monotone Circuits

set generated by these triples, applying the generation rules of GEN, using 0 ∈ S as the
axiom. It suffices to check that there exists some constraint of the form ¬xi ∨ ¬xj ∨ ¬xk,
such that {i, j, k} ⊆ S. This process can be done with polynomial-size monotone circuits,
invoking GEN. Therefore, it follows from Theorem 51 that 3-Horn-SAT ∈ mSIZE[poly].
Moreover, we recall that, if E2 ⊆ Pol(S), then S ⊆ COQ(H3) (in other words, every S-
formula can be written as a set of 3-Horn equations) – see, e.g, [25, Lemma 4.8]. Therefore,
from Items iv and v of Lemma 30 and Lemma 40, we conclude that CSP-SATS ≤mOR

m

3-Horn-SAT ∈ mSIZE[poly].
Now recall that, if V2 ⊆ Pol(S), then S ⊆ COQ(A3), where A3 is the set of width-3 Anti-
Horn relations (i.e., A3 = {(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)}; see [25, Lemma 4.8] for
a proof of this observation). But note that an A3-formula φ is satisfiable if and only if the
H3-formula φ(¬x1, . . . ,¬xn) is satisfiable. Therefore by Lemma 40 and Items iv and v of
Lemma 30, we have CSP-SATS ≤mOR

m CSP-SATA3 ≤mProj
m 3-Horn-SAT ∈ mSIZE[poly].

Proof of 2. We first prove the case D2 ⊆ Pol(S). Let 2-SAT = CSP-SATΓ, where Γ =
{(x1 ∨ x2), (x1 ∨ ¬x2), (¬x1 ∨ ¬x2)}. It’s easy to check that the standard reduction from
2-SAT to ST-CONN can be done in monotone NL (see [41, Theorem 4]). Therefore, it
follows from Theorem 51 that 2-SAT ∈ mNL. Now, recall that, if D2 ⊆ Pol(S), then
S ⊆ COQ(Γ) (see, e.g., [25, Lemma 4.9]). Therefore, from Lemma 40 and Items iv and v
of Lemma 30, we conclude CSP-SATS ∈ mNL.
We now suppose that S00 ⊆ Pol(S). We check that the proof of [4, Lemma 3.4] gives
a monotone circuit. If S00 ⊆ Pol(S), then there exists k ≥ 2 such that S00

k ⊆ Pol(S)
(that’s because there does not exist a finite set of relations S such that Pol(S) = S00).
Note that S00

k = Pol(Γ), where Γ =
{

ORk, x,¬x,→,=
}

. We show below how to decide
if a Γ-formula is unsatisfiable in monotone NL. The result then follows from Lemma 31.
Let F be a given Γ-formula with n variables. We first construct a directed graph G, with
vertex set {x1, . . . , xn}, and with arcs (xi, xj) if xi → xj is a constraint of F , and arcs
(xi, xj) and (xj , xi) if xi = xj is a constraint of F . This can be done with a monotone
projection. Observe that a Γ-formula F is unsatisfiable if, and only if, there exists a
constraint of the form xi1 ∨ · · · ∨ xik

in F , such that there exists a path from some xij
to

a constraint ¬y in F . This can be checked in monotone NL by Theorem 51.
The case S10 ⊆ Pol(S) is analogous. ◀

C Background on Post’s Lattice and Clones

In this section, we include the definitions of the various clones that are used in the paper, as
well as a figure of Post’s lattice, which can be helpful when checking the proofs of Section 5.

Let →: (x, y) 7→ (¬x ∨ y). Let also ↔: (x, y) 7→ ¬(x ⊕ y) and id : x 7→ x. Let
f : {0, 1}k → {0, 1} be a Boolean function. We say that f is linear if there exists c ∈ {0, 1}k

and b ∈ {0, 1} such that f(x) = ⟨c, x⟩ + b (mod 2). We say that f is self-dual if f = dual(f).
Let a ∈ {0, 1}. We say that f is a-reproducing if f(a, . . . , a) = a. We say that a set
T ⊆ {0, 1}k is a-separating if there exists i ∈ [k] such that xi = a for all x ∈ T . We say that
f is a-separating if f−1(a) is a-separating. We say that f is a-separating of degree k if every
T ⊆ f−1(a) such that |T | = k is a-separating. The basis of a clone B is a set of Boolean
functions F such that B = [F ].
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Name Definition Base

BF All Boolean functions {∨, ∧, ¬}
R0 {f ∈ BF : f is 0-reproducing} {∧, ⊕}
R1 {f ∈ BF : f is 1-reproducing} {∨, ↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF : f is monotonic} {∨, ∧, 0, 1}
M1 M ∩ R1 {∨, ∧, 1}
M0 M ∩ R0 {∨, ∧, 0}
M2 M ∩ R2 {∨, ∧}
Sn

0 {f ∈ BF : f is 0-separating of degree n} {→, dual(hn)}
S0 {f ∈ BF : f is 0-separating} {→}
Sn

1 {f ∈ BF : f is 1-separating of degree n} {x ∧ y, hn}
S1 {f ∈ BF : f is 1-separating} {x ∧ y}
Sn

02 Sn
0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn

01 Sn
0 ∩ M {dual(hn), 1}

S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn

00 Sn
0 ∩ R2 ∩ M {x ∨ (y ∧ z), dual(hn)}

S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn

11 Sn
1 ∩ M {hn, 0}

S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩ R2 ∩ M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f ∈ BF : f is self-dual} {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D2 D ∩ M {(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)}
L {f ∈ BF : f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V {f ∈ BF : f is constant or an n-ary OR function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f ∈ BF : f is constant or an n-ary AND function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ [{0}] ∪ [{1}] {id, 0, 1}
I0 [{id}] ∪ [{0}] {id, 0}
I1 [{id}] ∪ [{1}] {id, 1}
I2 [{id}] {id}

Figure 4 Table of all closed classes of Boolean functions, and their bases. Here, hn denotes the
function hn(x1, . . . , xn+1) =

∨n+1
i=1

∧n+1
j=1,j ̸=i

xj . See Definition 48 for the definition of dual(·). The
same table appears in [4, Table 1].
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