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Abstract
We study the fundamental challenge of exhibiting explicit functions that have small correlation with
low-degree polynomials over F2. Our main contributions include:
1. In STOC 2020, CHHLZ introduced a new technique to prove correlation bounds. Using their

technique they established new correlation bounds for low-degree polynomials. They conjectured
that their technique generalizes to higher degree polynomials as well. We give a counterexample to
their conjecture, in fact ruling out weaker parameters and showing what they prove is essentially
the best possible.

2. We propose a new approach for proving correlation bounds with the central “mod functions,”
consisting of two steps: (I) the polynomials that maximize correlation are symmetric and (II)
symmetric polynomials have small correlation. Contrary to related results in the literature, we
conjecture that (I) is true. We argue this approach is not affected by existing “barrier results.”

3. We prove our conjecture for quadratic polynomials. Specifically, we determine the maximum
possible correlation between quadratic polynomials modulo 2 and the functions (x1, . . . , xn) →
z
∑

xi for any z on the complex unit circle, and show that it is achieved by symmetric polynomials.
To obtain our results we develop a new proof technique: we express correlation in terms of
directional derivatives and analyze it by slowly restricting the direction.

4. We make partial progress on the conjecture for cubic polynomials, in particular proving tight
correlation bounds for cubic polynomials whose degree-3 part is symmetric.
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1 Introduction and our results

Exhibiting explicit functions that have small correlation with low-degree polynomials modulo
2 is a fundamental challenge in complexity theory, cf. the recent survey [33]. This challenge
is generally referred to as “proving correlation bounds” and progress on it is a prerequisite for
progress on a striking variety of other long-standing problems: circuit lower bounds [29, 30],
Valiant’s rigidity challenge [32], number-on-forehead communication complexity [32, 30], and
even recently-made conjectures on the Fourier spectrum of low-degree polynomials [31].
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3:2 On Correlation Bounds Against Polynomials

After many years, the state-of-the-art on this challenge has not changed much since seminal
works from at least thirty years ago. Two bounds are known for degree d polynomials. First,
the results by Razborov and Smolensky from the 80’s give correlation O(d/

√
n) [22, 24, 25];

second, the result by Babai, Nisan, and Szegedy [3] on number-on-forehead communication
protocols yields correlation exp(−Ω(n/d2d)). A slight improvement to exp(−Ω(n/2d)) ap-
pears in [27]. Thus, the first bound applies to large degrees but yields weak correlation, while
the second bound yields exponentially small correlation, but only applies to degrees less than
logn. Achieving correlation less than 1/

√
n for polynomials of degree logn remains open,

for any explicit function. Remarkably, solving this specific setting of parameters is required
for long-sought progress on any of the challenges mentioned in the previous paragraph.

1.1 The conjecture and our first result
In STOC 2020, Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman [11]. introduced a
novel technique which they established new correlation bounds for low-degree polynomials.
The key ingredient in their approach is a structural result about the Fourier spectrum of
low-degree polynomials over F2. They show that for any n-variate polynomial p over F2 of
degree ≤ d, there is a set S of variables such that almost all of the Fourier mass of p lies on
Fourier coefficients that intersect with S, and the size of S is exponential in d. Further, they
conjecture that the size of S needs to be just polynomial in d.

We give a counterexample to their conjecture. In fact, we shall rule out weaker parameters
and show what they prove is essentially the best possible. This appears in Section 2.

1.2 Mod functions
A natural candidate for achieving small correlation are the Modϕ functions which map inputs
of Hamming weight w to the complex point on the unit circle with angle wϕ. These Modϕ
are closely related to the boolean mod m functions which indicate if the input Hamming
weight is divisible by m. Specifically, one can bound the correlation with mod m for odd m

by the correlations with the Modϕ functions for ϕ = 2πk/m for k = 1, 2, . . . . , (m− 1)/2 (see
Lemma 36). In turn, as discussed below, an early motivation for studying the correlation
with mod m was proving circuit lower bounds.

We now formally define these notions and then discuss previous results.

▶ Definition 1. For any angle ϕ ∈ [0, 2π] the function Modϕ : {0, 1}n → C is defined as

Modϕ(x) := eϕ
√

−1
∑

i
xi .

The correlation of a polynomial p : {0, 1}n → {0, 1} with Modϕ is

Cϕ(p) :=
∣∣∣Ex∈{0,1}n(−1)p(x)Modϕ(x)

∣∣∣ .
For any integer m we define the boolean Mod m function BModm : {0, 1}n → {0, 1} as

BModm(x) :=
{

1 if
∑n
i=1 xi ̸= 0 mod m

0 if
∑n
i=1 xi = 0 mod m.

The correlation between a polynomial p : {0, 1}n → {0, 1} and BModm is:

Bm(p) :=
∣∣∣Ex:BModm(x)=0(−1)p(x) − Ex:BModm(x)=1(−1)p(x)

∣∣∣ .



P. Ivanov, L. Pavlovic, and E. Viola 3:3

Most or all of the works in this area, including this paper, is concerned with the Modϕ
functions. And most of the works use correlation bounds with Modϕ functions for various
ϕ to obtain corresponding correlation bounds with the mod m functions. In particular,
the two correlation bounds stated above hold for Mod2π/3. The first bound essentially
appears in Smolensky’s paper. For the second bound, Bourgain first proved [9] correlation
exp(−Ω(n/cd)) with Mod2π/m, with a correction in [16]. Nisan later pointed out that such
bounds also follow from [3]. The constant c is optimized to 4 in [27]. For more discussion
and background we refer to the survey [33], where the reader may find proofs of both bounds,
including Nisan’s derivation from [3].

1.2.1 Exact results
Unlike other models of computation such as circuits, polynomials seem simple enough that
one may try to obtain exact results. That is, one may try to precisely characterize the
polynomials that achieve the maximum correlation. Twenty years ago, a remarkable paper
by Green [13], which is an inspiration for this work, took precisely such a step. Green, and
the subsequent work [15], precisely characterized the quadratic polynomials modulo three
that achieve the maximum correlation with the Mod2π/2 function, i.e., parity. Compared to
our discussion above, the moduli in [13] are swapped. Green considers polynomials modulo
3 instead of 2, and bounds the correlation with Mod2π/2 instead of Mod2π/3. Extending
Green’s result to other moduli has resisted attacks, see [13, 12]. While these works do not
explicitly consider polynomials modulo 2, difficulties also arise trying to port Green’s proof
to our setting. In fact, jumping ahead, we will show that the answer is different, arguably
explaining the difficulties.

1.2.2 Are symmetric polynomials optimal?
Aiming for exact results, a natural question to ask is whether, for some fixed degree, the
polynomials modulo 2 that have maximum correlation with Modϕ are symmetric. Indeed,
this question has been asked by many authors; it appears explicitly for example in the 2001
paper by Alon and Beigel [2]. A positive answer would have dramatic consequences since
symmetric polynomials modulo 2, even of large degree, have exponentially small correlation
with, say, Mod2π/3. Thus, if one could prove that symmetric polynomials correlate best, one
would obtain long-sought correlation bounds.

However, until now the evidence for this has been negative. The maximizing polynomials
in [13, 15] are not symmetric. Moreover, the work [14] has shown that for a large range of
parameters, symmetric polynomials modulo 3 do not correlate best with parity (and are not
even close). One of the families of polynomials that are shown to outperform symmetric in
these works is that of block-symmetric polynomials, which are sums of symmetric polynomials
on disjoint sets of variables. However, naive conjectures regarding the optimality of block-
symmetric or other families of polynomials fail, and we are not aware of any natural family
of polynomials modulo 3 that is a candidate to maximizing correlation with parity. The
only available evidence that symmetric polynomials correlate best with mod functions are
computer experiments up to 10 variables reported in [14].

1.3 A new approach
Departing from previous proofs, in this work we propose the following approach to proving
correlation bounds with mod functions. It consists of two steps:
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3:4 On Correlation Bounds Against Polynomials

(I) Prove that symmetric polynomials correlate best with mod functions, and
(II) Prove that symmetric polynomials have exponentially small correlation with mod

functions.

Regarding (I), we put forth the following conjecture:

▶ Conjecture 2. For every d, n, ϕ degree-d symmetric polynomials correlate best with the
Modϕ function on n bits.

We verify (II) in Section 7. The result is folklore. We remark that [10] proves a similar
result, but in the case of symmetric polynomials mod m and the mod 2 function. However,
changing moduli can yield different results, as shown by this paper.

1.3.1 Our approach vs. “barriers” to lower bounds
Over the years many “barriers” have been proposed for progress on lower bounds. Barriers
based on oracles or relativization [4, 1] are not known to apply – they mostly concern uniform
models of computation. The Natural Proofs barrier [23] (see also [20, 19]) is also not known to
apply since we do not have candidate pseudorandom functions that correlate with low-degree
polynomials.

More recently, Bhowmick and Lovett [7] proposed a new barrier specifically for proving
correlation bounds. They consider an extension of polynomials called non-classical polyno-
mials, an object first introduced in [26]. In short, in a non-classical polynomial of degree d
monomials can have rational coefficients (with denominators depending on the degree) and
the output of the polynomial is considered as an element in the torus [0, 1]. The work [7]
shows that the proofs of most correlation bounds (such as those mentioned at the beginning
of this introduction) also apply to non-classical polynomials. Moreover, for non-classical
polynomials these bounds are actually tight! For example, there are non-classical polynomials
of degree just O(logn) that correlate well with mod functions.

We argue that non-classical polynomials do not constitute an obstacle for our approach
above. The main reason is that the non-classical polynomials in [7] – including those for mod
functions – are actually symmetric. Hence, one could conceivably prove (I) above without
distinguishing classical from non-classical polynomials. Moreover, the proof of (II) above
already distinguishes classical from non-classical polynomials.

1.4 Our second result: Proof of Conjecture 2 for d = 2
A main technical contribution of this work is a proof of our Conjecture 2 in the case of
degree two. That is, in contrast with the previous proofs discussed above, we show that,
among quadratic polynomials modulo 2, those that correlate best with the Modϕ functions
are symmetric. Let us first define the elementary symmetric polynomials of degree 1 and 2.

▶ Definition 3 (Elementary symmetric polynomials). Let

e1(x1, . . . , xn) :=
n∑
i=1

xi,

e2(x1, . . . , xn) :=
n∑
i<j

xixj .
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▶ Example 4. Let ϕ = 2π/3 and ω = eϕ
√

−1. We have:

Cϕ(0) =
∣∣∣∣ E
x∈{0,1}n

ω

∑
i

xi

∣∣∣∣ =
∣∣∣∣ E
x1∈{0,1}

ωx1

∣∣∣∣n =
∣∣∣1 + ω

2

∣∣∣n =
(1 + cos ϕ

2

)n/2
=
(1

2

)n

,

Cϕ(e1) =
∣∣∣∣ E
x∈{0,1}n

(−1)
∑

i
xiω

∑
i

xi

∣∣∣∣ =
∣∣∣∣ E

x1∈{0,1}
(−1)x1 ωx1

∣∣∣∣n =
∣∣∣1 − ω

2

∣∣∣n =
(1 − cos ϕ

2

)n/2

=
(√

3
2

)n

,

Cϕ(BMod3) ≥ 1/2,

where the last inequality follows because the absolute value of the real component of
(−1)BMod3(x)ω

∑
i
xi is ≥ 1/2 for every x.

We next state our result. Henceforth all polynomials in this paper have coefficients in
{0, 1} and operate modulo two. We characterize the quadratic polynomials that maximize
Cϕ for any angle ϕ ∈ [0, 2π]. Additionally, we show the correlation of other quadratic
polynomials is a multiplicative factor smaller.

It is in fact sufficient to restrict our attention to angles ϕ ∈ [0, π/2] thanks to a simple
symmetry argument presented in Section 3. When ϕ ∈ [0, π/4] then the constant zero
polynomial maximizes correlation. Our main contribution is that when ϕ ∈ (π/4, π/2] the
correlation is maximized by either e2 or e2 + e1, depending on the value of n mod 4.

We define the quantity

vϕ := 2−n−1 · ((1 + sinϕ)n + (1 − sinϕ)n)

which plays a key role in this paper.

▶ Theorem 5. Fix any angle ϕ ∈ [0, π/2]. For all large enough n, the maximum Cϕ(p) over
quadratic polynomials p is attained by a symmetric polynomial. In more detail:
1. Suppose ϕ ∈ (π/4, π/2].

a. For n even we have Cϕ(e2) = Cϕ(e2 + e1) = √
vϕ.

b. For n ≡ 1 mod 4 we have Cϕ(e2) =
√
vϕ + (cos(ϕ)/2)n, Cϕ(e2 + e1) =√

vϕ − (cos(ϕ)/2)n.
c. For n ≡ 3 mod 4 we have Cϕ(e2) =

√
vϕ − (cos(ϕ)/2)n, Cϕ(e2 + e1) =√

vϕ + (cos(ϕ)/2)n.
d. For any quadratic polynomial p besides e2, e2 + e1 we have

Cϕ(p) ≤
√

1 − Ω(sinϕ− cosϕ) · √
vϕ.

2. Suppose ϕ ∈ [0, π/4]. Then Cϕ(0) =
(

1+cosϕ
2

)n/2
and for any quadratic polynomial p ̸= 0

we have Cϕ(p) ≤ (1 − Ω(1)) · Cϕ(0).

Note that
√
vϕ − (cos(ϕ)/2)n ≥ (1 − o(1))√vϕ and so the theorem shows that the

correlation of non-symmetric polynomials is a constant-factor smaller than optimal.
An important message of this paper is that Cϕ is maximized by symmetric polynomials.

This contrasts with previous works, and gives hope that this may hold for larger degrees
as well. If that is the case one would obtain long-sought correlation bounds, as discussed
previously.

1.4.1 Results and directions for d = 3
We conjecture that Theorem 5 can be extended to show that for any cubic polynomial p
and any ϕ, Cϕ(p) ≤ maxs∈{0,e1,e2,e2+e1} Cϕ(s). In other words, the correlation over all cubic
polynomials is still maximized by a quadratic symmetric. This would prove Conjecture 2 for
d = 3 as well.
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3:6 On Correlation Bounds Against Polynomials

We make progress on this conjecture by proving this indeed holds when p is the sum of
an arbitrary quadratic polynomial and a symmetric degree-3 polynomial. This is done in
Section 8.

1.5 Boolean correlation

We now turn our attention to the boolean BModm function. As mentioned earlier, most or
all papers bounding the corresponding correlation Bm, including this one, proceed by first
bounding Cϕ for several corresponding values of ϕ and then using that information to bound
Bm. Indeed, Cϕ is a better-behaved quantity to work with. In turn, an early motivation for
studying Bm is the so-called discriminator lemma [17]. The lemma implies that if there is
a circuit consisting of a majority of s functions that computes BModm then one of those
functions p has Bm(p) ≥ 1/s. Thus, one can use upper bounds on Bm to obtain lower bounds
for such circuits.

In this paper we determine up to constant factors the maximum of Bm over quadratic
polynomials. This is Item 1 in the next theorem. In fact, we obtain more precise information.
Item 2 determines (exactly) the maximum value when n is congruent to m, 3m mod 4m:
either e2 or e2 + e1 maximizes Bm, and moreover it will achieve the upper bound on Bm
from Item 1. Our inability to determine the maximum value of Bm for every n is reflected in
Item 3, which shows when n is congruent to 0, 2m mod 4m this maximum is not achieved by
symmetric polynomials.

▶ Theorem 6. Fix any odd m ≥ 3, let ϕ := 2π/m, ℓ1 ∈ {m−1
4 , m+1

4 } denote the integer
closest to m

4 , and set Ψ := 2m/(m− 1)√vℓ1ϕ. The following holds for large enough n. Let
B∗
m denote the maximum Bm(p) over all quadratic p.

1. For any n,

Ψ(1/
√

2 − o(1)) ≤ B∗
m ≤ Ψ(1 + o(1)).

2. If n ≡ m, 3m mod 4m then

B∗
m = max

s∈{e2,e2+e1}
Bm(s) = Ψ(1 − o(1)).

3. If n ≡ 0, 2m mod 4m then

(1 + Ω(1)) max
s∈{0,e1,e2,e2+e1}

Bm(s) < max
s′∈{e2,e2+e1}

Bm(x1 + s′(x2, . . . , xn)).

Note that the polynomial in the right-hand side of Item 3 is not symmetric. We conjecture
that this polynomial is in fact optimal (for the corresponding values of n). Our techniques
yield slightly stronger results for specific m and n, but for simplicity we only state the
above theorem that applies for any odd m ≥ 3. In particular, when m = 3, it is possible to
determine for every value of n whether symmetric polynomials maximize B3.

Previous techniques could at best determine this maximum up to polynomial factors.
Hence we also improve polynomially the corresponding circuit lower bounds obtained via the
discriminator lemma – this is a straightforward application that we do not state formally.

Green’s work [13] also determines exactly the maximum correlation between quadratic
polynomials modulo 3 and the parity function. Our setting appears somewhat complicated
by the fact that the BModm functions are not balanced for odd m.
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1.6 Proof sketch of Theorem 5
We begin by rewriting the correlation in a more convenient form, involving derivatives of
the polynomial and of the mod function. Bounding the correlation in terms of derivatives is
natural and done in several previous works, see e.g. discussion of the “squaring trick” in [28,
Chapter 1]. However, these works take repeated derivatives until the polynomial becomes
constant, use the Cauchy-Schwartz inequality, and are lossy.

By contrast, we take a single derivative, avoid Cauchy-Schwartz, and give an exact
expression. In other words, previous works provide asymptotic correlation bounds for larger
degree polynomials, while we provide an exact bound for quadratic polynomials.

For concreteness consider the complex mod 3 function Modϕ := eϕ
√

−1
∑

i
xi := ω

∑
i
xi

where ϕ := 2π/3, and fix some quadratic p. Let py denote the derivative p(x+ y) + p(x) of p
in the direction y ∈ {0, 1}n. Analogously we let Modϕ,y(x) := ω

∑
i
xi−
∑

i
(xi⊕yi). We can

express the correlation squared as

C2
ϕ(p) = EyEx(−1)py(x)Modϕ,y(x).

Writing cy(p) for the inner expectation – where c stands for contribution in direction y – we
express the above as Eycy(p). In this language, our goal now is to prove the following for
any quadratic p and s = e2, e2 + e1:

Ey|cy(p)| ≤ Eycy(s). (1)

1.6.1 Computing Eycy(s) and bounding |cy(p)|
We begin by deriving a clean expression for Eycy(s). Let w(y) denote the Hamming weight
of y and let E,O denote the set of even, odd weight strings respectively. Supposing n is even
for simplicity we have:

Eycy(s) = 2−n
∑
y∈E

(sinϕ)w(y). (2)

To see this, observe that sy =
∑
i:yi=1 xi if y ∈ E and sy =

∑
i:yi=0 xi if y ∈ O. On the other

hand, Modϕ,y = ω

∑
i:yi=1

(2xi−1) which only depends on the variables indexed by the 1 bits
of y for every y.

This means that for any y ∈ O, cy(s) = 0 and for any y ∈ E, cy(s) = (sinϕ)w(y). Together
this implies (2).

Moreover, by observing that py(x) is linear one can show that (sinϕ)w(y) is in fact an
upper bound on |cy(p)|. In other words, for any quadratic p and direction y we have

|cy(p)| ≤ (sinϕ)w(y). (3)

This is an important fact we will use throughout the proof.

1.6.2 Structure on p and slowly restricting y

To deal with
∑
y |cy(p)|, we will first illustrate how we can bound

∑
y:y1=0 |cy(p)|. Looking

ahead, we are able to deal with any partial sum where at least one bit in y is restricted to 0,
as long as p possesses certain structure. This idea, combined with one more ingredient we
discuss in the next section, is the heart of the main proof.

CCC 2023



3:8 On Correlation Bounds Against Polynomials

For the sake of simplicity, suppose that p = x1x2 + q(x3, . . . , xn) for some quadratic q.
With this structure on p, it turns out we gain something after conditioning on y1 = 0:∑

y:y1=0
|cy(p)| ≤

∑
y:y1=0,y2=0

(sinϕ)w(y). (4)

We gain since this improves on the the bound which follows by only using (3):∑
y:y1=0

|cy(p)| ≤
∑
y:y1=0

(sinϕ)w(y). (5)

To prove (4) we condition on y2. If y2 = 1 then we show cy(p) = 0 by mimicking the
proof that cy(s) = 0 for any y ∈ O. By assumption on p we have py(x) = x1 + qy′(x′) for
any y = 01y′. And recall Modϕ,y = ω

∑
i:yi=1

(2xi−1) does not depend on x1 since y1 = 0. If
y2 = 0 then we use the bound from (3). Combining the two cases implies (4).

In the next step, we would ideally like to bound
∑
y:y1=1 |cy(p)|. However, it is not clear

how to repeat the previous step, where the assumption on p and restricting y1 = 0 crucially
allowed us to observe that cy(p) = 0 for half the directions.

To overcome this, we instead condition on y1 = 1, y2 = 0. Now py(x) = x2 + qy′(x′) for
any y = 10y′, but Modϕ,y does not depend on x2 since y2 = 0. Hence∑

y:y1=1,y2=0
|cy(p)| = 0.

To summarize, we can make progress on the partial sum
∑
y:y1=1,...,yj−1=1 |cy(p)| by

conditioning on yj = 0, as long xj has certain structure in p. This argument gives a non-
trivial bound on

∑
y |cy(p)|, but is still not enough to prove (1). We strengthen it in the next

section.

1.6.3 Bounding tEy|cy(p)|
We are almost ready to prove our initial goal:

Ey|cy(p)| ≤ Eycy(s).

The last ingredient we need is that (3) can be improved to

|cy(p)| ≤ (sinϕ)w(y)−1(cosϕ) (6)

whenever y ∈ O, which we sketch in the next section.
Our proof strategy is similar to that of the previous section. We restrict the direction

one bit at a time, but now, we will directly compare
∑

|cy(p)| to
∑
cy(s). In the first step

we show that∑
y:y1=0

|cy(p)| ≤
∑
y:y1=0

cy(s). (7)

We bound
∑
y:y1=0 |cy(p)| by applying (6) for the odd weight directions, which allows us to

improve the bound on
∑
y:y1=0 |cy(p)| from (4) to the following:∑

y:y1=0
|cy(p)| ≤

∑
y:y1=0,y2=0,y′∈E

(sinϕ)w(y) +
∑

y:y1=0,y2=0,y′∈O
(sinϕ)w(y)−1 cosϕ.
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To compare this to
∑
y:y1=0 cy(s), we recall the expression from (2) which implies∑

y:y1=0
cy(s) =

∑
y:y1=0,y2=0,y′∈E

(sinϕ)w(y) +
∑

y:y1=0,y2=1,y′∈O
(sinϕ)w(y).

Now we can conclude the proof of (7) as∑
y:y1=0,y2=0,y′∈O

(sinϕ)w(y)−1 cosϕ ≤
∑

y:y1=0,y2=1,y′∈O
(sinϕ)w(y).

We remark the improvement from (6) is crucial since if we just used (4) then we would need∑
y:y1=0,y2=0,y′∈O

(sinϕ)w(y) ≤
∑

y:y1=0,y2=1,y′∈O
(sinϕ)w(y)

which is clearly false as sinϕ < 1.
For the next step, assuming that x2 appears in at least a few quadratic terms (for the

precise conditions see Lemmas 28, 29), we can similarly show that∑
y:y1=1,y2=0

|cy(p)| ≤
∑

y:y1=1,y2=0

cy(s).

We continue this process until there are no more suitable direction bits to condition on.
When this happens, we conclude by reasoning on the remaining structure of the polynomial
(see Lemmas 31, 32).

1.6.4 The proof of (6) via handshaking
For any p and y, we can determine py(x) by examining the graph Gp,y, which is defined
with w(y) nodes that correspond to the variables indexed by the 1 bits of y, and edges that
represent the quadratic terms of p on those w(y) variables. Observe that xi appears in py(x)
iff xi has odd degree in Gp,y.

Now fix some y ∈ O. The number of nodes in Gp,y is odd, and the handshaking lemma
implies the number of nodes in Gp,y with odd degree must be even. Together this implies
py(x) contains at most w(y) − 1 variables which in turn implies (6) after a calculation. For
the formal proof see Claim 34.

1.6.5 Slackness
Although we get exact results in the end, we emphasize that some steps in the proof do not
yield exact bounds, but are approximate. For example, after we open the first bit we in fact
show a strict inequality between Ey:y1=0|cy(p)| and Ey:y1=0cy(s) when p is non-symmetric
(Lemma 30). This gives us a “buffer” between Ey|cy(p)| and Eycy(s), which is reflected in
the statement of Item 1(d) in Theorem 5.

This extra factor is not just additional information, but is in fact critical for the proof
since the final step might be lossy (this occurs when Lemma 31 is applied). The buffer gained
will be much larger than the loss from Lemma 31 which allows us to conclude the proof.

2 The CHHLZ conjecture

In this section we present the new technique in [11], their conjecture, and our counterexample.
The key ingredient in the approach in [11] is a structural result about the Fourier spectrum
of low-degree polynomials over F2. They show that for any n-variate polynomial p over F2
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3:10 On Correlation Bounds Against Polynomials

of degree ≤ d, there is a set S of variables such that almost all of the Fourier mass of p
lies on Fourier coefficients that intersect with S, and the size of S is exponential in d. This
remarkable result allows them to prove new correlation bounds. Further, they conjecture
that the size of S needs to be just polynomial in d.

Next we present their conjecture in more detail, and then our results. The main quantity
used in [11] is “local correlation” which they define as follows:

▶ Definition 7 (Local correlation, [11]). For any F : {0, 1}n → {−1, 1},

∆S(F ) := E
xS

[
(ExS [F (x)] − E[F ])2] .

For a polynomial p : Fn2 → F2 we write e(p) for (−1)p which takes values in {−1, 1}. Next
we state their conjecture:

▶ Conjecture 8 ([11, Conjecture 1.14]). For every polynomial p of degree d there exists a set
S of ≤ poly(d, log(1/ϵ)) variables such that ∆S(e(p)) ≤ ϵ.

In fact CHHLZ make a stronger conjecture (Conjecture 1.15 in [11]), where a single set
S is found that works for an entire space of dimension k of polynomials. This generality is
critical in proving their new correlation bounds. However, we shall give a counterexample
even for k = 1. In fact, we shall rule out even much weaker parameters and show that what
they prove is essentially the best possible. Specifically, we show that for d = O(logn) and
constant ϵ, one needs |S| ≥ n/ logO(1) n.

▶ Theorem 9. There exists a polynomial p of degree d = O(logn) such that ∆S(e(p)) ≥ Ω(1)
for any S of size ≤ c · n/ log2 n, where c > 0 is an absolute constant.

The rest of this section is devoted to the proof of this theorem. The idea behind it is quite
natural in hindsight, and highlights the expressive power of polynomials of degree O(logn).

▶ Definition 10 ([5]; cf. [21], Proposition 4.12). We define TRIBES : {0, 1}n → {0, 1} to be
a read-once monotone DNF where every term has size w so that |Ex[TRIBES(x)] − 1/2| ≤
O(logn)/n. This makes w = logn− log logn+O(1).

The next result shows the probability TRIBES is fixed to 1 after a uniform assignment to
xS is approximately the same as after a uniform assignment to x, where S ⊂ [n] is a subset
of nearly linear size. This property was also used in [18] to show separations between DNFs
composed with parity gates and parity decision trees.

▶ Lemma 11. Fix any S ⊂ [n] such that |S| ≤ O(n/ log2 n). Then

P
xS

[TRIBES(x) not fixed ] ≤ 1/2 + o(1).

Proof. The set S can intersect at most |S| AND terms. The probability over a uniform
assignment to xS that TRIBES(x) is fixed to 1 is at least the probability one of the untouched
AND terms is set to 1. Hence,

P
xS

[TRIBES(x) = 1] ≥ 1 − (1 − 2−w)n/w−|S|.

= 1 − Px[TRIBES(x) = 0]
(1 − 2−w)|S|

≥ 1 − (1/2 +O(logn)/n)(1 + 1/Ω(logn))
≥ 1/2 − 1/Ω(logn).

where the second ≥ follows since (1 − 2−w)|S| ≥ 1 − |S|/2w ≥ 1 − 1/Ω(logn) and the fact
1/(1 − x) ≥ 1 + x. ◀
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We next show that TRIBES can be approximated by a low-degree polynomial. This can be
seen as a special case of Razborov’s classical approximation [22].

▶ Lemma 12. There exists a O(logn) degree polynomial p such that

Ex[e(TRIBES(x))e(p(x))] ≥ 1/2 + Ω(1).

Proof. We will construct a distribution D of O(logn) degree polynomials such that for any
x, Pq∼D[q(x) ̸= TRIBES(x)] ≤ 1/4. This would allow us to conclude, since by averaging
there must a polynomial p ∈ D such that Px[p(x) ̸= TRIBES(x)] ≤ 1/4.

To construct D, first note the n/w AND terms can be computed by degree w monomials
m1(x), . . . ,mn/w(x). To sample q ∼ D, we uniformly sample T1, T2 ⊆ [n/w] and set

q(x) := 1 − (1 −
⊕
i∈T1

mi(x)) ∧ (1 −
⊕
i∈T2

mi(x)).

Since T1, T2 are chosen uniformly, for any x such that (m1(x), . . .mn/w(x)) ̸= 0 we
have Pq∼D[q(x) = 0] = 1/4 . And for any x such that (m1(x), . . .mn/w(x)) = 0 we have
Pq∼D[q(x) = 1] = 0. Together this implies for any x, Pq∼D[q(x) ̸= TRIBES(x)] ≤ 1/4. ◀

We are now ready to prove the main result.

Proof of Theorem 9. First we note that if ∆S(e(p)) ≤ ϵ then by Markov’s inequality

P
xS

[
|ExS [e(p(x))] − E[e(p)]| > ϵ1/4

]
≤ ϵ1/2. (8)

Then, using T (x) to denote TRIBES(x) for brevity, we can write

Ex [e(T (x))e(p(x))] = Ex [e(T (x)) · (e(p(x)) − E[e(p)])] + E[e(T )]E[e(p)]
≤ Ex [e(T (x)) · (e(p(x)) − E[e(p)])] +O(logn)/n

where the ≤ follows since |E[e(T )]| ≤ O(logn)/n by the definition of TRIBES.
After a uniform assignment to xS , let E1 denote the event |ExS [e(p(x))] − E[e(p)]| ≤ ϵ1/4

and let E2 denote the event that TRIBES(x) is fixed. Then we have

Ex [e(T (x)) · (e(p(x)) − E[e(p)])]

≤ E
xS

[∣∣∣∣ExS [e(T (x)) · (e(p(x)) − E[e(p)])
]∣∣∣∣]

≤ E
xS

[∣∣∣∣ExS [e(T (x)) · (e(p(x)) − E[e(p)])
]∣∣∣∣|E1E2

]
+ P[¬E1] + P[¬E2]

≤ ϵ1/4 + ϵ1/2 + 1/2 + o(1).

For the last inequality, note that ExS [e(T (x)) · (e(p(x)) − E[e(p)])|E1E2] = ExS [e(p(x)) −
E[e(p)]|E1] since TRIBES(x) is fixed conditioned on E2. We bound P[¬E1] by (8) and P[¬E2]
by Lemma 11. Setting ϵ to a small enough constant contradicts Lemma 12 and concludes
the proof of Theorem 9. ◀

3 Derivatives

In this section we rewrite Cϕ(p)2 in terms of the correlation of the derivatives of p with
Modϕ, and use this viewpoint to derive several basic facts which will be used later. Fix any
ϕ ∈ [0, 2π], let ω = eϕ

√
−1, and from here on we let σ := sinϕ, γ := cosϕ.
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3:12 On Correlation Bounds Against Polynomials

We begin by using the fact that |z|2 = zz for any complex number, where z is the complex
conjugate, to rewrite the correlation square C2

ϕ(p) as

Ex(−1)p(x)ω
∑

i
xi · Ey(−1)p(y)ω

∑
i
yi .

Replacing y with x⊕ y and noting that (−1)p(y)ω
∑

i
yi = (−1)p(y)ω−

∑
i
yi we can rewrite

the correlation square with the following expression:

EyEx(−1)p(x)+p(x⊕y)ω
∑

i
xi−
∑

i
(xi⊕yi).

The inner expectation over x plays an important role and so we introduce a definition.

▶ Definition 13. The contribution of polynomial p in the direction y, or the y-contribution
of p, is cy(p) := Ex(−1)p(x)+p(x⊕y)ω

∑
i
xi−
∑

i
(xi⊕yi).

Note cy(p) is always defined with respect to an angle ϕ, which will always be clear from
context. Repeating what was said above,

Cϕ(p)2 = Eycy(p).

The polynomial p(x) + p(x⊕ y) that appears in cy(p) is the derivative of p in direction y,
denoted py. When p is quadratic, this derivative is linear. Hence, py(x) =

∑
i≤n py,ixi + py,0

where for every y, py,i ∈ {0, 1} are is the coefficient of xi, and py,0 is the constant.
Because py(x) is linear, for fixed y the expectation over x is actually the expectation of

independent functions of the xi and so the y-contribution can be written as

(−1)py,0
n∏
i=1

Exi(−1)py,ixiωxi−(xi⊕yi).

Each of the expectations Exi(−1)py,ixiωxi−(xi⊕yi) above takes one of four different values,
depending on the four possibilities for py,i and yi. These values play a crucial role in this
paper and we present them next. Note that if yi = 0 then xi − (xi ⊕ yi) = 0 and so the ω
factor disappears.

▶ Proposition 14. We have the following four possible values for Exi(−1)py,ixiωxi−(xi⊕yi):

py,i yi Exi(−1)py,ixiωxi−(xi⊕yi)

0 0 = 1
1 0 = Exi(−1)xi = 0
0 1 = Exiω

xi−(xi⊕1) = 1
2

(
ω−1 + ω

)
= γ

1 1 = Exi(−1)xiωxi−(xi⊕1) = 1
2

(
ω−1 − ω

)
= −

√
−1 · σ

Restricting to ϕ ∈ [0, π/2]

We now justify our previous assertion that we can restrict our attention to angles ϕ ∈ [0, π/2].
First, if ϕ ∈ [π/2, 3π/2] then we can sum e1 to p. Then Cϕ(p + e1) = Cπ+ϕ(p) and
π + ϕ ∈ [−π/2, π/2]. Next, if ϕ ∈ [−π/2, 0] then Cϕ(p) = C−ϕ(p) and now ϕ ∈ [0, π/2].

▶ Definition 15. We denote the Hamming weight of x ∈ {0, 1}n by w(x).

Looking at the table above we can obtain the following bound on cy(p) in terms of the
weight of the derivative.
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▷ Claim 16 (Weight bound on contribution). For any y ∈ {0, 1}n and any ϕ we have
|cy(p)| ≤ max{σ, γ}w(y).

We conclude this section by giving a quick illustration of how this framework can be
used to compute the maximum correlation for ϕ ∈ [0, π/4]. Note that Theorem 5 proves a
stronger result, showing that non-symmetric polynomials have correlation a constant-factor
smaller than optimal. For such ϕ we are going to show that the constant polynomial, which
is symmetric, maximizes Cϕ. By Example 4,

C2
ϕ(0) = 2−n (1 + γ)n .

We show this is an upper bound for any quadratic polynomial p. We have

C2
ϕ(p) ≤ Ey|cy(p)|,

where cy is as in Definition 13. By Claim 16, since γ > σ, we have

|cy(p)| ≤ γw(y).

Hence,

C2
ϕ(p) ≤ 2−n

n∑
i=0

(
n

i

)
γi = 2−n(1 + γ)n,

by the binomial theorem.

4 Correlation of symmetric polynomials

We use the information from Section 3 to compute the maximal correlation of symmetric
quadratic polynomials, and note an important “no-cancellation” property which will guide
the rest of the proof.

We first apply Proposition 14 to determine the contributions of symmetric polynomials.
The derivatives of e1 are simply the constant term e1

y,0 =
∑
i yi. We now analyze the

derivatives of e2. The coefficient e2
y,i for i ≥ 1 equals to

∑
j ̸=i yj and the constant term

e2
y,0 equals

∑
i<j yiyj . Combining this information with the above we can characterize the

y-contributions of symmetric polynomials.

▶ Lemma 17 (Contributions of symmetric polynomials). For any ϕ ∈ [0, π/2] and any
y ∈ {0, 1}n we have:
1. If w(y) is even then cy(s) = σw(y) for either s = e2 + e1 or s = e2.
2. If w(y) is odd and w(y) < n then cy(s) = 0 for either s = e2 + e1 or s = e2.
3. If w(y) = n and n ≡ 1 mod 4 then cy(s) = +γn for s = e2 and cy(s) = −γn for

s = e1 + e2.
4. If w(y) = n and n ≡ 3 mod 4 then cy(s) = −γn for s = e2 and cy(s) = +γ for s = e1 +e2.

Proof. Refer to Proposition 14.
If w(y) is even, the expectations over xi with yi = 0 contribute 1 since the corresponding

coefficient sy,i (the coefficient of xi in the derivative polynomial sy) is 0. This corresponds
to the first row of Proposition 14. The other expectations contribute (−

√
−1)σ. This

corresponds to the last row of Proposition 14. In addition, we have the constant term. For
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3:14 On Correlation Bounds Against Polynomials

e2 this term is (−1)(
w(y)

2 ) = (−1)w(y)2/2−w(y)/2 = (−1)−w(y)/2 using that w(y) is even. For
e2 + e1 the constant term is (−1)(

w(y)
2 )+w(y) which again equals (−1)−w(y)/2 because w(y) is

even. Hence the y-contribution equals

(−1)−w(y)/2 · ((−
√

−1)σ)w(y) = σw(y)

where the last equality follows again because w(y) is even.
If w(y) is odd and less than n then some yi is zero. The corresponding sy,i equals w(y),

which is odd. So the contribution is zero, by the second row of Proposition 14.
Finally, consider w(y) = n when n is odd. Note that sy,i = n− 1 which is even. By the

third row of Proposition 14, the expectation of x is γn times the constant term. For s = e2

the constant term is (−1)(
n
2) = (−1)n(n−1)/2 which is 1 if n ≡ 1 mod 4 and −1 otherwise.

For s = e2 +e1 the constant term is (−1)(
n
2)+n = (−1)n(n−1)/2+1 which is −1 if n ≡ 1 mod 4

and 1 otherwise. ◀

Lemma 17 yields an expression for the maximum Cϕ(s) attained by symmetric quadratic
polynomials s. It is best to express this correlation using the quantity vϕ that we redefine in
a way that is more convenient for the main proof.

▶ Definition 18 (E,O, v). Let E ⊆ {0, 1}n be the set of n-bit strings of even Hamming
weight, and let O be the set of strings of odd weight. Define

vϕ := 2−n
∑
y∈E

σw(y).

The equivalence between this definition and the one in the introduction is given by the following
claim, which we will use often.

▷ Claim 19 (Odd-even sum). For any number d we have:∑
y:y∈E d

w(y) =
∑
y d

w(y)(1 + (−1)w(y))/2 = (1+d)n+(1−d)n
2 ,∑

y:y∈O d
w(y) =

∑
y d

w(y)(1 − (−1)w(y))/2 = (1+d)n−(1−d)n
2 .

Proof. In each line, the second equality follows from the binomial theorem. ◁

For example, v2π/3 = Θ((1 +
√

3/2)/2)n, where (1 +
√

3/2)/2 = 0.933 . . .. We now give the
maximal correlation of a symmetric quadratic polynomial.

▶ Corollary 20. Fix ϕ ∈ [π/2, π/4) and let C∗
ϕ be the maximum Cϕ attained by a symmetric

quadratic polynomial on n bits for large enough n. We have:
C∗
ϕ = √

vϕ if n is even. This is attained by both e2 and e1 + e2.
C∗
ϕ =

√
vϕ + 1/4n if n is odd. This is attained by e2 if n ≡ 1 mod 4 and by e1 + e2 if

n ≡ 3 mod 4.

Proof. By Example 4, Cϕ(e1) < Cϕ(0) =
( 1+γ

2
)n/2. By the definition of vϕ, √

vϕ ≥
Ω
(( 1+σ

2
)n/2

)
which is greater for n large enough since σ > γ when ϕ ∈ [π/2, π/4). The

proof now follows from Lemma 17. ◀

(No) cancellations. Note an interesting fact holds for the symmetric polynomial that
maximizes Cϕ: the y-contributions are always real and non-negative, for any y. This is
not true in general. For a simple example, take p = e2, n = 3 mod 4, and w(y) = n. Then
cy(p) is negative. This leads to cancellations in the correlation. However, for the symmetric
polynomial that maximizes correlation, the inner expectation is always non-negative and
there are no cancellations.
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This fact shows that for the symmetric polynomials p that maximize correlation, the
correlation square C2

ϕ(p) can be equivalently written as

Ey|cy(p)|;

that is, we can take absolute values of the contributions “for free”. Note that by the triangle
inequality, for any polynomial p the above expression is an upper bound on the correlation.
We used this when showing the constant polynomial maximizes Cϕ for ϕ ∈ [0, π/4]. For
the symmetric polynomials that maximize correlation, it turns out that this bound can be
attained.

In the proof of Theorem 5 we shall mostly be working with this quantity, which does not
depend on the linear part of p. This is because the derivative of a linear polynomial is a
constant depending only on y, which disappears when taking absolute values. Hence we can
assume that p does not contain linear terms.

5 Proof of Theorem 5

The next two results are needed to prove the first, main item of Theorem 5. First we deal
with polynomials that are missing at least one degree two monomial.

▶ Theorem 21. Let ϕ ∈ (π/4, π/2] and p be a quadratic polynomial that is not equal to e2 + ℓ

for some linear polynomial ℓ. Then Ey |cy(p)| ≤ (1 − Ω(σ − γ))vϕ.

Next we deal with non-symmetric polynomials that possess all degree two monomials.
Note we use the quantity Eycy(p) instead.

▶ Lemma 22. Let ϕ ∈ (π/4, π/2] and p be a polynomial that is equal to e2 + ℓ where ℓ is a
linear polynomial not equal to a constant or e1. Then Eycy(p) ≤ (1 − Ω(1))vϕ.

Assuming these are true, we prove the first item of Theorem 5.

Proof of Theorem 5 Item 1. Follows from Corollary 20, Theorem 21, and Lemma 22. ◀

We next give similar results that are needed to prove the second item of Theorem 5.

▶ Lemma 23. Let ϕ ∈ [0, π/4] and p be a quadratic polynomial that is not linear. Then
Ey |cy(p)| ≤ (1 − Ω(1))

( 1+γ
2
)n.

▶ Lemma 24. Let ϕ ∈ [0, π/4] and p be a linear polynomial that is not equal to the constant
polynomial. Then Eycy(p) ≤ (1 − Ω(1))

( 1+γ
2
)n.

Proof of Theorem 5 Item 2. Follows from Lemma 23, Lemma 24, and Example 4 which
says C2

ϕ(0) =
( 1+γ

2
)n. ◀

5.1 Proof of Theorem 21
Our proof strategy is to slowly restrict the direction y, to try to connect the corresponding
contributions with the target value vϕ.

▶ Definition 25. A restriction r is an element of {0, 1, ∗}n. The weight w(r) of r is
the number of ones, and S(r) is the number of stars. We also view r as a function r :
{0, 1}S(r) → {0, 1}n mapping assignments to stars to n-bit strings, and we write ry for r(y).
For a restriction r we call xi a b ∈ {0, 1, ∗} variable if the ith bit of r is b.
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We emphasize that r restricts the space of directions y, not x. So for example if xi is a 0
variable then the corresponding directional bit yi has been restricted to 0 – but xi is never
restricted. We next introduce restricted versions of the quantities in Theorem 21.

▶ Definition 26 (c(p, r) and vϕ(r)). Let r be a restriction. For a polynomial p we define

c(p, r) := Ey∈{0,1}S(r) |cry(p)|.

Note that c(p, r) is defined with respect to the angle ϕ since cry(p) is. We also define

vϕ(r) := 2−S(r)
∑

y∈{0,1}S(r):ry∈E

σw(ry),

where we sum over all derivatives ry of even weight.

For any r ∈ {0, 1}n we have c(p, r) = |cr(p)|. Also,

Ey|cy(p)| = c(p, ∗n),
vϕ = vϕ(∗n).

Using the above notation our goal is to show that

c(p, ∗n) ≤ (1 − Ω(σ − γ))vϕ.

Polynomials as graphs

We associate to a quadratic polynomial p the graph over the variables where xi and xj are
connected iff monomial xixj is present in p. Note this graph only depends on the monomials
of degree 2 of p. The degree of a variable shall refer to the degree as a node in this graph.
We shall also talk of variables being connected, etc.

▶ Example 27. Let n = 3, r = (1 ∗ 0) ∈ {0, 1, ∗}3, p = x1x2 + x2x3. The ∗ variable x2 is
connected to the 1 variable x1 and to the 0 variable x3.

We now proceed with the proof of Theorem 21. In all upcoming statements, p is an
arbitrary quadratic polynomial on n variables, ϕ ∈ (π/4, π/2], and we set n and a parameter
t large enough so that both t and n/t are large enough depending on ϕ. The minimal n for
which our proof of Theorem 5 holds increases as ϕ approaches π/4 (where σ approaches γ).

We next state several lemmas and prove Theorem 21 assuming them. The first two
lemmas show that c(p, r) ≤ vϕ(r) under various conditions on p and r.

▶ Lemma 28. Let r ∈ {0, 1, ∗}n be a restriction. Suppose there exists a 0 variable that is
connected to an odd number of 1 variables. Then c(p, r) ≤ vϕ(r).

▶ Lemma 29. Let r ∈ {0, 1, ∗}n be a restriction. Suppose there exists a 0 variable that is
connected to an even number of 1 variables and at least t ∗ variables. Then c(p, r) ≤ vϕ(r).

The next lemma shows that if p is missing a degree two monomial then vϕ(0∗n−1) gains
an advantage over c(p, 0∗n−1). It can be considered a strengthening of Lemma 29 under an
additional constraint.

▶ Lemma 30 (Buffer). Let r = 0∗n−1. Suppose the 0 variable is connected to at least t ∗
variables and at most n− 2 ∗ variables. Then c(p, r) ≤ vϕ(r) −

(
σ−γ
16
)
vϕ.
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We shall use the above lemmas to slowly restrict directions, beginning with Lemma 30
and then iteratively applying either Lemma 28 or Lemma 29. This process stops when we
cannot find variables that satisfy the hypothesis of either Lemma 28 or Lemma 29.

When this happens, we consider two cases based on the number of variables restricted.
In the first case, when the number is large, we give an upper bound on c(p, r). This suffices
because of the buffer afforded to us by Lemma 30.

▶ Lemma 31 (Opened majority). Let r = 1j∗n−j for some j ≥ n/2. Then c(p, r) <

2j
(
σ−γ
1000

)
vϕ.

In the second case, when the number of restricted variables is small, the polynomial has
structure that we can utilize to again show c(p, r) ≤ vϕ(r). Specifically, in the graph of the
polynomial many variables have small degree.

▶ Lemma 32 (Low degree loses). Let r = 1j∗n−j for some j < n/2. Suppose every ∗ variable
is connected to at most t other ∗ variables. Then c(p, r) ≤ vϕ(r).

We will need the following variant of Lemma 32 for an edge case in the main proof.

▶ Lemma 33. Let r = ∗n. Suppose there are at least n− t variables connected to at most t
other variables. Then c(p, r) ≤ (1 − (σ − γ))vϕ.

Assuming these lemmas we can prove Theorem 21.

Proof of Theorem 21. We consider two cases based on the existence of a variable of certain
degree in the graph of p. In the first case, when p is a “typical” polynomial, we suppose the
existence of a variable with degree in [t, n− 2] (corresponding to the hypothesis of Lemma
30). Let us denote this variable x1 for ease. We “open” the directional bit corresponding to
x1. That is, we condition Ey|cy(p)| depending on the value of y1:

c(p, ∗n) = 1
2
(
c(p, 0∗n−1) + c(p, 1∗n−1)

)
.

Correspondingly, it holds that

vϕ(∗n) = 1
2
(
vϕ(0∗n−1) + vϕ(1∗n−1)

)
.

Then we iteratively open up ∗ variables in the term where the restriction has no zeroes, as
long as we can find a ∗ variable that is connected to an number of 1 variables or that is
connected to an even number of 1 variables and at least t other ∗ variables. We can write
the terms corresponding to the variables that were opened (up to permutation of variables):

c(p, ∗n) = 1
2c(p, 0∗n−1) + 1

4c(p, 10∗n−2) + · · · + 1
2j c(p, 1

j∗n−j),

for some 1 ≤ j ≤ n depending on p. We also write the corresponding terms for vϕ:

vϕ(∗n) = 1
2vϕ(0∗n−1) + 1

4vϕ(10∗n−2) + · · · + 1
2j vϕ(1j∗n−j).

We compare the terms in the right-hand sides in the two equations above. For the first
term, we have 1

2c(p, 0∗n−1) ≤ 1
2vϕ(0∗n−1) − (σ−γ

32 )vϕ by Lemma 30. For all the other terms
except the last one, we have that the c(p, r) terms is at most the corresponding vϕ(r) term
by either Lemma 28 or Lemma 29. Now we analyze the last terms depending on the value of
j. Note that each ∗ variable is connected to at most t other ∗ variables.
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If 1 ≤ j < n/2 we apply Lemma 32 which says c(p, 1j∗n−j) ≤ vϕ(p, 1j∗n−j) and conclude
as vϕ(∗n) − c(p, ∗n) ≥ σ−γ

32 vϕ .
If j ≥ n/2 then 1

2j c(p, 1
j∗n−j) ≤ (σ−γ

1000 )vϕ by Lemma 31 and we conclude as vϕ(∗n) −
c(p, ∗n) ≥

(
σ−γ
32 − σ−γ

1000
)
vϕ.

This finishes the proof of when p has a node with degree in [t, n − 2]. For the second
case, suppose that every node has degree at most t − 1 or degree exactly n − 1. We then
claim there are ≤ t− 1 nodes with degree n− 1. Supposing this is true we can immediately
conclude by Lemma 33.

Now we verify the desired claim. Suppose there are z nodes of degree n− 1 with z ≥ t.
Each of these nodes is connected to every other node, so every node in the graph has degree
at least z ≥ t. By the supposition, every node in the graph has degree n− 1. This contradicts
the hypothesis that p ̸= e2 + ℓ. ◀

Next we give proofs of the technical lemmas.

5.1.1 Proof of Lemma 28
Fix a 0 variable xi that is connected to an odd number of 1 variables. Let T denote the
indices of the ∗ variables connected to xi and let U denote the indices of the remaining ∗
variables. Write y = (yT , yU ) for the corresponding bits of y.

Note that by Proposition 14, cry(p) = 0 if w(yT ) is even (because the coefficient of xi
would be odd). And if w(yT ) is odd we apply the upper bound |cry(p)| ≤ σw(ry) from Claim
16. Combining these two things yields:

c(p, r) = 2−S(r)
∑

yT∈O,yU
|cry(p)|

≤ 2−S(r)
∑

yT∈O,yU
σw(ry).

Now we compare this value with the expression for vϕ. Let us assume that w(r) is even.
Then

vϕ(r) = 2−S(r)
∑
y∈E

σw(ry).

Hence to prove c(p, r) ≤ vϕ(r) it suffices to show∑
yT∈O,yU

σw(y) ≤
∑
y∈E

σw(y).

Note in the above two expressions we can assume |T | > 0 since otherwise the left hand-side
will be 0 and we would be immediately done. Then by conditioning on the parity of yU in
each side it suffices to show∑

yT∈O,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y) ≤
∑

yT∈E,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y).

The second sum in each side is the same, and the first sum in the right-hand side is bigger
than the first sum in the left-hand side by Claim 19. This concludes the case of when w(r) is
even.

When w(r) is odd

vϕ(r) = 2−S(r)
∑
y∈O

σw(ry).
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Then it suffices to show∑
yT∈O,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y) ≤
∑

yT∈E,yU∈O

σw(y) +
∑

yT∈O,yU∈E

σw(y).

The inequality holds again by Claim 19.

5.1.2 Proof of Lemma 29

The high-level approach is similar to the proof of Lemma 28, but we utilize the following
improvement of Claim 16 when the weight of the derivative is odd. The improvement comes
from the handshaking lemma.

▷ Claim 34. Let y ∈ {0, 1}n. Then |cy(p)| is either 0 or σeγw(y)−e, where e is an even
integer and 0 ≤ e ≤ w(y).

Proof. Consider the graph G with w(y) nodes which are the 1 variables and the edges
represent monomials. Let S, T be the nodes in G that have odd, even degree respectively.
Note that nodes in S contribute a σ factor, while the nodes in T contribute a γ factor. The
remaining n− w(y) 0 variables not in G contribute either 1 or 0.

So to finish the proof it suffices to show that |S| must be even. The sum of all the degrees
in G is |S| · odd+ (|V | − |S|) · even = |S| · odd+ even. In any graph, the sum of degrees is
even, hence |S| is always even. ◁

To prove Lemma 29 we exploit that if w(ry) is odd then the exponent of the σ factor is
< w(ry). Fix the 0 variable xi that is connected to an even number of 1 variables and
to at least t ∗ variables. Let T , U denote the same as in the previous proof. The ry

contribution is zero if w(yT ) is odd (because the coefficient of xi in the ry derivative would
be even+ odd = odd). So then

c(p, r) = 2−S(r)
∑

yT∈E,yU
|cry(p)|

= 2−S(r)(
∑

yT∈E,yU∈E

|cry(p)| +
∑

yT∈E,yU∈O

|cry(p)|).

Suppose that w(r) is even. For the first term, where yT ∈ E, yU ∈ E, we use Claim 16.
For the second term, where yT ∈ E, yU ∈ O, w(ry) = even+ even+ odd = odd. By Claim
34, the max contribution of ry in the second term is ≤ σw(ry)−1γ. So we can bound

c(p, r) ≤ 2−S(r)(
∑

yT∈E,yU∈E

σw(ry) + γ

σ

∑
yT∈E,yU∈O

σw(ry)).

We compare this to

vϕ(r) = 2−S(r)
∑
y∈E

σw(ry)

= 2−S(r)(
∑

yT∈E,yU∈E

σw(ry) +
∑

yT∈O,yU∈O

σw(ry)).
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The sums over yT ∈ E, yU ∈ E are the same. Hence to show c(p, r) ≤ vϕ(r) it suffices to
show

γ

σ

∑
yT∈E,yU∈O

σw(y) ≤
∑

yT∈O,yU∈O

σw(y)

⇐⇒ γ

σ

∑
yT∈E

σw(yT ) ≤
∑
yT∈O

σw(yT )

⇐⇒ (σ/γ + 1) (1 − σ)|T | ≤ (σ/γ − 1) (1 + σ)|T |

⇐⇒ σ + γ

σ − γ
≤
(

1 + σ

1 − σ

)|T |

.

The second to last ⇐⇒ follows by applying Claim 19 and rearranging. The last inequality
holds for t large enough, since |T | ≥ t and the left hand term will be some fixed positive
number since ϕ ∈ (π/4, π/2]. This concludes the w(r) even case.

Now suppose w(r) is odd. Proceeding similarly as before, we have

c(p, r) ≤ 2−S(r)(γ
σ

∑
yT∈E,yU∈E

σw(ry) +
∑

yT∈E,yU∈O

σw(ry)).

Which we need to compare with

vϕ(r) = 2−S(r)
∑
y∈O

σw(ry)

= 2−S(r)(
∑

yT∈E,yU∈O

σw(ry) +
∑

yT∈O,yU∈E

σw(ry)).

Now the sums over yT ∈ E, yU ∈ O are the same. So then it suffices to show
γ

σ

∑
yT∈E

σw(yT ) ≤
∑
yT∈O

σw(yT )

which we have already verified.

5.1.3 Proof of Lemma 30
The proof starts identically as the proof of Lemma 29, but then we strengthen the analysis
to give a strict inequality. Let T denote the set of ∗ variables connected to x1, and let U
denote the ∗ variables not connected to x1. We have |T | + |U | = n− 1 and by hypothesis
t ≤ |T | ≤ n− 2. We remark the strengthened analysis only works because of the condition
|T | ≤ n− 2.

We have the following derivation, where the first inequality follows from the same steps
as in w(r) even case of the previous proof. Let a = 1 + σ, b = 1 − σ, and δ = γ/σ.

2n−1 (vϕ(0∗n−1) − c(p, 0∗n−1)
)

≥
∑

yT∈O,yU∈O

σw(y) − γ

σ

∑
yT∈E,yU∈O

σw(y).

=
∑
yU∈O

σw(yU ) · (
∑
yT∈O

σw(yT ) − δ
∑
yT∈E

σw(yT ))

= a|U | − b|U |

2 · (1 − δ)a|T | − (1 + δ)b|T |

2

≥ a|U |

4 · (1 − δ)a|T |

4

= (1 − δ)an−1

16 .



P. Ivanov, L. Pavlovic, and E. Viola 3:21

We elaborate on the last ≥. First, note that if |U | = 0 the inequality would not be valid
since the entire expression would be equal to 0. Second, we verify that

(1 + δ)b|T |

2 ≤ (1 − δ)a|T |

4

⇐⇒ 2 · σ + γ

σ − γ
≤
(

1 + σ

1 − σ

)|T |

.

The last inequality holds for t large enough, since |T | ≥ t. Note this is almost the same
inequality that is in the proof of Lemma 29. Lastly, we verify that

b|U |

2 ≤ a|U |

4
⇐ 2 ≤ 1 + σ

1 − σ
.

The ⇐ holds since |U | > 0 and the last inequality is equivalent to σ ≥ 1/3 which holds since
σ = sin(ϕ) ≥ sin(π/4) = 1/

√
2 ≥ 1/3.

We continue the derivation, applying similar logic:

(1 − δ)an−1

16 ≥ (1 − δ)an−1 + (1 − δ)bn−1

32

≥ (1 − δ)an + (1 − δ)bn

32a

= (1 − δ)
16a · 2nvϕ.

Dividing both sides by 2n−1 we obtain

vϕ(0∗n−1) − c(p, 0∗n−1) ≥ (1 − δ)
8a · vϕ

≥ σ − γ

16 · vϕ.

where the last ≥ follows since a = 1 + σ ≤ 2, (1 − δ) = σ−γ
σ ≥ σ − γ because σ ≤ 1.

5.1.4 Proof of Lemma 31
Applying Claim 16 we can say

c(p, 1j∗n−j) ≤ 2−(n−j)σj
∑
y

σw(y)

= 2−(n−j)σj(1 + σ)n−j .

On the other hand,

2jvϕ(∗n) ≥ 2−(n−j+1)(1 + σ)n.

So it suffices to show that
σj(1 + σ)n−j

2n−j ≤ σ − γ

1000
(1 + σ)n

2n−j+1

⇐⇒ 2000
σ − γ

≤
(

1 + σ

σ

)j
,

where we divided by σ − γ > 0. The last inequality holds for n large enough since j ≥ n/2
and σ > 0.
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5.1.5 Proof of Lemma 32
Consider the subgraph induced by the ∗ variables. There are n−j ≥ n/2 nodes in it of degree
≤ t. By a greedy argument, this implies an independent set of size ≥ (n− j)/(t+ 1) ≥ n/4t.
Let T denote the variables in the independent set and let S denote the remaining ∗ variables.
Note |S| + |T | = n− j and the remaining j variables are 1 variables.

For any fixing yS of S, let pT (yS) ∈ {0, 1}|T | denote the coefficients of the variables
in T based on the partial restriction 1jyS∗|T |. This is a valid definition because T is an
independent set, and so pT (yS) is unaffected by any fixing yT of T . By Proposition 14, if
for some fixing yT there is a variable xj in T such that pTj (yS) = 1 but yTj = 0 then the
contribution is 0. Using also the other values in the table in Proposition 14, for any fixed yS
we can let ψ := w(pT (yS)) and bound the contribution over yT as follows:

2|T |c(p, 1jyS∗|T |) ≤ σj+w(yS)+ψ
∑

z∈{0,1}|T |−ψ

γw(z)

= σj+w(yS)+ψ(1 + γ)|T |−ψ

≤ σj+w(yS)(1 + γ)|T |.

The last ≤ follows since σ < 1 ≤ 1 + γ. By summing over all possible fixings yS and applying
the previous bound we can bound c(p, 1j∗n−j) as follows:

2n−jc(p, 1j∗n−j) ≤ σj(1 + γ)|T |
∑
yS

σw(yS)

= σj(1 + γ)|T |(1 + σ)|S|

≤ σj(1 + γ)n/4t(1 + σ)(n−j)−n/4t.

The last ≤ holds since σ > γ and |T | ≥ n/4t. On the other hand,

2n−jvϕ(1j∗n−j) =
∑

y:1jy∈E

σj+w(y)

≥ σj
(1 + σ)n−j

4 .

So then it suffices to show

σj(1 + γ)n/4t(1 + σ)(n−j)−n/4t < σj
(1 + σ)n−j

4

⇐⇒ (1 + γ)n/4t <
(1 + σ)n/4t

4

⇐⇒ 4 <
(

1 + σ

1 + γ

)n/4t
.

Since σ > γ when ϕ ∈ (π/4, π/2], the last inequality holds for n/t large enough.

5.1.6 Proof of Lemma 33
The proof is nearly identical to the proof of Lemma 32. The hypothesis implies the existence
of an independent set of size ≥ (n− t)/(t+ 1) ≥ (n− t)/2t in the graph consisting of all the
variables. Following the same logic as before, we can upper bound c(p, ∗n) by

2nc(p, ∗n) ≤ (1 + γ)(n−t)/2t(1 + σ)n−(n−t)/2t.
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On the other hand,

2nvϕ ≥ (1 + σ)n

2 .

Then it suffices to show

(1 + γ)(n−t)/2t(1 + σ)n−(n−t)/2t < (1 − (σ − γ)) (1 + σ)n

2

⇐⇒ 2
(1 − (σ − γ)) <

(
1 + σ

1 + γ

)(n−t)/2t
.

Recall that n/t is arbitrarily large, so (n− t)/2t is also arbitrarily large and the inequality
holds.

5.2 Proof of Lemma 22

We can perform a similar analysis as in the proof of Lemma 17. As before cy(p) = 0 if w(y)
is odd. But now if w(y) even, letting T denote the set of variables that appear in the linear
polynomial ℓ, the contribution is

cy(p) = (−1)−w(y)/2+w(yT ) · ((−
√

−1)σ)w(y)

= (−1)w(yT )σw(y).

So a derivative makes a positive contribution if w(y) is even and w(yT ) is even, and a
negative one if w(y) is even and w(yT ) is odd. Let U be the complement of T . By hypothesis,
1 ≤ |T |, |U | ≤ n− 1. We can sum over the positive contributions and subtract the negative
ones to get the expression

2n · Eycy(p) =
∑

yT∈E,yU∈E

σw(y) −
∑

yT∈O,yU∈O

σw(y).

On the other hand,

2n · vϕ =
∑

yT∈E,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y).

Combining the two expressions and letting a = (1 + σ), b = (1 − σ), we get

2n (vϕ − Eycy(p)) = 2
∑

yT∈O,yU∈O

σw(y)

= 1
2

(
a|T | − b|T |

)(
a|U | − b|U |

)
≥ 1

2
a|T |

2
a|U |

2

= an

8 .

The second = follows by Claim 19, and the ≥ after that follows since 1 ≤ |T |, |U | by
hypothesis and 2b < a.
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5.3 Proof of Lemma 23
Since p is not linear there is at least one node with degree ≥ 1 in the polynomial graph. Let
us denote this node x1 for ease, and let T,U denote the nodes connected, not connected to
x1 respectively. We write y = (yT , yU ) for the corresponding bits of y. Just like in the proof
of Theorem 21 we condition on the value of y1 to get

c(p, ∗n) = 1
2
(
c(p, 0∗n−1) + c(p, 1∗n−1)

)
.

We bound the second term by applying Claim 16 which says cry(p) ≤ γw(ry) using that
ϕ ∈ [0, π/4]:

2n−1c(p, 1∗n−1) ≤
∑

y∈{0,1}n−1

γ1+w(y)

= γ (1 + γ)n−1
.

To deal with the first term, we proceed similarly as we did in the proof of Lemma 28.
Note that |T | ≥ 1, and if w(yT ) is odd then c1y(p) = 0. If w(yT ) is even then as before we
use the bound cry(p) ≤ γw(ry). These two things yield

2n−1c(p, 0∗n−1) ≤
∑

yT∈E,yU
γw(y)

=
(

(1 + γ)|T | + (1 − γ)|T |

2

)
(1 + γ)|U |

≤ 3/4(1 + γ)n−1.

The last ≤ follows as |T | ≥ 1 and 1 − γ < 1+γ
2 when 1/

√
2 ≤ γ. Altogether this gives

2nc(p, ∗n) ≤ (3/4 + γ)(1 + γ)n−1.

So it only remains to show (3/4 + γ) ≤ (1 − Ω(1))(1 + γ) which holds because γ ≤ 1.

5.4 Proof of Lemma 24
Let T denote the set of variables that appear in the linear polynomial p and let U denote
the remaining variables. Applying the same logic as in Example 4 we have

Eycy(p) =
(

1 − γ

2

)|T |(1 + γ

2

)|U |

≤
(

1 − γ

2

)(
1 + γ

2

)n−1
.

The ≤ follows since |T | ≥ 1 and 1 + γ > 1 − γ when ϕ ∈ [0, π/4].
So it only remains to show (1 − γ) ≤ (1 − Ω(1))(1 + γ) which holds because γ ≥ 1/

√
2.

6 Boolean correlation

In this section we prove Theorem 6. Recall that Cϕ is defined as the absolute value of a sum.
We need to analyze this sum more carefully, so we define it next.

▶ Definition 35. Eϕ(p) := Ex∈{0,1}n(−1)p(x)ω
∑

i
xi . Note that |Eϕ(p)| = Cϕ(p).
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We now give an overview of the upcoming technical results. In the proof of Theorem 6,
we will use Lemma 39, which relates Bm(p) to the quantity |Real(Eϕ(p))| for a specific angle
ϕ, and Corollary 41, which allows us to compute |Real(Eϕ(s))| for s = e2, e2 + e1. Together
these two results will enable us to compute Bm(s) for s = e2, e2 + e1.

On the other hand, combining Lemma 39 with Theorem 5 lets us bound Bm(p) when p

is not symmetric, since Theorem 5 bounds Cϕ(p) and |Real(Eϕ(p))| ≤ |Eϕ(p)| = Cϕ(p).
Proposition 36 and Claims 37, 38 are used to prove Lemma 39, and Lemma 40 is needed

for Corollary 41.
For the rest of the section, fix any odd m ≥ 3, set ϕ = 2π/m, ω = eϕ

√
−1. We start with

the following standard fact:

▶ Proposition 36. Let b be the fraction of n-bit strings whose weight is divisible by m. For
any p,

Bm(p) = 1
b(1 − b)

∣∣∣∣∣∣ 2
m

·
(m−1)/2∑
k=1

Real(Ekϕ(p)) + 1
m

− b

∣∣∣∣∣∣
where Real(z) denotes the real part of the complex number z.

Proof. Let s(k) :=
∑m
j=0 ω

jk = 1 + ωk + · · · + ω(m−1)k and note that s(k) = m if k ≡ 0
mod m and s(k) = 0 otherwise. Using this notation we can write

Bm(p) =
∣∣∣∣Ex(−1)p(x) s(w(x))

m
· 1
b

− Ex(−1)p(x)
(

1 − s(w(x))
m

)
· 1

1 − b

∣∣∣∣ .
Collecting terms this is∣∣∣∣Ex(−1)p(x)

(
s(w(x))
m

· 1
b

−
(

1 − s(w(x))
m

)
· 1

1 − b

)∣∣∣∣ .
Using the definition of s this equals∣∣∣∣∣∣Ex(−1)p(x)

 m∑
j=1

ωjw(x)

( 1
mb

+ 1
m(1 − b)

)
+ 1
mb

−
(

1 − 1
m

)
1

1 − b

∣∣∣∣∣∣ .
Also,

1
mb

−
(

1 − 1
m

)
1

1 − b
= 1 −mb

mb(1 − b) .

Furthermore, ωjw(x) + ω(m−j)w(x) = 2Real(ωjw(x)) for each j. After factoring out 1/b(1 − b)
the result follows. ◀

Observe that in the statement of Lemma 36, if we replaced b with 1/m then the terms
that don’t multiply ω would be 0. However, b ̸= 1/m but it will be very close. We use the
following bound 1 that’s implicit in [8].

▷ Claim 37. |b− 1/m| < cos(π/m)n.

Now let ℓ1 ∈ {m−1
4 , m+1

4 } denote the integer closest to m
4 . The next result suggests we

should focus on Real(Eℓ1ϕ(p)).

1 When m = 3 the claim says |b − 1/m| < 2−n but we do not use this.
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▷ Claim 38. Fix any odd m ≥ 3 and k ∈ {1..., (m − 1)/2} : k ̸= ℓ1. Then for all large
enough n and any quadratic p,

|Real(Ekϕ(p))| = o(√vℓ1ϕ).

Proof. By Theorem 5, for any k it holds that

Ckϕ(p) ≤ max
s∈{0,e1,e2,e2+e1}

Ckϕ(s) ≤ max

{
O

((
1 + | sin(kϕ)|

2

)n/2
)

,

(
1 + | cos(kϕ)|

2

)n/2
}

.

Next we claim that if k ∈ {1..., (m− 1)/2}, k ̸= ℓ1 then max{| sin(kϕ)|, |cos(kϕ)|} < sin(ℓ1ϕ).
If this holds we can conclude since √

vℓ1ϕ = Ω(( 1+sin(ℓ1ϕ)
2 )n/2) and |Real(Ekϕ(p))| ≤ Ckϕ(p).

To verify the claim, note for k ̸= ℓ1, | sin(kϕ)| is maximized when k = ℓ2, where ℓ2
denotes the second closest integer to m/4. Since m is odd, ℓ2 ∈ {m−3

4 , m+3
4 } which implies

sin(ℓ2ϕ) < sin(ℓ1ϕ).
And | cos(kϕ)| is maximized for k = (m−1)/2 and | cos(kϕ)| = | cos(π−π/m)| = cos(π/m).

We can now conclude as cos(π/m) < sin(ℓ1ϕ) = sin(π/2 ± π/2m) = cos(π/2m). ◁

The next result, which combines Claim 37, 38 with Proposition 36, says we can approximate
Bm(p) using just |Real(Eℓ1ϕ(p))|.

▶ Lemma 39. For all large enough n and any quadratic p,∣∣∣∣Bm(p) − 2m
m− 1 |Real(Eℓ1ϕ(p))|

∣∣∣∣ ≤ o(√vℓ1ϕ).

For m = 3 this can be improved to∣∣B3(p) − 3
∣∣Real(E2π/3(p))

∣∣∣∣ ≤ O(2−n).

Proof. By Claim 37 and noting that cos(π/m)n = o(√vℓ1ϕ) we have∣∣∣∣ 1
b(1 − b) − m2

m− 1

∣∣∣∣ = o(√vℓ1ϕ).

Applying the triangle inequality and Claim 38 we also have∣∣∣∣∣∣ (m−1)/2∑
k=1

Real(Ekϕ(p))
∣∣−
∣∣Real(Eℓ1ϕ(p))

∣∣∣∣∣∣ ≤
∑
k ̸=ℓ1

∣∣Real(Ekϕ(p))
∣∣ ≤ m · o(√vℓ1ϕ).

Inserting the previous two inequalities into Lemma 36 implies

|Bm(p) − 2m/(m− 1)|Real(Eℓ1ϕ(p))|| ≤ O(m)o(√vℓ1ϕ).

We can now conclude since we consider m fixed. ◀

We are naturally interested in computing Bm(s) for s = e2, e2 +e1 and the next lemma allows
us to do so by giving an expression for Eℓ1ϕ(s). In Section 4 we determined Cℓ1ϕ(s) = |Eℓ1ϕ(s)|,
but this no longer suffices as we need to understand the angle of Eℓ1ϕ(s) in order to compute
|Real(Eℓ1ϕ(s))|.

▶ Lemma 40. For any k ∈ {1, 2, . . . ,m− 1} we have:

Ekϕ(e2) = 2−(n+1) [(1 + i)(1 − iωk)n + (1 − i)(1 + iωk)n
]
,

Ekϕ(e2 + e1) = 2−(n+1) [(1 − i)(1 − iωk)n + (1 + i)(1 + iωk)n
]
.
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Proof. We prove Item 1. Since (−1)e2(x) = (−1)(
w(x)

2 ) we can write

Ekϕ(e2) =
n∑
j=0

(
n

j

)
(−1)(

j
2)ωkj .

We also have

∑
j=0 mod 4

(
n

j

)
ωkj =

n∑
j=0

(
n

j

)
ωkj

(
1 + ij

2

)(
1 + (−1)j

2

)
∑

j=2 mod 4

(
n

j

)
ωkj =

n∑
j=0

(
n

j

)
ωkj

(
1 − ij

2

)(
1 + (−1)j

2

)
.

So this implies

∑
j=0 mod 4

(
n

j

)
ωkj −

∑
j=2 mod 4

(
n

j

)
ωkj = 1

2
[
(1 + ωki)n + (1 + ωk(−i))n

]
.

Doing the analogous for j = 1, 3 mod 4 gives

∑
j=1 mod 4

(
n

j

)
ωkj −

∑
j=3 mod 4

(
n

j

)
ωkj = 1

2
[
−i(1 + ωki)n + i(1 + ωk(−i))n

]
.

The proof of Item 2 is similar. ◀

The next result reduces the problem of computing |Real(Eℓ1ϕ(s)| to the problem of computing
| cos(χ± π/4)| for a certain angle χ. The angle χ± π/4 arises because it is the angle of the
vector (1 ± i)(1 − iωℓ1)n, which is the dominant term in the previous expressions for Eℓ1ϕ(s).
The last equality below then allows us to relate |Real(Eℓ1ϕ(s)| to √

vℓ1ϕ.

▶ Corollary 41. Let χ = nπ
4m ,−

nπ
4m when ℓ1 = m+1

4 , m−1
4 respectively. Let γ =

√
2|1 − iωℓ1 |n.

For all large enough n, the following holds:
1.
∣∣2n+1|Real(Eℓ1ϕ(e2))| − | cos(χ+ π/4)|γ

∣∣ = o(1)
2.
∣∣2n+1|Real(Eℓ1ϕ(e2 + e1))| − | cos(χ− π/4)|γ

∣∣ = o(1),
3.
∣∣2n+1√

vℓ1ϕ − γ
∣∣ = o(1).

Proof. We show the first equality when ℓ1 = m+1
4 . The ℓ1 = m−1

4 case is symmetrical.
By definition ωℓ1 = e

√
−1(2π/m)(m+1)/4 = e

√
−1(π/2+π/2m), hence −iωℓ1 = e

√
−1(π/2m).

This implies (1 − iωℓ1) = |1 − iωℓ1 |e
√

−1(π/4m). Additionally, 1 + i =
√

2e
√

−1(π/4). So then

(1 + i)(1 − iωℓ1)n =
√

2e
√

−1(π/4) · |1 − iωℓ1 |ne
√

−1(π/4m)n

= γe
√

−1(nπ/4m+π/4).

We can now conclude by Lemma 40, the fact |Real(e
√

−1ϕ)| = | cosϕ| for any ϕ, and noting
|1 + iωℓ1 |n = o(1) since |1 + iωℓ1 | < 1 when m is odd. The second inequality is done similarly.

The third inequality follows by Lemma 40, the facts |Eℓ1ϕ(p)| = Cℓ1ϕ(p), |1+iωℓ1 |n = o(1),
and since when s = e2, e2 + e1,

∣∣Cℓ1ϕ(s) − √
vℓ1ϕ

∣∣ ≤ o(1) by Lemma 17. ◀
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6.1 Proof of Theorem 6

6.1.1 Proof of Item 1
First we prove the upper bound. Lemma 39 implies that

Bm(p) ≤ 2m/(m− 1) |Real(Eℓ1ϕ(p))| + o(√vℓ1ϕ).

The upper bound now follows since |Real(Eℓ1ϕ(p))| ≤ |Eℓ1ϕ(p)| = Cℓ1ϕ(p) ≤ (1 + o(1))√vℓ1ϕ.
The last inequality holds by Theorem 5.

Next we prove the lower bound by showing

max
s∈{e2,e2+e1}

Bm(s) ≥ (2m/(m− 1) − o(1))
√
vℓ1ϕ

2 . (9)

Lemma 39 implies that

Bm(s) ≥ 2m/(m− 1) |Real(Eℓ1ϕ(s))| − o(√vℓ1ϕ).

Then we claim that for either s = e2 or s = e2 + e1,

|Real(Eℓ1ϕ(s))| ≥ (1 − o(1))
√
vℓ1ϕ

2 .

The previous two inequalities imply Equation 9.
To verify the claim, note that since cos(π/4) = 1/

√
2, at least one of the next two

inequalities hold for any angle χ:

cos(χ+ π/4) ≥ 1/
√

2,

cos(χ− π/4) ≥ 1/
√

2.

We then conclude by Corollary 41.

6.1.2 Proof of Item 2
We present the n ≡ 3m mod 4m, ℓ1 = m+1

4 case. In the proof we show that Eℓ1(e2) is
essentially real, which means |Real(Eℓ1(e2))| equals √

vℓ1ϕ by Corollary 41. On the other
hand, for any non-symmetric p, Cℓ1ϕ(p) is a constant factor smaller than √

vℓ1ϕ by Theorem
5. This suffices as |Eℓ1ϕ(p)| = Cℓ1ϕ(p), and note the angle of Eℓ1ϕ(p) does not even matter.

So first we show

Bm(e2) ≥ (2m/(m− 1) − o(1))√vℓ1ϕ.

This follows by Lemma 39 and the claim that∣∣Real(Eℓ1ϕ(e2))
∣∣ ≥ (1 − o(1))√vℓ1ϕ.

To verify the claim, note when n ≡ 3m mod 4m, nπ/4m = (3m+ k4m)π/4m ≡ 3π/4 +
kπ mod 2π for some integer k. Hence cos(nπ/4m + π/4) = cos((k + 1)π) = ±1. We then
conclude by Corollary 41. Note cos(nπ/4m− π/4) = 0, so Bm(e2 + e1) < Bm(e2).

On the other hand, for any p ̸= e2, e2 + e1 we show

Bm(p) ≤ 2m/(m− 1)
√

1 − Ω(sin(ℓ1ϕ) − cos(ℓ1ϕ)) · √
vℓ1ϕ.
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This follows by Lemma 39 and Theorem 5 which states

Cℓ1ϕ(p) ≤
√

1 − Ω(sin(ℓ1ϕ) − cos(ℓ1ϕ)) · √
vℓ1ϕ.

This yields the desired inequality since |Real(Eℓ1ϕ(p))| ≤ Cℓ1ϕ(p).
If p = e1, 0 we show

max
s∈{0,e1}

Bm(s) ≤ (2m/(m− 1)) · o(√vℓ1). (10)

This follows by Lemma 39 and noting for s = e1, 0, Cℓ1ϕ(s) = ( 1+cos(ℓ1ϕ)
2 )n/2 = o(√vℓ1ϕ)

since cos(ℓ1ϕ) < sin(ℓ1ϕ).
The n ≡ 3m, ℓ1 = m−1

4 case is similar except we use e2 + e1 instead of e2. The n ≡ m

cases are analogous.

6.1.3 Proof of Item 3
We present the n ≡ 0 mod 4m, ℓ1 = m+1

4 case. First note that Equations 9 and 10 imply it
suffices to prove maxs∈{e2,e2+e1} Bm(s) < Bm(q) for some non-symmetric q. We will show
that Eℓ1ϕ(e2), Eℓ1ϕ(e2 + e1) are both maximally imaginary as allowed by Equation 9. Next,
consider q := x1 + e2(x2, . . . , xn). Cℓ1ϕ(q) is close to, but less than Cℓ1ϕ(s) for s = e2, e2 + e1.
However, Eℓ1ϕ(q) will be more real which is enough to compensate for this difference and
show that |Real(Eℓ1ϕ(s))| < |Real(Eℓ1ϕ(q))|.

So first we show that for either s = e2, e2 + e1,

Bm(s) ≤ (2m/(m− 1) + o(1)) ·
√
vℓ1ϕ

2 .

This follows by Lemma 39 and the claim that for either s = e2, e2 + e1,

|Real(Eℓ1ϕ(s))| ≤ (1 + o(1))
√
vℓ1ϕ

2 .

To verify the claim, since n ≡ 0 mod 4m, then nπ/4m ≡ kπ mod 2π. Hence cos(nπ/4m ±
π/4m) = ±1/

√
2. We then conclude by Corollary 41.

On the other hand, we show that

Bm(q) > (2m/(m− 1) − o(1)) ·
(1 + tan(π/4m))√vℓ1ϕ√

2
.

Note 1 + tan(π/4m) > 1 for m ≥ 3. The inequality holds by Lemma 39 and the claim

|Real(Eℓ1ϕ(q))| ≥ (1 − o(1)) ·
(1 + tan(π/4m))√vℓ1ϕ√

2
.

To show the claim, we start by rewriting Eℓ1ϕ(q) by conditioning on x1 (below e2 is on
n− 1 variables):

Eℓ1ϕ(q) = (1 − ωℓ1)
2 Eℓ1ϕ(e2).

An analogous version of Corollary 41 Item 1 holds for e2 on n− 1 variables:∣∣∣∣2n|Real(Eℓ1ϕ(e2))| −
∣∣∣∣cos

(
(n− 1)π

4m + π

4

)∣∣∣∣ γ

|1 − iωℓ1 |

∣∣∣∣ = o(1).
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Since −ωℓ1 = e
√

−1(−π/2+π/2m) we have (1 − ωℓ1) = |1 − ωℓ1 |e
√

−1(−π/4+π/4m). Combining
this with the previous equality implies that∣∣∣∣2n+1|Real(Eℓ1ϕ(q))| −

∣∣∣∣cos
(

(n− 1)π
4m + π

4m

)∣∣∣∣ |1 − ωℓ1 |
|1 − iωℓ1 |

γ

∣∣∣∣ = o(1)

⇐⇒
∣∣∣∣2n+1|Real(Eℓ1ϕ(q))| − |1 − ωℓ1 |

|1 − iωℓ1 |
γ

∣∣∣∣ = o(1).

The ⇐⇒ follows as cos(nπ/4m) = ±1 when n ≡ 0 mod 4m.
To conclude, by Corollary 41 it suffices to show

1 + tan(π/4m)√
2

= |1 − ωℓ1 |
|1 − iωℓ1 |

.

Using the identity |1 + e
√

−1ϕ| = 2|cos(ϕ/2)|, we have |1 − iωℓ1 | = 2 cos(π/4m) and
|1 −ωℓ1 | = 2| cos(−π/4 + π/4m)| = 2 cos(π/4 − π/4m) =

√
2(cos(π/4m) + sin(π/4m)) where

the last step holds as cos(a− b) = cos a cos b+ sin a sin b. Hence the equality holds.
The n ≡ 0, ℓ1 = m−1

4 case is similar except q will be e2(x2, . . . , xn) instead. The n ≡ 2m
cases are analogous.

7 Symmetric correlates poorly with mod m

For completeness, we show that symmetric polynomials mod 2 correlate poorly with the
complex mod m function. To get a sense of the parameters below, fix m = 3 and apply
the identities cosx ≤ 1 − x2/6 and (1 − x)n ≤ e−xn. This yields Cϕ(s) ≤ O(d)2−Ω(n/d2), so
if Conjecture 2 were true this would imply exponentially small correlation bounds for any
O(logn) degree polynomial - a long-standing open problem.

▶ Theorem 42. Let ϕ = 2πk/m for some odd m and k ∈ {1, . . .m− 1}. Then for any degree
d symmetric polynomial s,

Cϕ(s) ≤ 2md · cos
( π

2md

)n
.

Proof. Let δ be an integer such that 2δ−1 ≤ d < 2δ. It is shown in [6] that s(x) is determined
by the weight of x mod 2δ. Hence we can write

(−1)s(x) =
2δ−1∑
i=0

ci1w(x)≡i mod 2δ

where ci ∈ {−1, 1} for each i. Then we can write the correlation as

Cϕ(s) =

∣∣∣∣∣∣Ex[Modϕ(x) ·
2δ−1∑
i=0

ci1w(x)≡i mod 2δ ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2δ−1∑
i=0

Ex
[
Modϕ(x) · ci1w(x)≡i mod 2δ

]∣∣∣∣∣∣ .
Letting ω = e

√
−1·2π/m, for any i we have

Ex
[
Modϕ(x) · 1w(x)≡i mod 2δ

]
=
m−1∑
j=0

ω(i+j2δ)kPx[w(x) ≡ i+ j2δ mod m2δ].

We next use a slightly generalized version of Claim 37: ◀
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▷ Claim 43. For any k,m, |Px[w(x) ≡ k mod m] − 1/m| ≤ cos(π/m)n.

Proof. Combining this with the fact
∑m−1
j=0 ω(i+j2δ)k = 0 implies that∣∣Ex [Modϕ(x) · 1w(x)≡i mod 2δ

]∣∣ ≤ m(cos(π/m2δ))n.

Hence

Cϕ(s) ≤
2δ−1∑
i=0

∣∣Ex [Modϕ(x) · ci1w(x)≡i mod 2δ
]∣∣ ≤ m2δ cos(π/m2δ))n.

We can now conclude the proof since 2δ ≤ 2d. ◁

8 Structured cubic loses to quadratic

In this section we show that any cubic polynomial with a symmetric degree 3 part has
correlation that is a constant factor worse than the optimal achieved by quadratic polynomials.

▶ Theorem 44. Suppose t = e3 + q for some arbitrary quadratic q. Then for any ϕ,

Cϕ(t) ≤ (1 − Ω(1)) max
s∈{0,e1,e2,e2+e1}

Cϕ(s).

We first show that cubic symmetric polynomial e3 has worse correlation than the optimal
quadratic symmetric. We prove this by applying the derivative framework from Section 3.
We analyze for every direction y what the derivative e3

y will be and use this to bound the
contribution |cy(e3)| in Lemma 45.

Next we show that t = e3 + q can only have worse correlation than e3 for any quadratic
q. We do this in Lemma 46 by showing that for any direction y, adding the derivative qy
(which will be linear) to e3

y can only decrease the contribution. In other words, we show
|cy(t)| ≤ |cy(e3)| for every y.

▶ Lemma 45. For any y,
1. If w(y) ∈ E then

|cy(e3)| ≤ |σ|w(y) + |γ|w(y)

2 .

2. If w(y) ∈ O then

|cy(e3)| ≤ 2w(y)

2n−1 .

▶ Lemma 46. Suppose t = e3 + q for some arbitrary quadratic q. Then for any y,

|cy(t)| ≤ |cy(e3)|.

The previous two lemmas imply Theorem 44.

Proof of Theorem 44 assuming Lemmas 45, 46. By Lemmas 45, 46 we have

C2
ϕ(t) ≤

∑
y:w(y)∈E

|σ|w(y) + |γ|w(y)

2 +
∑

y:w(y)∈O

2−(n−w(y)−1)

= (1 + |σ|)n + (1 − |σ|)n

4 + (1 + |γ|)n + (1 − |γ|)n

4 + 3n − 1
2n .
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The = follows by Claim 19. Next note that for any ϕ, max{1 + |σ|, 1 + |γ|} ≥ 1 + 1/
√

2 > 3/2.
Suppose ϕ is such that |σ| > |γ|. Then

C2
ϕ(t) ≤ 2−n (1 + o(1))(1 + |σ|)n

4 .

On the other hand by Theorem 5 we know that

max
s∈{e2,e2+e1}

C2
ϕ(s) ≥ 2−n (1 + |σ|)n

2 .

Now suppose ϕ is such that |σ| ≤ |γ|. Then

C2
ϕ(t) ≤ 2−n (2 + o(1))(1 + |γ|)n

4 .

However by Theorem 5,

max
s∈{0,e1}

C2
ϕ(s) = 2−n(1 + |γ|)n. ◀

8.1 Proof of Lemma 45
We first list some preliminary results we will need. The following is a standard fact we state
without proof.

▷ Claim 47. Let s denote either e2, e2 + e1 on n variables, and let ℓ denote an arbitrary
linear polynomial. Then |bias((−1)s+ℓ)| ≤ 2−(n−1)/2.

Below and for the remainder of the section, we let V1, V0 ⊆ [n] denote the indices of the
1, 0-variables respectively with respect to a fixed direction y.

The next result says that if the bias of py is small after an arbitrary restriction to the
1-variables, then |cy(p)| must be small.

▶ Proposition 48. Fix some polynomial p and direction y ∈ {0, 1}n. Suppose for any
restriction r ∈ {0, 1}|V1| of the 1-variables,∣∣∣Ex:xV1 =r(−1)py(x)

∣∣∣ ≤ δ.

Then

|cy(p)| ≤ δ.

Proof. We have

cy(p) = Ex[(−1)py(x)Modϕ,y(x)]

= ExV1 [Modϕ,y(x) · ExV0 [(−1)py(x)]]
≤ δ.

The second = follows since Modϕ,y(x) only depends on the 1-variables. The ≤ follows since
|Modϕ,y(x)| = 1 and by the hypothesis on py. ◀

Next we characterize the derivatives of e3 which depend on the weight of y mod4. We abuse
notation and let ei(Vj) denote the polynomial ei defined on the variables indexed by Vj .
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▶ Proposition 49. Fix any direction y ∈ {0, 1}n and consider the derivative e3
y.

1. If w(y) ≡ 0 mod 4 then

e3
y = e1(V1) + e1(V1)e1(V0).

2. If w(y) ≡ 2 mod 4 then

e3
y = e1(V1)e1(V0) + e1(V0).

3. If w(y) ≡ 1 mod 4 then

e3
y = e2(V1) + e2(V0).

4. If w(y) ≡ 3 mod 4 then

e3
y = (e2 + e1)(V1) + (e2 + e1)(V0) + 1.

Proof. We can write e3 = e3(V1) + e2(V1)e1(V0) + e1(V1)e2(V0) + e3(V0). Firstly note the
term e3(V0) does not affect e3

y. Secondly, the term e1(V1)e2(V0) only contributes e2(V0) to
e3
y when |V1| = w(y) is odd.

Thirdly, we deal with e2(V1)e1(V0). Note that e1(V0) has a coefficient of
(
w(y)

2
)

in e3
y,

which is odd when w(y) ≡ 2, 3 mod 4. Now let xi denote a 1-variable. Then xie
1(V0) has a

coefficient of
(
w(y)−1

1
)
, hence e1(V1)e1(V0) appears when w(y) is even.

Lastly, we deal with e3(V1). Note xi has a coefficient of
(
w(y)−1

2
)
, hence e1(V1) appears if

w(y) ≡ 0, 3 mod 4. Let xj denote a second 1-variable. Then xixj has a coefficient of
(
w(y)−2

1
)

hence e2(V1) appears if w(y) is odd. The constant 1 has a coefficient of
(
w(y)

3
)

which is odd
when w(y) ≡ 3 mod 4. ◀

Proof of Lemma 45

Proof. Suppose w(y) ≡ 0 mod 4. By Proposition 49, if xV0 ∈ E then e3
y = e1(V1). If xV0 ∈ O

then e3
y = 0. Hence

cy(e3) = 2−n(
∑

x:xV0 ∈E

σw(y) +
∑

x:xV0 ∈O

γw(y))

= σw(y) + γw(y)

2 .

The w(y) ≡ 2 mod 4 case is similar. If xV0 ∈ E then e3
y = 0. Otherwise, e3

y = e1(V0) + 1.
Hence cy(e3) = −σw(y)+γw(y)

2 . This concludes the w(y) ∈ E case.
Now suppose w(y) ∈ O. Fact 47 implies that for s = e2(V0), (e2 + e1)(V0),

|bias((−1)s)| ≤ 2−(n−w(y)−1). Since e3
y is disjoint on V0, V1, Proposition 48 implies that

|cy(e3)| ≤ 2−(n−w(y)−1). ◀

8.2 Proof of Lemma 46
Suppose that t = e3 + q for some quadratic q. Note that for any direction y, ty has the same
quadratic terms as e3

y and qy only affects the linear terms in py. Let us write qy = u(V1)+v(V0),
where u(V1), v(V0) are linear polynomials over the 1, 0-variables respectively.

First suppose y ≡ 0 mod 4. We now consider restricting the 1-variables. If xV1 ∈ E then
t3y = c+ v(V0) where c is some constant. If xV1 ∈ O then t3y = c+ (e1 + v)(V0). Note that if
0 ̸= v(V0) ̸= e1(V0), then the bias of the restricted function will be 0 for both cases. Hence
by Proposition 48, cy(t) = 0 and we are done. If v(V0) = e1(V0) then this is symmetrical to
when v(V0) = 0. Hence we can assume that v(V0) = 0.
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From here, we switch back to restricting the 0-variables. If xV0 ∈ E then e3
y = (e1 +u)(V1),

and if xV0 ∈ O then e3
y = u(V1). Suppose u(V1) contains k variables. Then |cy(t)| ≤

|σ|w(y)−k|γ|k whenever xV0 ∈ E and |cy(t)| ≤ |σ|k|γ|w(y)−k otherwise. Hence

|cy(t)| ≤ |σ|w(y)−k|γk| + |σ|k|γ|w(y)−k

2 .

Assume that |σ| > |γ| (the other case is similar). We can now conclude as

|σ|w(y)−k|γ|k + |σ|k|γ|w(y)−k

2 ≤ |σ|w(y) + |γ|w(y)

2

⇐⇒ |γ|w(y)−k(|σ|k − |γ|k)
2 ≤ |σ|w(y)−k(|σ|k − |γ|k)

2
⇐⇒ |γ| ≤ |σ|.

The w(y) ≡ 2 mod 4 case is analogous.
Now suppose w(y) ≡ 1 mod 4. After an arbitrary restriction to xV1 , we have e3

y =
e2(V0)+v(V0)+c for some constant c. Fact 47 implies that |bias((−1)e

3
y )| ≤ 2−(n−w(y)−1) after

any restriction to xV1 . We can now conclude by applying Proposition 48. The w(y) ≡ 3 mod 4
case is analogous.
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