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Abstract
We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS)
proof system. Our main result is that for every Boolean function f : {0, 1}n → {0, 1}, SoS requires
degree Ω(s1−ϵ) to prove that f does not have circuits of size s (for any s > poly(n)). As a corollary
we obtain that there are no low degree SoS proofs of the statement NP ̸⊆ P/poly.

We also show that for any 0 < α < 1 there are Boolean functions with circuit complexity larger
than 2nα

but SoS requires size 22Ω(nα)
to prove this. In addition we prove analogous results on the

minimum monotone circuit size for monotone Boolean slice functions.
Our approach is quite general. Namely, we show that if a proof system Q has strong enough

constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-
variable incidence graph and, furthermore, Q is expressive enough that variables can be substituted
by local Boolean functions, then the MCSP problem is hard for Q.
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1 Introduction

Even before the dawn of complexity theory, there was an interest in the minimum circuit
size problem (MCSP): given the truth table of a Boolean function f : {0, 1}n → {0, 1} and
a parameter s, the MCSP problem asks whether there is a Boolean circuit of size at most
s computing f . Despite many years of research, we do not know whether this problem is
NP-hard. It clearly is in NP: given a circuit of size at most s (described by O(s log s) bits)
we can easily check in time O(s · 2n) whether this circuit indeed computes f .

Determining the hardness of MCSP itself turns out to be a difficult problem. Kabanets
and Cai [14] showed that NP-hardness of the MCSP problem implies breakthrough circuit
lower bounds. These lower bounds are not implausible but well out of reach of current
techniques. In a similar vein Murray and Williams [19] showed that NP-hardness of MCSP
implies that EXP ̸= ZPP and more recently Hirahara [13] proved that NP-hardness of
MCSP implies a worst-case to average-case reduction for problems in NP (for an appropriate
MCSP version).

On the other hand if one could show that MCSP is in P/poly, this would imply even
stronger (though less realistic) results: Kabanets and Cai [14] also showed that if MCSP is
in P/poly, then crypto-secure one way functions can be inverted on a considerable fraction
of their range.
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31:2 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

To summarize it seems unlikely that MCSP is in P, but showing that it is NP-hard
implies very strong consequences. As these results seem out of reach for current techniques, it
might be a more fruitful avenue to try to at least rule out that certain (families of) algorithms
solve the MCSP problem efficiently.

This can be achieved very elegantly in proof complexity: show that some proof system
capturing your algorithm requires long proofs to refute the claim that a complex function
has a small circuit. This will then rule out that the algorithm in question can efficiently
solve the MCSP problem. This will not only show that this specific algorithm requires long
running time but would also show that any algorithm captured by this proof system requires
long running time to solve the MCSP problem. Hence by this line of reasoning we manage
to rule out entire classes of algorithms to solve the MCSP problem efficiently.

This paper focuses on the Sum of Squares proof system (SoS). This proof system provides
certificates of unsatisfiability of systems of polynomial equations P = {p1 = 0, . . . , pm = 0}
over R. In this paper we are only interested in Boolean systems of equations, meaning
that P contains the equation x2 − x = 0 for every variable x appearing in the system. A
key complexity measure is the degree of a refutation, which is the maximum degree of a
monomial occurring in the refutation of P. All Boolean systems P over n variables have an
SoS refutation of degree n and we are interested in the minimum degree that SoS requires to
refute P . An SoS refutation of degree d has size O(nd) and can be found in nO(d) time using
semidefinite programming and this is often a useful heuristic bound for the complexity of an
SoS refutation. The actual size complexity of SoS can sometimes be significantly smaller
than nd [21] and it would be surprising if the shortest refutation can be found efficiently.
Hence it is in general of interest to understand both the degree and the size needed to refute
any given system.

SoS is a very powerful proof system and captures many state of the art algorithms
that are based on spectral methods. A classic algorithm captured by SoS is Goemans and
Williamson’s Max-Cut algorithm [8], but also approximate graph coloring algorithms [15],
and algorithms solving constraint satisfaction problems [2, 22] are captured by SoS. On the
other hand SoS has real difficulty arguing about integers and in particular parities. Indeed,
Grigoriev [10] showed that SoS requires degree Ω(n) to refute a random xor constraint
satisfaction problem of the appropriate (constant) density. After this initial lower bound it
took a few years to develop good lower bounds methods for SoS, but in recent years there
has been a flurry of strong SoS degree lower bounds [18, 4, 16].

In order to rule out that algorithms captured by SoS can solve MCSP efficiently, we need
to encode the claim that a given function has a small circuit as a propositional formula.
We work with the encoding suggested by Razborov [26], which encodes this claim that the
function f : {0, 1}n → {0, 1} has a circuit of size s by a propositional formula Circuits(f)
over O(s2 + s · 2n) = O(s · 2n) variables as follows. We have Θ(s2) structure variables to
encode all possible size s circuits, and for every assignment α ∈ {0, 1}n we then have an
additional Θ(s) evaluation variables that simulate the evaluation of the circuit on each input,
and constraints forcing the circuit to output the correct value on each input α.

A closely related question to the MCSP problem is the question of how hard it is to actually
prove strong circuit lower bounds. For example, are there efficient refutations of the statement
NP ⊆ P/poly, assuming the statement is false? This question, as proposed by Razborov [26],
can also be investigated by studying above formula: consider CircuitnO(1)(SAT), where SAT
is the function that outputs 1 if and only if the input is an encoding of a satisfiable CNF.
This is, essentially, a propositional encoding of the claim that SAT has a circuit in P/poly.
Hence proving lower bounds for CircuitnO(1)(SAT) rules out efficient proofs of NP ̸⊆ P/poly
in the proof system under consideration.
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Experience suggests that studying such meta-mathematical questions is difficult. This
problem is no exception to this rule and, even though the formula has been conjectured to be
hard for strong proof systems such as extended Frege, progress has been slow. The only proof
systems for which we have unconditional, superpolynomial lower bounds on proofs of the
Circuits(f) formula are Resolution [23, 27], small width DNF-Resolution [28] and Polynomial
Calculus [26, 28]. The resolution size and Polynomial Calculus degree lower bounds follow
from a reduction of the pigeonhole principle to Circuits(f). In fact, this reduction was a main
motivation for a long line of work [29, 20, 23, 27] eventually establishing strong resolution
lower bounds for the weak pigeonhole principle. The other size lower bounds follow from a
general connection between pseudo-random generator lower bounds and MCSP lower bounds
as outlined in [1, 28], building on Krajíček’s iterability trick [17].

As the pigeonhole principle is easy for the SoS proof system [11], we cannot hope to
borrow the hardness from that formula. Neither do we have strong enough pseudorandom
generator lower bounds for SoS to employ that connection. In fact, to date, we have no
unconditional (degree) lower bounds for any semi-algebraic proof system, that is, proof
systems that manipulate polynomial inequalities such as SoS or Cutting Planes. Furthermore
it has been stated [24, 25] as an explicit open problem to prove SoS degree lower bounds for
the formula Circuits(f).

1.1 Our Results
Our first result gives a lower bound on the degree needed to refute Circuits(f) in SoS. This
lower bound is very general and in fact applies to every Boolean function f : {0, 1}n → {0, 1}.

▶ Theorem 1. For all ε > 0 there is a d = d(ε) such that the following holds. For n ∈ N, all
s ≥ nd and any Boolean function f : {0, 1}n → {0, 1} on n bits, SoS requires degree Ωε(s1−ε)
to refute Circuits(f).

It is worthwhile to point out that the proof of Theorem 1 is not specific to the SoS
proof system. In fact we outline a general reduction that shows that if one has a CSP
lower bound of the form of Theorem 13 that only requires good expansion of the underlying
constraint-variable incidence graph and the proof system is expressive enough so that one
can replace variables by local Boolean functions, then one obtains strong lower bounds for
the Circuits(f) formula.

The lower bound of Ωε(s1−ε) on the degree is essentially tight: if f does not have a circuit
of size s then there exists an SoS refutation of this statement in degree O(s).

▶ Proposition 2. Let s ∈ N and f : {0, 1}n → {0, 1} be a Boolean function on n bits
that requires circuits of size larger than s to be computed. Then there is a degree O(s) SoS
refutation of Circuits(f).

For a proof of Proposition 2 we refer to the full version.
We also prove a result about the minimum size (number of monomials) required for

SoS to refute Circuits(f). This result holds for all functions that “almost” have a circuit
of size s, in the sense that they have an errorless heuristic circuit (see the survey [7]) of
size s/2 and extremely small error probability with respect to the uniform distribution.
Formally, we let Fn(s, t) denote the class of Boolean functions that consists of all functions
f : {0, 1}n → {0, 1} for which there is a Boolean circuit Cf : {0, 1}n → {0, 1, ⊥} of size at
most s such that
1. if Cf (α) ̸= ⊥, then Cf (α) = f(α), and
2. Cf (α) = ⊥ on at most t inputs.

CCC 2023
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In other words the circuit Cf computes f correctly on all except t inputs. Note that
technically the output of the circuit Cf is two bits with the first one indicating whether
the output is ⊥ or the value of the second bit. We believe that above presentation is more
intuitive and hope that the slight abuse of notation causes no confusion. With the class of
functions Fn(s, t) at hand we can state our main SoS size lower bound.

▶ Theorem 3. For all ε > 0 there is a d = d(ε) such that the following holds. Let n ∈ N

and s ∈ N such that s ≥ nd. If t ≥ s and f ∈ Fn(s/2, t), then it holds that SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuits(f).

This yields non-trivial size lower bounds for t as large as s2−ε/ω(1). Furthermore, note
that once t ≫ s log s there are functions that require such large circuits. For example setting
s = 2n0.99 and t = s1.5, the theorem shows that there are functions f that do not have
circuits of size s, but SoS requires size 22Ω(n0.99) to prove this.

It is natural to wonder whether SoS fares better in the monotone setting. In other words,
whether SoS can refute the claim that a complex monotone function has a small monotone
circuit. The following two theorems show that this is not the case for the set Mn(ℓ) of
monotone ℓ-slice functions. Recall that Mn(ℓ) consist of all Boolean functions f on n bits
such that f(α) = 0 for all α with Hamming weight less than ℓ, and f(α) = 1 for all α with
Hamming weight greater than ℓ (note that any such f is monotone).

We define a variant Circuitmon
s (f) of the Circuits(f) formula, which instead encodes the

claim that f has a monotone circuit of size s, and prove the following theorem.

▶ Theorem 4. For all ε > 0 there is a d = d(ε) such that the following holds. For all
n, ℓ ∈ N, all s ≥ nd and any monotone slice function f ∈ Mn(ℓ) SoS requires degree Ωε(s1−ε)
to refute Circuitmon

s (f).

As in the non-monotone case, we can also obtain size lower bounds for the monotone-
MCSP. Akin to the general size lower bound we consider monotone Boolean slice functions
that have good monotone errorless heuristic circuits. Let Mn(ℓ, s, t) ⊆ Mn(ℓ) be the class of
monotone Boolean ℓ-slice functions f : {0, 1}n → {0, 1} for which there is a (not necessarily
monotone) Boolean circuit Cmon

f : {0, 1}n → {0, 1, ⊥} of size s such that
1. for all ℓ-slice inputs α ∈

([n]
ℓ

)
it holds that if Cmon

f (α) ̸= ⊥, then Cmon
f (α) = f(α), and

2. Cmon
f (α) = ⊥ on at most t inputs α ∈

([n]
ℓ

)
.

▶ Theorem 5. For all ε > 0 there is a d = d(ε) such that the following holds. For
n, ℓ ∈ N, all s ≥ nd and t ≥ s and monotone function f ∈ Mn(ℓ, s/10, t) SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuitmon

s (f).

1.2 Overview of Proof Techniques
Degree Lower Bound

The main idea that drives our result is a reduction from an expanding xor constraint
satisfaction problem to the Circuits(f) formula. The reduction is achieved through a careful
restriction of the Circuits(f) formula, such that each input α ∈ {0, 1}n to the circuit specifies
an xor constraint over some new set of variables Y . These Y variables are a subset of roughly
Θ(s1−ϵ) out of the Θ(s2) many structure variables of the Circuits(f) formula. All other
structure variables apart from the Y variables are fixed to constant values in this step. This
will then result in an XOR-CSP instance with 2n constraints over the variables Y . All that
SoS has to prove is that there is no satisfying assignment to this XOR-CSP instance. By
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ensuring that the constraint-variable incidence graph is sufficiently expanding, SoS requires
large degree to refute the restricted formula (see Theorem 13). At the same time, we need the
constraint graph to be very explicit so that it can be encoded into a small circuit. For this
we utilize a construction of unbalanced expanders by Guruswami et al. [12] (see Theorem 8).
This reduction then immediately yields Theorem 1.

This lower bound may also be viewed as implementing the general program sketched by
Razborov [28] relating pseudorandom generators in proof complexity to the MCSP problem.
However, we prefer to describe it as a direct reduction to the MCSP problem.

Size Lower Bound

In order to obtain size lower bounds, we would like to apply the degree-size tradeoff due
to Atserias and Hakoniemi [3] to Theorem 1. Unfortunately the formula is over too many
variables to be able to conclude a meaningful size lower bound: it is defined over roughly
Ω(2n · s) variables.

Instead of applying Theorem 1, we restrict our attention to functions with all except the
at most t ⊥-outputs computed by the corresponding errorrless heuristic circuit. If we choose
t small enough, then we are able to heavily restrict Circuits(f) and significantly reduce
the number of variables to the point where the Atserias-Hakoniemi degree-size tradeoff is
applicable.

Monotone Circuits

We prove these theorems by adapting the proofs for the non-monotone setting. The idea is to
work over the ℓth slice and disregard all other inputs. The key feature that makes this work
is the fact that the monotone circuit complexity of a slice function is essentially the same as
the (ordinary) circuit complexity (see Lemma 10). This lets us convert all subcircuits used
in the reduction to small monotone circuits (if we only work on the slice).

The size lower bound goes along the same lines as the proof of Theorem 3.

1.3 Organization

In Section 2, we provide the necessary background material. In Section 3 we set up the
general framework for our lower bounds with some preliminary definitions and lemmas. Then
in Section 4 we prove the main degree Theorem 1 and size Theorem 3 lower bounds. We prove
the monotone lower bounds Theorem 4 and Theorem 5 in Section 5. Finally in Section 6 we
give some concluding remarks.

2 Preliminaries

All logarithms are in base 2. For integers n ≥ 1 we write [n] = {1, 2, . . . , n} and for a set U

we denote the power set of U by 2U . Further, for a set V ⊆ U we let V be the complement
of V with respect to U , that is, V = U \ V . We write

([n]
ℓ

)
⊆ {0, 1}n for the set of binary

strings with Hamming weight ℓ. For a string α ∈ {0, 1}n we let |α| =
∑

i∈[n] αi.
We sometimes want to supress dependencies on constants and write f(n, ε) ∈ Oε

(
g(n, ε)

)
,

respectively f(n, ε) ∈ Ωε

(
g(n, ε)

)
, to mean that there exists a function c(ε) > 0 such

that there is an n0 and for all n ≥ n0 it holds that f(n, ε) ≤ c(ε) · g(n, ε), respectively
f(n, ε) ≥ c(ε) · g(n, ε).

CCC 2023
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▶ Definition 6. A sequence of bipartite graphs {Gn = (Un, Vn, En)}n∈N with deg(u) = d for
all u ∈ Un is explicit if there is an algorithm that given (n, u, j), where n ∈ N, u ∈ Un and j ∈
[d], computes the jth neighbor of vertex u in the graph Gn in time poly(log n+log |U |+log d).

From now on it is understood that whenever we talk about an explicit graph we actually
mean to say that there is a sequence of explicit graphs with above properties.

For a graph G = (V, E) and W ⊆ V we denote by

N(W ) = { u ∈ V \ W | (w, u) ∈ E for some w ∈ W }

the set of neighbors of W .

▶ Definition 7. A bipartite graph G = (U, V, E) is an (r, d, c)-expander if every vertex u ∈ U

has degree deg(u) = d and every set W ⊆ U of size |W | ≤ r satisfies |N(W )| ≥ c · |W |.

A key ingredient in our proofs is the following result on the existence of strong explicit
expanders.

▶ Theorem 8 ([12]). For all constants γ > 0, every M ∈ N, r ≤ M , and ε > 0, there is an
N ≤ d2 · r1+γ and an explicit (r, d, (1 − ε)d)-expander G = (U, V, E), with |U | = M , |V | = N ,
and d = O

(
((log M)(log r)/ε)1+1/γ

)
.

For our purposes it is more relevant to compute the neighbor relation Neigh(u, v)
indicating whether (u, v) ∈ E rather than the neighbor function as in Definition 6, but this
is an immediate consequence of being able to compute the neighbor function.

▷ Claim 9. If G = (U, V, E) is explicit then the neighbor relation Neigh : U × V → {0, 1}
is computable by a circuit of size d ·

(
poly(log n + log |U | + log d) + 2 log |V | + 1

)
.

A slice function is a Boolean function f such that there is a ℓ ∈ [n] with f(α) = 0
whenever |α| < ℓ, and f(α) = 1 whenever |α| > ℓ. Note that all slice functions are monotone.

The circuit complexity C(f) of a Boolean function f is the size of the smallest circuit
over the basis ∨, ∧, and ¬ (with fan-in 2). Similarly the monotone circuit complexity Cmon(f)
of a monotone Boolean function f is the size of the smallest circuit over the basis ∨, and ∧.
We have the following useful inequality between these measures.

▶ Lemma 10 ([6]). If g is any slice function on n bits, then Cmon(g) ≤ 2 C(g) + O(n2 log n).

Finally we also rely on the following simple claim.

▷ Claim 11. Let p : Rn → R be a degree d polynomial such that p(x) = 0 for all x ∈ {0, 1}n.
Then p can be written as

p(x) =
∑
i∈[n]

qi(x) · (x2
i − xi)

where each term in the sum has degree at most d.

Proof sketch. We take the polynomial p and multilinearize it, using the appropriate polynomial
x2

i − xi. Eventually we are left with a sum of polynomials of the form qi(x) · (x2
i − xi) and a

multilinear polynomial p̃(x) which is 0 on all Boolean inputs. As multilinear polynomials are
a basis for Boolean functions this implies that p̃(x) is equal to the 0 polynomial and hence
the claim follows. ◁
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2.1 Sum of Squares
Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations over the set of variables
X = {x1, . . . , xn, x̄1, . . . , x̄n}. Each pi is called an axiom, and throughout the paper we
always assume that P includes all axioms x2

i − xi and x̄2
i − x̄i, ensuring that the variables

are Boolean, as well as the axioms 1 − xi − x̄i, making sure that the “bar” variables are in
fact the negation of the “non-bar” variables.

▶ Definition 12 (Sum-of-Squares). Sum-of-Squares (SoS) is a static, semi-algebraic proof
system. An SoS proof of f ≥ 0 from P is a sequence of polynomials π = (t1, . . . , tm; s1, . . . , sa)
such that∑

i∈[m]

tipi +
∑
i∈[a]

s2
i = f .

The degree of a proof π is Deg(π) = max{maxi∈[m] deg(ti) + deg(pi), maxi∈[a] 2 deg(si)}, an
SoS refutation of P is an SoS proof of −1 ≥ 0 from P, and the SoS degree to refute P is the
minimum degree of any SoS refutation of P: if we let π range over all SoS refutations of P,
we can write Deg(P ⊢SoS ⊥) = minπ Deg(π). The size of an SoS refutation π, Size(π), is the
sum of the number of monomials in each polynomial in π and the size of refuting P is the
minimum size over all refutations Size(P ⊢SoS ⊥) = minπ Size(π).

Let us recall some well-known results about SoS. Given a bipartite graph G = (U, V, E),
and b ∈ {0, 1}|U | we denote by Φ(G, b) the following XOR-CSP instance defined over G: for
each v ∈ V there is a Boolean variable xv, and for every vertex u ∈ U there is a constraint
⊕v∈N(u)xv = bu. We encode this in the obvious way as a system of polynomial equations:{ ∏

v∈N(u)

(1 − 2 · xv) = 1 − 2 · bu | u ∈ U
}

,

along with the Boolean axioms and the negation axioms for the x variables. The first theorem
we need to recall is the classic lower bounds for XOR-CSPs by Grigoriev.

▶ Theorem 13 ([10]). For n ∈ N, all k = k(n) and r = r(n) the following holds. Let
G = (U, V, E) be an (r, k, 2)-expander with |V | = n. Then for every b ∈ {0, 1}|U | SoS requires
degree Ω(r) to refute the claim that there is a satisfying assignment to Φ(G, b).

We also need to recall the size-degree tradeoff by Atserias and Hakoniemi.

▶ Theorem 14 ([3]). Let P be a system of polynomial equations over n Boolean variables
and degree at most k. If d is the minimum degree SoS requires to refute P, then the minimum
size of an SoS refutation of P is at least exp(Ω((d − k)2/n)).

2.2 Restrictions
Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations over the set
of Boolean variables X = {x1, . . . , xn, x̄1, . . . , x̄n}. For a map ρ : {x1, . . . , xn} →
{0, 1, x1, . . . , xn, x̄1, . . . , x̄n} denote by P

∣∣
ρ

the system of polynomial equations P restricted
by ρ, i.e.,

P
∣∣
ρ

= {p1(ρ(x1), . . . , ρ(xn)) = 0,

p2(ρ(x1), . . . , ρ(xn)) = 0,

...
pm(ρ(x1), . . . , ρ(xn)) = 0} ,

CCC 2023
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where it is understood that ρ(x̄i) = ρ(xi), with the convention ¯̄xi = xi, 0̄ = 1 and vice versa.
Throughout the paper all our restrictions set the bar variables to the negation of the non-bar
variables. As such it makes sense to treat the pair of variables (xi, x̄i) as one variable and
we say that P has n unset variables.

▶ Definition 15 (Variable Substitution). We say that a system of polynomial equations P ′ is
a variable substitution of P if there is a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n}
such that P ′ = P

∣∣
ρ
, where we ignore polynomial equations of the form 0 = 0.

The following well-known lemma states that a system of polynomial equations P is at
least as hard as any of its variable substitutions.

▶ Lemma 16. Let P, P ′ be systems of polynomial equations such that P ′ is a variable
substitution of P. Then,
1. Deg(P ⊢SoS ⊥) ≥ Deg(P ′ ⊢SoS ⊥), and
2. Size(P ⊢SoS ⊥) ≥ Size(P ′ ⊢SoS ⊥).
The lemma is easy to verify by considering an SoS refutation of P and hitting it with the
appropriate variable substitution. The restricted proof is now a refutation of P ′ and it can
be seen that the degree/size of the restricted refutation is at most the degree/size of the
original refutation.

We also consider more general substitutions.

▶ Definition 17 (Polynomial Substitution). Functions ρ : {x1, . . . , xn} → R[x]≤k that map
variables to polynomials of degree at most k are called polynomial substitutions.

For polynomial substitutions we have the following well-known lemma.

▶ Lemma 18. Let P be a system of polynomial equations and let ρ be a polynomial substitution
mapping variables to polynomials of degree at most k. Then, Deg(P ⊢SoS ⊥) ≥ Deg(P

∣∣
ρ

⊢SoS

⊥)/k.

This lemma can again be verified by considering a refutation of P. Substitute each
variable xi in the proof by ρ(xi). This results in a refutation of P

∣∣
ρ
, whose degree is at most

a factor k larger than the degree of the refutation of P.

2.3 The Circuit Size Formula
The formula Circuits(f) encodes the claim that the function f , given as a truthtable
f ∈ {0, 1}2n , can be computed by a circuit of size s over n Boolean inputs x1, . . . , xn. The
encoding is not essential but for concreteness let us fix one encoding of this claim. We
deviate from the encoding used by Razborov [26, 27] and do not present the formula as a
propositional formula but rather as a system of polynomial equations. In order to encode
below constraints as a constant width CNF formula, as done by Razborov, one needs to
introduce extension variables. Despite this difference it is not difficult to see that our lower
bound also works against the CNF encoding (see the full version of this paper for more
details).

We also need to define the monotone version of Circuits(f) denoted by Circuitmon
s (f).

The later is a restriction of the former with the IsNeg(v) (see below) variable, for all v ∈ [s],
set to 0. This forces the circuit to only contain ∧ and ∨ gates, i.e., the circuit is monotone.

All variables introduced in the following are Boolean variables and we implicitly add the
Boolean axiom y(1 − y) = 0 for each variable y and further implicitly introduce the “bar
variable” ȳ along with the negation axiom y = 1 − ȳ (and the corresponding Boolean axiom)
ensuring that ȳ is always the negation of y.
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Let us first describe the structure variables which are used to describe the circuit that
supposedly computes the function f .

We view the s gates as being indexed from 1 to s in topological order with gate s being the
output. For each gate v ∈ [s] there are three variables IsNeg(v), IsOr(v), IsAnd(v) indicating
the operation computed at v. Similarly for a gate v ∈ [s] and a wire a ∈ {1, 2} we have
variables IsFromConst(v, a), IsFromInput(v, a), IsFromGate(v, a) indicating whether the input
wire a of v is connected to a constant, a variable or a gate.

Further, we have the variables ConstantValue(v, a), IsInput(v, a, i) and IsGate(v, a, u), for
a ∈ {1, 2}, i ∈ [n] and u < v, specifying the constant value, input xi or gate u, the input
wire a of v is connected to (assuming a is connected to the corresponding kind).

The second set of variables are the evaluation variables, which describe what value is
computed at each v on input α = α1, . . . , αn (i.e., we have xi = αi).

For each gate v ∈ [s] and assignment α ∈ {0, 1}n we have a Boolean variable Outα(v)
indicating the value computed at gate v on input α. The Boolean variable Inα(v, a) indicates
the value brought to the vertex v ∈ [s] on wire a ∈ {1, 2} on input α.

Note that there is a total of 3s + 6s + 2s + 2sn + 2
(

s
2
)

= Θ(s2 + sn) structure variables,
and a total of 3s2n evaluation variables, for a total of Θ(s2 + s2n) variables in Circuits(f).

The formula consists of the following axioms. For the sake of readability we omit some
universal quantifiers: the variable a ∈ {1, 2} in Axioms 1 and 3–9 as well as the variable
α ∈ {0, 1}n in Axioms 7–13 are implicitly universally quantified.

Let us first describe the axioms on the structure of the circuit. In the following section
we refer to this set of axioms as the structure axioms. The first axioms ensure that every
wire is connected to a single kind

IsFromConst(v, a) + IsFromInput(v, a) + IsFromGate(v, a) = 1 ∀ v ∈ [s] , (1)

and similarly the next axioms make sure that each gate is of precisely one kind

IsNeg(v) + IsOr(v) + IsAnd(v) = 1 ∀ v ∈ [s] . (2)

The final structure axioms ensure that the variables, which indicate to what input or gate
a fixed wire is connected to, always sum to one (except for gate 1 which cannot have any
inputs from other gates)

n∑
i=1

IsInput(v, a, i) = 1 ∀v ∈ [s], and (3)

v−1∑
u=1

IsGate(v, a, u) = 1 ∀v ∈ [s] \ {1} . (4)

We further strengthen our encoding by adding the axioms

IsInput(v, a, i) IsInput(v, a, j) = 0 ∀v ∈ [s], i < j ∈ [n], and (5)
IsGate(v, a, u) IsGate(v, a, u′) = 0 ∀u < u′ < v ∈ [s] . (6)

Note that Axioms 5 and 6 are implied by Axioms 3 and 4. We add these axioms in order to
argue that a short refutation of the CNF encoding of this principle leads to a short refutation
of the present encoding.

The second group of axioms are the evaluation axioms and they ensure that the evaluation
variables indeed compute the intended values. We start by making sure that the wires carry
the value intended by the structure axioms. If a wire is connected to a constant, then the
evaluation variable associated with that wire should always be equal to the constant
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IsFromConst(v, a) ·
(

Inα(v, a) − ConstantValue(v, a)
)

= 0 , (7)

and similarly in case if a wire is connected to an input or a gate

IsFromInput(v, a) · IsInput(v, a, i) ·
(

Inα(v, a) − αi

)
= 0 , (8)

IsFromGate(v, a) · IsGate(v, a, u) ·
(

Inα(v, a) − Outα(u)
)

= 0 . (9)

The final set of evaluation axioms makes sure that the output evaluation variable of a gate is
correctly related to the input evaluation variables:

IsNeg(v) · Outα(v) = IsNeg(v) · Inα(v, 1) , (10)

IsOr(v) · Outα(v) = IsOr(v) ·
(
1 − Inα(v, 1) · Inα(v, 2)

)
, (11)

IsAnd(v) · Outα(v) = IsAnd(v) · Inα(v, 1) · Inα(v, 2) . (12)

Last but not least we have the axioms that ensure that the circuit outputs the function
specified by the truthtable

Outα(s) = f(α) . (13)

3 On Circuits and Restrictions

Let G = (U, V, E) be a bipartite graph with U = {0, 1}n and V = [m]. As in the XOR-
CSP setup (Section 2.1) we think of vertices in U as constraints and vertices in V as
variables. More specifically, we think of each vertex α ∈ U as an xor constraint over the
variables in the neighborhood ⊕i∈N(α)vi = bα, for a constraint vector b ∈ {0, 1}U . Given
an assignment β ∈ {0, 1}m to the variables V , we let fG,β : U → {0, 1} be the function
defined by fG,β(α) = ⊕i∈N(α)vi. In other words, viewing fG,β as a vector in {0, 1}U , it is
the unique constraint vector such that the XOR-CSP instance, defined over G, is satisfied
by the assignment β. Let us denote the set of all such constraint vectors that give rise to a
satisfiable XOR-CSP instance by

FG = {fG,β | β ∈ {0, 1}m} .

In order for SoS to refute an XOR-CSP instance defined over G, it must prove that the given
constraint vector is not in the set FG.

On the other hand in order for SoS to refute the formula Circuits(f) it needs to show
that there is no circuit of size at most s computing f . That is, SoS needs to show that f is
not in the set

C∅ = {T : {0, 1}n → {0, 1} such that Circuits(T ) is satisfiable} .

More generally, if we restrict Circuits(f) by a restriction ρ, then the proof system must prove
that f is not a member of the family of truthtables

Cρ = {T : {0, 1}n → {0, 1} such that Circuits(T )
∣∣
ρ

is satisfiable} .

In the following we show that there is a well-behaved restriction ρ such that Cρ = FG for
some explicit graphs G. In other words, once we consider the restricted formula Circuits(f)

∣∣
ρ
,

SoS needs to rule out that f is a valid right hand side of an XOR-CSP instance. But we
know that if G is a moderate expander, then low degree SoS cannot determine whether the
XOR-CSP instance is satisfiable and hence we obtain our lower bound.

Let us first formalize the properties we require from ρ. We start off by restricting our
attention to a certain natural class of variable substitutions. Namely, we do not want that
the structure of the circuit depends on evaluation variables.
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▶ Definition 19 (natural variable substitutions). A variable substitution ρ to the variables
of Circuits(f) is natural if there is no structure variable y such that ρ(y) is an evaluation
variable.

In order to motivate the next definition, let us informally describe the natural restriction
ρ and explain the properties of ρ we require.

For now we can think of ρ as a restriction to the structure variables (though for the
size lower bounds we also need to restrict some of the evaluation variables). Some set of
m structure variables remains undetermined. Let us denote these variables by y1, . . . , ym.
We intend to choose ρ such that on a given input α ∈ {0, 1}n to the circuit, it is forced to
compute ⊕i∈N(α)yi. In other words, given such a restriction ρ, we are essentially left with
an XOR-CSP problem over G, with right hand side f . There is however a difference in
that the encoding is non-standard: the evaluation variables act like extension variables that
correspond to the functions computed at each gate of the circuit. In order to argue that the
known degree lower bound for the XOR-CSP problem implies a degree lower bound for the
problem at hand, we need to get rid of these extension variables. This can be done if the
functions computed at the gates are of low degree in the y variables.

Recall from Section 2.2 that a system of polynomial equations P has n unset variables if
there are n tuples of variables (x, x̄) such that at least one variable of each tuple occurs in P
and all variables in these tuples are unset, i.e., they are not fixed to a constant.

▶ Definition 20 (k-determined). Let ρ be a variable substitution to the variables of Circuits(f)
and suppose that ρ leaves m structural variables Y = {y1, . . . , ym} unset. Then ρ is k-
determined if for every v ∈ [s] and α ∈ {0, 1}n there are multilinear polynomials

gout
v,α, gin1

v,α, gin2
v,α : {0, 1}m → {0, 1}

depending on at most k variables such that the following holds. For all T ∈ Cρ and all total
assignments σ that satisfy Circuits(T )

∣∣
ρ

it holds that

Outα(v)
∣∣
ρ∪σ

= gout
v,α(β) , Inα(v, 1)

∣∣
ρ∪σ

= gin1
v,α(β) , and Inα(v, 2)

∣∣
ρ∪σ

= gin2
v,α(β) , (14)

where β ⊆ σ is the assignment to Y .

However, Definition 20 is not quite sufficient. For example, there is no guarantee that Cρ

is non-empty, i.e., that the restriction ρ describes a valid (partial) circuit. More generally,
we need the additional guarantee that there are still many viable circuits that the restricted
formula can describe: if there is just a single setting of the Y variables such that all structural
axioms are satisfied, then the formula may be refuted in constant degree. Hence we need to
ensure that there are many viable assignments to the Y variables that satisfy all structure
axioms. This leads us to the following definition.

▶ Definition 21 (m-independent). A variable substitution ρ to the variables of the formula
Circuits(f) is m-independent if ρ leaves exactly m structural variables Y = {y1, . . . , ym}
unset, and for every assignment β ∈ {0, 1}Y it holds that |Cρ∪β | = 1.

With these definitions at hand we can state the lemma that drives all our lower bounds.

▶ Lemma 22. Let ρ be a natural m-independent k-determined variable substitution of
Circuits(f), and let Y and gout

u,α be as in Definition 20. If there is an SoS refutation
of Circuits(f)

∣∣
ρ

of degree d, then there is a degree d · k SoS refutation of the system of
polynomial equations

{gout
s,α(Y ) = f(α) | α ∈ {0, 1}n} ∪ {y2

i = yi | i ∈ [m]} . (15)
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For proving this lemma, we consider the natural extension of ρ which substitutes all
evaluation variables by appropriate degree-k polynomials as indicated by Definition 20.

▶ Definition 23. For a k-determined restriction ρ (with associated polynomials gout
v,α, gin1

v,α, gin2
v,α)

of Circuits(f), we denote by ρ̂ the polynomial substitution that extends ρ by first substituting
any bar variable x̄ by 1 − x and then substituting all evaluation variables as follows:

ρ̂(Outα(v)) = gout
v,α(Y ) , ρ̂(Inα(v, 1)) = gin1

v,α(Y ) , and ρ̂(Inα(v, 2)) = gin2
v,α(Y ) .

Note that the formula Circuits(f)
∣∣
ρ̂

is defined only over Y . Let us stress that there are
no “bar” variables left in the formula. The main observation used to prove Lemma 22 is the
following claim, which establishes that the formula (15) is in fact essentially the same as
Circuits(f)

∣∣
ρ̂
.

▷ Claim 24. Let ρ be a natural m-independent k-determined variable substitution of
Circuits(f). Then Circuits(f)

∣∣
ρ̂

can be written as

Circuits(f)
∣∣
ρ̂

= P ∪ Q ,

where P is the formula (15) and Q only consists of axioms that are satisfied for all assignments
β ∈ {0, 1}Y .

Proof. Note that the set of output axioms (13) of Circuits(f) under ρ̂ equals the first part of
(15), and that the Boolean axioms on the Y variables in Circuits(f)

∣∣
ρ̂

are exactly the second
part of (15).

The remaining axioms of Circuits(f)
∣∣
ρ̂
, which are not present in (15), are the Boolean

axioms on the variables outside Y , the negation axioms, as well as Axioms 1–12.
The Boolean axioms may turn into polynomials of degree at most 2k. Because the

polynomials we substitute the variables with are Boolean valued, we see that these substituted
axioms are satisfied for all assignments β ∈ {0, 1}Y and we can thus put them into the set Q.

The negation axioms all become “0 = 0” under ρ̂ since ρ̂(x̄) = 1 − ρ̂(x).
Finally we need to argue that the Axioms 1–12 are also of the form p(Y ) = 0 for a

polynomial p which is identically 0 on all of {0, 1}m. This in turn follows immediately from
the assumption that ρ is m-independent: for every β ∈ {0, 1}Y , there exists some T such
that the complete assignment ρ̂(β) ∪ β satisfies Circuits(T ). But since none of the remaining
Axioms 1–12 depends on T , they must then all be satisfied for every β ∈ {0, 1}Y . ◁

Using this claim we can easily prove Lemma 22.

Proof of Lemma 22. Suppose Circuits(f)
∣∣
ρ

has a refutation in degree d. By Lemma 18,
there then exists a degree d · k refutation of Circuits(f)

∣∣
ρ̂
.

By Claim 24, this new refutation is almost a refutation of (15), except that Circuits(f)
∣∣
ρ̂

has an additional set Q of axioms that the refutation may use. However, each of these
additional axioms is of the form p(Y ) = 0 for a polynomial which is identically 0 on the
entire Boolean cube. By Claim 11, such an axiom can be rewritten as a linear combination
of the Boolean axioms. Since the Boolean axioms are present in (15), this yields a refutation
of that formula in degree d · k. ◀
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4 Lower Bounds for General Circuits

We state the following lemma general enough so that we can apply it for the degree as well as
the size lower bound. As explained previously, for the size lower bounds we rely on functions
that almost have circuits of size s. Recall that we consider the class of functions Fn(s, t)
that consists of all Boolean functions f : {0, 1}n → {0, 1} for which there is a Boolean circuit
Cf : {0, 1}n → {0, 1, ⊥} of size at most s such that
1. if Cf (α) ̸= ⊥, then Cf (α) = f(α), and
2. Cf (α) = ⊥ on at most t inputs.
The following lemma establishes the existence of m-independent k-determined variable
substitutions that result in XOR-CSP instances over explicit graphs.

▶ Lemma 25. For all k, m, n, t ∈ N satisfying m ≤ 2n, and any explicit bipartite graph
G = (U, V, E) such that |U | = 2n, |V | = m and all u ∈ U are of degree deg(u) ≤ k, the
following holds. There is a constant C > 0, depending on the explicitness of G, such that
for all s ≥ C · m · nC · kC and any Boolean function f ∈ Fn(s/2, t) there is a natural
m-independent k-determined variable substitutions ρ for the formula Circuits(f) such that

gout
s,α(Y ) =

{
f(α), if Cf (α) ̸= ⊥,

⊕i∈N(α)yi, otherwise

for all α ∈ {0, 1}n and gout
s,α and Y as in Definition 20. Furthermore, the formula Circuits(f)

∣∣
ρ

is over O
(
t · k + m

)
variables.

For the degree lower bound (Theorem 1) we will set t = 2n and use the trivial Cf which
always outputs ⊥, so the reader who wishes a simplified version of the lemma can focus on
this special case.

Proof. We consider the formula Circuits(f) and let the first m gates of the formula be
denoted by Y . We restrict the formula such that each gate in Y computes an or of two
constants. The first wire to the gate is fixed to the constant 0, whereas the second wire is
only restricted to carry either the constant 0 or 1. In the end these will be the only structural
variables that are not restricted to a constant. In the following we think of the gates Y as
Boolean variables; as m additional input bits to our circuit.

Further, we restrict another part of the formula such that one part of the circuit described
by the formula computes the circuit Cf . Recall that we pretend that the output of Cf is
in {0, 1, ⊥}, but it actually outputs two bits C1

f and C2
f , where C1

f (α) = 1 if and only if
C2

f (α) = f(α).
Finally we also want to hard code the bipartite graph G({0, 1}n, Y, E) into our circuit.

Since G is very large this requires G to be explicit. That is, we require small circuits
Sel1, . . . , Selm, where given any α ∈ {0, 1}n, Seli(α) is 1 if and only if the vertex yi ∈ Y is a
neighbor of the vertex α. By Claim 9 these circuits Seli are each of size

k · (poly(n + log k) + 2 log m + 1) ≤ poly(n, k) .

The restriction ρ restricts some structural variables such that a part of the circuit computes
Sel1, . . . , Selm. We connect each output of the Seli circuit by an and gate to the negation of
C1

f . Denote the resulting circuits by Sel′1, . . . , Sel′m. Observe that the circuits Sel′i output 0
whenever C2

f (α) = f(α) and otherwise output Seli. We think of these circuits as “selector
circuits” which indicate whether on input α ∈ {0, 1}n (to the original variables x1, . . . , xn

over which the circuit is defined) the variable yi ∈ Y appears in the constraint for α.
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y1Sel′1

∧

y2Sel′2

∧

ymSel′m

∧

· · ·
α α α

⊕

Cf

∧

∨

α

Figure 1 A schematic depiction of the formula after hitting it with the described restriction.

The output of these selector circuits Sel′i is connected to the gate yi by an and gate.
All these m and gates are in turn connected to a circuit computing the xor of these gates.
Finally, to ensure that the circuit computes f(α) on inputs α such that Cf (α) ̸= ⊥, we
connect C1

f with C2
f by an and gate which is then connceted by a or gate to the output of

the xor circuit. This completes the description of the restriction on the structure variables.
A depiction of the resulting circuit can be found in Figure 1.

Note that this implements the intended semantics: for each input α ∈ {0, 1}n the selector
circuits output 1 on some variables yi which are then xor ’ed, and the restricted circuit
outputs⊕

i∈N(α)

yi , (16)

unless Cf (α) ̸= ⊥, in which case the output of the circuit is f(α) and all selector circuits
output 0. We require that s is larger than the size of the described circuit which is of size
O

(
m · poly(n, k)

)
+ s/2.

We have the intended semantics of the circuit and need to ensure the furthermore property:
that the restricted formula is over few variables. First, since the selector circuits Sel′i are fixed,
all evaluation variables for these subcircuits can be fixed to constants. The same holds for the
circuit Cf . Similarly, since the yi gate always carries the value of the yi variable, all 2n · m

wire variables corresponding to the Y variables can be substituted by the corresponding yi

variable and are thus restricted away.
After these restrictions the only evaluation variables left are those for the evaluation of

the ⊕ circuit. For α such that Cf (α) ̸= ⊥, the selector circuits are hard-wired to 0 and
in particular the inputs to the ⊕ circuit is hard-wired to 0, meaning that these evalation
variables can be restricted away.

There remains then only the O(t · m) evaluation variables corresponding to the evaluation
of the ⊕ circuit for inputs α such that Cf (α) = ⊥. Let us, without loss of generality, use an
xor-circuit which iteratively xors each variable. Concretely, let it have subcircuits χi where
χ1 = Sel′1 ∧y1 and χi = χi−1 ⊕ (Sel′i ∧yi) for i > 1, and χm is the overall output of the ⊕
circuit.
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The only observation required is that if the circuit Sel′i(α) = 0, then χi gets a 0 as input
from index i, independent of the value of yi. Hence the output wire variable of the circuit χi

indexed by the input α can be substituted by the output of the circuit χi−1. Hence for each
α such that Cf (α) = ⊥, we can reduce the number of free wire variables indexed by α to
O(k), as each ⊕-constraint is over at most k variables. As Cf outputs ⊥ on at most t inputs,
we end up with a restriction leaving only a total of O(t · k + m) remaining variables in the
restricted formula.

This completes the description of the restriction ρ. The only part that remains is to verify
that ρ is natural, k-determined, and m-independent. That ρ is natural is immediate – it does
not substitute any structural variable by an evaluation variable. For k-determinedness, note
that for a fixed input α at most k selector circuits output 1, and thus for every gate u the
value of Outα(u) as a function of Y can be computed by a function over those k variables.
Finally, each assignment to the remaining structure variables Y gives a valid circuit and thus
ρ is m-independent. ◀

We are ready to prove the degree lower bound, restated here for convenience.

▶ Theorem 1. For all ε > 0 there is a d = d(ε) such that the following holds. For n ∈ N, all
s ≥ nd and any Boolean function f : {0, 1}n → {0, 1} on n bits, SoS requires degree Ωε(s1−ε)
to refute Circuits(f).

Proof. Let G = (U, V, E) be an explicit bipartite graph as in Theorem 8, with U = {0, 1}n,
k = Oγ

(
(n log r)1+1/γ

)
, and |V | ≤ k2r1+γ for parameters γ > 0 and r ≤ 2n to be fixed

later. Apply Lemma 25 with t = 2n along with Cf = ⊥ to obtain, for s ≥ m · poly(n, k),
a natural m-independent k-determined variable substitution ρ for Circuits(f) such that
gout

s,α(Y ) = ⊕i∈N(α)yi. In words, the circuit of the restricted formula on input α computes an
xor of the neighborhood of the vertex α of G.

Apply Lemma 22 to ρ to conclude that if there is an SoS refutation of Circuits(f)
∣∣
ρ

of
degree d, then there is a degree d · k SoS refutation of the system of polynomial equations
computing

PG =
{ ⊕

i∈N(α)

yi = f(α) : α ∈ {0, 1}n
}

∪ {y2
i = yi | i ∈ [m]} .

As the graph G is a strong expander, we can apply Theorem 13 to get an SoS degree lower
bound of Ω(r) for the XOR-CSP instance PG defined over G, which in turn gives us an
Ω(r/k) degree lower bound for the Circuits(f)

∣∣
ρ

formula and hence also for the unrestricted
formula.

Let us fix the parameters. We want to choose r as large as possible. However, the larger
we choose r, the larger m may become, since Theorem 8 only guarantees that m ≤ k2r1+γ .
Let us analyze how large r can be chosen in terms of n and s.

Note that k = polyγ(n), where we use that r ≤ 2n, and we write polyγ(n) to denote some
polynomial in n whose degree and coefficients may depend on γ. Hence we may choose

m = s

polyγ(n) , (17)

according to the requirement on s in Lemma 25. From the guarantees of Theorem 8 we know
that r ≥ (m/k2)1/(1+γ). Substituting m according to the previous equation we get that

r ≥
(

s

k2polyγ(n)

) 1
1+γ

= s1/(1+γ)

polyγ(n) . (18)

Hence if we choose γ small enough so that 1
1+γ > 1 − ε/2 and then require s to be large

enough such that the final polyγ(n) is at most sε/2, we obtain the claimed lower bound. ◀
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In the following we prove the claimed size lower bound.

▶ Theorem 3. For all ε > 0 there is a d = d(ε) such that the following holds. Let n ∈ N

and s ∈ N such that s ≥ nd. If t ≥ s and f ∈ Fn(s/2, t), then it holds that SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuits(f).

Proof. Apply Lemma 25 with the graphs from Theorem 8 as in the proof of Theorem 1.
We get a natural m-independent k-determined variable substitution ρ and the formula
Circuits(f)

∣∣
ρ

over O(t · k + m) variables. To this formula we then apply Lemma 22 to obtain
a degree lower bound of Ω(r/k), akin to the proof of Theorem 1. By setting the parameters
as in the aforementioned proof we get the same degree lower bound of Ωε(s1−ε/3) for the
formula Circuits(f)

∣∣
ρ
. As this formula is over few variables we can apply Theorem 14 to

obtain an SoS size lower bound of exp
(

Ωε

(
(s1−ε/3 − 3k)2/(t · k + m)

))
for the restricted

formula. As variable substitutions may only decrease the size of a refutation, the same
lower bound also holds for the unrestricted formula. We obtain the desired lower bound by
choosing s large enough such that sε/3 ≥ k = polyε(n) and by recalling that t ≥ s ≥ m. ◀

5 Lower Bounds for Monotone Circuits

Recall that Mn(ℓ) denotes all Boolean monotone ℓ-slice functions on n bits: all Boolean
functions f : {0, 1}n → {0, 1} that output 0 on all inputs of Hamming weight less than
ℓ and 1 on all inputs of Hamming weight larger than ℓ. There is no restriction on the
output for inputs of Hamming weight ℓ and we have |Mn(ℓ)| = 2(n

ℓ). Further, recall that
Mn(ℓ, s, t) ⊆ Mn(ℓ) is the class of monotone Boolean ℓ-slice functions f : {0, 1}n → {0, 1}
for which there is a (not necessarily monotone) Boolean circuit Cmon

f : {0, 1}n → {0, 1, ⊥} of
size s such that
1. for all ℓ-slice inputs α ∈

([n]
ℓ

)
it holds that if Cmon

f (α) ̸= ⊥, then Cmon
f (α) = f(α), and

2. Cmon
f (α) = ⊥ on at most t inputs α ∈

([n]
ℓ

)
.

It is very convenient to work with slice functions as we have a handle on their monotone
circuit complexity: by Lemma 10 their monotone circuit size is the same as their ordinary
circuit size up to a polynomial size increase. Hence we do not need to worry whether the
functions needed for the reduction have small monotone circuits, as long as we are working
on a slice only.

The proof of the monotone lower bound is an adaption of the argument used to prove
Lemma 25. The idea is to work over the ℓth slice and disregard all other inputs. By Lemma 10
we can implement our selector circuits by small monotone circuits. We then also need to
take care of the negations in the ⊕-circuit. We push the negations down until they either
hit a gate in Y or a selector circuit. We create a set Y gates, which we can think of as the
negation of the gates in Y and also create negated selector circuits (on the ℓth slice). By
doing so we can now get rid of the last negations by appropriately connecting the appropriate
circuits. The following corollary of Lemma 10 will be useful to us.

▷ Claim 26. Let C be a Boolean circuit on n input bits of size s. Then, for ℓ ∈ [n], there is
a monotone Boolean circuit Cmon of size 2s + poly(n) computing the ℓ-slice function that is
equal to C on the ℓ-slice.

Proof. Let T≥ℓ be the threshold function that outputs 1 if and only if the Hamming weight
of an input α ∈ {0, 1}n is at least ℓ. Connect the output of C by an and gate to a circuit
computing T≥ℓ. The output of this circuit is then connected by an or gate to the output of
a circuit computing T>ℓ. Let us denote this new circuit by C ′.
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The circuit C ′ clearly outputs 1 whenever the input is of Hamming weight larger than
ℓ. Furthermore, on the ℓ-slice it is equal to C because T≥ℓ outputs 1 while T>ℓ outputs 0.
Finally the output is 0 if the Hamming weight is less than ℓ because the output of both
threshold functions is 0.

Clearly the size of the circuits computing the threshold functions is poly(n). We apply
Lemma 10 to conclude that there is a monotone circuit Cmon computing the same function
as C ′ of size 2s + poly(n). ◁

Before stating the following lemma we need to adapt some terminology to the monotone
setting. Observe that Circuitmon

s (f) is a restriction of Circuits(f). Let τ be such that
Circuits(f)

∣∣
τ

= Circuitmon
s (f). This allows us to naturally extend k-determined restrictions

to the monotone setting: a restriction ρ is a k-determined restriction for Circuitmon
s (f) if

the restriction ρτ is a k-determined restriction for Circuits(f). Similarly we can extend
m-independence to the monotone setting. This will later allow us to use Lemma 22 even
though we are working with the monotone formula.

▶ Lemma 27. For all k, ℓ, m, n, t ∈ N satisfying m ≤ 2n, and any explicit bipartite graph
G = (U, V, E) such that |U | = 2n, |V | = m and all u ∈ U are of degree deg(u) ≤ k, the
following holds. There is a constant C > 0, depending on the explicitness of G, such that
for all s ≥ C · m · nC · kC and any f ∈ Mn(ℓ, s/10, t) there is a natural m-independent
k-determined variable substitution ρ for the formula Circuitmon

s (f) such that

gout
s,α(Y ) =


1, if |α| > ℓ,

0, if |α| < ℓ,

f(α), if |α| = ℓ and Cmon
f (α) ̸= ⊥,

⊕i∈N(α)yi, otherwise,

for gout
s,α and Y as in Definition 20.

Furthermore, the formula Circuitmon
s (f)

∣∣
ρ

is over O(t · k + m) variables.

Proof. This proof is an adaptation of the argument of the proof Lemma 25. Let us describe
the natural m-independent k-determined restriction ρ for the formula Circuitmon

s (f).
As in the proof of Lemma 25 we have gates that act as Boolean variables. But instead of

having a single set Y of variables we now have two sets Y and Y , each of size m. We think
of the variables in Y as the negations of the variables in Y and ensure this by applying the
appropriate variable substitution for all α ∈ {0, 1}n and i ∈ [m].

According to Claim 26 we may assume that the circuit Cmon
f computes a monotone ℓ-slice

function in both outputs Cmon
f,1 , Cmon

f,2 for a mild increase in size; |Cmon
f | ≤ s/5 + poly(n) ≤ s/4

for s large enough. Recall that the first output of Cmon
f indicates whether the second output

bit is equal to f on the ℓ-slice. Let C
mon
f,1 be the negation of Cmon

f,1 on the ℓ-slice. In other
words, C

mon
f,1 (α) = ¬Cmon

f,1 (α) if α has Hamming weight ℓ, and C
mon
f,1 (α) = Cmon

f,1 (α) otherwise.
The monotone circuit Cmon

f is of size at most s/4 and hence according to Lemma 10 there
is a monotone circuit of size s/2 + poly(n) ≤ 5s/8 computing C

mon
f,1 (α).

We restrict the formula such that a part of the circuit is equivalent to Cmon
f and another

part is equal to C
mon
f,1 . Note that the size of these two circuits is at most 7s/8 by above

discussion.
Recall that because G({0, 1}n, Y, E) is explicit, there are circuits Sel1, Sel2, . . . , Selm, each

of size poly(n, k), where each Seli computes, given an input α ∈ {0, 1}n, whether the vertex
yi ∈ Y is a neighbor of the vertex α. Let Seli = ¬ Seli and denote by Selmon

i (respectively
Selmon

i ) the circuit obtained by applying Claim 26 to Seli (to Seli respectively). By the
guarantees of Claim 26 all these 2m circuits are of size poly(n, k).
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We restrict the formula such that a part of the circuit computes the functions

Selmon
1 , . . . , Selmon

m , Selmon
1 , . . . , Selmon

m . (19)

From these ℓ-slice selector circuits we can then define selector circuits that take Cmon
f into

account. Namely, we connect Selmon
i by an and gate to the output of C

mon
f,1 to obtain the

circuit Sel′mon
i and similarly connect Selmon

i by an or gate to Cmon
f,1 to obtain the circuit Sel′mon

i .
Finally, we also put each variable yi and ȳi onto the slice by the same construction used

in the proof of Claim 26: connect the variable yi (respectively ȳi) by an and to the threshold
circuit T≥ℓ and connect this circuit in turn by an or gate to a T>ℓ threshold circuit to obtain
ymon

i (respectively ȳmon
i ). It is well-known [30, 5, 9] that threshold circuits have montone

circuits of size poly(n) and we can thus restrict the formula such that a part of the circuit
computes ymon

i and ȳmon
i .

Finally we connect ymon
i by an and gate to the selector circuit Sel′mon

i . Note that this
circuit is equal to an ℓ-slice function. As we will see later this ensures that the whole circuit
outputs an ℓ-slice function. We connect the circuits ȳmon

i similarly: connect ȳmon
i by an or

gate to the negated selector circuit Sel′mon
i . Again, the output of this circuit is equal to an

ℓ-slice function.
Equally inportant is that these circuits behave well on the ℓ-slice. Indeed it can be

checked that the positive circuit, on input α ∈ {0, 1}n, outputs Sel′mon
i (α) ∧ yi while the

negative circuit outputs Sel′mon
i (α) ∨ ȳi. On the ℓ-slice these functions are the negation of

eachother, which we are going to use in the following.
We need to construct a monotone circuit for the xor of Sel′mon

i (α) ∧ yi for i from 1 to m,
on ℓ-slice inputs α. We take a standard O(m)-size ⊕-circuit and monotonize it by pushing
all negations in it down using De Morgan’s law until they reach one of the ⊕-circuit’s inputs
Sel′mon

i ∧yi. Whenever the negation of Sel′mon
i (α) ∧ yi is needed, we do one last step of De

Morgan and replace it by Sel′mon
i (α) ∨ ȳi.

To ensure that the circuit outputs f(α) whenever Cmon
f (α) ̸= ⊥, we connect the two

outputs of Cmon
f by an and gate and connect this gate by an or gate to the output of the

xor circuit. This completes the description of the restriction on the structure variables. A
depiction of the resulting circuit can be found in Figure 2. We ensure that s is large enough
so that above circuit can be described by the formula.

Note that the constructed circuit always outputs a monotone ℓ-slice function: as the
monotonized ⊕-circuit is non-constant, we see that if all inputs to the circuit are 0, it outputs
0 and if all inputs are 1, it outputs 1. This, in particular, implies that the circuit outputs 0
(respectively 1) if the input is below (respectively, above) the ℓ-slice and hence the entire
circuit computes a monotone ℓ-slice function.

It can be easily checked that the described restriction is m-independent and k-determined.
In order to prove the furthermore part, we need to reduce the number of evaluation variables.
This can be achieved analogous to the proof of Lemma 25 and we thus omit it here. ◀

Let us prove our degree lower bound for monotone circuits, restated here for convenience.

▶ Theorem 4. For all ε > 0 there is a d = d(ε) such that the following holds. For all
n, ℓ ∈ N, all s ≥ nd and any monotone slice function f ∈ Mn(ℓ) SoS requires degree Ωε(s1−ε)
to refute Circuitmon

s (f).
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∧
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∨
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Figure 2 A depiction of the monotone circuit, where ⊕̃ is the ⊕ circuit with the negations pushed
down.

Proof of Theorem 4. As in the proof of Theorem 1, we use the graphs from Theorem 8, with
U = {0, 1}n, k = Oγ

(
(n log r)1+1/γ

)
, and |V | ≤ k2r1+γ for parameters γ > 0 and r ≤ 2n.

We apply Lemma 27 with above graph and t = 2n along with Cmon
f = ⊥ to obtain, for

s ≥ m · poly(n, k), an appropriate natural m-independent k-determined variable substitution
ρ for Circuitmon

s (f). In particular ρ satisfies

gout
s,α(Y ) =


1, if |α| > ℓ,

0, if |α| < ℓ,

⊕i∈N(α)yi, otherwise,

for gout
s,α and Y as in definition Definition 20.

Recall that there is a restriction τ such that Circuitmon
s (f) = Circuits(f)

∣∣
τ

and we can
thus apply Lemma 22 with τρ to conclude that if there is an SoS refutation of Circuitmon

s (f)
∣∣
ρ

in degree d, then there is a degree d · k SoS refutation of the system of polynomial equations
computing

{
⊕

i∈N(α)

yi = f(α) | α ∈
(

[n]
ℓ

)
} . (20)

As the graph G is a strong expander, we can apply Theorem 13 to get an SoS degree lower
bound of Ω(r) for above system of equations. By above connection this gives an Ω(r/k) degree
lower bound for the Circuitmon

s (f)
∣∣
ρ

formula and hence also for the unrestricted formula.
Regarding the parameters, as in the proof of Theorem 1 we choose m = s/polyγ(n). Re-

peating the calculations from the aforementioned proof we obtain that r ≥ s1/(1+γ)/polyγ(n).
Thus by choosing γ small enough such that 1

1+γ > 1 − ε/2 and s large enough such that the
final polyγ(n) ≤ sε/2 we obtain the claimed degree lower bound of Ωε(s1−ε). ◀

As in the non-monotone case, we can also obtain size lower bounds for functions that
almost have a circuit of size s.
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▶ Theorem 5. For all ε > 0 there is a d = d(ε) such that the following holds. For
n, ℓ ∈ N, all s ≥ nd and t ≥ s and monotone function f ∈ Mn(ℓ, s/10, t) SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuitmon

s (f).

Proof. Analogous to the proof of Theorem 3. ◀

6 Concluding Remarks

We have shown degree and size lower bounds in the Sum-of-Squares proof system for the
minimum circuit size problem. There are a number of interesting questions left open for
further study. Let us name a few.

Better Size Lower Bounds

Whereas our degree lower bounds apply for all Boolean functions f , the corresponding size
lower bounds only apply to an albeit rich but still restricted class of functions.

Monotone Circuit Lower Bounds

For monotone circuits, we were only able to obtain lower bounds for slice functions (essentially
because they behave in many ways like non-monotone functions). An intriguing question
is whether this limitation can be overcome, or whether it is inherent and there exist some
monotone circuit lower bounds that SoS is able to prove.
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