
On the Impossibility of General Parallel
Fast-Forwarding of Hamiltonian Simulation
Nai-Hui Chia #

Rice University, Houston, TX, USA

Kai-Min Chung #

Academia Sinica, Taipei, Taiwan

Yao-Ching Hsieh #

University of Washington, Seattle, WA, USA

Han-Hsuan Lin #

National Tsing Hua University, Hsinchu, Taiwan

Yao-Ting Lin #

University of California at Santa Barbara, CA, USA

Yu-Ching Shen #

Academia Sinica, Taipei, Taiwan

Abstract
Hamiltonian simulation is one of the most important problems in the field of quantum computing.
There have been extended efforts on designing algorithms for faster simulation, and the evolution
time T for the simulation greatly affect algorithm runtime as expected. While there are some
specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time o(T), for some
large classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms
require running time at least linear in the evolution time T . On the other hand, while there exist
lower bounds of Ω(T) circuit size for some large classes of Hamiltonian, these lower bounds do not
rule out the possibilities of Hamiltonian simulation with large but “low-depth” circuits by running
things in parallel. As a result, physical systems with system size scaling with T can potentially do
a fast-forwarding simulation. Therefore, it is intriguing whether we can achieve fast Hamiltonian
simulation with the power of parallelism.

In this work, we give a negative result for the above open problem in various settings. In the
oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated
via an oracle circuit of depth o(T). In the plain model, relying on the random oracle heuristic, we
show that there exist time-independent local Hamiltonians and time-dependent geometrically local
Hamiltonians on n qubits that cannot be simulated via an oracle circuit of depth o(T/nc), where
the Hamiltonians act on n qubits, and c is a constant. Lastly, we generalize the above results and
show that any simulators that are geometrically local Hamiltonians cannot do the simulation much
faster than parallel quantum algorithms.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Hamiltonian simulation, Depth lower bound, Parallel query lower bound

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.33

Funding NH. Chia is supported by NSF award FET-2243659 and Google Scholar Award. KM.
Chung’s research is partially supported by NSTC QC project under Grant no. NSTC 111-2119-M-
001-004- and the 2021 Academia Sinica Investigator Award (AS-IA-110-M02). HH. Lin is supported
by NSTC QC project under Grant no. NSTC 111-2119-M-001-004- and MOST Grant no. 110-2222-
E-007-002-MY3. YC. Hsieh and YC. Shen are supported by NSTC QC project under Grant no.
NSTC 111-2119-M-001-004-. YT. Lin is partially supported by Executive Yuan Data Safety and
Talent Cultivation Project (AS-KPQ-110-DSTCP). Part of the work was done when YC. Hsieh and
YT. Lin were working at Academia Sinica.

© Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin,
Yao-Ting Lin, and Yu-Ching Shen;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 33; pp. 33:1–33:45

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nc67@rice.edu
mailto:kmchung@iis.sinica.edu.tw
mailto:ychsieh@cs.washington.edu
mailto:linhh@cs.nthu.edu.tw
mailto:yao-ting_lin@ucsb.edu
mailto:yuching@iis.sinica.edu.tw
https://doi.org/10.4230/LIPIcs.CCC.2023.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Impossibility of Fast-Forwarding of Hamiltonian Simulation

1 Introduction

Simulating a physical system with a specified evolution time is an essential approach to study
the properties of the system. In particular, given a Hamiltonian H that presents the physical
system of interest and the evolution time t, the goal is to use some well-studied physical system
as a simulator to implement e−iHt when H is time-independent or expT

(
−i
∫ t

0 H(t′)dt′
)

for
time-dependent H, where expT denotes the time-ordered matrix exponential. Intuitively, a
simulator simulates a Hamiltonian H step by step and thus requires time at least linear in t.
On the other hand, if one can use a well-studied physical system (e.g., digital or quantum
computers) to simulate the Hamiltonian of interest with time significantly less than the
specified evolution time, it can significantly benefit our study of physics. Following this line
of thought, a fundamental question for simulating Hamiltonians is:

Can a simulator simulate Hamiltonians in time strictly less than the evolution time?

This is called fast-forwarding of Hamiltonians. In this work, we investigate the possibility of
achieving fast-forwarding of Hamiltonian using quantum computation.

It is known that quantum algorithms can fast-forward some Hamiltonians. Atia and
Aharonov [3] showed that commuting local Hamiltonians and quadratic fermionic Hamiltoni-
ans with evolution time t = 2Ω(n) can be exponentially fast-forwarded by quantum algorithms,
where the Hamiltonian applies on n qubits. This result implies the existence of quantum
algorithms that simulate the two classes of Hamiltonians in poly(n) time. Gu et al. [22]
showed that more Hamiltonians could be exponentially or polynomially fast-forwarded, such
as the exponential fast-forwarding for block diagonalizable Hamiltonians and polynomial
fast-forwarding method for frustration-free Hamiltonians at low energies.

The existence of general fast-forwarding methods for Hamiltonians using quantum com-
puters has also been studied. In particular, people investigated whether all Hamiltonians with
some “succinct descriptions”, such as local and sparse Hamiltonians, can be fast-forwarded.
Berry et al. [6] proved no general fast-forwarding for all sparse Hamiltonians of n qubits
for evolution time t = nπ/2 by a reduction from computing the parity of a binary string.
In particular, computing the parity of an n-bit string requires Ω(n) quantum queries, and
they showed that any algorithm that simulates the corresponding Hamiltonian in time o(n)
will violate the aforementioned query lower bound of parity. Atia and Aharonov [3] further
showed that if all 2-sparse row-computable1 Hamiltonians with evolution time 2o(n) can
be simulated in quantum polynomial time, then BQP = PSPACE. In other words, the
result in [3] rules out the possibility of exponential fast-forwarding for Hamiltonians with
evolution time superpolynomial in the dimension under well-known complexity assumptions.
Haah et al. [23] showed that there exists a piecewise constant bounded 1D time-dependent
Hamiltonian2 H(t) on n qubits, such that any quantum algorithm simulating H(t) with
evolution time T requires Ω(nT) gates.

All these works, however, mainly considered lower bounds on the number of gates required
for simulation, and it does not rule out the possibility that one can complete the simulation
with time strictly less than t by using parallelism. Briefly, if many local gates in an algorithm
operate on disjoint sets of input, then these gates can be applied together, and the efficiency
of the algorithm is captured by the circuit depth instead of the number of gates. For instance,
the result in [6] was based on the fact that the query complexity of parity is Ω(n) and thus,

1 Given the row index, one can efficiently compute the column indices and values of the non-zero entries
of the row.

2 The Hamiltonian is 1D local, and there is a time slicing such that H(t) is time-independent within each
time slice. See [23] for the formal definition.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:3

one needs Ω(t) queries to simulate the Hamiltonian evolution; however, if one runs t queries
in parallel, it is possible to solve the parity problem with one layer of queries. Therefore, a
direct translation of [6] does not rule out the possibility of constant depth simulation of the
Hamiltonian evolution for time t by running O(t) simulations in parallel.

Parallel runtime (i.e., the circuit depth in the quantum circuit model) could be another
suitable notion for capturing the efficiency of the Hamiltonian simulation. Broadly speaking,
any physically controllable and implementable system can be used as a simulator, so-called
quantum analogue computing [17,18]; instead of having one local interaction at each time
step, a simulator that is realized by some physical system will have the whole system evolve
together. From a computational perspective, a positive result of fast-forwarding Hamiltonians
using parallel algorithms can imply that the simulation can be done in time strictly less than
the specified evolution time given sufficient computational resources. In particular, if there
exists an algorithm that simulates all Hamiltonians in time less than the simulation time t,
we might be able to further reduce the runtime by recursively applying the algorithm with
sufficient quantum resources. Hence, such algorithms can be a powerful tool for studying
quantum physics. In fact, parallel quantum algorithms for Hamiltonian simulation have
been studied and showed some advantages. Zhang et al. [39] presented a parallel quantum
algorithm, whose parallel runtime (circuit depth) has a doubly logarithmic dependency
on the simulation precision. Moreover, Haah et al. [23] showed that the circuit depth of
their algorithm for simulating geometrically constant-local Hamiltonians can be reduced to
O(t · polylog(tn/ϵ)) by using ancilla qubits. In the last, choosing other physical systems
similar to the target Hamiltonians as simulators is possible to gain advantages, which is the
idea of quantum analogue computing.

We first explore the possibility of achieving fast-forwarding of Hamiltonians using parallel
quantum algorithms, i.e., quantum algorithms that have circuit depth strictly less than
the simulation time. We call this parallel fast-forwarding. Our first goal is to address the
following question:

For all sparse or local Hamiltonians, do there exist quantum algorithms that simulate the
Hamiltonians with circuit depth strictly less than the required evolution time?

Furthermore, we noticed that more general simulators (in addition to quantum cir-
cuit models) are widely considered for Hamiltonian simulation, such as quantum analogue
computing. So, we are also wondering about the following question.

For all sparse or local Hamiltonians, does there exist a natural simulator that simulates the
Hamiltonians with evolution time strictly less than the required evolution time?

1.1 Our Results
In the work, we give negative answers to the above questions. Roughly speaking, we show
that under standard cryptographic assumptions, there exists Hamiltonians that cannot be
parallelly fast-forwarded by quantum computers and any simulators that are geometrically
local physical systems.

We define parallel fast-forwarding as follows:

▶ Definition 1 (Parallel fast-forwarding). Let H be a subset of all normalized Hamiltonian
(∥H∥ = 1) and Hn be the subset of Hamiltonian in H which acts on n qubits. We say that
the set H can be (T (·), g(·), ε(·))-parallel fast forwarded if there exists an efficient classical
algorithm A(1n, t) that outputs a circuit Cn,t, i.e., {Cn,t} is a uniform quantum circuit, such
that for all n ∈ N, t ≤ T (n), Cn,t satisfies the following two properties.

CCC 2023

33:4 Impossibility of Fast-Forwarding of Hamiltonian Simulation

The circuit Cn,t has depth at most g(t).
For all H ∈ Hn, |ψ⟩ ∈ C2n , the circuit Cn,t(H, |ψ⟩) (or CHn,t(|ψ⟩) under the oracle setting)
has output state that is ε(n) close to the Hamiltonian evolution outcome e−iHt|ψ⟩.

In other words, there exists uniform quantum circuit Cn,t such that for every Hamiltonian
H ∈ Hn, the evolution of H to time t up to some predetermined time bound T (·) can be
simulated by C.

Compared to [3], Definition 1 focuses on C’s circuit depth instead of the number of gates
and requires the depth of C to be smaller than t rather than being poly(n). In particular,
when t = superpoly(n), the definition in [3] can only be satisfied by a circuit C that has gate
number superpolynomially smaller than t, and C that has circuit depth slightly less than
t can satisfy Definition 1. Therefore, we can also interpret the no fast-forwarding theorem
in [3] as refuting the possibility of achieving Definition 1 with gate number (and also circuit
depth) superpolynomially smaller than t = superpoly(n) for a specific family of Hamiltonians.
However, given that negative result, one might ask the following question:

Can we achieve parallel fast-forwarding with g(t) slightly smaller than t, such as g(t) =
√
t?

In this work, we address the aforementioned question and show impossibility results for
parallel fast-forwarding with circuit depth g(t) slightly smaller than t for local or sparse
Hamiltonians. Our first result is an unconditional3 result under the oracle model.4

▶ Theorem 2 (No parallel fast-forwarding for sparse Hamiltonians relative to random permuta-
tions, simplified version of Theorem 37). Relative to a random permutation oracle over n-bit
strings, for any polynomial T (·), there exists a family of time-independent sparse Hamiltoni-
ans H such that H cannot be (T (·), g(·), ε(·))-fast forwarded for some g = Ω(t) and ε = Ω(1).

To obtain no fast-forwarding result in the standard model,5 we rely on cryptographic
assumptions that provide hardness against low-depth algorithms. We assume the existence
of iterative parallel-hard functions, formally defined in Definition 43. Roughly speaking, an
iterative parallel-hard function is a function of the form f(k, x) = g(k)(x) := g(g(. . . g(x)))︸ ︷︷ ︸

k times

,

such that g is efficiently computable (by some circuit of size s), but g(k)(x) is not computable
for circuits with depth much less than k.

With such a cryptographic assumption, we obtained the following two no-fast-forwarding
theorems under the standard model.

▶ Theorem 3 (No parallel fast-forwarding for local Hamiltonians, simplified version of Theo-
rem 45). Assuming the existence of iterative parallel-hard functions with size parameter s(n),
then for every polynomial T (n), there exists a family of time-independent local Hamiltonians
H such that H cannot be (T (·), g(·), ε(·))-fast forwarded for some g = Ω(t/s(n)) and ε = Ω(1).

▶ Theorem 4 (No parallel fast-forwarding for time-dependent geometrically local Hamiltonians,
simplified version of Theorem 46). Assuming the existence of iterative parallel-hard functions
with size parameter s(n), then for every polynomial T (n), there exists a family of time-
dependent geometrically local Hamiltonian H such that H cannot be (T (·), g(·), ε(·))-fast
forwarded for some g = Ω(t/ns(n)) and ε = Ω(1).

3 That is, the result holds without making any computational assumptions.
4 By the oracle model we mean that the algorithm can only access the Hamiltonian by making (quantum)

queries to the oracle that encodes the description of the Hamiltonian. See Section 8 for the definition.
5 By the standard (plain) model we mean that the algorithm is given the classical description of the

Hamiltonian as input, which is the standard setting of the Hamiltonian simulation problem. Moreover,
there is no oracle that can be accessed by algorithms. We will use the terms “standard model” and
“plain model“ interchangeably throughout this work.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:5

Some loss in parameters are hidden in Theorem 3 and Theorem 4. Readers are referred
to the full theorems in Section 9 for precise parameters.

We note that the existence of parallel-hard functions with an iterative structure is widely
used in cryptography. Our definition of iterative parallel-hard functions adapts from the
iterated sequential function proposed by Boneh et al. [9]. Functions of this form play a crucial
role in the recent construction of verifiable delay functions (VDF) [19, 32,35]. In contrast to
its wide usage, there have not been many proposals on candidates for such iterative hard
functions. Iterative squaring [33], which is probably the most widely used candidate, is
not hard against quantum circuits. There are some recent attempts toward constructing
iterated quantum-hard functions from isogenies [12, 20], but these assumptions are much less
well-studied.

As a concrete instantiation of our iterated parallel-hard function, we adopted a hash
chain, which is also widely assumed to be hard to compute within low depth. In Section 6,
we justify the quantum parallel hardness of the hash chain by showing a depth lower bound
of computing the hash chain in the quantum random oracle model [10].

Our results in Theorem 2, Theorem 3, and Theorem 4 imply that no quantum algorithm
can simulate certain families of local or sparse Hamiltonians with circuit depth polynomially
smaller than t. For instance, suppose t = nc for some constant c and s(n) = n2, then by
Theorem 3, no quantum algorithm can simulate the local Hamiltonians with circuit depth
smaller than tc−2.

Since local Hamiltonians are sparse, Theorem 3 also implies no parallel fast-forwarding
of sparse Hamiltonians in the standard model. Finally, Theorem 4 and Theorem 3 are
incomparable due to the fact that the Hamiltonians in Theorem 4 are time-dependent and
the depth lower bound has a factor of n.

It is worth noting that the results above show no parallel fast-forwarding when using
“quantum circuits” as simulators, which does not directly imply hardness results when
considering other physical systems as simulators. Especially, choosing physical systems that
are similar to the Hamiltonians to be simulated is possible to gain advantages, and physical
systems naturally evolve the whole system together instead of applying local operators one by
one. Therefore, it is nontrivial whether similar results hold for other simulators. Fortunately,
we are able to generalize Theorem 4 and Theorem 3 to show that natural simulators that are
geometrically local Hamiltonians cannot do much better than quantum circuits.

▶ Theorem 5 (No fast-forwarding for local Hamiltonians with natural simulators, simplified
version of Corollary 55). Assuming the existence of iterative parallel-hard function with size
parameter s(n), then for every polynomial T (n), there exists a family of time-independent
local Hamiltonians H over Õ(n) qubits satisfying the following. For any geometrically
constant-local Hamiltonian HB acting on poly(n) qubits, using HB to simulate any HA ∈
H for any evolution time t ∈ [0, s(n)T (n)] needs an evolution time at least (t/2s(n) −
O(s(n)))/ polylog(tn).

▶ Theorem 6 (No fast-forwarding for geometrically local Hamiltonians with natural simulators,
simplified version of Corollary 54). Assuming the existence of iterative parallel-hard functions
with size parameter s(n), then for every polynomial T (n), there exists a family of time-
dependent geometrically local Hamiltonians H over Õ(n) qubits satisfying the following. For
any geometrically constant-local Hamiltonian HB acting on poly(n) qubits, using HB to
simulate any HA ∈ H for any evolution time t ∈ [0, ns(n)T (n)] needs an evolution time at
least

(
t

ns(n) −O(ns(n))− polylog(n)
)
/ polylog(tn).

CCC 2023

33:6 Impossibility of Fast-Forwarding of Hamiltonian Simulation

2 Technical Overview

The main idea

Our idea is to reduce some tasks that have a circuit or query depth lower bounds (i.e.,
parallel-hard problems) to simulating specific Hamiltonians with evolution time t, such that
the existence of parallel fast-forwarding of the Hamiltonians will contradict the circuit depth
lower bound and also violate the parallel hardness of the task. For instance, one can reduce
parity, which is not in QNC0 (the class of all constant-depth bounded fan-in circuits), to
simulate a corresponding Hamiltonian H with some time t, such that e−iHt outputs the parity
of the input. Along this line, if e−iHt can be implemented by a constant-depth quantum
circuit, we can compute parity – this violates the quantum circuit lower bound on parity!
Following the same idea, one can also derive some no-go results for parallel fast-forwarding
from unstructured search, where the k-parallel quantum query complexity is Θ(

√
N/k),

where k-parallel means each “query layer” can have k queries in parallel [24, 36].
However, there are several challenges: First, those above-mentioned parallel-hard problems

can be solved in depth smaller than the input size. This could result in a Hamiltonian
simulation in which the evolution time is smaller than the number of qubits. Although this
might still lead to an impossibility result for parallel fast-forwarding of an o(n) evolution
time, parallel fast-forwarding algorithms for such a short evolution time seem not that useful.
In fact, to the best of our knowledge, it is not easy to find a problem that can be computed
in quantum polynomial time while having a quantum depth strictly greater than the input
size using polylog(n) parallel queries. So, one technical contribution of our work is finding
such problems and proving their quantum depth.

Second, finding appropriate reductions from the parallel-hard problems to Hamiltonians
of our interest and preserving the input size and the quantum depth is also challenging. Note
that we are focusing on sparse or local Hamiltonians with evolution time, a polynomial in
the number of qubits. One intuitive approach is trying the circuit-to-Hamiltonian reduction
in [25, 30]. Briefly, the reduction uses a t-depth circuit on n qubits to simulate a local
Hamiltonian on n + t qubits with time t, where the additional t qubits are for the “clock
register”. This, as mentioned above, has an evolution time smaller than the number of qubits.
In this work, we find reductions that map a d-depth n-qubit quantum computation with
d = poly(n) to a local or sparse Hamiltonian with the number of qubits and evolution time
“close to” n and t respectively.

Another challenge is that we need the parallel-hard problem as an iterative structure
to show no parallel fast-forwarding theorems. More specifically, our goal is to prove that
some Hamiltonians cannot be parallel fast-forwarded with any evolution time in the specified
range. Therefore, we might need a sequence of parallel-hard problems such that there are
corresponding parallel-hard problems for all t in the range. In addition, given a parallel-hard
problem with an iterative structure, it is not trivial how to reduce it to one Hamiltonian H

with different evolution times t such that simulating H for different t gives the corresponding
answers.

Parallel hardness of the underlining assumptions

One candidate for parallel-hard problems with an iterative structure of our purpose is the
hash chain. Roughly speaking, let X be a finite set and h : X → X be a hash function. An
s-chain of h is a sequence x0, x1, . . . , xs ∈ X such that xi+1 = h(xi) for any i ∈ [s−1]. Given
quantum oracle access to h, the goal of the algorithm is to find an s-chain. Classically, it was

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:7

proven that classical algorithms require query depth of at least s to output an s-chain with
constant probability. A similar result also holds for quantum algorithms that make quantum
queries to the hash function [16]. Along this line, the hash chain seems ideal for our purpose
because s can be a polynomial in log(|X |) and has the iterative parallel hardness.

However, a hash function is generally irreversible, and this fails standard approaches for
reducing the problem to Hamiltonian simulation. Briefly, one encodes h as a Hamiltonian
H such that evaluating h is equivalent to applying e−iH . Since e−iH is a unitary that is
reversible, evaluating h also needs to be reversible. Here, we give permutation chain and
twisted hash chain that are iteratively parallel-hard and the underlining function is reversible.
However, the reversibility imposes another challenge, as the ability to query the inverse of
the permutation breaks the known composed oracle techniques used to prove the hardness of
hash chain [16]6. Therefore we tailored a two-step-hybrid argument to prove the hardness of
the random permutation chain with the ability to query the inverse of the permutations.

Note that for oracle lower bounds of parallel query algorithms, while [24] gives optimal
bounds by generalizing the adversary method, it is notoriously hard to find the suitable
adversary matrices. Therefore we derive the query lower bounds for our problems by crafting
a hybrid argument and using the compressed oracle technique [38] respectively.

2.1 No parallel fast-forwarding for sparse Hamiltonians relative to
random permutation oracle

We first introduce the permutation chain and demonstrate how to prove Theorem 2 via the
graph-to-Hamiltonian reduction based on the permutation chain. This shows no parallel
fast-forwarding for sparse matrices relative to a random permutation oracle.

Permutation chain

One of the reversible parallel-hard problem we formulated is the permutation chain. In this
problem, we are given as inputs q permutations of N := 2n elements Π1,Π2, . . . ,Πq.7 Let
SΠ be the unitary that enables one to query to each Πi and their inverses in superposition.
Let x̄1 = 1 and x̄i+1 = Πi(x̄i) so that x̄q+1 = Πq(. . .Π2(Π1(1))). With q queries to
SΠ, it is easy to calculate x̄i, while we prove that it is only possible to calculate x̄i with
probability O(q

√
k/N) using ⌊(q − 1)/2⌋ k-parallel queries8 to SΠ. Therefore if we have

q, k = O(polylog(N)), the success probability is negligible in n, even when k is larger than q
and having access to the inverses of Π1,Π2, . . . ,Πq.

To bound the success probability, we employed a two-step hybrid. First, we show that we
can replace each SΠ with SΠ̃. SΠ̃ is a set of functions that return zeros almost everywhere
except at {x̄i}, where they behave the same as SΠ (see Figure 2(a)(b)). We prove that we
can approximately simulate one call to a random SΠ with two calls to SΠ̃. Now, SΠ̃ looks
like a constant zeros function, we can erase some of its values without getting caught. In
the second step, we show that we can release the Π̃i’s on a finely controlled schedule, with
only negligible change in the output probability. Define Π⊥ to be a constant zero function.
Define SΠ̃ℓ to be the unitary corresponding to Π̃1, Π̃2, . . . , Π̃ℓ,Π⊥, . . . , i.e., all but the first ℓ
permutations are erased (see Figure 1). We show that if we replace the first k-parallel queries

6 One can use the technique in [37] to convert random permutations to random functions, but the
conversion only works when the algorithm has no access to the inverse oracle.

7 They can be viewed as a special case of one permutation of qN elements.
8 k-parallel means each “query layer” can have k queries in parallel

CCC 2023

33:8 Impossibility of Fast-Forwarding of Hamiltonian Simulation

of SΠ̃ with SΠ̃1, second k-parallel queries of SΠ̃ with SΠ̃2, third k-parallel queries of SΠ̃
with SΠ̃3, etc, we can only be caught with negligible probability. Intuitively, this is because
while we are at the i-th query layer, it is hard to find any non-zero values of Π̃i+1, . . . , Π̃q.
Therefore, if an algorithm only makes q − 1 queries to SΠ̃, we can replace the queries with
SΠ̃1,SΠ̃2, . . . ,SΠ̃q−1. It is impossible to find x̄q+1 with non-negligible probability since these
oracles do not have information of Π̃q.

Graph-to-Hamiltonian reductions

The purpose of graph-to-Hamiltonian reduction is using quantum walk on a line [14] to
solve the permutation chain. Briefly, we use a graph to encode the permutation chain and
let Hamiltonian H be the adjacency matrix that represents the graph. Then, the time
evolution operator e−iHt helps to find the solution of permutation chain. Therefore, a
low-depth Hamiltonian simulation algorithm for H could result in breaking the hardness of
permutation chain. This gives our first impossibility result of parallel fast-forwarding for
sparse Hamiltonians.

Let Π1,Π2, . . .ΠL be L permutations over N elements. We use a graph with N(L+ 1)
vertices in which each vertex labelled by (j, x) to record the permutation chain, where
j ∈ {0, 1, . . . , L} and x ∈ [N]. The vertices (j, x) and (j + 1, x′) are adjacent if and only if
x′ = Πj+1(x). The construction of the graph has followings properties. First, the graph
consists of N disconnected line because each Πj is a permutation. Second, each vertex (q, x)
that connects to (0, x0) satisfies xq = Πq(Πq−1 · · · (Π1(x0)). To solve the permutation chain
problem, we start from the vertex (0, x0) and walk along the connected line. When stopping
at a vertex (q, xq), the pair (xq, x0) would be a solution of permutation chain. It is obvious
that the adjacency matrix of the corresponding graph is sparse. We let the Hamiltonian H

determining the dynamics of the walk be the adjacency matrix of the graph, and our goal is
to find (xq, x0) by simulating e−iHt given sparse access to H.

There are two main challenges for building such a reduction: First, we need to implement
the sparse oracle access to the corresponding Hamiltonian. This requires oracle access to the
permutation and inverse permutation oracle. More specific, we need to implement two oracles
that are used in the Hamiltonian simulation algorithm to execute the quantum walk. The
first one is the entry oracle OH , which answers the element value of H when queried on the
matrix index. The second one is the sparse structure oracle OL, which answers the indices
of the nonzero entries when queried on the row index. To implement OH , it is equivalent
to checking if two vertices (j, x) and (j + 1, x′) are adjacency. It can be done by querying
Πj+1(x). To implement OL, it is equivalent to finding the vertices that are adjacent to (j, x).
Finding (j + 1, x′) adjacent to (j, x) can be done by querying Πj+1(x), but finding (j − 1, x′′)
needs to query Π−1

j (x). Hence, we need to consider the security of permutation chain when
the inversion oracle Π−1

j is given to the adversary. We bypass this challenge by showing that
the our permutation chain is secure against quantum adversaries even if inverse permutation
oracle is given as we previously discussed.

Second, we need to show that the simulation algorithm is able to walk fast enough so
that simulating H for evolution time close to the length of the chain gives the solution to
the permutation chain. To be more precise, we aim to design the system such that after
walking for time t, it reaches the vertex further than t with high probability. Recall that H
determining the dynamics of the walk is the adjacency matrix of the graph corresponding to
the permutation chain. We observe that for such quantum walk system, it indeed reaches
some points beyond t for the walking time t with high probability. At any time t, the system
is described by the quantum state e−iHt|0, x0⟩. The probability of stopping on the vertex

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:9

(q, xq) at time t is P (q) =
∣∣⟨q, xq|e−iHt|0, x0⟩

∣∣2. We have
∣∣⟨q, xq|e−iHt|0, x0⟩

∣∣ = qJq(2t)/t for
t ∈ [0, L/2], where Jq(·) is the q-th order Bessel function [14]. By the properties of Bessel
function, we show that

∑L
q=⌈t⌉ P (q) = O(1), which means that the probability of stopping at

a vertex (l, xl) such that l > t is high. As a result, it breaks the hardness of permutation
chain if e−iHt can be implemented with o(t) queries.

2.2 No parallel fast-forwarding for (geometrically) local Hamiltonians in
the plain model

To show no fast-forwarding of (geometrically) local Hamiltonians in the plain model, the
combination of the permutation chain and the graph-to-Hamiltonian reduction used in
Section 2.1 might be insufficient. First, it is unclear how to instantiate random permutation
oracle. In addition, even if we can translate the permutation chain to a parallel-hard quantum
circuit in the plain model, the graph-to-Hamiltonian reduction inherently provides sparse
oracle access to the Hamiltonian from oracle access to the permutation chain. However, we
need to have the full classical descriptions of each local term for simulating local Hamiltonians.

Observing these difficulties, we introduce the twisted hash chain and the circuit-to-
Hamiltonian reduction for proving Theorem 3 and Theorem 4.

Twisted hash chain

In order to implement a reversible operation (or a permutation), we follow the idea of
the Feistel network [29]. Roughly speaking, the Feistel network is an implementation of
block ciphers by using cryptographic hash functions. By means of chaining quantum query
operators as in Figure 3, the outputs in each layer satisfy xi = H(xi−1)⊕ xi−2. Therefore,
we can think of it as a “quantum version” of the Feistel networks. Informally, the goal of the
algorithm is to output the head and tail of a chain of length q + 1 by using at most q depth
of queries.

For proving the parallel hardness, we use the compressed oracle technique by Zhandry [38].
In particular, the analysis is undergone in the framework of Chung et al. [16] where they
generalize the technique to the parallel query model. Our proof is inspired by the parallel
hardness of the standard hash chain proven in [16]. For technical reasons, the challenge is
the following: in the twisted hash chain problem, the algorithm is not required to output all
elements of the chain and their hash values. Therefore, we cannot directly apply the tools
provided in [16]. In addition, we cannot simply ask the algorithm to spend extra queries for
outputting the hash values since this would lead to a trivial bound (we call the extra queries
for generating the whole chain the “verification” procedure). Instead, we need a more fine-
grained analysis of the verification procedure. First, we notice that since xi = H(xi−1)⊕xi−2,
the verification requires sequential queries. Therefore, unlike Theorem 5.9 in [16] where the
verification procedure only requires parallel queries, the analysis for our purpose is more
involved.

We bypass the aforementioned issue by reduction. Suppose there is an algorithm A
outputs x0, xq, xq+1 such that x0, . . . , xq+1 form a (q + 1)-chain by making q k-parallel
queries. Then we can construct a reduction B which first runs A and obtain x0, xq, xq+1.
Next, B starts with x0, xq+1 and queries each element of the chain iteratively in parallel
until approaching xq−1, x2q. If A successfully outputs a (q + 1)-chain, then it implies that B
also outputs the complete (2q+ 1)-chain with hash values but H(x2q+1) by making a total of
2q k-parallel queries. As a result, it remains to analyze the success probability of making the
last additional query on x2q+1. In this way, it significantly simplifies the proof.

CCC 2023

33:10 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Circuit-to-Hamiltonian reductions

For our results in the plain model, we leverage the power of the random oracle heuristic.
From the parallel hardness of twisted hash chain, we can obtain a heuristically parallel-hard
circuit that preserves the iterative structure. Evaluation of this circuit to large depth directly
translates to computing a hash chain of large length, which is assumed to be hard for low
depth circuit. To translate the hardness to a no parallel fast-forwarding result, we embed
the computation of the circuit to a Hamiltonian via two different approaches.

To embed circuit computation to a time-independent Hamiltonian, we use the technique
from Nagaj [30], which demonstrate how to transform a circuit computation with size T
to a Hamiltonian evolution problem of time O(T log T). In our work, we make two major
modification upon Nagaj’s technique. First, we observed that Nagaj’s technique fits well
with our iterated structure of circuit. At a high level, simulating Hamiltonian obtained from
Nagaj’s compiler can be interpreted as a quantum walk on a line, where each point on the
line correspond to a computation step/gate of the circuit. Again by the detailed analysis
on Bessel function that we used in the graph-to-Hamiltonian reduction, we observe that
we can obtain a “depth O(t)” intermediate state of computing C by evolving H for time
O(t). This not only gives a better fast-forward lower bound, but also allows us to obtain
a Hamiltonian that is hard to fast-forward on every evolution time within time bound T .
Second, Nagaj’s construction gives a Hamiltonian of O(n+ T)-qubits, where n is the circuit
input size and T is the circuit size. This is an issue because it restricts our no fast-forwarding
results to evolution times small than the Hamiltonian size. We overcome this by introducing
a new design for the clock state via the Johnson graph. Our restructured clock state allows
a fine-grained tradeoff between the locality parameter and the Hamiltonian size.

For our second construction, we achieve the geometrically local property with the power of
time-dependent Hamiltonians. Our idea is to use the piecewise-time-independent construction
from [23], in which simulating the Hamiltonian for each time segment on the initial state
behaves equivalently to applying a gate on the state. We take one step further by transforming
our circuit to contain gates operating on neighboring gates only. This gives us a geometrically
2-local Hamiltonian which is hard to fast-forward. Combined with the algorithm that
simulates geometrically local Hamiltonians also by [23], our result tightens the gap between
upper bounds and lower bounds to a small polynomial in qubit number n.

▶ Remark 7. Two things worth to be noted for the two approaches in Section 2.1 and
Section 2.2:

If one can instantiate random permutations by hash functions or other algorithms without
using keys, one can obtain Theorem 3 and Theorem 4 by combining the permutation
chain and the circuit-to-Hamiltonian reduction.

The combination of the twisted hash chain and the circuit-to-Hamiltonian reduction
can give no parallel fast-forwarding for Hamiltonians in the random oracle model. This
is similar to Theorem 2; however, Theorem 2 using the permutation chain and the
graph-to-Hamiltonian reduction provides a better size of the Hamiltonians. In particular,
the Hamiltonian in Theorem 2 has the number of qubits independent of the evolution
time, while the Hamiltonians given from the circuit-to-Hamiltonian reduction has the
number of qubits that is poly-logarithmic in the evolution time.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:11

3 Open Questions

In this work, we showed that the existence of a parallel-hard problem with an iterative
structure implies no parallel fast-forwarding of sparse and (geometrically) local Hamiltonians
under cryptographic assumptions. Along this line, the first question that is natural to ask
is whether there exist more Hamiltonians that have succinct descriptions and cannot be
parallelly fast-forwarded under other computational assumptions.

We are also wondering whether the existence of parallel-hard problems with an iterative
structure is equivalent to no parallel fast-forwarding. This is equivalent to proving or
disproving that no parallel fast-forwarding results in parallel-hard problems with an iterative
structure. Intuitively, One can show that the existence of Hamiltonians that cannot be
parallelly fast-forwarded implies some quantum circuits that have no smaller circuit depth.
This follows from the fact that if one can implement a quantum circuit with a depth
smaller than the quantum simulation algorithm for the Hamiltonian, one can achieve parallel
fast-forwarding. However, this task asks the algorithm to output quantum states close to
e−iHt|ψ⟩ and thus is not a “classical computational problem” as parallel-hard problems with
an iterative structure.

In addition, we want to match the upper and lower bounds for parallel fast-forwarding of
Hamiltonian simulation. For instance, for geometrically local Hamiltonians, the algorithms
in [23] require depth O(t · polylog(tn/ϵ)), where n is the number of qubits and ϵ is the
precision parameter. There is still a O(1/ns(n)) gap compared to our result in Theorem 4.
Likewise, our results for sparse (Theorem 2) and local Hamiltonians (Theorem 3) have not
matched the upper bounds from known quantum simulation algorithms, such as [27,28,39].

The questions mentioned above are to investigate the optimal quantum circuit depth for
Hamiltonian simulation under certain computational assumptions. Note that the Hamiltonian
simulation problem has classical inputs and quantum outputs. Inspired by this, we are
wondering a more general question: is it possible to prove quantum circuit lower bounds for
complexity classes that have classical inputs and quantum outputs? For example, can we
unconditionally show quantum circuit depth lower bounds for Hamiltonian simulation or
some quantum states with succinct classical descriptions? Note that although showing circuit
depth lower bounds for languages is challenging and has some barriers, complexity classes
with quantum outputs might have specific properties and provide new insights into showing
quantum circuit depth lower bounds.

4 Preliminaries and Notation

4.1 Notation
For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. The trace distance between two density
matrices ρ and σ is denoted by ∆(ρ, σ) := 1

2 ∥ρ− σ∥1 = 1
2 tr
(√

(ρ− σ)†(ρ− σ)
)

. Let x1, x2

be n-bit strings, we use x1 ⊕ x2 to denote the bitwise XOR of x1 and x2. The Kronecker
delta is denoted by δjk where δjk = 0 if j ̸= k and δjk = 1 if j = k.

4.2 Hamiltonian simulation
▶ Definition 8 (Hamiltonian simulation). A Hamiltonian simulation algorithm A takes as
inputs the description of the Hamiltonian H, an initial state |ψ0⟩, the evolution time t ≥ 0
and an error parameter ϵ ∈ (0, 1]. Let |ψ̃t⟩ be the ideal state under the Hamiltonian H

for evolution time t with the initial state |ψ0⟩. In other words, |ψ̃t⟩ := e−iHt|ψ0⟩ for a

CCC 2023

33:12 Impossibility of Fast-Forwarding of Hamiltonian Simulation

time-independent H, and |ψ̃t⟩ := expT
(
−i
∫ t

0 H(t′)dt′
)
|ψ0⟩ for a time-dependent H, where

expT is the time-ordered matrix operator. The goal of A is to generate an approximation
|ψt⟩ of the evolved quantum state |ψ̃t⟩ such that

∆
(
|ψt⟩⟨ψt|, |ψ̃t⟩⟨ψ̃t|

)
≤ ϵ.

4.3 Basic quantum computation
Below, we provide a brief introduction to quantum computation. For more basics, we refer
the readers to [31]. Throughout this work, we use the standard bra-ket notation.

▶ Definition 9 (Quantum circuit model). A quantum circuit consists of qubits, a sequence of
quantum gates, and measurements. A qubit is a two-dimensional complex Hilbert space. Each
qubit is associated with a register. A quantum gate is a unitary operator acting on quantum
registers. We say a quantum gate is a k-qubit gate if it acts non-trivially on k qubits.

▶ Theorem 10 (Universal gate sets [11]). There exists a universal gate set that consists of
a finite number of quantum gates such that any unitary operator can be approximated by
composing elements in the universal gate set within an arbitrary error. Furthermore, every
element in the universal gate set is a one- or two-qubit gate.

▶ Definition 11 (Quantum circuit depth). Given a finite-sized gate set G, a d-depth quantum
circuit or a quantum circuit of depth d with respect to G consists of a sequence of d layers
of gates such that (i) each gate belongs in G and (ii) each gate within the same layer acts on
disjoint qubits. We omit the gate set G when it is clear from the context.

▶ Definition 12 (Quantum query operator). Given an oracle f : {0, 1}n → {0, 1}m, the query
operator Of is defined as

Of |x, y⟩ := |x, y ⊕ f(x)⟩.

▶ Definition 13 (Parallel quantum query operator). Given an oracle f : {0, 1}n → {0, 1}m.
The k-parallel query operator O⊗kf is defined as

O⊗kf |x,y⟩ := |x,y⊕ f(x)⟩,

where x = (x1, . . . , xk), y = (y1, . . . , yk) and f(x) := (f(x1), . . . f(xk)).

4.4 Useful tools
In this subsection, we introduce several definitions and lemmas for analyzing quantum random
walk in Section 7 and the clock state construction in Section 9.

4.4.1 Bessel functions
The Bessel functions of the first kind of order n are denoted by Jn(x). We present the
required properties of Bessel functions for our use.

The integration form of the Bessel function:

Jn(x) = 1
2π

∫ π

−π
dp einp−ix sin p = in

2π

∫ π

−π
dp einp−ix cos p. (1)

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:13

The relation between Jn and J−n:

J−n(x) = (−1)nJn(x). (2)

The recursion formula for integer orders:

Jn+1(x) = 2n
x
Jn(x)− Jn−1(x). (3)

The asymptotic form for large order

Jn(n sechξ) ∼ e−n(ξ−tanh ξ)
√

2πn tanh ξ
(4)

suggests that when x < |n|, the value of Jn(x) is exponentially small in n.

The following lemmas provide upper bounds for Bessel functions for large argument x.

▶ Lemma 14 (Theorem 2 in [26]). Let n > −1/2 and µ := (2n + 1)(2n + 3). For any
x >

√
µ+ µ2/3/2, it holds that

J2
n(x) ≤

4
(
4x2 − (2n+ 1)(2n+ 5)

)
π
(
(4x2 − µ)3/2 − µ

) .

By Lemma 14, we have the following lemma which is more convenient for our use.

▶ Lemma 15. Let n be a positive integer. For any real x ≥ 2n, it holds that

J2
n(x) ≤ 2

nπ
.9

Proof. We discuss the behavior of Bessel functions in three cases: n = 1, n = 2, and n ≥ 3.
For n = 1, the maximum of J2

1 (x) is 0.339 . . . which is less than 2/π ≈ 0.637. For n = 2, the
maximum of J2

2 (x) is 0.237 . . . which is less than 1/π ≈ 0.318.
Now let us analyze the case in which n ≥ 3. First, we notice that when x > 2n, the

conditions in Theorem 14 hold. This is because µ+ µ2/3 < 2µ and then√
µ+ µ2/3

2 <

√
2µ
2 =

√
2n2 + 4n+ 3

2 <
√

4n2 = 2n < x,

where the second inequality holds when n ≥ 3.
Now, we will finish the proof by bounding the numerator and the denominator of the

RHS in Lemma 14. For the numerator, we have

4
(
4x2 − (2n+ 1)(2n+ 5)

)
< 4

(
4x2 − (2n+ 1)(2n+ 3)

)
= 4

(
4x2 − µ

)
.

For the denominator, we will show that

(4x2 − µ) 3
2 − µ > 2

3(4x2 − µ) 3
2

or equivalently

1
3(4x2 − µ) 3

2 > µ.

CCC 2023

33:14 Impossibility of Fast-Forwarding of Hamiltonian Simulation

First, since x ≥
√

2µ/2, we have 4x2 − µ ≥ µ. Furthermore, when n ≥ 3 we have µ ≥ 35,
which would imply 1

3µ
3/2 > µ. Hence, we conclude that 1

3 (4x2 − µ) 3
2 ≥ 1

3µ
3/2 > µ. Putting

things together, we obtain

J2
n(x) < 4

π
· (4x2 − µ)

2
3 (4x2 − µ)3/2 = 4

π
· 1

2
3

√
4x2 − µ

.

When x > 2n and n > 3, it holds that 4x2 − µ ≥ 16n2 − (4n2 + 8n+ 3) ≥ 9n2. Therefore,
we finally obtain

J2
n(x) ≤ 4

π
· 1

2
3

√
4x2 − µ

≤ 4
π
· 1

2
3 · 3n

= 2
nπ

.

This finishes the proof. ◀

4.4.2 Johnson graph
▶ Definition 16 (Johnson Graph). For all integers n ≥ k ≥ 1, the (n, k)-Johnson graph
Jn,k = (V,E) is an undirected acyclic graph defined as follows.

V := {S ⊆ [n] : |S| = k}, i.e., the vertices are the k-element subsets of an n-element set.
E := {(S0, S1) : |S0 ∩ S1| = k − 1}, i.e., there is an edge if and only if the intersection of
the two vertices (subsets) contains k − 1 elements.10

The number of vertices in Jn,k is
(
n
k

)
. It was proven that for all integers n ≥ k ≥ 1, there

exists a Hamiltonian path11 in Jn,k [2].

5 Lower Bounding Permutation Chain

▶ Definition 17 (Permutation notations). Here we define several notations for the later
proofs. Let Π1,Π2, . . . ,Πq be permutations of N elements. Let Π−1

1 ,Π−1
2 , . . . ,Π−1

q be the
corresponding inverse permutations. Define the sets [−q] := {−q,−q + 1, . . . ,−1} and
[±q] := [q]∪[−q]. We define the unitary SΠ as the controlled version of the above permutations
as

SΠ|j, x, r⟩ :=
{
|j, x, r ⊕Πj(x)⟩ , j > 0
|j, x, r ⊕Π−1

|j| (x)⟩ , j < 0
(5)

where j ∈ [±q] and x, r ∈ [N].
We denote the elements of the chain by x̄1 := 1 and x̄i+1 := Πi(x̄i) for all i ∈ [k]. Next, we
define Π̃i to be the “erased” Πi for all i ∈ [q]. Formally, Π̃i is defined to be the function
[N]→ [N] ∪ {0} such that

Π̃i(x) =
{
x̄i , x = x̄i−1

0 , otherwise.
(6)

Similarly, we define the corresponding controlled unitary SΠ̃. For all i ∈ [k], define
∆x̄i := x̄i+1 − x̄i mod N . Note that SΠ̃ can be parameterized by either {x̄2, . . . , x̄q+1} or
{∆x̄1, . . . ,∆x̄q}. Denote the transformation from SΠ to SΠ̃ by SΠ̃ = F (SΠ). For all ℓ ∈ [q],
define the hybrid oracle SΠ̃ℓ as

10 Equivalently, we can define E := {(S0, S1) : |S0 ∪ S1| = k + 1}.
11 A Hamiltonian path is a path that visits every vertex in the graph exactly once. Do not confuse it with

the physical quantity we want to simulate.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:15

(a)

(b)

Figure 1 Schematic diagram of SΠ̃ and SΠ̃ℓ. (a) The permutation chain x̄1, x̄2, . . . x̄q+1 specified
by SΠ̃. (b) SΠ̃ℓ, where the permutations are removed after ℓ queries.

SΠ̃ℓ|j, x, r⟩ :=

|j, x, r ⊕ Π̃j(x)⟩ , |j| ≤ ℓ, j > 0
|j, x, r⟩ , j > ℓ

|j, x, r ⊕ Π̃−1
|j| (x)⟩ , |j| ≤ ℓ, j < 0

|j, x, r⟩ , j < −ℓ.

(7)

▶ Theorem 18. Use the notations of Definition 17. Let q, k be integers such that k =
O(polylog(N)) and q = O(polylog(N)). For any quantum algorithm A using ⌊(q − 1)/2⌋
k-parallel queries to SΠ, we have

E
SΠ

[
Pr[ASΠ outputs x̄q+1]

]
= O

(
q

√
k

N

)
.

Before proving Theorem 18, we first introduce several lemmas as follows.

▶ Lemma 19. For any |ϕ⟩, |ψ⟩ such that ∥|ϕ⟩∥ = ∥|ψ⟩∥ = 1 and ∥|ϕ⟩ − |ψ⟩∥ ≤ ε, it holds
that

∆(|ϕ⟩⟨ϕ|, |ψ⟩⟨ψ|) ≤ ε.

Proof. The trace distance between two pure states is given by
√

1− |⟨ϕ|ψ⟩|2. The Euclidean
norm of |ϕ⟩−|ψ⟩ is given by ∥|ϕ⟩−|ψ⟩∥ =

√
(⟨ϕ| − ⟨ψ|)(|ϕ⟩ − |ψ⟩) =

√
2− 2Re[⟨ϕ|ψ⟩], where

Re[·] denote the real part of a complex number.
First, it is true that 0 ≤ (Re[⟨ϕ|ψ⟩]− 1)2 + Im[⟨ϕ|ψ⟩]2, where Im[·] denote the imaginary

part of a complex number. Rearranging the terms, we obtain

1− |⟨ϕ|ψ⟩|2 = 1− (Re[⟨ϕ|ψ⟩]2 + Im[⟨ϕ|ψ⟩]2) ≤ 2− 2Re[⟨ϕ|ψ⟩]. ◀

CCC 2023

33:16 Impossibility of Fast-Forwarding of Hamiltonian Simulation

▶ Lemma 20 (q-bin k-parallel Grover search lower bound). Let F be the set of all functions
f from [qN] to {0, 1} with the following promise. For all i ∈ {0, 1, . . . , q − 1}, it holds that
|{x ∈ {iN + 1, iN + 2, . . . , iN + N} : f(x) = 1}| = 1. Let g be the constant zero function
with domain [qN]. Then for every algorithm that makes ℓ k-parallel queries to f (or g), the
final state of the algorithm, denoted by |ψf ⟩ (or |ψg⟩), satisfies

E
f←F

[
∆
(
|ψf ⟩⟨ψf |, |ψg⟩⟨ψg|

)]
= O

(
ℓ

√
k

N

)
.

Proof. Let |ψgi ⟩ := UiO
⊗k
g . . . U1O

⊗k
g U0|0⟩. For any f ∈ F , let Πf be the projector acting on

the query register of the algorithm that is defined as Πf :=
∑
x:f(x)=1|x⟩⟨x|. Let Πf := I−Πf .

Notice that (O⊗kf −O⊗kg)Π⊗kf = 0 because Of and Og are identical beyond the set of the
1-preimages. Therefore, we have

(O⊗kf −O
⊗k
g)(I −Π⊗kf) = O⊗kf −O

⊗k
g . (8)

Also, it holds that

I −Π⊗kf ≤
k∑
i=j

Πf,j , (9)

where Πf,j denote the operator the acts as Πf on the register of the j-th query branch and
as identity on other registers; for matrices A,B, by A ≥ B we mean that A−B is a positive
semi-definite matrix. Then by standard hybrid arguments [5], we have

E
f←F

[
∥|ψf ⟩ − |ψg⟩∥

]
≤

ℓ−1∑
i=0

E
f←F

[
∥(O⊗kf −O

⊗k
g)|ψgi ⟩∥

]
=

ℓ−1∑
i=0

E
f←F

[
∥(O⊗kf −O

⊗k
g)(I −Π⊗kf)|ψgi ⟩∥

]
≤

ℓ−1∑
i=0

E
f←F

[
∥(O⊗kf −O

⊗k
g)∥ · ∥(I −Π⊗kf)|ψgi ⟩∥

]
,

where the first equality is due to (8) and the last inequality is due to the fact that ∥A|ϕ⟩∥ ≤
∥A∥ · ∥|ϕ⟩∥, where ∥A∥ denotes the operator norm of A.

Since ∥Of∥ = ∥Og∥ = 1, by the triangle inequality we can bound it as

≤ 2
ℓ−1∑
i=0

E
f←F

[
∥(I −Π⊗kf)|ψgi ⟩∥

]
= 2

ℓ−1∑
i=1

E
f←F

[√
⟨ψgi |(I −Π⊗kf)|ψgi ⟩

]

≤ 2
ℓ−1∑
i=0

√
E

f←F

[
⟨ψgi |(I −Π⊗kf)|ψgi ⟩

]
(Jensen’s inequality)

≤ 2
ℓ−1∑
i=0

√√√√√ E
f←F

⟨ψgi | k∑
j=1

Πf,j |ψgi ⟩

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:17

≤ 2
ℓ−1∑
i=0

√√√√ k∑
j=1

E
f←F

[⟨ψgi |Πf,j |ψgi ⟩] (linearity of expectation)

= 2
ℓ−1∑
i=0

√√√√ k∑
j=1
⟨ψgi |

I

N
|ψgi ⟩ = 2ℓ

√
k

N
,

where the first equality holds since I − Π⊗kf is a projection operator; the third inequality
holds due to (9) and the second equality holds because the probability of any x ∈ [qN] being
a 1-preimage of f is 1/N . So we have Ef←F [Πf,j] = I/N for every j. Finally, by Lemma 19,
we have

E
f←F

[
∆
(
|ψf ⟩⟨ψf |, |ψg⟩⟨ψg|

)]
≤ 2ℓ

√
k

N
.

as desired. ◀

(a) Πi

x̄i

x̄i+1

(b) Π̃i

x̄i

x̄i+1

(c) ΠR
i

x̄i

x̄′i

x̄′−i

x̄i+1

(d) Π̃′i

x̄i

x̄′i

x̄′−i

x̄i+1

(e) H(Π̃′i)

x̄i

x̄′i

x̄′−i

x̄i+1

Figure 2 Schematic diagrams of permutation in the hybrid proof. (a) Πi is the permutation
given by the problem. (b) Π̃i maps x̄i to x̄i+1 := Πi(x̄i) and maps other inputs to a dummy image 0.
(c) ΠR

i is a random permutation that is independent of Πi. (d) Π̃′
i merges Π̃i and ΠR

i . It maps x̄i to
x̄i+1, and maps other input x to ΠR

i (x). There is a collision on inputs x̄i and x̄′
i := ΠR−1

i (x̄i+1).
When executing the “inverse” of Π̃′

i, it follows the rules of ΠR−1
i . Note that the “inverse” is not

exactly equal to Π̃′−1
i . (e) The truth table of H(Π̃′

i) is equal to Π̃′
i except that H(Π̃′

i)(x̄′
i) = x̄′−i.

▶ Lemma 21. Use the notations of Definition 17. Let ℓ, k be integers such that ℓ =
O(polylog(N)) and k = O(polylog(N)). For any quantum algorithm A using ℓ k-parallel
queries to SΠ , there is a quantum algorithm Ã using 2ℓ k-parallel queries to SΠ̃ such that
for all SΠ̃,

E
SΠ∈F−1(SΠ̃)

[
Pr[ASΠ ̸= ÃSΠ̃]

]
= O

(
ℓ

√
k

N

)
.

Proof. Let ΠR
1 ,ΠR

2 , . . . ,ΠR
q be permutations of N elements. Let SΠR be the corresponding

unitary.
We construct Ã as follows: it samples a uniformly random SΠR and runs A but replaces

every query to SΠ with SΠ̃′ constructed from uniformly random SΠR, where SΠ̃′ is defined
as

SΠ̃′|i, x, r⟩ :=

|i, x, r ⊕ Π̃i(x)⟩ , Π̃i(x) ̸= 0, i > 0
|i, x, r ⊕ΠR

i (x)⟩ , Π̃i(x) = 0, i > 0
|i, x, r ⊕ Π̃−1

|i| (x)⟩ , Π̃−1
|i| (x) ̸= 0, i < 0

|i, x, r ⊕ΠR
|i|
−1(x)⟩ , Π̃−1

|i| (x) = 0, i < 0.

(10)

CCC 2023

33:18 Impossibility of Fast-Forwarding of Hamiltonian Simulation

One query to SΠ̃′ can be constructed from two queries to SΠ̃ coherently by doing the obvious
classical calculation and uncomputing the garbage. Therefore Ã uses 2ℓ queries to SΠ̃ as
required.

Now we prove that it is very hard to distinguish A from Ã. This is done by a reduction
to the hardness of the modified Grover’s search algorithm in Lemma 20.

For all i ∈ [q], define x̄′i to be x such that Π̃′(x) = x̄i+1 and x ̸= x̄ . For all i ∈ [−q],
define x̄′i to be x such that Π̃′−1

|i| (x) = x̄|i| and x ̸= x̄|i|+1. Note that x̄′i does not exist if
ΠR
i (x̄i) = Π̃i(x̄i).

Note that each Π̃′i looks like a random permutation except on the collisions {x̄′i}. We
define a function H which relates these similar SΠ and SΠ̃′:

H(SΠ̃′)|i, x, r⟩ :=

|i, x, r ⊕ Π̃i(x)⟩ , Π̃i(x) ̸= 0, i > 0
|i, x, r ⊕ΠR

i (x)⟩ , Π̃i(x) = 0, x ̸= x̄′i, i > 0
|i, x, r ⊕ x̄′−i⟩ , x = x̄′i, i > 0
|i, x, r ⊕ Π̃−1

|i| (x)⟩ , Π̃−1
|i| (x) ̸= 0, i < 0

|i, x, r ⊕ΠR
|i|
−1(x)⟩ , Π̃−1

|i| (x) = 0, x ̸= x̄′i, i < 0
|i, x, r ⊕ x̄′−i⟩ , x = x̄′i, i < 0.

(11)

It is easy to check that for all SΠ̃′, H(SΠ̃′) is a valid SΠ, and for a given SΠ, there are
Nq elements in H−1(SΠ). It is also easy to verify that for a fixed SΠ̃, different H−1(SΠ)
partitions all possible SΠ̃′.

Let ρSΠ be the final density matrix of ASΠ. Let ρSΠ̃′ be the final density matrix of ÃSΠ̃

with a fixed SΠ′. By the strong convexity of trace distance, we have

∆
(

E
SΠ∈F −1(SΠ̃)

[ρSΠ], E
SΠ̃′∈H−1(F −1(SΠ̃))

[ρSΠ̃′]
)

≤ E
SΠ∈F −1(SΠ̃)

[
∆
(

ρSΠ, E
SΠ̃′∈H−1(SΠ)

[ρSΠ̃′]
)]

. (12)

Finally, we prove that ∆(ρSΠ,ESΠ̃′∈H−1(SΠ)[ρSΠ̃′]) = O

(
ℓ
√

k
N

)
for all SΠ by a reduction

to the modified Grover search problem. Consider a Grover oracle G defined in Lemma 20
that might be f or g. Given free calls to SΠ, we use two calls to G to construct an oracle
SΠG which equals SΠ when G = g and equals a random SΠ̃′ when G = f . The construction
is as follows:

SΠG|i, x, r⟩ :=

|i, x, r ⊕ Π̃i(x)⟩ , Π̃i(x) ̸= 0, i > 0
|i, x, r ⊕Πi(x)⟩ , Π̃i(x) = 0, G((i− 1)N + x) = 0, i > 0
|i, x, r ⊕ x̄i+1⟩ , Π̃i(x) = 0, G((i− 1)N + x) = 1, i > 0
|i, x, r ⊕ Π̃−1

|i| (x)⟩ , Π̃−1
|i| (x) ̸= 0, i < 0

|i, x, r ⊕Π−1
|i| (x)⟩ , Π̃−1

|i| (x) = 0, G((i− 1)N + Π−1
|i| (x)) = 0, i < 0

|i, x, r ⊕ x̄i⟩ , Π̃−1
|i| (x) = 0, G((i− 1)N + Π−1

|i| (x)) = 1, i < 0.

(13)

By Lemma 20, if we try to distinguish f from g by distinguishing ASΠG of the two cases, we

can only succeed with probability O
(
ℓ
√

k
N

)
since we only have O(ℓ) k-parallel queries to

G. Therefore, one can only distinguish SΠ from SΠ̃′ with probability O
(
ℓ
√

k
N

)
, i.e.,

∆
(
ρSΠ, E

SΠ̃′∈H−1(SΠ)
[ρSΠ̃′]

)
= O

(
ℓ

√
k

N

)
. (14)

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:19

Then by (12),

∆
(

E
SΠ∈F−1(SΠ̃)

[ρSΠ] , E
SΠ̃′∈H−1(F−1(SΠ̃))

[ρSΠ̃′]
)

= O

(
ℓ

√
k

N

)
. (15)

By the operational interpretation of the trace distance, we have

E
SΠ∈F−1(SΠ̃)

[
Pr[ASΠ ̸= ÃSΠ̃]

]
= O

(
ℓ

√
k

N

)
. (16)

◀

▶ Lemma 22. Use the notations of Definition 17. Let ℓ, k be integers such that ℓ ∈ [q],
k = O(polylog(N)). For all algorithm A using ℓ k-parallel queries to SΠ̃, w.l.o.g. we can
assume the final output of A has the form

|ψ⟩ = UℓSΠ̃⊗kUℓ−1SΠ̃⊗k . . . U2SΠ̃⊗kU1SΠ̃⊗k|ψ0⟩.

For all m, p ∈ [ℓ], p ≤ m, define the hybrid state

|ψm,p⟩ := UmSΠ̃⊗kUm−1SΠ̃⊗k . . . Up+1SΠ̃⊗kUpSΠ̃⊗kp Up−1SΠ̃⊗kp−1 . . . U2SΠ̃⊗k2 U1SΠ̃⊗k1 |ψ0⟩.

Then for all A,

E
SΠ̃
∥|ψ⟩ − |ψℓ,ℓ⟩∥ ≤ 2ℓ

√
k

N
. (17)

Proof. Note that |ψ⟩ = |ψℓ,0⟩. By triangle inequality we have

E
SΠ̃
∥|ψ⟩ − |ψℓ,ℓ⟩∥ ≤

ℓ∑
i=1

E
SΠ̃
∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥ . (18)

We proceed by proving ESΠ̃ ∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥ = 2
√
k/N for all i ∈ [ℓ]. Note that

∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥ = ∥|ψi,i−1⟩ − |ψi,i⟩∥
=
∥∥UiSΠ̃⊗k|ψi−1,i−1⟩ − UiSΠ̃⊗ki |ψi−1,i−1⟩

∥∥
=
∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩

∥∥ . (19)

Note that SΠ̃|j, x, r⟩ and SΠ̃i|j, x, r⟩ differs only when j > i and x = x̄j or j < −i and
x = x̄j+1. Therefore

(SΠ̃− SΠ̃i)|j, x, r⟩ = (SΠ̃− SΠ̃i)Pi|j, x, r⟩ (20)
SΠ̃(1− Pi) = SΠ̃i(I − Pi) (21)

(SΠ̃⊗k − SΠ̃⊗ki)(I − Pi)⊗k = 0 (22)

where

Pi :=

 k∑
j=i+1

|j, x̄j⟩ ⟨j, x̄j |+
k∑

−j=i+1
|j, x̄j+1⟩ ⟨j, x̄j+1|

⊗ I. (23)

Note that Pi actually depends on SΠ̃, but we omit the dependence for cleaner notation.
Therefore we have

CCC 2023

33:20 Impossibility of Fast-Forwarding of Hamiltonian Simulation

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥2

=
∥∥(SΠ̃⊗k − SΠ̃⊗ki)(I − (I − Pi)⊗k)|ψi−1,i−1⟩

∥∥2

≤4
∥∥(I − (I − Pi)⊗k)|ψi−1,i−1⟩

∥∥2

=4⟨ψi−1,i−1|(I − (I − Pi)⊗k)|ψi−1,i−1⟩

≤4⟨ψi−1,i−1|
k∑
j=1

P ji |ψi−1,i−1⟩ (24)

where P ji = I⊗j−1 ⊗ Pi ⊗ I⊗k−j . In the fourth line, we use the fact that I − (I − Pi)⊗k is a
projector, and in the fifth line we use the standard union bound calculation.

By (23), for all i ∈ [q] and j ∈ [k], P ji is normalized by

N−1∑
∆x̄i=0

P ji =

 k∑
j=i+1

+
k∑

−j=i+1

 |j⟩ ⟨j| ⊗ ∑
x̄∈[N]

|x̄⟩ ⟨x̄| ≤ I (25)

where we omitted the tensor product of identities and assume ∆x̄i+1, . . . ,∆x̄q to be fixed.
Therefore

N−1∑
∆x̄i=0

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥2

≤
N−1∑

∆x̄i=0

4⟨ψi−1,i−1|
k∑
j=1

P ji |ψi−1,i−1⟩

≤4k (26)

Finally, combining (26), (24), and (19), we have

E
SΠ̃
∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥

= E
∆x̄1,...,∆x̄i−1

E
∆x̄i

E
∆x̄i+1,...,∆x̄q

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥

= E
∆x̄1,...,∆x̄i−1

E
∆x̄i+1,...,∆x̄q

1
N

∑
∆x̄i

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥

≤ E
∆x̄1,...,∆x̄i−1

E
∆x̄i+1,...,∆x̄q

1
N

√∑
∆x̄i

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥2 ·
√
N

=2
√
k

N
. (27)

Plugging back to (18) we have

E
SΠ̃
∥|ψ⟩ − |ψℓ,ℓ⟩∥ ≤ 2ℓ

√
k

N
. (28)

◀

▶ Corollary 23. Any algorithm A using (q− 1) k-parallel queries to SΠ̃ can only output x̄q+1

with probability O
(
ℓ
√

k
N

)
.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:21

Proof. By Lemma 19 and Lemma 22, output probability of |ψ⟩ and |ψℓ,ℓ⟩ only differ by
O(ℓ

√
k/N). Since |ψq−1,q−1⟩ does not depend on Π̃q, it can only find x̄q+1 with probability

1/N . Thus the maximum probability of |ψ⟩ finding x̄q+1 is O(ℓ
√
k/N) + 1/N = O(ℓ

√
k/N).

◀

Proof of Theorem 18. Let A be an algorithm that uses ⌊(q − 1)/2⌋ k-parallel queries to
SΠ and outputs x̄q+1 with some probability p. By Lemma 21, there is an algorithm
Ã that uses (q − 1) k-parallel queries to SΠ̃ and outputs x̄q+1 with probability at least

p−O
(
q
√

k
N

)
. By Corollary 23, it holds that p−O

(
q
√

k
N

)
= O

(
q
√

k
N

)
. Therefore, we

have p = O

(
q
√

k
N

)
. ◀

6 Parallel Hardness of Twisted Hash Chains

The (standard) hash chain problem is a natural candidate for parallel hardness. However,
hash functions (modeled as random functions) with equal-length inputs and outputs are
not injective with overwhelming probability. Importantly, quantum operations need to
be reversible. Therefore, if we evaluate the standard hash chain straight-forwardly, the
intermediate hash values are required to be stored in ancilla qubits. Consequently, the
width of the circuit would become proportional to the length of the chain, which means the
computation could not be done within width λ.

Inspired by the construction of the Feistel cipher which implements a permutation by
hash functions, we introduce the twisted hash chain problem. Let X be {0, 1}n. An s-chain
is a sequence x0, x1, . . . , xs ∈ X such that xi = H(xi−1) ⊕ xi−2 for i ∈ [s] where we use
the convention that x−1 := 0n. Informally, the task of a q-query k-parallel algorithm that
interacts with a random oracle H : X → Y with |X | = |Y| is to output x0, xq, xq+1 ∈ X of a
(q + 1)-chain, i.e., there exists a sequence x1, . . . , xq−1 ∈ X such that xi = H(xi−1)⊕ xi−2
for i ∈ [q + 1]. The computation of a twisted hash chain is shown in Fig. 3.

y y ⊕H(x)

x x

OH
x x

y y ⊕H(x)
ÕH

x0

x−1
OH ÕH OH OH

Figure 3 Schematic diagram of the twisted hash chain.

In this section, we aim to prove the following theorem.

▶ Theorem 24 (Twisted hash chain is sequential). For any k-parallel q-query oracle algorithm
C, the probability pC (parameterized by k and q) that C outputs x0, xq, xq+1 ∈ X satisfying
the following condition:

there exist x1, . . . , xq−1 ∈ X such that H(xi−1) = xi⊕xi−2 for i ∈ [q+1], where x−1 := 0n
is at most F (k, 2q) = O(k4q4/|Y|), where the function F is defined in Lemma 32.

Toward proving the hardness, we exploit the framework of [16]. Below, we borrow the
notations and definitions of [16]. Let H : X → Y be a random oracle. Let Ŷ be the dual
group of Y. Let Y denote the set Y ∪ {⊥}. We say that D : X → Y is a database. By D

we mean the set of all databases, i.e., the set of all functions from X to Y. For any tuple
x = (x1, . . . , xk) with pairwise disjoint xi ∈ X , tuple r = (r1, . . . , rk) ∈ Yk and database
D ∈ D, we define the database D[x 7→ r] as

CCC 2023

33:22 Impossibility of Fast-Forwarding of Hamiltonian Simulation

D[x 7→ r](x) :=
{
ri if x = xi for some i ∈ [k]
D(x) if x /∈ {x1, . . . , xk}.

By database property P we mean a set of databases, that is P ⊆ D. In this section, we
assume that X = Y . For any database D ∈ D and tuple x = (x1, . . . , xk) of pairwise distinct
xi ∈ X , we let

D|x := {D[x 7→ r] | r ∈ Yk} ⊆ D

be the set of databases that coincide D outside of x. Furthermore, for any database property
P ⊆ D, we let

P|D|x := P ∩D|x.

▶ Definition 25 (Definition 5.5 in [16]). Let P,P′ be two database properties. Then, the
quantum transition capacity (of order k) is defined as

JP k−→ P′K := max
x,ŷ,D

∥P′|D|xcOxŷP|D|x∥,

where the maximum is over all possible x ∈ X k, ŷ ∈ Ŷk and D ∈ D. Furthermore, we define

JP k=⇒ P′K := sup
U1,...,Uq−1

∥∥∥P′Uq−1cOkUq−1cOk . . . U1cOkP
∥∥∥ ,

where ∥ · ∥ is the operator norm; the supremum is over all positive d ∈ Z and all unitaries
U1, . . . , Uq−1 acting on C[X]⊗C[Y]⊗Cd.12 For the formal definitions of cOxŷ and cOk, we
refer to [16]. We note that their definitions are not required for the following proof.

▶ Definition 26. The database property twisted hash chain of length s, denoted by TCHNs,
is defined as

TCHNs := {D | ∃x0, x1, . . . , xs ∈ X : xi = D(xi−1)⊕ xi−2,∀i ∈ [s]} ⊆ D,

where we use the convention that x−1 := 0n for convenience.

▶ Definition 27 (Definition 5.20 in [16], with ℓ fixed to 1). A database transition P→ P′ is said
be k-non-uniformly weakly recognizable by 1-local properties13 if for every x = (x1, . . . , xk)
with pairwise disjoint entries, and for every D ∈ D, there exists a family of 1-local properties
{LD,xi } where each LD,xi ⊆ Y and the support of LD,xi is {xi} or empty, so that

D[x 7→ r] ∈ P ∧ [x 7→ u] ∈ P′ =⇒ ∃i : ui ∈ LD,xi ∧ ri ̸= ui.

▶ Theorem 28 (Theorem 5.23 in [16]). Let P and P′ be k-non-uniformly weakly recognizable
by 1-local properties Lx,D

i , where the support of Lx,D
i is {xi} or empty. Then

J⊥ q,k==⇒ TCHNq+1K ≤ max
x,D

e
∑
i

√
10P [U ∈ Lx,D

i],

where U is defined to be uniformly random in Y and ⊥ := {D | D(x) = ⊥ for all x ∈ X}.

12 Namely, over all q-query quantum algorithms.
13 We refer to Definition 5.10 in [16] for the formal description of local properties.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:23

Here, we define the family of local properties for our purpose. For any D ∈ D and any
x := (x1, . . . , xk) ∈ X k with disjoint entries, we defined the following 1-local properties
LD,xi ⊆ Y14 with support {xi} for i ∈ [k] as

LD,xi := LD,xi,1 ∪ L
D,x
i,2 ,

where

LD,xi,1 := {x ∈ X | D(x) ̸= ⊥ ∨ x ∈ {x1, . . . , xk}}

and

LD,xi,2 := {x ∈ X | ∃x′, x′′ ∈ LD,xi,1 : x = x′ ⊕ x′′}.

The following lemma, in line with Lemma 2.1 in [16], shows that the local properties
{LD,xi } recognize the database transition ¬TCHNs → TCHNs+1, and allows us to exploit
Theorem 28. First, we briefly explain the intuition. We pick an arbitrary (s + 1)-chain
in D[x 7→ u] and call it the new chain. We denote the elements of the new chain by
x̂0, x̂1, . . . , x̂s+1. There are two possible consequences of this database transition:

First, some branch xi of the query x becomes the first elements x̂0 of the new chain, i.e.,
xi = x̂0 and xi is responded with D[x 7→ u](xi) = ui such that ui = D[x 7→ u](x̂0) = x̂1. In
addition, D[x 7→ u](x̂1) = x̂0 ⊕ x̂2 ≠ ⊥. This means that x̂1 must either already be sampled
(D(x̂1) ̸= ⊥) or be one of the branch of x (x̂1 ∈ {x1, . . . , xk}) (or both). In other words, ui
must be in LD,xi,1 .

Second, some branch xi of the query x becomes the (j + 1)-th elements x̂j (1 ≤ j ≤ s)
of the new chain, i.e., xi = x̂j and xi is responded with D[x 7→ u](xi) = ui such that
ui = D[x 7→ u](x̂j) = x̂j−1 ⊕ x̂j+1. Similarly, we can conclude that either D(x̂j−1) ̸= ⊥
or x̂j−1 ∈ {x1, . . . , xk} (or both) and either D(x̂j+1) ̸= ⊥ or x̂j+1 ∈ {x1, . . . , xk} (or both).
This means that ui must be the XOR of two elements in LD,xi,1 . That is, ui ∈ LD,xi,2 .

The intuition above can be formalized as the following lemma.

▶ Lemma 29. D[x 7→ r] /∈ TCHNs∧D[x 7→ u] ∈ TCHNs+1 =⇒ ∃i ∈ [k] : ri ≠ ui∧ui ∈ LD,xi .

Proof. Suppose D[x 7→ u] ∈ TCHNs+1 and let x̂0, x̂1, . . . , x̂s+1 be such a chain, i.e., x̂1 =
D[x 7→ u](x̂0) and x̂j+2 = D[x 7→ u](x̂j+1) ⊕ x̂j for j = 0, 1, . . . , q − 1. Let s◦ be the
smallest j such that D[x 7→ r](x̂s◦) ̸= D[x 7→ u](x̂s◦). If s◦ ≥ s or j does not exist, then
D[x 7→ r] ∈ TCHNs+1, and we are done. Suppose now 0 ≤ s◦ ≤ s− 1. Since D[x 7→ u] and
D[x 7→ u] are identical outside of x, there exists a coordinate i of x such that xi = x̂s◦ .
Therefore, ui = D[x 7→ u](xi) = D[x 7→ u](x̂s◦) ̸= D[x 7→ r](x̂s◦) = D[x 7→ r](xi) = ri.

Below, we divide the analysis into three cases according to the value of s◦:
1. If s◦ = 0, we have ui = D[x 7→ u](x̂s◦) = D[x 7→ u](x̂0) = x̂1. And D[x 7→ u](x̂1) =

x̂2⊕ x̂0 ̸= ⊥, which implies either D(x̂1) ̸= ⊥ or x̂1 ∈ {x1, . . . , xk} (or both). This means
ui ∈ LD,xi,1 .

2. If s◦ = 1, we have ui = D[x 7→ u](x̂s◦) = D[x 7→ u](x̂1) = x̂2 ⊕ x̂0. And D[x 7→ u](x̂2) =
x̂3 ⊕ x̂1 ̸= ⊥, which implies either D(x̂2) ̸= ⊥ or x̂2 ∈ {x1, . . . , xk} (or both). And
D[x 7→ u](x̂0) = x̂1 ≠ ⊥, which implies either D(x̂0) ̸= ⊥ or x̂0 ∈ {x1, . . . , xk} (or both).
This means ui ∈ LD,xi,2 .

14 Recall that we assume X = Y.

CCC 2023

33:24 Impossibility of Fast-Forwarding of Hamiltonian Simulation

3. If 2 ≤ s◦ ≤ s − 1, then ri = D[x 7→ u](x̂s◦) = x̂s◦+1 ⊕ x̂s◦−1. Similarly, D[x 7→
u](x̂s◦+1) = x̂s◦ ⊕ x̂s◦+2 ̸= ⊥, which implies either D(x̂s◦+1) ̸= ⊥ or x̂s◦+1 ∈ {x1, . . . , xk}
(or both). And D[x 7→ u](x̂s◦−1) = x̂s◦ ⊕ x̂s◦−2 ̸= ⊥, which implies either D(x̂1) ̸= ⊥ or
x̂1 ∈ {x1, . . . , xk} (or both). This means ui ∈ LD,xi,2 .

In all of the above cases, ui must be in LD,xi which concludes the proof. ◀

We need Corollary 4.2 in [16] which is rephrased from Lemma 5 in [38].

▶ Lemma 30 (Lemma 5 in [38]). Let R ⊆ X ℓ ×Yℓ be a relation. Let A be an algorithm that
outputs x ∈ X ℓ and y ∈ Yℓ. Let p be the probability that y = H(x) := (H(x1), . . . ,H(xℓ)) and
(x,y) ∈ R when A has interacted with the standard random oracle, initialized with a uniformly
random function H. Similarly, let p′ be the probability that y = D(x) := (D(x1), . . . , D(xℓ))
and (x,y) ∈ R when A has interacted with the compressed oracle and D is obtained by
measuring its internal state in the computational basis. Then

√
p ≤

√
p′ +

√
ℓ

|Y|
.

▶ Lemma 31. J⊥ q,k==⇒ TCHNq+1K ≤ qek
√

5kq(kq+1)
|Y| .

Proof. By Lemma 5.6 in [16], we have

J⊥ q,k==⇒ TCHNq+1K ≤
q∑
s=1

JSZ≤k(s−1) \ TCHNs k−→ TCHNs+1K.

Choosing the local properties {LD,xi } as above whenever D ∈ SZ≤k(s−1), and to be constant-
false otherwise, Lemma 29 ensures that we can apply Theorem 5.23 in [16] to bound quantum
transition capacity. Therefore, applying Theorem 5.23 in [16], for each s ∈ [q] we have

JSZ≤k(s−1) \ TCHNs k−→ TCHNs+1K ≤ emax
D,x

k∑
i=1

√
10 Pr[U ∈ LD,xi] ≤ ek

√
5kq(kq + 1)
|Y|

.

The last inequality holds because for every s ∈ [q] and every D ∈ SZ≤k(s−1), it holds that

|{x ∈ X | D(x) ̸= ⊥} ∪ {x1 . . . , xk}| ≤ k(q − 1) + k = kq.

Thus, we have |LD,xi,1 | ≤ kq and |LD,xi,2 | ≤
(
kq
2
)

= kq(kq − 1)/2 for i ∈ [k], which then implies
|LD,xi | ≤ kq(kq + 1)/2. Finally, summing over s ∈ [q] completes the proof. ◀

First, note that Lemma 30 is tailored for algorithms that output all elements of the chain
and their hash values. However, to obtain a bound when the algorithm A is required to
output only x0, xq and xq+1 is more challenging. In most of situations, one could define
another algorithm B that simply runs A followed by calculating the whole chain with q + 2
extra queries. This would increase the number of queries by at most q + 2. However, this
gives us a meaningless bound for the twisted hash chain problem.

Below, we first provide the following lemma for algorithms that do not have to output
the last hash value yq+1. The proof is similar to Theorem 5.9 in [16].

▶ Lemma 32. For any k-parallel q-query oracle algorithm A that interacts with a standard
random oracle, the probability pA (parameterized by k and q) that A outputs x0, x1, . . . , xq+1 ∈
X and y0, y1, . . . , yq ∈ Y (without yq+1) satisfying

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:25

yi = H(xi) for 0 ≤ i ≤ q
yi−1 = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

is upper bounded by the function F (k, q) where

F (k, q) :=
(
qek

√
5kq(kq + 1)
|Y|

+ e(q + 2)

√
5(q + 2)(q + 3)

|Y|
+

√
q + 2
|Y|

)2

= O

(
q4k4

|Y|

)
.

Proof. We define an algorithm B that runs A and obtains the output x0, ,̇xq+1, y0, . . . , yq.
And then B makes a classical query xq+1 to the random oracle. Finally, B outputs
x0, ,̇xq+1, y0, . . . , yq, H(xq+1).

Let pB be the probability that B outputs x0, x1, . . . , xq+1 ∈ X and y0, y1, . . . , yq+1 ∈ Y
satisfying

yi = H(xi) for 0 ≤ i ≤ q + 1
yi−1 = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

when B interacts with the standard random oracle.
Let p′B be the probability that B outputs x0, x1, . . . , xq+1 ∈ X and y0, y1, . . . , yq+1 ∈ Y

satisfying
yi = D(xi) for 0 ≤ i ≤ q + 1
yi−1 = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

when B interacts with the compressed oracle.
Let p′B be the probability that B outputs x0, x1, . . . , xq+1 ∈ X and y0, y1, . . . , yq+1 ∈ Y

satisfying
D(xi−1) = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

when B interacts with the compressed oracle.
We trivially have pA = pB and p′B ≤ p′B. Since B now outputs all the hash values as well,

we can apply Lemma 30 to B which gives

√
pB ≤

√
p′B +

√
q + 2
|Y|

.

In the rest of the proof, it remains to bound p′B.√
p′B ≤ sup

U1,...,Uq

∥∥∥∥∥∑
x

TCHNq+1
x (|x⟩⟨x| ⊗ cOxq+1)UqcOkUq−1cOk . . . U1cOk⊥

∥∥∥∥∥
≤

∥∥∥∥∥∑
x

TCHNq+1
x (|x⟩⟨x| ⊗ cOxq+1)¬TCHNq+1

∥∥∥∥∥
+ sup
U1,...,Uq

∥TCHNq+1UqcOkUq−1cOk . . . U1cOk⊥∥

≤ max
x
∥TCHNq+1

x cOxq+1¬TCHNq+1∥+ J⊥ q,k==⇒ TCHNq+1K

≤ max
x
∥TCHNq+1

x cOxq+1¬TCHNq+1
x ∥+ J⊥ q,k==⇒ TCHNq+1K,

where the summation is over all x = (x0, . . . , xq+1) ∈ X q+2; {|x⟩⟨x|} denotes the measurement
acting on B’s output register to produce the output x; the database property TCHNq+1

x is
defined as

TCHNq+1
x := {D | xi = D(xi−1)⊕ xi−2 for i ∈ [q + 1]} ⊆ D.

That is, the sequence x0, . . . , xq+1 forms a (q + 1)-chain.

CCC 2023

33:26 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Now, notice that for every x ∈ X q+2,

∥TCHNq+1
x cOxq+1¬TCHNq+1

x ∥
=∥TCHNq+1

x (cOxq+1 ⊗ cOxq 0̂ ⊗ · · · ⊗ cOx00̂)¬TCHNq+1
x ∥

≤max
ŷ
∥TCHNq+1

x cOxŷ¬TCHNq+1
x ∥ ≤ J¬TCHNq+1

x
q+2−−→ TCHNq+1

x K,

where the first equality holds since cOx0̂ is equal to the identity operator for every x ∈ X .
Following similar arguments as in Lemma 29, we now show there exist local properties

that recognize the database transition J¬TCHNq+1
x

q+2−−→ TCHNq+1
x K. For any tuple x =

(x1, . . . , xq+2) with pairwise distinct entries, any tuple x′ = (x′0, . . . , x′q+1)15 and database
D ∈ D, we define the following local properties for i ∈ [q + 2]

Lx,D
i := {x′0, . . . , x′q+1} ∪ {x | ∃a, b ∈ {1, . . . , q + 2} : x = x′a ⊕ x′b}.

Note that |Lx,D
i | ≤ (q + 2) +

(
q+2

2
)

= (q + 2)(q + 3)/2 for each i ∈ [q + 2].
Suppose D[x 7→ r] /∈ TCHNq+1

x′ yet D[x 7→ u] ∈ TCHNq+1
x′ . Then {x′0, . . . , x′q+1} is a

(q+ 1)-chain. Let s◦ be the smallest j such that D[x 7→ r](x′j) ̸= D[x 7→ u](x′j). If s◦ = q+ 1
or j does not exist, then D[x 7→ r] ∈ TCHNq+1

x′ and we are done. So we assume 0 ≤ s◦ ≤ q.
Since D[x 7→ r] coincides D[x 7→ u] outside of x, there must exists an index i ∈ [q + 2] such
that xi = x′s◦

. Therefore, we have ri = D[x 7→ r](xi) = D[x 7→ r](x′s◦
) ̸= D[x 7→ u](x′s◦

) =
D[x 7→ u](xi) = ui.

In addition, if s◦ = 0, then ui = D[x 7→ u](x′0) = x′1 ∈ {x′0, . . . , x′q+1}. If 1 ≤ s◦ ≤ q, then
ui = D[x 7→ u](x′s◦

) = x′s◦−1 ⊕ x′s◦+1 which means ui is the XOR of two distinct elements in
{x′0, . . . , x′q+1}. In either case, ui must lie in Lx,D

i . Therefore, by Theorem 5.23 in [16], for
every x′ ∈ X q+2 we have

J¬TCHNq+1
x′

q+2−−→ TCHNq+1
x′ K ≤ e(q + 2)

√
5(q + 2)(q + 3)

|Y|
.

Thus, we can bound maxx′ ∥TCHNq+1
x′ cOx′

q+1
¬TCHNq+1

x′ ∥ by the above quantity.
Putting things together, we have

pA ≤

(
J⊥ q,k==⇒ TCHNq+1K + e(q + 2)

√
5(q + 2)(q + 3)

|Y|
+

√
q + 2
|Y|

)2

Bounding the first term by Lemma 31, this concludes the proof. ◀

Now, we are ready to prove the main theorem.

Proof of Theorem 24. We finish the proof by reduction. Define the algorithm D as follows:
1. Run C and obtain x0, xq and xq+1.
2. For i ∈ [q − 1]:

- Make a classical 2-parallel query (xi−1, xq+i) to the random oracle and then obtain
(H(xi−1), H(xq+i)).
- Set xi := H(xi−1)⊕ xi−2 and xq+i+1 := H(xq+i)⊕ xq+i−1.

3. Make a classical 2-parallel query (xq−1, x2q) to the random oracle and then obtain
(H(xq−1), H(x2q)).

4. Output x0, x1, . . . , x2q+1 and H(x0), H(x1), . . . ,H(xq−1), H ′(xq), H(xq+1), . . . ,H(x2q),
where H ′(xq) := xq−1 ⊕ xq+1

16.

15 In the rest of the proof, we switch the variable x of TCHNq+1
x into x′ for convenience.

16 Note that in Step 2 and 3, D makes a total of 2q queries including x0, . . . , x2q except xq.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:27

First, it is trivial that pC is equivalent to the probability pD that H ′(xq) = H(xq) and D
outputs a (2q + 1)-chain. Now, we calculate the total number of queries made by D. In Step
1, D makes q k-parallel queries to execute C. In Steps 2 and 3, D makes q 2-parallel queries.
To sum up, D makes a total of 2q k-parallel queries. By Lemma 32, the probability pD is at
most F (k, 2q). Therefore, this finishes the proof. ◀

Considering the situation in which the algorithm is assigned to a particular starting point
x0 ∈ X of the chain, we have the following corollary which is trivially implied by Theorem 24.

▶ Corollary 33. For any k-parallel q-query oracle algorithm E, the probability pE (parameter-
ized by k and q) that the algorithm takes a uniformly random x0 ∈ X as input, and outputs
xq, xq+1 ∈ X satisfying

there exist x1, . . . , xq−1 ∈ X such that H(xi−1) = xi⊕xi−2 for i ∈ [q+1], where x−1 := 0n
is at most F (k, 2q) = O(k4q4/|Y|), where the function F is defined in Lemma 32.

Proof. We finish the proof by reduction. Let C be the algorithm that first samples x0 ∈ X
uniformly at random and invokes E(x). C responds to every E ’s oracle query by its oracle
access directly. Then C outputs whatever E outputs.

Let pC be the probability defined as in Theorem 24. Since the success of E implies
the success of C, we have pC ≥ pE . By Theorem 24 and the construction of C, we have
F (k, 2q) ≥ pC , which concludes the proof. ◀

▶ Remark 34. Here, we explain the challenging issue of our case. Given only x0, xq and xq+1,
in order to output the whole chain, the algorithm cannot make the query in parallel but is
required to make adaptive queries. For example, to reveal the next point x1 = H(x0), the
algorithm must first query x0. Therefore, we cannot use Theorem 5.9 in [16] in a black-box
way.

7 Quantum Walk on a Line

Our proof of Hamiltonian simulation lower bound relies on the continuous-time quantum
walk on a line [14]. We introduce quantum walks on a line in this section.

Consider a particle moving on a graph, which is a line with L vertices. Each vertex on
the line is labeled by an integer 1, 2, . . . L. We use a quantum state |j⟩ to denote the particle
locating at the vertex j. Figure 4(a) illustrates our system, a finite segment with length L.
We let the Hamiltonian HL of the system be the adjacency matrix of the graph. In physics
terminology, HL couples adjacent vertices with the coupling constant 1. We have

HL =
L−1∑
j=1
|j⟩⟨j + 1|+ |j + 1⟩⟨j|, (29)

or

HL =

0 1 0 0
1 0 1 · · · · · · 0
0 1 0 0

...
. . .

...
... 0 1

0 0 0 · · · 1 0

.

in the {|j⟩}Lj=1 basis.

CCC 2023

33:28 Impossibility of Fast-Forwarding of Hamiltonian Simulation

(a)
|1⟩ |2⟩ |3⟩ |L − 2⟩ |L− 1⟩ |L⟩

(b)
|−1⟩ |0⟩ |1⟩ |2⟩ |3⟩ |L − 2⟩ |L− 1⟩ |L⟩ |L+ 1⟩ |L+ 2⟩

Figure 4 Quantum walk on a line. (a) Quantum walk on a finite segment with length L. (b)
Quantum walks on an infinite line.

The dynamics of the particle are determined by the time evolution operator e−iHLt, where
t is the evolution time. We call the dynamics of the system “quantum walk on a line.”

We are interested in the dynamics of a particle initially at the end of the line. In other
words, we consider the evolution of a particle under HL with the initial state |1⟩. We have
the following result.

▶ Lemma 35. Given a system that evolves under the Hamiltonian HL described in (29)
with initial state |1⟩, if the system is measured at time t ∈ [0, L/2] in the {|j⟩}Lj=0 basis with
outcome l, the probability that l > t is at least 1/3.

Before the formal proof of Lemma 35, we first discuss the general behavior of the quantum
walk. Let the particle initially locate at |k⟩ and evolve under the Hamiltonian HL. When
measuring the system at time t in the {|j⟩}Lj=1 basis, the probability P (k, l, t) of measurement
outcomes being l is

P (k, l, t) =
∣∣⟨l|e−iHLt|k⟩

∣∣2 . (30)

By diagonalizing HL, we can calculate P (k, l, t) as follows:

P (k, l, t) =
∣∣⟨l|e−iHLt|k⟩

∣∣2 =
L∑

p,q=1
e−i(λp−λq)tv

(p)
l v

(p)∗
k v

(q)∗
l v

(q)
k , (31)

where λp’s are the eigenvalues of HL – each with the corresponding eigenstate |v(p)⟩ =∑L
j=1 v

(p)
j |j⟩. The eigenvalues and the eigenstates of HL have a closed-form expression. That

is, λp = 2 cos(pπ
L+1) and v

(p)
j =

√
2

L+1 sin(jpπL+1) [30] 17.
We use the propagation of the wave function of a free particle to analogize the quantum

walk.18 For example, we plot the result of the quantum walk on a segment of length L = 100
in Figure 5. The initial state is |k = 1⟩ and we focus on the time interval t ∈ [0, L/2].
Figure 5(a) shows P (1, l, t), the probability of obtaining the measurement outcome |l⟩, for

17 In fact, there is a simpler form of P (k, l, t): when |l − k| is even,

P (k, l, t) =
(∑

p

cos
(

2t cos
(

pπ

L + 1

))
sin
(

kpπ

L + 1

)
sin
(

lpπ

L + 1

))2
,

and when |l − k| is odd,

P (k, l, t) =
(∑

p

sin
(

2t cos
(

pπ

L + 1

))
sin
(

kpπ

L + 1

)
sin
(

lpπ

L + 1

))2
.

18 Consider an extreme case that the distance between two adjacent vertices in space goes to zero and the
length L goes to infinity. The system is reduced to free space.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:29

every l at different time t. We see that at time t, the wavefront reaches l ≈ 2t. Figure 5(b)
shows the probability of getting the measurement outcome |l⟩ for a fixed l versus time. We
see that the probability is extremely small when t≪ l/2 and reaches the maximum at t ≈ l/2.
Finally, it behaves like a damped oscillation when t ≳ l/2. These observations suggest that
the wavefront propagates at a constant speed, which gives a hint that the particle reaches
the vertex l = Θ(t) at time t.19

0 20 40 60 80 100
0.0

0.1

0.2 t = 10

(a)

0 20 40 60 80 100
0.0

0.1

0.2 t = 20

0 20 40 60 80 100
0.0

0.1

0.2

p(
1,

l,
t)

t = 30

0 20 40 60 80 100
0.0

0.1

0.2 t = 40

20 40 60 80 100
vertex index l

0.0

0.1

0.2 t = 50

0 10 20 30 40 50
0.0

0.1

0.2 l = 1

(b)

0 10 20 30 40 50
0.0

0.1

0.2 l = 25

0 10 20 30 40 50
0.0

0.1

0.2

p(
1,

l,
t) l = 50

0 10 20 30 40 50
0.0

0.1

0.2 l = 75

0 10 20 30 40 50
evolution time t

0.0

0.1

0.2 l = 100

Figure 5 The result of quantum walk on a segment with L = 100 for the evolution time t ∈ [0, L/2].
The initial state is |1⟩. (a) The probability of getting the outcomes |l⟩ for every node l at the
evolution time t = 10, 20, 30, 40 and 50 respectively. (b) The probability of getting the outcomes
l = 1, 25, 50, 75 and 100 versus evolution time t ∈ [0, L/2].

Next, we are going to prove Lemma 35. We take another approach instead of diagonalizing
HL directly. We follow the approach in [14]. Similar to solving “the particle in a box model”
in quantum mechanics, we first find the homogeneous solution in free space and then find
the particular solution that satisfies the boundary conditions and the initial conditions. (See,
for example, [34].)

Consider the quantum walk on an infinite line which is illustrated in Figure 4(b). The
Hamiltonian of the quantum walk on an infinite line is defined by

H∞ :=
∞∑

j=−∞
|j + 1⟩⟨j|+ |j⟩⟨j + 1|, (32)

19 This corresponds to the fact that the uncertainty of the position of a free particle is linear in t. See, for
example, [34].

CCC 2023

33:30 Impossibility of Fast-Forwarding of Hamiltonian Simulation

and we define the propagator

G(k, l, t) := ⟨l|e−iH∞t|k⟩. (33)

The (sub-normalized) eigenstate of H∞ is the momentum state |p⟩. The momentum state
has the following property

⟨j|p⟩ = eipj ,−π ≤ p ≤ π. (34)

The corresponding eigenvalue of |p⟩ is Ep = 2 cos p. Hence, we have

⟨l|e−iH∞t|k⟩ =
∫ π

−π
dpe−i2t cos p+ip(l−k) = i(l−k)Jl−k(2t), (35)

where Jn(·) is the Bessel function of order n. (See (1).)
Now we are ready to calculate the propagator of the quantum walk on a finite segment.

We use G̃(k, l, t) := ⟨l|e−iHLt|k⟩ to denote the propagator of the quantum walk on a finite
segment. The propagator G̃ is a superposition of G and G̃ that satisfies the boundary
conditions: G̃(k, 0, t) = 0 = G̃(k, L+ 1, t), and the initial condition G̃(k, l, 0) = δkl.

The solution is

G̃(1, l, t) =
∞∑

m=−∞
G(1, l + 2m(L+ 1), t)−G(1,−l + 2m(L+ 1), t). (36)

The above equation (36) can be interpreted as the wave reflecting between the boundaries
j = 0 and j = L+ 1.

We set the starting point j = 1. In the time interval that we are interested in, namely,
t ∈ [0, L/2], we have G(1,±l + 2m(L+ 1), t) = J2m(L+1)±l−1(2t) is exponentially small in L
for m ̸= 0. This is because the order |2m(L+ 1)± l − 1| > L for m ̸= 0 and the argument
2t ≤ L for t ≤ L/2. (See (4).)
Thus,

G̃(1, l, t) ≈ G(1, l, t)−G(1,−l, t)

= il−1Jl−1(2t)− i−(l+1)J−(l+1)(2t)

= il−1Jl−1(2t)− (i−(l+1))(−1l+1)Jl+1(2t)
= il−1Jl−1(2t)− (−i)l+1)Jl+1(2t)
= il−1(Jl−1(2t)− (−i)2Jl+1(2t))
= il−1(Jl−1(2t) + Jl+1(2t))

= il−1 l

t
Jl(2t). (37)

The third equation is due to the relation of negative order (2) of the Bessel function, and the
last equation uses the recursion property (3) of the Bessel function. Then we have

P (1, l, t) =
∣∣∣G̃(1, l, t)

∣∣∣2 ≈ (l
t

)2
J2
l (2t). (38)

As a remark, the probability P (1, l, t) is almost independent of L when t ∈ [L/2]. It can be
interpreted as the following: before the wavefront reaches the boundary, the wave propagates
as in free space. Finally, we prove Lemma 35.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:31

Proof of Lemma 35. We directly calculate the probability
∑⌊t⌋
l=1 P (1, l, t) as follows:

⌊t⌋∑
l=1

P (1, l, t) =
⌊t⌋∑
l=1

(
l

t

)2
J2
l (2t) ≤

⌊t⌋∑
l=1

(
l

t

)2 2
π

1
l

= 2
π

⌊t⌋∑
j=l

l

t2
≤ 2
π
,

where the first equation follows from (38) and the second inequality follows from Lemma 15.
As a result, we conclude that

L∑
l=⌈t⌉

P (1, l, t) = 1−
⌊t⌋∑
l=1

P (1, l, t) > 1
3 . ◀

8 No Fast-forwarding in Oracle Model: Unconditional Result

In this section, we are going to investigate the parallel lower bound of Hamiltonian simulation
in the oracle model. In the oracle model, the Hamiltonian is expressed by a Hermitian matrix.
There are many algorithms that can efficiently simulate a Hamiltonian in the oracle model
if the Hamiltonian matrix is sparse [6–8, 13, 27, 28]. As a result, we are interested in the
lower bound of simulating a sparse Hamiltonian. Besides, we normalize the Hamiltonian by
setting the absolute value of every element of the Hamiltonian to be at most 1. The sparse
Hamiltonian is defined as follows.

▶ Definition 36 (Sparse Hamiltonian). Let H ∈ CN×N denote a Hamiltonian acting on the
Hilbert space with dimension N . We say H is d-sparse if there are at most d nonzero entries
in every row.

In the oracle setting, the simulation algorithm can only obtain the description of the
Hamiltonian via oracle queries. In most of the models of the algorithms, there are two
oracles that can be accessed: First, the entry oracle, denoted by OH , answers the value of
the matrix element. Second, the sparse structure oracle, denoted by OL, answers the index
of the nonzero entry. Let the Hamiltonian H that we want to simulate be acting on an
N -dimensional Hilbert space and be d-sparse. When the entry oracle OH is queried on the
index (j, k) where j, k ∈ [N], it returns the element value Hjk. When the sparse structure
oracle is queried on (j, s) where j ∈ [N] and s ∈ [d], it returns k where Hjk is the s-th
nonzero entry of the j-th row.

The algorithm can query these two oracles in superposition respectively. In the standard
quantum oracle model, these two oracles are written as:

OH |j, k, z⟩ = |j, k, z ⊕Hjk⟩, (39)

and

OL|j, s⟩ = |j, k⟩, (40)

where k is the index of the s-th nonzero entry in the j-th row.
We are going to prove that simulating a quantum system for evolution time t requires at

least Ω(t) parallel quantum queries. We have the following result.

▶ Theorem 37 (Simulation lower bound in the oracle model). For any integer n, any polynomial
T (·) and p = poly(n), there exists a time-independent Hamiltonian H ∈ C(2nT (n))×(2nT (n))

satisfies the following. For any quantum algorithm that can make p-parallel queries to the
entry oracle OH (defined in (39)) and the sparse structure oracle OL (defined in (40)),
simulating H for an evolution time t ∈ [0, T (n)/2] within an error ϵ ≤ 1/4 needs at least
Ω(t) p-parallel queries to OH and OL in total. Furthermore, H is 2-sparse and |Hjk| ≤ 1
for every j, k ∈ [2nT (n)].

CCC 2023

33:32 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Theorem 37 can be interpreted as simulating a system with n+O(logn) qubits for an
evolution time t < poly(n) cannot be fast-forwarded.

Before the formal proof of Theorem 37, we first sketch our proof strategy. We modify the
proof of the query lower bound in [6]. In [6], the parity problem is reduced to the Hamiltonian
simulation problem. In particular, it is shown that if one can fast-forward the Hamiltonian
simulation, then one can find the parity of an N -bit string with o(N) queries. However, this
technique cannot be extended to prove the parallel lower bound since finding the parity of a
string is not parallel-hard. Instead, we reduce the permutation chain problem, of which the
parallel hardness was already proven in Section 5, to the Hamiltonian simulation. We are
going to show that there exists a specific Hamiltonian such that simulating the Hamiltonian
implies solving the permutation chain problem.

We restate the permutation chain problem and its hardness below.

▶ Definition 38 (Permutation chain). Let n ∈ N and p, L = poly(n). For each j ∈ [L], let
Πj : {0, 1}n → {0, 1}n be a random permutation and let Π−1

j be the inverse of Πj . Let f (j)(·)
denote Πj(Πj−1(· · ·Π1(·))). A quantum algorithm can make p-parallel query to both Πj and
Π−1
j for each j ∈ [L] respectively and is asked to output xq ∈ {0, 1}n such that xq = f (q)(0n),

where q ∈ [L].

▶ Corollary 39 (Hardness of permutation chain). Let n ∈ N, and p, L = poly(n). For each
j ∈ [L], let Πj and Π−1

j be a random permutation over n-bit strings and its inverse. Let
f (j)(·) := Πj(Πj−1(· · ·Π1(·))) be the function defined in Definition 38. For any t, q ∈ [L] and
any quantum algorithm A that makes t p-parallel queries to Πj and Π−1

j , the probability that
A outputs xq ∈ {0, 1}n satisfying xq = f (q)(0n) and t < q is negligible in n.

Proof. Let x̄q := f (q)(0n) for each q ∈ [L]. The probability that A outputs x̄q such that
t < q is given by

L∑
j=t+1

Pr[A outputs x̄j].

By Theorem 18, for any quantum algorithm A that makes t p-parallel queries to Πj and Π−1
j ,

the probability that A outputs xj such that j > t is O(t
√
p/2n). Hence, the probability

L∑
j=t+1

Pr[A outputs x̄j] = poly(n) ·O
(
t

√
p

2n

)
is negligible in n. ◀

Similar to [6], we use quantum walk on a graph to solve the underlying hard problem.
We construct a graph that consists of L columns where there are 2n vertices in each column.
Each vertex in the j-th column is labelled by (j, x), where j ∈ {0, 1, . . . L} and x ∈ {0, 1}n.
The label is translated as follows: after j queries, the output string is x. The vertices
in the j-th column are only adjacent to the vertices that are in the (j ± 1)-th columns.
Furthermore, the vertices (j, x) and (j + 1, x′) (resp., (j − 1, x′)) are adjacent if and only if
x′ = Πj+1(x) (resp. Π−1

j (x)). Because each Πj is a permutation, the graph consists of 2n
disconnected lines of length L. If the vertices (j, x) and (0, x0) are connected, it holds that
x = f (j)(x0).

In Figure 6, we presents a toy example: let Πj : {0, 1}2 → {0, 1}2 for each j ∈ [L] and
each Πj = Π has the same truth table, i.e.,

Π(00) = (01), Π(01) = (10), Π(10) = (11), and Π(11) = (00).

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:33

(0, 00)

(0, 01)

(0, 10)

(0, 11)

(1, 00)

(1, 01)

(1, 10)

(1, 11)

(2, 00)

(2, 01)

(2, 10)

(2, 11)

(L− 1, 00)

(L− 1, 01)

(L− 1, 10)

(L− 1, 11)

(L, 00)

(L, 01)

(L, 10)

(L, 11)

L+ 1

Figure 6 Using quantum walk to solve the permutation chain problem: a toy example.

We let the Hamiltonian H that determines the behavior of the quantum walk be the
adjacency matrix of the graph.20 That is,

H =
L−1∑
j=0

∑
x∈{0,1}n

|j + 1,Πj(x)⟩⟨j, x|+ |j, x⟩⟨j + 1,Πj(x)|

=
∑

x0∈{0,1}n

L−1∑
j=0
|j + 1, f (j+1)(x0)⟩⟨j, f (j)(x0)|+ |j, f (j)(x0)⟩⟨j + 1, f (j+1)(x0)|. (41)

Because two vertices on different lines are decoupled, we have the following observation.

▶ Observation 40. If the random walk starts at the vertex (0, x0), then it always walks on
the same line. To be more precise, if a system evolves under the Hamiltonian H described
in (41) and the initial state is |0, x0⟩, then at any time t, the quantum state of the system is
in the subspace Span

({
|j, f (j)(x0)⟩

}L
j=0

)
.

Observation 40 can be verified by taking the Taylor expansion of the time evolution operator:
e−iHt =

∑∞
k=0(−iHt)k/k!.

To solve the permutation chain problem, we use a Hamiltonian simulation algorithm to
simulate the quantum walk under the Hamiltonian H with initial state |0, 0n⟩. When we
measure the system at time t and get the outcome (q, x). The string x is a potential solution
to the permutation chain problem. We aim to prove the following two statements. First, the
oracles OH and OL can be simulated efficiently by Πj and Π−1

j . Second, the probability of
getting a measurement outcome (q, x) at time t such that q ≥ t is high. Combining these
two statements, we have the following conclusion. If an algorithm can simulate H for an
evolution time t with o(t) queries, then we can solve the permutation chain problem with
o(t) queries as well. However, this violates the hardness of the permutation chain problem.

Now we are ready to present the formal proof of Theorem 37.

Proof of Theorem 37. We construct a time-independent Hamiltonian H acting on a 2n(L+
1)-dimensional Hilbert space where L + 1 = f(n). The basis vector of the 2n(L + 1)-
dimensional Hilbert space is denoted by |j, x⟩ where j ∈ {0, 1, . . . , L} and x ∈ {0, 1}n. The
element of H is defined as follows.

⟨j′, x′|H|j, x⟩ =

1, ifj′ = j + 1 and x′ = Πj+1(x)
1, ifj′ = j − 1 and x′ = Π−1

j (x)
0, otherwise.

(42)

20 Our Hamiltonian is different from that appears in [6], in which the graph is weighted.

CCC 2023

33:34 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Notice that the Hamiltonian H is 2-sparse and the absolute value of every matrix element is
at most 1.

We are going to show the following. Suppose A can simulate H for an evolution time
t ∈ [0, (L+ 1)/2] within an error ϵ < 1/4 by making o(t) p-parallel queries to OH and OL.
Then we can construct a reduction R that makes o(t) p-parallel queries to Πj and Π−1

j and
outputs a pair (x0, xq) such that xq = f (q)(x0) and q > t with constant probability. The
reduction R is described as follows:
1. Run the Hamiltonian simulation algorithm A on inputs the Hamiltonian H, the evolution

time t ∈ [0, L/2] and the initial state |0, 0n⟩.
When A queries OH on the index ((j, x), (j′, x′)), the reduction R returns the response
by the following rules.

If j′ = j + 1 and x′ = Πj+1(x), then R returns 1.
If j′ = j − 1 and x′ = Π−1

j (x), then R returns 1.
Otherwise, R returns 0.

When A queries OL on ((j, x), s), reduction R returns the response by the following
rules.

If j = 0 and s = 1, then R returns (1,Π1(x)).
If j = L and s = 1, then R returns (L− 1,Π−1

L (x))
If j ̸= 0, L and s = 1, then R returns (j − 1,Π−1

j (x)).
If j ̸= 0, L and s = 2, then R returns (j + 1,Πj+1(x)).

2. Measure the system in the {|j, x⟩} basis and obtain the outcome (q, xq).
3. Output xq.

Note that answering a query to the entry oracle OH can be implemented by O(1) queries
to Πj and Π−1

j . Similarly, the sparse structure oracle OL can be simulated by O(1) queries
to Πj and Π−1

j as well.
Next, we analyze the evolution under H. Let us define another Hamiltonian H|0 restricted

to the subspace Span
({
|j, f (j)(0)⟩

}L
j=0

)
:

H|0 =
L−1∑
j=0
|j + 1, f (j+1)(0)⟩⟨j, f (j)(0)|+ |j, f (j)(0)⟩⟨j + 1, f (j+1)(0)|.

By Observation 40, the time evolution under H|0 is equivalent to the time evolution under
H with the initial state |0, 0n⟩.

We first consider a perfect Hamiltonian simulation algorithm Ã that outputs the state
|ψ̃⟩ := e−iHt|0, 0n⟩ = e−iH|0t|0, 0n⟩. In Step 2, the measurement outcome (q, xq) satisfies
xq = f (q)(0n). Then by Lemma 35, the probability that the measurement outcome satisfies
q > t is at least 1/3.

Next, we consider the general simulation algorithm that outputs a state |ψ⟩ such that
∆(|ψ⟩⟨ψ|, |ψ̃⟩⟨ψ̃|) ≤ 1/4. By the property of the trace distance, the difference in probabilities
that R outputs a correct outcome by measuring |ψ⟩ and |ψ̃⟩ is at most 1/4. As a result, R
outputs the accepted string xq with probability at least 1/3− 1/4 = 1/12.

Combining everything together, if A simulates H for time t within ϵ ≤ 1/4 by making o(t)
p-parallel queries, then R will output xq = f (q)(0n) such that q > t with constant probability
by making o(t) p-parallel queries. This contradicts Corollary 39. ◀

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:35

9 No Fast-forwarding in Plain Model

In this section, we are going to investigate the parallel lower bound of Hamiltonian simulation
in the plain model. In the plain model, we are interested in the Hamiltonians that have a
succinct description. Typically, we consider the local Hamiltonians.

▶ Definition 41 (Local Hamiltonian). We say a Hamiltonian H that acts on n qubits is
k-local if H can be written as

H =
∑
j

Hj ,

where each Hj acts non-trivially on at most k qubits.

The geometrically local Hamiltonians are another kind of Hamiltonians that often appear
in physics models. A geometrically local Hamiltonian is a local Hamiltonian with more
constraints. For a geometrically local Hamiltonian written by H =

∑
j Hj , each term Hj

acts non-trivially on the qubits that are near in space. We are especially interested in
one-dimensional geometrically local Hamiltonians.

▶ Definition 42 (One-dimension geometrical local Hamiltonians). Let a system consist of n
qubits that are aligned in space and each qubit is labeled by an integer l ∈ [n]. Let H =

∑
j Hj

be a k-local Hamiltonian that acts on n qubits. We say H is an one-dimension geometrically
local Hamiltonian if each Hj acts non-trivially on at most k consecutive indices.

For example, consider Hamiltonians H1 and H2 acting on four qubits defined as follows:

H1 := σX ⊗ σZ ⊗ I ⊗ I + σZ ⊗ I ⊗ I ⊗ σZ + I ⊗ I ⊗ σX ⊗ I,

and

H2 := σZ ⊗ σZ ⊗ I ⊗ I + I ⊗ σZ ⊗ σZ ⊗ I + I ⊗ I ⊗ σZ ⊗ σZ ,

where σX and σZ are Pauli operators and I is the identity operator. Hamiltonian H1 is
2-local but not geometrically local, but Hamiltonian H2 is geometrically local. We normalize
the Hamiltonian by setting the spectral norm ∥Hj∥ = O(1) for each j.

Having a succinct description gives the simulation algorithm more power than in the
oracle model. In this sense, we obtain a stronger lower bound. On the other hand, our lower
bound in the plain model relies on computational assumptions, which weakens the result.
For our lower bound, we need to assume an iterative parallel-hard function, which is slightly
modified from the definition of an iterative sequential function by Boneh et al. [9].

▶ Definition 43 (Iterative parallel-hard functions/puzzles). A function f : N× X̂ → X where
X̂ ∈ X and |X̂| = 2θ(λ) is a (post-quantum) (s, d)-iterated parallel-hard function if there
exists a function g : X → X such that

g can be computed by a quantum circuit with width λ and size s(λ). Without loss of
generality, we can let s(λ) = Ω(λ)
f(k, x) = g(k)(x).
For all sufficiently large k = 2o(λ), for any quantum circuit C with depth less than d(k)
and size less than poly(t, d(k), λ),

Pr[C(x) = f(k, x) | x← X̂] ≤ negl(λ)

Without loss of generality, we assume that d is non-decreasing.

CCC 2023

33:36 Impossibility of Fast-Forwarding of Hamiltonian Simulation

We say that f forms a (post-quantum) (s, d)-iterated parallel-hard puzzle if it only satisfies
a weaker version of the third requirement as follows:

For all k = 2o(λ), for any uniform quantum circuit C with depth less than d(k) and size
less than poly(t, d(k), λ),

Pr[C(x) = f(k′, x) for some k′ ≥ k/2 | x← X̂] ≤ negl(λ).

Note that an (s, d)-iterated parallel-hard function is directly an (s, d′)-iterated parallel-hard
puzzle, where d′(x) := d(x/2).

Under the (quantum) random oracle heuristic [4, 10], such parallel-hard puzzles can be
heuristically obtained by instantiating the twisted hash chain with a cryptographic hash
function.

▶ Assumption 44. With the random oracle heuristic, we can assume that the standard
instantiation of the twisted hash chain is parallel-hard by Corollary 33. Assuming the
cryptographic hash function h in the instantiation can be implemented by circuits of size s(λ)
on λ-bit inputs, the twisted hash chain directly gives an (s+O(λ), d) iterative parallel-hard
function with d(x) := x − 1, which is an (s + O(λ), d) iterative parallel-hard puzzle with
d(x) := ⌊x2 ⌋ − 1

We present the simulation lower bound for the local Hamiltonians in the following theorem.

▶ Theorem 45 (Simulation lower bound for local Hamiltonians in the plain model). Assuming
an (s, d)-iterated parallel-hard puzzle, for any integer n, there exists a time-independent c-local
Hamiltonian H acting on n+ (2s(n)T (n))1/c qubits such simulating H for an evolution time
t ∈ [0, s(n)T (n)] with error ϵ < 1/4 needs a (d(⌊t/2s(n)⌋)−O(s(n)))-depth circuit, where
T (·) is an arbitrary polynomial and c is a constant.

We also have the lower bound for simulating geometrically local time-dependent Hamilto-
nians.

▶ Theorem 46 (Simulation lower bound for geometrically local Hamiltonians in the plain
model). Assuming an (s, d)-iterated parallel-hard function, for any integer n, there exists a
piecewise-time-independent 1-D geometrically 2-local Hamiltonian H acting on n qubits such
that simulating H for an evolution time t ∈ [0, ns(n)T (n)] with error ϵ(n) ≤ 1− 1/ poly(n)
needs a

(
d(⌊ t

ns(n)⌋)−O(ns(n))− poly(log(n), log log(1/ϵ′(n))
)

-depth circuit, where T (·) is
an arbitrary polynomial and ϵ′(n) < 1− ϵ(n)− 1/ poly(n).

We sketch our proof strategy as follows. The main idea is, again, to reduce the hard
problem to the Hamiltonian simulation problem. First, we consider a quantum circuit C
that computes an (s, d)-iterated parallel-hard puzzle, which according to the definition, can
be written as a sequential composition of λ-qubit s(λ)-sized circuits. Then we construct
a Hamiltonian Hcircuit to implement the circuit C by the circuit to Hamiltonian reduction
technique. The circuit to time-independent reduction is introduced in Section 9.1, and
the circuit to time-dependent reduction is introduced in Section 9.3. Finally, we use the
Hamiltonian simulation algorithm to simulate the Hamiltonian Hcircuit. If we can fast-forward
the Hamiltonian evolution under Hcircuit, then we can break the depth guarantee provided
by the iterated parallel-hard puzzle.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:37

9.1 Circuit to time-independent Hamiltonian

Feynman suggested that we can implement a quantum circuit (which was called reversible
computation at his time) by a time-independent Hamiltonian [21]. About a decade later,
Childs and Nagaj provided rigorous analyses for the implementation [15, 30]. The idea is
to introduce an extra register, which is called the clock register Hclock, associated with the
circuit register Hcircuit to record the progress of the quantum circuit. After introducing
the clock register, we define a state |ψj⟩ = |ϕj⟩circuit ⊗ |γj⟩clock to indicate that the j-th
steps outcomes is |ϕj⟩. We can construct a Hamiltonian acting on Hcircuit ⊗Hclock such that
during the evolution, the system is in Span ({|ψj⟩}). When we measure the clock register
Hclock and get the outcome γk, the quantum state in the circuit register Hcircuit collapses to
|ϕk⟩. And then we obtain the k-th step outcome of the quantum circuit. Similar techniques
appear in the proof of QMA completeness [25] and universality of adiabatic computation [1].

In [30], Nagaj proved that for any quantum circuit C with L quantum gates, there is a
Hamiltonian Hcircuit such that evolving the system under the Hamiltonian Hcircuit for time
O(L) and then measuring the system, we can get the final state of the quantum circuit
C with high probability. We extend Nagaj’s result. In this section, we are going to prove
that if the system evolves under Hcircuit for time t ∈ [0, L/2], we can get |ψj⟩ where j ≥ t

with high probability. Our method is slightly different from Nagai’s. In [30], the evolution
time is uniformly sampled, while we have an explicit evolution time. Another difference is
that in [30] it needs to pad O(L) dummy identity gates at the end of the quantum circuit
to amplify the probability of getting the output state. In our construction, padding is not
required.

Let a quantum circuit C which acts on the register Hcircuit consist of a sequence of g
quantum gates U1, U2, . . . , UL. Namely,

C = ULUL−1 · · ·U1.

After introducing the clock register Hclock, and the clock state, which is a family of or-
thonormal states {|γj⟩}Lj=0 where each |γj⟩ ∈ Hclock, we construct the following Hamiltonian

Hcircuit :=
L∑
j=1

Hj , (43)

where

Hj := Uj ⊗ |j⟩⟨j − 1|+ U†j ⊗ |j − 1⟩⟨j|. (44)

Let the input state of the circuit be |ϕ(0)
0 ⟩, and let |ϕ(0)

j ⟩ denote the quantum state of j-th
step. That is, |ϕ(0)

j ⟩ = UjUj−1 · · ·U1|ϕ(0)
0 ⟩. Define the state

|ψ(0)
j ⟩ := |ϕ(0)

j ⟩ ⊗ |γj⟩, (45)

which is the state after j steps of C.
Let {|ϕ(1)

0 ⟩, . . . , |ϕ
(N−1)
0 ⟩} be the states that are orthogonal to |ϕ(0)

0 ⟩ where N denotes the
dimension of Hcircuit. Besides, let |ϕ(m)

j ⟩ := UjUj−1 · · ·U1|ϕ(m)
0 ⟩ and |ψ(m)

j ⟩ := |ϕ(m)
j ⟩ ⊗ |γj⟩

where m ∈ [N − 1]. We have

CCC 2023

33:38 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Hcircuit|ψ(m)
j ⟩ =

|ψ(m)
j+1⟩ , if j = 0,
|ψ(m)
j−1⟩+ |ψmj+1⟩ , if j = 1, . . . , L− 1,
|ψ(m)
j−1⟩ , if j = L,

for any m ∈ {0, 1, . . . , N − 1}.
Again, the evolution under Hcircuit can be viewed as quantum walks on a graph. We

construct a graph illustrated in Figure 7 whose adjacency matrix is Hcircuit.

|ψ(0)
0 ⟩

|ψ(1)
0 ⟩

|ψ(N−1)
0 ⟩

|ψ(0)
1 ⟩

|ψ(1)
1 ⟩

|ψ(N−1)
1 ⟩

|ψ(0)
2 ⟩

|ψ(1)
2 ⟩

|ψ(N−1)
2 ⟩

|ψ(0)
L−1⟩

|ψ(1)
L−1⟩

|ψ(N−1)
L−1 ⟩

|ψ(0)
L ⟩

|ψ(1)
L ⟩

|ψ(N−1)
L ⟩

L+ 1

Figure 7 The quantum walk on a graph for the circuit to Hamiltonian reduction.

We have the following lemma.

▶ Lemma 47. A system evolves under the Hamiltonian Hcircuit described in (43) with the
initial state |ψ(0)

0 ⟩ described in (45). If the clock register is measured at time t ∈ [0, L/2]
in the {γj} basis and get the outcome l, the probability that the circuit register collapses to
|ϕ(m)
l ⟩ where m = 0 and l > t is at least 1/3.

Proof. By the similar argument of Observation 40, we define another Hamiltonian H|ψ(0)

restricted to the subspace Span
(
{|ψ(0)

j ⟩}Lj=0

)
:

H|ψ(0) :=
L−1∑
j=0
|ψ(0)
j+1⟩⟨ψ

(0)
j |+ |ψ

(0)
j ⟩⟨ψ

(0)
j+1|. (46)

If the system is initially at |ψ(0)
0 ⟩, the time evolution under Hcircuit is the same as the time

evolution under H|ψ(0) . As a result, we have m = 0 for any time t.
Because |ψ(0)

j ⟩ = |ϕ(0)
j ⟩ ⊗ |γj⟩, the measurement results of measuring clock register in

{|γj⟩} basis is the same as measuring the entire system in {|ψ(0)
j ⟩} basis. The probability

that l > t can be obtained directly from Lemma 35. This finishes the proof. ◀

Next, we present our construction of the clock state.

▶ Lemma 48. For all c, T ∈ N, there exists a construction that implements the clock state
for time T with locality c and at most O(T 1/(c−1)) qubits.

Proof. Let n be the smallest integer such that
(
n
c−1
)
≥ T . Thus, n = O(T 1/(c−1)). Consider

the system that consists of n qubits indexed from 1 to n. Consider the Johnson graph Jn,c−1
(see Definition 16), for each node S ⊆ [n], define the n-qubit state |S⟩ as

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:39

|S⟩ :=
n⊗
i=1
|IS(i)⟩i,

where the subscript i denotes the register of the i-th qubit; IS : [n]→ {0, 1} is the indicator
function that equals 1 if i ∈ S and 0 otherwise.

Choose an arbitrary Hamiltonian path of Jn,c−1, denoted by (S1, S2, . . . , S(n
c−1)). Now,

each time j ∈ [
(
n
c−1
)
] corresponds to the n-qubit state |Sj⟩.

For every j ∈
[(

n
c−1
)
− 1
]
, the time transition |j + 1⟩⟨j| is implemented by

Ej→j+1 :=
n⊗
i=1

Pi,

where

Pi :=

|1⟩⟨1|i, if i ∈ Sj ∩ Sj+1

|1⟩⟨0|i, if i ∈ Sj+1 \ Sj
|0⟩⟨1|i, if i ∈ Sj \ Sj+1

I, otherwise.

It is easy to see that the transitions are c-local due to the definition of Jn,c−1. It remains to
check the correctness of the transitions. That is, for every j, j′ ∈

[(
n
c−1
)
− 1
]
, they should

satisfy

Ej→j+1|Sj′⟩ =
{
|Sj′+1⟩, if j = j′

0, otherwise.

When j = j′, the equality holds since there is an edge between Sj and Sj+1. When j ̸= j′,
there must exist an i∗ ∈ Sj such that i∗ /∈ Sj′ . Therefore, Pi∗ = |0⟩⟨1|i∗ will vanish |Sj′⟩
because the i∗-th qubit of |Sj′⟩ is in the state |0⟩i. This verifies the correctness. ◀

9.2 Proof of the lower bound for local Hamiltonians
Proof of Theorem 45. From an (s, d)-iterated parallel-hard puzzle f(k, x) = g(k)(x), we
here show how to construct a time-independent (c + 2)-local Hamiltonian H acting on
n+ (2s(n)T (n))1/c qubits.

The construction is direct. By definition, g can be implemented by an s(n)-sized quantum
circuit Cg. We can thus construct a circuit C concatenating T (n) copies of Cg, which
computes f(T (n), x) with size s(n)T (n). Note that, if we denote C(i, x) to be the intermediate
output of C(x) after applying the i-th gate, then we additionally have C(ks(n), x) = |f(k, x)⟩
for all k ≤ T (n).

Given such a circuit C, we can construct a Hamiltonian H by the circuit-to-Hamiltonian
reduction introduced in Section 9.1. We use the construction in Lemma 48 with locality
c and time-bound 2s(n)T (n) to implement the clock state. Hence H =

∑
j Hj , where

Hj := Uj ⊗ |j⟩⟨j − 1|+ U†j ⊗ |j − 1⟩⟨j|, and Uj is a unitary corresponding to the j-th gate
of C. Note that Uj is always an one- or two-qubit gate, and |j⟩⟨j − 1| is c-local. Hence H
is c+ 2 local over n+ (2s(n)T (n))1/c qubits. It is also direct to see that ∥Hj∥ = O(1) for
each j.

CCC 2023

33:40 Impossibility of Fast-Forwarding of Hamiltonian Simulation

For such H and any t ∈ [0, s(n)T (n)], if there is a quantum algorithm A that computes
e−iHt within depth dA, we can indeed construct a quantum algorithm R with depth dA+O(n)
that computes the underlying parallel-hard puzzle. The algorithm R is defined as follows.
1. For an input x ∈ {0, 1}n, run the algorithm A with input Hamiltonian H and input state
|x⟩, obtain the output state of A, denoted by |ψ⟩.

2. Measure the clock register Hclock in {|γj⟩} basis and obtain some l ∈ [s(n)f(n)]. The
residual state in the circuit register Hcircuit is denoted by |ϕl⟩.

3. Let m = ⌈l/s(n)⌉. Apply Ums(n) · · ·Ul+1 on |ϕl⟩. Let the final state be |ϕm⟩.
4. Measure |ϕm⟩ on the computational basis and obtain the outcome xm.
5. Output xm

In this construction, Step 2 and Step 4 can be done within depth O(n) and Step 3 can be
done within depth s(n). It is easy to see that R can be implemented with depth dA+O(s(n)).

We claim that, with constant probability, m > t
s(n) and xm = f(m,x). This implies that

R can break the underlying parallel-hard puzzle on k = 2⌊ t
s(n)⌋

To prove the claim, we first consider a simplified case, where there exists an ideal Ã that
perfectly simulates H for time t and plugs it into our construction. We use |ψ̃⟩ to denote
the output of Ã in Step 1, and similarly |ψ̃l⟩ for output in Step 2. By Lemma 47, we have
|ϕ̃l⟩ = Ul · · ·U1|x⟩ for all l and the probability that we get some l > t in Step 2 is at least 1/3.
By the definition of C, the output state of Step 3 satisfies |ϕ̃m⟩ = Ums(n) · · ·U1|x⟩ = |f(m,x)⟩.
Moreover, m ≥ ⌊ t

s(n)⌋ with probability at least 1/3. This matches the required condition of
our claim.

Now we return to the general A with simulation error ϵ < 1/4. Let |ψ⟩ be the output
of A with error ϵ. Observe that we have ∆(|ψ⟩⟨ψ|, |ψ̃⟩⟨ψ̃|) < 1/4. Thus, by the definition
of the trace distance, the difference in probabilities of obtaining any outcome by applying
the same procedure to two states should be at most 1/4. Hence, with probability at least
1/3− 1/4 = 1/12, measuring |ϕm⟩ gives f(m,x) with some m ≥ ⌊ t

s(n)⌋. This completes the
proof of our claim.

Finally, by the security guarantee of the (s, d)-iterated parallel-hard puzzle, any circuit
computing the puzzle for k = 2⌊ t

s(n)⌋ should have depth at least d(2⌊ t
s(n)⌋). This gives an

lower bound that dA +O(s(n)) > d(2⌊ t
s(n)⌋), which completes the proof. ◀

9.3 Circuit to time-dependent Hamiltonian
In this section, we will show how to encode a circuit into a time-dependent geometrically
local circuit.

▶ Lemma 49. A quantum circuit C (of 2-qubit gates) over n qubits of size s can be
transformed into a circuit C ′ over n qubits of size ns, such that every gate in C ′ acts only
on consecutive qubits, and C ′(x) = πC(x) for some permutation π on n elements. We call
such C ′ a geometrically local circuit.

Proof. The proof of this small lemma is very direct. Given a circuit C with (sequen-
tial) gates G1, G2, . . . , Gs, where gate Gi acts on qubits αi, βi, then we can rewrite C as
S1,α1 , S1,α1+1, . . . , S1,β1−2, G

′
1, G

′
2, . . . , G

′
s, where Si is a swap gate acting on the i and

(i + 1)-th qubits, and G′i is Gi acting on the permuted qubits. Note that now G′1 is
acting on two consecutive qubits β1 − 1, β1. It is easy to see that applying G1 and apply-
ing S1,α1 , S1,α1+1, . . . , S1,β1−2, G

′
1 generate output states that differ up to a permutation.

Through repeating such process s times, we can obtain a circuit C ′ that consists of at most
(n− 1)s swap gates and s permuted gates from C. Furthermore, every gate in C ′ is acting
only on consecutive qubits. ◀

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:41

▶ Theorem 50. Given a quantum circuit C over n qubits that consists of s gates U1 . . . Us,
we can define a time-dependent Hamiltonian H such that H(t) := −i logUi for all t ∈ [i−1, i)
and Ui := In for i > s. Note that H obviously satisfies eiHt|ϕ⟩ = C|ϕ⟩ for t > s.

▶ Remark 51. A Hamiltonian H obtained from a geometrically local circuit is 1-D geometri-
cally 2-local.

▶ Remark 52. Such time-independent Hamiltonians that remain constant in each time
segment are also called piecewise constant Hamiltonians in [23].

9.4 Proof of the lower bound for geometrically local Hamiltonians
Before proving the theorem, we will need the existence of a Hamiltonian simulation algorithm
for 2-local time-independent Hamiltonians. While there are plenty of proposals in the
literature, we use the one in [39] which provides a good dependency on ϵ. The choice of the
simulation algorithm will only affect an additive term of our bound.

▶ Theorem 53 ([39], with some parameter specified). A 2-local Hamiltonian acting on
n qubits can be simulated for time t within precision ϵ by a quantum circuit of depth
poly(log log(1/ϵ), log(n), t).

Proof of Theorem 46. The proof is very similar to the proof of Theorem 45. From an
(s, d)-iterated parallel-hard function f(k, x) = g(k)(x), we will construct a geometrically
2-local Hamiltonian H over n qubits.

Again, since g can be implemented by an s(n) sized circuit Cg, we can construct Cf
by concatenating T (n) copies of Cg, which computes f(T (n), x) with size s(n)T (n). Then,
by applying Lemma 49, we can obtain a geometrically local circuit C of depth at most
ns(n)T (n). Note that Lemma 49 basically constructs C by adding at most n− 1 swap gates
before each gate of Cf . For notation simplicity, we add extra dummy gate before each gate
so that there are exactly (n− 1) gates added before each gate of Cf . Thus the depth of C
is exactly ns(n)T (n), and if we denote C(i, x) to be the intermediate output of C(x) after
applying the i-th gate, we have C(kns(n), x) = πk|f(k, x)⟩ for all k ≤ T (n), where πk is
some (known) permutation on n bits.

With such a geometrically local circuit C, we can apply Theorem 50 to obtain a time-
dependent geometrically 2-local Hamiltonian H over n qubits. For all t ∈ [0, ns(n)T (n)], if
there is a quantum algorithm A that computes e−iHt with precision ϵ of depth dA, we can
indeed construct a quantum algorithm R of depth dA +O(s(n)) + poly(log log(1/ϵ′), logn)
with ϵ′ < 1− ϵ− 1/ poly(n). The algorithm R is defined as follows.
1. For an input x ∈ {0, 1}n, run A on inputs the Hamiltonian H and the initial state |x⟩ to

obtain the output state |ϕ⟩.
2. Run the Hamiltonian simulation algorithm S in Theorem 53 with inputs the Hamiltonian

H(t) (which is time-independent) , the initial state |ϕ⟩, the evolution time ⌈t⌉ − t, and
the precision parameter ϵ′ to obtain the output state |ϕ⌈t⌉⟩.

3. Let m = ⌈ t
ns(n)⌉. Apply Umns(n) · U⌈t⌉+1 to |ϕ⌈t⌉⟩. Let the final state be |ϕm⟩.

4. Measure the permuted state πm|ϕm⟩ on the computational basis and obtain the outcome
xm.

5. Output xm.

In the construction, Step 3 can be done within depth O(ns(n)) and Step 4 can be
done within depth O(1). Thus, R can be instantiated within depth dA + O(ns(n)) +
poly(log log(1/ϵ′), logn).

CCC 2023

33:42 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Now we show that if ϵ+ ϵ′ ≤ 1− 1/ poly(n), then xm = f(k,m) holds with non-negligible
probability.

We consider the case in which the algorithms A and S both simulate the evolution
perfectly. Denote the output state in each step of this experiment as |ϕ̃⟩, |ϕ̃⌈t⌉⟩ and |ϕ̃m⟩. In
particular,

|ϕ̃⟩ = expT
(
−i
∫ t

0
H(t′)dt′

)
|x⟩

and

|ϕ̃⌈t⌉⟩ = e−iH(t)(⌈t⌉−t) × expT
(
−i
∫ t

0
H(t′)dt′

)
|x⟩

= expT

(
−i
∫ ⌈t⌉

0
H(t′)dt′

)
|x⟩ = |C(⌈t⌉, x)⟩,

where the last equation follows from the definition of H, while the second last equation follows
from the fact that H is constant on the interval (t, ⌈t⌉). Hence, |ϕ̃m⟩ = |C(mns(n), x)⟩ =
|f(m,x)⟩ with probability 1.

Back to the actual construction, by the precision guarantee of A and S, there exists some
polynomial p such that ∆(|ψ⌈t⌉⟩⟨ψ⌈t⌉|, |ψ̃⌈t⌉⟩⟨ψ̃⌈t⌉|) < 1− 1/p(n). Thus, xm = f(m,x) holds
with probability at least 1/p(n).

Finally, by the security guarantee of the (s, d)-iterated parallel-hard function, any quantum
circuit that computes f(m,x) should have depth at least d(m) = d(⌈ t

ns(n)⌉). This gives an
lower bound that dA +O(ns(n)) + poly(log log(1/ϵ), log(n)) < d(⌈ t

ns(n)⌉), which completes
the proof. ◀

10 No Fast-forwarding with Natural Simulators

In previous sections, we have shown no-go theorems for using quantum circuits to parallelly
fast-forward (geometrically) local Hamiltonian simulation. Here, we are going to generalize
Theorem 46 and Theorem 45 by showing that simulators that are geometrically local
Hamiltonians cannot do much better than quantum circuits.

▶ Corollary 54. Assuming an (s, d)-iterated parallel-hard function, for any integer n,
there exists a piecewise-time-independent 1-D geometrically 2-local Hamiltonian HA act-
ing on n qubits satisfying the following: For any geometrically constant-local Hamil-
tonian HB acting on poly(n) qubits, using HB to simulate HA for evolution time
t ∈ [0, ns(n)T (n)] with error ϵ(n) ≤ 1 − 1/ poly(n) needs (d(⌊ t

ns(n)⌋) − O(ns(n)) −
poly(log(n), log log(1/ϵ′(n)))/ polylog(tn/ϵ) evolution time, where T (·) is an arbitrary poly-
nomial and ϵ′(n) < 1− ϵ(n)− 1/ poly(n).

Proof. Let HA be the Hamiltonian we considered in the proof of Theorem 46. Suppose
there exists HB that can simulate HA for evolution time t ∈ [0, ns(n)T (n)] and error
ϵ(n)/2 ≤ 1− 1/ poly(n) with t′ <

d(⌊ t
ns(n) ⌋)−O(ns(n))−poly(log(n),log log(1/ϵ′(n))

polylog(tn/ϵ) evolution time,
where ϵ′(n) < 1− ϵ(n)/2− 1/poly(n).

Recall that the algorithm in [23] can simulate a geometrically constant-local Hamiltonian
with quantum circuit depth t · polylog(tn/ϵ), where n is the number of qubits and ϵ is the
precision parameter.

Then, we apply the algorithm in [23] to simulate HB with evolution time t′ and precision
ϵ/2. This leads to a simulation algorithm for HA with error ϵ and circuit depth strictly less
than d(⌊ t

ns(n)⌋)−O(ns(n))−poly(log(n), log log(1/ϵ′(n)), which contradicts Theorem 46. ◀

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:43

▶ Corollary 55. Assuming an (s, d)-iterated parallel-hard function, for any integer n, there
exists a time-independent c-local Hamiltonian H acting on n+(2s(n)T (n))1/c qubits satisfying
the following: For any geometrically constant-local Hamiltonian HB acting on poly(n) qubits,
using HB to simulate HA for evolution time t ∈ [0, s(n)T (n)] with error ϵ(n) < 1/4 needs
d(⌊t/2s(n)⌋)−O(s(n))/ polylog(tn/ϵ) evolution time, where T (·) is an arbitrary polynomial
and c is a constant.

The proof for Corollary 55 is similar to the proof for Corollary 54.

References
1 Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev.

Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation. SIAM
Review, 50(4):755–787, 2008.

2 Brian Alspach. Johnson graphs are Hamilton-connected. Ars Mathematica Contemporanea,
6(1):21–23, 2012.

3 Yosi Atia and Dorit Aharonov. Fast-forwarding of hamiltonians and exponentially
precise measurements. Nature Communications, 8(1), November 2017. doi:10.1038/
s41467-017-01637-7.

4 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing ef-
ficient protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

5 Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997.

6 Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C Sanders. Efficient quantum
algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics,
270(2):359–371, 2007.

7 Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma.
Exponential improvement in precision for simulating sparse Hamiltonians. Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 283–292, May 2014. arXiv:
1312.1414. doi:10.1145/2591796.2591854.

8 Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian Simulation with
Nearly Optimal Dependence on all Parameters. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 792–809, October 2015. ISSN: 0272-5428. doi:
10.1109/FOCS.2015.54.

9 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pages 757–788. Springer,
2018.

10 Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Advances in Cryptology–ASIACRYPT 2011:
17th International Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17, pages 41–69. Springer, 2011.

11 P Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh Vatan. On
universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of
universality for Shor’s basis. In 40th Annual Symposium on Foundations of Computer Science
(Cat. No. 99CB37039), pages 486–494. IEEE, 1999.

12 Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi. Verifiable isogeny
walks: Towards an isogeny-based postquantum VDF. In SAC, volume 13203 of Lecture Notes
in Computer Science, pages 441–460. Springer, 2021.

13 Andrew M. Childs and Dominic W. Berry. Black-box Hamiltonian simulation and unitary
implementation. Quantum Information and Computation, 12(1&2):29–62, January 2012.
doi:10.26421/QIC12.1-2-4.

CCC 2023

https://doi.org/10.1038/s41467-017-01637-7
https://doi.org/10.1038/s41467-017-01637-7
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.26421/QIC12.1-2-4

33:44 Impossibility of Fast-Forwarding of Hamiltonian Simulation

14 Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A.
Spielman. Exponential algorithmic speedup by a quantum walk. In Proceedings of the
thirty-fifth ACM symposium on Theory of computing - STOC '03. ACM Press, 2003. doi:
10.1145/780542.780552.

15 Andrew MacGregor Childs. Quantum Information Processing in Continuous Time. Thesis,
Massachusetts Institute of Technology, 2004.

16 Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 598–629.
Springer, 2021.

17 J. Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation. Nature
Physics, 8(4):264–266, April 2012. doi:10.1038/nphys2275.

18 Toby Cubitt, Ashley Montanaro, and Stephen Piddock. Universal Quantum Hamiltonians.
Proceedings of the National Academy of Sciences, 115(38):9497–9502, September 2018. doi:
10.1073/pnas.1804949115.

19 Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable
delay functions. In EUROCRYPT (3), volume 12107 of Lecture Notes in Computer Science,
pages 125–154. Springer, 2020.

20 Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In ASIACRYPT (1), volume 11921 of Lecture Notes
in Computer Science, pages 248–277. Springer, 2019.

21 Richard P. Feynman. Quantum Mechanical Computers. Optics News, 11(2):11–20, February
1985. doi:10.1364/ON.11.2.000011.

22 Shouzhen Gu, Rolando D. Somma, and Burak Ş ahinoğlu. Fast-forwarding quantum evolution.
Quantum, 5:577, November 2021. doi:10.22331/q-2021-11-15-577.

23 Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low. Quantum
algorithm for simulating real time evolution of lattice Hamiltonians. SIAM Journal on
Computing, pages FOCS18–250–FOCS18–284, January 2021. doi:10.1137/18m1231511.

24 Stacey Jeffery, Frederic Magniez, and Ronald de Wolf. Optimal parallel quantum query
algorithms, 2013. doi:10.48550/ARXIV.1309.6116.

25 A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation, volume 47 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island,
May 2002. doi:10.1090/gsm/047.

26 Ilia Krasikov. Uniform bounds for Bessel functions. Journal of Applied Analysis, 12(1):83–91,
2006.

27 Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian simulation by quantum signal
processing. Phys. Rev. Lett., 118:010501, January 2017. doi:10.1103/PhysRevLett.118.
010501.

28 Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Qubitization. Quantum,
3:163, July 2019. doi:10.22331/q-2019-07-12-163.

29 Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

30 Daniel Nagaj. Fast universal quantum computation with railroad-switch local Hamiltonians.
Journal of Mathematical Physics, 51(6):062201, 2010.

31 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.

32 Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, volume 124 of LIPIcs, pages
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

33 Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. Massachusetts Institute of Technology. Laboratory for Computer Science, 1996.

34 J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge University Press,
third edition, September 2020. doi:10.1017/9781108587280.

https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1038/nphys2275
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1364/ON.11.2.000011
https://doi.org/10.22331/q-2021-11-15-577
https://doi.org/10.1137/18m1231511
https://doi.org/10.48550/ARXIV.1309.6116
https://doi.org/10.1090/gsm/047
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/9781108587280

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:45

35 Benjamin Wesolowski. Efficient verifiable delay functions. J. Cryptol., 33(4):2113–2147, 2020.
36 Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60(4):2746,

1999.
37 Mark Zhandry. A note on the quantum collision and set equality problems, 2013. doi:

10.48550/arXiv.1312.1027.
38 Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.

In Annual International Cryptology Conference, pages 239–268. Springer, 2019.
39 Zhicheng Zhang, Qisheng Wang, and Mingsheng Ying. Parallel quantum algorithm for

Hamiltonian simulation. arXiv preprint, 2021. arXiv:2105.11889.

CCC 2023

https://doi.org/10.48550/arXiv.1312.1027
https://doi.org/10.48550/arXiv.1312.1027
https://arxiv.org/abs/2105.11889

	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 No parallel fast-forwarding for sparse Hamiltonians relative to random permutation oracle
	2.2 No parallel fast-forwarding for (geometrically) local Hamiltonians in the plain model

	3 Open Questions
	4 Preliminaries and Notation
	4.1 Notation
	4.2 Hamiltonian simulation
	4.3 Basic quantum computation
	4.4 Useful tools
	4.4.1 Bessel functions
	4.4.2 Johnson graph

	5 Lower Bounding Permutation Chain
	6 Parallel Hardness of Twisted Hash Chains
	7 Quantum Walk on a Line
	8 No Fast-forwarding in Oracle Model: Unconditional Result
	9 No Fast-forwarding in Plain Model
	9.1 Circuit to time-independent Hamiltonian
	9.2 Proof of the lower bound for local Hamiltonians
	9.3 Circuit to time-dependent Hamiltonian
	9.4 Proof of the lower bound for geometrically local Hamiltonians

	10 No Fast-forwarding with Natural Simulators

