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Abstract
Variational Quantum Algorithms (VQAs), such as the Quantum Approximate Optimization Al-
gorithm (QAOA) of [Farhi, Goldstone, Gutmann, 2014], have seen intense study towards near-term
applications on quantum hardware. A crucial parameter for VQAs is the depth of the variational
ansatz used – the smaller the depth, the more amenable the ansatz is to near-term quantum hardware
in that it gives the circuit a chance to be fully executed before the system decoheres. In this work,
we show that approximating the optimal depth for a given VQA ansatz is intractable. Formally, we
show that for any constant ϵ > 0, it is QCMA-hard to approximate the optimal depth of a VQA
ansatz within multiplicative factor N1−ϵ, for N denoting the encoding size of the VQA instance.
(Here, Quantum Classical Merlin-Arthur (QCMA) is a quantum generalization of NP.) We then
show that this hardness persists in the even “simpler” QAOA-type settings. To our knowledge, this
yields the first natural QCMA-hard-to-approximate problems.
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1 Introduction

In the current era of Noisy Intermediate Scale Quantum (NISQ) devices, quantum hardware
is (as the name suggests) limited in size and ability. Thus, NISQ-era quantum algorithm
design has largely focused on hybrid classical-quantum setups, which ask: What types of
computational problems can a classical supercomputer, paired with a low-depth quantum
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computer, solve? This approach, typically called Variational Quantum Algorithms (VQA),
has been studied intensively in recent years (see, e.g. [13, 8] for reviews), with Farhi,
Goldstone and Gutmann’s Quantum Approximate Optimization Algorithm (QAOA) being a
prominent example [14].

More formally, VQAs roughly work as follows. One first chooses a variational ansatz (i.e.
parameterization) over a family of quantum circuits. Then, one iterates the following two
steps until a “suitably good” parameter setting is found:
1. Use a classical computer to optimize the ansatz parameters variationally1.
2. Run the resulting parameterized quantum algorithm on a NISQ device to evaluate the

“quality” of the chosen parameters (relative to the computational problem of interest).
The essential advantage of this setup over more traditional quantum algorithm design
techniques (such as full Trotterization of a desired Hamiltonian evolution) is that one can
attempt to minimize the depth of the ansatz used. (A formal definition of “depth” is given
in Problem 1; briefly, it is the number of Hamiltonian evolutions the ansatz utilizes.) This
possibility gives VQAs a potentially crucial advantage on near-term quantum hardware (i.e.
noisy hardware without quantum error correction), because a NISQ device can, in principle,
execute a low-depth ansatz before the system decoheres, i.e. before environmental noise
destroys the “quantumness” of the computation. From an analytic perspective, low-depth
ansatzes also have an important secondary benefit – VQAs of superlogarithmic depth are
exceedingly difficult to analyze via worst-case complexity. Sufficiently low-depth setups,
however, sometimes can be rigorously analyzed, with the groundbreaking QAOA work of [14]
for MAX-CUT being a well-known example. Thus, estimating the optimal depth for a VQA
appears central to its use in near-term applications.

1.1 Our results
In this work, we show that it is intractable to approximate the optimal depth for a given
VQA ansatz, even within large multiplicative factors. Moreover, this hardness also holds for
the restricted “simpler” case of the QAOA. To make our claim rigorous, we first define the
VQA optimization problem we study. (Intuition to follow.)

▶ Problem 1 (VQA minimization (MIN-VQA(k, l))). For an n-qubit system:
Input:

1. Set H = {Hi} of Hamiltonians2, where Hi acts non-trivially only on a subset Si ⊆ [n]
of size |Si| = k.

2. An l-local observable M acting on a subset of l qubits.
3. Integers 0 ≤ m ≤ m′ representing circuit depth thresholds.
Output:

1. YES if there exists a list of at most m angles (θ1, . . . , θm) ∈ Rm and a list
(G1, . . . , Gm) of Hamiltonians from H (repetitions permitted) such that |ψ⟩ :=
eiθmGm · · · eiθ1G1 |0 · · · 0⟩ satisfies ⟨ψ|M |ψ⟩ ≤ 1/3.

2. NO if for all lists of at most m′ angles (θ1, . . . , θm′) ∈ Rm′ and all lists (G1, . . . , Gm′) of
Hamiltonians from H (repetitions permitted), |ψ⟩ := eiθm′Gm′ · · · eiθ1G1 |0 · · · 0⟩satisfies
⟨ψ|M |ψ⟩ ≥ 2/3.

1 In practice, this typically means heuristic optimization.
2 An n-qubit Hamiltonian H is a 2n × 2n Hermitian matrix. Any unitary operation U on a quantum

computer can be generated via some Hamiltonian H and evolution time t ≥ 0, i.e. U = eiHt.
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For intuition, recall that a VQA ansatz is a parameterization over a family of quantum
circuits. Above, the ansatz is parameterized by angles θj , and the family of quantum
circuits is generated by Hamiltonians Hj . The aim is to pick a minimum-length sequence of
Hamiltonian evolutions eiθjGj , so that the generated state |ψ⟩ has (say) low overlap with the
target observable, M . For clarity, throughout this work, by “depth” of a VQA ansatz, we are
referring to the standard VQA notion of the number of Hamiltonian evolutions m applied3.
(In the setting of QAOA, the “depth” is often referred to as the “level”, up to a factor of 2.)

We remark for Problem 1 that we do not restrict the order in which Hamiltonians Hi are
applied, and any Hi may be applied multiple times. Moreover, our results also hold if one
defines the YES case to maximize overlap with M (as opposed to minimize overlap).

Our first result is the following.

▶ Theorem 1. MIN-VQA(k, l) is QCMA-complete for k ≥ 4, l = 2, and m ≤ poly(n).
Moreover, for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of
MIN-VQA even if m′/m ≥ N1−ϵ, where N is the encoding size of the instance.

Here, Quantum-Classical Merlin-Arthur (QCMA) is a quantum generalization of NP with
a classical proof and quantum verifier (formal definition in Definition 5). For clarity, the
encoding size of the instance is the number of bits required to write down a MIN-VQA
instance, i.e. to encode H = {Hi}, M , m, m′ (see Problem 1). Note the encoding size
is typically dominated by the encoding size of H, which may be assumed to scale as |H|,
i.e. with the number of interaction terms Hi, which can be asymptotically larger than the
number of qubits, n. Thus, simple gap amplification strategies such as taking many parallel
copies of all interaction terms do not suffice to achieve our hardness ratio of N1−ϵ.

A direct consequence of Theorem 1 is that it is intractable (modulo the standard conjecture
that BQP ̸= QCMA, which also implies P ̸= QCMA) to compute the optimum circuit depth
within relative precision N1−ϵ:

▶ Corollary 2 (Depth minimization). In Problem 1, let mopt denote the minimum depth
m such that ⟨ψ|M |ψ⟩ ≤ 1/3. Then, for any constant ϵ > 0, computing estimate mest ∈
[mopt, N

1−ϵmopt] is QCMA-hard.

On the other hand, even if a desired depth m = m′ is specified in advance, it is also QCMA-
hard to find the minimizing angle and Hamiltonian sequences (θ1, . . . , θm) and (G1, . . . , Gm),
respectively, which follows directly from Theorem 1:

▶ Corollary 3 (Parameter optimization). Consider Problem 1 with input m = m′. Then the
problem of finding angles (θ1, . . . , θm) that minimize expectation ⟨ψ|M |ψ⟩ is QCMA-hard.

We next turn to the special case of QAOAs. As detailed shortly under “Previous work”,
the study of QAOA ansatzes was initiated by [14] in the context of quantum approximation
algorithms for MAX CUT. In that work, a QAOA is analogous to a VQA, except there are
only two Hamiltonians H = {Hb, Hc} given as input and M is one of those two observables
(see Problem 3 for a formal definition). For clarity, here we work with a more general
definition of QAOA than [14], in which neither Hb nor Hc need be diagonal in the standard

3 Alternatively, one could consider the circuit depth of any simulation of the desired Hamiltonian sequence
in Problem 1. The downside of this is that it would be much more difficult to analyze – one would
presumably first need to convert each eiθj Gj to a circuit Uj via a fixed choice of Hamiltonian simulation
algorithm. One would then need to characterize the depth of the concatenated circuit Um · · ·U1.
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basis. (In this sense, our definition is closer to the more general Quantum Alternating
Operator Ansatz, also with acronym QAOA [23].) For our hardness results, it will suffice for
Hb and Hc to be k-local Hamiltonians4. For QAOA, we show a matching hardness result:

▶ Theorem 4. MIN-QAOA(k) is QCMA-complete for k ≥ 4 and m ≤ poly(n). Moreover,
for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA
even if m′/m ≥ N1−ϵ, for N the number of strictly k-local terms comprising Hb and Hc.

Note that in contrast to MIN-VQA, which is parameterized by k (the Hamiltonians’ locality)
and l (the observable’s locality), MIN-QAOA is only parameterized by k. This is because in
QAOA, the “cost” Hamiltonian Hc itself acts as the observable (in addition to helping drive
the computation), which will be one of the obstacles we will need to overcome. For context,
typically in applications of QAOA, Hc encodes (for example [14]) a MAX CUT instance.

To the best of our knowledge, Theorem 1 and Theorem 4 yield the first natural QCMA-hard
to approximate problems.

1.2 Previous work

Generally speaking, it is well-known that VQA parameters are “hard to optimize”, both
numerically and from a theoretical perspective. We now discuss selected works from the
(vast) VQA literature, and clarify how these differ from our work.

1. Theoretical studies. As previously mentioned, in 2014, Farhi, Goldstone and Gutmann
proposed the Quantum Approximate Optimization Algorithm (QAOA), a special case of VQA
with only two local Hamiltonians H = {Hb, Hc} (acting on n qubits each). They showed
that level-1 of the QAOA (what we call “depth 2” in Problem 1) achieves a 0.6924-factor
approximation for the NP-complete MAX CUT problem. Unfortunately, worst-case analysis
of higher levels has in general proven difficult, but Bravyi, Kliesch, Koenig and Tang [12] have
shown an interesting negative result – QAOA to any constant level/depth cannot outperform
the classical Goemans-Williams algorithm for MAX CUT [19]. Thus, superconstant depth is
necessary if QAOA is to have a hope of outperforming the best classical algorithms for MAX
CUT. In terms of complexity theoretic hardness, Farhi and Harrow [15] showed that even
level-1 QAOA’s output distribution cannot be efficiently simulated by a classical computer.

Most relevant to this paper, however, is the work of Bittel and Kliesch [9], which roughly
shows that finding the optimal set of rotation angles (the θj in Problem 1 and Problem 3) is
NP-hard. Let us clearly state how the present work differs from [9]:
1. [9] fixes both the depth of the VQA and the precise sequence of Hamiltonians Hi to be

applied as part of the input. It then asks: What is the complexity of computing the
optimal rotation angles θi so as to minimize overlap with a given observable?
In contrast, our aim here is to study the complexity of optimizing the depth itself. Thus,
Problem 1 does not fix the depth m, nor the order/multiplicity of application of any of
the Hamiltonian terms.

4 A k-local n-qubit Hamiltonian H is a quantum analogue of a MAX-k-SAT instance, and can be written
H =

∑
i
Hi, with each “quantum clause” Hi acting non-trivially on some subset of k qubits. Strictly

speaking, each Hi is tensored with the identity matrix on n− k qubits to ensure all operators in the
sum have the correct dimension.
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2. [9] shows that optimizing the rotation angles in QAOA is NP-hard, even if one is allowed
to work in time polynomial in the dimension of the system. (Formally, this is obtained by
reducing a MAX CUT instance of encoding size N to QAOA acting on log(N) qubits.)
In contrast, we work in the standard setting of allowing only poly-time computations
in the number of qubits, n, not the dimension. In return, we obtain stronger hardness
results, both in that NP ⊆ QCMA (and thus QCMA-hardness is a stronger statement than
NP-hardness5), and in that we show hardness of approximation up to any multiplicative
factor N1−ϵ.

2. Practical/numerical studies. For clarity, numerical studies are not directly related to
our work. However, due to the intense practical interest in VQA for the NISQ era, for
completeness we next survey some of the difficulties encountered when optimizing VQAs
on the numerical side. For this, note that VQAs are typically used to solve problems which
can be phrased as energy optimization problems (such as NP-complete problems like MAX
CUT [14]).

In this direction, two crucial problems can arise in the classical optimization part of the
standard VQA setup: (i) barren plateaus [30], which lead to vanishing gradients, and (ii)
local minima [9], many of which can be highly non-optimal. Such unwanted local minima
are also called traps. In order to counterbalance these challenges, heuristic optimization
strategies have led to promising results in relevant cases but with not too many qubits.
Initialization-dependent barren plateaus [30] can be avoided by tailored initialization [40],
and there are indications that barren plateaus are a less significant challenge than traps
[3]. In general, the optimization can be improved using natural gradients [36], multitask
learning type approach [39], optimization based on trigonometric model functions [26], neural
network-based optimization methods [31], brick-layer structures of generic unitaries [32],
and operator pool-based methods [22, 11]. ADAPT-VQEs [22] iteratively grow the VQA’s
parametrized quantum circuit (PQC) by adding operators from a pool that have led to the
largest derivative in the previous step. This strategy allows one to avoid barren plateaus and
even “burrow” out of some traps [21]. CoVar [11] is based on similar ideas complemented
with estimating several properties of the variational state in parallel using classical shadows
[24]. The optimization strategies are of a heuristic nature, and analytic results are scarce.
Finally, it has been numerically observed [33, 37] and analytically shown [27] that VQA-type
ansätze become almost free from traps when the ansatz is overparameterized. Our work
implies that these practical approaches cannot work for all instances and, therefore, provides
a justification to resort to such heuristics.

1.3 Techniques
We focus on techniques for showing QCMA-hardness of approximation, as containment in
QCMA is straightforward6 for both MIN-VQA and MIN-QAOA.

To begin, recall that in a QCMA proof system (Definition 5), given a YES input, there
exists a poly-length classical proof y causing a quantum poly-size circuit V to accept, and
for a NO input, all poly-length proofs y cause V to reject. Our goal is to embed such proof
systems into instances of Problem 1 and Problem 3, while maintaining a large promise

5 Note that for log(N)-size instances of QAOA as in [9], one cannot hope for more than NP-hardness,
since both Hamiltonians Hb and Hc have polynomial dimension, and thus can be classically simulated
efficiently. Thus, such instances are verifiable in NP.

6 The prover sends angles θj , and the verifier simulates each eiθj Hj via known Hamiltonian simulation
algorithms [29].
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gap ratio m′/m. To do so, we face three main challenges: (1) Where will hardness of
approximation come from? Typically, one requires a PCP theorem [5, 6] for such results,
which remains a notorious open question for both QCMA and QMA7 [1]. (2) Problem 1 places
no restrictions on which Hamiltonians are applied, in which order, and with which rotation
angles. How can one enforce computational structure given such flexibility? In addition,
MIN-QAOA presents a third challenge: (3) How to overcome the previous two challenges
when we are only permitted two Hamiltonians, Hb and Hc, the latter of which must also act
as the observable?

To address the first challenge, we appeal to the hardness of approximation work of
Umans [34]. The latter showed how to use a graph-theoretical construct, known as a
disperser, to obtain strong hardness of approximation results for Σp

2 (the second level of
the Polynomial-Time Hierarchy). Hiding at the end of that paper is Theorem 9, which
showed that the techniques therein also apply to yield hardness of approximation within
factor N1/5−ϵ for a rather artificial NP-complete problem. Gharibian and Kempe [18] then
showed that [34] can be extended to obtain hardness of approximation results for a quantum
analogue of Σp

2, and also obtained QCMA-hardness of approximation within N1−ϵ for an
even more artificial problem, Quantum Monotone Minimum Satisfying Assignment (QMSA,
Problem 2). Roughly, QMSA asks – given a quantum circuit V accepting a monotone
set (Definition 6) of strings, what is the smallest Hamming weight string accepted by V ?
Here, our approach will be to construct many-one reductions from QMSA to MIN-VQA and
MIN-QAOA, where we remark that maintaining the N1−ϵ hardness ratio (i.e. making the
reduction approximation-ratio-preserving) will require special attention.

1. The reduction for MIN-VQA. To reduce a given QMSA circuit V = VL · · ·V1 to a VQA
instance ({Hi},M,m,m′), we utilize a “hybrid Cook-Levin + Kitaev” circuit-to-Hamiltonian
construction, coupled with a pair of clocks (whereas Kitaev [25] requires only one clock).
Here, a non-hybrid (i.e. standard) circuit-to-Hamiltonian construction is a quantum analogue
of the Cook-Levin theorem, i.e. a map from quantum circuits V to local Hamiltonians
HV , so that there exists a proof |ψ⟩ accepted by V if and only if HV has a low-energy8

“history state”, |ψhist⟩. A history state, in turn, is a quantum analogue of a Cook-Levin
tableau, except that each time step of the computation is encoded in superposition via a
clock construction of Feynman [16]. In contrast, our construction is “hybrid” in that it uses a
clock register like Kitaev, but does not produce a history state in superposition over all time
steps, like Cook-Levin. A bit more formally, the Hamiltonians {Hi} of our VQA instance act
on four registers, ABCD, denoting proof (A), workspace (B), clock 1 (C), and clock 2 (D).
To an honest prover, these Hamiltonians {Hi} may be viewed as being partitioned into two
sets: Hamiltonians for “setting proof bits”, denoted P , and Hamiltonians for simulating gates
from V , denoted Q. An example of a Hamiltonian in P is Pj := XAj ⊗ |1⟩⟨1|Cj

⊗ |1⟩⟨1|D|D|

which says: If clock 1 (register C) is at time j and clock 2 (register D) is at time |D| (more
on clock 2 shortly), then flip the jth qubit of register A via a Pauli X gate. An example of a
Hamiltonian in Q is

Qj := (Vj)AB ⊗ |01⟩⟨10|C|A|+j,|A|+j+1
+ (V †

j )AB ⊗ |10⟩⟨01|C|A|+j,|A|+j+1
, (1)

which allows the prover to apply gate Vj of V to registers AB, while updating clock 1 from
time |A| + j to |A| + j + 1. In this first (insufficient) attempt at a reduction, the honest
prover for MIN-VQA acts as follows: First, apply a subset of the P Hamiltonians to prepare

7 Quantum Merlin-Arthur (QMA) is QCMA but with a quantum proof.
8 By “energy” of a state |ψ⟩ against Hamiltonian H, one means the expectation ⟨ψ|H|ψ⟩, whose minimum

possible value is precisely λmin(H), i.e. the smallest eigenvalue of H.



L. Bittel, S. Gharibian, and M. Kliesch 34:7

the desired input y to the QMSA verifier V in register A, and then evolve Hamiltonians Q1
through QL to simulate gates V1 through VL on registers A and B. The observable M is
then defined to measure the designated output qubit of B in the standard basis, conditioned
on C being at time T .

The crux of this (honest prover) setup is that if we start with a YES (respectively, NO)
instance of QMSA, then the Hamming weight of the optimal y is at most g (respectively, at
least g′), for g′/g ≥ N1−ϵ

QMSA and NQMSA the encoding size of the QMSA instance. This, in
turn, means that the VQA prover applies at most g Hamiltonians from P (YES case), or at
least g′ Hamiltonians from P (NO case). The problem is that the prover must also apply
Hamiltonians Q1 through QL in order to simulate the verifier, V , and so we have hardness
ratio m′/m = (g′ + L)/(g + L) → 1 if L ∈ ω(g), as opposed to N1−ϵ!

To overcome this, we make flipping each bit of P “more costly” by utilizing a 2D clock
setup. This, in turn, will ensure the hardness ratio (g′ + L)/(g + L) becomes (roughly)
g′|D|+L
g|D|+L ≈ g′

g for |D| ∈ ω(L), as desired. Specifically, to flip bit Aj for any j, we force the
prover to first sequentially increment the second clock, D, from 1 to |D|. By definition, Pj
can now flip the value of Aj – but it cannot increment time in C (i.e. we remain in time step j
on clock 1). This next forces the prover to decrement D from |D| back to 1, at which point a
separate Hamiltonian (not displayed here) can increment clock C from j to j + 1. The entire
process then repeats itself to flip bit Aj+1. What is crucial for our desired approximation
ratio is that we only have a single copy of register D, i.e. we re-use it to flip each bit Aj , thus
effectively making CD act as a 2D clock. This ensures the added overhead to the encoding
size of the VQA instance scales as |D|, not |A| |D|, which is what one would obtain if CD
encoded a 1D clock (i.e. if each Aj had a separate copy of D).

Finally, to show soundness against provers deviating from the honest strategy above,
we first establish that any sequence of evolutions from {Hi} keeps us in a desired logical
computation space, i.e. the span of vectors of form

S :=
{
Vs−|A| · · ·V1|y⟩A|0 · · · 0⟩B |s̃⟩C |t̃⟩D | y ∈ {0, 1}|A|

, s ∈ {1, . . . , |C|}, t ∈ {1, . . . , |D|}
}
,

for |y⟩A the “proof string” prepared via P -gates and s̃ and t̃ the unary representations of
time steps s and t in clocks 1 and 2, respectively. We then show that applying too few
Hamiltonian evolutions from {Hi} results in a state with either no support on large Hamming
weight strings y (meaning the verifier V must reject in the NO case), or no support on states
with a fully executed verification circuit V = VL · · ·V1 (in which case we design V to reject).

2. The reduction for MIN-QAOA. At a high level, our goal is to mimic the reduction to
MIN-VQA above. However, the fact that we have only two Hamiltonians at our disposal, Hb

(driving Hamiltonian) and Hc (cost Hamiltonian), and no separate observable M , complicates
matters. Very roughly, our aim is to alternate even and odd steps of the honest prover’s
actions from MIN-VQA, so that Hb simulates the even steps, and Hc the odd ones. To
achieve this requires several steps:
1. First, we modify the MIN-VQA setup so that all the odd (respectively, even) local terms

Hi pairwise commute. This ensures that the actions of exp(iθHb) and exp(iθHc) can be
analyzed, since Hb and Hc will consist of sums of (now commuting) Hi terms.

2. In MIN-VQA, all Hamiltonians satisfied H2
i = I, which intuitively means an honest prover

could use Hi to either act trivially (θi = 0) or perform some desired action (θi = π). For
MIN-QAOA, we instead require a trick inspired by [9] – we introduce certain local terms
Gj (Equation (27)) with 3-cyclic behavior. In words, the honest prover can induce three
logical actions from such Gj , obtained via angles θj ∈ {0, π/3, 2π/3}, respectively.

CCC 2023
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3. We next add additional constraints to Hb to ensure its unique ground state encodes the
correct start state (see Equation (23) of Problem 3). This is in contrast to MIN-VQA,
where the initial state |0 · · · 0⟩ is fixed and independent of the Hi.

4. Finally, the observable M is added as a local term to Hc, but scaled larger than all other
terms in Hc. This ensures that for any state |ψ⟩, |⟨ψ|Hc −M |ψ⟩| is “small”, so that
measuring cost Hamiltonian Hc once the QAOA circuit finishes executing is “close” to
measuring M .

As for soundness, the high-level approach is similar to MIN-VQA, in that we analyze a
logical space of computation steps, akin to the definition of S, and track Hamming weights
of prepared proofs in this space. The analysis, however, is more involved, as the construction
itself is more intricate than for MIN-VQA. For example, a new challenge for our MIN-QAOA
construction is that evolving by a Hamiltonian (specifically, Hc) does not necessarily preserve
the logical computation space. We thus need to prove that we may “round” each intermediate
state in the analysis back to the logical computation space, in which we can then track the
Hamming weight of the proof y (Lemma 20).

1.4 Open questions
We have shown that the optimal depth of a VQA or QAOA ansatz is hard to approximate,
even up to large multiplicative factors. A natural question is whether similar NP-hardness of
approximation results for depth can be shown when (e.g.) the cost Hamiltonian in QAOA is
classical, such as in [14]? Since we aimed here to capture the strongest possible hardness
result, i.e. for QCMA, our Hamiltonians were necessarily not classical/diagonal. Second,
although our results are theoretical worst-case results, VQAs are of immense practical interest
in the NISQ community. Can one design good heuristics for optimal depth approximation
which often work well in practice? Third, can one approximate the optimal depth for QAOA
on random instances of a computational problem? Here, for example, recent progress has
been made by Basso, Gamarnik, Mei and Zhou [7], Boulebnane and Montanaro [10], and
Anshu and Metger [4], which give analytical bounds on the success probability of QAOA
at various levels and on random instances of various constraint satisfaction problems, for
instance size n going to infinity. The bounds of [4], for example, show that even superconstant
depth (i.e. scaling as o(log logn)) is insufficient for QAOA to succeed with non-negligible
probability for a random spin model. On a positive note, we remark that [10] give numerical
evidence (based on their underlying analytical bounds) that at around level 14, QAOA begins
to surpass existing classical SAT solvers for the case of random 8-SAT. Fourth, we have
given the first natural QCMA-hard to approximate problems. What other QCMA-complete
problems can be shown hard to approximate? A natural candidate here is the Ground State
Connectivity problem [17, 20, 35], whose hardness of approximation we leave as an open
question. Finally, along these lines, can a PCP theorem for QCMA be shown as a first
stepping stone towards a PCP theorem for QMA?

Organization. In Section 2, we show Theorem 1. Section 3 shows Theorem 4. All omitted
proofs are in the full version.

2 QCMA-hardness of approximation for VQAs

In this section, we show Theorem 1. We begin in Section 2.1 with relevant definitions and
lemmas. Section 2.2 proves Theorem 1.
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2.1 Definitions and required facts
Throughout, the relation := denotes a definition, and [n] := {1, 2, . . . , n}. We use |x| to specify
the length of a vector or string or the cardinality of set x. The term IA denotes the identity
operator/matrix on qubits with indices in register A. By ∥H∥∞ we denote the spectral norm
of an operator H acting on Cd, i.e. max|ψ⟩∈Cd

∥H|ψ⟩∥2
∥|ψ⟩∥2

, for ∥ · ∥2 the standard Euclidean norm.
The trace norm of an operator is denoted by ∥ · ∥tr. ei refers to a computational basis state.

▶ Definition 5 (Quantum-classical Merlin-Arthur (QCMA)). Let Π = (Πyes,Πno) be a promise
problem. Then Π ∈ QCMA if and only if there is a polynomial p such that for any x ∈ Π
there exists a quantum circuit Vx of size p(|x|) with one designated output qubit satisfying:

(i) If x ∈ Πyes there exists a string y ∈ {0, 1}p(|x|) such that Pr[Vx accepts y] ≥ 2/3 and
(ii) if x ∈ Πno and all strings y ∈ {0, 1}p(|x|) it holds that Pr[Vx accepts y] ≤ 1/3.

Often, it is helpful to separate the qubits into an a proof register A, which contains the classical
proof |y⟩, and an ancilla/work register B, which is initialized in the |0⟩ state. Then the ac-
ceptance probability can be expressed as Pr[Vx accepts (x, y)] =

〈
y; 0

∣∣V (n)†
x M (B1)V

(n)
x

∣∣y; 0
〉
,

where the measurement is given by an operator M (B1) acting on the first qubit of the work
register B.

QCMA was first defined in [2], and satisfies NP ⊆ QCMA ⊆ QMA. QCMA-complete
problems include Identity Check on Basis States (i.e. “does a quantum circuit act almost
as the identity on all computational basis states?”) [38] and Ground State Connectivity
(GSCON) (i.e. is the ground space of a local Hamiltonian “connected”?) [17]. The latter
remains hard (specifically, QCMAEXP-hard) in the 1D translation-invariant setting [35]. Next,
we will introduce a QCMA-complete problem related to monotone sets.

▶ Definition 6 (Monotone set). A set S ⊆ {0, 1}n is called monotone if for any x ∈ S, any
string obtained from x by flipping one or more zeroes in x to one is also in S.

▶ Definition 7 (Quantum circuit accepting monotone set). Let V be a quantum circuit
consisting of 1- and 2-qubit gates, which takes in an n-bit classical input register, m-qubit
ancilla register initialized to all zeroes, and outputs a single qubit, q. For any input x ∈ {0, 1}n,
we say V accepts (respectively, rejects) x if measuring q in the standard basis yields 1
(respectively, 0) with probability at least 1 − ϵQ (If not specified, ϵQ = 1/3). We say V accepts
a monotone set if the set S ⊆ {0, 1}n of all strings accepted by V is a monotone.

▶ Problem 2 (QUANTUM MONOTONE MINIMUM SATISFYING ASSIGN-
MENT (QMSA)). Given a quantum circuit V accepting a non-empty monotone set S ⊆
{0, 1}n, and integer thresholds 0 ≤ g ≤ g′ ≤ n, output:

YES if there exists an x ∈ {0, 1}n of Hamming weight at most g accepted by V .
NO if all x ∈ {0, 1}n of Hamming weight at most g′ are rejected by V .

▶ Theorem 8 (Gharibian and Kempe [18]). QMSA is QCMA-complete, and moreover it is
QCMA-hard to decide whether, given an instance of QMSA, the minimum Hamming weight
string accepted by V is at most g or at least g′ for g′/g ∈ O(N1−ϵ) (where g′ ≥ g).

In words, QMSA is QCMA-hard to approximate within N1−ϵ for any constant ϵ > 0, where
N is the encoding size of the QMSA instance.

2.2 QCMA-completeness
▶ Theorem 1. MIN-VQA(k, l) is QCMA-complete for k ≥ 4, l = 2, and m ≤ poly(n).
Moreover, for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of
MIN-VQA even if m′/m ≥ N1−ϵ, where N is the encoding size of the instance.
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In words, it is QCMA-hard to decide whether, given an instance of MIN-VQA, the variational
circuit can prepare a “good” ansatz state with at most m evolutions, or if all sequences of
m′ evolutions fail to prepare a “good” ansatz state, for m′/m ∈ O(N1−ϵ) (where m′ ≥ m).

Proof. Containment in QCMA is straightforward; the prover sends the angles θi and indices
of Hamiltonians Hi to evolve, which the verifier then completes using standard Hamiltonian
simulation techniques [28, 29]. We now show QCMA-hardness of approximation. Let
Π′ = (V ′, g, g′) be an instance of QMSA, for V ′ = V ′

L′ · · ·V ′
1 a sequence of L′ 2-qubit gates

taking in n′
V input bits and m′

V ancilla qubits.

Preprocessing V ′. Suppose V ′ takes in n′
V input qubits in register A′ and m′

V ancilla
qubits in register B′. To ease our soundness analysis, we make two assumptions about V ′

without loss of generality:

▶ Assumption 9. V ′ only reads register A′, but does not write to it. To achieve this, add
n′
V ancilla qubits (initialized to |0⟩) to B′, and prepend V ′ with n′

V CNOT gates applied
transversally to copy input x from A′ to the added ancilla qubits in B′. Update any subsequent
gate which acts on the original input x to instead act on its copied version in B′.

▶ Assumption 10. The output qubit of V ′ is set to |0⟩ until V ′
L is applied. For this, add a

single ancilla qubit to B′ initialized to |0⟩, and treat this as the new designated output qubit.
Append to the end of V ′ a CNOT gate from its original output wire to the new output wire.

Call the new circuit with all modifications V . V acts on nV := n′
V input qubits, mV :=

m′
V + n′

V + 1 ancilla qubits, and consists of L := L′ + n′
V + 1 gates.

Proof organization. The remainder of the proof is organized as follows. Section 2.2.1
constructs the MIN-VQA instance. Section 2.2.2 proves observations and lemmas required
for the completeness and soundness analyses. Sections 2.2.3 and 2.2.4 show completeness
and soundness, respectively. Finally, Section 2.2.5 analyzes the hardness ratio achieved. All
omitted proofs are in the full version.

2.2.1 The MIN-VQA instance
We now construct our instance Π of MIN-VQA as follows. Π acts on a total of n qubits,
which we partition into 4 registers: A (proof), B (workspace), C (clock 1), and D (clock 2).
Register A consists of nV qubits, B of mV qubits, C of L+ nV + 1 qubits, and D of ⌈L1+δ⌉
qubits for some fixed 0 < δ < 1 chosen at the end of the proof in Section 2.2.5.

Our construction will ensure that C (respectively, D) always remains in the span of
logical time steps, TC := {|s̃⟩}|C|

s=1 (respectively, TD :=
{

|t̃⟩
}|D|
t=1), defined as:

|s̃⟩ := |0⟩⊗s−1|1⟩|0⟩⊗|C|−s for 1 ≤ s ≤ |C| (2)

|t̃⟩ = |0⟩⊗t−1|1⟩|0⟩⊗|D|−t for 1 ≤ t ≤ |D| . (3)

For example for C, |1̃⟩ = |1⟩|0⟩⊗|C|−1, |2̃⟩ = |0⟩|1⟩|0⟩⊗|C|−2, |3̃⟩ = |00⟩|1⟩|0⟩⊗|C|−3, and
so forth. Note this differs from the usual Kitaev unary clock construction, which encodes
time t via |1⟩⊗t|0⟩⊗N−t [25]. This allows us to reduce the locality of our Hamiltonian.

Throughout, we use (e.g.) Cj to refer to qubit j and Ci,j and qubits i and j of register
C. All qubits not explicitly mentioned are assumed to be acted on by the identity. Define
four families of Hamiltonians as follows:
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A

C

D

B

Figure 1 Sketch describing the VQA instance. A colored square (say, blue) at index j of a register
means that register’s jth qubit must be in |1⟩ for any blue gates to act non-trivially. So, for example,
the G gates increment the first clock register C, but only if the D register is in the state |1⟩D1 . For
the initial state, C1 and D1 are in the |1⟩ state, marked by a black dot. The gates F increment the
second clock register D. The P gates are controlled operations on the C register, which perform
X operations on the A register, but only if D is in the state |1⟩D|D| . The Q gates increment the
clock register C, while also applying the circuit V1, . . . , VL on the AB registers. The measurement
operator M acts on the B1 and C|C| qubit.

(F ) For propagation of the second clock, D, define 2-local Hamiltonians as

Fj := |01⟩⟨10|Dj,j+1
+ |10⟩⟨01|Dj,j+1

for all j ∈ {1, . . . , |D| − 1}. (4)

(G) For propagation of the first clock, C, define 3-local Hamiltonians as

Gj :=
(

|01⟩⟨10|Cj,j+1
+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

for all j ∈ {1, . . . , |A|}. (5)

(P ) For each qubit j ∈ {1, . . . , |A|} of A, define 3-local Hamiltonian as

Pj := XAj ⊗ |1⟩⟨1|Cj
⊗ |1⟩⟨1|D|D|

. (6)

(Q) For each gate Vk for k ∈ {1, . . . , L}, let Rk denote the two qubits of AB which Vk
acts on. Define 4-local Hamiltonians as

Qk := (Vk)Rk
⊗ |01⟩⟨10|C|A|+k,|A|+k+1

+ (V †
k )Rk

⊗ |10⟩⟨01|C|A|+k,|A|+k+1
. (7)

Denote the union of these four sets of Hamiltonians as SFGPQ := F ∪ G ∪ P ∪ Q. Set a
2-local observable

M := I − |1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

(8)

where we assume without loss of generality that V outputs its answer on qubit B1. Set
m = g · (2 |D|−1)+ |A|+L, m′ = g′ · (2 |D|−1)+ |A|+L. To aid the reader in the remainder
of the proof, all definitions above are summarized in Table 1.

It remains to choose our initial state. Strictly speaking, Problem 1 mandates initial state
|0 · · · 0⟩ABCD. However, to keep notation simple, it will be convenient to instead choose

|ϕ⟩ := |0 · · · 0⟩AB |10|C|−1⟩C |10|D|−1⟩D = |0 · · · 0⟩AB |1̃⟩C |1̃⟩D, (9)

CCC 2023



34:12 The Optimal Depth of VQAs is QCMA-Hard to Approximate

Table 1 Terms used in the proof of Theorem 1.

Term Description Properties
V ′ Input QMSA instance’s verification circuit V ′ = V ′

L′ · · ·V ′
1

L′ Number of 1- and 2-qubit gates in V ′

n′
V Number of proof qubits taken in by V ′

m′
V Number of ancilla qubits taken in by V ′

g,g′ YES/NO thresholds for QMSA instance, resp.
V QMSA verifier obtained from V ′ via Assump. 9 and 10 V = VL · · ·V1

L Number of 1- and 2-qubit gates in V L = L′ + n′
V + 1

nV Number of proof qubits taken in by V nV = n′
V

mV Number of ancilla qubits taken in by V mV = m′
V + n′

V + 1
A Proof register |A| = nV

B Workspace register |B| = mV

C Clock 1 register |C| = L+ nV + 1
D Clock 2 register |D| = ⌈L1+δ⌉,

see Section 2.2.5 for δ
F Propagation terms for clock 2 Act on register D,

|F | = |D| − 1
G Propagation terms for clock 1 Act on registers C,D,

|g| = |A|
P Hamiltonian terms for setting proof bits Act on registers A,C,D,

|P | = |A|
Q Hamiltonian terms for simulating verifier gates, Vk Act on registers A,B,C,

|Q| = L

M Observable for MIN-VQA instance M := I − |1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

m,m′ YES/NO thresholds for MIN-VQA instance, resp. m = g · (2 |D| − 1) + |A| + L,
m′ = g′ · (2 |D| − 1) + |A| + L.

i.e. with the two clock registers C and D initialized to their starting clock state, |1̃⟩. This
is without loss of generality – we may, in fact, start with any standard basis state as our
initial state without requiring major structural changes to our construction, as the following
observation states.

▶ Observation 11. Fix any standard basis state |x⟩ABCD = X|0 · · · 0⟩ABCD, for X :=
Xx1

1 ⊗ · · · ⊗ XxN

N with N := |A| + |B| + |C| + |D|. Consider the updated set S′
FGPQ :={

XHX | H ∈ SFGPQ
}

, where for simplicity we match H ∈ SFGPQ with H ′ := XHX ∈
S′
FGPQ. Then, for any m ∈ N, and any sequence (Ht)mt=1 of Hamiltonians from SFGPQ,

eiθmHm · · · eiθ2H2eiθ1H1 |x⟩ABCD = eiθmH
′
m · · · eiθ2H

′
2eiθ1H

′
1 |0 · · · 0⟩ABCD. (10)

Moreover, each H and H ′ have the same locality.

2.2.2 Helpful observations and lemmas

We next state all observations and technical lemmas for the later correctness analysis of our
construction. All omitted proofs are in the full version.
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▶ Observation 12. For all θ ∈ R, and all Fj ∈ F , Gj ∈ G, Pj ∈ P and Qk ∈ Q,

eiθFj = cos(θ)(|01⟩⟨01| + |10⟩⟨10|)Dj,j+1 + i sin(θ)Fj + (I − |01⟩⟨01| − |10⟩⟨10|)Dj,j+1

(11)

eiθGj = cos(θ)
(

|01⟩⟨10|Cj,j+1
+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

+ i sin(θ)Gj+(
I −

(
|01⟩⟨10|Cj,j+1

+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

)
(12)

eiθPj = (cos(θ)I + i sin(θ)X)Aj
⊗ |1⟩⟨1|Cj

⊗ |1⟩⟨1|D|D|
+ (I − |1⟩⟨1|Cj

⊗ |1⟩⟨1|D|D|
) (13)

eiθQk = cos(θ)IAB ⊗ (|01⟩⟨01| + |10⟩⟨10|)C|A|+k,|A|+k+1 + i sin(θ)Qk+
IAB ⊗ (I − |01⟩⟨01| − |10⟩⟨10|)C|A|+k,|A|+k+1 . (14)

Any register not explicitly listed in equations above is assumed to be acted on by identity.

▶ Definition 13 (Support only on logical time steps). We say state |ψ⟩ABCD is supported
only on logical time steps if it can be written |ψ⟩ABCD =

∑|C|
s=1

∑|D|
t=1 αst|ηst⟩AB |s̃⟩C |t̃⟩D for

unit vectors |ηst⟩ and
∑
st |αst|2 = 1, and |s̃⟩ ∈ TC and |t̃⟩ ∈ TD defined as in Equation (2)

and Equation (3), respectively.

▶ Observation 14. Recall that the initial state |ϕ⟩ = |0 · · · 0⟩AB |1̃⟩C |1̃⟩D is supported only
on logical time steps. Then, for any m ∈ N and sequence of evolutions exp(iθjHj) for θj ∈ R
and Hj ∈ SFGPQ, eiθmHm · · · eiθ2H2eiθ1H1 |ϕ⟩ is supported only on logical time steps.

The following lemma tells us that any sequence of Hamiltonian evolutions exp(iθuHu) on
initial state |ϕ⟩ remains in a certain logical computation space.

▶ Lemma 15. Define

S :=
{
Vs−|A| · · ·V1|y⟩A|0 · · · 0⟩B |s̃⟩C |t̃⟩D | y ∈ {0, 1}|A|

, s ∈ {1, . . . , |C|}, t ∈ {1, . . . , |D|}
}
,

(15)

where we adopt the convention that the V gates are present only when s > |A|. Then, for
any m ∈ N, Πm

u=1e
iθuHu |ϕ⟩ ∈ Span(S) for any angles θu ∈ R and sequence of Hamiltonians

Hu ∈ SFGPQ.

Next, we relate the circuit depth of a state generated by our VQA to the Hamming weight
of the proof string y.

▶ Lemma 16. Let (Hu)mu=1 be a sequence of Hamiltonians drawn from SFGPQ which maps
the initial state (9) to |ϕm⟩ := Πm

u=1e
iθuHu |ϕ⟩. Suppose |ϕm⟩ has non-zero overlap with some

|ηy,s,t⟩ with y of Hamming weight at least w and s = |A| + 1. Then, m ≥ w(2 |D| − 1) + |A|
with at least w(2 |D| − 1) + |A| of the Hu drawn from F ∪G ∪ P .

Finally, the next lemma ensures that any prover applying fewer than L Hamiltonians
from Q cannot satisfy the YES case’s requirements for MIN-VQA.

▶ Lemma 17. For any m ∈ N, let (Hu)mu=1 be any sequence of Hamiltonians drawn from
SFGPQ and containing strictly fewer than L Hamiltonians from Q. Then, for observable
M = I − |1⟩⟨1|B1

⊗ |1⟩⟨1|C|C|
, the state |ϕm⟩ := Πm

u=1e
iθuHu |0 · · · 0⟩ABC satisfies

⟨ϕm|M |ϕm⟩ = 1. (16)
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Proof. By Lemma 15, |ϕm⟩ ∈ S for S from Equation (15). Next, by Observation 12,
Hamiltonians from F ∪ P act invariantly on clock C, and Hamiltonians from G can only
increment C from 1 (i.e. its initial value in |ϕ⟩) to |A| + 1. The observable M , however, acts
non-trivially only when C is set to |C| = |A| + L + 1. The only Hamiltonians which can
increment C from |A| + 1 to |A| + L + 1 are those from Q. Each such Hs ∈ Q can map
C from time |A| + s to |A| + s + 1 or vice versa, for s ∈ {1, . . . , L}. Thus, since strictly
fewer than L of the Hu chosen are from Q, it follows that |ϕm⟩ has no support on time
step |C| = |A| + L + 1, i.e. (IAB ⊗ |1⟩⟨1|C|C|

)|ϕm⟩ = 0. The claim now follows since we
Assumption 10 says verifier V = VL · · ·V1 has its output qubit, denoted B1, set to |0⟩ until
its final gate VL is applied. ◀

2.2.3 Completeness
With all observations and lemmas of Section 2.2.2 in hand, we are ready to prove completeness
of the construction. Specifically, in the YES case, there exists an input y ∈ {0, 1}|A| of
Hamming weight at most g accepted with probability at least 2/3 by V . The honest prover
proceeds as follows.

(Prepare classical proof) Prepare state (up to global phase) |ψ0⟩ := |y⟩A|0⟩B | ˜|A| + 1⟩C |1̃⟩D
as follows. Starting with |ϕ⟩ = |0 · · · 0⟩AB |1̃⟩C |1̃⟩D:

1. Set j = 1.
2. If yj = 1 then

Apply, in order, unitaries exp(i(π/2)F1), exp(i(π/2)F2),. . . , exp(i(π/2)F|D|−1).
This maps registers C and D to 1 and |D|, respectively.
Apply exp(i(π/2)Pj), which maps Aj from 0 to 1.
Apply, in order, unitaries exp(i(π/2)F|D|), exp(i(π/2)F|D|−1),. . . , exp(i(π/2)F1).
This maps registers C and D back to 1 and 1, respectively.

3. Apply unitary exp(i(π/2)Gj), which maps C from j to j + 1.
4. Set j = j + 1.
5. If j < |A| + 1, return to line 2 above.
This process applies g(2 |D| − 1) + |A| gates.
(Simulate verifier) Prepare the sequence of states |ψj⟩ = ei

π
2Qj · · · eiπ

2Q1 |ψ0⟩ by applying,
in order, unitaries exp(i(π/2)Q1), exp(i(π/2)Q2),. . . , exp(i(π/2)QL). Since the jth step
of this process applies exp(i(π/2)Qj), and since the state |ψ0⟩ has clock C set to |A| + 1,
Observation 12 and Equation (7) imply that

ei
π
2Qj |ψj−1⟩ =

(
(Vj)Rj

⊗ | ˜|A| + j + 1⟩ ⟨ ˜|A| + j|C
)

|ψj−1⟩, (17)

i.e. we increment the clock from |A| + j to |A| + j + 1 and apply the jth gate Vj . The
final state obtained is thus |ψL⟩ = (VL · · ·V1|y⟩A|0⟩B) ⊗ | ˜|A| + L+ 1⟩C |1̃⟩D. This process
applies L gates.

Since V accepts y with probability at least 2/3, we conclude ⟨ψL|M |ψL⟩ ≤ 1/3, as desired.
The number of Hamiltonians from SFGPQ we needed to simulate in this case is m =
g(2 |D| − 1) + |A| + L, as desired.

2.2.4 Soundness
We next show soundness. Specifically, in the NO case, for all inputs y ∈ {0, 1}|A| of
Hamming weight at most g′, V accepts with probability at most 1/3. So, consider
any sequence of m′ = g′(2 |D| − 1) + |A| + L Hamiltonian evolutions producing state
|ϕm′⟩ := Πm′

t=1e
iθuHu |0 · · · 0⟩AB |1̃⟩C |1̃⟩D for arbitrary θu ∈ R and Hamiltonians Hu ∈ SFGPQ.

Lemma 15 says we may write
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|ϕm′⟩ =
∑

y∈{0,1}|A|

|C|∑
s=1

|D|∑
t=1

αy,s,t|ηy,s,t⟩ ∈ Span(S) (18)

with
∑
y,s,t |αy,s,t|2 = 1. Now, for the observable (8) it follows that

⟨ϕm′ |M |ϕm′⟩ = 1 − ⟨ϕm′ |
(

|1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

)
|ϕm′⟩ = 1 − ⟨η||1⟩⟨1|B1

|η⟩ for (19)

|η⟩ :=
∑

y∈{0,1}|A|

|D|∑
t=1

αy,|A|+L+1,tVL · · ·V1|y⟩A|0⟩B | ˜|A| + L+ 1⟩C |t̃⟩D, (20)

where we have used Equation (18) and the fact that M projects onto time step |C| in register
C. Now, if we applied strictly less than L evolutions from Q, Lemma 17 says we have no
weight on time step |C|, so that ⟨ϕm′ |M |ϕm′⟩ = 1 ≥ 2/3, as required in the NO case. If,
on the other hand, we applied at least L evolutions from Q, then we must have applied at
most g′(2 |D| − 1) + |A| evolutions from F ∪G ∪ P (otherwise, we have a contradiction since
m′ = g′(2 |D| − 1) + |A| + L). Lemma 16 hence implies the right hand side of Equation (19)
equals 1 − ⟨ηg′ ||1⟩⟨1|B1

|ηg′⟩ for9

|ηg′⟩ :=
∑

y s.t. HW(y)≤g′

|D|∑
t=1

αy,|A|+L+1,tVL · · ·V1|y⟩A|0⟩B | ˜|A| + L+ 1⟩C |t̃⟩D, (21)

where HW(y) denotes the Hamming weight of the bitstring y. But since any input y
of Hamming weight at most g′ is accepted with probability at most 1/3, we conclude
⟨ϕm′ |M |ϕm′⟩ ≥ 2/3, as claimed.

2.2.5 Hardness ratio
Finally, we show our reduction has the desired approximation ratio. Observe

m′

m
= g′(2 |D| − 1) + |A| + L

g(2 |D| − 1) + |A| + L
= g′(2⌈L1+δ⌉ − 1) + |A| + L

g(2⌈L1+δ⌉ − 1) + |A| + L
. (22)

Since |A| ≤ L by definition, and since we will choose δ > 0 as a small constant, this ratio
scales asymptotically as g′/g. Recall now that Theorem 8 says that for any constant ϵ′ > 0,
the QMSA instance Π′ = (V ′, g, g′) we are reducing from is QCMA-hard to approximate
within g′/g ∈ O((N ′)1−ϵ′), for N ′ the encoding size of Π′. By appropriately comparing N ′

to the encoding size N of our MIN-VQA instance Π, one can in fact show that for any ϵ > 0,
g′/g ≥ N1−ϵ for large enough V ′, as desired. The proof is in the full version. ◀

3 Extension of the hardness results to QAOAs

In this section, we prove Theorem 4, which is restated for convenience shortly. First, we
define the optimization problem MIN-QAOA covered by the theorem.

A k-local Hamiltonian is a sum of strictly k-local terms, i.e. Hermitian operators each
of which acts non-trivially on at most k qubtis. As mentioned previously, our definition of
MIN-QAOA is more general than that of [14], and closer to that of [23].

9 Below, HW(y) denotes the Hamming weight of string y.
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A

C

D

B

Figure 2 Figure describing the QAOA instance (see Figure 1 for further details). The border
color of each gate indicates if the generator belongs to Hb or Hc. Compared to the previous VQA
instance, the P now only act at even time steps in C and the even-indexed Gj and the F1 generator
are combined into one generator, denoted by the red and dark green edges.

▶ Problem 3 (QAOA minimization (MIN-QAOA(k))). For an n-qubit system:
Input:

1. A set H = {Hb, Hc} of k-local Hamiltonians.
2. A poly(n)-size quantum circuit Ub preparing the ground state of Hb, denoted |gsb⟩.
3. Integers 0 ≤ m ≤ m′ representing thresholds for depth.
Output:

1. YES if there exists a sequence of angles10 (θi)mi=1 ∈ Rm, such that

|ψ⟩ := eiθmHbeiθm−1Hc · · · eiθ2Hbeiθ1Hc |gsb⟩ (23)

satisfies ⟨ψ|Hc|ψ⟩ ≤ 1
3 .

2. NO if for all sequences of angles (θi)m
′

i=1 ∈ Rm′

|ψ⟩ := eiθm′Hbeiθm′−1Hc · · · eiθ2Hbeiθ1Hc |gsb⟩, (24)

satisfies ⟨ψ|Hc|ψ⟩ ≥ 2
3 .

Just as for MIN-VQA, by “optimal depth” of a QAOA, we mean the minimum number of
Hamiltonian evolutions m required above. The expectation value thresholds 1

3 and 2
3 are

arbitrary and can be changed by rescaling and shifting Hc.

▶ Theorem 4. MIN-QAOA(k) is QCMA-complete for k ≥ 4 and m ≤ poly(n). Moreover,
for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA
even if m′/m ≥ N1−ϵ, for N the number of strictly k-local terms comprising Hb and Hc.

Proof. Containment in QCMA is again straightforward and thus omitted. For QCMA-
hardness of approximation, we again use a reduction from an instance Π = (V, g, g′) of QMSA
with V = VL · · ·V1 being a sequence of L two-qubit gates taking in nV input bits and mV

ancilla qubits. All those terms are defined as in the proof of Theorem 1.

10 Throughout Problem 3, for clarity we assume all angles are specified to poly(n) bits.
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Proof organization. The proof is organized as follows. In Section 3.1 we explain the modific-
ations of the VQA instances to obtain the QAOA instances of our construction. Section 3.1.2
and Section 3.1.3 explain how we recover the desired initial state and cost function. Sec-
tion 3.1.4 provides notation preliminary technical results needed for the QCMA-completeness
proof. Then, completeness is shown in Section 3.1.5 and soundness in Section 3.1.6. Finally,
in Section 3.1.7, we analyze the hardness ratio achieved by the reduction. All omitted proofs
are in the full version.

3.1 QCMA completeness for QAOAs
To specify our QAOA instance, we modify the set SFGPQ from the proof of Theorem 1 to
suit our reduction here as follows. The structural changes are illustrated in Figure 2. Briefly
recapping the proof techniques outline in Section 1.3, we:

(i) implement the reduction with only two generators by alternating even and odd steps of
the honest prover’s actions, so that Hb simulates the even steps, and Hc the odd ones,

(ii) introduce terms Gj from Equation (27) with 3-cyclic behavior, i.e. allowing three logical
actions,

(iii) add new constraints to Hb to ensure its unique ground state encodes the correct start
state (see Equation (23) of Problem 3), and

(iv) add the observable O to Hc (scaled larger than other terms in Hc) to obtain the correct
cost function.

An undesired side effect of this is that evolution by Hc allows one to leave the desired logical
computation space, S. We will show via Lemma 20 that the states obtained are still close to
the set, which suffices for our soundess analysis.

To begin, we use registers composed of |A| = nV , |B| = mV , |C| = L + 2nV + 1, and
|D| = ⌈L1+δ⌉ qubits, respectively, where 0 < δ < 1 is fixed by specified later. Without loss
of generality, we assume |D| and L to be even. Additionally to the changes we outline, we
also add diagonal terms additional diagonal terms. This will be relevant for defining the
initial state later on.

(F ) We remove F1,

Fj := |01⟩⟨10|Dj,j+1
+ |10⟩⟨01|Dj,j+1

− 2|00⟩⟨00|Dj,j+1
for all j ∈ {2, . . . , |D| − 1}. (25)

(G) We double the number of qubits G acts on,

Gj :=
(

|01⟩⟨10|Cj,j+1
+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

− 2|001⟩⟨001|Cj,j+1,D1

for all j ∈ {1, 3, . . . , 2 |A| − 1}, (26)

Gj := i√
3

(
|0110⟩⟨1010| + |1001⟩⟨0110| + |1010⟩⟨1001|

− |1010⟩⟨0110| − |0110⟩⟨1001| − |1001⟩⟨1010|
)
Cj,j+1,D1,2

− 2|0010⟩⟨0010|Cj,j+1,D1,2
for all j ∈ {2, 4, . . . , 2 |A|}. (27)

While odd numbered gates can only change the clock, even numbered ones can still
increment C, but also have the option of moving |1̃⟩D → |2̃⟩D, which is the operation
performed by F (o)

1 in the proof of Theorem 1 on MIN-VQA. The superscript (o) refers to
the gates of the previous VQA proof. The following relations hold:

ei
π
3Gi |̃i, 1̃⟩C,D = ei

π
2G

(o)
i |̃i, 1̃⟩C,D ∝ |ĩ+ 1, 1̃⟩C,D, (28)

ei
2π
3 Gi |̃i, 1̃⟩C,D = ei

π
2 F

(o)
1 |̃i, 1̃⟩C,D ∝ |̃i, 2̃⟩C,D, (29)

where, in this case, “∝” means equality up to a phase.
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(P ) For each qubit j ∈ {1, . . . , |A|} of A, we define the X-operators, but now they only
act on even values in the clock register,

Pj := XAj
⊗ |1⟩⟨1|C2j

⊗ |1⟩⟨1|D|D|
− 2|00⟩⟨00|C2j ,D|D|

for all j ∈ {1, . . . , |A|}. (30)

(Q) We shift the C-indices of the Q-gates because reading in the proof takes longer time
now,

Qk := (Vk)Rk
⊗ |01⟩⟨10|C2|A|+k,2|A|+k+1

+ (V †
k )Rk

⊗ |10⟩⟨01|C2|A|+k,2|A|+k+1
(31)

− 2|00⟩⟨00|C2|A|+k,2|A|+k+1
for all k ∈ {1, . . . , L} (32)

(M), (H0) We add the two operators

H0 = −

 ∑
i∈[|A|]

|0⟩⟨0|Ai
+

∑
i∈[|B|]

|0⟩⟨0|Bi

 ⊗ |1⟩⟨1|C1
, (33)

M = I − |1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

(34)

to the set of generators.
To construct our desired QAOA instance, we define a partition of all gates into two groups:

G1 = {Gi}i∈{2,4,...,2|A|} ∪ {Fi}i∈{3,5,...,|D|−1} ∪ {Qi}i∈{2,4,...,L}, (35)
G2 = {Gi}i∈{1,3,...,2|A|−1} ∪ {Fi}i∈{2,4,...,|D|−2} ∪ {Qi}i∈{1,3,...,L−1} ∪ {Pi}i∈[|A|]. (36)

Intuitively, G1 (respectively, G2) will be part of our Hamiltonian Hb (respectively, Hc). Note
also that all operators in G1 (respectively, G2) pairwise commute, a fact we will use in our
analysis. Finally, in addition to Assumption 9 and Assumption 10 from the VQA section, we
shall also use the following.

▶ Assumption 18. The acceptance probability of V in the YES (respectively, NO) case
is at least 1 − ϵQ (respectively, at most ϵQ), where ϵQ = O(N−1). This is achieved via
standard parallel k times repetition of the circuit V , followed by a majority vote. This
increases the encoding size of V – for k repetitions, the new gate sequence length scales with
L′ = k(L + O(1)), and yields ϵ′Q = ϵ

O(k)
Q . For the precision we require, it suffices to set

k = O(log(N)).

Due to this assumption, our encoding size increases by a multiplicative log factor, which
does not affect our final approximation ratio calculation.

3.1.1 The Min-QAOA instance
The QAOA instance we use to prove Theorem 4 takes the generators

Hb =
∑

Γ∈G1

Γ +H0 , (37)

Hc = κ
∑

Γ∈G2

Γ +M (38)

with m = g(2 |D| − 2) + |C| − 1 and m′ = g′(2 |D| − 4) + |C| − 1. Crucially, the generators/-
operators comprising Hb (respectively, Hc) pairwise commute. The Q gates are taken from a
QMSA circuit where using Assumption 18, we set the acceptance threshold of the circuit to
√
ϵQ = 1

48m′ . Also, we set κ = 1
24|G| .

We first characterize the initial state and cost function as defined in Problem 3.
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3.1.2 Initial state
Recall that in Problem 3 the initial state has to be a ground state of Hb (given as input via
a preparation circuit Ub). We want this initial state to be

|gsb⟩ = |0, 0, 1̃, 1̃⟩ABCD, (39)

which can trivially be prepared by a constant-sized circuit Ub. To see that we indeed obtain
this ground state, note below that for all generators except G1, M , which are not included
in Hb, |gsb⟩ is a ground state of the generator. Moreover, the groundstate turns out to be
unique because for each qubit, the state is uniquely determined by one of the generators,
which implies that the entire state is unique. Specifically, we have

Fi|0, 0, 1̃, 1̃⟩ABCD = −2|0, 0, 1̃, 1̃⟩ABCD ∀i ∈ {3, 5, . . . , |D| − 1}, ∥Fi∥∞ = 2,
Gi|0, 0, 1̃, 1̃⟩ABCD = −2|0, 0, 1̃, 1̃⟩ABCD ∀i ∈ {2, 4 . . . , 2 |A|}, ∥Gi∥∞ = 2,
Qi|0, 0, 1̃, 1̃⟩ABCD = −2|0, 0, 1̃, 1̃⟩ABCD ∀i ∈ {2, 4 . . . , L}, ∥Qi∥∞ = 2,
H0|0, 0, 1̃, 1̃⟩ABCD = −(|A| + |B|)|0, 0, 1̃, 1̃⟩ABCD, ∥H∥∞ = |A| + |B| .

Indeed, since the state (39) is a ground state of all the generators of Hb and the terms
of Hb mutually commute, it is also a ground state of Hb. Moreover, since every qubit is
non-trivially supported by at least one generator of Hb, it is also the unique ground state for
the entire Hilbert space, i.e., |gsb⟩ represents the unique one-dimensional subspaces where
each gate acts non-trivially.

3.1.3 Cost function
In the QAOA setup, the measured observable is Hc. For our construction we wish to use the
observable M . Fortunately, we can find an upper bound for the difference of these operators.
Namely, for every |Ψ⟩ ∈ H

|⟨Ψ|(Hc −M)|Ψ⟩| = κ|⟨Ψ|
∑

Γ∈G2
Γ|Ψ⟩| ≤ 2κ|G2| ≤ 1

12 (40)

where we used (1) that ∥g∥∞ ≤ 2 for all Γ ∈ G2, and (2) the definition of κ.

3.1.4 Preliminaries for the completeness proof
We first define the set of states comprising our logical computation space,

S := {Vt−2|A|−1 · · ·V1|y⟩A|0 · · · 0⟩B |t̃⟩C |s̃⟩D| ∀(y, t, s) ∈ IS} (41)

with

IS =
{

(y, t, s)
∣∣∣∣y ∈ {0, 1}|A|

, t ∈ {1, . . . , |C|}, s ∈

{
{1, . . . , |D|} if t ∈ {2, 4, · · · 2 |A|}
{1} otherwise

}

being the allowed index set. Here, the notation means that V1 is only applied if t > 2 |A| + 1.
Below, we often write a state |ΨS⟩ ∈ span(S) as

|ΨS⟩ =
∑

(y,t,s)∈IS

ay,t,sVt−2|A|−1 · · ·V1|y⟩A|0 · · · 0⟩B |t̃⟩C |s̃⟩D =:
∑

(y,t,s)∈IS

ay,t,s|Ψy,t,s⟩ .
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We also define the function W , which is intended to capture a lower bound on the number of
Hamiltonian evolutions required to prepare a given logical state |Ψy,t,s⟩:

W (y, t, s) := (2 |D| − 4)HW(y) + t+ (−1)δy⌈t/2⌉,1(s+ δs,1 − 2), (42)

where HW(y) denotes the Hamming weight of y.
We next show a helpful lemma regarding the action of each Hamiltonian on our logical

computation space, S.

▶ Lemma 19. The following two statements hold:
For every |Ψy,t,s⟩ ∈ S and Hi ∈ {Hb, Hc}, eiHiθ|Ψy,t,s⟩ = eiα(i)

y,t,sθeiΓ(i)
y,t,sθ|Ψy,t,s⟩for some

phase α ∈ R. In words, applying Hi simulates application of a single gate Γ(b)
y,t,s ∈ G1,

Γ(c)
y,t,s ∈ κG2 ∪ {M} up to global phase αy,t,s, where κG2 = {κΓ | Γ ∈ G2}.

For every |Ψy,t,s⟩ ∈ S and every gate Γ ∈ G1 ∪ G2 ∪ {H0}, ∃ amplitudes {ay,t,s} such that

eiΓθ|Ψy,t,s⟩ =
∑

(y′,t′,s′)∈IS

W (y′,t′,s′)≤W (y,t,s)+1

ay,t,s|Ψy′,t′,s′⟩ (43)

In words, the application of Γ can only increase value of the W -function by at most 1.

3.1.5 Completeness
In the YES case, there exists a sequence of gates with proof y ∈ {0, 1}|A| of Hamming weight
at most g accepted with probability at least 1−ϵQ by the verifier circuit V . We use shorthand
notation (y)j = (y1, . . . yj−1, 0, . . . , 0) to indicate the partially written proof string. Also,
exp(iθHi) ∼ exp(iθΓ) indicates which generator Γ in Hi performs the non-trivial operation
(as per Lemma 19, claim 1). The honest prover proceeds as follows:

(Prepare classical proof) Prepare state (up to global phase) |ψ0⟩ :=
|y⟩A|0⟩B | ˜2 |A| + 1⟩C |1̃⟩D as follows. Starting with |gsb⟩ = |(y)0, 0, 1̃, 1̃⟩ABCD:

1. Set j = 1.
2. Apply exp(i π2κHc) ∼ exp(iπ2G2j−1) to map |2̃j − 1⟩C → |2̃j⟩C . This maps

|(y)j−1, 0, 2̃j − 1, 1̃⟩ABCD 7→ |(y)j−1, 0, 2̃j, 1̃⟩ABCD. (44)

3. If yj = 1 then
Apply exp(i 2π

3 Hb) ∼ exp(i 2π
3 G2j), to map |1̃⟩D → |2̃⟩D, i.e.

|(y)j−1, 0, 2̃j, 1̃⟩ABCD 7→ |(y)j−1, 0, 2̃j, 2̃⟩ABCD. (45)

Apply, in order, exp(i π2κHc) ∼ exp(iπ2F2), exp(iπ2Hb) ∼ exp(iπ2F3), . . . ,
exp(iπ2Hb) ∼ exp(iπ2F|D|−1), in total |D| − 2 operations . This maps |2̃⟩D → ||̃D|⟩D,
i.e.

|(y)j−1, 0, 2̃j, 2̃⟩ABCD 7→ |(y)j−1, 0, 2̃j, |̃D|⟩ABCD. (46)

Apply exp(i π2κHc) ∼ exp(iπ2Pj), to map |0⟩Aj
→ |1⟩Aj

, i.e.

|(y)j−1, 0, 2̃j, |̃D|⟩ABCD → |(y)j , 0, 2̃j, |̃D|⟩ABCD. (47)

Apply, in order, exp(iπ2Hb) ∼ exp(iπ2F|D|−1),exp(i π2κHc) ∼ exp(iπ2F|D|−2) . . . ,
exp(i π2κHc) ∼ exp(iπ2F2), in total |D| − 2 operations. This maps ||̃D|⟩D → |2̃⟩D, i.e.

|(y)j , 0, 2̃j, |̃D|⟩ABCD 7→ |(y)j , 0, 2̃j, 2̃⟩ABCD. (48)
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Apply exp(i 2π
3 Hb) ∼ exp(i 2π

3 G2j), to map |2̃⟩D → |1̃⟩D and |2̃j⟩C → |2̃j + 1⟩C , i.e.

|(y)j , 0, 2̃j, 2̃⟩ABCD 7→ |(y)j , 0, 2̃j + 1, 1̃⟩ABCD (49)

4. else
Apply exp(iπ3Hb) ∼ exp(iπ3G2j), to map |2̃j⟩C 7→ |2̃j + 1⟩C , i.e.

|(y)j−1, 0, 2̃j, 1̃⟩ABCD 7→ |(y)j , 0, 2̃j + 1, 1̃⟩ABCD. (50)

5. Set j = j + 1.
6. If j < |A|, return to line 2 above.
This process applies 2g(|D| − 1) + 2 |A| gates.
(Simulate verifier) Apply in order, exp(i π2κHc) ∼ exp(iπ2Q1) , exp(iπ2Hb) ∼ exp(iπ2Q2),
. . . , exp(iπ2Hb) ∼ exp(iπ2QL) for a total L gates. This implements the verifier, i.e.

|y, 0, ˜2 |A| + 1, 1̃⟩ABCD → |ΨL⟩ := VL · · ·V1|y, 0, |̃C|, 1̃⟩ABCD. (51)

Since V accepts proof y of the QMSA instance with probability at least 1 − ϵQ, we conclude
using Equation (40) that

⟨ΨL|Hc|ψL⟩ ≤ ⟨ΨL|M |ΨL⟩ + 1
12 ≤ 1 − (1 − ϵQ) + 1

12 ≤ 1
3 (52)

as desired. The number of Hamiltonians applied in this case is m = g(2 |D| − 2) + 2 |A| +L =
g(2 |D| − 2) + |C| − 1, also as desired.

3.1.6 Soundness
In the proof of Theorem 1 for MIN-VQA, we showed that all Hamiltonian evolutions keep us
in our desired logical computation space S. In contrast, for our MIN-QAOA construction,
the M operator (embedded in Hc) does not necessarily preserve the space span(S) (see
Claim 2 of Lemma 19). We thus first require the following lemma, which allows us to “round”
our intermediate state back to one in S for our analysis and also establishes W (y, t, s) as a
proper lower bound for the number of gate applications required to reach the states in S.

▶ Lemma 20 (Rounding lemma). In the NO case, after ζ ≥ 1 applications of Hc and Hb,
|Ψζ⟩ ∈ Γζ :=

{∏ζ
i=1 e

iHiθi |gsb⟩ | Hi ∈ {Hb, Hc}, θ ∈ Rζ
}

will be ϵ ≤ 4ζ√ϵQ close to the span
of S i.e.

∀|Ψζ⟩ ∈ Γζ , ∃|Ψ′
ζ⟩ ∈ span(S) :

∥∥|Ψζ⟩⟨Ψζ | − |Ψ′
ζ⟩⟨Ψ′

ζ |
∥∥

tr ≤ 4ζ√ϵQ (53)

and it additionally holds that |Ψ′
ζ⟩ =

∑
(y,t,s)∈IS

W (y,t,s)≤ζ+1
ay,t,s|Ψy,t,s⟩.

The proof is in the full version. This lemma is needed because the time evolution of the
observable M (in Hc) may leave the sub-space Span(S). The rounding step is possible,
because in the NO case, the state in the B1 register, after applying the circuit V (s̃ = |D|),
is always close to |0⟩B1 (using Assumption 18), meaning the evolution in M only adds to a
global phase.
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We are finally ready to prove soundness. For this, we need to show that in the NO
case, all sequences of ζ ≤ m′ = g′(2 |D| − 4) + |C| − 1 gates produce cost function value
⟨Ψζ |Hc|Ψζ⟩ ≥ 2

3 . This follows since for all ζ ≤ m′,

⟨Ψζ |Hc|Ψζ⟩ ≥ ⟨Ψζ |M |Ψζ⟩ − 1
12 (54)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − |Tr[M(|Ψζ⟩⟨Ψζ | − |Ψ′
ζ⟩⟨Ψ′

ζ |)]| − 1
12 (55)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − ∥M∥∞
∥∥|Ψζ⟩⟨Ψζ | − |Ψ′

ζ⟩⟨Ψ′
ζ |

∥∥
tr − 1

12 (56)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − 4m′√ϵQ − 1
12 (57)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − 1
6 (58)

where the first statement follows from Equation (40), the third by Hölder’s inequality, the
fourth by Lemma 20, and the last since √

ϵQ ≤ 1
48m′ . By Lemma 19, we can expand |Ψ′

ζ⟩ in
the basis |Ψ′

ζ⟩ =
∑

(y,t,s)∈IS

W (y,t,s)≤m′+1
ay,t,s|Ψy,t,s⟩ which gives

⟨Ψ′
ζ |M |Ψ′

ζ⟩ = 1 −
∑

y∈{0,1}|A||HW(y)≤g′

|ay,|C|,1|2⟨Ψy,|C|,1||1⟩⟨1|B1
|Ψy,|C|,1⟩ ≥ 1 − ϵQ (59)

as M only acts non-trivial on t = |C| and W (y, |C| , 1) ≤ m′ + 1 reduces to HW(y) ≤ g′, and
in the NO case QMSA accepts such a y with at most ϵQ probability. Combining the two
results we get

⟨Ψζ |Hc|Ψζ⟩ ≥ 1 − ϵQ − 1
6 >

2
3 (60)

which shows soundness for all gates-sequences of length ζ ≤ m′.

3.1.7 Hardness ratio
The analysis is essentially identical to that for MIN-VQA, and is in the full version. ◀
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