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Abstract
We propose a new family of circuit-based sampling tasks, such that non-trivial algorithmic solutions
to certain tasks from this family imply frontier uniform lower bounds such as “NP is not in uniform
ACC0” and “NP does not have uniform polynomial-size depth-two threshold circuits”. Indeed, the
most general versions of our sampling tasks have implications for central open problems such as NP
vs P and PSPACE vs P.

We argue the soundness of our approach by showing that the non-trivial algorithmic solutions
we require do follow from standard cryptographic assumptions. In addition, we give evidence that a
version of our approach for uniform circuits is necessary in order to separate NP from P or PSPACE
from P. We give an algorithmic characterization for the PSPACE vs P question: PSPACE ̸= P iff
either E has sub-exponential time non-uniform algorithms infinitely often or there are non-trivial
space-efficient solutions to our sampling tasks for uniform Boolean circuits.

We show how to use our framework to capture uniform versions of known non-uniform lower
bounds, as well as classical uniform lower bounds such as the space hierarchy theorem and Allender’s
uniform lower bound for the Permanent. We also apply our framework to prove new lower bounds:
NP does not have polynomial-size uniform AC0 circuits with a bottom layer of MOD 6 gates, nor
does it have polynomial-size uniform AC0 circuits with a bottom layer of threshold gates.

Our proofs exploit recently defined probabilistic time-bounded variants of Kolmogorov complexity
[36, 24, 34].
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1 Introduction

1.1 Background and Motivation
The NP vs P problem [18, 20] is the central problem in theoretical computer science. Despite
much effort over the years, we seem to be quite far from a solution. Theoretical computer
science has had many successes over the years, but as far as NP vs P is concerned, it has
been hard even to come up with viable approaches to the problem.

When the problem first received attention in the 1970s, a natural approach to it was
to explore analogies with computability theory, and use simulation and diagonalization
techniques to achieve a separation. For example, the uncomputability of the Halting Problem
is a foundational result in computability theory proved using diagonalization. A time-bounded
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35:2 An Algorithmic Approach to Uniform Lower Bounds

version of the Halting Problem for non-deterministic machines is NP-complete, so it makes
sense to try resource-bounded variants of diagonalization to separate NP and P. However, all
approaches using simulation and diagonalization have been fruitless so far, and a major reason
for this was identified by Baker, Gill and Solovay [11] in their paper on the relativization
barrier. Classical techniques in computability theory relativize, meaning that they continue
to hold relative to an arbitrary oracle, but no solution to the NP vs P can relativize - there is
an oracle A such that NP = P relative to A, and another oracle B such that NP ̸= P relative
to B [11].

After the relativization barrier was identified, attention shifted to the non-uniform version
of the NP vs P problem. The non-uniform version asks if NP has polynomial-size Boolean
circuits. A negative answer implies NP ̸= P, since all problems in P have polynomial-size
Boolean circuits. The hope in studying Boolean circuits was that they might be easier to
analyze and understand using combinatorial and algebraic techniques than is the case for
uniform algorithms. Indeed, the hope was fed by a spate of results in the 1980s showing super-
polynomial lower bounds against weak circuit classes, including AC0 circuits [2, 22, 60, 25] ,
AC0[p] circuits for prime p [47, 50] and monotone circuits [46].

This spate of lower bound results slowed down to a trickle in the 1990s, and even the
question of proving super-polynomial lower bounds against constant-depth circuits with
composite modular gates remained unsolved. In an attempt to explain the stalled progress,
Razborov and Rudich [48] identified a further barrier: the Natural Proofs barrier. While
the relativization barrier applies to traditional simulation and diagonalization approaches,
the Natural Proofs barrier applies to combinatorial and algebraic techniques that were the
main source of hope for showing non-uniform lower bounds. The Natural Proofs barrier rules
out constructive approaches to circuit lower bounds that involve identifying a complexity
measure that is easy to compute, low for functions with small circuits and high for random
functions, assuming standard cryptographic conjectures. Essentially all known non-uniform
lower bound techniques at the time involved identifying such complexity measures, and so
the Natural Proofs barrier did help to explain why progress was stalled.

Since the Natural Proofs barrier was identified, there has been pessimism about the
prospect of proving lower bounds in the near future, and few promising lower bound
approaches have been identified. The ambitious Geometric Complexity Theorey program
of Mulmuley and Sohoni [38, 37] seeks to solve the Permanent vs Determinant problem,
which is an algebraic analogue of NP vs P, by using representation theory and algebraic
geometry to analyze symmetries of the Determinant and Permanent. A version of their
approach also applies to the NP vs P problem. While Geometric Complexity Theory has
led to significant new insights in algebraic complexity theory, the original approach has also
faced some obstacles [14], and Mulmuley himself believes that it is likely to take a very long
time for NP vs P to be solved using this approach [20].

A rare success in the theory of lower bounds over the past couple of decades is the
algorithmic method [57, 58] of Ryan Williams. Somewhat paradoxically, Williams proposed
to attack the question of circuit lower bounds, i.e., proving that no efficient non-uniform
algorithms exist for some task, by finding improved algorithms for a different task. To be
more specific, if we wish to prove that NEXP does not have polynomial-size C-circuits for
some circuit class C with natural closure properties, then all we need to do is to solve the
Satisfiability problem for C-circuits in barely non-trivial time, i.e., in time 2npoly(m)/nω(1),
where m is the circuit size and n is the number of variables. Note that the trivial brute
force search algorithm for Satisfiability takes time 2npoly(m), so what is required is just a
super-polynomial improvement over this trivial algorithm.
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One might wonder whether an algorithmic approach via improved algorithms for Satis-
fiability is feasible if we are interested in lower bounds for general Boolean circuits. Perhaps
no non-trivial improvement over brute force search is possible for Circuit Satisfiability? This
potential objection is addressed in [57] by showing that circuit lower bounds hold even if
we can estimate the acceptance probability of a C-circuit in barely non-trivial time. This
acceptance probability estimation task is known to be doable in sub-exponential time under
circuit lower bound assumptions, by using ideas from the theory of derandomization [42, 10].
Thus, in a sense, the algorithmic approach is without loss of generality when it comes to
circuit lower bounds for NEXP.

In a breakthrough, Williams showed how to solve a frontier question in circuit lower
bounds using the algorithmic method. He showed that NEXP ̸⊆ ACC0 [58], by designing
algorithms for ACC0 Satisfiability that beat brute-force search. Since then, several other
lower bounds for restricted classes of circuits have been shown using the algorithmic method
[59, 56, 7, 15, 16, 40, 17, 13]. What is particularly appealing about the algorithmic method
is that humans seem more suited to constructive algorithmic thinking than to proving
impossibility results, and so the reformulation of a lower bound task as an algorithmic task
is likely to stimulate progress.

The original formulation of the algorithmic method [57] gave a connection between
non-trivial Satisfiability algorithms and circuit lower bounds for NEXP. While NEXP lower
bounds are interesting from a derandomization perspective, what we desire most in complexity
theory is super-polynomial size lower bounds for NP. Murray and Williams [40] show how
to scale down the algorithmic method to derive lower bounds for NQP (non-deterministic
quasi-polynomial time) against polynomial-size C-circuits and lower bounds for NP against
fixed polynomial size C-circuits (where the running time of the NP algorithm depends on the
size lower bound) from circuit analysis algorithms for C. However, their techniques do not
seem to be useful in deriving super-polynomial size lower bounds for NP - it is unclear what
a corresponding circuit analysis task would be.

It seems very challenging even to prove that NP does not have polynomial-size ACC0

circuits, and no approaches to this question are known. But what if we weaken our goal to
lower bounds against polynomial-size uniform ACC0 circuits? Note that from the perspective
of making progress toward NP ̸= P, uniform lower bounds are just as good as non-uniform
ones. However, we do not have any cases so far of super-polynomial uniform lower bounds for
NP against a class C of circuits where a corresponding non-uniform lower bound is unknown.
We also don’t have any plausible approaches toward showing such uniform lower bounds.

This raises the following question, which is at the core of our work.

▶ Question. Is there an algorithmic approach1 to long-standing open questions about uniform
lower bounds?

To make this question more precise, we state a couple of criteria that we require from
an “algorithmic approach”. First, we would like our algorithmic task to be as close to a
conventional algorithmic task as possible - a task that takes an input and produces output
that satisfies some desired property. For example, cryptographic pseudo-random generators
imply NP ̸= P, but we do not consider the construction of such generators as a standard
algorithmic task, just as the construction of complexity-theoretic pseudo-random generators

1 Note that we are interested in this paper only in algorithmic approaches to lower bounds. We hold the
conventional belief that NP ̸= P and wish to show this using an algorithmic approach. Of course, if
one wishes to show that NP = P, an algorithmic approach is completely natural, i.e., designing and
analyzing a polynomial-time algorithm for SAT.
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does not count as an algorithmic approach toward circuit lower bounds for EXP. Second,
we would like our approach to be sound, meaning that there should be some evidence that
the algorithmic task is indeed feasible. Note that an infeasible algorithmic task, such as
designing polynomial-time algorithms for an EXP-complete problem, would imply anything
at all, and in particular would imply NP ̸= P.

When trying to design an algorithmic approach to uniform lower bounds, it is useful to
keep in mind an informal but fundamental distinction between two regimes of lower bounds
- the complexity-theoretic regime and the cryptographic regime. The complexity-theoretic
regime refers to situations where we are trying to show a lower bound C ̸⊆ D for complexity
classes C and D, and C has enough computational resources to simulate D. For example, the
case of NEXP ̸⊆ SIZE(poly) falls into the complexity-theoretic regime, since exponential-time
machines can simulate polynomial-size circuits. The cryptographic regime refers to situations
where C does not have the resources to simulate D. The case of super-polynomial size uniform
circuit lower bounds for NP falls into the cryptographic regime, since we are trying to show
that a fixed problem in NP does not have uniform circuits of arbitrary polynomial size, and
so the NP machine does not have enough resources to simulate the circuits against which a
lower bound is sought.

The common feature to all known applications of the algorithmic method [57, 58, 40] is
that the corresponding lower bounds fall in the complexity-theoretic regime. The reason
is that the proof technique for establishing the connection between algorithms and lower
bounds involves indirect diagonalization, culminating in an application of hierarchy theorems.
Since hierarchy theorems require the class for which we are showing a lower bound to have
more resources than the class against which we are showing a lower bound, it seems unlikely
that the algorithmic method can be directly adapted to the cryptographic regime of lower
bounds.

In this work, we present a new family of circuit-based sampling tasks such that solutions
to tasks in this family imply uniform circuit lower bounds in the cryptographic regime for
classes such as NP and PSPACE. Since these algorithmic tasks have not been considered
before, there isn’t a clear path yet to solving them for general Boolean formulas or circuits.
As such, this is not yet a full-fledged approach to strong uniform circuit lower bounds such as
NP ≠ P or PSPACE ̸= P. Nevertheless, our approach does allow us to recover state-of-the-art
uniform lower bounds and to prove a couple of new ones, and we believe it might be useful
to attack frontier uniform lower bound questions such as separating NP from uniform ACC0

or uniform TC0
2. Moreover, we believe that the connection from algorithms to lower bounds

is interesting in itself, and hope that it will stimulate further research on the sampling tasks
we define.

We now proceed to describe our approach.

1.2 The Approach
We describe our approach to lower bounds for PSPACE first. Suppose we seek to prove
uniform lower bounds for PSPACE against some class C of circuits. The only requirement we
will make of C is that it can be simulated by general Boolean circuits. In order to describe
the algorithmic tasks in our approach, we first introduce some terminology.

Given a C-circuit C on n variables of size poly(n), we say that C is dense if C accepts at
least a 2/3 fraction of all inputs of length n. We are interested in the problem of sampling
satisfying assignments of C. Satisfying assignments of C are plentiful, so a trivial randomized
algorithm works with high probability, but it might not be easy for a deterministic algorithm
to find satisfying assignments. In our setting, we will allow the use of randomness in the
algorithm.
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In order not to make the task trivial, we will require that the algorithm outputs a fixed
satisfying assignment with probability at least nk/2n for some large enough constant k.
This requirement is related to the notion of pseudo-deterministic search defined by Gat
and Goldwasser [23]. A pseudo-deterministic algorithm is a randomized algorithm for a
search problem that outputs a fixed solution with high probability, say 2/3. In contrast, we
only require that a fixed assignment is output with probability poly(n)/2n, which is barely
non-trivial.

It is not hard to see that this task is easy if the algorithm is given full access to C and
is able to simulate C. The key restriction we impose is that the algorithm does not have
enough resources to simulate C, though it does have full access to C. The algorithm is given
random access to the representation of C, and must run in some fixed polynomial space
bound nd, where d is independent of the size of C. This restriction turns out to be enough
to imply lower bounds for PSPACE against uniform C-circuits.

We say that there is space-efficient non-trivial sampling for dense C-satisfiability if the
task described above is feasible, namely if for some large enough constant2 k, there is a
constant d and a probabilistic algorithm A running in space nd such that, given an input
C-circuit C on n variables of size poly(n) accepting at least a 2/3 fraction of all inputs, A

outputs a fixed satisfying assignment y of C with probability at least nk/2n. Our main result
for PSPACE shows that feasibility of this task implies lower bounds for PSPACE against
uniform C-circuits, where the notion of uniformity is LOGSPACE-uniformity.

▶ Theorem 1 (Informal Statement). Let C be any class of circuits that can be simulated by
Boolean circuits of polynomial size. If there is space-efficient non-trivial sampling for dense
C-satisfiability, then PSPACE does not have uniform C-circuits of polynomial size.

As a corollary, when C is the class of general Boolean circuits, space-efficient non-trivial
sampling for dense C−SAT implies that PSPACE ̸= P. Thus a solution to a purely algorithmic
task separates PSPACE from P. We find this connection surprising, even if it’s not apparent
what sorts of algorithmic ideas might be useful in solving our task.

We note that the requirements of our algorithmic task are fairly relaxed in many ways.
We are interested in randomized algorithms, while it is still open to derive non-uniform circuit
lower bounds for NEXP from randomized algorithms for CircuitSAT. A trivial linear-time
randomized algorithm for our task simply samples a random y ∈ {0, 1}n and outputs it -
each satisfying assignment is output with probability 2−n by this algorithm. We only require
a fixed polynomial advantage in sampling probability over this trivial algorithm.

However, the restriction that the algorithm must operate in space a fixed polynomial
independent of the circuit size of C is indeed a fairly strong requirement. Essentially, what
this restriction means is that we can’t simulate the circuit C when trying to solve our
algorithmic task. Thus, in order to solve our algorithmic task, we need to have a rich
structural understanding of C-circuits accepting at least a 2/3 fraction of their inputs.

We argue heuristically that some such restriction on white-box access is necessary to
derive lower bounds for PSPACE. Consider the case where C is just the class of general
Boolean circuits. Suppose we were able to derive PSPACE ≠ P from the success of some
algorithmic task T that is defined with a Boolean circuit C as input, and suppose we had full
white-box access to C. If T is solvable in PSPACE, then if PSPACE = P, T should be solvable
efficiently. Since the efficient solvability of T implies NP ̸= P, we get that PSPACE ≠ P
unconditionally!

2 Our proof shows that k > 3 suffices, and we suspect that k > 1 might suffice if we optimise our
parameters.

CCC 2023
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Of course it is possible that T is not solvable in PSPACE, but rather (say) in EXP.
However, in this case, there might not be sufficient reason to believe T is solvable efficiently,
and using T to derive a lower bound might not be a sound algorithmic approach.

We would like to emphasize the point made by the argument above: the restriction that
the algorithm for our task cannot simulate the circuit C is not just an artifact or weakness
of our approach. Rather, it seems unavoidable for any white-box task in the cryptographic
regime, since the lower bound we are trying to show is quantitatively stronger than the upper
bound.

Indeed, as mentioned before, if we have full white-box access to C, we can unconditionally
solve the algorithmic task we propose, by repeatedly sampling strings of length n and
outputting the lexicographically smallest string accepted by C. Theorem 31 in Section 4
establishes this formally. The ability of the algorithm to read the description of C as well as
to simulate C makes this argument work.

Now suppose we wish to extend the approach of Theorem 1 to uniform lower bounds
for NP. We can define an analogous notion of time-efficient non-trivial sampling for dense
C-satisfiability, and prove a connection similar to Theorem 1 where the consequence is a lower
bound for NP. However, this notion of time-efficient non-trivial sampling is very restrictive,
as the sampling algorithm will not even be able to read the entire input circuit, let alone
simulate it. Ideally, we would like the sampling algorithm to be able to read the entire input,
even if it isn’t able to perform a simulation, as in our setting for PSPACE.

Therefore, we consider a succinct version of our algorithmic task. Our input now is 1n

together with a C-circuit C of size at most n which is a compressed representation of a
larger C-circuit C ′ of size poly(n) on n variables. Here, by saying that C is a compressed
representation of C ′, we mean that we can recover any specific bit in the representation of
C ′ by evaluating C on some input. Alternatively, one can think of C as a circuit for the
direct connection language of C ′.

We say that there is efficient non-trivial sampling with PH oracle for the succinct version
of dense C-satisfiability if for some large enough constant k, there is a constant d and a
probabilistic algorithm A running in time nd with a PH oracle such that, given 1n and
C-circuit C as input, where C is a compressed representation of a C-circuit C ′ of size poly(n)
on n variables accepting at least a 2/3 fraction of inputs, A outputs some fixed satisfying
assignment y of C ′ with probability at least nk/2n. The notion of uniformity we use for all
of our results on lower bounds for NP is LOGTIME-uniformity [12].

▶ Theorem 2 (Informal Statement). Let C be any class of circuits that can be simulated by
Boolean circuits of polynomial size. If there is efficient non-trivial sampling with PH oracle
for the succinct version of dense C-satisfiability, then NP does not have uniform C-circuits
of polynomial size.

Note that we allow the sampling algorithm oracle access to an arbitrary PH oracle in the
hypothesis. This is intended to make the algorithmic task easier to solve.

Now we justify our claim that our algorithmic approach fulfils the two criteria we stated in
Section 1.1. The first criterion is that the relevant algorithmic task should be a conventional
one. This is true in our case since the algorithmic task we consider is that of efficiently
sampling, with non-trivial probability, a fixed satisfying assignment to a circuit with many
satisfying assignments. We observe that the second criterion holds as well, under standard
cryptographic assumptions.

▶ Theorem 3 (Informal Statement). If one-way functions secure against super-polynomial
size circuits exist, then there is efficient non-trivial sampling for the succint version of dense
Circuit-satisfiability.
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We show Theorem 3 by using cryptographic pseudo-random generators to give an efficient
non-trivial sampling algorithm for the succinct version of dense Circuit-satisfiability. Note
that the sampling algorithm yielded by the assumption does not need access to a PH
oracle. Also, an efficient non-trivial sampling algorithm for the succinct version of dense
Circuit-satisfiability trivially implies a space-efficient non-trivial sampling algorithm, therefore
Theorem 3 additionally evidences the feasibility of the approach toward PSPACE ̸= P.

One might still wonder if the algorithmic approach we present is far stronger than is
actually necessary for uniform lower bounds. We show that under plausible complexity
assumptions (which seem morally weaker than the lower bounds we are trying to prove), a
uniform version of our approach3 is in fact necessary in that the algorithmic tasks we propose
become feasible.

Our ideas give an unconditional algorithmic characterization of PSPACE ̸= P.

▶ Theorem 4 (Informal Statement). PSPACE ̸= P iff E has circuits of size 2o(n) on infinitely
many input lengths, or if there is a space-efficient non-trivial algorithm for the uniform
version of dense Circuit-satisfiability on infinitely many input lengths.

In other words, a central uniform lower bound question in complexity theory reduces to
either showing surprising non-uniform algorithms exist for E, or to solving our sampling task
for general uniform Boolean circuits in a space-efficient non-trivial way. While there are such
algorithmic characterizations of lower bounds for NEXP in the complexity-theoretic regime
[31, 57, 55], the characterization above seems to the first one in the cryptographic regime.

While the results above indicate that our approach is sound, it is unclear a priori whether
our algorithmic approach is feasible, i.e., if it has any hope of yielding new lower bounds in
the near future. We do believe that the connection from algorithms to uniform lower bounds
is interesting in itself, but we would like the framework to be capable at least of proving
some known uniform lower bounds.

We show that the framework does indeed have this capability. On the one hand, we
use known unconditional results about hitting set generators for weak circuit classes to
observe that our sampling tasks are solvable for these circuit classes. On the other hand, we
show that our framework can be used to give alternative proofs of well-known uniform lower
bounds such as versions of the space hierarchy theorem [51] and Allenders’ lower bound for
Permanent [3]. This evidences the flexibility of the framework - it accommodates techniques
exploiting specific properties of circuit classes as well as techniques based on simulation and
diagonalization.

Finally, we use our approach to prove a couple of new lower bounds, and hope that even
stronger lower bounds will follow using more sophisticated algorithmic ideas.

▶ Theorem 5 (Informal Statement). NP does not have uniform polynomial-size AC0 circuits
with a bottom layer of Modm gates for any positive integer m, not does it have uniform
polynomial-size AC0 circuits with a bottom layer of threshold gates.

We note that it is a longstanding open problem to prove non-uniform super-polynomial
size lower bounds in NP against AC0 circuits with a bottom layer of Mod6 gates or a bottom
layer of threshold gates, despite much effort4. We show that uniformity can be exploited

3 By this we mean that our algorithmic task is only required to be feasible on uniform sequences of
circuits.

4 However, such lower bounds are known for non-deterministic quasi-polynomial time NQP [59, 40], in
the complexity-theoretic regime. We are interested here in lower bounds in the cryptographic regime.
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35:8 An Algorithmic Approach to Uniform Lower Bounds

to prove lower bounds for these classes. As far as we are aware, this is the first case of a
super-polynomial circuit lower bound for NP that holds for a uniform circuit class but is not
known to hold for the corresponding non-uniform circuit class5.

1.3 Discussion
In this sub-section, we discuss various features of our approach. Some of these have been
mentioned before, but it might be useful for the reader to see them discussed together.

Another Algorithmic Approach to Lower Bounds. Our work is the latest in the line of
works which apply algorithmic approaches to lower bound problems. However, it is the first
to apply an algorithmic approach to lower bound problems in the cryptographic regime, and
in particular with relevance to problems such as NP vs P and PSPACE vs P. The algorithmic
method of [57, 58] shows that non-trivial algorithms for CircuitSAT and Circuit Acceptance
Probability Estimation imply super-polynomial circuit lower bounds for NEXP. Building on
[21, 33], Oliveira and Santhanam [44] showed that non-trivial randomized learning algorithms
with membership queries over the uniform distribution for a class C of circuits implies lower
bounds in BPEXP against polynomial-size C-circuits.

Previous works on algorithmic approaches require a non-trivial upper bound on the
running time of the algorithm to derive lower bound consequences. In our case, in contrast,
while it is important that the algorithm is efficient, what matters more is the probability of
sampling some fixed solution - we need this to be non-trivial. Another difference between our
work and previous works is that previous works all rely ultimately on hierarchy theorems. In
contrast, we do not use hierarchy theorems, and this enables us to deal with the cryptographic
regime of lower bounds.

Exploiting the Power of NP. As mentioned in Section 1.1, there are several works beginning
in the 1980s that establish super-polynomial circuit lower bounds for weak circuit classes using
various combinatorial and algebraic techniques. An interesting feature of these results is that
in most cases, the best lower bounds we know are for problems that are in P. For example,
the strongest lower bounds we know for constant-depth circuits are for the Parity function,
which is easily seen to be solvable by linear-size circuits. Clearly, any lower bound technique
that yields lower bounds for problems in P is not capable of proving super-polynomial lower
bounds for general Boolean circuits. Our approach, in contrast, uses the power of NP, and
perhaps this suggests that the approach, or variants in it, might be useful in the long run to
prove strong lower bounds.

The Importance of Uniformity. Historically, there has been a divide in complexity theory
between approaches to non-uniform lower bounds and approaches to uniform lower bounds.
Approaches to non-uniform lower bounds are often tailored to the circuit class of interest,
identifying a structural weaknesses of the circuit class (such as being simplified by random
restrictions or being approximable by low-degree polynomials) and then exploiting the
weakness mathematically or algorithmically. Approaches to uniform lower bounds tend to be
more generic, employing clever combinations of simulation and diagonalization techniques.
Our work bridges this divide to an extent in that it identifies stand-alone algorithmic tasks

5 Allender’s lower bound for Permanent is another example of this phenomenon, but Permanent is neither
known nor believed to be in NP
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such that solutions for these tasks have implications for uniform lower bounds. The hope is
that these algorithmic tasks can be solved efficiently and non-trivially by exploiting properties
of the circuit class.

Generality of the Approach. Our algorithmic approach is general in multiple respects.
First, it is relevant to lower bounds for any circuit class C contained in the class of Boolean
circuits. We do not even require even weak closure properties of the circuit classes. In
particular, this makes our approach potentially relevant to frontier lower bounds against
fixed-depth classes, eg., the class of depth-two threshold circuits.

Secondly, our approach can be adapted to lower bounds for uniform classes other than
NP, simply by modifying the resource requirements of the algorithm. Theorem 1 illustrates
how this works in the context of lower bounds for PSPACE. The approach is also capable of
being adapted to lower bounds for other problems such as Permanent, as shown in Sections 3
and 5.

White-Box Algorithmic Tasks in the Cryptographic Regime. Our approach puts the
spotlight on white-box circuit-based algorithmic tasks in the cryptographic regime, where
the algorithm does not have the resources to simulate the circuit it gets as input. To the
best of our knowledge, these kinds of algorithms have not been considered before. We
are specifically interested in sampling algorithms, and the extent to which sampling can
outperform simulation. There are some known results about the power of low-complexity
samplers, such as the work of Applebaum, Ishai and Kushilevitz[8] using the technique of
randomizing polynomials to show that in many contexts, NC1-samplable distributions can
be replaced by NC0-samplable distributions, and the work of Viola [53] initiating a line of
research on the complexity of distributions. Perhaps ideas from these works or related works
could be useful in approaching our algorithmic tasks.

Relevance to Known Barriers. Several previous attempts to attack NP vs P and related
problems have run into one or the other of various complexity barriers, including the
relativization barrier [11], the Natural Proofs barrier [48] and the algebrization barrier [1].
So it is important to examine how our approach fares against these barriers. As of now,
we envision our approach as relevant mostly to frontier questions such as separating NP
from uniform ACC0 and uniform TC0

2. It does not seem as though the relativization and
algebraization barriers are relevant to such weak circuit classes, as existing lower bounds for
weak circuit classes exploit weaknesses of the gate sets, and hence don’t work when oracle
gates with large fan-in occur in the circuit. The natural proofs barrier is not known to have
any relevance to uniform circuit lower bounds. Indeed, even in the case of non-uniform
circuit lower bounds against these classes, the natural proofs barrier would only be operative
if there are pseudo-random functions in ACC0 or TC0

2, and no compelling evidence exists for
the existence of such low-complexity pseudo-random functions.

1.4 Proof Ideas
We discuss here the ideas behind our approach and sketch the proofs of the connections from
algorithms to lower bounds. We first discuss the proof ideas behind Theorem 2, and then
the ideas behind Theorem 1.

Recall that our goal is to develop an algorithmic approach to uniform lower bounds
for NP and PSPACE. We would like our algorithmic approach to involve a conventional
algorithmic task, and for there to be complexity-theoretic evidence that the algorithmic task
is feasible. Ideally, the algorithmic task should require only a marginal improvement over
known algorithms.

CCC 2023
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Our starting point is an elegant idea of Hirahara [28]. Hirahara was interested in the
problem of proving uniform lower bounds for the problem RKt of determining whether an
input string x has high Kt complexity. Recall that the Kt complexity of a string is the
minimum of |p| + log(t) over programs p and time bounds t such that U t(p, ϵ) = x, i.e.,
a universal machine halts within t steps on input p and outputs x. RKt is known to be
EXP-complete [6] but only with respect to non-uniform truth-table reductions or NP Turing
reductions. It is a long-standing open problem whether RKt is in P. Hirahara showed that
RKt does not have P-uniform ACC0 circuits of polynomial size.

His idea is as follows: suppose that there is a non-trivial algorithm for satisfiability for a
circuit class C. Namely, we can find a satisfying assignment y of length n for a satisfiable
C-circuit C on n variables in deterministic time 2n/nω(1). Then it is not too hard to show that
y has Kt complexity n − ω(log(n)) conditioned on C. Now, if C itself were a uniform circuit
generated by an efficient procedure given input 1n, that implies that Kt(C) = O(log(n)),
and by first generating C and then generating y conditioned on C, we get that y has Kt
complexity n − Ω(log(n)).

We can use this to derive a contradiction to the assumption that RKt has P-uniform
C-circuits. We consider the uniform circuit ACC0 Cn assumed to solve RKt. The satisfying
assignments of Cn are precisely the hard Kt strings, and in particular we can assume that
every satisfying assignment has Kt complexity n − Ω(log(n)). But then the argument in the
previous para yields a contradiction, since y is a satisfying assignment to Cn and has Kt
complexity n − ω(log(n)).

Since we know that satisfiability of ACC0 circuits can be solved in non-trivial time [58],
we derive a P-uniform ACC0 lower bound for RKt. This is still quite far from the desired
result showing RKt ̸∈ P, but it constitutes some progress. Hirahara uses similar ideas to show
that the set of Kt-random strings is not in P for any super-polynomial t.

While the idea of the proof is novel, the lower bound result for RKt is still in the
complexity-theoretic regime of lower bounds, since we are trying to prove uniform super-
polynomial lower bound for a language that is known to be complete for exponential time.
However, we observe that this isn’t intrinsic to the approach; rather it depends on which
notion of resource-bounded Kolmogorov complexity we analyze. In this case, we analyzed
Kt complexity, but in principle we could analyze some other resource-bounded Kolmogorov
complexity measure.

In particular, let us imagine trying to upper-bound the Kpoly complexity of satisfying
assignments to circuits. Our reason for doing this is that the language of hard Kpoly strings is
in NP, hence if we are able to carry through an argument analogous to Hirahara’s argument,
we might be able to show a uniform circuit lower bound for NP. One obstacle that presents
itself is that it is unclear what sort of algorithm we need to analyze in order to upper bound
the Kpoly complexity of solutions. Another obstacle is that it is unclear even why there should
be a solution of low Kpoly complexity.

Let us try to address the second obstacle first, and come up with an algorithmic task
where there are likely to be solutions of non-trivial Kpoly complexity. Here we make a crucial
observation: Hirahara considers the Satisfiability problem for general circuits, but in fact we
can consider the Satisfiability problem for dense circuits instead. The reason is that if we
are going to use the argument on a circuit that is presumed to decide the set of hard Kpoly

strings correctly, the circuit will have many accepting inputs, since a random string is likely
to be Kpoly-hard.

Considering Dense Circuit Satisfiability makes our approach more plausible, since if we
make cryptographic derandomization assumptions, we are at least likely to have solutions
with low Kpoly complexity conditioned on the circuit. However, the first obstacle remains - it
is not clear how to analyze Kpoly complexity of solutions for any natural algorithmic task.
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Our idea is to use probabilistic notions of time-bounded Kolmogorov complexity. Several
notions of probabilistic time-bounded Kolmogorov complexity have recently been defined
and studied in [43, 35, 24, 36, 34]. A notion that is ideal for our purposes is the notion of
pKpoly [24, 36]. Intuitively, a string x has low pKpoly string if for most random strings r of a
given polynomial length, there is a small description pr from which x can be reconstructed
in polynomial time given r. This notion of probabilistic Kolmogorov complexity has two
very appealing features. First, pKpoly complexity turns out to be closely tied to a very
natural algorithmic task, namely sampling solutions of search problems. This allows us to
define a natural algorithmic task that makes no reference to Kolmogorov complexity notions.
Second, pKpoly complexity has a so-called Optimal Coding Theorem, which implies that
strings sampled efficiently with probability p have pKpoly complexity very close to log(1/p).
This allows us to define an algorithmic task that involves just a non-trivial improvement in
success probability over existing efficient algorithms.

The price we pay is that the language of hard pKpoly strings is no longer in NP. However,
we can define a promise version of the language of hard strings which is in AM, and this
turns out to be sufficient for our purposes, by using an additional idea.

However, our assumption in Theorem 2 is for the succinct version of Dense Circuit
Satisfiability. In order to use this version, we observe that we use the assumption of feasibility
of algorithmic tasks only on uniform circuits, which are succinctly representable. In fact,
when we are arguing by contradiciton, we can efficiently recover a succinct description of the
circuit, where the description itself belongs to the class of circuits that are being described.
This additional step allows us to complete the proof of Theorem 2.

To extend this proof idea to lower bounds for PSPACE in Theorem 1, we show that it
is enough to simply change the resource requirements of the algorithmic tasks to a fixed
polynomial space bound rather than a fixed polynomial time bound. The natural idea for
analyzing this would be to consider a notion of space-bounded Kolmogorov complexity, but
our argument by contradiction finds a short-cut. We use an argument by contradiction
again to observe that if indeed PSPACE had small uniform circuits, then PSPACE = P. This
implies that our small-space sampling algorithm can be simulated by a time-efficient sampling
algorithm, and then we can use the same machinery as in Theorem 2 to complete the proof.

For Theorem 3, we use the fact [26] that one-way functions imply the existence of
cryptographic pseudo-random generators (PRG) with seed length nϵ for any ϵ > 0. A
cryptographic PRG can be used to solve our sampling task efficiently by simply outputting a
random element in the range of the PRG, which can be done in time a fixed polynomial in n.
By the pseudo-randomness property, most elements of the range will be satisfying assignment
of the dense circuit on which we are solving the sampling task, and each such element will
be output with probability 2−nϵ , which is non-trivial. Note that we do not even need to look
at the circuit on which we are solving the sampling task.

For the algorithmic characterization of PSPACE ̸= P, we use certain properties of the set
of strings L = MKSP[

√
n] of Kolmogorov space-bounded complexity at most

√
n. It follows

from [6] that L is hard on average for polynomial time in a zero-error sense if PSPACE ̸= BPP,
and it can be shown using ideas in [49] that the hardness on average of L implies the existence
of a crytographic hitting-set generator against polynomial size circuits. A cryptographic
hitting-set generator can be used to solve our sampling task space-efficiently using the
observations in the previous paragraph. To complete our characterization, we use a standard
result from derandomization [32], namely that either E has circuits of size 2o(n) infinitely
often or BPP = P.

The proof of Theorem 5 proceeds by designing efficient non-trivial sampling algorithms
with PH oracle for the succinct version of Dense C Satisfiability for C = AC0 ◦ (Modm) and
C = AC0 ◦ Thr.
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Several recent works in various areas of complexity theory, including learning theory,
pseudorandomness, cryptography, structural complexity and proof complexity, have developed
and exploited ideas from meta-complexity, i.e., the complexity of complexity. We refer to [5]
for a recent survey. The ideas of our proof are another illustration of this phenomenon. Like
the recent work of Hirahara [29] on average-case hardness of NP from exponential worst-case
assumptions, our results use meta-complexity as a catalyst: the results make no reference to
meta-complexity, yet the proofs use meta-complexity crucially.

2 Preliminaries

2.1 Standard Complexity Notions
The textbook by Arora and Barak [9] is an excellent reference for basic notions in complexity
theory. Here we recall a few that are especially relevant to this paper.

Computational problems are typically modelled as decision problems, where each input is
either accepted or rejected. Occasionally we are interested in promise problems, where the
set of accepted inputs is disjoint from the set of rejected inputs, but some inputs might not
belong to either category. Formally, a promise problem Γ over {0, 1} is a pair (ΓY ES , ΓNO)
where ΓY ES , ΓNO ⊆ {0, 1}∗ and ΓY ES ∩ ΓNO = ∅. The complement of a promise problem
(ΓY ES , ΓNO) is the promise problem (ΓNO, ΓY ES). We say that a language L is consistent
with a promise problem Γ = (ΓY ES , ΓNO) if ΓY ES ⊆ L and ΓNO ⊆ L̄.

We will need to be careful about which Turing machine model we consider, since we are
often interested in computations that run in sub-linear time. We will use the random access
Turing machine model, where each tape of a multi-tape Turing machine has a corresponding
address tape. When the address tape for tape k has index i written on it, and the machine
enters a special tape, the contents of the i’th tape cell of the k’th tape can be accessed in unit
time. We also consider oracle Turing machines, where the random access Turing machine
is provided with a separate oracle tape, on which queries to the oracle can be made, and
answered in unit time.

We will be considering various standard circuit classes, including the class AC0
d of constant-

depth circuits of depth d with AND and OR gates, the class AC0
d[p] of constant-depth circuits

of depth d with AND, OR and MOD p gates for prime p, the class ACC0 of constant-depth
circuits of depth d with AND, OR and modular gates, the class TC0

d of depth-d threshold
circuits, the class Formula of Boolean formulas, and the class Circuit of Boolean circuit. By
default, whenever we refer to a circuit class, we will mean the non-uniform version of the
circuit class. However, as is standard terminology, NC1 will refer to LOGTIME-uniform
circuits of logarithmic depth. We will occasionally abuse notation and use the name of a
circuit class to refer to the circuit class as well as to the class of languages decided by the
circuit class.

We will mainly be using two standard notions of uniformity for circuits: LOGTIME-
uniformity and LOGSPACE-uniformity. We refer to [12] for precise definitions of these
notions as well as a detailed discussion on motivation. Briefly, LOGTIME-uniformity means
that the direct connection language of a sequence {Cn} of circuits, encoding types of gates
and connections between them in a natural way, is decidable in time logarithmic in the
size of the circuit. LOGSPACE-uniformity means that the direct connection language of
{Cn} is decidable in logarithmic space; equivalently, a description of Cn can be computed
in logarithmic space given 1n as input. The main property we will require of LOGTIME-
uniformity is that any given bit of the description of a LOGTIME-uniform circuit C can be
computed in time logarithmic in the size of the circuit. This is the case when a circuit is
represented in a standard way, i.e., as a list of gate types and connections between gates in
some pre-determined order.
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We won’t formally define direct connection languages, since the details depend on the
circuit classes of interest, and we consider a wide variety of circuit classes. However, in
each case, we will be able to answer questions about the gate type, about whether the
i’th child of a gate is a certain other gate, and about whether a gate has more than i

inputs using a single query to the direct connection language. Things get a bit subtle when
considering circuits where the gates have weights, eg., threshold gates which check whether
an integer-weighted sum of inputs is at least some integer value, or modular gates which
check whether integer-weighted sums of the inputs belong to some set of values modulo a
given integer. Indeed, we consider AC0 circuits with a bottom layer of Modm or Thr gates in
Section 5, and we assume there that the gates are irredundant, i.e., that the weights aren’t
unnecessarily large. In particular, we assume that the weights for any Modm gate are at
most m, and that the weights for a threshold gate on n inputs is at most nO(n), which is
true without loss of generality [39]. In these cases, the weights can be extracted using a fixed
polynomial number of queries to the direct connection language - this will be crucial in the
proofs of our new lower bounds.

We will also refer to POLYLOG-uniformity, where the direct connection language is
decidable in time poly-logarithmic in the size of the circuit.

We say that a circuit class C is polynomially simulatable if there is a polynomial-time
algorithm which, given a circuit C from C and an input x to C, computes C(x).

▶ Proposition 6. Suppose a circuit class C is polynomially simulatable, and let L be a language
that has LOGTIME-uniform (resp. LOGSPACE-uniform) C-circuits of polynomial size. Then
L has LOGTIME-uniform (resp. LOGSPACE-uniform) Boolean circuits of polynomial size.

Recall that CH [54, 45] is the counting hierarchy, whose first level CH1 = PP and i’th
level CHi = PPCHi−1 . We will also need Toda’s theorem [52].

▶ Theorem 7 ([52]). PH ⊆ PPP = P#P.

2.2 Meta-Complexity
Here we define various notions of Kolmogorov complexity that will be needed in this work.

Throughout, we fix a time-efficient universal Turing machine U . Notions of Kolmogorov
complexity are defined relative to this universal machine U , but since the notions and results
we use are robust to the precise choice of the universal machine, we suppress the dependence
on U .

Given a string x, the Kolmogorov complexity K(x) is defined to be the size of the smallest
program p such that U(p, ϵ)) = x. Given a time bound t : N → N and a string x, the t-time
bounded Kolmogorov complexity of x is defined as follows: Kt(x) is the size of the smallest
program p such that U t(|x|(p, ϵ) = x, where UT means that that the universal machine is
restricted to run for at most T steps.

K and Kt are deterministic notions of Kolmogorov complexity, in that a string is recovered
from its compressed representation by a deterministic program. We require a probabilistic
notion of Kolmogorov complexity recently introduced in [24].

Given a time bound t : N → N, a string x and a number ρ ∈ [0, 1], we say that x has
ρ-confidence pKt complexity at most k if for at least ρ fraction of random strings r of length
t(|x|), there is a program pr, |pr| ⩽ k, for which U t(|x|)(pr, r) = x.

▶ Proposition 8. For any time bound t : N → N, non-negative integers n, k and ρ ∈ [0, 1], at
most 2k+1/ρ strings have ρ-confidence pKt-complexity at most k.
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Let t : N → N be a time bound. Given a complexity parameter s : N → N and real
numbers ρ, δ ∈ [0, 1] such that δ < ρ, we define the meta-complexity promise problem
RpKt [s, ρ, δ] = (ΓY ES , ΓNO), with ΓY ES , ΓNO ⊆ {0, 1}∗ and ΓY ES ∩ ΓNO = ∅, as follows. A
string x ∈ ΓNO if the ρ-confidence pKt complexity of x is at most s(|x|). A string x ∈ ΓY ES

if the δ-confidence pKt complexity of x is not at most s(|x|).

▶ Proposition 9. RpKt [s, ρ, δ] ∈ coAM. Moreover, if s(n) + log(1/δ) < n − 2 for each n ∈ N,
then ΓY ES contains at least a 3/4 fraction of all strings of length n.

2.3 One-Way Functions and Pseudorandomness
We need the standard cryptographic notion of a non-uniformly secure one-way function. In
fact, we define the length-preserving variant of the notion, which is without loss of generality.

▶ Definition 10. Let s : N → N. A function f = {fn}, fn : {0, 1}n → {0, 1}n is said to be
an s(·)-secure one-way function if for each sequence of circuits {Dn} of size poly(s(n)), we
have that Prx∼{0,1}n [f(D(f(x))) = f(x)] = 1/nω(1).

Next we define the notion of a cryptographic pseudo-random generator. For ease of
application, we define the notion slightly differently than the standard notion, with the
computability of the PRG measured as a function of the output size.

▶ Definition 11. Let ℓ : N → N be a function such that ℓ(n) ⩽ n for all n ∈ N. A
cryptographic pseudo-random generator with seed length ℓ is a function G = {Gn}, Gn :
{0, 1}ℓ(n) → {0, 1}n computable in time poly(n) such that for any algorithm D running in
time poly(n), | Pry∈{0,1}n D(y) − Prz∈{0,1}ℓ(n) D(G(z))| = 1/nω(1).

One of the foundational result in cryptography is that cryptographic pseudo-random
generators with small seed length can be based on the existence of one-way functions with
super-polynomial hardness.

▶ Theorem 12 ([26]). Suppose there is an nω(1)-secure one-way function. Then there is a
cryptographic pseudo-random generator with seed length no(1).

We will also need the notion of a cryptographic hitting set generator useful against a
circuit class C.

▶ Definition 13. Let ℓ : N → N be a function such that ℓ(n) ⩽ n for all n ∈ N, and let
C be a circuit class. A cryptographic hitting set generator with seed length ℓ against C is
a function G = {Gn}, Gn : {0, 1}ℓ(n) → {0, 1}n computable in time poly(n) such that for
any sequence of C-circuits {Cn} such that Cn accepts at least a 1/n fraction of n-bit inputs
for large enough n, there exists a sequence {yn} with yn ∈ {0, 1}ℓ(n) for each n such that
C(Gn(yn)) = 1.

2.4 Search Problems and Samplers
The algorithmic tasks we consider will involve solving search problems. We first define the
notion of a promise search problem.

▶ Definition 14. A promise search problem S is a pair (R, X) where R ⊆ {0, 1}∗ is a
polynomial-time computable binary relation and X ⊆ {0, 1}∗ is a subset of inputs. A solution
to the search problem S on input x is any string y such that (x, y) ∈ R. We say that an
algorithm A solves the promise search problem S if for each x ∈ X, A outputs a solution to
S on x if one exists.
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We will be interested in a specific promise search problem where the task is to find
satisfying assignments of circuits that accept most of their inputs.

▶ Definition 15. Let C be a circuit class. The promise search problem Dense − C − SAT is
defined by the following binary relation R and input set X. R consists of all pairs (C, x),
where C is (the encoding of) a C-circuit, and x is a satisfying assignment of C. X consists
of all C-circuit C such that C accepts at least a 2/3 fraction of its inputs.

For technical reasons, we will also need the notion of a sampler. Note that our notion of
sampler simply models an algorithm that samples a distribution, and is not related to the
notion of sampler in the theory of randomness extraction.

▶ Definition 16. A sampler is a polynomial-time randomized algorithm which, given 1n as
input for n ∈ N, samples a distribution on n-bit outputs.

3 From Algorithms to Uniform Lower Bounds

In this section, we show our main results about connections from circuit sampling tasks to
uniform lower bounds for NP, PSPACE and Permanent.

3.1 An Algorithmic Approach to Uniform Lower Bounds for NP
We first define the algorithmic task we will consider in this sub-section.

▶ Definition 17. Given circuits C and C ′, we say that C encodes C ′ if the Boolean function
computed by C is the direct connection language of C ′.

▶ Definition 18. Let C be a circuit class. We say that there is efficient non-trivial sampling
(resp. efficient non-trivial sampling with PH oracle) for the succinct version of Dense−C−SAT
if for every k > 0 there is a probabilistic algorithm A (resp. probabilistic algorithm A with
PH oracle) which, given 1n and a C-circuit C of size at most n, where C encodes a C-circuit
C ′ of size at most nb on n variables accepting at least a 2/3 fraction of its inputs, runs in
time nd (for some constant d independent of b) and outputs some fixed satisfying assignment
y to C ′ with probability at least nk/2n.

The following is a version of the Optimal Coding Theorem for pKt in [36] with slightly
improved parameters6 that are important in our application.

▶ Lemma 19. Let S be a sampler that runs in time ns on input of length n, where s > 0 is
a constant. There is a constant β such that if S samples some y ∈ {0, 1}n with probability p,
then y has 3/4-confidence pKnβs

complexity at most log(1/p) + 3 log(n).

In fact it can be shown for any search problem that sampling of a fixed solution to
the search problem with non-trivial probability is equivalent to the existence of solutions
that have non-trivial conditional pKpoly complexity, for an appropriately defined notion of
conditional pKpoly complexity. We do not pursue this direction here to avoid detracting from
the focus of the paper on approaches to uniform lower bounds.

We need an easy lemma to allow us to deal with the issue of promise problems.

6 Specifically, the coding theorem in [36] involves an additive term that is logarithmic in the time bound
of the sampler, while the additive term in our bound is logarithmic in the input length of the sampler
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▶ Lemma 20. Let Γ be a promise problem in coAM. If NP = P, then there is a language LΓ
consistent with Γ such that LΓ ∈ P.

We are now ready to establish the main result of this sub-section. The following is a
more formal version of Theorem 2.

▶ Theorem 21. Let C be a polynomially simulatable circuit class. Suppose that there is
efficient non-trivial sampling with PH oracle for the succinct version of Dense − C − SAT.
Then NP does not have LOGTIME-uniform C-circuits of polynomial size.

Theorem 21 is very general in that there are no constraints on the circuit class C apart
from polynomial simulatability, and in particular we do not require any closure properties of
C. We immediately obtain the following corollaries. The first two corollaries concern frontier
questions in complexity theory, and the last two concern two of the central problems in the
area.

▶ Corollary 22. Suppose that for any d ∈ N there is efficient non-trivial sampling with PH
oracle for the succinct version of Dense − ACC0

d − SAT. Then NP does not have LOGTIME-
uniform ACC0-circuits of polynomial size.

▶ Corollary 23. Suppose that there is efficient non-trivial sampling with PH oracle for
the succinct version of Dense − TC0

2 − SAT. Then NP does not have LOGTIME-uniform
TC0

2-circuits of polynomial size.

▶ Corollary 24. Suppose that there is efficient non-trivial sampling with PH oracle for the
succinct version of Dense − Formula − SAT. Then NP ̸= NC1.

▶ Corollary 25. Suppose that there is efficient non-trivial sampling with PH oracle for the
succinct version of Dense − Circuit − SAT. Then NP ̸= P.

3.2 An Algorithmic Approach to Uniform Lower Bounds for PSPACE
Theorem 21 gives an algorithmic approach to showing uniform lower bounds for NP. It is
natural to ask if there is a similar algorithmic approach involving an easier algorithmic task
toward showing uniform lower bounds for larger classes such as PSPACE. We provide an
affirmative answer in this sub-section.

We begin by defining a space-efficient notion of sampling.

▶ Definition 26. Let C be a circuit class. We say that there is space-efficient non-trivial
sampling for Dense −C− SAT if for every k > 0 there is a d > 0 and a probabilistic algorithm
A such that for every b > 0, when A is given an instance C of Dense − C − SAT, where C is
of size m = nb on n variables, A has space and randomness complexity nd for some fixed
constant d, and outputs some fixed satisfying assignment y to C with probability at least
nk/2n.

We would like to show that space-efficient non-trivial sampling for Dense −C− SAT leads
to lower bounds for PSPACE against LOGSPACE-uniform C-circuits of polynomial size. A
natural strategy to achieve this is to define a new notion of probabilistic space-bounded
Kolmogorov complexity and work in analogy to Section 3.2. But in fact we can short-circuit
this process and adapt the argument in Section 3.2 more directly, while still working with
time-bounded Kolmogorov complexity. We simply exploit the fact that our argument works
by contradiction, and our initial assumption implies that PSPACE = P, which means that
the space-bounded and time-bounded notions of Kolmogorov complexity essentially coincide.

The following is a more formal version of Theorem 1 from the Introduction.
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▶ Theorem 27. Let C be a polynomially simulatable circuit class, and suppose that there
is space-efficient non-trivial sampling for Dense − C − SAT. Then PSPACE does not have
LOGSPACE-uniform C-circuits of polynomial size.

We immediately obtain the following corollary, which concerns a long-standing open
problem in complexity theory . Note that analogues of Corollaries 22, 23, 24 are known to
hold unconditionally for PSPACE by the space hierarchy theorem [51].

▶ Corollary 28. Suppose that there is space-efficient non-trivial sampling for Dense−Circuit−
SAT. Then PSPACE ̸= P.

There are a couple of differences in the hypothesis of Theorem 27 as compared to Theorem
21. The first is that the sampling algorithm isn’t given access to an oracle. However, this is an
insignificant difference. Given a space-efficient sampling algorithm access to a PSPACE oracle
doesn’t really increase its power, as PSPACE is closed under polynomial-space reductions.

The second is that the sampling algorithm is given the entire circuit as input rather
than a succinct representation of it. At first sight, this looks more like a hypothesis about a
white-box algorithm rather than about a restricted white-box algorithm. But in fact, the
hypothesis isn’t fully white box, as the sampling algorithm doesn’t have enough space to
simulate the input circuit in general. The input circuit can be of size an arbitrary polynomial
in n, while the sampling algorithm needs to run in space a fixed polynomial in n.

We could consider the succinct version of the sampling problem here too, and the
connection would still go through, just as in the proof of Theorem 21. This would yield
our desired conclusion under a weaker hypothesis, as space-efficient non-trivial sampling
implies space-efficient non-trivial sampling for the succinct version. Indeed, suppose we have
a space-efficient non-trivial sampling algorithm for the succinct version, where we are given a
circuit C of size at most n encoding a circuit C ′ on n variables for which we want to sample
a satisfying assignment. We could simulate any query to C ′ in the non-succinct version by
running C in the succinct version, which costs at most a fixed polynomial overhead in space.

Our reason for stating the weaker result here (by using a stronger hypothesis) is that in
some situations the stronger hypothesis seems more natural to attack, because it feels more
similar in flavour to the white-box version. Indeed, when we reprove versions of the space
hierarchy theorem using our approach in Section 5, we do establish the stronger hypothesis
for the circuit class of interest there.

An analogue of the stronger hypothesis could also be defined and considered in the setting
of uniform lower bounds for NP, but feels less achievable there, as it would involve solving the
sampling task without even reading the entire input circuit. This might still be possible for
weak circuit classes, such as depth-two circuits, but coming up with algorithmic approaches
to the hypothesis for stronger circuit classes might be hard. In contrast, when considering
the stronger hypothesis in the setting of uniform lower bounds for PSPACE, we are allowed to
read the entire input circuit, just not to use a large amount of space when trying to sample
from it.

An algorithmic approach to the problem of showing that Permanent is not in NC1 can be
developed along very similar lines to Theorem 21 and Theorem 27. Here Permanent is the
problem of computing the permanent of a Boolean matrix over the integers, encoded in a
standard way as a decision problem.

▶ Theorem 29. Let C be a polynomially simulatable circuit class that is closed under
projections. Suppose that there is efficient non-trivial sampling with CH oracle for the
succinct version of Dense − C − SAT. Then Permanent does not have LOGTIME-uniform
C-circuits of polynomial size.
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4 Soundness of the Approach

4.1 Solving the Algorithmic Tasks under Standard Cryptographic
Assumptions

As discussed, one of the most important criteria for an algorithmic approach to a lower
bound problem is that the approach should be sound, i.e., there should ideally be evidence
that the relevant algorithmic task is feasible. We begin by providing cryptographic evidence
that the algorithmic tasks discussed in Section 3 are feasible. The following is a more formal
version of Theorem 3.

▶ Theorem 30. Suppose there is an nω(1)-secure one-way function. Let C be any circuit
class that is polynomially simulatable. Then there is efficient non-trivial sampling for
Dense − C − SAT. Indeed, there is a probabilistic algorithm A which, given a C-circuit C of
size m = nb on n variables accepting at least 2/3 of its inputs, runs in time nd (where d is
independent of b) and outputs some fixed satisfying assignment of C with probability 2−no(1) .

Note that the algorithm A in the proof of Theorem 30 is oblivious: it does not consult its
input. Thus the standard cryptographic assumption of the existence of one-way functions
implies an oblivious solution to our algorithmic task, while we only require a constrained
white-box solution.

It turns out that if we are interested in a white-box solution to the algorithmic tasks that
is not constrained, i.e., the algorithm is not required to be efficient, then the task is indeed
solvable with non-trivial probability by a sampling argument.

▶ Theorem 31. Let C be any polynomially simulatable circuit class. For each k > 0 there is a
probabilistic algorithm A which, given a C-circuit Cof size poly(n) on n variables accepting at
least 2/3 fraction of its inputs, runs in time poly(n) and outputs a fixed satisfying assignment
y of C with probability at least nk/2n for large enough n ∈ N.

4.2 Necessity of the Approach
We have argued that our algorithmic approach is sound, but could it be that what we require
algorithmically is much stronger than what is needed? Next we show that under plausible
complexity-theoretic assumptions, a version of our algorithmic approach to lower bounds
for NP and PSPACE is in fact necessary. Specifically, we define a uniform version of our
algorithmic approach, where efficient non-trivial sampling is only required for each uniform
sequence of circuits, rather than for circuits given as input to an algorithm. We observe that
our proofs in Section 3 go through if the uniform version is feasible, and then show that
under our complexity assumptions, NP ̸= P and PSPACE ̸= P actually imply the feasibility
of the uniform versions of our assumptions.

We need a standard complexity-theoretic derandomization assumption, as well as an
additional assumption about NP-hardness of a meta-complexity problem in the case of
uniform lower bounds for NP. We discuss the case of uniform lower bounds for NP first, and
then move on to the case of uniform lower bounds for PSPACE. First we define a uniform
version of our algorithmic approach for NP.

▶ Definition 32. Let C be a circuit class. We say that there is efficient non-trivial sampling
for the uniform version of Dense − C − SAT if for every k > 0 and every LOGTIME-uniform
sequence {Cn} of C-circuits of size poly(n) on n variables such that Cn accepts at least 2/3
fraction of inputs of length n, there is a probabilistic algorithm A which, given input 1n, runs
in time nd (for some constant d independent of the exponent in the size of Cn) and outputs
some fixed satisfying assignment y to Cn with probability at least nk/2n.
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Next we require a standard derandomization result.

▶ Theorem 33 ([32]). Suppose E requires exponential-size Boolean circuits. Then BPP = P.

We need to define the meta-complexity problem MCSP and what it means for this problem
to be average-case hard and to be hard to approximate.

▶ Definition 34. Given a size function s : N → N where s(N) ⩽ N for each positive integer
N , we define the problem MCSP[s] as follows. YES instances of MCSP[s] are strings y of
length N where N = 2n for some integer n and fy has Boolean circuits of size at most s(N),
where fy is the Boolean function whose truth table is y.

We say that MCSP[s] is zero-error easy on average over the uniform distribution if there
is a deterministic polynomial-time algorithm which, given input y, always outputs 0, 1 or ’?’;
always correctly classifies y with respect to MCSP[s] when it outputs a Boolean value; and
outputs a non-’?’ value with probability at least 1/poly(N) over y ∼ {0, 1}N . We say that
MCSP[s] is zero-error hard on average over the uniform distribution if it is not zero-error
easy on average over the uniform distribution.

Given a function γ : N → N, we say that MCSP is γ-hard to approximate (resp. γ-hard
to approximate probabilistically) if there is no polynomial time algorithm (resp. probabilistic
polynomial time algorithm) solving the following promise problem Γ. ΓY ES consists of tuples
(y, 1s) such that y is the truth table of a function with Boolean circuits of size at most s.
ΓNO consists of tuples (y, 1s) such that y is the truth table of a function with no Boolean
circuits of size at most γ(|y|)s.

We say that it is NP-hard to γ-approximate MCSP if there is a polynomial-time reduction
from SAT to the promise problem Γ described above.

We will use the following approximation to average-case reduction of Hirahara [27].

▶ Theorem 35 ([27]). Suppose that MCSP is N1−ϵ-hard to approximate probabilistically for
each ϵ > 0. Then for each δ > 0, MCSP[Nδ] is zero-error average-case hard over the uniform
distribution.

Now we are ready to prove our result about necessity of the uniform version of our
algorithmic approach in the case of uniform lower bounds for NP.

▶ Theorem 36. Suppose that E requires exponential-size Boolean circuits, and moreover that
MCSP is NP-hard to N1−ϵ-approximate for each ϵ > 0. Then NP ̸= P iff there is efficient
non-trivial sampling for the uniform version of Dense − Circuit − SAT.

Given that the uniform version of the algorithmic approach suffices to show NP ̸= P,
one might ask why we do not highlight this version in Section 3. The reason is that this
algorithmic task is not very naturally defined, since it has a unary input and refers to a
uniform circuit family. We find the algorithmic tasks defined and studied in Section 3 more
natural, in that an arbitrary circuit from the class C is provided as input.

Next we tackle the generality question for our algorithmic approach to lower bounds for
PSPACE. We first define a uniform version of the algorithmic approach.

▶ Definition 37. Let C be a circuit class. We say that there is space-efficient non-trivial
sampling for the uniform version of Dense −C− SAT if for every k > 0 and every LOGTIME-
uniform sequence {Cn} of C-circuits of size poly(n) on n variables such that Cn accepts at
least 2/3 fraction of inputs of length n, there is a probabilistic algorithm A which, given input
1n, has space and randomness complexity at most nd (for some constant d independent of
the exponent in the size of Cn) and outputs some fixed satisfying assignment y to Cn with
probability at least nk/2n.
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We require the notion of KS complexity and the corresponding meta-complexity problem
MKSP.

▶ Definition 38. The KS complexity of a string x is defined as follows, relative to some
space-efficient universal Turing machine U . KS(x) is the minimum over |p| + s such that
U(p, ϵ) halts and outputs x using space at most s.

Given a function s : N → N, MKSP[s] is the set of strings x such that KS(x) ⩽ s(|x|).
We say that MCSP[s] is zero-error easy on average over the uniform distribution if there is
a deterministic polynomial-time algorithm which, given input y, always outputs 0, 1 or ’?’;
always correctly classifies y with respect to MCSP[s] when it outputs a Boolean value; and
outputs a non-’?’ value with probability at least 1/poly(n) over y ∼ {0, 1}n. We say that
MCSP[s] is zero-error hard on average over the uniform distribution if it is not zero-error
easy on average over the uniform distribution.

We will use the following result which establishes that MKSP is PSPACE-hard even on
average.

▶ Theorem 39 ([6]). If PSPACE ̸= BPP, then for each constant δ > 0, MKSP[nδ] is zero-error
hard on average under the uniform distribution.

Finally we are ready to show our result in the case of uniform lower bounds for PSPACE.

▶ Theorem 40. Suppose that E requires exponential-size Boolean circuits. Then PSPACE ̸= P
iff there is infinitely-often space-efficient non-trivial sampling for the uniform version of
Dense − Circuit − SAT.

As an easy corollary of Theorem 40, we derive an algorithmic characterization of PSPACE ̸=
P. We show that separating PSPACE and P, which is a lower bound question, is equivalent to
the existence of at least one of two kinds of algorithms: a sub-exponential time non-uniform
algorithm for E that works on infinitely many input lengths, or a space-efficient non-trivial
sampling algorithm for the unfiorm version of Dense − Circuit − SAT.

The following is a re-statement of Theorem 4.

▶ Corollary 41. PSPACE ̸= P iff E has circuits of size 2o(n) infinitely often or there is
infinitely-often space-efficient non-trivial sampling for the uniform version of Dense−Circuit−
SAT.

5 Feasibility of the Approach

In this section, we argue for the feasibility of our approach. We first show that uniform
versions of most super-polynomial circuit lower bounds for NP can be captured within
the framework, and then that some of the best-known uniform lower bounds proved using
diagonalization, such as the space hierarchy theorem and Allender’s lower bound for the
Permanent, can be reproved using our approach. Then we show how to prove a couple of
new lower bounds: NP does not have uniform polynomial-size AC0 circuits with a bottom
layer of Mod m gates, for any composite m, nor uniform polynomial-size AC0 circuits with a
bottom layer of threshold gates.

5.1 Capturing Known Lower Bounds
Complexity theorists have had success proving super-polynomial circuit lower bounds for
NP against a variety of weak circuit classes, such as AC0 and AC0[p] (for primes p). We
observe that the proofs of these lower bounds imply efficient non-trivial sampling for the
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corresponding circuit classes, and hence our framework applies. Of course our framework
only yields uniform lower bounds, which are weaker than the non-uniform lower bounds
already known for these classes. However our hope is that the framework might be useful
even for stronger circuit classes where non-uniform lower bounds in NP are not known, and
in order for this to be credible, the framework should at least apply in cases where lower
bounds are known.

We use the fact that super-polynomial size lower bounds for NP against AC0 and AC0[p]
yield cryptographic hitting set generators against these classes with non-trivial seed length.

▶ Theorem 42 ([41, 4, 19, 30]). There is a cryptographic hitting set generator with seed length
polylog(n) useful against AC0 and, for any prime p, a cryptographic hitting set generator
with seed length n −

√
n useful against AC0[p].

In fact the work of [41, 4, 19, 30] gives cryptographic pseudo-random generators rather
then just cryptographic hitting-set generators, but the weaker hitting property satisfies for
our application.

▶ Corollary 43. There is efficient non-trivial sampling for the succinct versions of Dense −
AC0 − SAT and Dense − AC0[p] − SAT.

The corollary follows from Theorem 42 by just sampling a random output of the generator,
which can be done in fixed polynomial time in n independent of the size of the circuit on
n bits for which we are solving the sampling problem. Note that by the hitting property,
at least one of the outputs of the generator will satisfy the circuit, and each such output
is sampled with probability 2−ℓ(n), where ℓ(n) is the seed length of the generator, which is
non-trivial by Theorem 42.

We next show that versions of some of the classical results on uniform lower bounds in the
literature, shown using direct or indirect diagonalization, can be shown using our framework.
First, we consider versions of the space hierarchy theorem.

▶ Theorem 44. Let C be the class of branching programs of polynomial size. There is
space-efficient non-trivial sampling for Dense − C − SAT.

▶ Corollary 45 ([51]). PSPACE ̸= LOGSPACE.

Corollary 45 follows from Theorem 44 by applying Theorem 27, since the class of branching
programs of polynomial size is polynomially simulatable.

We remark that the standard proof of the space hierarchy theorem is a fairly simple
direct diagonalization, so the proof of Corollary 45 does not have any advantage in terms of
simplicity. In addition, Corollary 45 does not give the tight parameters of the space hierarchy
theorem, i.e., separating space S from space S′ for any space-constructible bounds S, S′

where S = o(S′). The reason that Theorem 27 does not give the tight space hierarchy is that
tighter separations correspond to simulation of circuit classes C that are not known to be
polynomially simulatable, i.e., branching programs of super-polynomial size. However, the
tight space hierarchy can be recovered using the ideas of the proof of Theorem 27, by defining
and applying an appropriate space-bounded version of Kolmogorov complexity. We omit the
details, as we do not see how to obtain a new result on space hierarchies using these ideas.

Next, we show how to rederive Allender’s celebrated uniform lower bound for the Per-
manent using our approach [3]. To show the efficient non-trivial sampling required to derive
this lower bound, we need a lemma about the evaluation of succinctly described threshold
circuits. For convenience, we will work with Majority circuits instead, and then use the fact
that uniform depth d threshold circuits can be simulated by uniform depth d + 1 Majority
circuits.
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For any positive integer d, define the language Succinct-Maj0d-Eval to be the set of pairs
< C, x >, where C is a Majd circuit of size n encoding a Majd circuit C ′ on n variables, and
x is an input of length n, satisfying the condition that C ′(x) = 1.

▶ Lemma 46. Let d be any positive integer. Succinct-Majd-Eval is in CH.

▶ Theorem 47. Let d be any positive integer.There is efficient non-trivial sampling with CH
oracle for the succinct version of Dense − Majd − SAT.

▶ Corollary 48 ([3]). Permanent does not have LOGTIME-uniform TC0 circuits of polynomial
size.

We explain briefly how the proofs of Corollary 45 and Corollary 48 differ from the
standard proofs. The standard proof of the space hierarchy [51] combines two ingredients: (i)
The existence of a space-efficient universal Turing machine U that can simulate any Turing
machine M with at most a constant factor overhead in space, and (ii) The idea of directly
diagonalizing against all Turing machines operating in a given space bound by mapping
inputs x to Turing machines Mx in a surjective way and doing the opposite of Mx on x. The
proof of Corollary 45 replaces the simulation ingredient (i) with the existence of a non-trivial
space-efficient sampling algorithm, and the direct diagonalization part (ii) with a different
diagonalization argument based on resource-bounded Kolmogorov complexity.

The standard proof of Allender’s lower bound [3] is an indirect diagonalization argument
with the following parts: (i) A time hierarchy theorem for threshold Turing machines proved
in an analogous way to the space hierarchy theorem, with a simulation step and a direct
diagonalization step, and (ii) An inductive argument showing that if the Permanent has small
uniform threshold circuits, so does every level of the counting hierarchy; then combining (i)
and (ii) to derive a contradiction. The proof of Corollary 48 still uses the ingredient (ii), but
replaces the simulation step of (i) with a sampling step, and the direct diagonalition step
with a diagonalization argument based on resource-bounded Kolmogorov complexity.

The broader point we wish to make is that our framework is capable of capturing both
direct and indirect diagonalization arguments, since the sampling condition we require seems
weaker than the simulation conditions in previous diagonalization arguments, and hence
potentially capable of proving a broader class of lower bounds. This is related to Theorem 31,
which shows that efficient non-trivial sampling exists unconditionally in a white box setting.

5.2 New Lower Bounds
Ideally, we would like to be able to use our new approach to attack frontier open problems
in uniform circuit lower bounds, such as separating NP from LOGTIME-uniform ACC0 and
separating NP from LOGTIME-uniform TC0

2. While we are unable to do this, we are able to
show lower bounds in NP against interesting subclasses of these circuit classes, namely against
LOGTIME-uniform AC0 circuits with Modm gates at the bottom (for an arbitrary positive
integer m), and against LOGTIME-uniform AC0 circuits with Thr gates at the bottom. To
show lower bounds in NP against the non-uniform versions of these classes is a longstanding
open problem (though we do know lower bounds in NQP [59, 40]), and to the best of our
knowledge, lower bounds in NP against the uniform versions have also been open so far.

▶ Theorem 49. Let d, m be any positive integers. NP does not have polynomial-size
LOGTIME-uniform AC0

d ◦ (Modm) circuits.

Examining the proof of Theorem 49, the only fact we used about the bottom layer of
gates is that they can be evaluated in fixed polynomial time in n. Hence the same proof also
gives the following result.
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▶ Theorem 50. Let d be any positive integer. NP does not have polynomial-size LOGTIME-
uniform AC0

d ◦ Thr circuits.

Theorems 49 and 50 above together capture the content of Theorem 5 from the Introduc-
tion.

We note that the simulation arguments used for the non-trivial sampling in the proofs of
Theorem 49 and Theorem 50 are fairly generic. This leads us to believe that there might be
alternate proofs of these results using a more standard indirect diagonalization approach.
However, these results already seem new, and exploiting the fact that we only need sampling
rather than simulation to apply Theorem 21 might lead to even stronger lower bounds.

6 Future Work

We describe here some directions for future work.
The main direction is to develop new algorithmic ideas for the sampling problems we

consider, and use these to prove new lower bounds. In particular, it would be interesting
to explore if the ideas and techniques of [8] and [53] are useful here. A particular circuit
class of interest is the class of quasi-polynomial size SY M+ circuits, i.e., depth-two circuits
with a top symmetric gate and polylogarithmic fan-in AND gates at the bottom. Efficient
non-trivial sampling for the succinct version of this class would imply that NP does not have
LOGTIME-uniform ACC0 circuits of polynomial size.

Another question is whether there is an analogous approach to separating NP and PSPACE
from probabilistic uniform classes. For example, are there natural sampling tasks or similar
tasks such that efficient solutions imply NP ̸⊆ BPP?

While we provide one potential algorithmic approach to uniform lower bounds, there
might be others. It would be interesting to look into this, especially if these other approaches
are more feasible with the algorithmic techniques we have at present.
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