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Abstract
Recent work has shown that many of the standard TFNP classes – such as PLS, PPADS, PPAD,
SOPL, and EOPL – have corresponding proof systems in propositional proof complexity, in the sense
that a total search problem is in the class if and only if the totality of the problem can be efficiently
proved by the corresponding proof system. We build on this line of work by studying coloured
variants of these TFNP classes: C-PLS, C-PPADS, C-PPAD, C-SOPL, and C-EOPL. While C-PLS
has been studied in the literature before, the coloured variants of the other classes are introduced
here for the first time. We give a family of results showing that these coloured TFNP classes are
natural objects of study, and that the correspondence between TFNP and natural propositional proof
systems is not an exceptional phenomenon isolated to weak TFNP classes. Namely, we show that:

Each of the classes C-PLS, C-PPADS, and C-SOPL have corresponding proof systems character-
izing them. Specifically, the proof systems for these classes are obtained by adding depth to the
formulas in the corresponding proof system for the uncoloured class. For instance, while it was
previously known that PLS is characterized by bounded-width Resolution (i.e. depth 0.5 Frege),
we prove that C-PLS is characterized by depth-1.5 Frege (Res(polylog(n))).
The classes C-PPAD and C-EOPL coincide exactly with the uncoloured classes PPADS and
SOPL, respectively. Thus, both of these classes also have corresponding proof systems: unary
Sherali-Adams and Reversible Resolution, respectively.
Finally, we prove a coloured intersection theorem for the coloured sink classes, showing C-PLS ∩
C-PPADS = C-SOPL, generalizing the intersection theorem PLS ∩ PPADS = SOPL. However,
while it is known in the uncoloured world that PLS ∩ PPAD = EOPL = CLS, we prove that this
equality fails in the coloured world in the black-box setting. More precisely, we show that there
is an oracle O such that C-PLSO ∩ C-PPADO ⊋ C-EOPLO.

To prove our results, we introduce an abstract multivalued proof system – the Blockwise Calculus –
which may be of independent interest.
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1 Introduction

1.1 Introduction to TFNP and Proof Complexity
This work continues a recent line of research relating the theory of total NP search problems
[22, 27] to the theory of propositional proof complexity.1 A total NP search problem is a
search problem S satisfying:

1 This paper is an extended abstract. Please see the full version at https://eccc.weizmann.ac.il/
report/2023/068/.
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36:2 Colourful TFNP and Propositional Proofs

Totality. On every input x, some solution y with |y| ≤ |x|O(1) is guaranteed to exist.
Efficient Certification. Checking if y is a valid solution for x is polynomial-time
computable.

The class TFNP contains all such search problems, and many important computational
problems lie inside of this class – such as the problem of computing a Nash equilibrium of a
bimatrix game, or the problem of computing a prime factor of a given number.

Since the initial study of TFNP it has been known that no problem in TFNP can be
NP-Hard unless NP = coNP [26]. As a result, in order to understand the internal structure
of TFNP, researchers have defined subclasses of TFNP based on polynomial-time reducibility
to fixed total search problems [27]. For example, some of the most well-studied subclasses of
TFNP can be defined by reductions to the following problems:

PLS. Given a directed acyclic graph, output a sink node.
PPAD. Given a directed graph with an unbalanced node (in-degree ̸= out-degree), output
another unbalanced node.
PPADS. Given a directed graph with a negatively unbalanced node (in-degree < out-
degree), output a positively unbalanced node (in-degree > out-degree).

The theory of TFNP has been an extraordinary success in capturing the complexity of
many computational problems that have avoided classification in other settings. For example,
the class PPAD captures the complexity of computing a Nash Equilibrium [15] along with
other important problems in economics [13, 11, 12].

Black-Box TFNP Classes and Propositional Proof Systems

An important caveat in the definitions of the above classes is in the input representation. It is
clear that all of the above problems are computationally easy (i.e. inside of P), if we are given
the directed graphs in some standard encoding like an adjacency list or an adjacency matrix.
Instead, in the definitions of the TFNP classes we assume that the inputs are given implicitly.
For instance, we can represent an (exponentially large) O(1)-degree directed graph G by a
polynomial-size boolean circuit C that, when given a node u ∈ V (G) as input, outputs the
list of in- and out-neighbours of u. When described in this implicit encoding, we can no
longer exhaustively search through the graph to find a solution to the search problem, but,
when given a potential solution we can still verify its correctness in polynomial time.

Another natural way of implicitly representing an input to a total search problem is
by using black-box (also called query) access, where the input is represented by an oracle.
Following the earlier example, now the graph G would be represented by an oracle which
receives a node u ∈ V (G) as input and outputs the list of neighbours of u. For now,
we informally define TFNPdt as the class of total search problems where the inputs are
represented as black-boxes in this way. The seminal work of Beame et al. [3] demonstrated
that this model is closely related to oracle separations between the standard TFNP classes.
In particular, if we have two black-box TFNP subclasses Adt and Bdt, then a containment
Adt ⊆ Bdt by a sufficiently uniform simulation implies that A ⊆ B – since we can always
simulate the black-box by evaluating the circuit – but if Adt ̸⊆ Bdt then there is an oracle O

such that AO ̸⊆ BO [3]. Beame et al. [3] used this strategy to construct oracle separations
between many pairs of TFNP classes that were not previously separated.

Another major contribution of Beame et al. [3] was pioneering the use of propositional
proof complexity in the study of TFNP classes. They showed that if a total search problem S

lies in the (black-box) class PPAdt ⊆ TFNPdt, then a particular unsatisfiable CNF formula
FS associated with S has efficient refutations in the well-studied algebraic Nullstellensatz
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proof system. By combining this with a lower bound against Nullstellensatz proofs refuting
the pigeonhole principle Phpn+1

n they provided the first oracle separation between the classes
PPPO and PPAO. Proof complexity was also employed as a crucial tool by Buresh-Oppenheim
and Morioka [8], who used it to unify previous oracle separations in black-box TFNP and
also provide new results about the class PLSdt.

Very recently, the relationships between TFNPdt subclasses and propositional proof
systems have been revisited [10, 21, 20, 9]. One surprising outcome of the emerging work is
that: not only can proof complexity lower bounds be used to construct oracle separations (as
in [3]) but, proof complexity lower bounds in fact turn out to be equivalent to these oracle
separations! More formally, for many of the most well-studied TFNP classes A (e.g. A = PLS,
PPAD, PPADS, CLS = EOPL, SOPL), there is a corresponding propositional proof system
PA such that the following relationship holds:

A total search problem S lies in the class Adt

if and only if
The propositional encoding of the totality of S can be efficiently proved in PA.

These new equivalences led to a number of new results in both the theory of propositional
proof complexity and the theory of TFNP. In the theory of TFNP, for example, for each of
the classes listed above, such propositional proof systems not only exist, but they are natural
proof systems that have been well-studied in the proof complexity literature (cf. Figure 1).
In [20] these new equivalences led to the proofs of oracle separations between the TFNP classes
PLS and PPP as well as between UEOPL and EOPL, finally resolving all oracle separations
between the classical TFNP classes. On the other hand, the breakthrough collapse CLS =
PLS ∩ PPAD [16] and its followups EOPL = PLS ∩ PPAD and SOPL = PLS ∩ PPADS [19] led
to brand-new intersection theorems in proof complexity. In particular, there are natural
proof systems – P1, P2, P3 – such that a formula F has an efficient proof in P1 if and only
if F has efficient proofs in P2 and efficient proofs in P3. This is illustrated by the work
of [20], which showed that the proof system Reversible Resolution – which is closely related
to Max-SAT solving – is the intersection of the classical Resolution proof system and the
Sherali-Adams proof system. Section 2 outlines the formal definitions of these proof systems.

Next Steps

In light of these results a number of open problems – both concrete and conceptual – remain,
namely:

Do all TFNP subclasses defined by a syntactic existence principle admit a characterization
by a natural proof system? The recent work of Buss, Fleming, and Impagliazzo [9]
constructs a Cook-Reckhow proof system for every black-box TFNP class, but, it is not
clear if these proof systems are equivalent to standard systems occurring in the literature.
If the above is not true, what is special about these “weak” TFNP classes that do admit
characterizations by proof systems?
Are the intersection theorems CLS = EOPL = PLS ∩ PPAD and SOPL = PLS ∩ PPADS a
unique phenomenon, or do other instances of intersection theorems exist? If so, do they
imply other intersection results for proof complexity?
Do other well-studied TFNP classes not depicted above that correspond to natural proof
systems? (Note that many other well-studied TFNP subclasses – such as the classes
PPP and UEOPL – and other classes corresponding to the weak pigeonhole principle
or Ramsey’s theorem are currently not known to admit nice characterizations by proof
systems).

CCC 2023
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FP

UEOPL

EOPL

SOPL PPAD

PPADS

PLS PPP PPA

TFNP

Tree Resolution ∼=

Resolution ∼= ∼= F2-NS

unary SA ∼=

∼= unary Z-NSReversible Resolution ∼=

Reversible Resolution with Terminals ∼=

Figure 1 Class inclusion diagram for TFNP. An arrow A → B means A ⊆ B relative to all oracles.
In the black-box model some classes can be captured using propositional proof systems, as indicated
in blue. Above SA refers to the Sherali-Adams proof system [29], NS refers to the Nullstellensatz
proof system [4], and “unary” refers to the fact that we measure size by the sum of all coefficients
occurring in the proof.

1.2 Our Results
In this paper we introduce a new family of TFNP classes and demonstrate that they have
natural corresponding propositional proof systems. Specifically, we consider a systematic
way to generalize the TFNP classes PLS, PPAD, PPADS, EOPL, SOPL, obtaining their
coloured generalizations C-PLS, C-PPAD, C-PPADS, C-EOPL, and C-SOPL. The formulas
embodying the class C-PLS have previously been studied in proof complexity and bounded
arithmetic, particularly in connection with witnessing theorems for the bounded arithmetic
theory T 2

2 [24, 31]. For the other classes, however, the coloured variants are introduced and
systematically studied here for the first time to the best of our knowledge. Before we discuss
our results for these coloured classes, let us first describe to generalize a TFNP class to its
coloured variant.

From Uncoloured to Coloured TFNP Classes

The key shared property between the classes PLS, PPADS, PPAD, EOPL, SOPL is the
following: the input to each of these problems is a directed graph – enforced to be acyclic2

in the case of PLS, EOPL, and SOPL – having distinguished source node s with at least one

2 We can enforce acyclicity by adding in a decreasing potential function on the nodes of the graph, and
requiring that edges must point from nodes of higher potential to nodes of lower potential.
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outgoing edge. The goal of the search problem is to either output a proper sink node in
the input graph (i.e. a sink node with at least one in-neighbour) or, in the case of PPAD
and EOPL, one can also output a proper source node (i.e. a source node with at least one
out-neighbour) other than the distinguished one3.

In the coloured generalization of these problems, we receive a list of n colours Cu ⊆ [n]
for each node u ∈ V (G) along with the directed graph G as input, and the solutions are
updated as follows:

Any proper source node with a colour is a solution,
Any sink node with no colour (i.e. if Cu = ∅) is a solution, and
A node u with an out-neighbour v is a solution if there is a colour λ ∈ Cv such that
λ ̸∈ Cu.

To state the totality as an unsatisfiable system of constraints: the graph G has at least
one proper source, all proper sources are colourless, all sinks have at least one colour, and
colours propagate backwards across directed edges – if a node u has v as an out-neighbour
then Cv ⊆ Cu. All of these constraints are obviously testable in polynomial time, with the
possible exception of testing for a colourless sink. For this, we require that if a node is a sink
node, then there is a polynomial-time function that points to some colour that is present
at that sink. Note that knowing only the identity of a node, it is no longer simple to test
whether it is colourless. This is unlike the analogous and easily-testable property in the
uncoloured problems that a node has a successor, giving some intuition for the increased
difficulty of the coloured problems. See Figure 2 for the hierarchy of these coloured problems
and how they relate to classical TFNP classes, and Section 2.2 for formal definitions.

Statement of Results

Before stating our main results we require some formal definitions. A query total search
problem is a sequence of relations Rn ⊆ {0, 1}n × On, one for each n ∈ N, such that
∀x ∈ {0, 1}n∃o ∈ On : (x, o) ∈ Rn. We think of x as being provided to us via query access
to its individual bits, and so an “efficient” algorithm would intuitively be provided by a
polylog(n)-depth decision tree solving the search problem. The search problem R = (Rn)n is
in TFNPdt if, for each o ∈ On, there is a polylog(n)-depth decision tree To such that To(x) = 1
iff (x, o) ∈ Rn. Furthermore, given a search problem R, we can define a corresponding
subclass of TFNPdt, denoted Rdt, obtained by taking all query total search problems that
have low-depth decision-tree reductions to R (see Section 2.2 for the formal definition of a
reduction in this model).

The canonical examples of total search problems in TFNPdt come from low-width unsat-
isfiable CNF formulas. Any unsatisfiable CNF formula F = C1 ∧ · · · ∧ Cm over variables
x1, . . . , xn yields a closely related total search problem S(F ) ⊆ {0, 1}n × [m]: given an assign-
ment x to the variables of F , output the index of a falsified clause of F (x). Given a sequence
of unsatisfiable CNF formulas F = (Fn)n, the search problem S(F ) := (S(Fn))n ∈ TFNPdt

if and only if the width of (some unsatisfiable subformula of) F is polylog(n). Conversely,
given any total search problem Rn ⊆ {0, 1}n × On we can define the unsatisfiable CNF
formula

∧
o∈On

¬To, where ¬To is the encoding of the negation of the decision tree To as a
CNF formula. It is easy to see that a query-efficient algorithm for Rn exists iff one exists
for S(

∧
o∈On

¬To), and thus we can focus on search problems of the form S(F ) ∈ TFNPdt

without loss of generality.

3 For the interested reader, we note that this similarity was identified and formalized as a general Grid
search problem in [19].

CCC 2023
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C-EOPL = SOPL

PLS C-SOPL ∩ C-PPAD

C-SOPL C-PPAD = PPADS

C-PPADSC-PLS

TFNP

Resolution ∼=

Res(logO(1) n) ∼= ∼= Circular Res(logO(1) n)

∼= unary SAReversible Res(logO(1) n) ∼=

Reversible Resolution ∼=

Figure 2 The coloured TFNP classes and the corresponding proof systems considered in this
paper. A solid line from A to B indicates that A is contained in B relative to every oracle, while a
red dashed line means A is not contained in B relative to some oracle.

Given these definitions we can state our main results, summarized in Figure 2. First, we
show that every coloured class defined above has an equivalent propositional proof system.
Moreover, these proof systems are closely related to the proof systems for the uncoloured
variants. Given a black-box TFNP class Adt and a proof system P , we write Adt ∼= P if the
following holds: for every sequence of unsatisfiable CNFs F = (Fn)n ∈ TFNPdt, S(F ) ∈ Adt

if and only if there is a npolylog(n)-size, polylog(n)-degree refutation of Fn in P .

▶ Theorem 1.1. The following equivalences between TFNPdt classes and proof systems hold:
C-PLSdt ∼= Res(polylog(n)),
C-PPADSdt ∼= CircRes(polylog(n)),
C-SOPLdt ∼= RevRes(polylog(n)).

In the above theorem, Res(polylog(n)) is the extension of Resolution to DNF formulas with
polylog(n)-width conjunctions on the bottom level (see e.g. [23, 28, 1, 18]). The system Res(n)
is equivalent to depth-2 Frege, and thus Res(polylog(n)) sits between Resolution and depth-2
Frege in power. The Reversible Res(polylog(n)) system (denoted RevRes(polylog(n))) is the
natural extension of reversible Resolution to DNF formulas. The Circular Res(polylog(n))
system is exactly the higher-depth analogue of Sherali-Adams which is allowed to “operate”
on DNF formulas. It is obtained by augmenting the RevRes(polylog(n)) system with a new
rule that allows us to introduce any DNF formula D for free, as long as we (eventually)
derive a copy of D later in the proof to make up for the introduced copy. This notion of
a “circular, yet sound” proof was introduced by [2] in the setting of Resolution, where it
was observed that Circular Resolution is exactly the same as Sherali-Adams. It is quite
remarkable that augmenting the three TFNP classes PLS, PPADS, and SOPL with colours
yields new natural classes whose corresponding proof systems are simply the proof systems
for the uncoloured class where the lines have one greater depth!

Our second main result deals with the coloured “source-or-sink” classes C-PPAD and
C-EOPL. Here, we show an a-priori unexpected collapse actually occurs: the coloured
source-or-sink classes are exactly the same as the uncoloured sink classes. Consequentially,
we obtain propositional proof systems equivalent to these TFNPdt classes by relying on earlier
work [20].
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▶ Theorem 1.2. The collapses C-EOPL = SOPL and C-PPAD = PPADS hold. As a con-
sequence, C-EOPLdt ∼= Reversible Resolution and C-PPADdt ∼= Unary Sherali-Adams.

In order to prove the above collapses between TFNP classes, we actually proceed entirely
through proof complexity. That is, we exploit the prior results SOPLdt ∼= RevRes, as well as
PPADSdt ∼= uSA [20], and give refutations of the defining principles of C-EOPL and C-PPAD
in the corresponding proof systems. By applying the known characterization results we then
obtain the collapses between these TFNP classes immediately. While we do not see how to
prove these collapses directly in the language of TFNP, this only further necessitates studying
the relationship between the two areas.

Our third major result is a generalization of the intersection theorem SOPL = PLS∩PPADS
to the coloured setting. This proves, as an immediate consequence, that the proof system
RevRes(k) is the “intersection” of Res(k) and CircRes(k).

▶ Theorem 1.3. C-SOPLdt = C-PLSdt ∩ C-PPADSdt.

▶ Corollary 1.4. For any polylog(n)-width CNF formula F on n variables, there is a npolylog(n)-
size RevRes(polylog(n)) refutation of F if and only if there is a npolylog(n)-size Res(polylog(n))
refutation of F and a npolylog(n)-size CircRes(polylog(n)) refutation of F .

Finally, and quite surprisingly, we show that the intersection theorem C-EOPL = C-PLS ∩
C-PPAD actually fails relative to an oracle. In other words, there is an oracle O such that
C-EOPLO ̸= C-PLSO ∩ C-PPADO.

▶ Theorem 1.5. C-EOPLdt ⊊ C-PLSdt ∩ C-PPADdt, or, equivalently SOPLdt ⊊ C-PLSdt ∩
PPADSdt.

We show this theorem as follows. Since C-EOPLdt = SOPLdt ⊆ PLSdt, the intersection
theorem would imply that

C-PLSdt ∩ C-PPADdt = C-PLSdt ∩ PPADSdt ⊆ PLSdt.

However, we can actually show the (even stronger) separation that C-SOPLdt ∩ PPADSdt ̸⊆
PLSdt. The fact that PPADSdt ̸⊆ PLSdt follows from [20], and we can prove directly that
C-SOPLdt ̸⊆ PLSdt. We then show that for PLSdt, one can combine the adversary arguments
from the previous two separations to create an adversary for PPADSdt ∩ C-SOPLdt. The
combination of adversaries holds generically, and shows that PLSdt is itself not a non-trivial
intersection class (we discuss this more in the full version of the paper.) Taken together, our
results paint a intriguing picture for how the coloured TFNP classes relate to the uncoloured
classes.

The Blockwise Calculus

The results that we prove in this paper have the unfortunate property of becoming quite proof-
theoretically technical when trying to proceed directly. Our primary technical innovation
– when compared to the recent work between TFNP and proof complexity – is the use of
multivalued logic to simplify these arugments. In particular, we found it useful to abstract
out a generalized calculus – called the Blockwise Calculus – in which to implement our
proofs. One can think of the Blockwise Calculus as the natural extension of the Resolution
proof system to multivalued variables. In Section 3 we define the Blockwise Calculus and its
Reversible and Circular variants, as well as discuss its basic properties. In particular, we
show how to translate refutations in the Blockwise Calculus and its variants automatically
into refutations in Resolution, Res(k), and their variants.

CCC 2023
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Open Problems

In general this work suggests that further investigation of the connection between TFNP
subclasses and propositional proof complexity is an avenue ripe for exploration.

As previously outlined, Atserias and Lauria showed that Sherali-Adams is polynomially
equivalent to the Circular Resolution proof system [2]. Is there an analogue of this
result for Circular Res(k)? That is, is there a natural semi-algebraic proof system that
generalizes Sherali-Adams and is polynomially equivalent to Circular Res(k)?
It was recently shown that Resolution does not polynomially-simulate unary Sherali-Adams
and vice-versa [20]. Can we prove similar separations between Res(k) and CircRes(k)?
Note that one direction of this separation is already known: Res(k) cannot simulate
CircRes(k) as the retraction Pigeonhole Principle is easy for CircRes(k) [14] but hard for
Res(k) [28].
What combinatorial principles capture even higher-depth proof systems? We note that
some principles (e.g. the Game Induction principles) are known using translations from
bounded arithmetic [5, 30].

Paper Organization

The rest of the paper proceeds as follows. In Section 2 we introduce the formal definitions
of the propositional proof systems and TFNP subclasses that we consider. In Section 3 we
define the Blockwise Calculus and its variants, as well as prove our main technical theorems
relating the Blockwise Calculus to the boolean proof systems introduced in Section 2. We
refer to the full version of the paper for proofs of our new containment and separation results,
respectively.

2 TFNP Classes and Propositional Proof Systems

2.1 Propositional Proof Systems
In this section we recall the definitions of some of the standard proof systems considered in
this paper. First, we recall the simplest proof system, Resolution, and its variant Reversible
Resolution [20]. The Reversible Resolution variant (and, in particular, the “reversible” rules
presented below) were first introduced in the context of MaxSAT solving [7, 25, 17].

▶ Definition 2.1. Let F be a CNF formula and let C be a clause. A Resolution proof of C

from F is given by a sequence of clauses C1, C2, . . . , Cs = C where the sequence is generated
as follows. Starting from the empty sequence we either choose a clause from F to append to
the sequence, or, we choose earlier clauses in the sequence and apply one of the proof rules
depicted below to generate new clauses to append to the sequence.

C ∨ ℓ C ∨ ℓ
C

(Resolution)
C

C ∨ ℓ C ∨ ℓ
(Reverse Resolution)

The proof is a refutation if C = ⊥. The length of the proof is s, the number of clauses, and
the width of the proof is the size of the widest clause in the proof. Finally, the proof is a
Reversible Resolution proof if every clause is used as the hypothesis of at most one proof rule.

We will also use Sherali-Adams proofs, which are one of the basic semi-algebraic proof
systems studied in the literature. In particular we need its unary variant.
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▶ Definition 2.2. If C =
∧

i∈S xi ∨
∧

j∈T xj is a conjunction then we let p(C) :=∏
i∈S xi

∏
j∈T (1 − xj) denote the encoding of C as a real polynomial. A conical junta

is a non-negative combination of conjunctions
∑

λ λp(C) where all coefficients are positive
integers. A Sherali-Adams refutation of a CNF formula F = C1 ∧ · · · ∧ Cm is given by a set
of polynomials p1, ..., pm and a conical junta J such that:

m∑
i=1

pi · p(Ci) + J = −1,

where all polynomial arithmetic is performed modulo the ideal generated by ⟨x2
i − xi⟩n

i=1. The
unary size of the refutation is the sum of all coefficients of all monomials in the expression
above (after expansion), and the degree of the proof is the maximum degree of any monomial
in the expanded expression above. We write uSA to denote the Sherali-Adams system where
we measure size by unary size.

The main focus of the present work is the higher-depth analogue of Resolution, known as
Res(k), which operates on low-width DNF formulas. We consider three different variants
of the Res(k) system (the standard, reversible, and circular variants), and for the sake of
uniformity define them all using the same proof rules (cf. Figure 3).

∧-Introduction D ∨ A D ∨ B
D ∨ (A ∧ B) D ∨ A ∨ B

Cut D ∨ A D ∨ A
D

Reverse Cut D

D ∨ A D ∨ A
Axiom Introduction

ℓ ∨ ℓ

Figure 3 The Res(k) Proof Rules. Above D is any DNF formula, A is a conjunction of boolean
literals, ℓ is a boolean literal, and we use the convention that A =

∨
ℓ∈A

ℓ.

▶ Definition 2.3. Let F be a CNF formula, let G be a DNF formula, and let k be a positive
integer. A Res(k) proof of G from F is a sequence of k-DNF formulas D1, ..., Ds = G where
the sequence is generated as follows: starting from the empty sequence we either choose a
clause from F to append to the sequence (interpreted as a width-1 DNF), or, we choose
earlier DNFs in the sequence and apply any Res(k)-proof rule (cf. Figure 3) to generate new
DNFs and append them to the sequence. The proof is a refutation of F if G = ⊥, the empty
disjunction. The size of the proof is

∑s
i=1 |Di|, where |Di| represents the size of each DNF.

The proof is reversible (or a RevRes(k) proof) if every DNF is used as a hypothesis of at
most one proof rule.

We now define Unary Circular Res(k) (or uCircRes(k)) proofs, which are a generalization
of Res(k) in which the proofs can have cycles. As discussed in the introduction this is the
higher-depth analogue of Sherali-Adams [6]. To define it we must introduce one additional
proof rule called DNF Creation, defined next, that allows to create any DNF D in one proof
step. While this rule is (obviously) not sound by itself, it turns out that one can make a
sound proof system as long as we require that the proof eventually derives at least as many
copies of D from other proof rules than were created by using the DNF Creation rule, and
strictly more if D is the clause we wish to prove (cf. [2]).

(DNF Creation)
D

CCC 2023
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▶ Definition 2.4. Let F be a CNF formula. A Unary Circular Res(k) proof of a DNF G

from F is a sequence of DNFs D1, D2, . . . , Ds = G that is generated as follows: starting
from the empty sequence we either choose a clause C from F and append it to the sequence,
we apply the DNF Creation rule to generate a new DNF and add it to the list, or we choose
earlier DNFs in the sequence and apply a Res(k) proof rule to generate new DNFs and append
them to the sequence. In addition, we make the following stipulations: each DNF Di in the
sequence is used as the hypothesis of at most one Res(k) rule, and every DNF D appearing
in the proof is derived as the output of some proof rule at least as many times as it is created
using DNF Creation, except the conclusion G which must be derived strictly more times than
it is created with DNF-Creation. The size of the proof is

∑s
i=1 |Di|. If G = ⊥ then we call

this a uCircRes(k) refutation of F .

Both Res(k) and CircRes(k) can efficiently simulate RevRes(k), since RevRes(k) is a
restriction of both systems – of the first system because of the fanout restriction, and of the
second system because of its inability to apply DNF Creation.

2.2 Search classes
In this section we define the relevant background for TFNP. We follow the treatment of
black-box TFNP used by [20].

▶ Definition 2.5. A total (query) search problem is a sequence of relations R = {Rn ⊆
{0, 1}n × On}, where On are finite sets, such that for all x ∈ {0, 1}n there is an o ∈ On so
that (x, o) ∈ Rn. A total search problem R is in TFNPdt if for each o ∈ On there is a decision
tree To with depth poly(log n) such that for every x ∈ {0, 1}n, To(x) = 1 iff (x, o) ∈ R.

As discussed in the introduction the canonical problems in TFNPdt are the false clause
search problems associated with an unsatisfiable polylog(n)-width CNF formula F = C1 ∧
· · · ∧ Cm defined as S(F ) ⊆ {0, 1}n × [m] with (x, i) ∈ S(F ) iff Ci(x) = 0. Every problem in
TFNPdt is equivalent to S(F ) for some polylog(n)-width CNF formula.

▶ Definition 2.6. Let R ⊆ {0, 1}n × O and S ⊆ {0, 1}m × O′ be total search problems. An
S-formulation of R is a decision-tree reduction (fi, go)i∈[m],o∈O′ from R to S. Formally, for
each i ∈ [m] and o ∈ O′ there are functions fi : {0, 1}n → {0, 1} and go : {0, 1}n → O such
that

(x, go(x)) ∈ R ⇐= (f(x), o) ∈ S

where f(x) ∈ {0, 1}m is the string whose i-th bit is fi(x). The depth of the reduction is

d := max
(
{D(fi) : i ∈ [m]} ∪ {D(go) : o ∈ O′}

)
,

where D(h) denotes the decision-tree depth of h. The size of the reduction is m, the number
of input bits to S. The complexity of the reduction is log m + d. We write Sdt(R) to denote
the minimum complexity of an S-formulation of R.

We extend these notations to sequences in the natural way. If R is a single search problem
and S = (Sm) is a sequence of search problems, then we denote by Sdt(R) the minimum of
Sdt

m(R) over all m. If R = (Rn) is also a sequence, then we denote by Sdt(R) the function
n 7→ Sdt(Rn).

Using the previous definition we can now define complexity classes of total search problems
via reductions. For total search problems R = (Rn), S = (Sn), we write

Sdt := {R : Sdt(R) = polylog(n)}.
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Coloured TFNP Classes

With the definition of reductions established, we can define the search problems characterizing
our coloured TFNP classes. We define the notation [n]0 := [n] ∪ {0}.

▶ Definition 2.7 (Coloured Sink-of-Dag). C-SoDn is a total search problem defined on an
n × n grid of nodes, where (1, 1) is a special distinguished node. As input, we receive the
following parameters for each node (i, j) ∈ [n] × [n]:

An index si,j ∈ [n]0, indicating that the successor of (i, j) is (i + 1, si,j), or if si,j = 0,
that (i, j) is a leaf.
An indicator ci,j,λ ∈ {0, 1} ∀λ ∈ [n], indicating the presence of colours at each grid node
An index ei,j ∈ [n], indexing a colour at each node

Here the index ei,j is used to ensure that sinks can be efficiently verified to have a colour.
Any node on the final layer or any node with successor 0 is called a leaf and the node

(1, 1) is called the distinguished source. If the set of colours at each node contains the set of
colours at its successor node, and there is at least one colour at each leaf, then clearly there
must be at least one colour at the source node. The goal of the search problem is to find a
witness of this fact. Formally, a solution to the C-SoDn search problem is

((i, j), λ) if si,j = k, ci+1,k,λ = 1, and ci,j,λ = 0 for some k. (colour propagation)
((1, 1), λ) if c1,1,λ = 1 (distinguished source should be colourless)
((i, j), λ) if (i, j) is a leaf, ei,j = λ, and ci,j,λ = 0 (sinks should have a colour)

▶ Definition 2.8 (Coloured Sink- and End-of-Line). C-SoLn is a search problem defined
on a set of n nodes, denoted [n − 1]0, distinguishing the node 0. We define a graph on these
nodes using the following parameters for each node u ∈ [n − 1]0:

An index su ∈ [n − 1]0 indexing the successor of u.
An index pu ∈ [n − 1]0 indexing the predecessor of u.
An indicator cu,λ ∈ {0, 1} for each λ ∈ [n], indicating the presence of the colour λ at u.
An index eu ∈ [n], indexing a distinguished colour at each node.

We define a graph G on [n] by including an edge (u, v) if and only if su = v and pv = u.
Again, if the set of colours at each node contains that at its successor, and there is at least
one colour at each sink, then each source must contain at least one colour. The goal of the
search problem is to find a witness of this. A pair (u, λ) is then a solution to an instance of
C-SoLn if:

su = v, pv = u, cv,λ = 1 and cu,λ = 0 for some node v ̸= u (colour propagation)
u = 0 and c0,λ = 1 (distinguished source should be colourless)
u is a sink node, eu = λ, and cu,λ = 0 (sinks should have a colour)

The C-EoLn problem is obtained by adding the following solutions to the C-SoLn problem:
u is a source node and cu,λ = 1 (sources should be colourless)

▶ Definition 2.9 (Coloured Sink- and End-of-Potential-Line). The C-SoPLn and C-EoPLn

problems are search problems combining the constraints of C-SoD and C-EoL. As with
C-SoD they are defined on an n × n grid. We have the following parameters for each node
(i, j) ∈ [n] × [n]:

An index si,j ∈ [n − 1]0 indicating that the successor of (i, j) is (i + 1, si,j).
An index pi,j ∈ [n − 1]0 indicating that the predecessor of (i, j) is (i − 1, pi,j).
An indicator ci,j,λ ∈ {0, 1} for each λ ∈ [n] indicating the presence of the colour λ at
(i, j).
An index ei,j ∈ [n] indexing a distinguished colour at each node.
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As with C-SoL and C-EoL we define a graph G on [n]× [n] by including an edge ((i, j), (i+
1, k)) if and only if si,j = k and pi+1,k = j. The solutions are then defined exactly as for
C-SoLn and C-EoLn adapted to the n × n grid.

We denote the TFNPdt classes obtained by taking formulations of the above problems in
San-Serif font, e.g. C-SOPLdt = C-SoPLdt.

3 The Blockwise Calculus

3.1 Multivalued CNFs and Blockwise Calculus Proofs
The proof-theoretic results in this paper have the unfortunate property of becoming technical
when proved directly in the boolean proof systems defined in the previous section. To aid
exposition we have found it useful to abstract out a generalized calculus – the Blockwise
Calculus – to phrase our proofs in. In this section we introduce the Blockwise Calculus
and prove our main technical results illustrating its relationship with the proof systems
introduced in the previous section. Intuitively the Blockwise Calculus is the extension of
Resolution to variables in a wider range than {0, 1}.

▶ Definition 3.1. A multivalued variable is a pair (x, n) where x is a formal variable and
n ∈ N is a positive integer representing the range [n − 1]0 that the variable x can take values
in. We will suppress the range parameter n when it is obvious from context. An atom is
an expression of the form Jx ̸= iK where i ∈ [n − 1]0 is an element of the range. Given an
[n − 1]0-assignment to x the atom evaluates to true iff the inequality inside the atom is
satisfied. A clause is a disjunction (∨) of atoms, where each variable in the clause can be
quantified over its own range. The width of a clause C is the number of atoms in it.

Using multivalued variables we can introduce the notion of a multivalued CNF formula.

▶ Definition 3.2. Let (x1, r1), (x2, r2), . . . , (xn, rn) be a collection of multivalued variables. A
multivalued CNF formula F = C1 ∧ · · · ∧ Cm over these variables is a conjunction of clauses
of atoms over the same variables. We say that F is unsatisfiable if there is no assignment of
each variable to their respective ranges such that the resulting CNF is satisfied, and define
the corresponding search problem S(F ) ⊆ [r1 − 1]0 × · · · × [rn − 1]0 × [m] in the natural way:
given a multivalued assignment to the corresponding variables, output a false clause of F .

While the Blockwise Calculus operates on multivalued CNF formulas, we ultimately
want to convert everything back to refutations in boolean logic. For this, we introduce the
booleanization of a multivalued CNF, which is obtained by encoding each multivalued variable
(x, r) in binary.

▶ Definition 3.3. Let (xi, ri) for i ∈ [n] be a collection of multivalued variables, and let
F =

∧m
i=1 Ci be a multivalued CNF formula over these variables. The booleanization of F is

the following CNF formula Fbool. For each variable (xi, ri) we introduce ti := ⌈log ri⌉ boolean
variables in a block, denoted x⃗i := xi,1 . . . xi,ti

∈ {0, 1}ti , encoding the value of the variable
xi in binary. Then, for each clause in F we substitute each occurrence of an atom Jxi ̸= kK
with the disjunction on the variables x⃗i that is false exactly when xi = k. Finally, for each
i ∈ [n] and each value ℓ ∈ [2ti ] with ℓ ≥ ri, we add a clause to Fbool over the variables x⃗i

encoding that xi ̸= ℓ.
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For each of the search problems defined in the previous section, there is a natural
multivalued encoding of that search problem as an unsatisfiable multivalued CNF formula
(cf. Section 3.2). Our current focus is to define the Blockwise Calculus and its variants. The
rules of the Blockwise Calculus are shared among the three systems and defined in Figure 4,
where C is a multivalued clause and (x, r) is a multivalued variable.

(Reverse Cut) C
C ∨ Jx ̸= 0K C ∨ Jx ̸= 1K · · · C ∨ Jx ̸= r − 1K

(Cut) C ∨ Jx ̸= 0K C ∨ Jx ̸= 1K · · · C ∨ Jx ̸= r − 1K
C

Figure 4 Proof Rules for the Blockwise Calculus.

▶ Definition 3.4. Let F be a multivalued CNF formula and let C be a clause. A Blockwise
Calculus proof of C from F is a sequence of clauses C1, C2, . . . , Cs = C where the sequence
is generated as follows. Starting from the empty sequence we either choose a clause from F

to append to the sequence, or, we choose earlier clauses in the sequence and apply one of the
Blockwise Calculus proof rules (cf. Figure 4) to generate new clauses and append them to the
sequence. The length of the proof is s, the number of clauses, and the width of the proof
is the size of the largest clause in the proof. The proof is a refutation if C = ⊥, the empty
clause. Finally, the proof is a Reversible Blockwise Calculus proof if every clause is used as
the hypothesis of at most one proof rule.

As in the case of Res(k), we can also introduce the Circular variant of Blockwise Calculus.
The analogous rule we need to introduce is the following, for any multivalued clause C:

(Clause Creation)
C

▶ Definition 3.5. Let F be a multivalued CNF formula and let C be a clause. A Circular
Blockwise Calculus proof of C from F is a sequence of clauses C1, C2, . . . , Cs = C where the
sequence is generated as follows. Starting from the empty sequence we can either choose a
clause from F and append it to the end of the sequence, apply the Clause Creation rule to
create an arbitrary clause C and append it to the sequence, or choose earlier clauses in the
sequence and apply a Blockwise Calculus rule to generate new clauses and append them to the
sequence. In addition, we make the following stipulations: each clause Ci in the sequence is
used as the hypothesis of at most one Blockwise Calculus rule, and every clause C appearing
in the proof is derived as the output of some proof rule more times than it is created using the
Clause Creation rule. The length of this proof is s and the width of the proof is the maximum
width of any clause C in the proof. The proof is a refutation if C = ⊥.

Similarly to the Res(k) systems, it is easy to see that Reversible Blockwise Calculus is a
subsystem of both the Blockwise Calculus and the Circular Blockwise Calculus.

3.2 Encoding TFNP Problems as Multivalued CNFs
Given any of the total search problems introduced in Section 2, we can create a natural
unsatisfiable multivalued CNF formula F expressing that the search problem has no solution.
Intuitively, the negation of F encodes that the search problem is total.
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Coloured Sink-of-Dag

We first show how to encode the Coloured Sink-of-Dag (C-SoDn) problem. For each i, j ∈ [n]
we have a multivalued variable (sij , n + 1) expressing that the pointer of the node sij is
either 0 or points to a node on the next level. For each i, j ∈ [n] and each λ ∈ [n] we have a
multivalued variable (ci,j,λ, 2) expressing whether or not the colour λ is present at node (i, j).
Finally, for each i, j ∈ [n] we have a second multivalued variable (eij , n) indexing a colour
at that node. We can now phrase the totality of the search problem using the following
unsatisfiable multivalued CNF formula C-SoD, containing the following clauses:

Colourless Distinguished Source. For each λ ∈ [n − 1]0, Jc11λ ̸= 1K.
Propagating Colours. For each i ∈ [n − 1], each j, k ∈ [n], and each λ ∈ [n − 1]0,

Jsij ̸= kK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K .

Coloured Sinks. For each i ∈ [n − 1], j ∈ [n], λ ∈ [n − 1]0,

Jsij ̸= 0K ∨ Jeij ̸= λK ∨ Jcijλ ̸= 0K , and

Jenj ̸= λK ∨ Jcnjλ ̸= 0K .

Coloured Sink-of-Line and Coloured End-of-Line

The variables of both C-SoLn and C-EoLn are the same, but the two formulas differ on their de-
fining constraints. For each u, λ ∈ [n−1]0 we have multivalued variables (su, n), (pu, n), (eu, n),
and (cu,λ, 2) encoding successor pointers, predecessor pointers, colour pointers, and colours
for each node. The nodes range in the set [n − 1]0 and we treat 0 as the distinguished source
node. The clauses of the C-SoLn formula are defined as follows:

Colourless Distinguished Source. For each λ ∈ [n − 1]0, Jc0,λ ̸= 1K.
Colour Propagation. For each u ̸= v ∈ [n − 1]0 and each λ ∈ [n],

Jsu ̸= vK ∨ Jpv ̸= uK ∨ Jcu,λ ̸= 0K ∨ Jcv,λ ̸= 1K .

Coloured Sinks. For each u, v, w, λ ∈ [n − 1]0 with u ̸= w:

Jsu ̸= vK ∨ Jpv ̸= wK ∨ Jeu ̸= λK ∨ Jcu,λ ̸= 0K .

The C-EoLn formula adds the following clauses to the C-SoLn formula:

Colourless Sources. For each u ∈ [n − 1], v, w, λ ∈ [n − 1]0 with u ̸= w:

Jpu ̸= vK ∨ Jsv ̸= wK ∨ Jcu,λ ̸= 1K .

Coloured Sink-of-Potential-Line and Coloured End-of-Potential-Line

The variables of C-SoPLn and C-EoPLn are the same. For each i, j ∈ [n − 1]0 and each
λ ∈ [n − 1]0 we have variables (sij , n), (pij , n), (eij , n), (cijλ, n) encoding successor pointers,
predecessor pointers, colour pointers, and colours for each node. The clauses of the C-SoPLn

formula are defined as follows:
Colourless Distinguished Source. For each λ ∈ [n − 1]0, Jc0,0,λ ̸= 1K.
Colour Propagation. For each i ∈ [n − 2]0, j, k ∈ [n − 1]0 and each λ ∈ [n − 1]0,

Jsij ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci,j,λ ̸= 0K ∨ Jci+1,k,λ ̸= 1K .
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Coloured Sinks. For each i ∈ [n − 2]0, j, k, ℓ ∈ [n − 1]0 with ℓ ̸= j and λ ∈ [n − 1]0

Jsij ̸= kK ∨ Jpi+1,k ̸= ℓK ∨ Jei,j ̸= λK ∨ Jci,j,λ ̸= 0K , and

Jen−1,j ̸= λK ∨ Jcn−1,j,λ ̸= 0K .

The C-EoPLn formula adds the following clauses to the C-SoPLn formula:
Colourless Sources. For each i ∈ [n − 1], j, k, ℓ, m ∈ [n − 1]0 with m ̸= j, and each
λ ∈ [n − 1]0

Jpij ̸= ℓK ∨ Jsi−1,ℓ ̸= mK ∨ Jsij ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jcijλ ̸= 1K

and

Js0,j ̸= kK ∨ Jp1,k ̸= jK ∨ Jc0,j,λ ̸= 1K .

3.3 Blockwise Calculus vs. Boolean Proof Systems
In this section we prove the main technical theorem necessary for our main results. Essentially,
it says that if we have a refutation of a formula F in the Blockwise Calculus or one if its
variations, then we can automatically obtain a refutation of any F -formulation in a related
boolean proof system.

▶ Theorem 3.6. Let F, G be any width-c multivalued CNF formulas for which there is a
depth-d S(F )-formulation of S(G). Then

If there is a size-s Blockwise Calculus refutation of F , then there is a size-s2O(d) Res(O(d))-
refutation of Gbool.
If there is a size-s Circular Blockwise Calculus refutation of F , then there is a size-s2O(d)

uCircRes(O(d))-refutation of Gbool.
If there is a size-s Reversible Blockwise Calculus refutation of F , then there is a size-s2O(d)

RevRes(O(d))-refutation of Gbool.

Proving this theorem is much easier after we introduce some auxiliary technical lemmas
for working with decision trees. For a given decision tree T , let Pℓ(T ) denote the set of all
root-leaf paths ending in a leaf labelled by ℓ, and let P (T ) :=

⋃
ℓ Pℓ(T ). For a given path

p ∈ P (T ) let Cp := x1 ∧ · · · ∧ xk and Cp := x1 ∨ · · · ∨ xk where x1, ..., xk are the queries
made along p.

Let DT :=
∨

p∈P (T ) Cp, intuitively encoding the fact that some branch of a decision
tree must be followed under an input. We will rely on these formulas heavily, so we now
demonstrate that they can be efficiently derived in Res(k). It is enough to prove this next
lemma for RevRes(d) since both Res(d) and uCircRes(d) simulate RevRes(d).

▶ Lemma 3.7. If T is a decision tree of depth d, then there is a size-22d RevRes(d) proof of
the formula

∨
p∈P (T ) Cp.

Proof. If T consists of a single query of some literal ℓ, then DT = ℓ ∨ ℓ, which can be
derived in a single line as an axiom. Otherwise we proceed by induction, so let ℓ be the
first literal queried by T . Let T0 be the subtree of T followed when ℓ is falsified, and T1 be
the one followed when ℓ is satisfied. By induction, we can derive DT0 and DT1 with size
2 · 22(d−1) = 22d−1. We begin by ∨-weakening T0 with ℓ and T1 with ℓ, and introducing the
axiom ℓ ∨ ℓ.
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Now let p1, ...., pk be the paths of T0. Weaken the axiom ℓ ∨ ℓ by Cpi for all 1 < i ≤ k to
obtain

∨
1<i≤k Cpi

∨ ℓ ∨ ℓ. ∧-introducing this with DT0 ∨ ℓ on Cp1 and ℓ, we obtain:∨
1<i≤k

Cpi
∨ Cp1∪ℓ ∨ ℓ

Now weaken ℓ ∨ ℓ by Cpi
for all 2 < i ≤ k, and by Cpi∪ℓ for 1 ≤ i < 2 to obtain

∨
2<i≤k Cpi

∨∨
1≤i<2 Cpi∪ℓ ∨ ℓ ∨ ℓ. We again ∧-introduce this, this time with

∨
1<i≤k Cpi

∨ Cpi∪ℓ ∨ ℓ on
Cp2 and ℓ to obtain:∨

2<i≤k

Cpi
∨

∨
1≤i≤2

Cpi∪ℓ ∨ ℓ

Repeating this for the remaining paths pj for 2 < j ≤ k, we obtain:∨
p∈P (T0)

Cp∪ℓ ∨ ℓ

and we can repeat this process for T1 to likewise derive:∨
p∈P (T1)

Cp∪ℓ ∨ ℓ

Since P (T ) =
⋃

p∈P (T0)(p ∪ ℓ) ∪
⋃

p∈P (T1)(p ∪ ℓ), we can finally cut these two formulas on ℓ

to obtain
∨

p∈P (T ) Cp = DT . All conjunctions created in this process have width at most d,
as they each correspond to a path or subpath of a path of T , and since there are 2d−1 paths
in each subtree this process adds an additional 2 · (2d−1)2 = 22d−1 lines to the proof. Thus
the total size of the proof is 2 · 22d−1 = 22d. Further, since all root–leaf paths are bounded in
length by d, the proof has width O(d). ◀

We now show that cutting and weakening along negated paths of decision trees can be
done inside of Reversible Resolution.

▶ Lemma 3.8. Let C be a width-w clause and let T be a depth-d decision tree. Then there is
a size-2d, width-(w + d) RevRes derivation of C from the set of clauses {C ∨ Cp | p ∈ P (T )}
and vice-versa.

Proof. We proceed by induction on d. In the base case, d = 1 and a single variable x is
queried by T ; in this case we have the formulas C ∨ x and C ∨ x and we resolve on x to
obtain C.

By induction suppose that the claim holds for a decision tree of depth at most d − 1. Let
T0 be the decision tree obtained by discarding all leaves of T (the new leaves may be labelled
arbitrarily). For each path p ∈ P (T ), let x be the final variable it queries, let q be the path
of T which differs from p only on x, and let p0 be the path of T0 obtained by truncating p

before x. Then we may cut the formulas C ∨ p0 ∨ x and C ∨ p0 ∨ x, corresponding to p and
q, on x to obtain C ∨ p0. Repeating this for each such pair of paths in T yields C ∨ p0 for
each p0 ∈ T0 in 2d−1 steps, allowing us to apply the induction hypothesis to complete the
derivation of C in a further 2d−1 steps, for a total size of 2d as desired. Furthermore, this is
reversible, as each path of T belongs to a single such pair. The width claims are also clear as
all formulas are of the form C ∨ p for some path p of a depth-d decision tree. ◀
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Now, let F be a multivalued CNF formula on variables (xi, ri) for i ∈ [n], let G be
a multivalued CNF formula on variables (yi, si) for i ∈ [m], and suppose that we have a
depth-d S(F )-formulation of S(G). This means that each variable xi is computed by a
depth-d decision tree fi which queries variables yj and outputs a value in [ri − 1]0, and we
also have, for each clause C in F , a decision tree gC which queries yj variables and outputs
a clause of S(G). For simplicity, we will identify the variable xi with its decision tree fi that
computes it.

Suppose that we have a Blockwise Calculus refutation Π of F . Our goal is to give a
Res(O(d)) refutation of G. In order to prove this theorem we need to encode atoms Jxi ̸= jK
into boolean formulas. We introduce two such encodings: the positive and negative encoding.
In the positive encoding we encode each atom as a d-DNF formula, while in the negative
encoding we encode the atom as a family of width-d clauses. We emphasize that in the
definitions below we identify the variable xi of the formula F with the decision tree fi

outputting the value of xi in the reduction from G.

D+(Jxi ̸= jK) :=
∨
k ̸=j

∨
p∈Pk(xi)

Cp

D−(Jxi ̸= jK) := {Cp : p ∈ Pj(xi)}

If C is a clause over multivalued atoms we write D+(C) to denote the DNF formula obtained
by substituting each atom A in C with its positive encoding D+(A), and write D−(C) to
denote the CNF formula obtained by substituting

∧
D−(A) for each atom in C and then

re-writing the result in CNF by distributing the ∨ over the ∧s.
The next lemma is arguably the main technical lemma used in the proof of Theorem 3.6.

It shows that it is possible to derive positive encodings of multivalued clauses from negative
encodings and vice-versa efficiently in RevRes(d).

▶ Lemma 3.9. Suppose that x is computed by a depth-d decision tree and G is a DNF.
Then there is a RevRes(d) proof of all the DNFs in {G ∨ C | C ∈ D−(Jx ̸= jK)} from
G ∨ D+(Jx ̸= jK) and vice-versa in size |G|2 · 2O(d)

Proof. We begin by proving G∨D+(Jx ̸= jK) from {G∨C | C ∈ D−(Jx ̸= jK)}. This direction
is simpler. By applying Lemma 3.7 we can derive the DNF

∨
p∈P (x) Cp in size 22d from

axioms, and then by applying reverse cut repeatedly we can derive G ∨
∨

p∈P (x) Cp in size
O(|G|22d). From G ∨

∨
p∈P (x) Cp we can repeatedly cut on G ∨ C for each C ∈ D−(Jx ̸= jK)

to in sequence to derive G ∨ D+(Jx ̸= jK). The total size is |G|22O(d).
We now prove the other direction. Without loss of generality suppose that j = 0 and let

D := G∨D+(Jx ̸= 0K) for the sake of brevity. By definition we have D = G∨
∨

k ̸=j

∨
p∈Pk(x) Cp.

Let P =
⋃

k ̸=0 Pk(x) denote the set of all paths appearing in the above disjunction and write
P = {p1, p2, . . . , ps}.

We begin by applying reverse cut repeatedly along the variables in the decision tree
computing x to derive the set of DNFs {D ∨ Cq | q ∈ P (x)}. Fix an arbitrary path q ∈ P0(x).
For each path pi ∈ P there is a literal ℓi such that ℓi is queried positively in pi and negatively
in q. Therefore, by using an axiom-introduction we can introduce the clause ℓ1 ∨ ℓ1 and then
repeatedly using reverse-cut we can derive G∨

∨s
i=2 Cpi

∨Cq ∨Cp1 We can then cut this result
with D ∨ Cq to derive G ∨

∨s
i=2 Cpi

∨ Cq. We can now repeat this process: there is another
literal ℓ2 appearing positively in p2 and negatively in q, and thus we can axiom-introduce
ℓ2 ∨ ℓ2 and then use reverse cut to derive G ∨

∨s
i=3 Cpi

∨ Cp2 ∨ Cq. Cutting this with the
result of the previous stage yields G ∨

∨s
i=3 Cpi ∨ Cq, and we can repeat this process s times

in order to derive G ∨ Cq. We can then repeat this for each q ∈ P0(x) to derive D−(Jxi ̸= jK).
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We now estimate the size of the derivation. The first line has size at most |G| + 2d, and
we begin by deriving a set of 2d DNFs, each of size O(|G| + 2d), and thus the cost of the
first step is O(|G|22d). To cut each of the paths Cp1 , Cp2 , . . . , Cps

we must pay O(|G|22d) to
derive the corresponding DNF to cut our preserved formula with, and this will repeat s ≤ 2d

times, for a total cost of O(|G|222d). Finally, we must repeat this entire process ≤ 2d times
for each q ∈ P0(x), and thus the final size is O(|G|223d) = |G|22O(d). ◀

Using the lemma we can now prove Theorem 3.6.

Proof of Theorem 3.6. The basic idea of this proof is simple: for each clause C ∈ Π we
replace C with the width-d DNF encoding D+(C), noting that the final clause ⊥ remains
empty. We prove two claims:
Claim 1. For each clause C in F we can deduce D+(C) from the clauses of Gbool in

RevRes(O(d)).
Claim 2. For each proof rule of the Blockwise Calculus we can deduce the positive encodings

of each consequent of the rule from the positive encodings of each antecedent of the rule
efficiently in RevRes(O(d)).

To prove the first claim, let F = C1 ∧ · · · ∧ Cs and Gbool = C ′
1 ∧ · · · ∧ C ′

t, let (xi, ri) for
i ∈ [n] denote the variables of F , and let y⃗1, . . . , y⃗m denote the (boolean block) variables of
Gbool. By the definition of an S(F )-formulation, for each variable (xi, ri) of F we have a
depth-d decision tree fi querying variables of Gbool and outputting a value for xi, as well as
a decision tree gk for each k ∈ [s] such that (f(y), k) ∈ S(F ) ⇒ (y, gk(y)) ∈ S(G). We can
interpret this definition in terms of proofs as follows. Let Ck = A1 ∨ · · · ∨ Aw be any clause
of F and assume w.l.o.g. that Ai := Jxi ̸= ℓiK for some ℓi. For each i ∈ [w] let pi ∈ Pℓi

(xi)
be any path in the corresponding decision tree from the formulation outputting ℓi, and let
q ∈ P (gk) be any path in the tree gk. Then the clause

∨w
i=1 Cpi

∨ Cq is a weakening of
clause of G. Since there are at most 2d paths in each decision tree and the width of Ck is
w it follows that there are at most 2wd ≤ 2cd such clauses, and each can be deduced from
clauses of G using weakening rules. Next, we observe that from the collection of clauses
{
∨w

i=1 Cpi ∨ Cq | q ∈ P (gk)} we can use reversible cuts up the decision tree gk in order to
deduce the family of clauses {

∨w
i=1 Cpi

}, and taking the union over all such paths pi ∈ Pℓi
(xi)

yields exactly D−(Ck). Finally, applying Lemma 3.9 yields D+(Ck). Applying this strategy
to all clauses of F we can deduce D+(Ck) for each clause of F , as desired.

We move on to proving the second claim. We first consider the Cut rule

C ∨ Jxi ̸= 0K C ∨ Jxi ̸= 1K · · · C ∨ Jxi ̸= ri − 1K
C

for which we need to show how to derive D+(C) from D+(C) ∨ D+(JxiK ̸= ℓ) for each
ℓ ∈ [ri − 1]0. We can apply Lemma 3.9 to D+(C) ∨ D+(Jxi ̸= ℓK) for each ℓ = 0, 1, . . . , ri − 1
in order to derive the family

ri−1⋃
ℓ=0

{D+(C) ∨ D | D ∈ D−(Jx ̸= ℓK)} =
⋃

p∈P (xi)

{D+(C) ∨ Cp}.

From this family we can apply Lemma 3.8 in order to derive D+(C), as desired.
We now consider the Reverse Cut rule

C
C ∨ Jxi ̸= 0K C ∨ Jxi ̸= 1K · · · C ∨ Jxi ̸= ri − 1K.
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Starting from D+(C) we must derive the family {D+(C) ∨ D+(Jxi ̸= ℓK) | ℓ ∈ [ri − 1]0}.
This direction is easy: since this rule is the reverse of the previous rule, and since we gave
a RevRes(d) simulation of the previous rule, running the previous construction in reverse
handles this case as well.

Using the two claims we can now complete the proof of the theorem. For Res(d) and
RevRes(d) the result follows immediately by induction over the proof Π. For Circular Res(d)
we can similarly apply induction over Π, additionally observing that if we ever apply the
Clause Creation rule in a Circular Blockwise Calculus proof to create a clause C, we can
simply apply the DNF creation rule in Circular Res(d) to create D+(C). Since the Circular
Blockwise Calculus proof must derive each clause C more times than it is introduced by a
Clause Creation rule, the same property holds for the uCircRes(d) proof. This completes the
proof of the theorem. ◀

A similar result can also be obtained for low-width Resolution, which we will use to show
collapses to uncoloured classes. The main difference in this proof is that we do not use the
positive encoding, only the negative encoding.

▶ Theorem 3.10. Let F, G be any multivalued CNF formulas for which there is a depth-d
S(F )-formulation of S(G). Then

If there is a size-s, width-logO(1) s Blockwise Calculus refutation of F , then there is a
size-sO(1)2O(d), width-d · logO(1) s Resolution refutation of Gbool.
If there is a size-s, width-logO(1) s Circular Blockwise Calculus refutation of F , then there
is a size-sO(1)2O(d), width-d · logO(1) s uCircRes-refutation of Gbool.
If there is a size-s, width-logO(1) s Reversible Blockwise Calculus refutation of F , then
there is a size-sO(1)2O(d), width-d · logO(1) s RevRes-refutation of Gbool.

Proof. Let Π be the size-s, width-logO(1) s Blockwise Calculus refutation (potentially revers-
ible or circular) of F . We construct a Resolution refutation of G from Π By first proving
D−(F ) :=

∧
C∈F D−(C), then converting Π into a refutation of D−(F ), so we may finally

combine these proofs into a refutation of G. Again, this requires us to show the following:
For each clause C of F , there is an efficient proof of D−(C) from G

Each rule of the blockwise calculus can be efficiently simulated by Reversible Resolution
using the negative encoding of blocks

Let C1, ..., Cs denote the clauses of F , and C ′
1, ..., C ′

t the clauses of Gbool. Likewise, dnote
the variables of F by (x1, r1), ..., (xn, rn) and the variables of Gbool by y⃗1, ..., y⃗m. For each
variable xi of F , we have a depth-d decision tree fi decision tree in the formulation over
variables of Gbool computing it, and for each clause Ci of F , we have a depth-d decision tree
gi outputting a corresponding clause of G. By definition of a S(F )-formulation then, for each
such clause Ci, each clause C ′ ∈ D−(Ci), and each path p ∈ P (gi), the clause C ′ ∨ Cp is a
weakening of at least one clause of G – if C ′ and Cp are both falsified under some assignment
a⃗ to the variables of G, then so too must the clause output by p be falsified under a⃗. Thus,
for each such C ′, we can derive the clause C ′ ∨ Cp from G for every p ∈ P (gi), at which point
we may apply Lemma 3.8 to obtain D−(Ci). Repeating for all clauses of F yields D−(F ).

We proceed now to show that we can simulate the rules of the blockwise calculus in
Reversible Resolution:

If some clause C was derived by cutting earlier clauses C ∨ Jx ̸= 0K , ..., C ∨ Jx ̸= n − 1K,
then we have the set of clauses C ′ ∨ p for each C ′ ∈ C and p ∈ P (Tx), from which we
wish to derive each C ′ ∈ C. Thus, by Lemma 3.8 this can be done in 2d steps with width
d + d · logO(1) s.
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If C was derived by weakening some earlier clause C0 on some variable x, then begin
with each C ′ ∈ C, from which we wish to derive C ′ ∨ p for each C ′ ∈ C and p ∈ P (Tx).
By reversibility of Lemma 3.8, this can be done in 2d steps with width d + d · logO(1) s.

Since all families of clauses C corresponding to an original clause C of Π have size
sO(1)2O(d) and each new clause requires 2d additional steps to derive, this results in a proof of
size nO(1)2O(d) overall. Furthermore, all clauses in the new proof consist of logO(1) s negated
paths of depth-d decision trees, and thus have width d · logO(1) s overall. ◀
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