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Abstract
The subgraph counting problem computes the number of subgraphs of a given graph that satisfy
some constraints. Among various constraints imposed on a graph, those regarding the connectivity
of vertices, such as “these two vertices must be connected,” have great importance since they are
indispensable for determining various graph substructures, e.g., paths, Steiner trees, and rooted
spanning forests. In this view, the subgraph counting problem under connectivity constraints is also
important because counting such substructures often corresponds to measuring the importance of a
vertex in network infrastructures. However, we must solve the subgraph counting problems multiple
times to compute such an importance measure for every vertex. Conventionally, they are solved
separately by constructing decision diagrams such as BDD and ZDD for each problem. However,
even solving a single subgraph counting is a computationally hard task, preventing us from solving
it multiple times in a reasonable time. In this paper, we propose a dynamic programming framework
that simultaneously counts subgraphs for every vertex by focusing on similar connectivity constraints.
Experimental results show that the proposed method solved multiple subgraph counting problems
about 10–20 times faster than the existing approach for many problem settings.
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1 Introduction

Given graph G = (V, E), the subgraph counting problem computes the (possibly weighted)
count of the subgraphs of G that satisfy some constraints such as each vertex’s degree and
the existence of cycles. More specifically, given edge weights w+

e , w−
e ∈ R for e ∈ E, this

problem (exactly) computes the following value:

W (E) :=
∑

E′∈E

∏
e∈E′

w+
e ·

∏
e∈E\E′

w−
e , (1)

where E ⊆ 2E is a family of the subsets of edges, i.e., subgraphs, that satisfy given constraints.
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11:2 CompDP: A Framework for Simultaneous Subgraph Counting

This problem has been studied as a fundamental task in computer science [2, 1, 5, 4], and
extensively studied in the area of network reliability analysis [21]. The most fundamental
problem of network reliability analysis is computing the probability that the predetermined
vertices will remain connected assuming that each edge fails independently with a given
probability. This task is equivalent to the subgraph counting problem under connectivity
constraints; a connectivity constraint is a topological constraint requiring that some pairs of
vertices are connected and other pairs are disconnected.

A connectivity constraint is also fundamental in determining various graph substructures,
such as paths, Steiner trees, spanning trees, and rooted spanning forests, in combination
with other constraints, as described in Section 2. Counting these substructures also has great
importance, especially for evaluating the importance of a vertex. For example, paths and
Steiner trees on communication networks correspond to the routing of point-to-point and
multi-site communication (e.g., see [10, 26]). Thus, the number of paths or Steiner trees
passing vertex v is an importance measure for v in this communication network, since its
failure causes the lost of this number of communication routing. A cycle passing through
source vertex s and another vertex v constitutes a vertex-disjoint two paths between s and v,
and counting such cycles corresponds to the number of non-blocking pairs of communication
routings from s to v [11]. A rooted spanning forest (RSF) rooted at r1, . . . , rk corresponds to
a (electrical) distribution network whose substations are located at r1, . . . , rk [12]. When we
add a new substation to v, the number of RSFs rooted at r1, . . . , rk, v (given other constraints
such as electric constraints) provides flexibility of the distribution network.

In evaluating such an importance measure for every vertex v, we generally have to solve
the subgraph counting problem for every v. That is, we must compute multiple count
values W (Ev1), . . . , W (Evn) for different families of subgraphs Ev1 , . . . , Evn . However it was
proven that the network reliability evaluation described above is in #P-complete [32], a
computationally challenging class, and computing W (E) in the presence of other constraints
is equally as difficult in general. Even a practically fast algorithm for computing W (E)
described below may take several minutes or more for a graph with hundreds of edges.
Subgraph counting for every vertex described above seems computationally much more
difficult since we have to repeatedly solve cumbersome counting tasks.

This paper proposes a practically fast algorithm for simultaneously counting subgraphs
for every vertex (formally defined in Section 2). Here, “simultaneously” means that we build
only one data structure for obtaining all count values W (Ev1), . . . , W (Evn

). Our contribution
is summarized as follows:

Our proposed method enables us to simultaneously count such graph substructures as
paths, cycles, Steiner trees, and RSFs by sophisticated dynamic programming (DP) on
the built data structure.
Complexity analyses show that the proposed method solves subgraph counting for every
vertex O(n) times faster than the baseline method that separately solves each counting,
where n is the number of vertices.
We empirically confirmed that the proposed algorithm solved subgraph counting for every
vertex around 10–20 times faster than the baseline method.

1.1 Related Works
The study of network reliability problems, i.e., subgraph counting problems under constraints
of the from “specified vertices must be connected,” has a long history. This problem is
known as #P-complete [32], meaning that it is computationally tough. Meanwhile, various
algorithms have been proposed for this problem, e.g., sum-of-disjoint product [6] with
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tieset [25] or cutset enumeration [31], and factoring [33]. However, currently the practically
fastest algorithm, originated by Hardy et al. [8] and Herrmann [9], directly constructs a data
structure called a binary decision diagram (BDD) [3]. Their method successfully computes
network reliability for real topologies with around 200 edges. Here BDD is used as a tool
that represents the family of subgraphs where predetermined vertices are connected; after it
is built, the counting problem can be solved by a simple DP on it.

Other studies exist for counting subgraphs with additional constraints other than con-
nectivity. The simplest method enumerates all the substructures [23, 28] such as paths and
spanning trees. Especially, the enumeration of spanning trees [28] corresponds to computing
the Tutte polynomial of a graph, which can be used for many kinds of graph counting prob-
lems. However, since there might be an exponential number of substructures, enumeration
suddenly becomes intractable with the growth of graph size. For practically fast counting,
indexing the constrained subgraphs into BDD-like structures has also been studied. Sekine et
al. [27] designed an algorithm to build a BDD representing all the spanning trees to compute
the Tutte polynomial. Knuth [18] proposed a very efficient scheme called Simpath that
indexes all the simple paths in a zero-suppressed BDD (ZDD) [20], which is a variant of BDD.
By expanding such research, Kawahara et al. [17] proposed a frontier-based search (FBS),
which can build a ZDD of various graph substructures. Since ZDD also allows a simple DP for
counting, FBS can be used for practically fast subgraph counting. Our proposed algorithm
is also based on FBS. Subgraph counting is also studied in the context of parameterized
complexity theory [5, 4], although their interest often focuses on theoretical aspects. To
the best of our knowledge, no works have outperformed the BDD/ZDD-based methods in
practically solving subgraph counting problems, including network reliability evaluations.

In 2021, Nakamura et al. [22] proposed an algorithm for network reliability that simultan-
eously computes the probability of connecting to servers for every client. It essentially solves
counting problems for every vertex and runs much faster than the baseline where each client’s
reliability is computed separately. However, it can only deal with the constraints of the form
“all the specified vertices are connected” and cannot accept the constraints of disconnection
and others. Technically, the proposed method can deal with these constraints by utilizing the
ZDD structures [20] and the FBS [17]. While the existing method [22] relies on a BDD-like
structure that is not truly a BDD, we build a legitimate ZDD by FBS, enabling us to combine
such existing ZDD algorithms as Apply [20] and subsetting [15].

1.2 Organization of Paper
The rest of this paper is organized as follows. Section 2 describes the preliminary and the
formal statement of the problem we solved. Section 3 gives the overview of the proposed
method. Section 4 introduces the ZDD and the frontier-based search that are used in
the proposed method. Section 5 details the proposed method, and Section 6 analyzes the
computational complexity of it. Section 7 empirically compares the proposed method with
the baseline in terms of computational time, and Section 8 gives a conclusion.

We give the list of acronyms and notations used in this paper in Table 1.

2 Problem Statement

Before proceeding to our problem statement, we introduce a notion that represents the
connectivity constraint in the same manner as Kawahara et al. [17]. As described in
Section 1, a connectivity constraint requires that some pairs of vertices are connected and
other pairs are disconnected. We represent the connectivity constraint by subpartition P

SEA 2023
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Table 1 Acronyms and notations.

Acronym
RSF Rooted Spanning Forest
DP Dynamic Programming
BDD Binary Decision Diagram
ZDD Zero-suppressed binary Decision Diagram
FBS Frontier-Based Search
DAG Directed Acyclic Graph

Notation
Frequently used notations
G = (V, E) undirected graph with vertex set V and edge set E
n, m = |V |, |E|: the number of vertices and edges in the graph
w+

e , w−
e ∈ R: edge weights for e ∈ E

W (E) the value of subgraph counting given E ⊆ 2E (family of subgraphs)
P subpartition of V representing connectivity constraint
P ∗ subpartition of V ∪ {∗} containing one wildcard ∗
P ∗[v] connectivity constraint obtained by substituting ∗ in P ∗ with v ∈ V
P ∗[] connectivity constraint obtained by removing ∗ from P ∗

C(P ) ⊆ 2E : family of subgraphs satisfying connectivity constraint P
F ⊆ 2E : base set in our problem
count(v) = W (F ∩ C(P ∗[v])): count value for vertex v ∈ V computed in our problem
Notations for ZDD
Z = (N, A) ZDD with node set N and arc set A
⊤,⊥ terminal nodes of ZDD
r̂ ∈ N : root node of ZDD
lo(n̂), hi(n̂) ∈ A: lo-arc and hi-arc outgoing from ZDD node n̂
n̂−, n̂+ ∈ N : lo-child and hi-child of ZDD node n̂
lb(n̂) ∈ Z: label of ZDD node n̂
Li i-th level of ZDD, i.e., the set of ZDD nodes whose label is i
R (directed) path in ZDD
RZ(n̂, n̂′) set of paths between ZDD nodes n̂ and n̂′ in ZDD Z
S(Z) ⊆ 2E : family of subgraphs represented by ZDD Z
E(R) ⊆ E: subgraph represented by path R in ZDD
Wp(R) ∈ R: path product of path R in ZDD defined in (3)
n̂.p, n̂.r sum of path products of the paths in RZ(r̂, n̂) and RZ(n̂,⊤)
Notations for explaining existing and proposed methods
E<i = {e1, . . . , ei−1}: processed edges
E≥i = {ei, . . . , em}: unprocessed edges
Fi ⊆ V : i-th frontier, the vertices appearing in both E<i and E≥i

VP ⊆ V : set of vertices appearing in connectivity constraint P
V ′

P ∗ ⊆ V : set of vertices in the set in P ∗ containing ∗
V ′′

P ∗ ⊆ V : set of vertices present in P ∗ and not included in V ′
P ∗

n̂.comp partition of Fi maintaining the connectivity among Fi

n̂.vset connectivity constraint maintaining the connectivity among Fi ∪ VP

Rv ⊆ RZ(r̂,⊤): set of paths whose corresponding subgraph satisfies (#v)
Rv,n̂ ⊆ Rv: set of paths that passes through ZDD node n̂
B ∈ n̂.comp: set contained in comp, i.e., connected component
Rn̂,B ⊆ RZ(n̂,⊤): set of paths associated with ZDD node n̂ and set B ∈ n̂.comp
n̂.q[B] sum of path products of the paths in Rn̂,B

n̂.q−[B] sum of path products of the paths in Rn̂,B traversing lo(n̂)
n̂.q+[B] sum of path products of the paths in Rn̂,B traversing hi(n̂)
V ′

n̂.vset ⊆ V : set of vertices in the set in n̂.vset containing ∗
V ′′

n̂.vset ⊆ V : set of vertices present in n̂.vset and not included in V ′
n̂.vset

ZF ZDD representing base set F
Notations for conducting complexity analysis
ZFBS(P ) ZDD bulit by FBS with connectivity constraint P
cP the number of set in connectivity constraint P
vP the number of vertices in connectivity constraint P excluding ∗
fw = maxi |Fi|: frontier width
Dk k-th Bell number
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of vertex set V of graph G = (V, E), where a subpartition of V is a set of pairwise disjoint
subsets of V . P imposes the following constraints: (i) for any pair of vertices v, v′ in the
same set in P , they must be connected, and (ii) for any pair of vertices v, v′ in different sets
in P , they must not be connected.

We extend the notion by introducing exactly one wildcard ∗, which will be replaced by a
vertex to represent various connectivity constraints. Let P ∗ be a subpartition of V ∪{∗} that
must contain exactly one ∗. For v ∈ V , let P ∗[v] be the connectivity constraint obtained by
substituting ∗ in P ∗ with v. Additionally, let P ∗[] be the connectivity constraint obtained by
simply removing ∗ from P . Note that if v ∈ V is already present in P ∗, P ∗[v] equals (i) P ∗[]
if v is in the same set in P ∗ that contains ∗; or (ii) an inconsistent constraint. For example,
for P ∗ = {{v1, v2, ∗}, {v3}}, P ∗[v4] = {{v1, v2, v4}, {v3}}, P ∗[v2] = P ∗[] = {{v1, v2}, {v3}},
and P ∗[v3] is an inconsistent constraint.

Now we proceed to our problem definition. In our problem, we are given connected
undirected graph G = (V, E) with n = |V | vertices and m = |E| edges, connectivity constraint
P ∗ containing exactly one wildcard ∗, family F of subgraphs, i.e., subsets of edges, and
weights w+

e , w−
e ∈ R for each e ∈ E. For connectivity constraint P , let C(P ) be the family of

subgraphs satisfying P . Our goal is to compute the following value

count(v) := W (F ∩ C(P ∗[v])) for every v ∈ V . (2)

The problems described in Section 1 can be covered by our problem.
Path: Given s, t ∈ V , we set P ∗ = {{s, t, ∗}} and let F be a family of subgraphs where
(i) the degree of s and t is 1, and the others have degree 0 or 2, and (ii) there are no
cycles. Then count(v) equals the number of simple s, t-paths that pass through v.
Cycle: Given s ∈ V , we set P ∗ = {{s, ∗}}, and let F be a family of subgraphs where (i)
the degree of each vertex is 0 or 2, and (ii) there is exactly one connected component.
Then count(v) equals the number of cycles starting from s that pass through v.
Steiner tree: Given T ⊆ V , we set P ∗ = {T ∪ {∗}} and let F be a family of subgraphs
where there are no cycles and exactly one connected component. Then count(v) equals
the number of T -Steiner trees containing v, where T -Steiner trees are the trees connecting
all the T vertices.
Rooted spanning forest: Given T = {r1, . . . , rk} ⊆ V , we set P ∗ = {{r1}, . . . , {rk}, {∗}},
and let F be a family of subgraphs where (i) every vertex has degree at least 1, (ii) there
are no cycles, and (iii) there are exactly (k + 1) connected components. Then count(v)
equals the number of rooted spanning forests rooted at r1, . . . , rk and v.

In addition, the problem setting of Nakamura et al. [22] essentially counts the subgraphs
where given vertex set T ⊆ V and vertex v are connected for every v and can be recovered
by P ∗ = {T ∪ {∗}} and F = 2E . Although here we list only topological constraints for F ,
we can also impose non-topological constraints with F , such as knapsack constraints.

3 Overview of Proposed Algorithm

First, we explain case F = 2E . Given connectivity constraint P ∗, the baseline method, which
separately computes the count value for every v by FBS [17], builds a ZDD with connectivity
constraint P ∗[v] for every v ∈ V . Here ZDD compactly represents a family of subgraphs by
a rooted directed acyclic graph. By FBS with P ∗[v], a ZDD representing C(P ∗[v]) is built
and allows a simple DP for computing count(v) = W (C(P ∗[v])). The details of ZDD and
FBS are explained in Section 4.

SEA 2023
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Graph G

Connectivity constraint
P ∗

Base set F ZDD ZF

FBS with P ∗
(Sect. 4.2)

Intersection
(Sect. 5.3)

ZDD Z
· representing F ∩ C(P ∗[])
· comp/vset in each node

ZDD Z
· p, q, r values in each node

DP with comp/vset (Sect. 5.2)

Levelwise
computation
with p, q, r

(Sect. 5.1)

count(v1)

count(v2)

count(vn)

...

.

..

Figure 1 Overview of proposed algorithm.

Similarly, the proposed method builds a ZDD by FBS. However, unlike the baseline
method, we build only one ZDD Z for P ∗, which represents C(P ∗[]). Instead, we retain
the information used in the FBS for building Z, comp and vset in each node of Z, both of
which are discarded after the FBS in the baseline method. Since comp and vset provide
rich information for connectivity among vertices, we fully exploit them to perform a more
sophisticated DP, yielding for each node of Z three kinds of values, p, q, and r. Their
definitions are described in Section 5.1. By using them, we can compute count(v) values
for every v ∈ V . Since the computation of p, q, r, and count(v) can be performed in time
proportional to the execution of FBS, the proposed algorithm runs faster than the baseline.
We fully describe the computation of the count(v) values in Section 5.1 and those of p, q,
and r (the DP procedure) in Section 5.2.

Finally, we deal with case F ≠ 2E . For it, we first construct a ZDD ZF by the existing
methods. Then, we construct one ZDD Z that represents F ∩ C(P ∗[]) whose nodes have
comp and vset. This can be performed by exploiting existing techniques of constructing a
ZDD of set intersection, such as Apply [20] and subsetting [15]. After Z is built, we can
perform the same DP scheme as above. We describe taking the set intersection in Section 5.3.
An overview of the proposed method is given in Fig. 1.

By changing base set F and connectivity constraint P ∗, the proposed algorithm can solve
various subgraph counting problems, as in Section 2. We named our proposed algorithm
compDP since it fully uses information comp.

3.1 Intuition and Idea behind the Proposed Algorithm
We describe the high-level idea behind the proposed algorithm. As described later, ZDD,
which is a rooted and layered directed acyclic graph, represents a family of subgraphs as the
set of paths from the root to a terminal node. By defining the path product of a path by
the weights along this path (precise definition is later), the count value equals the sum of
path products of these paths. The intuitive for the proposed algorithm is as follows: Let
Ev = F ∩ C(P ∗[v]). To compute count(v) = W (Ev) for every v ∈ V , it is sufficient to build
a ZDD representing Ev for every v. However, since Ev and Ew (v ̸= w) are similar families
stemming from the common constraint P ∗, the ZDDs representing them also are expected to
exhibit similar structures. We use such similarities to reduce the computation.

More specifically, we use the following step-by-step ideas: First, since C(P ∗[v]) ⊆ C(P ∗[])
for any v ∈ V , F ∩ C(P ∗[v]) is represented by the subset of the paths within the ZDD
representing F ∩ C(P ∗[]). Second, these paths can be decomposed into former and latter
parts; the former is the paths from the root to a specific layer, and the latter is the paths
from the specific layer to the terminal. The count value count(v) can be represented by
the sums of path products of the former part and those of the latter part. Third, when
considering such a decomposition for every v ∈ V , we can reuse the values of “the sums of
path products of the former part” (p in the proposed algorithm) and “those of the latter
part” (q and r in the proposed algorithm). Thus, by pre-computing them by a DP, we can
compute count(v) for every v ∈ V with these values.
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4 ZDD and Frontier-based Search

4.1 Zero-suppressed Binary Decision Diagrams (ZDDs)
Zero-suppressed binary decision diagram (ZDD) [20] Z = (N, A) is a rooted directed acyclic
graph (DAG)-shaped data structure representing a family of subsets of edges E;1 the root
node is denoted by r̂ ∈ N . Node set N has two special nodes ⊤ and ⊥ called terminals and
other internal nodes. Each internal node n̂ has exactly two outgoing arcs called lo-arc lo(n̂)
and hi-arc hi(n̂) and label lb(n̂) that is an integer of range [1, m]. We respectively call the
child nodes of n̂ pointed by lo(n̂) and hi(n̂) lo-child n̂− and hi-child n̂+ of n̂. Labels must be
ordered in an ascending manner, i.e., lb(n̂) < lb(n̂−) and lb(n̂) < lb(n̂+) must hold for every
n̂. For convenience, we set the labels of the terminal nodes to m + 1. A ZDD is normalized
if for every internal node n̂, each of n̂− and n̂+ is either ⊥ or a node whose label is exactly
lb(n̂) + 1. Size |Z| of ZDD Z is defined as the number of nodes in Z.

For n̂, n̂′ ∈ N , RZ(n̂, n̂′) denotes the set of paths from n̂ to n̂′. Given a predefined order
of edges, e1, . . . , em, ZDD Z represents a family of subgraphs S(Z) ⊆ 2E by RZ(r̂,⊤). For
path R in Z, we associate subset E(R) ⊆ E where ei ∈ E(R) if and only if R traverses a
hi-arc outgoing from a node with label i. Then S(Z) = {E(R) | R ∈ RZ(r̂,⊤)}. For example,
in Fig. 2(b), path 1-(hi)-2-(lo)-3-(lo)-4-(hi)-5-(hi)-⊤ indicates that {e1, e4, e5} ∈ S(Z).

Normalized ZDDs can be used as an efficient tool for subgraph counting. Let Z be
a normalized ZDD, and let R ∈ RZ(n̂, n̂′) be an arbitrarily chosen path. Given weights
w+

e , w−
e ∈ R for each e ∈ E, we define the path product of R by

Wp(R) :=
∏

e∈E(R)

w+
e ·

∏
e∈{elb(n̂),...,elb(n̂′)−1}\E(R)

w−
e . (3)

In other words, Wp(R) is the product of w+
e for the edges in E(R) and w−

e for the edges not
in E(R). We also define value n̂.p for ZDD node n̂ by the sum of path products of the paths
in RZ(r̂, n̂). By definition, W (S(Z)) equals ⊤.p. Moreover, although n̂.p is defined as the
sum of a possibly exponential number of path products, its value can efficiently be computed
by a DP. Simple calculation shows the following equation for a node other than r̂ or ⊥:

n̂.p =
∑

n̂′:(n̂′)−=n̂

w−
elb(n̂)

· n̂′.p +
∑

n̂′:(n̂′)+=n̂

w+
elb(n̂)

· n̂′.p. (4)

Starting with r̂.p = 1, by applying (4) in a top-down manner along Z, we can compute the
value of ⊤.p = W (S(Z)) in time proportional to the number of nodes in Z.

4.2 Frontier-based Search
A frontier-based search (FBS) [17] is an efficient method for constructing a normalized ZDD
that represents a family of subgraphs satisfying some constraints. Below we explain its
procedure of given connectivity constraint P (without ∗).

We start with a naive way for constructing ZDD. Given order of edges e1, . . . , em, we
decide one by one whether ei is excluded or included in the subgraph. This generates a binary
decision tree like Fig. 2(c). After deciding every link’s exclusion or inclusion, all subgraphs
are enumerated at the bottom of the decision tree, and we can judge whether the constraints

1 Although a ZDD can represent a family of subsets of arbitrary base set X, here we explain it as a tool
for representing a family of edge subsets for simplicity.
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(a) (b)

(c) (d)

e1

e2

e3

e4

e5

1

2

3

4

+e1

+e2 +e2

+e3

+e4

+e5

† † † †

⊥⊥ ⊥⊥ ⊥⊥ ⊥⊥ ⊥> ⊥> ⊥> >> ⊥⊥ >> ⊥> >> ⊥> >> ⊥> >>

1
2 2

⊥ 3 3 3

4 4 4

⊥ 5 5 5

⊥ >

/{1,4}

{1}{2}/{1,4} {1,2}/{1,4}

⊥ {2}{3}/{3,4} {2}{3}/{2,4} {2,3}/{2,3,4}

{2}{3}/{3,4} {2}{3}/{2,4} {2,3}/{2,3,4}
†

⊥ {3}{4}/{3,4} {3}{4}/{4} {3,4}/{3,4}

⊥ > > > > >

Figure 2 (a) Example of graph. (b) Example of (normalized) ZDD. Dashed and solid lines
indicate lo- and hi-arcs, and an integer inside a node represents a label. (c) Binary decision tree
made by deciding one by one whether ei is excluded or included. (d) ZDD made by FBS where
P = {{1, 4}}. Two subpartitions of vertices inside a node represent comp and vset.

are satisfied one by one. The example in Fig. 2(c) judges whether the black vertices (1 and
4) are connected. This decision tree has a property where the collection of paths from root
to ⊤ corresponds to the family of subgraphs satisfying the constraints. After making the
decision tree, ZDD can be constructed by merging the identical subtrees of it. For example,
the four nodes marked † in Fig. 2(c) have an identical pattern of leaves: ⊥,⊤,⊤,⊤. Even if
we merge them, the property that the collection of paths from root to ⊤ corresponds to a
family of satisfying subgraphs is not broken.

However, since there are 2m subgraphs, the size of the decision tree must be expo-
nential. For efficient construction of ZDD, we try to detect identical subtrees without
constructing them. Formally, the identicalness of subtrees can be stated as follows. Let
E<i = {e1, . . . , ei−1} and E≥i = {ei, . . . , em}. We call the subset of edges after deciding
ei−1’s exclusion or inclusion the i-th subgraph. Note that the i-th subgraphs are subsets of
E<i. We consider the following equivalence relation for i-th subgraphs X, X ′ ⊆ E<i: (§) For
any Y ⊆ E≥i, whether subgraph X ∪ Y or X ′ ∪ Y satisfies the constraints is equivalent. If
(§) holds, the subtree rooted at X and that rooted at X ′ are identical.

Condition (§) is met for X, X ′ ⊆ E<i if X and X ′ share identical connectivity among
V , i.e., for any v, v′ ∈ V , whether v and v′ are connected is equivalent. This is because if
X and X ′ share identical connectivity, so do X ∪ Y and X ′ ∪ Y . Moreover, if X and X ′

have an identical connectivity, so do X ∪ {ei} and X ′ ∪ {ei}. This enables us to build a
decision “diagram” by the following procedure. In building a decision tree like Fig. 2(c) in a
breadth-first manner, we merge some subgraphs if they exhibit an identical connectivity.

The FBS further refines this idea by focusing on the connectivity among a limited subset
of vertices. Let Fi, called i-th frontier, be the vertices appearing in both E<i and E≥i. Also,
let VP be the set of vertices appearing in connectivity constraint P . Then, it can be proved
that condition (§) is satisfied if X and X ′ have an identical connectivity among Fi ∪ VP .
Intuitively, this is because every vertex v ∈ V \ VP that does not appear in E≥i can be
equated with vertex v′ ∈ Fi ∪ VP if v is connected to v′, or it can be ignored if it is not
connected to any vertex in Fi ∪VP . FBS generates a diagram by a breadth-first manner such
that the nodes exhibiting identical connectivity among Fi ∪ VP are all merged.

Algorithm 1 is pseudocode of FBS. The connectivity among Fi ∪VP is maintained by two
subpartitions of vertices: comp and vset. Here comp maintains the connectivity among Fi

while vset maintains the connectivity among the sets in comp and the vertices in VP . More
specifically, comp is a partition of Fi such that v, v′ ∈ Fi are in the same set if and only if
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Algorithm 1 Frontier-based search for connectivity constraint P . Underlined part in
line 16 is added if it is used for a subroutine of proposed method.

1 r̂.comp← {}, r̂.vset← P, L1 ← {r̂}, Li ← ∅ (i = 2, . . . , m + 1)
2 for i← 1 to m do // ei = {v, v′}
3 foreach n̂ ∈ Li do
4 foreach f ∈ {−, +} do
5 n̂′ ← n̂ // Vn̂′.vset is the vertices present in n̂′.vset
6 if f = + and v, v′ ∈ Vn̂′.vset and n̂′.vset[v] ̸= n̂′.vset[v′] then
7 n̂′ ← ⊥ and goto finish // v and v′ must not be connected
8 foreach u ∈ {v, v′} \ Fi do // Vertices entering the frontier
9 n̂′.comp← n̂′.comp ∪ {{u}} // Add u as an isolated vertex

10 if f = + and n̂′.comp[v] ̸= n̂′.comp[v′] then // Connecting two components
11 Merge n̂′.comp[v] and n̂′.comp[v′] into one
12 if v ∈ Vn̂′.vset and v′ /∈ Vn̂′.vset then Add vertices in n̂′.comp[v′] to n̂′.vset[v]
13 if v /∈ Vn̂′.vset and v′ ∈ Vn̂′.vset then Add vertices in n̂′.comp[v] to n̂′.vset[v′]
14 foreach u ∈ {v, v′} \ Fi+1 do // Vertices leaving from frontier
15 if {u} ∈ n̂′.comp then // Component containing u leaves frontier
16 if u ∈ Vn̂′.vset and {u} /∈ n̂′.vset and {u, ∗} /∈ n̂′.vset then
17 n̂′ ← ⊥ and goto finish // u must be connected to w ∈ n̂′.vset[u]
18 Remove u from n̂′.comp and n̂′.vset if exists
19 if n̂′ ̸= ⊥ then
20 if i = m then n̂′ ← ⊤ // All conditions are satisfied
21 else if ∃n̂′′ ∈ Li+1 s.t. n̂′′.comp = n̂′.comp and n̂′′.vset = n̂′.vset then
22 n̂′ ← n̂′′ // Already generated node
23 else Li+1 ← Li+1 ∪ {n̂′} // Newly generated node
24 finish: n̂f ← n̂′ // Set lo- or hi-child of n̂ to n̂′

they are connected, and vset maintains the connectivity constraint such that the vertices
in the same set must be connected and those in different sets must be disconnected. Here
comp[v] denotes the set in comp containing v, and as is the same with vset[v]. By starting
with comp = {} and vset = P (Line 1), the algorithm repeatedly updates comp and vset by
excluding (f = −) or including (f = +) ei; lines 5–13 are the update procedure. We set the
destination of lo-arc (f = −) or hi-arc (f = +) to the node with the updated comp and vset
(line 24). If the node having identical comp and vset has already been generated, we set it
to the already generated node (lines 21–22); otherwise, we newly generate a node (line 23).
When either of the following occurs, we prune the node, i.e., setting the destination of an
arc to ⊥: (I) Two vertices are connected that are in different sets of vset (lines 6–7). This
violates the disconnection requirement of vset. (II) comp[v] leaves the frontier, but vset[v]
has vertex v′ other than v (lines 16–17). In this case v will never be connected with v′,
violating the connection requirement of vset. If the search proceeds to the final level without
being pruned, it reaches ⊤, i.e., constraint P is satisfied (line 20).

For example, Fig. 2(d) is the result of FBS given the graph in Fig. 2(a) and the constraint
that vertices 1 and 4 must be connected. We now focus on the left, 2nd level node:
“{1}{2}/{1,4}”. Here comp = {1}{2} denotes two components, the one including 1 and the
one including 2, and vset = {1, 4} represents that 1 and 4 must be connected. If we exclude
e2 = {1, 3}, the component including 1 is left isolated because F3 = {2, 3} does not include 1.
However, since this contradicts that 1 and 4 must be connected, the lo-child is ⊥ (pruned).
If we include e2, the component including 1 becomes one that includes 3 at the next level.
The constraint that 1 and 4 must be connected can be rewritten as that 3 and 4 must be
connected. Thus, hi-child’s comp is {2}{3} and vset is {3,4}. Here the four nodes marked †
in Fig. 2(c) are treated as only one marked node in Fig. 2(d).
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5 Details of Proposed Method

First, we assume F = 2E ; this assumption is removed in Section 5.3. As in Section 3, the
proposed method first builds ZDD Z representing C(P ∗[]). To explain the meaning and
procedure for this, we observe the relationship between P ∗[] and P ∗[v]. Let V ′

P ∗ be the
vertices in the set in P ∗ containing ∗, and let V ′′

P ∗ be the other vertices present in P ∗. From
the definition, P ∗[v] imposes the following additional constraint on P ∗[]:

(#v) v must be connected with the vertices in V ′
P ∗ , and v must be disconnected from

the vertices in V ′′
P ∗ .

That is, C(P ∗[v]) = {X | X ∈ C(P ∗[]), X satisfies (#v)}. Now the constraint P ∗[v] is
decomposed into (#v) and P ∗[], where (#v) involves only the connectivity around v and P ∗[]
represents the other constraints. The fact that (#v) concerns only the connectivity around v

enables us to compute count(v) for every v with only one ZDD Z representing C(P ∗[]), as
described in the subsequent sections.

Meanwhile, during the procedure of FBS, we must remember which set in vset corresponds
to the set in P containing ∗ since we use it for the subsequent computation. To achieve this,
we just consider ∗ in P ∗ a special vertex. More specifically, we let r̂.vset← P ∗ in line 1 of
Algorithm 1 and add the underlined part of line 16. By adding the underlined part, the
pruning condition (II) simply discards ∗ even if vset[v] contains ∗. Thus, Z finally represents
C(P ∗[]), while each vset has at most one set containing ∗.

5.1 Computation with Intermediate Level of Diagram
Let Rv be the paths in RZ(r̂,⊤) whose corresponding subgraph satisfies (#v). As stated
above, count(v) equals the sum of path products of the paths in Rv. Here we focus on i-th
level Li of Z where v ∈ Fi.2 For node n̂ ∈ Li with label i, let Rv,n̂ be the paths in Rv

passing through n̂. Since Z is normalized, every r̂-⊤ path in Z passes exactly one node in Li.
This means that count(v) can be represented as the sum of

∑
R∈Rv,n̂

Wp(R) over n̂ ∈ Li.
We further decompose

∑
R∈Rv,n̂

Wp(R) by focusing on n̂ ∈ Li. Since n̂.comp maintains
the connectivity among Fi, the sets in n̂.comp are indeed connected components. Since the
connectivity around v can be translated into that around connected component B = n̂.comp[v],
(#v) can be restated as a constraint on B = n̂.comp[v]:

(#′
B) Connected component B must be connected with the vertices in V ′

P ∗ , and B

must be disconnected from the vertices in V ′′
P ∗ .

Let Rn̂,B ⊆ RZ(n̂,⊤) be a set of paths such that R′ ∈ Rn̂,B if and only if E(R) ∪ E(R′)
satisfies (#′

B) for arbitrarily chosen R ∈ RZ(r̂, n̂). Rn̂,B is well-defined, i.e., kept unchanged
regardless of the choice of R because E(R)’s connectivity among components and the vertices
in V ′

P ∗ ∪ V ′′
P ∗ is completely determined in n̂.vset. This means that Rv,n̂ can be written as

direct product RZ(r̂, n̂) ⊔Rn̂,n̂.comp[v] where A ⊔B := {a ∪ b | a ∈ A, b ∈ B}. In other words,
every path R ∈ Rv,n̂ can be decomposed into R′ ∈ RZ(r̂, n̂) and R′′ ∈ Rn̂,n̂.comp[v]. From
the definition of path product, Wp(R) = Wp(R′)Wp(R′′). Thus, by defining n̂.q[B] as the
sum of path product of the paths in Rn̂,B , the following holds:∑

R∈Rv,n̂

Wp(R) =
∑

R′∈RZ (r̂,n̂)

∑
R′′∈Rn̂,n̂.comp[v]

Wp(R′)Wp(R′′) = n̂.p · n̂.q[n̂.comp[v]]. (5)

2 If v’s degree is more than 1, there is at least one i such that v ∈ Fi. For example, if ei is the first edge
containing v within the edge ordering, v ∈ Fi. The treatment of degree 1 vertices is in Appendix A.1.
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Finally, count(v) can be represented as

count(v) =
∑

n̂∈Li

∑
R∈Rv,n̂

Wp(R) =
∑

n̂∈Li

n̂.p · n̂.q[n̂.comp[v]]. (6)

By choosing i such that v ∈ Fi for every v, we can compute count(v) for every v by (6) if p
and q are computed. In the next section, we show that q can easily be computed by DP.

5.2 Dynamic Programming

First, we define a correspondence of the components in comp between n̂ and its child nodes.

▶ Definition 1. Let n̂ ∈ Li be a node of a normalized ZDD whose label is i, and let f

be either − or +. Assuming n̂f ̸= ⊥, for B ∈ n̂.comp, we define Bf as follows: (i) If B

contains vertex v in Fi+1, Bf = n̂f .comp[v]. (ii) If no such vertex exists, B− = ∅, i.e., no
corresponding component. For f = +, let v, v′ be the endpoints of ei. If v′ ∈ Fi and v ∈ B,
B+ = n̂+.comp[v′]. If v ∈ Fi and v′ ∈ B, B+ = n̂+.comp[v]. Otherwise, B+ = ∅.

Intuitively, Bf is a component in n̂f .comp that represents the same component as B.
We derive a formula for n̂.q[B] by decomposing the set of paths Rn̂,B . Since every path

in Rn̂,B passes either lo(n̂) or hi(n̂), we have a case analysis. Let n̂.q−[B] (n̂.q+[B]) be the
sum of path products of the paths in Rn̂,B that traverse lo(n̂) (hi(n̂)). Now

n̂.q[B] = n̂.q−[B] + n̂.q+[B]. (7)

We now focus on n̂.q−[B], which means that ei is excluded. If n̂− = ⊥, constraint
C(P ∗[]) is not satisfied, so no path in Rn̂,B passes through lo(n̂). Thus, n̂.q−[B] = 0.
Otherwise, B− is defined as in Definition 1. If B− ̸= ∅, since B− is the same component as
B, constraint (#′

B) is satisfied if and only if constraint (#′
B−) for n̂− is satisfied. Thus, the

set of paths in Rn̂,B that traverse lo(n̂) can be written as {lo(n̂)} ⊔ Rn̂−,B− . This means
that n̂.q−[B] = w−

ei
· n̂−.q[B−].

The remaining case is n̂− ̸= ⊥ and B− = ∅. In this case, the component B does not exist
in the next level Li+1 and thus we cannot translate constraint (#′

B) into the one concerning
the lo-child n̂−. In other words, we must judge whether constraint (#′

B) is satisfied with
only the information on n̂. Fortunately, it is possible because n̂.vset completely determines
the connectivity among B ∈ n̂.comp and V ′

P ∗ ∪ V ′′
P ∗ .

We have case analysis on how B is connected with V ′
P ∗ ∪ V ′′

P ∗ ; how to distinguish these
cases are described later. If B is connected with some (but not all) vertices in V ′

P ∗ , it violates
the constraint P ∗[] that all the vertices in V ′

P ∗ are connected. If B is connected with both
the vertices in V ′

P ∗ and those in V ′′
P ∗ , it again violates the constraint P ∗[] that the vertices

in the different sets of P ∗[] are disconnected. Therefore, since at least P ∗[] is not violated
by R′ ∈ RZ(r̂, n̂), only one of the three cases must hold: (i) B is disconnected from any
vertex in P ∗, (ii) B is connected with all the vertices in V ′

P ∗ , and (iii) B is connected with
some vertices in V ′′

P ∗ . When V ′
P ∗ ̸= ∅, only case (ii) satisfies (#′

B). When V ′
P ∗ = ∅, case (i)

also satisfies (#′
B). For both scenarios, the set of paths in Rn̂,B that traverse lo(n̂) can be

written as {lo(n̂)} ⊔ RZ(n̂−,⊤), since (#′
B) is always satisfied regardless of the choice of the

path from n̂− to ⊤. By defining n̂′.r as the sum of path products of the paths in RZ(n̂,⊤)
for any node n̂′, n̂.q−[B] = w−

ei
· n̂−.r for these cases. To sum up, the following holds:
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Algorithm 2 CompDP: dynamic programming with information of comp.
1 r̂.p← 1, set all other p values to 0, ⊤.r← 1, ⊥.r← 0, set all q values to 0
2 for i← 1 to m do // Top-down DP
3 foreach n̂ ∈ Li do
4 if n̂− ̸= ⊥ then n̂−.p += w−

ei
· n̂.p // (4)

5 if n̂+ ̸= ⊥ then n̂+.p += w+
ei
· n̂.p

6 for i← m to 1 do // Bottom-up DP
7 foreach n̂ ∈ Li do
8 n̂.r← w−

ei
· n̂−.r + w+

ei
· n̂+.r // (9)

9 foreach B ∈ n̂.comp do
10 foreach f ∈ {−, +} do
11 if n̂f ̸= ⊥ and Bf ̸= ∅ then n̂.qf [B]← wf

ei
· n̂f .q[Bf ] // (8), 1st case

12 else if n̂f ̸= ⊥ and (B ∩ V ′
n̂.vset ̸= ∅ or (V ′

P ∗ = ∅ and B ∩ V ′′
n̂.vset = ∅) then

13 n̂.qf [B]← wf
ei
· n̂f .r // (8), 2nd case

14 Process corner cases

n̂.q−[B] =


w−

elb(n̂)
· n̂−.q[B−] (n̂− ̸= ⊥, B− ̸= ∅)

w−
elb(n̂)

· n̂−.r (n̂− ̸= ⊥, B− = ∅, case (ii) or (case (i) and V ′
P ∗ = ∅))

0 (otherwise)
,

(8)

where ⊤.r = 1, ⊥.r = 0, n̂.r = w−
elb(n̂)

· n̂−.r + w+
elb(n̂)

· n̂+.r. (9)

Note that the recurrence formula (9) for r can easily be derived from the definition in the
same way as the formula (4) for p.

The remaining is how to distinguish the cases (i)–(iii). Since the connectivity among B

and the vertices in P ∗ is stored in n̂.vset, it can be achieved by the comparison of B and
n̂.vset. Let V ′

n̂.vset be the vertices in the set in n̂.vset containing ∗ and let V ′′
n̂.vset be the other

vertices present in n̂.vset. Then, case (i) holds when the vertices in B do not exist in n̂.vset.
Case (ii) holds when B has a node in V ′

n̂.vset. Case (iii) holds when B has a node in V ′′
n̂.vset.

Let us see the example by Fig. 2(d). If we perform FBS with P ∗ = {{1, 4, ∗}}, the center
node of 5th level, say n̂, becomes {3}{4}/{4, ∗}. When traversing lo(n̂), both {3} and {4}
leave from the frontier. Here {3} falls into case (i) and {4} falls into case (ii), thus we have
n̂.q−[{3}] = 0 and n̂.q−[{4}] = w−

e5
· n̂−.r = w−

e5
· ⊤.r = w−

e5
.

Equation (8) also holds even if we substitute − with +, which means ei is included, except
for the following corner case. Let ei = {v, v′}. We consider the case where v, v′ /∈ Fi+1 and
n̂.comp[v] leaves the frontier with case (i). When V ′

P ∗ ̸= ∅, if v′ ∈ V ′
n̂.vset or n̂.comp[v′] leaves

the frontier with case (ii), n̂.q+[n̂.comp[v]] = w+
ei
· n̂+.r since n̂.comp[v] is finally connected

with V ′
P ∗ . Similarly, when V ′

P ∗ = ∅, if v′ ∈ V ′′
n̂.vset or n̂.comp[v′] leaves the frontier with case

(iii), n̂.q+[n̂.comp[v]] = 0 since n̂.comp[v] is finally connected with V ′′
P ∗ .

Algorithm 2 describes the pseudocode for DP. After p, q and r values are computed by
Algorithm 2, the count(v) value for every v can be obtained by (6).

5.3 Intersection with Base Set
Next we generalize for case F ̸= 2E . In the previous sections, we used the fact that P ∗[v]
is a constraint made by adding another constraint (#v) to P ∗[]. This also holds even if F
is constrained, i.e., F ∩ C(P ∗[v]) = {X | X ∈ F ∩ C(P ∗[]), X satisfies (#v)}. Therefore, by
constructing a ZDD Z representing F ∩ C(P ∗[]) with the information of comp and vset, we
can reuse the discussions in Sections 5.1 and 5.2 and run Algorithm 2 on Z to obtain count(v)
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for every v ∈ V . More specifically, let Z ′ be the normalized ZDD of C(P ∗[]) built by FBS
with P ∗. Then Z should be a normalized ZDD representing F ∩ C(P ∗[]) that satisfies the
following condition for every i: for any i-th subgraph X ⊆ E<i, if X corresponds to i-th
level nodes n̂ in Z and n̂′ in Z ′, n̂ must have the same comp and vset as n̂′.

After building ZF that represents F by some means, Z can be built by combining FBS
with the existing methods. One approach is to use Apply [20]. First, we build Z ′ representing
C(P ∗[]) by FBS. Then by taking the set intersection of ZF and Z ′ with Apply while keeping
the information of comp and vset, we can construct Z. The other is to use subsetting [15]. It
enables us to directly construct Z from ZF in a similar manner as the FBS. For the sake of
completeness, we describe the pseudocode of subsetting with FBS in Appendix A.2.

6 Complexity Analysis

We here conduct a complexity analysis of the proposed algorithm. For connectivity constraint
P possibly including ∗, let ZFBS(P ) be a ZDD built by FBS with P , let cP be the number
of sets in P , and let vP be the number of vertices in P (excluding ∗). Additionally, let
fw = maxi |Fi| called frontier width. We give detailed proofs in Appendix A.3.

First, we bound the running time of our algorithm by the ZDD size.

▶ Proposition 2. Our proposed algorithm runs in O(fw · |ZF ||ZFBS(P ∗)|) time.

Next we bound the ZDD sizes. The bound of |ZFBS(P )| for P excluding ∗ is given in
Proposition 3 and that of |ZFBS(P ∗)| for P ∗ including ∗ is in Proposition 4.

▶ Proposition 3. The size of ZFBS(P ) for connectivity constraint P excluding ∗ is bounded
by O(mDfw ·min{(cP + 1)fw, (fw + 1)vP }), where Dfw is the fw-th Bell number.

▶ Proposition 4. For connectivity constraint P ∗ including ∗, |ZFBS(P ∗)| ≤ cP ∗ |ZFBS(P ∗[])|.

Combining Propositions 2–4 yields the following theorem.

▶ Theorem 5. The proposed algorithm runs in O(fw · cP ∗ |ZF ||ZFBS(P ∗[])|) time, which is
bounded by O(|ZF | ·mcP ∗ · fw ·Dfw ·min{(cP ∗ + 1)fw, (fw + 1)vP ∗ }).

If fw can be considered as a constant, the proposed algorithm runs in O(mcP ∗ |ZF |) time. It
is known that fw is closely related to the pathwidth [24] of a graph. If a graph’s pathwidth is
pw, there is a edge ordering with fw = pw [13]. The value of pw is often much smaller than n

and m for sparse graphs, e.g., [22]. Although obtaining such an order is NP-hard in general,
we can use pathwidth optimization heuristics [13] for obtaining better ordering.

We compare this complexity with the baseline method where we separately build a ZDD
representing F ∩ C(P ∗[v]) by FBS. The overall complexity is O(fw ·

∑
v |ZF ||ZFBS(P ∗[v])|),

analyzed in the same way as Proposition 2, which is bounded by O(|ZF | ·mn · fw · Dfw ·
min{(cP ∗ + 1)fw, (fw + 1)vP ∗ +1}). If fw is constant, it is O(|ZF |mn). Compared with
Theorem 5, the proposed method runs faster by an O(n) factor.

Here we mention the ZDD sizes. The complexity bounds of the proposed and baseline
methods heavily depend on ZF ’s size. Here |ZF | also remains small for various constraints
if fw is small. For example, the constraints appeared in the example of Section 2, e.g., the
degree constraints and the existence of cycles, can all be represented as a ZDD whose size
is proportional to m if fw is constant [27, 18, 17]. This boosts the effectiveness of both the
proposed and baseline methods for practical use because fw is often much smaller than n

and m for graphs in real worlds. Moreover, |Z| is often much smaller than expected from
the above analysis, as demonstrated by Kawahara et al. [17].
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Table 2 Computational time for grid graphs and Rocketfuel dataset in seconds.

Path Cycle Steiner tree RSF
Instance n m fw Ours Base Ours Base Ours Base Ours Base

Grid-8x8 64 112 8 0.06 0.48 0.06 0.54 4.93 29.87 8.87 38.17
Grid-8x16 128 232 8 0.16 2.54 0.16 2.81 14.16 183.16 25.72 234.17
Grid-8x24 192 352 8 0.26 6.29 0.27 6.86 23.27 470.60 42.81 >600
Grid-8x32 256 472 8 0.36 11.73 0.38 12.65 32.55 >600 60.28 >600
Grid-9x9 81 144 9 0.22 2.13 0.22 2.34 40.13 298.57 62.44 397.57
Grid-10x10 100 180 10 0.78 9.70 0.89 11.69 284.17 >600 430.04 >600
Grid-11x11 121 220 11 2.88 42.26 3.22 50.97 >600 >600 >600 >600
Grid-12x12 144 264 12 11.24 183.87 15.25 241.94 >600 >600 >600 >600
Grid-13x13 169 312 13 45.51 >600 56.25 >600 >600 >600 >600 >600
Rocketfuel-1221 318 758 10 157.01 >600 111.52 >600 181.38 >600 >600 >600
Rocketfuel-1755 172 381 12 43.94 >600 32.48 >600 >600 >600 >600 >600
Rocketfuel-6461 182 294 10 3.66 65.64 4.80 128.86 71.10 >600 95.47 >600

We close this section by mentioning the space complexity of the proposed and the baseline
methods. The proposed algorithm uses at most O(fw · |ZF ||ZFBS(P ∗)|) words of space, since it
retains O(fw) words of information for each node of ZFBS(P ∗). The baseline method typically
uses at most O(fw · |ZF ||ZFBS(P ∗[v])|) words of space for the computation of count(v). If it
is assumed that |ZFBS(P ∗[v])| is close to |ZFBS(P ∗[])|, the space complexity of the baseline
method is at most only O(cP ∗) times smaller due to Proposition 4.

7 Experiments

We empirically compared the proposed and the baseline methods with respect to the com-
putational time. Here the baseline method is to separately build a ZDD by FBS for each
constraint. Both methods were implemented in C++ and compiled by g++ with -O3 option.
We used TdZdd [14] for the baseline method, which is a highly optimized C++ library
for FBS. We also used TdZdd for the proposed method to construct ZDD ZF of base set.
Experiments are conducted on a single thread of a Linux machine with AMD EPYC 7763
2.45 GHz CPU and 2048 GB RAM; note that we used less than 256 GB of memory during
the experiments. We set the time limit of every run to 600 seconds.

We used both synthetic graphs and real benchmarks as tested graphs. The synthetic ones
are grid graphs; Grid-wxh represents a grid graph with w × h vertices. For the others, we
used the Rocketfuel [29] and Romegraph datasets [7]. Rocketfuel was also used in [22]. From
Romegraph, we chose all the graphs with n = 100: there were 140 such graphs. Identical
edge ordering was used for both methods, and it was decided as follows: For the grid graphs,
we used the edge ordering of Iwashita et al. [16], which is better for the DP on grid graphs.
For the other graphs, we used beam-search heuristics [13] to determine the edge ordering.

We evaluated four problem settings in Section 2: path, cycle, Steiner tree, and rooted
spanning forest (RSF). The given vertices for these settings were determined as follows.
Let d(v, v′) be the shortest distance between vertices v and v′. For the path problem, we
chose the most distant vertex pair as s, t, i.e., s, t satisfies d(s, t) = maxv,v′ d(v, v′). For the
cycle problem, we chose the graph center as s, i.e., s ∈ argminv maxv′ d(v, v′). For the other
problems, we chose four vertices as T such that the sum of the distances between distinct
vertices,

∑
v,v′∈T :v ̸=v′ d(v, v′), is maximized.

Table 2 shows the result for the grid graphs and the Rocketfuel dataset. For all the graphs
and problem settings solved by both methods within the time limit, the proposed method
ran about 10–20 times faster than the baseline method. The complexity analyses in Section 6



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:15

 0.01

 0.1

 1

 10

 100

 0.01 0.1  1  10  100

Path

#(solved) (out of 140):
Proposed: 138
Baseline: 126

P
ro

p
o
s
e
d
 m

e
th

o
d
 (

s
)

Baseline method (s)
 0.01 0.1  1  10  100

Cycle

#(solved) (out of 140):
Proposed: 138
Baseline: 126

Baseline method (s)
 0.01 0.1  1  10  100

Steiner tree

#(solved) (out of 140):
Proposed: 116
Baseline: 78

Baseline method (s)
 0.01 0.1  1  10  100

RSF

#(solved) (out of 140):
Proposed: 113
Baseline: 78

Baseline method (s)

Figure 3 Computational time for Romegraph dataset: Blue points indicate instances solved by
both methods, and red points indicate those solved only by proposed method. Solid black lines
indicate elapsed time for both methods is identical, and dashed lines indicate proposed method is 10
times faster than baseline method.

suggest that the proposed method becomes faster than the existing method when n is large.
Table 2 exhibits such a tendency. For example, for the Grid-8xh graphs, the proposed method
becomes much faster than the baseline method when n = 8h is increased. In addition, both
methods ran faster for graphs with smaller fw value, reflecting the complexity analyses.

Fig. 3 plots the result for the Romegraph dataset and also describes the number of graphs
solved by each method within the time limit. Here each point corresponds to a graph, where
the blue ones are those solved by both methods and the red ones are those solved only by
the proposed method. Although the computational time itself varied from less than 0.01 to
600 seconds, for almost all the graphs the proposed method ran about 10–20 times faster
than the existing method. This ratio is kept because the graphs all have the same number of
vertices: 100. We give detailed results for Romegraph in Appendix A.4.

8 Conclusion

We proposed a novel framework, compDP, for solving multiple subgraph counting problems
with similar connectivity constraints simultaneously. A complexity analysis showed that the
proposed method ran O(n) times faster than the baseline approach, and the experiments
revealed the proposed method’s efficiency.

As a future work, we will consider dealing with the reachability in directed graphs. There
are approaches for building BDDs of reachability constraints [19, 30], and we want to consider
whether they can be incorporated into our framework.
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A Appendix

A.1 Treatment of Degree 1 Vertices
As in Section 5.1, we can compute the count(v) value by focusing on the i-th level of Z where
v ∈ Fi. However, if v’s degree is 1, no such i exists. Let ei = {v, v′} be the only edge incident
to v. Then for i′ < i, v is not present in E≥i′ , and for i′ ≥ i, it is not present in E<i′ , so no
frontier contains v. Therefore, we have an alternative formula for computing count(v) like
Eq. (6). Let us focus on the i-th level where ei = {v, v′} is the only edge incident to v.

First, we address the case where the other endpoint, v′, is in Fi. Let n̂ ∈ Li be an
arbitrarily chosen i-th level node of Z. Since ei is the only edge incident to v, if ei is excluded,
v remains as an isolated vertex. Thus, if V ′

P ∗ ≠ ∅, constraint (#v) will never be satisfied.
Otherwise, if V ′

P ∗ = ∅, constraint (#v) is always satisfied. In this case, the set of paths
in RZ(r̂,⊤) that passes n̂ whose corresponding subgraph satisfies (#v), i.e., Rv,n̂, can be
written as RZ(r̂, n̂)⊔ {lo(n̂)} ⊔RZ(n̂−,⊤). The sum of their path products is n̂.p ·w−

ei
· n̂−.r

given that n̂− ̸= ⊥. If ei is included, v is connected with v′, and so condition (#v) is met
if and only if condition (#′

B) for B = n̂.comp[v′] is met. In this case, the set of paths
in RZ(r̂,⊤) that passes n̂ whose corresponding subgraph satisfies (#v) can be written as
RZ(r̂, n̂) ⊔ R+

n̂,n̂.comp[v′], where R+
n̂,B is the set of paths in Rn̂,B that passes through hi(n̂).

The sum of their path products is n̂.p · n̂.q+[n̂.comp[v′]] using the notion q+ introduced in
Section 5.2. The value count(v) can be computed by their sum over n̂ ∈ Li:

count(v) =
∑

n̂∈Li

n̂.p · n̂.q+[n̂.comp[v′]] +
{

0 (V ′
P ∗ ̸= ∅)∑

n̂∈Li:n̂− ̸=⊥ n̂.p · w−
ei
· n̂−.r (V ′

P ∗ = ∅)
. (10)

The remaining issue is how to cope with case v′ /∈ Fi. For it, we can assume v′ ∈ Fi+1;
otherwise, v′ is also a degree 1 vertex that means graph G consists of only ei since G is
connected, which is trivial. The case where ei is excluded is treated in the same way as
above. If ei is included, let n̂ be an arbitrary i-th level node of Z. Since v is connected
with v′, constraint (#v) is met if and only if constraint (#′

B) for B = n̂−.comp[v′] is met.
Therefore, the set of paths in RZ(r̂,⊤) that passes n̂ whose corresponding subgraph satisfies
(#v) can be written as RZ(r̂, n̂) ⊔ {hi(n̂)} ⊔ Rn̂+,n̂+.comp[v′], given that n̂+ ≠ ⊥. The sum of
their path products is n̂.p · w+

ei
· n̂+.q[n̂+.comp[v′]]. The value count(v) can be computed by
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Algorithm 3 Frontier-based search with subsetting for connectivity constraint P and
base ZDD ZF representing the base family of subgraphs F .

1 r̂.comp← {}, r̂.vset← P, r̂.base← r̂F (ZF ’s root), L1 ← {r̂}, Li ← ∅ (i = 2, . . . , m + 1)
2 for i← 1 to m do // ei = {v, v′}
3 foreach n̂ ∈ Li do
4 foreach f ∈ {−, +} do
5 n̂′ ← n̂

6 if f = + and i < lb(n̂′.base) then
7 n̂′ ← ⊥ and goto finish // No further subgraphs in F
8 if i = lb(n̂′.base) then
9 n̂′.base← (n̂′.base)f // base proceeds to child node

10 if n̂′.base = ⊥ then
11 n̂′ ← ⊥ and goto finish // No further subgraphs in F
12 if f = + and v, v′ ∈ Vn̂′.vset and n̂′.vset[v] ̸= n̂′.vset[v′] then
13 n̂′ ← ⊥ and goto finish // v and v′ must not be connected
14 foreach u ∈ {v, v′} \ Fi do // Vertices entering the frontier
15 n̂′.comp← n̂′.comp ∪ {{u}} // Add u as an isolated vertex
16 if f = + and n̂′.comp[v] ̸= n̂′.comp[v′] then // Connecting two components
17 Merge n̂′.comp[v] and n̂′.comp[v′] into one
18 if v ∈ Vn̂′.vset and v′ /∈ Vn̂′.vset then Add vertices in n̂′.comp[v′] to n̂′.vset[v]
19 if v /∈ Vn̂′.vset and v′ ∈ Vn̂′.vset then Add vertices in n̂′.comp[v] to n̂′.vset[v′]
20 foreach u ∈ {v, v′} \ Fi+1 do // Vertices leaving the frontier
21 if {u} ∈ n̂′.comp then // Component containing u leaves frontier
22 if u ∈ Vn̂′.vset and {u} /∈ n̂′.vset and {u, ∗} /∈ n̂′.vset then
23 n̂′ ← ⊥ and goto finish // u must be connected to w ∈ n̂′.vset[u]
24 Remove u from n̂′.comp and n̂′.vset if exists
25 if n̂′ ̸= ⊥ then
26 if i = m then n̂′ ← ⊤ // All conditions are meet
27 else if ∃n̂′′ ∈ Li+1 s.t. n̂′′.comp = n̂′.comp and n̂′′.vset = n̂′.vset and

n̂′′.base = n̂′.base then
28 n̂′ ← n̂′′ // Already generated node
29 else Li+1 ← Li+1 ∪ {n̂′} // Newly generated node
30 finish:
31 n̂f ← n̂′ // Set lo- or hi-child of n̂ to n̂′

count(v) =
∑

n̂∈Li:n̂+ ̸=⊥

n̂.p·w+
ei
·n̂+.q[n̂+.comp[v′]]+

{
0 (V ′

P ∗ ̸= ∅)∑
n̂∈Li:n̂− ̸=⊥ n̂.p · w−

ei
· n̂−.r (V ′

P ∗ = ∅)
. (11)

A.2 Pseudocode for FBS with Subsetting
Next we explain the subsetting [15], which is used for taking the set intersection of the ZDDs,
and describe the pseudocode for the FBS with subsetting. Given ZDD ZF that represents
the base set F and connectivity constraint P , it constructs a ZDD that represents F ∩ C(P ).
Starting with r̂F where r̂F is the root node of ZF , we traverse the lo-arc of ZF if ei is
excluded in the FBS and its hi-arc of if ei is included in the FBS. We now record the present
node in ZF as n̂.base for each node n̂. If it reaches ⊥ in ZF , there are no further subgraphs
in F , and so pruning is executed. Here we can identify the two nodes of Z if their base as
well as comp and vset are identical.

Based on these procedures, the FBS with subsetting can be described as Algorithm 3.
Here the red part is newly added elements that are not included in Algorithm 1. Note that
these codes are a bit complicated than the above explanation since we also cope with the
case where ZF is not normalized.
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A.3 Proof of Propositions in Complexity Analysis
Proof of Proposition 2. By storing comp and vset as an integer sequence whose length is
fw, as in the previous work [22], FBS with an intersection runs in O(fw · |Z|) time where Z

is the resultant ZDD. Since |Z| can be bounded by the product of |ZF | and |ZFBS(P )| [20],
|Z| = O(|ZF ||ZFBS(P ∗)|) in the proposed algorithm. For each node, p, r, and q[B] can be
computed in constant time, and there are at most fw sets in comp. Thus, the DP computation
is completed in O(fw · |Z|) time. The complete computation of count(v) can be done in
O(|Z|) time; by choosing i such that ei is the first edge containing v for every v, each level
of Z is scanned at most twice for computing count(v) for every v. ◀

Proof of Proposition 3. We consider the number of possible patterns for the comp and vset
pair. We focus on an i-th level. Since comp is simply a partition of Fi, the number of possible
patterns for it is D|Fi|. The number of possible patterns for vset can be bounded in two ways.
First, vset retains the information of how the components in vset are connected to each set
in P . Each component of comp is connected to at most one set in P , since if more than
two sets are connected, connectivity constraint P is violated. Since there are at most |Fi|
components, the number of vset patterns is bounded by (cP + 1)|Fi|, where +1 deals with the
case where no component is connected to any sets in P . Second, vset can be seen as retaining
the information of how the vertices in P are connected to the component in comp. Thus, the
number of vset patterns is bounded by (|Fi|+ 1)vP , where +1 deals with the case where a
vertex in P is not connected to any component in comp. To sum up, the number of patterns
of the comp and vset pair can be bounded by O(D|Fi| ·min{(cP + 1)|Fi|, (|Fi|+ 1)vP }).

Since there are m levels and |Fi| ≤ fw, the overall size is bounded by O(mDfw ·min{(cP +
1)fw, (fw + 1)vP }). ◀

Proof of Proposition 4. Since running Algorithm 1 with P ∗ and P ∗[] yields the same rep-
resenting family of sets, C(P ∗[]), we only have to address the number of patterns of comp and
vset. The only difference is that when running FBS with P ∗, we must determine which set
in vset has ∗. Since there are at most cP ∗ sets in vset, there will be at most cP ∗ patterns of
vset for a node in ZFBS(P ∗[]) when running FBS with P ∗. Thus, |ZFBS(P ∗)| ≤ cP ∗ |ZFBS(P ∗[])|
holds. ◀

A.4 Detailed Experimental Results for Romegraph Dataset
Next we describe a detailed experimental results for the Romegraph dataset, which has
140 graphs whose number of nodes is exactly 100. With beam-search heuristics [13], the
frontier width fw of each graph ranges from 6 to 14. The number of graphs per value of fw is
described in Table 3.

Table 3 also shows the number of graphs solved within the time limit for each method, each
problem setting, and each frontier width value. In addition, Fig. 4 plots the computational
time for the Romegraph dataset aggregated by frontier width fw. For both methods, the
graphs with a larger fw value are clearly difficult to solve, i.e., time-consuming; this outcome
reflects the complexity results in Section 6. However, our proposed method can also treat
graphs with a larger fw value than the baseline method. This again clearly indicates the
efficiency of our proposed method.
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Table 3 Comparison of the number of solved graphs in Romegraph dataset within time limit for
each frontier width.

Path Cycle Steiner tree RSF
fw #(graphs) Ours Base Ours Base Ours Base Ours Base
6 3 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 7 7
8 26 26 26 26 26 26 26 26 26
9 28 28 28 28 28 28 27 28 28
10 33 33 33 33 33 33 15 33 14
11 25 25 24 25 24 18 0 15 0
12 10 10 5 10 5 1 0 1 0
13 6 6 0 6 0 0 0 0 0
14 2 0 0 0 0 0 0 0 0

Total 140 138 126 138 126 116 78 113 78
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points indicate results of proposed method, and red points indicate results of baseline method.
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