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Abstract
We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem.
In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is
to minimize the maximum load over all blocks of the partition. We devise strategies for initial
partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the
previous state-of-the-art solver – based on greedy set covers – in both running time (two to four
orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy
approaches difficult to use for this problem is the high frequency of zero-gain moves, for which we
present and evaluate counteracting mechanisms.
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1 Introduction

In this paper, we propose and study greedy heuristics for a variant of hypergraph partitioning
named judicious partitioning [31], which has applications in load-balanced data distribution,
for example in phylogenetic inference [2, 29]. Given a hypergraph H = (V, E) and a number
of blocks k, the goal is to partition the nodes V into k disjoint non-empty blocks V1, . . . , Vk,
such that the maximum load across blocks is minimized. The load L(Vi) of a block Vi is
defined as the weight-sum of hyperedges intersecting Vi, i.e., L(Vi) =

∑
e∈E,|e∩Vi|>0 ω(e).

Contrary to the well-studied balanced partitioning problems with cut-based metrics [10,
23, 27, 14, 17, 15], the judicious variant does not impose a balance constraint on the blocks.
Instead, balance is integrated as part of the objective, in the gap between the minimum
and maximum load. Yet, just as the balanced variants the judicious partitioning problem is
NP-hard [28], such that we focus on heuristics.

Phylogenetic Background

Phylogenetic inference takes a multiple sequence alignment (MSA) as input and tries to
derive a phylogenetic tree, which is a strictly binary, unrooted tree that estimates the shared
evolutionary history of the input. A potential tree topology is scored via a phylogenetic
likelihood function (PLF) to estimate the likelihood of the tree, given the MSA. An MSA is a
set of n strings from the DNA alphabet (A, T, C, G) and gap-characters such that all strings
have the same length l and some distance function is minimized between pairs of strings.
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Figure 1 Number of calculations for the PLF with and without site repeats.

It can be thought of as an n× l matrix where the strings form the rows. A single column
of the MSA is called a site. To allow for different model parameters (e.g. different genes
that evolve at different rates), the sites are split into p disjoint partitions. Because only the
strings at the leaves are fixed, the likelihoods of all possible assignments of individual sites
at inner nodes have to be calculated under the parameter model(s) to find the likelihood of
the whole tree. This is computationally infeasible, so conditional likelihoods for each of the
4 possible characters at each individual site are calculated in a post-order traversal of the
tree and combined at the root. However, this still incurs a lot of computation and accounts
for 85-95% of total running time of phylogenetic inference tools. In Figure 1 the 4 MSA
strings represent the leaves of the proposed tree on the left. For example, at the parent of
CCC and GGG, the conditional likelihood for the first site asks for the likelihood of being
assigned to A, C, T or G respectively, given that the children are fixed to C and G. For site
1 at the root of this example, the conditional likelihood given that the characters of the first
site of the leaves are C, G, A and T, has to be calculated. This results in a total of 3 ∗ 3 = 9
conditional likelihood calculations for this tree. To parallelize the calculation of the PLF,
sites can be split across cores because per-site likelihood calculations are independent of
each other. Hence, we need to compute an assignment of sites to cores that minimizes load
imbalance. So far, splitting a partition between cores incurs redundant calculations for the
model parameters, but sites have equal costs.

The site repeats technique [24] is an optimization to eliminate redundant calculations. It
identifies repeating patterns (repeat classes) in parts of distinct sites such that intermediate
results can be reused among multiple sites, if they share the same partition and are assigned
to the same core (otherwise the results would need to be communicated between cores which
adds a scheduling component to the problem). This leads to varying costs for each site
in a partition and makes it significantly more difficult to establish load balance between
cores. Figure 1 shows an example of site repeats in a single partition that is assigned to a
single core. Reusing the results for the pairs C-G (dark red), T-C (blue) and the quadruple
C-G-T-C (orange) reduces the number of calculations to 5. Therefore, the goal is to assign
sites to cores such that the maximum load is as small as possible, and to keep redundant
calculations low, due to repeats split across different cores. Modeled as a hypergraph, each
site is a hypernode and each repeats class is a hyperedge. As each hyperedge counts once
towards the block-load, this corresponds to judicious partitioning.

Bottleneck Objectives

Objective functions where the value is obtained by taking the maximum across blocks are
called bottleneck objectives; another example is maximum communication volume, where
the maximum cut of edges from a block is minimized. These objectives are particularly
challenging for greedy local search heuristics, because all node moves that do not involve the
maximum load block do not change the objective function at all. Research on this problem
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has so far been focused on extremal results [5], particularly for special classes such as bounded
degree [7] or uniform hypergraphs [6, 19, 22]. We are only aware of one algorithm, that by Tan
et al. [31], and one publicly available implementation thereof called HyperPhylo [2], which
improves upon Tan et al.’s work via parallelization and several instance-specific optimizations.
Roughly speaking, the idea is to enumerate increasing objective values and determine via a
reduction to set cover whether a solution with this load exists. The resulting set cover is
then transformed to a node-partition with this load. The set cover problem is solved greedily,
which makes suboptimal solutions possible.

While there is only a small amount of literature on judicious partitioning, there is a vast
amount on cut-based partitioning. We refer to recent surveys [8, 27, 9] for a broad overview.
In this field, the most successful approaches are based on greedy heuristics, which motivates
our study in this paper.

Contributions

Despite the difficulties faced by greedy heuristics, we demonstrate that when combined, our
approaches significantly beat the existing state-of-the-art algorithm [2] both in terms of
objective value (between 18% - 45%) and execution time (between two and four orders of
magnitude). Our technical contributions are an iterative improvement algorithm inspired
by the classical FM local search [13] (described in Section 3), as well as three greedy
construction heuristics (Section 4). We show that randomized repetitions are a simple but
effective technique to improve the solution quality and deal with the issue of many zero-gain
moves to choose from during initial partitioning. Additionally, we considered a simple
tie-breaking scheme which favors more balanced loads, but show that it does not lead to
improved solutions. To address the issue of scalability of direct k-way initial partitioning for
large k, we show that recursive partitioning is a viable option for many types of hypergraphs,
but struggles with the class of regular hypergraphs that are encountered in data distribution
problems for phylogenetic inference. Furthermore, we integrate our approaches in a state-
of-the-art multilevel solver for balanced partitioning [16], leveraging its existing coarsening
algorithms to obtain a multilevel solver for judicious partitioning.

Outline

For each component, we conduct thorough experiments on configuration and design choices,
before comparing the full system with HyperPhylo in Section 5. In Section 2 we introduce
preliminaries, including experimental setup. Each algorithmic component description is
directly followed by evaluation and configuration experiments for said component, due to the
large number of parameters. Only the best performing configuration moves on to the next
section. We refrain from discussing the bio-informatics application in detail, and instead
refer to the HyperPhylo paper [2] which describes the connection in detail. In the same vein,
we do not conduct parallel phylogenetic inference simulations. Rather, we compare with
HyperPhylo in terms of objective values on their benchmark set.

2 Preliminaries

A weighted hypergraph H = (V, E, w) is defined as a set of nodes V and a set of hyperedges
E ⊆ 2|V | with hyperedge weights w : E → R>0. Let n := |V | and m := |E| denote the
number of nodes and hyperedges. Functions on sets of nodes or hyperedges are extended
to the sum over the set, e.g., w(T ) :=

∑
e∈T w(e) for T ⊆ E. The nodes of a hyperedge are

SEA 2023
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called its pins. A node v is called incident to a hyperedge e if v ∈ e. I(v) is the set of all
incident hyperedges of v and |I(v)| is the degree of v. By p =

∑
e∈E |e| =

∑
v∈V |I(v)|, we

denote the number of pins. Furthermore, we use [r] to denote [r] := {1, . . . r} for r ∈ N.

Partitions

A k-way partition is a surjective function Π : V → [k]. The blocks Vi := Π−1(i) of Π are the
inverse images. A 2-way partition is also called a bipartition.

The number of pins of a hyperedge e in block Vi is denoted by Φ(e, Vi) := |Vi ∩ e|.
For a block Vi, its load is defined as L(Vi) := w({e ∈ E | Φ(e, Vi) > 0}). In the judicious
partitioning problem, the goal is to minimize max(L(V1), . . . , L(Vk)), the maximum load
across blocks, which we also call the judicious load.

Node Moves: Penalties and Benefits

Our algorithms are based on node moves, i.e., reassigning a given node u from its current
block Π(u) = s to a different block Π(u) ← t. To calculate the difference in the objective
function, we use two terms: the benefit and penalties. The benefit of removing a node from
its current block is b(u) = w({e ∈ I(u) | Φ(e, Π(u)) = 1}), i.e., the weight of hyperedges e

for which u is the last pin in the block. The penalty for adding node u to a given target
block t is pt(u) = w({e ∈ I(u) | Φ(e, t) = 0}), i.e., the weight of hyperedges e which did not
intersect the block before, but will now. These values can be efficiently updated after a move,
see [26, 18] for more details, where they are used for cut-based objectives. The running time
for moving all nodes once with gain updates is O(pk).

Performance Profile Plots

To compare the solution quality of different algorithms, we use performance profiles [12].
Let A be the set of algorithms we want to compare, I the set of instances, and qA(I) the
maximum load of algorithm A ∈ A on instance I ∈ I. For each algorithm A, we plot the
fraction of instances (y-axis) for which qA(I) ≤ τ ·minA′∈A qA′(I), where τ is on the x-axis.
Achieving higher fractions at lower τ -values is considered better. For τ = 1, the y-value
indicates the percentage of instances for which an algorithm performs best.

Machine Setup

All experiments are run on an AMD EPYC Rome 7702P with 2x64 cores clocked at 2.0-3.35
GHz with 1024 GB DDR4 RAM at 3200 MHz. Our proposed algorithms are single-threaded.
The only parallelism used in our solver is during coarsening and for randomized repetitions
during initial partitioning. Coarsening usually has negligible running time, and in the main
experiments we use at most 5 repetitions. For HyperPhylo we used all 128 cores.

Benchmark Sets

We use two separate established benchmark sets for our experimental evaluations, which we
refer to as set A and set P. The input instances are unweighted, however during multilevel
coarsening hyperedges are aggregated and thus receive non-uniform weights.

Set A [21] consists of 488 real-world hypergraphs from different application domains
for cut-based hypergraph partitioning, such as VLSI design [32, 1], SAT solving [4], and
sparse matrices [11]. It is available from https://algo2.iti.kit.edu/schlag/sea2017/
in hMetis format [23]. The hypergraphs in set A contain between 6K - 100M pins, 160 - 13M
hyperedges and 7K - 13M nodes, with more detailed statistics available on the website.

https://algo2.iti.kit.edu/schlag/sea2017/
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Set P is derived from the data of Baar et.al. [2] used in their evaluation of HyperPhylo.
It consists of a total of 11 hypergraphs; 7 smaller hypergraphs derived from sequence data
from collaborative studies with biologists (prefixed with 59, 128 and 404 in our experiments)
[30] and 4 larger hypergraphs from the one thousand insect transcriptome evolution project
(the so called supermatrix, prefixed with sm in out experiments) [25]. An important property
of the hypergraphs of set P is that they are regular, i.e. all nodes have the same degree,
because each site has exactly one repeats class per inner node of the phylogenetic tree.
These instances are available from their repository at https://github.com/lukashuebner/
HyperPhylo. We converted these graphs to the hMetis format and made them available at
https://github.com/noahares/PhyloBenchmarkSet.

We predominantly use set A for configuration experiments, due to its size and variety
of hypergraphs. Set P is used to verify our results for these regular graphs, so we can later
use our best configuration for the comparison with HyperPhylo. We include results for set
P in our experimental sections alongside results on set A to show significant differences.
The horse-race comparison with HyperPhylo in Section 5 is conducted only on set P, since
HyperPhylo requires uniform node degrees (this is an implementation restriction to enable
some optimizations).

3 Iterative Improvement

In this section, we introduce our first algorithmic contribution, namely an iterative improve-
ment algorithm. To refine an initial partition we employ a local moving strategy similar to
FM [13]. The full algorithm is shown in Algorithm 1. Contrary to non-bottleneck objectives,
the only way to improve judicious load directly is to move nodes out of the block with
the highest load. Let us denote this block by Vs. The order in which nodes are moved is
prioritized by a gain function g defined in Equation 1, which represents the difference in load
if a node u ∈ Vs is moved to a different block Vt. In each step, we determine the highest gain
node u and associated target block t, see line 4 in Algorithm 1. We then move u from s to t

and update their loads.

g(u, t) =
{

b(u) if L(Vt) + pt(u) ≤ L(Vs)− b(u)
L(Vs)− L(Vt)− pt(u) else

(1)

There are three possible scenarios for the maximum load after a move. If Vs remains
the heaviest block, the load is decreased by b(u). Otherwise, if Vt becomes the new heaviest
block, then b(u) has no influence because we only care about by how much L(Vt) + pt(u)
differs from the prior maximum load L(Vs). Furthermore, let Vi be the block with the
highest load other than Vs. If L(Vs)− b(u) < L(Vi), the actual gain is additionally capped
at L(Vi)− L(Vs) + b(u), because Vi becomes the new highest load block. To encourage some
further optimization on Vs before moving on to Vi, we ignore this cap when calculating the
next move. However, if the target block Vt becomes the new heaviest block through the
move, the gain is negative, and we finish the optimization on Vs, see line 5.

In line 9, we update the gain values b(v), ps(v), pt(v) for neighbors v with {u, v} ⊂ e such
that Φ(e, s) ≤ 1 or Φ(e, t) = 1 (after the move). These are (almost) the same updates as
for the cut-based objectives, see for example [16, 27] for details (we can omit an update
for Φ(e, t) = 2). In the worst case, the total cost of updates across the entire run is O(kp),
but in practice we often observe behavior closer to O(p) since the average number of blocks
intersecting a hyperedge is close to constant. To determine the highest gain move, we use
one priority queue per target block, which we now update to reflect the new gain values of
neighbors after the move.
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Algorithm 1 Judicious FM.

1 while maxi∈[k](L(Vi)) > mini∈[k](L(Vi)) · δ do
2 s← arg maxi∈[k](L(Vi))
3 while maxi∈[k]−s(L(Vi)) < L(Vs) · γ do
4 (u, t)← arg maxv∈Vs,i∈[k]−s(g(v, i))
5 if g(u, t) < 0 then break
6 Π(u)← t

7 L(Vs)← L(Vs)− b(u)
8 L(Vt)← L(Vt) + pt(u)
9 run gain updates for neighbors of u

10 if s = arg maxi∈[k](L(Vi)) then break
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Figure 2 Performance profiles for varying
δ in judicious FM on set A.
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Figure 3 Performance profiles for varying
γ in judicious FM on set A.

We continue the inner loop at line 3 until Vs is no longer the block with the highest load,
subject to some relative margin γ > 1. This encourages further optimization on Vs and
avoids frequently alternating between the two highest loaded blocks. However, once Vs is
no longer the highest load block, we can worsen the solution (due to the ignored additional
cap). This happens for example when all blocks have similar loads. As mentioned, we thus
also break out of the loop once only negative gain moves remain.

We continue the outer loop (line 1) as long as there is a block with smaller load that can
take in new nodes, again subject to a relative margin parameter δ > 1. Notice that judicious
FM cannot achieve loads smaller than the initial minimum load. We experimented with
ideas to break out of local minima, but were unsuccessful. Thus, an important consideration
for initial partitioning heuristics is to produce solutions with a considerable gap between
minimum and maximum load.

Furthermore, notice that δ offers a trade-off between solution quality and running time,
where smaller values give better loads, but need to perform more optimization. We note
however, that, since we quickly steer into a local minimum, the running time of FM is usually
negligible compared to initial partitioning.

3.1 Experiments

In the following, we evaluate the impact of the two parameters γ and δ, as well as how much
judicious FM improves over the initial partition. For δ we expect small values to give the
best solutions, whereas for γ the picture is not as clear. We want the other heaviest block to
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Figure 4 Performance profiles for varying
δ in judicious FM on set P.
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Figure 5 Performance profiles for varying
γ in judicious FM on set P.

Table 1 Mean and percentile of the load achieved by judicious FM divided by the load of the
initial solutions.

mean gmean p10 p25 p50 p75 p90 max

1.43323 1.34457 1.05399 1.10473 1.21581 1.45799 1.89561 11.45786

be significantly heavier than the current one, to enable more improvement before we switch
blocks again. However, if the gap between minimum and maximum load is small, there is
not much room for improvement, and we are quickly left with only negative gains.

For both parameters, we tried the values 1.01, 1.05 and 1.1. We ran a quadratic grid-
search, but for readability the following figures display one parameter varied at a time, with
the other fixed to the best value. Figure 2 (set A) and Figure 4 (set P) demonstrate that
smaller values indeed perform better for δ. As the refinement scheme converges very quickly,
its running time is often negligible compared to initial partitioning, so we use δ = 1.01 in
the following. In Figure 5, we see that γ = 1.05 performs best for set P, whereas Figure 3
shows that there is no significant difference for set A. We observed that the inner loop is
more frequently terminated by negative gains than the stopping condition, which explains
this behavior.

Finally, in Table 1 we show average and percentile improvements over the initial solution,
that is the ratio between the load achieved by judicious FM divided by that of the initial
solution. We see a geometric mean improvement of 34.4% and a median of 21.5% from using
FM. These values are similar to what we can expect in cut-based partitioning [3]. The initial
solutions for these experiments were obtained with the best performing configuration for
initial partitioning from Section 4, which we discuss next.

4 Initial Partitioning

In this section, we present our greedy initial partitioning algorithms and evaluate their
performance. We start with an approach where we construct all k blocks at the same time,
and subsequently leverage the presented strategies as a subroutine for recursive partitioning.

SEA 2023
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4.1 Direct k-way Initial Partitioning

In initial partitioning, we start with all nodes unassigned and do not move already assigned
nodes (until the refinement stage later on).

Similar to FM, the order in which nodes are assigned is determined greedily via a loss
function ϱ(v, i). At each step, we determine the node and target block with the lowest loss,
and then update the unassigned nodes’ losses. The difference is that all nodes must be
moved (assigned) at the end. In the following we propose three strategies to define ϱ. Since
nodes are initially unassigned, the loss functions are not based on benefit values b(v) as in
the move gain, just penalty terms pt(v) are incorporated. The time complexity of all three
variants is O(log(n)(n + p)k). This bound stems from the updates to penalty values after an
assignment [26, 18], and the priority queue updates.

Penalty

In the penalty strategy, we use ϱ(v, t) = pt(v), i.e., the next node to be assigned has the
lowest pt(v) value globally. In this strategy, nodes are attracted to blocks that already
contain many of its neighbors. Thus, already highly loaded blocks are preferred. As we
do not impose a constraint on the block size or load, there is no mechanism to achieve a
balanced distribution of nodes, as we would need for the traditional balanced partitioning
problem. Despite this, it is an interesting strategy to consider, as it nudges the solution
into very different local minima than the following strategies, which focus more on balanced
blocks. While not competitive on the initial solutions, on some instances we observed better
solutions after FM refinement, because the gap between the minimum and maximum load is
wider, and thus the refinement has more room for improvement.

Block Load

In the block load strategy, we first select the currently lightest block t, and only then choose
the node v with minimal pt(v). The advantage over the penalty strategy is that it keeps
block loads evenly distributed. This comes at the cost of not considering good moves to
blocks that are not the lightest.

Judicious Increase

In the judicious increase strategy, the loss of assigning a node v to block t is ϱ(v, t) =
max(L(Vt) + pt(v) − maxi∈[k](L(Vi)), 0). It keeps balance in mind by trying to increase
the loads of all blocks evenly. Since this loss definition directly corresponds to the loss in
maximum load, we expected the judicious increase strategy to perform the best, which is
confirmed in the experiments. Yet, we decided to also evaluate the other two strategies as the
judicious increase strategy is particularly prone to long streaks of consecutive equal losses,
which makes it hard to distinguish between the different possible assignments to perform
next.

Furthermore, we investigate a simple tie-breaking scheme for the judicious increase
strategy. Allowing losses to become negative by omitting the outer max introduces tie-
breaking of zero-loss moves by L(Vt) + pt(v). Intuitively speaking, this optimizes for more
balanced loads, if we are not adding to the heaviest block.
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4.2 Randomization
We use priority queues for selecting the target block first and then the node to move to
that target block. Because all three strategies result in many equal loss-scores, the order in
which moves are chosen heavily depends on the order of insertions into the priority queues.
To break this dependency we introduce randomization, combined with multiple differently
seeded repetitions, to cover a variety of possible assignment sequences. We implement this
by attaching a randomly generated tag to each move added to a priority queue, which is used
as the secondary comparison criterion. The same approach can be used for choosing different
blocks in case of ties, to prevent assigning all nodes to one single block. Randomization and
repetitions result in significantly increased odds of finding a good initial partition.

4.3 Coarsening
One of the most important components in cut-based partitioning is the multilevel scheme [20].
Initial partitioning and iterative improvement are not run directly on the input hypergraph.
The hypergraph is iteratively coarsened by repeatedly contracting node clusters, which
approximately preserve the structure, until the hypergraph is fairly small. Each iteration
and associated hypergraph constitutes a level in the hierarchy. On the lowest level (the
smallest hypergraph) an initial partition is computed, which is then projected back through
the hierarchy, by assigning clustered nodes to the same block. Furthermore, iterative
improvement is run on each level.

While designed for cut-based objectives, this scheme is directly applicable to the judicious
partitioning problem, with a small modification. Hyperedges of size 1 cannot be removed,
since they still contribute to the volume of their pin’s block. To speed up the algorithmic
components, we still remove such hyperedges and track the removed volume at each node.

We stop coarsening (to transition into initial partitioning) once the current hypergraph
has less than C · k nodes, for a constant parameter C. This ensures, that we can place C

nodes in each block on average, and thus the optimization algorithms have some leeway. In
the following experiments we use C = 50, which was determined in preliminary experiments
that are omitted here. The multilevel scheme has two major advantages over flat partitioning:
iterative improvement can optimize the solution at different levels of granularity, and it is
substantially faster since initial partitioning runs on small inputs.

4.4 Experiments on Direct k-way Initial Partitioning
For the evaluation of our direct k-way initial partitioning strategies we expected the judicious
increase strategy to clearly outperform the other two. Figure 6 indeed shows a wide gap
between the strategies. However, we were also interested in the trade-off between load-
balanced initial partitions versus creating more room for improvement in the refinement
phase. Figure 7 initially shows potential for the penalty strategy combined with FM post-
processing, as it achieves more of the best solutions than the block-load strategy. However,
the curve remains flat, being overtaken by block-load at just the 1.01 mark, indicating that
on the solutions where the penalty strategy performs worse, it is significantly worse. On
set P, see Figures 8, 9, the results are even more clearly in favor of judicious increase. We
conclude that the judicious increase strategy produces the best k-way initial partitioning
results, and thus use it as the default algorithm from now. Note that there are only small
differences in running time between the strategies, which is why we omit plots for these here.

Next, we look at the effect of randomization on solution quality. This is shown in Figure 10.
We clearly see an improvement when using 5 repetitions, but diminishing returns for 10
repetitions. Hence, we use 5 repetitions as the default value from now.

SEA 2023
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Figure 6 Performance profiles for initial
partitioning strategies on set A.
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Figure 7 Performance profiles for ini-
tial partitioning strategies with FM post-
processing on set A.
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Figure 8 Performance profiles for initial
partitioning strategies on set P.
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Figure 9 Performance profiles for ini-
tial partitioning strategies with FM post-
processing on set P.

Lastly, Figure 11 shows that tie-breaking has no effect, neither positive nor negative.
We assume that this stems from the fact that more balanced solutions early on inhibit the
optimization potential of FM post-processing later on.

Still, we argue that there is a need for tie-breaking schemes. In Table 2 we report in how
many steps of the initial partitioning procedure the best loss value is zero for the supermatrix
instances of set P. There is a clear correlation between the number of zero loss moves and
k. This is expected, as there are more blocks that offer free assignments, before becoming
the new heaviest block. While for k = 48 only 10-20% of assignments have zero loss, for
k = 2048 it is 97%-99%. These results indicate that there is certainly a need to distinguish
zero-loss moves, but further investigation is needed to find better tie-breaking mechanisms.

4.5 Recursive Partitioning
The difficulty of many ties in the scores when constructing k-way partitions directly, was
already observed for cut-based objectives. There, the solution is to restrict the assignment
options by recursively bipartitioning on the coarsest graph, and transition to k-way local
search only in the uncoarsening phase. This yields better solution quality than direct k-
way [27] for initial partitions but we will show this is not the case for judicious partitioning.
One reason to still consider recursive partitioning is the improved time complexity of O(p log k)
compared to direct k-way’s complexity of O(pk).
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Table 2 Fraction of zero-loss assignments on supermatrix instances of set P for direct k-way
initial partitioning with the judicious increase strategy.

k graph |ϱ(v,t)=0|
#moves

48 sm_part1_170859 0.113
sm_part3_31854 0.151
sm_part12_20753 0.152
sm_part24_11756 0.212

160 sm_part1_170859 0.574
sm_part3_31854 0.602
sm_part12_20753 0.636
sm_part24_11756 0.725

k graph |ϱ(v,t)=0|
#moves

256 sm_part1_170859 0.762
sm_part3_31854 0.802
sm_part12_20753 0.825
sm_part24_11756 0.866

2048 sm_part1_170859 0.991
sm_part3_31854 0.984
sm_part12_20753 0.979
sm_part24_11756 0.976

In recursive bipartitioning, we first split into two blocks, then extract the sub-hypergraphs
induced by the two blocks, and recursively partition these, leading to a binary recursion
tree of depth ⌈log2(k)⌉ to obtain a k-way partition. There are several issues with recursive
partitioning, such as not optimizing the objective function directly, and the fact that splitting
a node pair is irreversible. On the judicious metric we note one additional problem, namely
if k is not a power of 2. Let k1 = ⌊k/2⌋, k2 = ⌈k/2⌉. We would need to target an imbalance
of (k1/k) to (k2/k) in the loads of the two blocks, in order to (let us say hand-wavingly)
pass load evenly down the recursion. Unfortunately, our algorithms are not designed for
this. Instead, we optimize for balanced load on bipartitions (using judicious FM at each
level), and assign the smaller number of final blocks k1 to the recursive call on the block
with smaller load. As additional base cases to the recursion, we perform direct 3-way or
5-way partitioning, which are the two cases with the highest required imbalance.

4.6 Experiments on Recursive Partitioning
In Figure 13, we show that direct k-way partitioning (DK) gives better solution quality than
recursive bipartitioning (RB) for initial partitioning on set P. On set A the situation is less
clear, see Figure 12, where recursive partitioning achieves more of the best solutions, but
direct k-way converges faster towards 1. It is unclear why we see such a large discrepancy
in initial judicious loads between the benchmark sets. Looking at geometric mean running
times on set A, we have 0.039s for direct k-way versus 0.29s for recursive partitioning with

SEA 2023
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Figure 12 Performance profiles for initial
partitioning judicious loads on set A.
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Figure 13 Performance profiles for initial
partitioning judicious loads on set P.

k = 48, 0.354s versus 0.622s with k = 160, and 0.96s versus 0.81s with k = 256. Recursive
partitioning becomes faster at k = 256, and for larger k there will be a point where flat
direct k-way is no longer feasible. On set P, the geometric mean time for all k is 0.1s for
recursive partitioning and 0.05s for direct k-way, and respectively 0.013s versus 0.017s for
k = 2048. We conclude that direct k-way partitioning is the method of choice over recursive
partitioning for initial judicious partitioning, as long as k is moderate.

5 Comparison to HyperPhylo

In this section, we evaluate the performance of our solver against that of HyperPhylo [2], the
existing state of the art for judicious partitioning. Our solver uses the multilevel scheme with
coarsening down to 50 · k nodes, flat k-way partitioning with the judicious increase strategy
on the coarsest hypergraph (randomization enabled, tie-breaking disabled), and refinement
with judicious FM (δ = 1.01, γ = 1.05) on each level.

Since the HyperPhylo implementation1 is restricted to instances with uniform node degree
(for optimization purposes), the comparison is restricted to set P. Table 3 shows loads and
running times for our solver, as well as loads and times relative to ours for HyperPhylo
(ours divided by HyperPhylo). Values below one thus correspond to cases where our solver
performed better. These are highlighted in bold. Cases with n ≤ k are omitted because the
optimal partition is to place each node in its own block, which is trivial.

The table is split into two parts: smaller instances at the top, and larger instances
(supermatrix) at the bottom, which are deemed most important. We see that our solver
outperforms HyperPhylo by a substantial margin in terms of running time and load in all
reported cases on the supermatrix instances. The running time improvements range from
two to four orders of magnitude, whereas the load improvements are between 18% to 45%.

On the seven smaller instances, our running time advantage is less pronounced. Hyper-
Phylo even beats our solver on 6 out of 21 runs, particularly for the largest value of k = 2048.
This is because larger values of k incur smaller maximum loads, which is an advantage of
HyperPhylo, since it enumerates increasing objective values. On the other hand, our initial
partitioning algorithms become slower, the larger k is, since there are more assignments to
evaluate in each step. The largest slowdown is a factor of 59 (50ms vs 3s) for the instance
404-1 with n = 2161 on k = 2048, where both solvers achieve maximum load 402. This value

1 https://github.com/lukashuebner/HyperPhylo

https://github.com/lukashuebner/HyperPhylo
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is the degree lower bound (each node must be assigned to one block), such that HyperPhylo
finishes in the first iteration, whereas our solver has to go through all optimization steps. In
terms of solution quality, our solver remains superior: it is beaten on only 4 out of 21 runs.

Table 3 Running times and loads of our solver versus HyperPhylo on benchmark set P. Values
where our solver performs better are highlighted in bold.

graph n m k our load our load
HyperPhylo our time [s] our time

HyperPhylo

59-s 160 671 48 77 1.35088 0.00450 0.15511
128-s 204 1170 48 167 1.06369 0.00648 0.34105

160 126 1.00000 0.01151 1.27943
404-s 588 2525 48 511 0.99031 0.05110 0.68127

160 438 1.08955 0.10469 7.47786
256 402 1.00000 0.12523 8.34880

128-0 857 10853 48 550 0.59524 0.02196 0.01923
160 289 0.54735 0.04136 0.04452
256 243 0.71261 0.05950 0.12501

404-l 2161 40648 48 1718 0.67162 0.14527 0.02432
160 879 0.75451 0.32195 0.07700
256 771 0.84262 0.46104 0.13795
2048 402 1.00000 3.09564 59.53160

59-l 2183 10205 48 359 0.67608 0.02833 0.03818
160 164 0.70386 0.05991 0.14332
256 129 0.73295 0.09367 0.29363
2048 57 0.98276 1.23261 51.35861

128-l 2933 23618 48 1023 0.69782 0.07136 0.01432
160 466 0.71472 0.17621 0.04306
256 370 0.68773 0.25684 0.06748
2048 204 1.22156 2.18591 2.41271

sm_part24_11756 11756 99713 48 5814 0.71355 0.44393 0.00137
160 2436 0.61702 0.90976 0.00307
256 1714 0.61324 1.83163 0.00635
2048 431 0.55256 9.69627 0.04347

sm_part12_20753 20753 163514 48 8018 0.70968 0.76193 0.00120
160 3331 0.63255 1.28946 0.00225
256 2365 0.59707 2.20258 0.00393
2048 567 0.60512 17.96227 0.04103

sm_part3_31854 31854 185662 48 9107 0.71126 1.03926 0.00121
160 3902 0.66474 1.91767 0.00247
256 2691 0.65110 2.64924 0.00352
2048 646 0.62056 27.02443 0.04377

sm_part1_170859 170859 196836 48 11515 0.82174 3.33007 0.00065
160 5104 0.81209 5.27129 0.00107
256 3778 0.76493 7.45439 0.00152
2048 956 0.74339 98.21790 0.02070

SEA 2023
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6 Conclusion and Future Work

In this paper, we designed and evaluated a set of greedy heuristics for the judicious hypergraph
partitioning problem, namely an iterative improvement algorithm based on FM, and three
initial partitioning strategies. We argued that greedy heuristics face severe challenges (such
as equal gains/losses and scalability issues), and presented remedies such as randomization,
tie-breaking and recursive partitioning. While these did not work as well as intended, we
demonstrate nonetheless that combined with the multilevel framework, our algorithms are
faster (two to four orders of magnitude) and yield substantially better solution quality (18%
to 45%) than the previous state-of-the-art algorithm.

Future work should focus on ways to escape local minima during refinement (such as
simulated annealing), ideas such as higher level gains as tie-breakers for the issue with many
equal gains, as well as parallelization. Furthermore, we are interested in evaluating the
impact of our approach on applications, such as the phylogenetic inference application that
motivated HyperPhylo [2].
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