
Fast Reachability Using DAG Decomposition
Giorgos Kritikakis #

Univeristy of Crete, Heraklion, Greece

Ioannis G. Tollis #

Univeristy of Crete, Heraklion, Greece

Abstract
We present a fast and practical algorithm to compute the transitive closure (TC) of a directed
graph. It is based on computing a reachability indexing scheme of a directed acyclic graph (DAG),
G = (V, E). Given any path/chain decomposition of G we show how to compute in parameterized
linear time such a reachability scheme that can answer reachability queries in constant time. The
experimental results reveal that our method is significantly faster in practice than the theoretical
bounds imply, indicating that path/chain decomposition algorithms can be applied to obtain fast
and practical solutions to the transitive closure (TC) problem. Furthermore, we show that the
number of non-transitive edges of a DAG G is ≤ width ∗ |V | and that we can find a substantially
large subset of the transitive edges of G in linear time using a path/chain decomposition. Our
extensive experimental results show the interplay between these concepts in various models of DAGs.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains; Theory of computation → Design and analysis of algorithms

Keywords and phrases graph algorithms, hierarchy, directed acyclic graphs (DAG), path/chain
decomposition, transitive closure, transitive reduction, reachability, reachability indexing scheme

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.2

Related Version Full Version: https://arxiv.org/abs/2212.03945

Supplementary Material Software (Source Code): https://github.com/GiorgosKritikakis/On
GraphHierarchies

1 Introduction

The problem of computing reachability information or a transitive closure of a directed graph
is fundamental in computer science and has a wealth of applications. Formally, given a
directed graph G = (V, E), the transitive closure of G, denoted as G*, is a graph (V, E*) such
that E* contains all edges in E, and for any pair of vertices u, v ∈ V , if there exists a directed
path from u to v in G, then there is a directed edge from u to v in E*. An edge (v1, v2) of a
DAG G is transitive if there is a path longer than one edge that connects v1 and v2. Given a
directed graph with cycles, we can find the strongly connected components (SCC) in linear
time and collapse all vertices of a SCC into a supernode. Hence, any reachability query can
be reduced to a query in the resulting Directed Acyclic Graph (DAG). Additionally, DAGs
are very important in many applications in several areas of research and business because
they often represent hierarchical relationships between objects in a structure. Any DAG
can be decomposed into vertex disjoint paths or chains. In a path every vertex is connected
to its successor by an edge, while in a chain any vertex is connected to its successor by a
directed path, which may be an edge. A path/chain decomposition is a set of vertex disjoint
paths/chains that cover all the vertices of a DAG.

The width of a DAG G = (V, E) is the maximum number of mutually unreachable vertices
of G [8]. An optimum chain decomposition of a DAG G contains the minimum number of
chains, k, which is equal to the width of G. In Section 2 we present experimental results
that show the behavior of the width of DAGs as they become larger and/or denser. Due to

© Giorgos Kritikakis and Ioannis G. Tollis;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georgecretek@gmail.com
https://orcid.org/0000-0002-6223-0421
mailto:tollis@csd.uoc.gr
https://orcid.org/0000-0002-5507-7692
https://doi.org/10.4230/LIPIcs.SEA.2023.2
https://arxiv.org/abs/2212.03945
https://github.com/GiorgosKritikakis/OnGraphHierarchies
https://github.com/GiorgosKritikakis/OnGraphHierarchies
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Fast Reachability Using DAG Decomposition

the multitude of applications there are several algorithms to find a chain decomposition of a
DAG, see for example [16, 9, 7, 22, 4, 5, 18, 26]. Some of them find the optimum and some
are heuristics. Generally speaking the algorithms that compute the optimum take more than
linear time and use flow techniques which are often heavy and complicated to implement. On
the other hand, for several practical applications it is not necessary to compute an optimum
chain decomposition.

We consider reachability mainly for the static case, i.e., when the graph does not change.
The question of whether an arbitrary vertex v can reach another arbitrary vertex u can be
answered in linear time by running a breadth-first or depth-first search from v, or it can be
answered in constant time after a reachability indexing scheme, or transitive closure of the
graph has been computed. The transitive closure of a graph can be computed in O(nm)
time by starting a breadth-first or depth-first search from each vertex. Alternatively, one
can use the Floyd-Warshall algorithm [12] which runs in O(n3), or solutions based on matrix
multiplication [24]. Currently, the best known bound on the asymptotic complexity of a matrix
multiplication algorithm O(n2.3728596) time [2]. An algorithm with complexity O(n2.37188)
was very recently announced in a preprint [10]. However, this and similar improvements to
Strassen’s Algorithm are not used in practice because the constant coefficient hidden by the
notation are extremely large. Here we focus on computing a reachability indexing scheme in
almost linear time. Notice that we do not explicitly compute the transitive closure matrix of
a DAG. The matrix can be easily computed from the reachability indexing scheme in O(n2)
time (constant time per entry).

(a) A path decomposition of a
graph consisting of 4 paths.

(b) A chain decomposition of a
graph consisting of 2 chains.

Figure 1 Path and chain decomposition of an example graph.

In this paper we present a practical algorithm to compute a reachability indexing scheme
(or the transitive closure information) of a DAG G = (V, E), utilizing a given path/chain
decomposition (i.e., the DAG and a path/chain decomposition are given as input to the

G. Kritikakis and I. G. Tollis 2:3

algorithm). The scheme can be computed in parameterized linear time, where the parameter
is the number, kc, of paths/chains in the given decomposition. The scheme can answer
any reachability query in constant time. Let Etr, Etr ⊂ E, denote the set of transitive
edges and Ered, Ered = E − Etr, denote the set of non-transitive edges of G. We show that
|Ered| ≤ width∗|V | and that we can compute a substantially large subset of Etr in linear time
(see Section 3). This implies that any DAG can be reduced to a smaller DAG that has the
same TC in linear time. Consequently, several hybrid reachability algorithms will run much
faster in practice. The time complexity to produce the scheme is O(|Etr|+kc ∗|Ered|), and its
space complexity is O(kc ∗ |V |) (see Section 4). Our experimental results reveal the practical
efficiency of this approach. In fact, the results show that our method is substantially better
in practice than the theoretical bounds imply, indicating that path/chain decomposition
algorithms can be used to solve the transitive closure (TC) problem. Clearly, given the
reachability indexing scheme the TC matrix can be computed in O(|V |2) time.

2 Width of a DAG and Decomposition into Paths/Chains

In this section, we briefly describe some categories of path and chain decomposition techniques
and show experimental results for the width in different graph models. We focus on fast and
practical path/chain decomposition heuristics. There are two categories of path decomposition
algorithms, Node Order Heuristic, and Chain Order Heuristic, see [16]. The first constructs
the paths one by one, while the second creates the paths in parallel. The chain-order heuristic
starts from a vertex and extends the path to the extent possible. The path ends when no
more unused immediate successors can be found. The node-order heuristic examines each
vertex (node) and assigns it to an existing path. If no such path exists, then a new path is
created for the vertex. In addition to path-decomposition algorithm categorization, Jagadish
in [16] describes chain decomposition heuristics. Those heuristics run in O(n2) time using a
pre-computed transitive closure, which is not linear, and we will not discuss them further.

In [19], a chain decomposition technique was introduced that runs in O(|E|+ c ∗ l) time,
where c is the number of path concatenations, and l is the length of a longest path of the
DAG. This approach relies on path concatenation. We can concatenate two paths/chains into
a single chain if there is a path between the last vertex of one chain and the first vertex of
another chain. This algorithm produces decompositions that are very close to the optimum,
and its worst-case time complexity is the same as the algorithms that construct simple path
decomposition. The above techniques have been tested in practice, and we can utilize any
of these approaches to build a chain decomposition in linear or almost linear time, see [19].
In the next sections, we describe how fast chain decomposition algorithms can enhance
transitive closure solutions, and present in detail an indexing scheme.

In the rest of this section, we present results that reveal the behavior of the width as
the graph density increases. We use three different random graph models implemented in
networkx : Erdős-Rényi [11], Barabasi-Albert [3], and Watts-Strogatz [28] models. The
generated graphs are made acyclic, by orienting all edges from low to high ID number, see the
documentation of networkx [14] for more information about the generators. For every model,
we created 12 types of graphs: Six types of 5000 nodes and six types of 10000 nodes, both
with average degrees 5, 10, 20, 40, 80, and 160. We used different average degrees in order
to have results for various sizes and densities. All experiments were conducted on a simple
laptop PC (Intel(R) Core(TM) i5-6200U CPU, with 8 GB of main memory). Our algorithms
have been developed as stand-alone java programs and were run on multiple copies of graphs.
We observed that the graphs generated by the same generator with the same parameters

SEA 2023

2:4 Fast Reachability Using DAG Decomposition

Table 1 The width of the graph in three different networkx models as the density increases for
graphs of 5000 nodes.

|V | = 5000
Av. Degree 5 10 20 40 80 160

BA
Width 1593 1018 623 320 187 163

ER
Width 785 403 217 110 56 33

WS, b=0.9
Width 560 187 54 22 17 15

WS, b=0.3
Width 9 4 4 4 4 4

have small width deviation. For example, the percentage of deviation on ER is about 5%
and for the BA model is less than 10%. The width deviation of the graphs in the WS model
is a bit higher, but this is expected since the width of these graphs is significantly smaller.
The aim of our experiments is to understand the behavior of the width of DAGs created
in different models. Tables 1 and 2 show the width (computed by Fulkerson’s method) for
graphs of 5000 nodes and 10000 nodes, respectively.

Random Graph Generators.
Erdős-Rényi (ER) model [11]: The generator returns a random graph Gn,p, where n

is the number of nodes and every edge is formed with probability p.
Barabási–Albert (BA) model [3]: preferential attachment model: A graph of n nodes
is grown by attaching new nodes each with m edges that are preferentially attached to
existing nodes with high degree. The factors n and m are parameters to the generator.
Watts–Strogatz (WS) model [28]: small-world graphs: First it creates a ring over n

nodes. Then each node in the ring is joined to its k nearest neighbors. Then shortcuts
are created by replacing some edges as follows: for each edge (u, v) in the underlying
“n-ring with k nearest neighbors” with probability b replace it with a new edge (u, w) with
uniformly random choice of an existing node w. The factors n, k, b are the parameters of
the generator.

Understanding the width in DAGS. In order to understand the behavior of the width of
DAGs of these random graph models we observe: (i) the BA model produces graphs with a
larger width than ER, and (ii) the ER model creates graphs with a larger width than WS.
For the WS model, we created two sets of graphs: The first has probability b = 0.9 and the
second has b = 0.3. Clearly, if the probability b of rewiring an edge is 0, the width would
be one, since the generator initially creates a path that goes through all vertices. As the
rewiring probability b grows, the width grows. That is the reason we choose a low and a
high probability. Figures 2a and 2b, are derived from Tables 1 and 2, and demonstrate the
behavior of the width for each model on the graphs of 5000 and 10000 nodes. Please notice
that in almost all model graphs (except for WS with b = 0.3) the width of a DAG decreases
fast as the density of the DAG increases. As a matter of fact, it is interesting to observe that
the width of the ER model graphs is proportional to Number of nodes

average degree . The width of the
BA model graphs is clearly higher, but it follows a similar trend.

G. Kritikakis and I. G. Tollis 2:5

(a) The width curve on graphs of 5000 nodes.

(b) The width curve on graphs of 10000 nodes.

Figure 2 The width curve on graphs of 5000 and 10000 nodes using three different models.

SEA 2023

2:6 Fast Reachability Using DAG Decomposition

Table 2 The width of the graph in three different networkx models as the density increases on
graphs of 10000 nodes.

|V | = 10000
Av. Degree 5 10 20 40 80 160

BA
Width 3282 2066 1172 678 351 198

ER
Width 1561 802 409 219 110 58

WS, b=0.9
Width 1101 378 93 27 20 18

WS, b=0.3
Width 12 4 4 4 4 4

3 DAG Reduction for Faster Transitivity

The importance of removing transitive edges in order to create an abstract graph utilizing
paths and chains was first described in [20]. Their focus was on graph visualization techniques,
while in this paper we apply a similar abstraction to solve the transitive closure problem.
This concept of abstraction or reduction of a DAG may be useful in several applications
beyond transitive closure or reachability. Therefore we state the following useful lemmas and
Theorem 3:

▶ Lemma 1. Given a chain decomposition D of a DAG G = (V, E), each vertex vi ∈ V ,
0 ≤ i < |V |, can have at most one outgoing non-transitive edge per chain.

Proof. Given a graph G(V, E), a decomposition D(C1, C2, ..., Ckc
) of G, and a vertex v ∈ V ,

assume vertex v has two outgoing edges, (v, t1) and (v, t2), and both t1 and t2 are in chain
Ci. The vertices are in ascending topological order in the chain by definition. Assume t1 has
a lower topological rank than t2. Thus, there is a path from t1 to t2, and accordingly a path
from v to t2 through t1. Hence, the edge (v, t2) is transitive. See Figure 3a. ◀

▶ Lemma 2. Given a chain decomposition D of a DAG G = (V, E), each vertex vi ∈ V ,
0 ≤ i < |V |, can have at most one incoming non-transitive edge per chain.

Proof. Similar to the proof of Lemma 1, see Figure 3b. ◀

▶ Theorem 3. Let G = (V, E) be a DAG with width w. The non-transitive edges of G are
less than or equal to width ∗ |V |, in other words |Ered| = |E| − |Etr| ≤ width ∗ |V |.

Proof. Given any DAG G and its width w, there is a chain decomposition of G with w number
of chains. By Lemma 1, every vertex of G could have only one outgoing, non-transitive
edge per chain. The same holds for the incoming edges, according to Lemma 2. Thus the
non-transitive edges of G are bounded by width ∗ |V |. ◀

An interesting application of the above is that we can find a significantly large subset
of Etr in linear time as follows: Given any chain (or path) decomposition with kc chains,
we can trace the vertices and their outgoing edges and keep the edges that point to the
lowest point of each chain, rejecting the rest as transitive. We do the same for the incoming
edges keeping the edges that come from the highest point (i.e., the vertex with the highest
topological rank) of each chain. In this fashion we find a superset of Ered, call it E′

red, in

G. Kritikakis and I. G. Tollis 2:7

(a) (b)

Figure 3 The light blue edges are transitive. (a) shows the outgoing transitive edges that end in
the same chain. (b) shows the incoming transitive edges that start from the same chain.

linear time. Equivalently, we can find E′
tr = E − E′

red. E′
tr is a significantly large subset of

Etr since |E − E′
tr| = |E′

red| ≤ kc ∗ |V |. Clearly, this approach can be used as a linear-time
preprocessing step in order to substantially reduce the size of any DAG while keeping the
same transitive closure as the original DAG G. Consequently, this will speed up every
transitive closure algorithm bounding the number of edges of any input graph, and the
indegree and outdegree of every vertex by kc. For example, algorithms based on tree cover,
see [1, 6, 25, 27], are practical on sparse graphs and can be enhanced further with such
a preprocessing step that removes transitive edges. Additionally, this approach may have
practical applications in dynamic or hybrid transitive closure techniques: If one chooses to
answer queries online by using graph traversal for every query, one could reduce the size
of the graph with a fast (linear-time) preprocessing step that utilizes chains. Also, in the
case of insertion/deletion of edges one could quickly decide if the edges to add or remove
are transitive. Transitive edges do not affect the transitive closure, hence no updates are
required. This could be practically useful in dynamic insertion/deletion of edges.

4 Reachability Indexing Scheme

In this section, we present an important application that uses a chain decomposition of a
DAG. Namely, we solve the transitive closure problem by creating a reachability indexing
scheme that is based on a chain decomposition and we evaluate it by running extensive
experiments. Our experiments shed light on the interplay of various important factors as the
density of the graphs increases.

Jagadish described a compressed transitive closure technique in 1990 [16] by applying
an indexing scheme and simple path/chain decomposition techniques. His method uses
successor lists and focuses on the compression of the transitive closure. Thus his scheme does
not answer queries in constant time. Simon [23], describes a technique similar to [16]. His
technique is based on computing a path decomposition, thus boosting the method presented

SEA 2023

2:8 Fast Reachability Using DAG Decomposition

in [13]. The linear time heuristic used by Simon is similar to the Chain Order Heuristic
of [16]. A different approach is a graph structure referred to as path-tree cover introduced
in [17], similarly, the authors utilize a path decomposition algorithm to build their labeling.

In the following subsections, we describe how to compute an indexing scheme in O(|Etr|+
kc ∗ |Ered|) time, where kc is the number of chains (in any given chain decomposition) and
|Ered| is the number of non-transitive edges. Following the observations of Section 3, the time
complexity of the scheme can be expressed as O(|Etr|+kc∗|Ered|) = O(|Etr|+kc∗width∗|V |)
since |Ered| ≤ width ∗ |V |. Using an approach similar to Simon’s [23] our scheme creates
arrays of indices to answer queries in constant time. The space complexity is O(kc ∗ |V |).

For our experiments, we utilize the chain decomposition approach of [19], which produces
smaller decompositions than previous heuristic techniques, without any considerable run-time
overhead. Additionally, this heuristic, called NH_conc, will perform better than any path
decomposition algorithms as will be explained next. Thus the indexing scheme is more
efficient both in terms of time and space requirements. Furthermore, the experimental work
shows that, as expected, the chains rarely have the same length. Usually, a decomposition
consists of a few long chains and several short chains. Hence, for most graphs it is not even
possible to have |Ered| = width ∗ |V |, which assumes the worst case for the length of each
chain. In fact, |Ered| is usually much lower than that and the experimental results presented
in Tables 3 and 4 confirm this observation in practice.

Given a directed graph with cycles, we can find the strongly connected components (SCC)
in linear time. Since any vertex is reachable from any other vertex in the same SCC (they
form an equivalence class), all vertices in a SCC can be collapsed into a supernode. Hence,
any reachability query can be reduced to a query in the resulting directed acyclic graph
(DAG). This is a well-known step that has been widely used in many applications. Therefore,
without loss of generality, we assume that the input graph to our method is a DAG. The
following general steps describe how to compute the reachability indexing scheme:
1. Compute a Chain decomposition
2. Sort all Adjacency Lists
3. Create an Indexing Scheme
In Step 1, we use our chain decomposition technique that runs in O(|E| + c ∗ l) time. In
Step 2, we sort all the adjacency lists in O(|V |+ |E|) time. Finally, we create an indexing
scheme in O(|Etr|+ kc ∗ |Ered|) time and O(kc ∗ |V |) space. Clearly, if the algorithm of Step
1 computes fewer chains then Step 3 becomes more efficient in terms of time and space.

4.1 The Indexing Scheme
Given any chain decomposition of a DAG G with size kc, an indexing scheme will be computed
for every vertex that includes a pair of integers and an array of size kc of indexes. A small
example is depicted in Figure 4. The first integer of the pair indicates the node’s chain and
the second its position in the chain. For example, vertex 1 of Figure 4 has a pair (1, 1). This
means that vertex 1 belongs to the 1st chain, and it is the 1st element in it. Given a chain
decomposition, we can easily construct the pairs in O(|V |) time using a simple traversal of
the chains. Every entry of the kc-size array represents a chain. The i-th cell represents the
i-th chain. The entry in the i-th cell corresponds to the lowest point of the i-th chain that
the vertex can reach. For example, the array of vertex 1 is [1, 2, 2]. The first cell of the array
indicates that vertex 1 can reach the first vertex of the first chain (can reach itself, reflexive
property). The second cell of the array indicates that vertex 1 can reach the second vertex
of the second chain (There is a path from vertex 1 to vertex 7). Finally, the third cell of the
array indicates that vertex 1 can reach the second vertex of the third chain.

G. Kritikakis and I. G. Tollis 2:9

Figure 4 An example of an indexing scheme.

Notice that we do not need the second integer of all pairs. If we know the chain a vertex
belongs to, we can conclude its position using the array. We use this presentation to simplify
the understanding of the users.

The process of answering a reachability query is simple. Assume, there is a source vertex
s and a target vertex t. To find if vertex t is reachable from s, we first find the chain of t, and
we use it as an index in the array of s. Hence, we know the lowest point of t’s chain vertex s

can reach. s can reach t if that point is less than or equal to t’s position, else it cannot.

4.2 Sorting Adjacency lists
Next, we use a linear time algorithm to sort all the adjacency lists of immediate successors in
ascending topological order. See Algorithm 2 in Appendix A.2. The algorithm maintains a
stack for every vertex that indicates the sorted adjacency list. Then it traverses the vertices
in reverse topological order, (vn, ..., v1). For every vertex vi, 1 ≤ i ≤ n, it pushes vi into
all immediate predecessors’ stacks. This step can be performed as a preprocessing step,
even before receiving the chain decomposition. To emphasize its crucial role in the efficient
creation of the indexing scheme, if the lists are not sorted then the second part of the time
complexity would be O(kc ∗ |E|) instead of O(kc ∗ |Ered|).

4.3 Creating the Indexing Scheme
Now we present Algorithm 1 that constructs the indexing scheme. The first for-loop initializes
the array of indexes. For every vertex, it initializes the cell that corresponds to its chain. The
rest of the cells are initialized to infinity. The indexing scheme initialization is illustrated in
Figure 5. The dashes represent the infinite values. Notice that after the initialization, the
indexes of all sink vertices have been calculated. Since a sink has no successors, the only
vertex it can reach is itself.

The second for-loop builds the indexing scheme. It goes through vertices in descending
topological order. For each vertex, it visits its immediate successors (outgoing edges) in
ascending topological order and updates the indexes. Suppose we have the edge (v, s), and
we have calculated the indexes of vertex s (s is an immediate successor of v). The process

SEA 2023

2:10 Fast Reachability Using DAG Decomposition

Algorithm 1 Indexing Scheme.

1: procedure Create Indexing Scheme(G, T, D)
INPUT: A DAG G = (V, E), a topological sorting T of G, and the decomposition D of
G.

2: for each vertex: vi ∈ G do
3: vi.indexes ← new table[size of D]
4: vi.indexes.fill(∞)
5: ch_no← vi’s chain index
6: pos← vi’s chain position
7: vi.indexes[ch_no]← pos

8: end for
9: for each vertex vi in reverse topological order do

10: for each adjacent target vertex t of vi in ascending topological order do
11: t_ch← chain index of t

12: t_pos← chain position of t

13: if t_pos < vi.indexes[t_ch] then ▷ (vi, t) is not transitive
14: vi.updateIndexes(t.indexes)
15: end if
16: end for
17: end for
18: end procedure

Figure 5 Initialization of indexes.

G. Kritikakis and I. G. Tollis 2:11

of updating the indexes of v with its immediate successor, s, means that s will pass all its
information to vertex v. Hence, vertex v will be aware that it can reach s and all its successors.
Assume the array of indexes of v is [a1, a2, ..., akc

] and the array of s is [b1, b2, ..., bkc
]. To

update the indexes of v using s, we merely trace the arrays and keep the smallest values.
For every pair of indexes (ai, bi), 0 ≤ i < kc, the new value of ai will be min{ai, bi}. This
process needs kc steps.

▶ Lemma 4. Given a vertex v and the calculated indexes of its successors, the while-loop
of Algorithm 1 (lines 10-17) calculates the indexes of v by updating its array with its non-
transitive outgoing edges’ successors. (Proof in Appendix A.1).

Combining the previous algorithms and results we conclude this section with the following:

▶ Theorem 5. Let G = (V, E) be a DAG. Algorithm 1 computes an indexing scheme for G

in O(|Etr|+ kc ∗ |Ered|) time. (Proof in Appendix A.1).

As described in the introduction, a parameterized linear-time algorithm for computing the
minimum number of chains was recently presented in [5]. Its time complexity is O(k3|V |+|E|)
where k is the minimum number of chains, which is equal to the width of G. If we use
this chain decomposition as input to Algorithm 1 it computes an indexing scheme for G in
parameterized linear time. This implies that the transitive closure of G can be computed in
parameterized linear time. Hence we have the following:

▶ Corollary 6. Let G = (V, E) be a DAG. Algorithm 1 can be used to compute an indexing
scheme for G in parameterized linear time. Hence the transitive closure of G can be computed
in parameterized linear time.

4.4 Experimental Results
We conducted experiments using the same graphs of 5000 and 10000 nodes as we described
in Section 2 that were produced by the four different models of Networkx [14] and the Path-
Based model of [21]. We computed a chain decomposition using the algorithm introduced
in [19], called NH_conc, and created an indexing scheme using Algorithm 1. For simplicity,
we assume that the adjacency lists of the input graph are sorted, using Algorithm 2, as a
preprocessing step. We report our experimental results in Tables 3 and 4 for graphs with
5000 nodes and graphs with 10000 nodes, respectively.

In theory, the phase of the indexing scheme creation needs O(|Etr|+ kc ∗ |Ered|) time.
However, the experimental results shown in the tables reveal some interesting (and expected)
findings in practice: As the average degree increases and the graph becomes denser, (a)
the cardinality of Ered remains almost stable; and (b) the number of chains decrease. The
observation that the number of non-transitive edges, Ered, does not vary significantly as
the average degree increases, implies that the number of transitive edges, |Etr|, increases
proportionally to the increase in the number of edges, since (Etr = E − Ered). Since the
algorithm merely traces in linear time the transitive edges, the growth of |Etr| affects the run
time only linearly. As a result, the run time of our technique does not increase significantly
as the the size (number of edges) of the input graph increases. In order to demonstrate this
fact visually, we show the curves of the running time for the graphs of 10000 nodes produced
by the ER model in Figure 6 (see Appendix A). The flat (blue line) represents the run time
to compute the indexing scheme, and the curve (red line) the run time of the DFS-based
algorithm for computing the transitive closure (TC). Clearly, the time of the DFS-based
algorithm increases as the average degree increases, while the time of the indexing scheme is
a straight line almost parallel to the x-axis. All models of Tables 3 and 4 follow this pattern.

SEA 2023

2:12 Fast Reachability Using DAG Decomposition

Table 3 Experimental results for the indexing scheme for graphs of 5000 nodes.

|V | = 5000

Average
Degree

Number
of
Chains

|Etr| |Ered| |Etr|/|E|
NH_conc

Time
(ms)

Indexing
Scheme
Time
(ms)

Total
time
(ms)

TC

BA
5 1630 8054 18921 0.32 3 101 104 137
10 1055 28230 21670 0.57 12 79 91 333
20 664 75801 23799 0.76 6 54 60 638
40 335 180815 22504 0.89 10 48 58 1418
80 207 382422 20854 0.95 122 118 240 3018
160 163 770771 17660 0.98 25 107 132 5464

ER
5 923 3440 21466 0.14 6 67 73 172
10 492 24761 25425 0.49 10 51 61 487
20 252 75312 24646 0.75 5 26 31 1079
40 139 175809 22634 0.89 46 51 97 2896
80 70 378015 19435 0.95 16 50 66 5260
160 38 769919 16843 0.98 98 138 236 8609

WS, b=0.9
5 687 7742 17258 0.30 13 71 84 393
10 212 37992 12008 0.76 11 18 29 817
20 60 89272 10728 0.89 23 22 45 1530
40 25 186486 13514 0.93 47 45 92 3704
80 20 386294 13706 0.97 115 103 218 6172
160 17 787066 12934 0.98 253 207 460 9173

WS, b=0.3
5 9 18421 6579 0.74 11 8 19 910
10 4 43505 6495 0.87 8 11 19 1107
20 4 93490 6510 0.93 18 18 36 2176
40 5 193416 6584 0.97 17 18 35 4753
80 4 393348 6652 0.98 98 82 180 7949
160 5 793430 6570 0.99 250 166 416 11757

PB, Paths=70
5 86 14155 10809 0.57 8 7 15 206
10 101 36801 13102 0.74 7 12 19 313
20 107 84168 15419 0.85 7 15 22 890
40 93 181388 16988 0.91 49 216 265 2584
80 73 376220 17303 0.96 128 163 291 4603
160 51 758207 16566 0.98 55 141 196 9358

G. Kritikakis and I. G. Tollis 2:13

Table 4 Experimental results for the indexing scheme for graphs of 10000 nodes.

|V | = 10000

Average
Degree

Number
of
Chains

|Etr| |Ered| |Etr|/|E|
NH_conc

Time
(ms)

Indexing
Scheme
Time
(ms)

Total
time
(ms)

TC

BA
5 3341 14544 35431 0.29 7 278 285 441
10 2159 53503 46397 0.54 14 231 245 1379
20 1264 147791 51809 0.74 15 218 233 3347
40 752 355854 52465 0.85 28 188 216 7700
80 400 764926 48350 0.94 271 322 593 14632
160 228 1560464 42967 0.97 81 264 345 24601

ER
5 1837 5595 44401 0.11 12 200 212 600
10 1003 44813 55366 0.45 9 161 170 1935
20 516 144276 55310 0.72 16 110 126 6031
40 271 347323 52620 0.87 25 101 126 13522
80 139 749781 46666 0.94 40 145 185 23052
160 72 1548153 39710 0.97 73 249 322 37613

WS, b=0.9
5 1332 13353 36647 0.27 12 175 187 1213
10 447 74782 25218 0.75 9 53 62 3829
20 100 178930 21070 0.89 13 32 45 9279
40 29 373054 26946 0.93 24 60 84 13144
80 24 771374 28626 0.96 266 247 513 25585
160 22 1571957 28043 0.98 80 232 312 36507

WS, b=0.3
5 12 36816 13184 0.73 27 19 46 3468
10 4 86804 13196 0.86 18 45 63 5063
20 4 186756 13244 0.93 10 42 52 12156
40 4 386751 13249 0.97 19 48 67 21055
80 4 786840 13160 0.98 237 187 424 31016
160 4 1586896 13104 0.99 62 167 229 40704

PB, Paths=100
5 125 8182 16810 0.33 12 16 28 240
10 141 74182 25722 0.74 11 30 41 937
20 153 168839 30728 0.85 13 43 56 5015
40 142 363753 34606 0.91 27 78 105 13797
80 120 756578 36918 0.96 56 142 198 27904
160 89 1538101 36496 0.98 77 265 342 41235

SEA 2023

2:14 Fast Reachability Using DAG Decomposition

Apparently, there is a trade-off to consider when building an indexing scheme deploying the
technique of [19]. The heuristic performs concatenations between paths. For every successful
concatenation, the extra runtime overhead is O(l), where l is the longest path between
the two concatenated paths. The unsuccessful concatenations do not cause any overhead.
Assume that we have a path decomposition, and then we perform chain concatenation. If
there is no concatenation between two paths, the concatenation algorithm will run in linear
time.

On the other hand, if there are concatenations, for each one of them, then the cost is O(l)
time, but the savings in the indexing scheme creation is Θ(|V |) in space requirements and
Θ(|Ered|) in time, since every concatenation reduces the needed index size for every vertex
by one. Hence, instead of computing a simple path decomposition (in linear time) the use of
a path concatenation procedure in order to create a more compact indexing scheme faster
is preferred for almost all applications. Another interesting and to some extent surprising
observation that comes from the results of Tables 3 and 4 is that the transitive edges for
almost all models of the graphs of 5000 and 10000 nodes with average degree above 20
are above 85%, i.e., |Etr|/|E| ≥ 85%, see the appropriate columns in both tables. In some
cases where the graphs are a bit denser, the percentage grows above 95%. This observation
has important implications in designing practical algorithms for faster transitive closure
computation in both the static and the dynamic case.

5 Conclusions and Extensions

Our extensive experiments expose the practical behavior of (1) the width, (2) Ered, and
(3) Etr as the density and size of graphs grow. Furthermore, we show that the set Ered is
bounded by width ∗ |V | and show how to find a substantially large subset of Etr in linear
time given any path/chain decomposition. These facts have important practical implications
to the reachability problem and show the potential applications of these techniques in a
dynamic setting where edges and nodes are inserted and deleted from a (very large) graph.
Although our techniques were not developed for the dynamic case, the picture that emerges
is very interesting.

According to our experimental results, see Tables 3 and 4, the overwhelming majority
of edges in a DAG are transitive. The insertion or deletion of a transitive edge clearly
requires a constant time update since it does not affect transitivity, and can be detected in
constant time. On the other hand, the insertion or removal of a non-transitive edge may
require a minor or major recomputation in order to reestablish a correct chain decomposition.
Similarly, since the nodes of the DAG are topologically ordered, the insertion of an edge
that goes from a high node to a low node signifies that the SCCs of the graph have changed,
perhaps locally. However, even if the insertion/deletion of new nodes/edges causes significant
changes in the reachability index (transitive closure) one can simply recompute a chain
decomposition in linear or almost linear time, and then recompute the reachability scheme
in parameterized linear time, O(|Etr| + kc ∗ |Ered|), and O(kc ∗ |V |) space, which is still
very efficient in practice, see [15] for a very recent comparison of practical fully dynamic
transitive closure techniques. We plan to work on the problems that arise in the computation
of dynamic path/chain decomposition and reachability indexes in the future.

G. Kritikakis and I. G. Tollis 2:15

References
1 Rakesh Agrawal, Alexander Borgida, and Hosagrahar Visvesvaraya Jagadish. Efficient man-

agement of transitive relationships in large data and knowledge bases. ACM SIGMOD Record,
18(2):253–262, 1989.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

4 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I Tomescu.
A linear-time parameterized algorithm for computing the width of a dag. In International
Workshop on Graph-Theoretic Concepts in Computer Science, pages 257–269. Springer, 2021.

5 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I Tomescu.
Sparsifying, shrinking and splicing for minimum path cover in parameterized linear time. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 359–376. SIAM, 2022.

6 Li Chen, Amarnath Gupta, and M Erdem Kurul. Stack-based algorithms for pattern matching
on dags. In Proceedings of the 31st international conference on Very large data bases, pages
493–504. Citeseer, 2005.

7 Yangjun Chen and Yibin Chen. On the dag decomposition. British Journal of Mathematics
and Computer Science, 2014. 10(6): 1-27, 2015, Article no.BJMCS.19380, ISSN: 2231-
0851. URL: https://www.researchgate.net/publication/285591312_Pre-Publication_
Draft_2015_BJMCS_19380.

8 R. P. DILWORTH. A decomposition theorem for partially ordered sets. Ann. Math., 52:161–166,
1950.

9 Fulkerson DR. Note on dilworth’s embedding theorem for partially ordered sets. Proc. Amer.
Math. Soc., 52(7):701–702, 1956.

10 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing, 2023. arXiv:2210.10173.

11 P Erdös and A Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 1959.
12 Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.
13 Alla Goralčíková and Václav Koubek. A reduct-and-closure algorithm for graphs. In Interna-

tional Symposium on Mathematical Foundations of Computer Science, pages 301–307. Springer,
1979.

14 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

15 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster fully dynamic transitive
closure in practice. CoRR, abs/2002.00813, 2020. arXiv:2002.00813.

16 H. V. Jagadish. A compression technique to materialize transitive closure. ACM Trans.
Database Syst., 15(4):558–598, December 1990. doi:10.1145/99935.99944.

17 Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering reachability
queries on very large directed graphs. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 595–608, 2008.

18 Shimon Kogan and Merav Parter. Beating matrix multiplication for nˆ{1/3}-directed shortcuts.
In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

19 Giorgos Kritikakis and Ioannis G Tollis. Fast and practical dag decomposition with reachability
applications. arXiv e-prints, 2022. arXiv:2212.03945.

20 Panagiotis Lionakis, Giacomo Ortali, and Ioannis Tollis. Adventures in abstraction: Reachabil-
ity in hierarchical drawings. In Graph Drawing and Network Visualization: 27th International
Symposium, GD 2019, Prague, Czech Republic, September 17–20, 2019, Proceedings, pages
593–595, 2019.

SEA 2023

https://www.researchgate.net/publication/285591312_Pre-Publication_Draft_2015_BJMCS_19380
https://www.researchgate.net/publication/285591312_Pre-Publication_Draft_2015_BJMCS_19380
https://arxiv.org/abs/2210.10173
https://arxiv.org/abs/2002.00813
https://doi.org/10.1145/99935.99944
https://arxiv.org/abs/2212.03945

2:16 Fast Reachability Using DAG Decomposition

21 Panagiotis Lionakis, Giacomo Ortali, and Ioannis G Tollis. Constant-time reachability in dags
using multidimensional dominance drawings. SN Computer Science, 2(4):1–14, 2021.

22 Veli Mäkinen, Alexandru I Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie, and
Rayan Chikhi. Sparse dynamic programming on dags with small width. ACM Transactions
on Algorithms (TALG), 15(2):1–21, 2019.

23 K. SIMON. An improved algorithm for transitive closure on acyclic digraphs. Theor. Comput.
Sci., 58(1-3):325–346, 1988.

24 Volker Strassen et al. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–
356, 1969.

25 Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large graphs. In
Proceedings of the 2007 ACM SIGMOD international conference on Management of data,
pages 845–856, 2007.

26 Jan Van Den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly linear time for
dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 859–869, 2021.

27 Haixun Wang, Hao He, Jun Yang, Philip S Yu, and Jeffrey Xu Yu. Dual labeling: Answering
graph reachability queries in constant time. In 22nd International Conference on Data
Engineering (ICDE’06), pages 75–75. IEEE, 2006.

28 Duncan J Watts and Steven H Strogatz. Collective dynamics of ’small-world’ networks. nature,
393(6684):440–442, 1998.

A Appendix

A.1 Proofs

Proof of Lemma 4. Updating the indexes of vertex v with all its immediate successors will
make v aware of all its descendants. The while-loop of Algorithm 1 does not perform the
update function for every direct successor. It skips all the transitive edges. Assume there is
such a descendant t and the transitive edge (v, t). Since the edge is transitive, we know by
definition that there exists a path from v to t with a length of more than 1. Suppose that
the path is (v, v1, .., t). Vertex v1 is a predecessor of t and immediate successor of v. Hence
it has a lower topological rank than t. Since, while-loop examines the incident vertices in
ascending topological order, then vertex t will be visited after vertex v1. The opposite leads
to a contradiction. Consequently, for every incident transitive edge of v, the loop firstly visits
a vertex v1 which is a predecessor of t. Thus vertex v will be firstly updated by v1 and it will
record the edge (v, t) as transitive. Hence there is no reason to update the indexes of vertex
v with those of vertex t since the indexes of t will be greater than or equal to those of v. ◀

Proof of Theorem 5. In the initialization step, the indexes of all sink vertices have been
computed as we described above. Taking vertices in reverse topological order, the first vertex
we meet is a sink vertex. When the for-loop of line 9 visits the first non-sink vertex, the
indexes of its successors are computed (all its successors are sink vertices). According to
Lemma 5.1, we can calculate its indexes, ignoring the transitive edges. Assume the for-loop
has reached vertex vi in the ith iteration, and the indexes of its successors are calculated.
Following Lemma 5.1, we can calculate its indexes. Hence, by induction, we can calculate the
indexes of all vertices, ignoring all |Etr| transitive edges in O(|Etr|+ kc ∗ |Ered|) time. ◀

G. Kritikakis and I. G. Tollis 2:17

Algorithm 2 Sorting Adjacency lists.

1: procedure Sort(G, t)
INPUT: A DAG G = (V, E)

2: for each vertex: vi ∈ G do
3: vi.stack ← new stack()
4: end for
5: for each vertex vi in reverse topological order do
6: for every incoming edge e(sj, vi) do
7: sj .stack.push(vi)
8: end for
9: end for

10: end procedure

A.2 Sorting Adjacency lists Algorithm
▶ Lemma 7. Algorithm 2 sorts the adjacency lists of immediate successors in ascending
topological order, in linear time.

Proof. Assume that there is a stack (u1, ..., un), u1 is at the top of the stack. Assume that
there is a pair (uj , uk) in the stack, where uj has a bigger topological rank than uk and
uj precedes uk. This means that the for-loop examined uj before uk. Since the algorithm
processes the vertices in reverse topological order, this is a contradiction. Vertex uj cannot
precede uk if it were examined first by the for-loop. The algorithm traces all the incoming
edges of every vertex. Therefore, it runs in linear time. ◀

A.3 Figures

Figure 6 Run time comparison between the Indexing Scheme (blue line) and TC (red line) for
ER model on graphs of 10000 nodes, see Table 4.

SEA 2023

	1 Introduction
	2 Width of a DAG and Decomposition into Paths/Chains
	3 DAG Reduction for Faster Transitivity
	4 Reachability Indexing Scheme
	4.1 The Indexing Scheme
	4.2 Sorting Adjacency lists
	4.3 Creating the Indexing Scheme
	4.4 Experimental Results

	5 Conclusions and Extensions
	A Appendix
	A.1 Proofs
	A.2 Sorting Adjacency lists Algorithm
	A.3 Figures

