Subset Wavelet Trees

Jarno N. Alanko &
Helsinki Institute for Information Technology (HIIT), Finland
Department of Computer Science, University of Helsinki, Finland

Elena Biagi &

Department of Computer Science, University of Helsinki, Finland

Simon J. Puglisi &
Helsinki Institute for Information Technology (HIIT), Finland
Department of Computer Science, University of Helsinki, Finland

Jaakko Vuohtoniemi &
Department of Computer Science, University of Helsinki, Finland

—— Abstract

Given an alphabet ¥ of o = |X| symbols, a degenerate (or indeterminate) string X is a sequence
X = X|[0], X[1]...,X[n — 1] of n subsets of ¥. Since their introduction in the mid 70s, degenerate
strings have been widely studied, with applications driven by their being a natural model for
sequences in which there is a degree of uncertainty about the precise symbol at a given position, such
as those arising in genomics and proteomics. In this paper we introduce a new data structural tool
for degenerate strings, called the subset wavelet tree (SubsetWT). A SubsetWT supports two basic
operations on degenerate strings: subset-rank(z, ¢), which returns the number of subsets up to the
i-th subset in the degenerate string that contain the symbol ¢; and subset-select(z, ¢), which returns
the index in the degenerate string of the i-th subset that contains symbol c. These queries are analogs
of rank and select queries that have been widely studied for ordinary strings. Via experiments in a
real genomics application in which degenerate strings are fundamental, we show that subset wavelet
trees are practical data structures, and in particular offer an attractive space-time tradeoff. Along
the way we investigate data structures for supporting (normal) rank queries on base-4 and base-3
sequences, which may be of independent interest. Our C++ implementations of the data structures
are available at https://github.com/jnalanko/SubsetWT.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis;
Theory of computation — Design and analysis of algorithms

Keywords and phrases degenerate strings, compressed data structures, succinct data structures,
string processing, data structures, efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.4

Supplementary Material Software (Source Code): https://github.com/jnalanko/SubsetWT
Software (Source Code): https://github.com/jnalanko/SubsetWT-Experiments

Funding This work was supported in part by the Academy of Finland via grants 339070 and 351150.

Acknowledgements A brief description of the subset wavelet tree first appeared in a technical report
by the authors [3].

1 Introduction

Given an alphabet ¥ of o symbols, a degenerate (or indeterminate) string is a sequence
X = X[0],X[1]...,X[n — 1] of subsets of X. For example, here is a degenerate string of
length 15 on the alphabet ¥ = A, C, G, T (note that empty subsets are allowed):

X ={THGHA, C. G, TH{HHC, GHHAHHAHA, CHHHAHAY

© Jarno N. Alanko, Elena Biagi, Simon J. Puglisi, and Jaakko Vuohtoniemi;
37 licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).

Editor: Loukas Georgiadis; Article No. 4; pp.4:1-4:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jarno.alanko@helsinki.fi
mailto:elena.biagi@helsinki.fi
https://orcid.org/0000-0002-8573-3603
mailto:simon.puglisi@helsinki.fi
https://orcid.org/0000-0001-7668-7636
mailto:jaakko.vuohtoniemi@helsinki.fi
https://github.com/jnalanko/SubsetWT
https://doi.org/10.4230/LIPIcs.SEA.2023.4
https://github.com/jnalanko/SubsetWT
https://github.com/jnalanko/SubsetWT-Experiments
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Subset Wavelet Trees

Since their introduction in a classic paper by Fischer and Paterson [10], degenerate
strings have been widely studied in the field of string processing and its application domains.
Abrahamson [1] studied online pattern matching for degenerate strings, describing theor-
etically optimal algorithms. Since then, several authors (see, e.g., [16, 30]) have described
practical pattern matching algorithms that are fast in practice. Authors have also considered
covering problems [7], data structures for extension queries [17], constrained LCS [18], and
the computation of inverted repeats [2] on degenerate strings.

Interest in degenerate strings has been driven by them being a natural model of the
uncertainty or flexibility often present in real world sequence data. For example, the IUPAC
encoding for biological sequences [19] designates specific symbols, referred to as degenerate,
to represent a sequence position corresponding to a set of possible alternative nucleotides. In
music sequences, single notes may match chords, or notes separated by an octave may match
— properties naturally captured by degenerate strings [5].

In this paper we study two new and seemingly fundamental operations on indeterminate
strings - subset rank and select. In particular, for a given degenerate string X, we define (for
i<nandce€X):

subset-rank x (i, ¢) = number of subsets among the first ¢ subsets of X that contain c¢;

subset-selectx (i, ¢) = index in X of the ith subset that contains c.

For example, if X = {THGHA, C,G, THHHC, GHHAH{HAHA CHHIH{AHA} as
before, then we would have subset-rankx (8, A) = 2.

Rank and select queries on ordinary (i.e. non-degenerate) strings are now considered
fundamental to the field of succinct and compressed data structures [26, 23]. To our knowledge,
however, the literature on degenerate and indeterminate strings has not explicitly considered
these queries before.

Our own interest in supporting these types of queries on degenerate strings comes from
problems in pangenomics, and in particular the spectral Burrows-Wheeler transform (SBWT),
a recently described approach for representing the de Bruijn graph of a set of strings [3].
The de Bruijn graph is a central data structure in computational biology, used for a variety
of tasks, including genome assembly [6] and pangenomic read alignment [15, 21]. There
is exactly one node in the de Bruijn graph for every distinct k-length substring, or k-mer
occurring in the set of input strings, and nodes are labelled with these substrings. A k-mer
query on the de Bruijn graph asks if there is a node in the graph labelled with a specified
query k-mer. In [3] it is shown that these queries can be reduced to a sequence of 2k
subset-rank queries on a particular degenerate string L produced by the SBWT that encodes
the graph. For brevity, we avoid defining the SBWT here, but we note that L has a special
property that its length is also equal to the sum of the sizes of the sets, i.e. |L| =3, |L[i]|.
The allowance of empty sets means this is possible without the resulting sequence becoming
an ordinary string. We call such a degenerate string balanced. We return to this special case
later, but note here that the data structure we describe applies to all degenerate strings,
balanced or not.

Contribution. We describe the subset wavelet tree, a new data structure for subset-rank
and subset-select queries on degenerate strings. Our experiments on a real-world application
show that subset wavelet trees offer attractive space-time tradeoffs for subset-rank queries
in real-world genomics applications. A key subproblem in the navigation of a SubsetWT
to answer subset-rank is computing normal rank queries on small alphabets sequences (in
particular, base-3 and base-4 sequences). With this in mind, we describe and benchmark
several efficient methods for that subproblem, which may be of independent interest.

J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi

Roadmap. In the next section we cover basic concepts and related work. We also provide
details of our experimental setup and the data sets we use in later sections. In Section 3
we describe a simple data structure for subset-rank and subset-select that acts as a baseline
against which the practical performance of our data structure can be gauged. In Section 4 we
describe the subset wavelet tree and algorithms for supporting subset-rank and subset-select
with it. Section 5 describes methods for computing normal rank queries on small alphabets
sequences. Section 6 then reports on experiments using the SubsetWT for k-mer queries
using SBWT representation discussed above.

2 Preliminaries

Rank and select on binary strings. A key tool in the design of succinct data structures
is the support for the query operations rank and select on a bit string (or bitvector) X of
length n defined as follows (for ¢ <n and ¢ € {0,1}):

rankx (7, ¢) = number of ¢’s among the first ¢ bits of X

selectx (4, ¢) = position of the i-th ¢ in X

Classical techniques [24] (see also [28]) require n + o(n) bits to support each of the above
queries in O(1) time. However, the information theoretic lower bound on space usage for a
bit string of length n having n; 1s, is B(n,n1) = log (:1) = ny log ;* bits.

There are data structures that come within a lower order term of this lower bound while
still supporting fast rank and select operations. Perhaps the foremost of these, known as
“RRR”, is due to Raman, Raman, and Rao Satti [29] and takes space B(n,n1) + o(n) and

answers all queries above in O(1) time. Fast implementations of RRR exist [27, 12, 22].

Rank and select for larger alphabets. There are also solutions for rank and select for
sequences on larger alphabets [14, 13, 8, 4]. Perhaps the most versatile and useful of these is
the wavelet tree [14, 25], which we now describe.

Consider a (ordinary) string S = S[0]S[1]...S[n] over alphabet 3. The wavelet tree of S
is a balanced binary tree, where each leaf represents a symbol of 3. The root is associated
with the complete sequence S. Its left child is associated with a subsequence obtained by
concatenating the symbols S[i] of S satisfying S[i] < |X|/2. The right child corresponds to
the concatenation of every symbol S[i] satisfying S[i] > |X|/2. This relation is maintained

recursively up to the leaves, which are associated with the repetitions of a unique symbol.

At each node we store only a binary string of the same length of the corresponding sequence,
using at each position a 0 to indicate that the corresponding symbol is mapped to the left
child, and a 1 to indicate the symbol is mapped to the right child.

If the bit strings of the nodes support constant-time rank and select queries, then the
wavelet tree supports fast rank and select on T. Before describing how those queries are
carried out, it is instructive to examine a simpler query, namely accessing a given symbol in
the input string using only its wavelet tree.

access: In order to obtain the value of S[i] the algorithm begins at the root, and depending
on the value of the root bit string B at position ¢, it moves down to the left or to the right
child. If the bit string value is 0 it goes to the left, and replaces i + rankp(i,0). If the
bit string value is 1 it goes to the right child and replaces i < rankg(i,1). When a leaf is
reached, the symbol associated with that leaf is the value of a;.

rank: To obtain the value of rankgs (i, c¢) the algorithm is similar. It begins at the root and
goes down updating ¢ as in the previous query, but the path is chosen according to the bits
of ¢ instead of looking at B[i]. When a leaf is reached, the i value is the answer.

4:3

SEA 2023

4:4

Subset Wavelet Trees

Table 1 Statistics on the raw genomic datasets used in experiments. A k-mer is considered equal
to its reverse complement in the k-mer counts. We derived a single degenerate string from each of
these data sets using the Spectral Burrows-Wheeler transform.

Number of sequences Total length Unique 31-mers

E. coli 745,409 18,957,578,183 170,648,610
SARS-CoV-2 1,234,695 36,808,137,972 2,407,721
Metagenome 17,336,887 8,703,117,274 2,761,523,935

select: The value of selects (4, ¢) is computed as follows: The algorithm begins in the leaf
corresponding to the character ¢, and then moves upwards until reaching the root. When it
moves from a node to its parent, j is updated as j < selectp(j,0) if the node is a left child,
and j « selectp(j, 1) otherwise. When the root is reached, the final j value is the answer.

Experimental Setup. All our experiments were conducted on a machine with four 2.10 GHz
Intel Xeon E7-4830 v3 CPUs with 12 cores each for a total of 48 cores, 30 MiB L3 cache,
1.5 TiB of main memory, and a 12 TiB serial ATA hard disk. The OS was Linux (Ubuntu
18.04.5 LTS) running kernel 5.4.0-58-generic. The compiler was g++ version 10.3.0 and the
relevant compiler flags were -03 -march=native and -DNDEBUG. All runtimes were recorded
by instrumenting the code with calls to the high-resolution clock of std: :chrono in C++.
The sizes of the index structures in memory were calculated by adding together the sizes
of each individual component. The code to reproduce the experiments is available at
https://github.com/jnalanko/SubsetWT-Experiments.

Datasets. We experiment on three different data sets that represent typical targets for
k-mer indexing in bioinformatics applications.

1. A pangenome of 3682 E. coli genomes. The data was downloaded during the year 2020 by
selecting a subset of 3682 assemblies listed in ftp://ftp.ncbi.nlm.nih.gov/genomes/
genbank/bacteria/assembly_summary.txt with the organism name “Escherichia coli”

with date before March 22, 2016. The resulting collection is available at zenodo.org/

record/6577997 .

2. A set of 17,336,887 Illumina HiSeq 2500 reads of length 502 sampled from the human
gut (SRA identifier ERR5035349) in a study on irritable bowel syndrome and bile acid
malabsorption [20].

3. A set of 1,234,695 genomes of the SARS-CoV-2 virus downloaded from NCBI datasets.

Table 1 shows a number of key statistics. The constructed index structures include both
forward and reverse DNA strands.

3 Simple Subset Rank and Select

We now describe a straightforward way to support subset-rank and subset-select on a degen-
erate string X of length n over alphabet 3 in O(1) time and uses O(no) bits of space. For
each symbol ¢ € ¥ we store a bit string R, of length n such that R.[i] = 1 if and only if
set X[i] contains symbol c. Each bit string is preprocessed for rank and select queries. To
answer subset-rankx (i, ¢) we simply return rankpg_(¢,1). Select is answered in a similar way.
The approach is fast in practice, and will act as a baseline in our experiments.

https://github.com/jnalanko/SubsetWT-Experiments
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
zenodo.org/record/6577997
zenodo.org/record/6577997

J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi

T | 6 |aceT| | | cc | [A | | A [Ac | | [A] A

AC | o 0 1 0 0 1 0 1 1 1 0 0 1 1

GT | 1 1 1 0 0 1 0 0 0 0 0 0 0
AcGT[e | A | A [Aac | A | A T | 6 [aceT| co
A 1 0 1 1 1 1 1 G 0 1 1 1
c 1 1 0 0 1 0 0 T 1 0 1 0

Figure 1 SubsetWT of X = {THGHA,C, G, T }{HC, GHHAMHHAHA, CHIH{HAHAL
Conceptually there are two bitvectors at each node of the tree, L, and R, which are shown on top
of each other in the figure. As described in the text, L, and R, can be combined into a base-4
sequence at the root and into a base-3 sequence at other nodes. At the root of this example, the
sequence would be 113003020220022, and at the left child of the root would be 3122322 (or 2011211
on a minimal base-3 alphabet).

4 Subset Wavelet Tree

We build a tree with log o levels!. Each node of the tree corresponds to a part of the alphabet,
defined as follows. We denote with A, the alphabet of node v. The root node corresponds to
the full alphabet. The alphabets of the rest of the nodes are defined recursively such that
the left child of a node v corresponds to the first half of A,,, and the right child corresponds
to the second half of A,. Let @@, be the subsequence of subsets that contain at least one
character from A,. As a special case, the subsequence @, also includes the empty sets when
v is the root.

Each node v contains two bit vectors L, and R, of length |Q,|. We have L,[i] = 1 iff
subset @, [i] contains a character from the first half of A,, and correspondingly R,[i] = 1
iff @Q,[i] contains a character from the second half of A,. Figure 1 illustrates our running
example. The bit vectors L, and R, can be combined to form a string on the alphabet
{0,1,2,3}, such that the i-th character is defined as (2 - L, [i] + R,|[i]).

Rank queries on L, can then be implemented by summing the ranks of characters 0 and
2, and rank queries on R, can be implemented by summing the ranks of characters 1 and
3. To answer our query for a character ¢ and position i, we traverse from the root to the
leaf of the tree where A, is the singleton subset {c}. While traversing, we compute for each
visited node v the length of the prefix in the current subset sequence @, that contains all the
subsets of X7q,...X; that have at least one character from A,. This is done by using rank
queries on the bit vectors L, and R, analogous to a regular wavelet tree query. Pseudocode
is given in Algorithm 1.

To answer a select query for a character ¢ and position ¢, we traverse the tree from the
leaf where A, is the singleton subset {c} to the root. While traversing, we update ¢ for each
visited node v and compute the length of the prefix in the current subset sequence @, that
contains all the subsets of X1,...X; that together have exactly i ¢ characters. This is done
by using select queries on the bit vectors L, and R, analogous to a regular wavelet tree
query. Pseudocode is given in Algorithm 2.

Query time for the subset wavelet tree is clearly O(log o), as constant time is spent at each
of the log o levels. For a general sequence of sets, the data structure requires 2n(o —1) +o(no)
bits of space. The subset wavelet tree can be thought of as a complete binary tree with o
leaves, labeled with the symbols of the alphabet. These are not in Figure 1 since leaves are
not actually stored in the subset wavelet tree. If all sets are full, then each set goes both

1 We assume for simplicity that o is a power of 2.

4:5

SEA 2023

Subset Wavelet Trees

Algorithm 1 Subset wavelet tree rank query.

Input: Character ¢ from an alphabet ¥ = {1,...,0} and an index i.
Output: The number of subsets X; such that j <4 and c € Xj.

function SUBSETRANK(4, ¢):
vV < root
[4,r] «+ [1,0]
while ¢ # r do
if c< ({4 r)/2 then
r [(£+1)/2]
i+ rankr, (i,1)
v < left child of v
else
L [(t+7)/2]
i < rankg, (i, 1)
v < right child of v

return .

Algorithm 2 Subset wavelet tree select query.

Input: Character ¢ from an alphabet ¥ = {1,...,0} and an index i.
Output: The position of subset X; such that the ith c € X;.

function SUBSETSELECT(i, ¢):
v ¢ ¢ leaf
while v # root do
u < parent of v
if v = left child of u then
i + selectr,, (i,1)
else
i < selectr, (i,1)
VU
return 7.

to the left and to the right child at each level. This means that every internal node of the
subset wavelet tree stores 2n bits. The total size of the subset wavelet tree is then given by
the number of (internal) nodes multiplied by the size of each of them, thus (o — 1)2n.

For a balanced degenerate string, however, less space is needed. In particular, because
each element in each set corresponds to at most one symbol in sequence at a given level of
the tree, the total length of the sequences is bound by the total sizes of the sets, making the
number of bits over all log o levels of the tree 2nlogo. We thus have the following theorem.

» Theorem 1. The subset wavelet tree of a balanced degenerate string takes 2nlog oc+o(nlog o)
bits of space and supports subset rank and subset select queries in O(logo) time.

5 Rank for Base-3 and Base-4 Sequences

A critical operation in answering subset rank queries with the subset WT is to answer
(ordinary) rank queries on the small alphabet sequences stored at the nodes of the tree. The
sequence at the root is base-4 (with alphabet ¥ = {0,1,2,3}) and the sequence at every
other node is base-3 (with alphabet ¥ = {0, 1,2}). Actually, the required operation is more
specific than a rank query: we always want to know the sum of rank(i,c — 1) and either of
rank(i, 2[0]) or rank(i, X[1]). We call these combined queries rank-pair queries. In particular:

J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi

Metagenome E.coli Covid-19
A-—- ---T ---T
---T A-—- A-—-
--G- -C-—- --G-
-C-—- --G- -C--
AC—- -c-T A-G-
LT A-G- -C-T
2 a-G- --¢T ACGT
g -c-T AC—- A-GT
A--T A--T AC-T
-6 -ce- -GT
ACGT A-GT AC--
A-GT AC-T A--T
AC-T -caT -caT
ACG- ACG- ACG-
-CGT ACGT -CG-
0.0 0.1 0.2 0.3 0.0 0.1 0.2 03 0.0 0.1 0.2 0.3
Probability

Figure 2 Distributions of subsets in the balanced degenerate string produced by the Spectral
Burrows-Wheeler transform on the three genomic data sets described in Section 2. The three plots
show that in all cases the set distribution is highly skewed, with the vast majority of the sets being
singletons. The entropies for the distributions are: 2.21 (Metagenome), 2.24 (E.coli), and 2.31
(Covid-19).

Base-4 Base-3
rankpair(i, 1) = rank(Z, 1) 4 rank(i, 3) rankpair(i,0) = rank(i, 0) 4 rank(i, 2)
rankpair(i, 2) = rank(i, 2) 4 rank(i, 3) rankpair(i, 1) = rank(é, 1) 4 rank(%, 2)

In this section we examine methods for supporting rank and rank-pair queries on small
alphabet sequences. All the methods we describe support both types of queries, but,
importantly, some structures offer more ready support for rank-pair than do others.

We develop the structures with our spectral BWT application in mind. As stated earlier,
the SBWT sequence is a balanced degenerate string. Moreover, singleton sets dominate, as
the plots in Figure 2 show very clearly. In developing our rank/rank-pair data structures in
this section, we specifically target degenerate strings with skewed distributions.

5.1 Wavelet Trees

The current de facto standard for rank queries on sequences over non-binary alphabets is the
wavelet tree. We, therefore, use WTs as a baseline for the other methods we develop in this
section. Using different bitvector implementations inside WTs leads to different space-time
tradeoffs. We experimented with both plain bitvectors, which make the WT faster and larger,
and RRR bitvectors, which, as discussed in Section 2 take nHy + o(n) bits of space for an
input bit string of n bits and are generally slower.

We used implementations from the Succinct Data Structures Library (SDSL), which
are the fastest wavelet tree implementations we know of. We remark that wavelet trees as
implemented in the SDSL offer no ready support for rank-pair queries, and so we implement
rank-pair by issuing two separate rank queries for the appropriate symbols.

5.2 Scanning Rank

This approach is inspired by fast methods for binary rank queries [12], where the task is
to count 1s up to a given position. For brevity, we describe only the structure for base-4
sequences here — the structure for base-3 sequences is essentially the same.

4:7

SEA 2023

4:8

Subset Wavelet Trees

The data structure consists of three layers. At the lowest layer is the sequence X itself,
packed into words. Assuming 64-bit words, we can pack 32 base-4 symbols into a single
word, and so this layer takes 64 - [n/32] = 2n bits. At the highest layer, we divide X into
superblocks each of size s. For each superblock we store the answer to rank(z, ¢) for all ¢ € X,
where i is the start of the superblock. These answers are stored in a table of size on/s words
so that we can access the answers for the superblock containing a given position j in constant
time at column j/s of the table. In the middle layer of the structure we divide X into blocks
of size b < s, where b is a divisor of s. For a block beginning at position 7, we precompute
and store, for each symbol ¢ € 3, the number of occurrences of ¢ in X[s|i/s|..i) — in other
words, the count between the start of the block and the start of its enclosing superblock. If
we set s = 232 then the block counts need 32 bits each. In our experiments we set b = 1024.

A critical optimization is to interleave the counts stored for each block with the part of
the sequence covered by the block. In memory, the format of a block is a 2-word header
containing four precomputed counts, followed by a data section of b/64 words into which
the b symbols themselves are packed. Interleaving the header and data sections in this way,
the lower and middle layers as a single array A of (2n/b 4+ n/32) words in memory. Thus,
accessing the data sections of a block immediately after its header has good memory locality.

Query rank(i,) is answered as follows. The header for the block containing position ¢
starts at position j =i/(b+ 2) in A. We retrieve the count for ¢ and add it to the relevant
count retrieved from the superblock table. We then proceed to scan A[j + 2..i mod b),
counting occurrences of c¢. In general this involves inspecting zero or more whole words
and possibly one partial word, which together contain part of the input sequence relevant
to the query. Counting occurrences of bit patterns 00, 01, 10, and 11 in whole (or partial)
words can be made fast by the use of bitwise operations. rank-pair affords a particularly fast
implementation with relevant symbol occurrences counted inside a word via a single bitwise
AND (with an appropriate mask) and a single popcount operation.

5.3 Sequence Splitting

Our next structure aims to exploit the skewed distribution in real subset sequences observable
in Figure 2. Because the sets in X are mostly singletons, in the base-4 sequence at the
root of the SubsetWT symbols 1 and 2 will dominate?. With this in mind, to represent a
base-4 sequence X of length n, as follows. Let X, ; be the subsequence of X consisting of
only symbols X[i] € {a,b}. For X2 we store a bitvector L of | X o| bits where L[i| =1 if
Xi2[i] =2 and L[i] = 0 if X, 2[¢] = 1. We store a similar bitvector R for Xo3: R[i] =1 if
Xo,3[i] = 3 and R[i] = 0 if X, 3[i] = 1. Finally, we store positions 4 such that X[i] € {0,3} in
a predecessor data structure, P. If there is skewness of the subset distribution we can expect
P and R to be small. Both bitvectors L and R are indexed for rank queries. In summary,
the final data structure for a base-4 sequence consists of P, L and R and their rank support
structures. For base-3 sequences there is no need to store the bitvector L, since P stores
exclusively the indexes ¢ such that X[i] = 2, as those are the only non-singleton sets.

On a base-4 sequence X query rankx (7, c) is answered with a predecessor query on P for
position ¢, which returns p, the number of elements in P smaller than ¢ (i.e., the rank of the
predecessor of 7 in P), followed by a binary rank query on L or R. Subtracting the result of
the predecessor query p from i gives us the appropriate index for a binary rank query on
L if ¢ € {1,2}. In particular rankx (,1) = rankz (¢ — p,0) and rankx (¢,2) = rankp (i — p,1).
For answering rank queries with ¢ € {0, 3}, we require a binary rank query on the bitvector

2 In sequences at lower nodes, which are base-3, it will be symbols 0 and 1 that dominate

J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi

R at position p, in particular rankx (¢,0) = rankg(p,0) and rankx (i,3) = rankg(p, 1). Rank
queries on a base-3 sequence are the same as for base-4 for singletons, x € {0, 1}, specifically
rank(,0) = rankg (i — p,0) and rank(é,1) = rankz (i — p,1). As no second binary vector is
present, the result of the predecessor query gives us directly the rank of ¢ = 2.

rank-pair queries with this structure can be answered faster than two separate single rank
queries. Indeed, with rank-pair queries we can save a predecessor query as p is computed
only once for both symbols in the query.

5.4 Extending RRR to Base-3 and Base-4 Sequences

Our final method is a generalization — to base-3 and base-4 sequences — of the famous entropy
compressed bitvector due to Raman, Raman, and Rao-Satti [29], the so-called RRR data
structure. RRR represents a bitstring using at most nHy + o(n) bits and supports rank
and select operations on the bitstring in O(1) time per query, without needed access to the
original input after construction. Practical implementations of generalizations of RRR have
been proposed before [8], however our approach is different, drawing on ideas by Navarro
and Providel [27] for a particular implementation of the binary RRR scheme.

Let X be a sequence of length n from an alphabet with constant size . We index X
using a three-level structure similar to the basic binary RRR structure. That is, we segment
X into blocks of size b = O(logn) and superblocks of size B = O(log®n), where B is a
multiple of b. We precompute the counts of symbols up to the start of each superblock,
and the counts of symbols inside each block. The precomputed values are represented using
O(logn) bits each for superblock, and O(loglogn) bits for the regular blocks, making the
total space for those values O(no loglogn/logn), which is o(n), as o was assumed constant.
A rank query rank(i, ¢) is answered in three parts: first, look up the count of ¢ up to the
superblock containing ¢, then, add up the counts of ¢ in blocks preceding index 7 in the
superblock, and lastly, add the count of occurrences of ¢ in the prefix of length p = ¢ mod b
in the block containing index 1.

To compute the count of a symbol within a prefix of a block, we encode some extra
information to be able to decode the sequence of symbols in a block, and then loop to
count the number of occurrences in the prefix of length ¢ mod b. Consider the equivalence
relation that partitions the space of all the o possible distinct blocks into equivalence
classes such that two blocks are in the same class if and only if they contain the same
multiset of symbols. We store for each block the rank r of the block in the lexicographically
sorted list of blocks in its equivalence class. The class and the lexicographic rank within
the class completely determine the sequence of symbols inside the block. That is, there
exists a function unrank(r, dg, ds, . ..dy—1) that takes the lexicographic rank r and the counts
dy,dq,...ds_1 of symbols inside the block, and returns the sequence of symbols in the block.
It remains to show how to implement unrank(r,do,dy,...dy—_1).

One way to implement unrank would be to precompute and store the answers to all queries
unrank(r,dg,d1,...dy,—1). This corresponds to the universal tables in the original RRR data
structure. This, however, is space consuming for large b, so we describe a way to compute
unrank without using any extra space at all. Our method can be seen as a generalization of
the scheme used in the practical RRR implementation of Navarro and Providel [27], from a
binary alphabet to an integer alphabet.

We denote by <d0d1-7-qjda—1) the multinomial coefficient m, defined so that the
value is 0 if any of the dy,...,d,_1 are negative or their sum is greater than n. Let
lexrank(co,c1, . .. cp—1) be the lexicographic rank of a block ¢, ¢1, ... cp—1 in its equivalence
class. Let D, (i) be the number of occurrences of symbol ¢ in the suffix ¢;,...,cy—1. Now we
can write:

4:9

SEA 2023

4:10

Subset Wavelet Trees

b—1c¢;—1 h—1—3
lexrank(cg,...cp_1) =) . N
(co b—1) ; = (Do(z) « D) =1, - Do_1(2)>

where the -1 in the choices of the multinomial is only applied for choice D;(i). The formula
represents a process that iterates the symbols of the block from left to right, adding up
ways to complete the block using the remaining counts such that the completed block is
lexicographically smaller than the input block. Computing the unrank function is a matter
of inverting the lexrank function. We do this by adding the multinomials in the inner sum
until the total would become greater than the target rank . When this happens, we append
the current symbol j to the sequence of the block and proceed to the next round of the outer
sum. Algorithm 3 provides the pseudocode of the process for a base-4 sequence.

Algorithm 3 Base-4 block unrank. Prints the sequence of symbols in the block with rank r» among
the class of blocks with symbol counts do, d1,d2 and ds.

function BASEABLOCKUNRANK(r, do, d1,dz2, d3):
b<do+di+ds+ds > Block size
s+ 0 > Blocks counted so far
fori=0,...,b—1do
for j=0,...,3do >0too—1
dj < dj -1
count (dof)dilald;l,%)
d]' $— d]' + 1
if s + count > r then
print j
dj — dj -1
break
else
s <= s + count

5.4.1 Practical considerations

In practice, we use a block size b = 31 and superblock size B = 32b = 992. With this choice
of b, the counts of symbols inside blocks fit into 5 bits each. We omit the count of the last
symbol of the alphabet in each block because it can be computed by subtracting the counts
of the other symbols from the block size b. This choice of b also guarantees that lexicographic
ranks of blocks within their classes always fit in 64-bit integers, assuming that the alphabet
size is at most 4. To compute the multinomial coefficients for unrank, we use the formula
<do...71671) = ((Zj) (”;1‘10) (”7‘302411) . ("7d°go':;d"‘2). The expression is evaluated using only
(o — 1) multiplications by loading the binomials from a precomputed table and omitting the
last term which is always equal to 1. We terminate the block decoding process early after
having decoded the prefix of the required length.

These lexicographic ranks within a class are stored compactly using [log, m] bits each,
where m is the size of the class of the block. The binary representations of these ranks are
concatenated in memory. Since the query algorithm will always access the list of lexicographic
ranks of blocks in sequential order starting from a superblock boundary, we do not have to
store the widths of all of the binary representations in the concatenation, but instead, we
only store the sum of widths up to each superblock, and we can compute the width of the
binary representation of the i-th block from the stored symbol counts during query time.

J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi

The binomials involved in the computation are again loaded from a precomputed table, and
the integer base-2 logarithms are efficiently implemented using a machine instruction to
count the number of leading zeroes in a word.

5.5 Microbenchmark

To evaluate the practical performance of the small-alphabet rank data structures developed
earlier in this section, we benchmarked 107 rank and rank-pair queries at random positions
for random characters, in the base-3 and base-4 sequences extracted from the SubsetWT of
the SBWT of our metagenomic read dataset.

The smallest data structure was the RRR-based wavelet tree, which was also the slowest.

The fastest was the Scanning solution, but it had the largest space. The full results are
in Table 2. The WT RRR, Generalized RRR, and Split methods all achieve some level of
compression, while WT plain and Scanning methods both expand on the size of the input
sequence. Finally, we observe that all methods answer rank — pair queries in less than twice
the time it takes to answer a single rank query. The most impressive rank-pair performance
(relative to rank performance) is shown by Generalized RRR and Scanning, both of which
can save significant computation when computing rank-pair.

Table 2 Microbenchmark results on random queries on base-4 and base-3 sequences derived from
the SubsetWT of the Spectral Burrows-Wheeler transform of the metagenomic read dataset.

Sequence Structure space (bps) rank time (ns) rank-pair time (ns)
Base-4 WT plain 2.13 247 404
WT RRR 1.29 1017 1517

Generalized RRR 1.55 826 829

Split 1.69 290 328

Scanning 2.25 142 106

Base-3 WT plain 2.12 199 369
WT RRR 1.15 718 1006

Generalized RRR 1.26 681 679

Split 1.39 224 248

Scanning 2.25 148 107

Table 3 SBWT k-mer search queries with different subset rank implementations. The space
is given in units of bits per indexed k-mer, where a k-mer is considered distinct from its reverse
complement. The time is reported in microseconds per queried k-mer.

Dataset Subset Rank Structure Space (bpk) Query Time (us)
Metagenomic reads Simple 4.66 1.49
Subset WT < Generalized-RRR> 3.07 44.13
Subset WT<WT-RRR> 2.67 71.37
SubsetWT <Split> 3.36 6.03
E. coli genomes Simple 4.29 1.04
SubsetWT <Generalized-RRR> 2.84 41.21
SubsetWT<WT-RRR> 2.48 67.01
SubsetWT <Split> 3.17 6.84

4:11

SEA 2023

4:12

Subset Wavelet Trees

SBWT k-mer search performance

-
=]
L

=
<]
L

ot
]
L

+ x Simple

SubsetWT < Generalized-RRR >
SubsetWT<WT-RRR >

B SubsetWT<Split>

IS
L
+

Query time (us/query)
o .
(=]

o
=]
L

10 4

2.5 3.0 3.5 4.0 4.5
Space (bits/kmer)

Figure 3 Time and space required for k-mer search on the SBWT using different implementations
for subset rank queries. There are two data points per data structure since we have two datasets.
For all data structures the metagenome result is the right point and E. coli the left. The two vertical
lines mark the entropies of the distribution of subsets in the two datasets.

6 Subset rank query performance on k-mer search of the Spectral
BWT

As mentioned at the start of this paper, our main interest in the SubsetWT is for implementing
a k-mer search algorithm using the Spectral BWT [3], which reduces a k-mer search query to
2k subset rank queries on a degenerate string. In this section, we compare our implementations
of the SubsetWT parameterized by different base-3 and base-4 rank structures, to the simple
solution of Section 3.

We used the value k = 31 in all experiments. The time to load the index into memory
was disregarded and the running time includes only the time spent running queries. Table 3
shows the query times against SBWT index structures built for the metagenomic read set
and the E. coli genomes. In case of the metagenomic read set, we queried the first 25,000
reads in the dataset, and in case of the E. coli genomes, we queried all k-mers of a single
genome in the dataset (assembly id GCA_000005845).

The experiments show that the most succinct solution was the SubsetWT with the
RRR-encoded wavelet tree for the base-3 and base-4 rank queries, at 2.5 — 2.7 bits per k-mer,
but, on the flipside, its query time was the slowest. The generalized RRR was approximately
15% larger, but had approximately 1.6 times faster queries. The next-largest structure was
the Split structure, being 26% larger than the RRR wavelet tree, with dramatically improved
query time, up to 12 times faster. The plain matrix solution was the largest, being 73% larger
than the RRR wavelet tree, with 48 — 64 times faster queries. We omit from the results the
SubsetWT parameterized by the scanning solution of Section 5.2 and by the plain bitvector
wavelet tree of Section 5.1, since on the DNA alphabet, they are dominated in the time-space
plane by the simple solution. They may lead to competitive solutions for degenerate strings
on larger alphabets. Figure 3 shows the data points in Table 3 in the time-space plane.

J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi

7 Concluding Remarks

We have described the subset wavelet tree — a new data structural tool for degenerate strings.

On degenerate strings from a real-world large-scale genomics application, subset wavelet trees
offer significant space savings over a non-trivial baseline method, at an acceptable slowdown
to query times. Along the way we have described and engineered several rank data structures
specialized for ternary and quarternary sequences, which are of independent interest.

The main open problem we leave is to find a tighter analysis of the space required
by subset wavelet trees when entropy compression is applied to their node sequences. In
particular, can the size of the resulting structure be related in some way to the entropy of
the subset sequence. Our experimental results suggest this may well be the case.

Another interesting avenue for future work is to apply the new small alphabet rank data
structures we have developed to other settings, for example FM indexes [9] for DNA sequence

data, or structures currently of a somewhat esoteric nature, such as multiary wavelet trees [8].

Our results suggest some of our structures (e.g., Scanning) are superior to regular wavelet
trees, which until now have been the main practical solution for rank on non-binary sequences
and are currently in wide use via the Succinct Data Structures Library [11].

—— References

1 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039-1051, 1987.

H. Alamro, M. Alzamel, C.S. Iliopoulos, S. P. Pissis, and S. Watts. IUPACpal: efficient
identification of inverted repeats in [IUPAC-encoded dna sequences. BMC' Bioinformatics,
22(51), 2021.

3 Jarno N Alanko, Simon J Puglisi, and Jaakko Vuohtoniemi. Succinct k-mer sets using subset
rank queries on the spectral Burrows-Wheeler transform. bioRxiv, 2022.

4 J. Barbay, M. He, I. Munro, and S. Srinivasa Rao. Succinct indexes for strings, binary relations
and multilabeled trees. ACM Transactions on Algorithms, 7(4):article 52, 2011.

5 E. Cambouropoulos, T. Crawford, and C.S. Iliopoulos. Pattern processing in melodic sequences:
Challenges, caveats and prospects. Computers and the Humanities, 35:9-21, 2001.

6 Rayan Chikhi. A tale of optimizing the space taken by de Bruijn graphs. In Proc. 17th
Conference on Computability in Europe (CiE), volume 12813 of LNCS, pages 120-134. Springer,
2021.

7 Maxime Crochemore, Costas S. lliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech

Rytter, and Tomasz Walen. Covering problems for partial words and for indeterminate strings.

Theor. Comput. Sci., 698:25-39, 2017.

8 P. Ferragina, G. Manzini, V. Mékinen, and G. Navarro. Compressed representations of
sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20, 2007.

9 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390-398. IEEE Computer Society, 2000.

10 Michael J. Fischer and Michael S. Paterson. String-matching and other products. Complexity
of Computation, 7:113-125, 1974.

11 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Proc. 13th International Symposium on Ezxperimental
Algorithms (SEA), LNCS 8504, pages 326-337. Springer, 2014.

12 Simon Gog and Matthias Petri. Optimized succinct data structures for massive data. Softw.
Pract. Ezxp., 44(11):1287-1314, 2014.

4:13

SEA 2023

4:14

Subset Wavelet Trees

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A. Golynski, I. Munro, and S. Srinivasa Rao. Rank/select operations on large alphabets: a
tool for text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 368-373, 2006.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), !booktitle = "SODA",
pages 841-850, 2003.

Guillaume Holley and P&ll Melsted. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome biology, 21(1):1-20, 2020.

Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate strings.
J. Discrete Algorithms, 6(1):37-50, 2008.

Costas S. Iliopoulos and Jakub Radoszewski. Truly subquadratic-time extension queries and
periodicity detection in strings with uncertainties. In Roberto Grossi and Moshe Lewenstein,
editors, Proc. 27th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 54
of LIPIcs, pages 8:1-8:12. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016.

Costas S. Iliopoulos, M. Sohel Rahman, Michal Voracek, and Ladislav Vagner. The constrained
longest common subsequence problem for degenerate strings. In Jan Holub and Jan Zdarek,
editors, Proc. 12th International Conference on Implementation and Application of Automata
(CIAA), LNCS 4783, pages 309-311. Springer, 2007.

TUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for nucleic
acids, polynucleotides, and their constituents. Biochemistry, 9(20):4022-4027, 1970.

Ian B Jeffery, Anubhav Das, Eileen O’Herlihy, Simone Coughlan, Katryna Cisek, Michael
Moore, Fintan Bradley, Tom Carty, Meenakshi Pradhan, Chinmay Dwibedi, et al. Differences
in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome
and bile acid malabsorption. Gastroenterology, 158(4):1016-1028, 2020.

Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc Zimmermann, Christopher Barber,
Gunnar Rétsch, and André Kahles. Metagraph: Indexing and analysing nucleotide archives at
petabase-scale. BioRziv, 2020.

Juha Kéarkkédinen, Dominik Kempa, and Simon J. Puglisi. Hybrid compression of bitvectors
for the FM-index. In Proceedings of the Data Compression Conference (DCC), pages 302-311,
2014.

Veli Makinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale
Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, 2015.

J. Tan Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology and
Theoretical Computer Science, LNCS 1180, pages 37—42. Springer, 1996.

G. Navarro. Wavelet trees for all. In Proc. 23rd Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 7354, pages 2-26, 2012.

Gonzalo Navarro. Compact Data Structures — A Practical Approach. Cambridge University
Press, 2016.

Gonzalo Navarro and Eliana Providel. Fast, small, simple rank/select on bitmaps. In
Experimental Algorithms: 11th International Symposium, SEA 2012, Bordeaux, France, June
7-9, 2012. Proceedings 11, pages 295-306. Springer, 2012.

Rajeev Raman. Rank and select operations on bit strings. In Encyclopedia of Algorithms,
pages 1772—-1775. Springer, 2016. doi:10.1007/978-1-4939-2864-4_332.

Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 233-242, 2002.

Sun Wu and Udi Manber. Agrep — a fast approximate pattern-matching tool. In Proc. USENIX
Winter 1992 Technical Conference, pages 153162, 1992.

https://doi.org/10.1007/978-1-4939-2864-4_332

	1 Introduction
	2 Preliminaries
	3 Simple Subset Rank and Select
	4 Subset Wavelet Tree
	5 Rank for Base-3 and Base-4 Sequences
	5.1 Wavelet Trees
	5.2 Scanning Rank
	5.3 Sequence Splitting
	5.4 Extending RRR to Base-3 and Base-4 Sequences
	5.4.1 Practical considerations

	5.5 Microbenchmark

	6 Subset rank query performance on k-mer search of the Spectral BWT
	7 Concluding Remarks

