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Abstract
Shuffling is the process of placing elements into a random order such that any permutation occurs
with equal probability. It is an important building block in virtually all scientific areas. We
engineer, – to the best of our knowledge – for the first time, a practically fast, parallel shuffling
algorithm with O

(√
n log n

)
parallel depth that requires only poly-logarithmic auxiliary memory

(with high probability). In an empirical evaluation, we compare our implementations with a number
of existing solutions on various computer architectures. Our algorithms consistently achieve the
highest through-put on all machines. Further, we demonstrate that the runtime of our parallel
algorithm is comparable to the time that other algorithms may take to acquire the memory from
the operating system to copy the input.
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1 Introduction

Random permutations are heavily studied in many fields of science with numerous applications.
They are commonly considered an “easy and fair” arrangement and thus influence many
aspects of everyday life ranging from shuffling a deck of cards in a friendly game to determining
the fateful order in which soldiers are drafted for war (e.g., [24]).

In computer science, applications include numerical simulations, sampling of complex
objects, such as random graphs, machine learning, or statistical tests (e.g., [4, 16, 20, 26]).
Especially, if coupled with rejection sampling, shuffling can become a dominating subroutine
(e.g., [1] which triggered this work). Further, the assumption that an input is provided
in random order (instead of adversarially) allows for practical algorithms that are almost
always efficient. Among others, this notion motivates the random-order-model for online
algorithms [11]. For the same reason, implementations of offline algorithms may start by
shuffling their inputs; for instances, folklore suggests to shuffle the input before sorting it
with a simple Quicksort implementation.

From an algorithmic point of view, the tasks of shuffling and sorting are tightly connected
since both require an algorithm capable of emitting any permutation. Though, while sorting
needs to handle adversarial inputs, shuffling can be optimized for the well-behaved uniform
distribution. Shuffling can be implemented in linear-time via integer sorting by augmenting
each input element with a uniform variate and sorting by it [7]; we refer to this approach as
SortShuffle. The famously impractical BogoSort demonstrates the other direction, namely
sorting by shuffling, but suffers from a “slightly” suboptimal expected runtime of Ω(n ·n!) [14].

© Manuel Penschuck;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mpenschuck@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0003-2630-7548
https://doi.org/10.4230/LIPIcs.SEA.2023.5
https://crates.io/crates/rip_shuffle
https://zenodo.org/record/7876820
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 In-Place Shared-Memory Parallel Shuffling

The quest for in-place algorithms is driven by the various costs of memory. The most
obvious aspect is that the maximal data set size that can be handled by a machine roughly
halves if the output is produced in a copy. Further, it takes a considerable time to allocate
main memory on modern computer systems; in Section 6 we demonstrate that the runtime
of our shuffling algorithm is comparable to the time it takes to acquire additional memory of
input size. Another hidden cost is the increased code complexity to handle failed allocations of
dynamic memory (e.g., because the system ran out of memory). Finally, some programming
languages have a concept of non-copyable data; e.g., in C++ the copy-constructor can be
deleted, and in Rust data types need to explicitly declare that they can be cloned.

1.1 Our contributions
We design and implement the practical shared-memory parallel algorithm Parallel In-Place
ScatterShuffle (PIpScShuf ). Our contributions include:

The algorithm is an in-place modification of ScatterShuffle [29]. Instead of directly putting
elements to random positions, ScatterShuffle instead assigns the elements to random
buckets and recurses on them until eventually a random permutation is achieved.
We show that our PIpScShuf has (whp) a parallel depth of O(log(n)

√
nk/ log k) and uses

O(n logk(n)) work (see Section 2.1 for definitions) where k is small tuning parameter.
While it is straightforward to implement ScatterShuffle in-place using standard techniques
(e.g., by sampling the buckets sizes as a multinomial followed by weighted sampling to
distribute the elements [26]), we design a multi-staged assignment process for practical
performance inspired by MergeShuffle [3].
We first assume that all buckets have the same sizes and randomly assign most elements
very efficiently. We then show that an asymptotically negligible and practically cheap
repair step can produce the required original random distribution.
We provide fast shuffle implementations in a free and well-tested plug-and-play Rust
library. Our PIpScShuf does not use heap allocations and emits reproducible permutations
if a seedable pseudo-random number generator is provided.

After a discussion of notation and related work in Sections 2 and 3, we derive the
sequential In-Place ScatterShuffle (IpScShuf ) in Section 3 and parallelize it in Section 4. In
Section 5, we discuss details of our implementations which we then evaluate in Section 6.

2 Preliminaries and notation

The expression (xi)b
i=a denotes the sequence xa, . . . , xb and may be shortened to (xi)i if the

limits are implied by context. We indicate an array of n elements as X[1..n] and reference
the subrange X[i], . . . , X[j] as X[i..j]. Further, [n] denotes the set {1, . . . , n}. Then, a
permutation is a bijection π : [n] → [n] where π(i) encodes the position of the i-th input
element in the output. We say that a probabilistic statement holds with high probability
(whp) if the error probability is at most 1/n for some implied parameter n.

2.1 Parallel model of computation
For parallel algorithms, we assume the commonly accepted binary Fork-Join model [8]. This
choice fits the rayon1 infrastructure used in our implementation well. An execution starts
with a single task on a unit-cost random access machine. Additionally, any task t0 can

1 https://crates.io/crates/rayon

https://crates.io/crates/rayon
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Algorithm 1 Fisher Yates Shuffle on input A[1..n]. The array eventually holds the output.

1 for i in 1 to n−1 do
2 j ← uniform sample from [i..n] // A[1..i− 1] already have final values
3 swap elements A[i] and A[j]

recursively fork into two tasks t1 and t2. In this case t0 waits until t1 and t2 complete their
computation and join to resume t0. In practice, Fork-Join frameworks, such as oneTBB2,
Cilk3 [19], or rayon, use a worker-pool in combination with a work-stealing scheduler to map
tasks to cores. Algorithmic performance measures are the work, i.e. the total number of
instructions, and the parallel depth (span), defined as the length of the critical path which
corresponds to the execution time assuming an unbounded number of workers.

2.2 Random shuffling
The sequential Fisher-Yates-Shuffle (FY , also know as Knuth-Shuffle) [18] obtains a random
permutation of an array A[1..n] in time O(n). As summarized in Algorithm 1, conceptually,
it places all items into an urn, draws them sequentially without replacement, and returns the
items in the order they were drawn. The algorithm works in-place and fixes the value of A[i]
in iteration i ∈ [1...n−1] by swapping A[i] with A[j] where j is chosen uniformly at random
from the not yet fixed positions [i..n]. In other words, in the i-th iteration, the (i−1)-prefix
of A stores the result obtained so far, while the (n−i)-suffix represents the urn.

Shun et al. show that this seemingly inherently sequential algorithm exposes sufficient
independence to be processed with logarithmic parallel depth (whp) [30]. Later, Gu et al.
propose an in-place variant based on the so-called decomposition property of the parallel
FY [15]. However, both algorithms are designed to solve a subtly different problem. They
permute the input in an explicitly prescribed manner. As such, the permutation is part of the
input and the implementation4 of [15] uses two additional pointers per element (i.e. shuffling
32 bit values on a 64 bit machine leads to a five-fold increase of memory).

A random permutation can be computed in parallel by P processors by assigning each
element to one of P buckets uniformly at random and then applying the sequential algorithm
to each bucket [29]. We refer to this algorithm as ScatterShuffle and discuss it in detail in
Section 3. A similar technique yields an I/O-efficient random permutation algorithm [29].

Going the opposite direction also yields an efficient algorithm. MergeShuffle first assigns
each processor a contiguous section of the input array, shuffles the subproblems pleasingly
parallel and finally recursively merges them to obtain a larger random permutation [3]. Here,
merging of two input sequences A and B exploits that A and B were previously shuffled.
Hence, the relative order of elements from A (and B respectively) can be kept in the output.
In other word, the merging phase conceptually produces a |A|+ |B| bit vector with exactly |B|
ones. If the i-th zero is at position j, we place A[i] to the j-th output position (analogously
for ones and B).

This merging can be interpreted as the inverse of ScatterShuffle’s scatter with two buckets.
In a precursor study, we found it too slow to generalize MergeShuffle using k-way merging
which is needed to reduce the recursion depth. MergeShuffle further uses a sequential merge

2 previously known as Intel Threaded Building Blocks, https://github.com/oneapi-src/oneTBB
3 see also https://www.opencilk.org, http://cilkplus.org
4 https://github.com/ucrparlay/PIP-algorithms master at time of writing (6af1df9)
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procedure and we are unaware of a parallelization that is as efficient as our PIpScShuf based
on ScatterShuffle. However, the authors show that if |A| ≈ |B|, we can assign the positions
of all but expected O

(√
|A|+ |B|

)
elements using a single random bit. A generalization of

this insight is a crucial building block for our RoughScatter routine in Section 3.3.
Cong and Bader [7] empirically study additional techniques such as shuffling using sorting

algorithms (SortShuffle) or random dart-throwing (DartThrowingShuffle). We are, however,
unaware of how to implement these approaches in-place. Yet, it is worth pointing out that our
IpScShuf algorithm can be interpreted as an optimized in-place RadixSort in which buckets
are randomly drawn. As such, there are conceptual similarities to SortShuffle. In a precursor
study, we found that even highly optimized parallel and in-place sorting algorithms, such as
IPS2RA [2], are outperformed by our PIpScShuf implementation. This can be attributed to
the fact that sorting is a much more constraint problem, while shuffling can algorithmically
exploit the features of uniform permutations.

2.3 Sampling from discrete distributions
In the following, we sample from several discrete probability distributions (arguably, shuffling
is just that). This is achieved by first obtaining a stream of independent and unbiased random
bits that are subsequently reshaped to attain the required distribution. The default way of
implementing the first step is using a pseudo-random generator, such as Pcg64Mcg [25].

Sampling an integer from [0, s) with s = 2k for some k ∈ N from random words is very
cheap and involves only shifting and masking. We adopt rejection-based algorithms with
expected constant time to sample uniform variates from [0, s] for general s (see [20]) and
binomial variates (see [9]). Sampling of k-dimensional multinomial variates is implemented
by chaining appropriately parametrized binomial samples in expected time O(k).

3 Sequential in-place shuffling

In this section, we propose In-Place ScatterShuffle (IpScShuf ), a sequential in-place variant
of Sanders’ parallel ScatterShuffle [29]. Building on the performance results obtained, we
reintroduce parallelism in Section 4.

3.1 State of the art
It seems that the simple and fast Fisher-Yates Shuffle (FY , see Section 2.2) is the shuffle
algorithm most commonly used in practice. Due to its simplicity, the algorithm typically
outperforms more advanced schemes for small inputs. However, FY ’s unstructured accesses
to main memory cause a severe slowdown for larger inputs. This is especially relevant for
parallel algorithms where the memory subsystem is shared between cores (see Section 6).

ScatterShuffle (Algorithm 2) is designed to be a parallel algorithm that also fares well in
the external memory model [29]. Given an input (xi)n

i=1, the algorithm moves each input
element xi into a bucket drawn independently and uniformly from B1, . . . , Bk. Afterwards,
each bucket constitutes an independent subproblem of expected Θ(n/k) elements on which
we recurse. For small subproblems, we switch to FY as the base case algorithm.

While we refer to [29] for a formal correctness proof, the following intuition should suffice
to follow this article. Consider that we augment each input element xi with a random
integer ri chosen uniformly from [0; 2ℓ) where ℓ is sufficiently large such that all ri are unique.
Then, we use RadixSort to order the elements according to these random keys (starting with
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Algorithm 2 Sequential variant of ScatterShuffle. The buckets’ total size is Θ(n).

1 Function ScatterShuffle(X = [x1, . . . , xn], k) // X is modified in-place
2 if n is small then // Base case for small inputs
3 FisherYates (X) and return

4 Initialize empty buckets B1, . . . , Bk

5 for x ∈ X do // Assign elements to buckets
6 copy x into Bj where Bj is uniformly chosen from B1, . . . , Bk

7 s← 1
8 for Bj ∈ {B1, . . . , Bk} do // Recurse and overwrite input X

9 ScatterShuffle(Bj , k)
10 X[s..(s+|Bj |)]← Bj

11 s← s + |Bj |

the most significant k-ary digit); this will yield a uniform permutation by construction. Now
observe that the buckets in ScatterShuffle and RadixSort are treated analogously with the
difference that ScatterShuffle samples the digits on-demand.

In the original parallel formulation of ScatterShuffle, the number of buckets k equals the
number of processing units P to expose the maximal degree of parallelism. Sanders, however,
already discusses that in the presence of memory hierarchies, the parameter k should be
chosen sufficiently small such that the individual processors can cache at least the tail of each
bucket. In his implementation5, the parameter is k = 32 for the largest runs in [29]. At time
of writing – more than two decades later, using very different hardware to run experiments
with more than three orders of magnitude larger data sets – we empirically find k ≤ 64 to
be the best choice for our In-Place ScatterShuffle over a wide range of input sizes. Hence,
the parameter k should be intuitively treated as a small constant that governs primarily the
branching factor of the recursion. In Section 4, we will add parallelism independent of k.

Our main modification to ScatterShuffle is In-place Scatter (IpSc) which scatters the
input into k buckets. It effectively replaces lines 4–6 in Algorithm 2. Instead of copying the
input into new arrays representing the buckets, the buckets become disjoint memory regions
of the input (e.g., represented by two pointers). Then, the recursion (line 9) can directly
modify each bucket’s memory without copying the elements. Formally, let X = (xi)n

i=1 be
the input of IpSc. Further, let A = (ai)n

i=1 be independent uniform variables from [1, k]
indexing into the aforementioned buckets. Then, IpSc groups X by A by rearranging the
elements in X with some permutation π that sorts A. We exploit that the order of elements
within a bucket can be arbitrary as the recursion will shuffle them randomly later on.

Similar problems have been studied in the context of integer sorting. The special case
of k = 2 (i.e. binary partition) and k = 3 (known as the Dutch national flag problem) can
be efficiently solved in-place [10, 23]. For k > 3, two-pass approaches can be used (e.g.,
American flag sort [22]) but require repeated access each ai. The parallel implementation [31]
of ScatterShuffle included in libstdc++ uses this technique and stores A explicitly requiring
Θ(n log k) bits. Another way, in the spirit of [13], is to require a pseudo-random generator
that can be replayed multiple times by copying and retrieving the generator’s internal state.

5 https://web.archive.org/web/20050827081959/http://www.mpi-sb.mpg.de/~sanders/programs/
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5:6 In-Place Shared-Memory Parallel Shuffling

B1 B2 B3 B4 Input X is a view (start/end pointers) to contiguous memory. Buck-
ets B1, . . . , Bk are views with an initial size n/k.

RoughScatter randomly assigns items to buckets until one is full
(here B3). Marked elements are staged (i.e. yet unassigned).

Sample the number of staged items per bucket. Then TwoSweep
fixes boundaries, s.t. placed items remain in their assigned buckets.

After recursively shuffling the staged items, we recurse on each
bucket independently.

Figure 1 In-Place ScatterShuffle (IpScShuf ). The first three steps constitute In-place Scatter
(IpSc). All operations are either pointer arithmetic or swapping of items. No input element is copied.

Bucket Bi

bi si ei

· · · placed staged · · ·

Figure 2 IpSc partitions the input into k buckets, each roughly containing n/k elements. Initially,
all items are staged (bi = si) and the bucket is said to be empty. Eventually, more and more items
are placed (from the left). If si = ei the bucket is said to be full.

3.2 IpScShuf – an in-place implementation of ScatterShuffle
In the following, we describe In-place Scatter (IpSc) that supports true random bits, and,
whp, runs in linear time using only O(k log k) bits additional storage. Since each of the n

items is assigned a uniformly selected bucket, the numbers (ni)k
i=1 of elements assigned to

each bucket follow a multinomial distribution and are tightly concentrated around n/k.
For the remainder, we assume that n≫ k(log k)3 and k3 log k = O(n), since otherwise,

the problem is so small that Fisher-Yates Shuffle is more appropriate. These assumptions are
only needed to bound IpScShuf ’s complexity and do not affect its correctness. In practice,
they translate to a minimal recommended size of roughly 105 elements.

A straightforward solution is to draw the sizes of all buckets as a multinomial random
variate. We then sample the buckets without replacement weighted by their decreasing target
size. This can be implemented in expected linear time using suitable dynamic weighted
sampling data structures (e.g., [21]). As discussed further in Section 5, such approaches are
outperformed by the following scheme. Inspired by the framework of [3] (but quite different
in its details), our assignment task consists of two phases that are illustrated in Figure 1.
Firstly, during the RoughScatter phase, we very efficiently assign the vast majority of items –
but almost certainly not all of them. Secondly, during the FineScatter phase, we process the
remaining few elements.

3.3 RoughScatter – the opportunistic work horse
RoughScatter exploits the aforementioned concentration of the final bucket sizes around their
mean of n/k to assign elements in an opportunistic fashion until we hit said n/k barrier. Let
X[1..n] denote the input array. As illustrated in Figure 2, we partition X into k contiguous
buckets of equal sizes n/k (up to rounding). Each bucket Bi is stored as a triple of indices
(bi, si, ei) where bi points to the beginning of Bi and ei beyond the bucket’s end. A bucket is
further subdivided into (i) an initially empty segment X[bi..si) of so-called placed items and
(ii) X[si..ei) of so-called staged items. We say that bucket Bi is full iff all items are placed,
i.e. si = ei. Up to the last step in Section 3.4, staged items can be freely moved around,
whereas the position of placed items carries meaning.
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In each iteration, the algorithm finalizes the bucket assignment of the element x that s1
points to, i.e. the first staged element in B1 at that point in time. To this end, we randomly
draw a partner bucket j uniformly from [1..k], swap the elements X[s1]↔ X[sj ] (skipped
if j = 1), and increment sj . As a result, element x is moved into the placed region of the
partner bucket Bj . If Bj is now full, the algorithm stops, otherwise it repeats.

▶ Lemma 1. Let P be the set of elements placed by RoughScatter and let x ∈ P be an
arbitrary placed item. Then x is assigned to bucket Bi with probability 1/k.

Proof. Without loss of generality, we assume that initially all items are staged. Then, there
is a unique iteration for each item x ∈ P in which it gets placed. To this end, the then still
staged element x is swapped with a staged item y where y ∈ Bi with probability 1/k. It then
increases si and thereby defines x as placed. Since RoughScatter only swaps staged items,
this placement of x is final. The possible change of position of element y is inconsequential,
since each assignment is carried out independently. ◀

In the following, we bound the number elements that remain staged after RoughScatter.

▶ Lemma 2. After a RoughScatter run, let ri = ei − si be the number of items still staged
in bucket bi and R =

∑
i ri their sum. For n≫ k(log k)3, we have R ≤

√
2nk log k whp.

Proof. We interpret the input to RoughScatter as n balls that are independently thrown
into k uniform bins. If we run the balls-into-bins experiment to completion, the maximal
load of any bucket is at most M(n, k) = n

k +
√

2 n
k log k whp [27].6

Let n′ be the number of balls assigned in said game when the maximal load first reached
n/k. Algorithmically, this corresponds to the termination of RoughScatter. By identifying
M(n′, k) = n/k and solving for n′, we find that whp n′ ≥ n−

√
2nk log k := n−R. ◀

▶ Remark 3. The fraction of unprocessed elements R/n vanishes for n→∞. Even for small
inputs with n = 222 and practical k = 64, less than 1% of the input remains unassigned whp.

3.4 FineScatter – fixing the small remainder
After the execution of RoughScatter only R = O

(√
nk log k

)
items need to be assigned

during the FineScatter phase whp. If our initial assumption still holds for R ≫ k(log k)3,
we can compact the staged items into a contiguous memory area, apply RoughScatter and
recurse. However, for small inputs the assumption is likely violated, while for large inputs
the fraction R/n contributes only negligibly to the total runtime. Thus, we do not consider
it worthwhile to devise a merging procedure for this case and instead directly use a dedicated
base case algorithm based on the following Lemma. It lays out the route to efficiently obtain
the final bucket sizes and independently assign the remaining elements.

▶ Lemma 4. Let X = (xi)n
i=1 be a sequence and N = (ni)k

i=1 be sampled from a multinomial
distribution with equal weights p = 1/k such that

∑
i ni = n. Let fN : [n]→ [k] be an arbitrary

partition of X with class sizes N . Finally, let π : [n]→ [n] be a random permutation. Then,
for fixed i and j, the probability that element xi is mapped by fN (π(i)) to class j is 1/k.

Proof. Due to symmetry, it suffices to consider the first partition class j = 1. Its size n1
follows a binomial distribution over n attempts with success probability p = 1/k by definition
of the multinomial distribution. Further, let γ be a permutation such that the composition

6 A similar argument was already used in the analysis of ScatterShuffle [29].
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fN ◦ γ maps the indices 1, . . . , n1 to the first partition class. Due to uniformity, π itself and
π′ = π ◦ γ are equally likely. Thus, it suffices to compute the total probability that π′ puts a
fixed xi into the first n1 ranks over all 0 ≤ n1 ≤ n:

n∑
j=0

P [π′(i) ≤ n1 |n1 = j] · P [n1 = j] =
n∑

j=0

j

n︸︷︷︸
=1−(1− j

n )

·
(

n

j

) (
1
k

)j (
1− 1

k

)n−j

(1)

=
n∑

j=0
1 ·

(
n

j

) (
1
k

)j (
1− 1

k

)n−j

︸ ︷︷ ︸
=1

−
n∑

j=0
(1− j

n
) ·

(
n

j

)
︸ ︷︷ ︸

=

{(
n−1

j

)
if j < n

0 if j = n

(
1
k

)j (
1− 1

k

)n−j

(2)

= 1−
n−1∑
j=0

(
n− 1

j

) (
1
k

)j (
1− 1

k

)(n−1)−j

︸ ︷︷ ︸
=1

(
1− 1

k

)1
= 1/k ◀

3.4.1 Finalizing the bucket sizes
Let N = (ni)i be the numbers of elements assigned to bucket Bi by RoughScatter. Guided
by Lemma 4, the base case algorithm first draws a multinomial variant N ′ = (n′

i)i where n′
i

corresponds to the number of elements that will be placed into bucket Bi by FineScatter.
Then, the final sizes Nf = (nf

i )i are nf
i = ni + n′

i. Since N and N ′ follow a multinomial
distribution with k equally weighted classes, their sum Nf does too.

By construction, the expected bucket size is n/k. Let di = nf
i −n/k denote the deviation of

the size of bucket Bi, i.e. the number of elements it needs to gain over the initial estimation of
RoughScatter. Analogously to the proof of Lemma 2, we bound maxi {|di|} = O(

√
n/k log k)

whp [27, 29]. Thus, in all likelihood, the bucket boundaries only move slightly.
Luckily, ScatterShuffle is oblivious to the order of elements within a bucket prior to

recursion. Thus, it suffices to appropriately move a few items near the boundaries of the
buckets using our TwoSweep algorithm. First, we iterate over the buckets in ascending index
order. Meanwhile, we keep a counter Ci =

∑i−1
j=1 dj that indicates how many additional

items are needed left of the current bucket Bi. If bucket Bi is too large by more than Ci

items, we swap the excess staged items into the staging area of bucket Bi+1. In a second
sweep from Bk to B1, we move the remaining excess items towards smaller bucket indices.

▶ Lemma 5. Let Nf = (nf
i )i be the final bucket sizes, denote their deviation from the mean

n/k as di = nf
i − n/k, and let Di =

∑i
j=1 dj be the inclusive prefix sum of deviations. Then,

TwoSweep executes a total of M(Nf ) =
∑

i |Di| swaps and takes time O
(
k + M(Nf )

)
.

Proof. TwoSweep can exchange a staged item of bucket Bi with its direct neighbors Bi±1 in
O(1) time by executing a single swap and adopting the pointers of the two involved buckets;
exchanging an item between buckets Bi and Bj this way implies a chain of |i − j| swaps
causing O(|i− j|) work. Based on this, TwoSweep carries out two snow-plow-like motions
likely pushing intermediate items along the chain. For the remainder see Appendix C. ◀

▶ Corollary 6. TwoSweep takes time O
(
k
√

nk log k
)

whp.

Proof. see Appendix C. ◀
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3.4.2 Assigning the remaining staged elements
At this point in the execution, all buckets have reached their final sizes, but each bucket Bi still
has n′

i staged items with
∑

i n′
i = R. Rather than sampling weighted by N ′ = (n′

i)i, we apply
Lemma 4 and instead randomly shuffle all staged items. This can be done by compacting
the staged item into X[1..R] and shuffling X. To this end, we swap the staged items with
the items originally stored in X; after shuffling, we apply the same swap sequence in reverse
to restore the original items and put the staged items into a now random permutation.

3.5 Putting it all together
In-place Scatter (IpSc) is the algorithm executed on each recursion layer of IpScShuf . It
runs RoughScatter and FineScatter in sequence to randomly assign n elements to k buckets.
The input is rearranged such that each bucket corresponds to a contiguous memory region.

▶ Lemma 7. For n≫ k log3 k and k3 log k = O(n), IpSc assigns n items in time O(n) whp.

Proof. We sum up the four tasks carried out:
1. RoughScatter first partitions the input into buckets in time O(k) and then randomly

assigns n − R = O(n) elements whp. Assuming that obtaining a word of randomness
takes constant time, this translates into a time complexity of O(k + n) = O(n).

2. Sampling a k-dimensional multinomial random variate takes time O(k) whp.
3. Running TwoSweep to adjust the boundary size takes time O

(
k
√

nk log k
)

= O(n) whp.
4. Shuffling the staged items with Fisher-Yates Shuffle takes time O(R) = O(n) time.7 ◀

In-Place ScatterShuffle consists of recursive applications of IpSc. We stop the recursion on a
subproblem as soon as it reaches the base case size of N0 = O(1) at which point it is finalized
using Fisher-Yates Shuffle.

▶ Theorem 8. With high probability In-Place ScatterShuffle takes time O(n logk(n/N0)) and
O(k logk(n/N0)) additional words of storage where N0 = Ω(k3) is the base case size.

Proof. IpScShuf splits an input of length n into k independent subproblems of size Θ(n/k)
whp. It then calls itself recursively until the base case size of N0 is reached. Whp, this
involves O(logk(n/N0)) recursion layers, each taking time O(n) and requiring O(k) words of
memory for a depth-first traversal. The base case FY uses O(1) words of memory and takes
time O(n′) for a subproblem of size n′ and in total O(n) for all subproblems. ◀

4 Parallel algorithms

In this section, we introduce Parallel In-Place ScatterShuffle (PIpScShuf ), a parallel variant
of IpScShuf . It is obvious that after running IpSc (i.e. a single recursion level of IpScShuf )
we can process the k independent subproblems pleasingly in parallel – this is one of the
core insights of the original ScatterShuffle [29]. Unfortunately, in our case, parallelizing the
subproblems alone leads to a linear parallel depth, since the first IpSc execution requires
Ω(n) sequential work. Therefore, we also have to parallelize IpSc itself. We focus on the
parallelization of RoughScatter which, in practice, accounts for the vast majority of work.

7 Based on Theorem 8, we are also free to recurse with IpScShuf instead of using Fisher-Yates Shuffle.
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4.1 Parallelizing RoughScatter
At heart, the parallel ParRoughScatter runs the sequential RoughScatter concurrently on
independent subproblems. To this end, we exploit that RoughScatter allows arbitrary gaps
between buckets. Secondly, we can freely pause and resume after each assignment without
additional overhead since the algorithm’s state is fully captured by the buckets’ pointer
triples and the partition of the placed elements.

Analogously to Section 3.3, we first split the input into k buckets of roughly equal size.
In order to fork, we further split each bucket into two, and assign either half to one subtask.
Then each subtask either recursively continues splitting, or, if the subproblem is sufficiently
small, runs the sequential RoughScatter. After both subtasks join, we merge the two halves
of each bucket. This involves only operations on the buckets’ pointers and swapping the
staged items of the first half to the second half. Additionally observe that the first subtask
ends if there exists a filled bucket B

(1)
i , and analogously B

(2)
j for the second subtask. Only

with probability 1/k, we have i = j, and thus, the merged bucket Bj is full. Otherwise, all
merged buckets contain at least one staged item and we continue executing RoughScatter.

▶ Observation 9. Since ParRoughScatter applies RoughScatter after each join, the number R

of remaining staged items according to Lemma 2 also holds for ParRoughScatter.

▶ Lemma 10. For n ≫ k log3 k and k2 = O(n), whp ParRoughScatter has O
(√

nk log k
)

parallel depth and needs O(n) work.

Proof. Splitting k buckets into 2k takes O(k) time. By Observation 9, Lemma 2 bounds
the number of staged items received from both subtasks to O

(√
nk log k

)
. This bounds

from above the time required to swap elements during merging, as well as the time to run
RoughScatter on the remaining staged elements after merging. To meet the prerequisites of
Lemma 2, we choose a base case size of N0 = k2 and process smaller subproblem sequentially
in time O(N0). This leads to the following bound on the parallel depth D(n):

D(n) =
{

D(n/2) +O
(
k +
√

nk log k
)

if n ≥ N0

O(N0) if n < N0
(3)

= O
(

N0 + log(n/N0)k +
√

nk log k
)

= O
(√

nk log k
)

(4)

Analogously, we bound the work using the Master Theorem [5] for the following recursion:

W (n) =
{

2W (n/2) +O
(
k +
√

nk log k
)

if n ≥ N0

O(N0) if n < N0
= O(n) ◀

4.2 Parallelizing FineScatter
As we discuss in Section 6.4, in practice, it is not necessary to parallelize FineScatter due to its
negligible impact on the total runtime. Thus, in the following, we sketch just enough adoptions
to reduce the parallel depth of FineScatter to that of ParRoughScatter. By Observation 9, the
analysis of FineScatter in Section 3.4 remains valid after the execution of ParRoughScatter.
By comparing with Lemma 10, we find that the parallel depth ParRoughScatter dominates
all sequential operations but TwoSweep.

Recall that TwoSweep shifts the boundaries of buckets to match the final bucket sizes
in time O

(
k
√

nk log k
)

whp. Thus, we need to shave off only a factor of Θ(k) which is
straightforward using standard parallelization techniques based on the following observation:
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The prefix sum Di defined in Lemma 5 can be interpreted as the number of elements that
the end of bucket Bi needs to be shifted. Thus, after computing (Di)i and placing one
worker per bucket, each worker can shift elements in the appropriate direction. To shift
items between distant buckets, we run O(k) rounds. The time per round is dominated by
the largest swap of items over any bucket boundary which, in turn, is upper bounded by the
maximal deviation O

(√
n/k log k

)
whp in the first round. Thus, TwoSweep can be naïvely

parallelized with a parallel depth of O
(√

nk log k
)

matching that of ParRoughScatter. This
results in a trivial upper bound of work of O

(
k
√

nk log k
)

matching the overestimation of
Corollary 6 used for the sequential TwoSweep.

▶ Theorem 11. PIpScShuf has (whp) parallel depth O
(√

nk/ log k log(n)
)

, uses O(n logk(n))
work and O(k[logk(n) + P]) words of memory where P is the number of parallel subtasks.

Proof. The proof is analogous to the proof of Theorem 8 by replacing the complexity
measures of IpSc with Lemma 10 followed by symbolic simplifications. The memory bound
additionally accounts for k bucket pointer triples per subtask. ◀

5 Implementation

Our implementations use Rust, a programming language with strong memory safety and
parallelism guarantees. While the code repository contains a number of prototypes, we
consider the publicly exposed algorithms, such as IpScShuf (seq_shuffle) and PIpScShuf
(par_shuffle), ready to be used in other projects. To monitor the code quality, we rely on
the strong static analysis tools and dynamic checks available in the Rust ecosystem. We
also use more than 80 tests that include statistical tests of the uniformity of the produced
permutations (e.g., the 1 and 2-independence of the output ranks).

PIpScShuf uses the work-stealing scheduler included in the rayon8 crate. We exclusively
use binary Fork-Join parallelism by means of the rayon::join function which requires no
heap allocations after the worker pool was once initialized. Given the widespread usage of
rayon, it is very likely that the calling application already set up this pool. Then, none of
our algorithms cause any heap memory allocation (thereby avoiding potential error sources
or hidden synchronizations). A rayon::join incurs very little cost if both tasks are executed
on the same worker. Hence, we regularly define more than 211 parallel subtasks – allowing
fine-grained work-balancing. In case of a compatible pseudo-random number generator
(requires rand::SeedableRNG trait), we use a deterministic sequence to derive the subtasks’
generators from the provided generator. Then, two runs from the same state yield the same
permutation despite non-deterministic scheduling; this optional reproducibility can be crucial
(e.g., for debugging of the embedding code).

Based on Figure 11 (Appendix), we empirically optimized the number of buckets k as
k = 64. The vast majority of code is implemented in the safe subset of Rust. In Section 6,
we use a highly optimized implementation of RoughScatter that requires pointer arithmetic
and memory accesses without explicit boundary checks which is considered unsafe in Rust.
While the memory safety guarantees of these sections are “only” comparable with C/C++,
as an implementor it is easier to reason about these small code segments (as opposed to the
whole program) and to check assumptions during runtime.

8 https://github.com/rayon-rs/rayon
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On the x86 platform, the code executes 2⌊64/⌈log2(k)⌉⌋ (i.e. 32 for k = 16 and 20
for k = 64) random assignments without any branching instructions. This allows a high
utilization of the CPU’s pipeline which is further increased by explicitly prefetching the
memory locations. Further, instead of using a standard swap(x, y) with three move operations
(namely t← x, x← y, y ← t where t is a temporary storage), we use two temporary variables
resulting in 2 + ϵ data movements per assignment. The resulting assignment process is at
least five times faster than any weighted sampling strategy we experimented with (including
fast implementations of [21] and various rejection schemes in spirit of [6]).

IpScShuf and PIpScShuf use a FY implementation for instances below 218 items that
resorts to 32 bit arithmetic and often produces two indices from one random 64 bit word.

The repository includes highly optimized sequential and parallel reimplementations of
MergeShuffle which include similar techniques as above. Their performance is incomparable
with the original implementation9 which, on the one hand, includes handcrafted assembly
code for merging, but, on the other hand, uses the rdrand instruction [17] to acquire random
bits; depending on the specific processor, rdrand one to two orders of magnitude slower
than Pcg64Mcg. [12, 28] Further, both choices are highly non-portable. Overall our portable
implementation using Pcg64Mcg is faster than the original. Observe that MergeShuffle has
linear parallel depth since only independent subproblems are executed in parallel while the
merging of the first recursion layer is purely sequential.

6 Empirical evaluation

In this section, we investigate the performance of multiple shuffling algorithms for diverse
settings. If not stated differently, we use the following standard parameters:

Measurements are collected on a machine with an AMD EPYC 7702P CPU (64 cores/128
hardware threads), 512 GB RAM, running Ubuntu 20.04, rustc 1.71 and gcc-10,
using release builds (cargo –release, g++ -O3) without machine-specific optimizations.
Further, we consider nine more machines with quite different configurations in Section 6.6.
Experiments focus on the fast pseudo-random number generator Pcg64Mcg, as this choice
exposes overheads in the shuffling algorithms rather in the generators itself. In Figure 8
(Appendix), we report the performance for different generators. The relative performance
of algorithms remains qualitatively similar for different randomness sources, though
IpScShuf and PIpScShuf are less affected by the generator choice as FY variants.
Experiments focus on 64 bit integers, which seems to be a typical index size in data sets
of several 100 GiB. As indicated in Figure 9 (Appendix), the throughput (measured in
bytes per second) increases for larger elements since the per-element overhead shrinks.
Again, IpScShuf and PIpScShuf exhibit a smaller spread than FY variants.
All performance measurements reported are the mean of at least five runs. To reduce
systematic errors, an individual run is the average of N repetitions where N is chosen such
that the measured time exceeds 100 ms. Consecutive repetitions use different locations in
a larger memory region to simulate a cold start where the input is not already cached.

6.1 Memory usage and allocation costs
One important motivation for this work is the runtime cost of allocating large amounts of
memory which we quantify in Figure 3a. For each measurement, we obtain a certain amount
of data using the low level libc::malloc instruction, initialize it, and then return the data

9 https://github.com/axel-bacher/mergeshuffle

https://github.com/axel-bacher/mergeshuffle
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Figure 3 Measurements of memory runtime costs and memory usage as described in Section 6.1.

using libc::free. For large volumes, malloc requests the operating system to map a certain
memory size into virtual memory. Critically, the memory will only be backed by physical
memory if it is actually accessed. For this reason, we initialize the data twice, and subtract
the second round from the first one. The difference between both runs is the time it takes
the system to provide the physical memory (without initializing it). Our measurements also
suggest that writing the values in parallel does not scale well – despite an investment of 128
threads, we observe only a speedup of 4.9 for the initialization which is reduced to 3.1 for the
whole process since malloc and free are sequential. For reference, we included the runtime
of PIpScShuf and find that shuffling the data in parallel takes roughly as long as to acquire
the memory needed to store a copy – without copying it.

In Figure 3b, we report the effective memory usage of PIpScShuf . We start a dedicated
process for each run and measure the maximal resident set size (RSS) of the process (i.e. the
maximal amount of memory that was physically backed at any time during the execution).
We measure the RSS before and after the invocation of PIpScShuf and report the relative
growth. As already discussed in Section 5, rayon’s worker pool needs to be initialized once.
If we allocated the data sequentially, PIpScShuf implicitly sets up a pool resulting in 1631
heap operations to reserve a total of 923 KiB. After a parallel allocation, on the other hand,
no heap operations are carried out. Even then, we observe a small increase of the RSS for
large inputs – this seems to be caused by growing stack memory of the 128 active threads.
In this case, the largest observed growth is 0.2 % and diminishes for very large inputs.

6.2 Performance overview

In Figure 4, we report the performance of several shuffling implementations. For each run, we
set a timeout of 30 s and stop a graph after its algorithm hit said budget. The only exception
is our PIpScShuf implementation with a runtime of 20.8 s for the largest data point. From
a pool of various Fisher-Yates Shuffle implementations (see Figure 10, Appendix), we only
include our own variant which strictly outperforms all competitors in the relevant regime.

The two fastest algorithms are parallel::shuffle (a C++ implementation of Scat-
terShuffle included in stdlibc++) and our PIpScShuf . For relatively small inputs Scat-
terShuffle is faster than PIpScShuf which takes the lead for inputs larger than 256 MiB.

All algorithms exhibit deteriorating throughput for larger inputs. This is remarkable for
FY derivatives which have a predicted linear runtime. Their slowdown can be attributed
to cache misses and related effects of the memory hierarchy. In Figure 10 (Appendix), we
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Figure 5 Performance of several sequential shuffling algorithms run in parallel on different data.

demonstrate that memory latency can be hidden by explicitly prefetching memory locations
ahead of time.10 However, prefetching only helps to simulate a slightly larger cache and we
still observe a significant performance drop around 2 GiB. As predicted, all implementations
based on ScatterShuffle exhibit a logk(n) dependency in their runtime; this is especially
visible for PIpScShuf when executed on a single core.

Due to incompatible libraries, we were unable to include fair performance measurements
of [15] in our campaign. However, Figure 7 reports a higher throughput for PIpScShuf on a
quad-core laptop (i7-8550U) than [15, Table 6] for a quad-socket server (E7-8867 v4) with
72 cores (while PIpScShuf uses less memory and includes the computation of random bits).

6.3 Parallel execution of sequential algorithms

When selecting an appropriate base case algorithm for PIpScShuf , Figures 4 and 10 can be
misleading as they report the performance of sequential algorithms executed in isolation. In
this setting, the studied algorithm has more resources at its disposal compared to the case
where several instances are executed in parallel on independent data. This might also be
relevant in different scenarios, e.g., if computational resources are shared by different users.

10 We use a ring buffer to generate and prefetch random indices 16 swaps prior to the actual swap.
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Figure 6 Parallel performance of Parallel In-Place ScatterShuffle.

Figure 5 is recorded similarly to Figure 4 with the difference that we execute 128
independent tasks in parallel and report the mean of their individual runtime as a single
run. To avoid scheduling artifacts, we discard and repeat any run in which the wall-time of
the experiment (i.e. from the start of the first thread to the termination of the last) is 20 %
larger than the mean runtime of the individual tasks.

In this setting, we observe that memory becomes the dominating bottleneck; with minor
exceptions (such as too small base case sizes), all algorithms exhibit roughly the same
performance for instances below 1 MiB (the CPU has 256 MiB L3 cache that is now shared
among 128 threads). For larger instances, IpScShuf variants are more than 3 times faster
than the FY variants. Also observe that the contributions of implementation details, such as
prefetching or base case size, pale in comparison the importance of memory locality.

6.4 Parallel scaling
To quantify the parallel speedup of PIpScShuf , we carry out a strong scaling experiment as
follows. For fixed input sizes, we execute IpScShuf and the fastest FY implementation as
base lines and then profile PIpScShuf for an increasing number of workers. In Figure 6a, we
report the parallel speedup over the fast sequential implementation (IpScShuf in all cases).

For data set sizes of 10 GiB and larger, the speedup over the fastest sequential solution
approaches up to 16. The self speedup is larger (e.g., 22.9 for 400 GiB), indicating a good
scalability that is somewhat offset by the additional overhead of the parallel implementation.
For the same instance, PIpScShuf is 141 times faster than Fisher-Yates Shuffle.

We see a substantial increase in speed until the number of workers matches the number
of physical cores; using virtual cores (simultaneous multi-threading) has little impact. This is
to be expected since shuffling is memory-bound and virtual cores primarily help to saturate
arithmetic units of super-scalar processors, but do not affect memory performance.

6.5 Relative performance of subproblems
When designing, implementing, and analyzing IpScShuf and PIpScShuf we focused on the fast
opportunistic RoughScatter which then requires the additional FineScatter post-processing
to deal with the few remaining items. While we heavily optimized RoughScatter, we opted
for simple and easy to implement solutions in FineScatter.
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Figure 7 Performance of selected algorithms on different computers shuffling 64 bit integers. The
length of a bar corresponds to the speedup compared to the slowest algorithm on that system. The
numbers above a bar indicate the absolute through-put in million elements per second.

To empirically support this design decision, we measure the runtime of the first recursion
layer of PIpScShuf for a wide range of input sizes. In Figure 6b, we then report the relative
wall time of the four sub-algorithms that constitute said layer. In our implementation only
RoughScatter is executed in parallel with 128 workers available while the remaining parts
are sequential algorithms. Despite the asymmetry in available workers, we observe that for
n ≥ 227 ParRoughScatter accounts for more than 90 % (99 % for n ≥ 233) of the runtime.
This supports our design decisions since optimizing FineScatter leads to diminishing results.

6.6 Performance on different machines
To verify that our empirical findings are representative for modern computers, we quantify
the performance of shuffling on different machines in Figure 7. The machines range from a
single-board computer, over a laptop, to dual-socket servers (covering more than two orders
in magnitude in purchase price). They use different instruction sets, micro-architectures,
processor manufactures, and core counts. Their configurations are specified in the figure. We
reiterate that no machine-specific optimizations are used; in fact, exactly two binaries were
used (for ARM and x86, respectively).

To accommodate most systems, we selected an instance size of 10 GiB with the exception
of the Raspberry PI 4B which features only 4 GiB of main memory. The measurements
consist of runs of sequential algorithms, sequential runs of parallel algorithms (indicated
by p = 1), and parallel runs with one worker per hardware thread (indicated by p = max).
The maximal throughput of the fastest system is 50 times higher than that of the slowest
system. In all cases rand::shuffle is the slowest contender, IpScShuf the fastest sequential
implementation, and PIpScShuf the overall fastest solution.
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Figure 8 Performance of selected algorithms with different pseudo-random number generators.
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Figure 9 Performance of selected algorithms with different element sizes.

B Quantifying the hidden constants

In Lemma 2, we bound the number R ≤
√

2nk log k of items that remain staged after
RoughScatter whp. Additionally, in Corollary 6, we bounded the complexity of TwoSweep by
O

(
k
√

nk log k
)
. To provide empirical evidence and study the hidden constants, we simulate

both processes. In Figure 12, we report the mean over 1000 independent runs divided
by
√

2nk log k and k
√

nk log k respectively. Recall that our implementations use k = 16
and k = 64; we additionally simulated k = 216 as an accommodating upper bound for
the foreseeable future. The small growth in k visible in Figure 12 is due to the small k

values. Simulations with k up to 228 agree with Lemma 2 and approach a factor of 0.66 in
Corollary 6.

https://doi.org/10.3847/1538-4357/aa7ede
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Figure 10 Performance of several Fisher-Yates implementations with a time budget of 30 s.
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Figure 11 Performance of In-Place ScatterShuffle (p = 1) and Parallel In-Place ScatterShuffle
(p = 128) for various data sizes as function of the number of buckets k. The two vertical lines
correspond to default values of k = 16 for IpScShuf and k = 64 for PIpScShuf , respectively.

C Omitted proofs

▶ Lemma 5. Let Nf = (nf
i )i be the final bucket sizes, denote their deviation from the mean

n/k as di = nf
i − n/k, and let Di =

∑i
j=1 dj be the inclusive prefix sum of deviations. Then,

TwoSweep executes a total of M(Nf ) =
∑

i |Di| swaps and takes time O
(
k + M(Nf )

)
.

Proof. Observe that a positive value di indicates that bucket Bi needs to receive di additional
staged items from other buckets. Contrary, a negative value di means that bucket Bi has to
give away −di elements. The prefix sum Di has an analogous meaning but accumulated over
the first i buckets. This leads to the following cases:
1. If Di is positive, buckets B1, . . . , Bi have an excess of Di items required somewhere in

Bi+1, . . . , Bk. These Di items will be pushed to the right during the first sweep.
2. If Di is negative, buckets B1, . . . , Bi have a demand of |Di| items met by an excess

somewhere in the buckets Bi+1, . . . , Bk. Thus, Bi receives |Di| items in the second sweep.

In sum, bucket Bi is involved in |Di| swaps with its direct neighbors, leading to a total of
M(Nf ) swaps and O

(
M(Nf ) + k

)
work where the k accounts for per-bucket overheads. ◀

▶ Corollary 6. TwoSweep takes time O
(
k
√

nk log k
)

whp.

Proof. We prove the claim based on Lemma 5 by establishing
∑

i |Di| = O
(
k
√

nk log k
)

(whp) where Di =
∑i

j=1 di is the prefix sum over the bucket size deviations from the mean.
Observe that by construction, only elements that remain staged after the execution of
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Figure 12 Simulation of Lemma 2 and Corollary 6.

RoughScatter can contribute and therefore
∑

i |di| ≤ 2R where R ≤
√

2nk log k (whp) by
Lemma 2. Additionally, since the deviations balance over all buckets we have

∑
i di = 0.

Thus, we trivially have that maxi |Di| ≤ R.
We assume a worst case deviation where the first bucket needs to gain all R elements

from the last bucket (or vice versa). While this is rather pessimistic (recall maxi {|di|} =
O

(√
n/k log k

)
whp), it suffices to show the bound. In this instance, we have |Di| ≤ R for

all i and
∑k

i=1 |Di| ≤
∑k

i=1 R ≤ kR = O
(
k
√

nk log k
)

(whp). ◀
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