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Abstract
Given a string X of length n on alphabet σ, the FM-index data structure allows counting all
occurrences of a pattern P of length m in O(m) time via an algorithm called backward search. An
important difficulty when searching with an FM-index is to support queries on L, the Burrows-
Wheeler transform of X, while L is in compressed form. This problem has been the subject of
intense research for 25 years now. Run-length encoding of L is an effective way to reduce index
size, in particular when the data being indexed is highly-repetitive, which is the case in many types
of modern data, including those arising from versioned document collections and in pangenomics.
This paper takes a back-to-basics look at supporting backward search in FM-indexes, exploring
and engineering two simple designs. The first divides the BWT string into blocks containing b

symbols each and then run-length compresses each block separately, possibly introducing new runs
(compared to applying run-length encoding once, to the whole string). Each block stores counts
of each symbol that occurs before the block. This method supports the operation rankc(L, i) (i.e.,
count the number of times c occurs in the prefix L[1..i]) by first determining the block i/b in which
i falls and scanning the block to the appropriate position counting occurrences of c along the way.
This partial answer to rankc(L, i) is then added to the stored count of c symbols before the block
to determine the final answer. Our second design has a similar structure, but instead divides the
run-length-encoded version of L into blocks containing an equal number of runs. The trick then is to
determine the block in which a query falls, which is achieved via a predecessor query over the block
starting positions. We show via extensive experiments on a wide range of repetitive text collections
that these FM-indexes are not only easy to implement, but also fast and space efficient in practice.
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1 Introduction

Given a string X[0, n − 1], the suffix array [21] of X, denoted SAX (or just SA when clear
from context) is a permutation of the integers [0, n − 1] that tells the lexicographical order of
the suffixes of X, i.e., SA is the permutation such that X[SA[0]..n] < X[SA[1]..n] < . . . <
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7:2 Simple Runs-Bounded FM-Index Designs Are Fast

X[SA[n − 1]..n]. Because of the lexicographical ordering, all the positions of occurrence of
any pattern P that is a substring of X lie in a contiguous interval of SA, and thus pattern
matching over X reduces to determining the appropriate interval of SA.

An FM-index is a data structure that supports finding such SA intervals. The main
common feature of the FM-index and its variants is support for the function extendLeft([i, j], c),
which, given a suffix array interval SA[i, j] containing all the occurrences of some pattern
P , and a symbol c, returns the interval [i′, j′] such that SA[i′, j′] contains all occurrences
of pattern P ′ = cP . Clearly, having support for extendLeft allows one to perform pattern
matching: given a pattern P of length m, we can find all the occurrences of P in X via a
sequence of m applications of extendLeft that return intervals corresponding to increasingly
longer suffixes of the pattern.

FM-index implementations (see [19, 23] and references therein) differ primarily on how
they support extendLeft. For many years, this was done via rank queries on the Burrows-
Wheeler transform (BWT) of the input string. The BWT of string X, which we denote with
LX , or just L when clear from context, is a permutation of the symbols of X defined by SAX .
In particular, L[i] = X[SA[i] − 1] except when SA[i] = 0, in which case L[i] = X[n].

In their groundbreaking article [10], Ferragina and Manzini showed that, somewhat
remarkably, extendLeft([i, j], c) = [C[c] + rankc(L, i), C[c] + rankc(L, i) − 1], where C[c] is
the total number of symbols in X less than symbol c, and the query rankc(L, i) returns the
number of occurrences of symbol c in L[0..i]. Most known FM-index variants follow this
scheme. The fastest rank-based FM-index we know of, due to Gog et al. [13], divides L into
blocks and represents each block with a Huffman-shaped wavelet tree, the bitvectors of which
are compressed with different schemes depending on characteristics of each block’s entropy.

Another more recent (and less populated) class of FM-index variants avoids rank queries
altogether, instead essentially storing space-efficient mappings from (interval, symbol) pairs
to intervals in order to implement extendLeft. The first of these methods is due to Belazzougui
and Navarro [3], who describe an index that uses minimal monotone perfect hash functions
and uses nHk + O(n) bits of space, where Hk is the kth-order empirical entropy of the input
text [22]. More recently, Nishimoto and Tabei [25], describe a structure using O(r) words
space, where r is the number of runs1 in L.

On highly repetitive strings, which are now produced by many sources, and are notably
central to the field of computational genomics [28, 8, 9, 23, 20], the BWT string L is
composed of relatively few runs – i.e., r is significantly smaller than n, perhaps by 2-3 orders
of magnitude depending on the input – and so L can be compressed well with run-length
encoding. The problem then becomes supporting extendLeft (via rank queries or otherwise)
in close to O(r) space.

Contribution. This paper is a back-to-basics examination of run-length compressed FM
indexes that explores two simple ways to achieve space usage close to O(r) words while
maintaining fast query times in practice.

Both designs are rank-based and divide L into blocks. The first approach divides L into
n/b blocks of b symbols each (with the last block possibly having less), before applying
run-length encoding to each block. Rank can be implemented on this structure in O(b)
time and the index takes O(r + σn/b) words of space. The second approach divides L into
blocks containing an equal number b′ of runs. Rank now takes O(b′ + pred(r/b′)) time, where

1 A run L[i..j] = cℓ has ℓ > 1 consecutive copies of c such that i = 1, or L[i − 1] ̸= c, and L[j] = n or
L[j + 1] ̸= c.
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pred(m) is the time for a predecessor query over m integers, and space is O(r + σr/b′) words.
We find that both these simple schemes afford very fast practical implementations, and
dominate other approaches in practice on many data sets. Along the way we explore practical
structures to support predecessor queries, which may be of independent interest.

Our rationale in this study is twofold. Firstly, simple code is easier to maintain and easier
to adapt to different application requirements, which is important given the relevance of the
FM-index in modern genomics analyses [18, 8]. Secondly, simpler data structures are often
easier to optimize, both for the programmer and for the compiler. For the particular problem
we consider in this paper, our results suggest that simpler designs may have an inherent
speed advantage over more complex ones. In their simplicity and strong performance, the
indexes we describe herein represent non-trivial baselines against which the performance of
future, possibly more sophisticated, FM indexes can be measured.

Roadmap. The remainder of this paper is organized as follows. In the next section we
review related work. Our new FM-indexes are then described in Section 3. In that section
we also present a microbenchmark of different predecessor structures, which are essential
for our second index. Then, in Section 4, we present results of benchmarks comparing our
indexes to the state of the art. Conclusions and avenues for future work are then offered.

2 Background and Related Work

We now briefly describe four FM index designs [19, 13, 2, 25] that represent the state of the
art, either in theory or practice. Implementations of all methods described here are included
in our experiments. For a more thorough treatment, including earlier and more obscure
indexes, we refer the reader to [24, 23].

Mäkinen and Navarro [19] proposed the FM-index variant to encode L in O(r log n)
bits. It supports rankc(L, i) (and therefore extendLeft) in O(log logw(σ + n/r)) time. Our
description here follows that given in Gagie et al. [11].

Let R = (c1, ℓ1), . . . , (cr, ℓr) be the run-length encoding of L, with pair (ci, ℓi), i ∈ [1..r],
representing the ith run in L, where ci ∈ Σ is the run symbol and ℓi is the run length. We
maintain a vector L′ = c1, . . . , cr with the run heads in the same order as they appear in
L. L′ is represented with a data structure of O(r log n) bits that supports O(1)-time access
and rankc(L′, i) in O(log logw σ) time. We also maintain an array C ′[1, σ] storing in C ′[c]
the number of runs in L whose symbol is smaller than c ∈ Σ.

A predecessor data structure of O(r log n) bits encodes the set E = {1} ∪ {1 < i ≤
n, L[i − 1] ̸= L[i]} with the positions in L for the run heads (i.e., the leftmost symbol in
every run). The query pred(E, i) returns pair (i′, b), where i′ is the predecessor of i in E,
and b is the rank of i′ in E. pred(E, i) takes O(log logw(n/r)) time using [4].

Let R′ be a permutation of R in which the runs are stably sorted by their symbols and
let (ci, ℓi) be the ith run in the permutation R′. We store an array D[1..r] of r log n bits
storing in D[i] the cumulative length of the runs associated with ci in R′[1..i].

Answering rankc(L, i) in the RLFM requires us to call (i′, b) = pred(E, i) to get the head
position i′ and rank b for the run where i lies. We can then obtain the symbol c′ = L′[b]
associated with i’s run. Subsequently, we obtain the number k = rankc(L′, b − 1) of runs
for c in the prefix L′[1..b − 1] and finally compute the number x = D[C ′[c] + k] of cs in the
prefix L[1..j′ − 1], returning x + i − i′ + 1 if c = c′, or return x otherwise.

Overall query time is dominated by pred(E, i) and rankc(L′, b − 1), which combined take
O(log logw(σ + (n/r))) time.

SEA 2023



7:4 Simple Runs-Bounded FM-Index Designs Are Fast

Gog et al. [13] describe what is currently the fastest general-purpose FM index we know
of. Their approach shares some similarity to one of our schemes in that it divides L into
blocks of fixed size b. Each block stores, for each symbol of the alphabet, precomputed ranks
up to the beginning of the block. Each block is then encoded using a Huffman-shaped wavelet
tree [19], which can answer rank queries up to the beginning of each block, and combined
with the precomputed ranks, enables general rank queries to be answered in O(log σ) time.
Each wavelet tree take space proportional to the entropy of its block, leading to a bound of
nHk + o(n log σ) bits for the whole index.

Although the index size is not directly relatable to r, the number of runs in L, experiments
in Gog et al. [13] show the index performs well on inputs with small r. Intuitively, on a L
having many long runs, the blocks tend to have a small alphabet with a skewed distribution of
symbols and so will have a small representation when Huffman encoded (which is essentially
what the Huffman-shaped wavelet tree does). However, a further optimization has been
made, that favors runs even further. In particular, the bit vectors of the wavelet trees are
represented with the hybrid encoding of Kärkkäinen et al. [16] which run-length encodes
bitvectors having long runs. If the block being encoded has long runs then the bitvector at
the root of its wavelet tree will have at least as many, and bitvectors at other nodes will tend
to preserve runs too. This makes the space usage much closer to r than it was designed to
be, even if it does not explicitly encode runs in L.

Prezza et al. [2] store one character per run in a string H ∈ Σr and mark with a 1 the
beginning of each run in a bitvector Vall[0..n − 1]. For every c ∈ Σ they store the lengths of
all runs of character c consecutively in a bitvector Vc. More precisely, every run of symbol c

of length k is represented in Vc as 10k−1. This representation allows them to map rank and
access queries on L to rank, select and access queries on H, Vall, and Vc. By gap-encoding
the bitvectors, this representation takes r(2 log(n/r) + log σ)(1 + o(1)) bits of space. The
multiplicative term log(n/r) can be reduced by storing in Vall just one out of 1/ϵ ones, where
0 < ϵ ≤ 1 is a constant. One is still able to answer all queries on L, by using the Vc vectors to
reconstruct the positions of the missing ones in Vall, though this multiplies query time by 1/ϵ.
In their implementation of this scheme, Prezza et al. [2] represent H as a Huffman-shaped
wavelet tree and store the bitvectors in an Elias-Fano structure [29].

Nishimoto and Tabei [25] proposed the first encoding that represents L in O(r) bits
and supports extendLeft(i, L[i])2 in constant time without resorting to rank operations. Let
I = {(s1, e1), . . . , (sr, er)} be a sequence of r consecutive ranges over [1, n] such that L[sj , ej ],
with j ∈ [1, r], is the jth run of L (from left to right). Each range (sj , ej) ∈ I has an
associated mapping pair (s′

j = extendLeft(sj , L[sj ]), e′
j = extendLeft(ej , L[ej ]) that represents

the contiguous range L[s′
j , e′

j ] one obtains by performing extendLeft operations over the
symbols in L[sj ..ej ]. Note that (s′

j , e′
j) does not necessarily match a range in I, but can

be fully contained in one or cover several of them. The key idea in Nishimoto and Tabei’s
method to obtain constant time is to further break the ranges to produce a new sequence
I ′ of length r′, r ≤ r′ < 2r where every (sj , ej) ∈ I ′ has a mapping pair (s′

j , e′
j) that covers

a constant number c of other ranges in I ′. They maintain an array D[1..r′] that stores in
D[j] the pair (sj , s′

j) and a vector D′ = [1..r′] that stores in D′[j] = y ∈ [1, r′] the index y

of the pair (sy, ey) ∈ I ′ where s′
j lies (i.e., sy ≤ s′

j ≤ ey). Answering extendLeft(i, L[i]) in
this scheme requires first knowing the pair (sj , ej) ∈ I ′ enclosing i, then scanning the area
D[D′[j]..D′[j]+c−1] until the range (sy, ey) ∈ I ′ that contains extendLeft(i, L[i]) = s′

j+(i−sj)
is found. This approach was recently implemented by Brown et al. [5].

2 This constrained version of extendLeft is also known as LF(i) in the literature.
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3 Simple Runs-Bounded FM-index Designs

Both of our indexing schemes are based on splitting the BWT into run-length encoded blocks
along with preceding symbol counts. To answer rankc(L, i) queries, it suffices to find the
block containing the ith character, scanning the block and adding the result of the scan to
the number of preceding occurrences of c.

The number of preceding symbols are stored in at most 7 +
∑

c∈Σ⌈log2 rankc(L, n)⌉ bits
per block3. In our implementations with a constant number of symbols per block, there is
an additional “super block” level that stores precomputed answers for rank queries for blocks
of size 232. The super block approach was taken to allow storing large chunks of memory for
the blocks instead of just one very large block of memory, and to guarantee that four bytes
would be sufficient to store any symbol counts on the block level. Neither of these turned
out to be relevant in our experiments, and the additional layer of complexity likely slows
down query performance very slightly and has a negligible impact on data structure size.

Blocks with b symbols. If each block contains b symbols. We can store pointers to the
⌈n/b⌉ blocks in an array BP . With this, rankc(L, i) reduces to rankc(BP [⌊i/b⌋], i mod b) on
the block.

The upper bound space complexity, given logarithmic encoding of integers comprises of:
O

((
n
b + r

)
(log b + log σ)

)
bits for run encoding,

O
(

n
b σ log n

)
bits for encoding the block headers containing preceding character counts

and
O

(
n
b w

)
bits for storing block pointers, w being the machine word length,

making

O
((n

b
+ r

)
(log b + log σ) + n

b
(w + σ log n)

)
bits an asymptotic upper bound for these Sb (for symbol block) structures.

Query time is simply O(b) under the word RAM model. We expect at most two memory
transfers from uncached memory locations per query, meaning most of the work would be
done on cached data.

The blocks themselves consist of a run-length-encoded sequence either using two bytes
per run with runs split as necessary, or with each run being encoded with a variable number
of bytes depending on the length of the run. In both approaches the first ⌈log2 σ⌉ bits encode
the run head.

In two byte encoded blocks, 16 − ⌈log2 σ⌉ bits are used to store the run length. Thus
the maximum length for one run is 216−⌈log2 σ⌉, meaning long runs will need to be split
into multiple runs within the same block. In the worst case, for a large alphabet (> 27)
and large block sizes (≥ 213) a single run can be split into more than 24 blocks, thus
increasing the space usage considerably. However, for genomics data and small (< 213)
block sizes, the vast majority of runs fit into two bytes. Scanning these two byte encoded
blocks is fast since there is no branching or data dependencies in decoding runs and only a
single branch miss-prediction to end scanning. We note that for this variant, the bounds
for space complexity apply as long as b is considered a bound constant as opposed to
being linear in n for example.

3 The +7 bits is the possible overhead of keeping data byte-aligned.

SEA 2023
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With runs encoded into a variable number of bytes, arbitrarily long runs can be efficiently
encoded in O(log σ + log m) bits where m is the length of the run. With long runs this is
more space efficient than the two byte approach, but decoding, especially of short runs is
slower as decoding requires data-dependent branching.

In addition to these encodings we experimented with hybrid compression schemes where
the encoding is chosen on a per-block basis. However, we found that the overhead of decoding
the more rare block type is high enough that our dynamic encodings remain uncompetetive
with more simple block encodings. We suspect that in addition to a branch missprediction, the
cold code path causes inefficiencies in instruction caching or pipeline unrolling, that dominate
the efficiency gains of a superior encoding for some minority of blocks. An improvement
in performance of querying the rarer blocks with a separate encoding compared to the
majority blocks of ≈ 100 nanoseconds (≈ 20% improvement) would be sufficient to warrant
reconsidering a hybrid approach. This idea may be feasible with some as yet untested block
encodings.

Blocks with b′ runs. For finding the block containing the ith symbol when blocks contain
a variable number of symbols, we use a predecessor search to find m and arg maxj(j ≤
i)) s.t. block m starts with the jth symbol. Now given m and j, rankc(L, i) becomes
rankc(BP [m], i − j).

For running the predecessor search we tested four different approaches:

A simple binary search over an array of tuples with the number of symbols in L

preceding each block and a pointer to the block itself. This approach is very simple to
implement and has minimal memory overhead. However, the memory access pattern is
not well supported on modern microprocessors, unless the entire array can fit in cache.
A heap ordered binary search tree is a balanced search tree stored in an array A,
such that for every internal node A[i], the left child will be found at A[2i + 1] and the
right child at A[2i + 2]. Internal nodes contain the number of symbols represented by
their left sub tree, while leaves contain pointers to the actual blocks. The computation
done is exactly the same as for binary search, but the heap ordering makes the memory
pattern an increasing stride in the same direction, allowing for more efficient predictive
caching by modern microprocessors. For tree traversal to work properly, all but the final
internal level in the tree need to be full (containing 2ℓ elements where ℓ is the level) even
if some sub trees are empty, this potentially doubles the memory footprint of the heap
ordered binary search tree compared to a simple binary search.
A B+-tree [6] is a B-tree with pointers to blocks only stored in the leaves, while internal
nodes only store the number of symbols represented by the sub trees. When B = 2k

for some k ∈ N, a fast templated branchless [27] binary search can be implemented for
branch selection in the B-tree. While the internal nodes close to the root of the tree are
likely to be present in cache, accessing nodes closer to the leaves are likely to trigger
cache misses. In addition, the B-tree is comparatively space inefficient due to the need to
store pointers internally.
A heap ordered B+-tree aims to be the best of both worlds, by storing the B+-tree
in contiguous memory without the need for child pointers. The children of node A[i]
will be at A[Bi + 1..Bi + B]. Internal branch selection can be done with templated
binary searches and the memory access pattern follows a somewhat predictable increasing
forward stride. While the need to keep internal levels of the tree full implies significant
memory overhead, the low number of levels necessary to do block selection even for large
data sets, keeps the memory overhead low in practice.
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Figure 1 Predecessor search performance. Based on 105 pred(x) queries over 107 elements, with
x chosen at random from [0..m + 10] where m is the largest element in the collection. Both B+-tree
and the heap ordered binary search tree are faster than a simple binary search, while the heap
ordered B+-tree is significantly faster still. The performance here and in Table 1 differ due to the
overhead of outputting results of every query as opposed to just calculating summary statistics.

After benchmarking all of these potential approaches, we found that the heap ordered
B+-tree was the fastest and had reasonable memory overhead (Figure 1 and Table 1). The
space complexity of our Rb (for run block) implementation comprises of:

O (r(log σ + log n)) bits for encoding runs,
O

(
r
b′ σ log n

)
bits for encoding the block headers containing preceding character counts,

O
(

r
b′ w

)
bits for storing block pointers, and

O
(

r
b′ w

)
bits for storing the heap ordered B+-tree,

making

O
(

r(log σ + log n) + r

b′ (σ log n + w)
)

bits an asymptotic upper bound for these Rb structures.
Time complexity is O

(
log r

b′ + b′). We expect fewer than log r/b′ memory accesses to
uncached memory locations due to the apparent efficiency of pre-caching with increasing
stride.

See Figure 2 for an example, illustrating the memory layout and query logic of our index
structures.

Table 1 Performance of benchmarked predecessor search structures. 105 random predecessor
queries on a set of ten million random (unique) elements. Heap ordered binary search trees and
B+-trees are faster than a traditional binary search, but have significant space overhead. Heap
ordered B+-tree is faster still with only minor overhead in space efficiency compared to binary search.

binary search heap ordered BST B+-tree heap ordered B+-tree
Mean query time 524.348ns 331.548ns 363.409ns 313ns
Space usage 76.294MB 128MB 157.511MB 78.3257MB
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Sb with block size 10:

A: 0
C: 0
G: 0
T: 0

A10

A: 10
C: 0
G: 0
T: 0

A5C3GT

A: 15
C: 3
G: 1
T: 1

T5G3A2

A: 17
C: 3

G: 4
T: 6

A2TCG T

0 1 2 3

rankC(L, 35)

⌊35/10⌋ = 3

rankC(BP [3], 35 mod 10)

Rb with 3 runs per block and heap-ordered B+-tree with b = 2:

A: 0
C: 0
G: 0
T: 0

A15C3G

A: 15
C: 3
G: 1
T: 0

T6G3A4

A: 19
C: 3
G: 4
T: 6

TCG

A: 19
C: 4

G: 5
T: 7

T

32 19 35 0 1 2 3

rankC(BP [3], 35 − 35)

rankC(L, 35)

Figure 2 Illustrative example of our index structures. Indexes built on input sequence L =
A15C3GT6G3A4TCGT. Memory access pattern for rankC(L, 35) highlighted. For Sb, five symbols,
in four runs, containing one “C” character get read from block BP [3], this one “C” count gets added
to the number of preceding “C” characters in the block header (3), these get added together giving
rankC(L, 35) = 4. For Rb the pred query tells us that BP [3] is the target block, and that a total
of 35 symbols precede the block, no scanning is needed and the result is the total count of “C”
characters in the block header (4).

4 Performance

We implemented the designs described in Section 3 to verify their efficacy in practice, and to
explore time-space trade-offs in performance by varying b′ for our Rb variant and varying
b for Sb variants. The source code is in C++, and it is available at https://github.com/
saskeli/block_RLBWT.

4.1 Experimental Setup

Machine and Compilation. Tests were run on a machine with an AMD EPYC 7452
processor and 496GB of DDR4 RAM. The operating system was AlmaLinux 8.4 (with Linux
4.18.0-372.9.1.el8.x86_64 kernel). Code was compiled with GCC 12.2.0 and the performance-
relevant flags: -std=c++2a, -march=native, -Ofast and -DNDEBUG. Experiments were
repeated on a machine on the same HPC cluster with an Intel Xeon E7-8890 v4 processor
(see Appendix B). We found results to be relatively stable across these two systems.

https://github.com/saskeli/block_RLBWT
https://github.com/saskeli/block_RLBWT
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Indexes Measured. We use sbt_rlbwt (for symbol blocks, two-byte) to refer to the Sb FM
index variant from Section 3 that first divides the BWT into blocks contain equal numbers of
symbols and then applies two byte run length encoding to each block; sbv_rlbwt (for symbol
blocks, variable width) to refer to the Sb index variant that divides the BWT into blocks
containing equal numbers of symbols before using a variable width encoding to compress the
blocks; and use rb_rlbwt for our Rb index that divides the run-length encoded BWT into
blocks of fixed runs.

We explored the space efficiency / query time trade-offs of varying block sizes for our
indexes. We used block sizes of 28 ≤ b ≤ 217 for Sb variants, and 20 ≤ b′ ≤ 29 for Rb, as
these ranges cover what we consider practical values in most cases.

sbt_rlbwt. Uses a default block size of b = 211, which yields reliably fast indexes and
occasionally suffer in terms of compression performance.
sbv_rlbwt. Uses a default block size of b = 214. This value enables good compression
ratios most of the time while not completely sacrificing query performance.
rb_rlbwt. With each block containing b′ = 32 runs by default and using a heap ordered
B+-tree predecessor structure, with B = 64, for answering pred queries. We selected these
parameters as good defaults for genomics data sets.

We further compared the performance of our variants using default parameters against
other state-of-the-art FM-index implementations. These were:

Fbb. The fixed-block boosting with wavelet trees index of Gog et al. [13]. We obtained the
code from the SDSL-lite library [12]. We realised that substituting the hybrid bit vector
implementation used in the wavelet trees with other bit vector variants available in the
SDSL-lite library led to interesting time / space trade-offs for the Fbb implementations.
We include four of these variants as fbb_xx in our results

fbb_hyb was built using the hybrid bit vector of Kärkkäinen et al. [17]. The SDSL-lite
library implements the hybrid bit vector in the hyb_vector class.
fbb_bv was built using uncompressed bit vectors from the SDSL-lite library (class
bit_vector) with separate rank support data structures.
fbb_il was built using the SDSL-lite implementation (bit_vector_il) of the bit
vector from Gog et al. [14] that interleaves the partial rank queries with uncompressed
bit vector blocks.
fbb_rrr uses the rrr_vector class of SDSL-lite, which implements the H0-
compressed bit vector representation of Raman et al. [26].

Rlbwt is the rlmn class of the SDSL-lite library that implements the run-length-encoded
BWT representation with rank support of Mäkinen and Navarro [19].
Srlbwt. The sparse RLBWT scheme of Belazzougui et al. [2], which is the component
used for counting in the the r-index implementation [11]. We obtained its implementation
from the r-index’s official repository4.
R-index-F represents the scheme of Nishimoto and Tabei [25] as implemented by Brown
et al. [5]5.

We remark that in preliminary experiments (not shown here) we also measured the
performance of indexes based on balanced and Huffman-shaped wavelet trees applied to the
entire BWT (with various internal bitvector representations), but found, as other authors

4 https://github.com/nicolaprezza/r-index
5 https://github.com/drnatebrown/r-index-f
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Table 2 Details of the datasets used in performance benchmarks. The symbol σ denotes the
alphabet size, n is the number of symbols in the dataset, and r is the number of runs in the BCR
BWT of that dataset.

Dataset σ n r n/r

hum50 16 1.54×1011 3.89×109 39.53
ecoli3.6K 16 1.90×1010 1.57×108 120.55
cov400K 6 1.19×1010 9.05×106 1317.79
einstein 140 4.68×108 2.90×105 1611.18
worldleaders 90 4.70×107 5.73×105 81.90
coreutils 235 2.05×108 4.68×106 43.82

have (e.g., [15, 13]), that these approaches were always inferior to the indexes listed above
on our data sets. We therefore exclude these from further mention in the experiments for
the sake of clarity.

Datasets. We used six repetitive collections for the experiments. See Table 2. They vary
in length, alphabet size and level of repetitiveness to reflect different application scenarios.
The dataset hum50 consists of 50 different human assemblies. The dataset ecoli3.6k is the
concatenation of 3600 E. coli genomes. The dataset covid400k contains 400,000 variants of
the covid genome. einstein and worldleaders are each concatenations of different versions
of a Wikipedia entry (for “Albert Einstein” and “World Leaders”, respectively). coreutils
contains different versions of the GNU coreutils’ source code6.

Benchmarks. For every dataset, we proceeded as follows. We built its BCR BWT string
L [1] using the grlBWT tool [7]. Then, with L as input, we built an instance of each index
listed above. We sampled sets of patterns of lengths 10, 30 and 50. For each set we sampled
substrings of the desired length from ten thousand random positions in the input data set,
such that the substrings contained only printable characters for the general data sets and
no “N” symbols for genomic data sets. We measured the elapsed times for each index to
count all patterns in each pattern set and then took the average, further dividing by pattern
length to get a per symbol time for each pattern set.

4.2 Results

Time-space trade-offs. Increasing the block sizes for Sb variants had the expected effect of
improving compression while sacrificing query performance, suggesting that when optimizing
for query speed, block size should be reduced as much as possible within memory constraints.
For Rb increasing block size improves compression to the detriment of query performance, but
reducing the number of runs per block beyond a certain point decreases query performance.
This performance decrease is expected if we observe that as the number of runs per block
approaches one, the index becomes a heap ordered B+-tree with single runs at the leaves,
and the Θ(log r/b) tree traversal becomes Θ(log r). These performance trade-offs are shown
in Figure 3.

6 More details of the last three data sets can be found at corpus: http://pizzachili.dcc.uchile.cl/
repcorpus.html.

http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
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Figure 3 Performance trade-offs for varying block sizes, with maximum, default and minimum
tested block sizes annotated as shapes. Sb variants have a clear trade-off where increasing block size
improves compression and slows down queries, while decreasing block size degrades compression
performance and speeds up queries. The same is mostly true for Rb as well but the increased
overhead of the predecessor search when block sizes decrease limits how much speed up is possible.
The sweet spot for minimizing both compressed size and query time differs between data sets.
Default parameters for sbt_rlbwt and rb_rlbwt seem mostly reasonable but parameter tuning is
recommended for best performance in specific applications.

Comparison against other FM-index implementations. Our index implementations are
very competitive with other FM-index implementations, as can be observed in Figure 4. Our
experiments show that as pattern length increases, the performance of our indexes improves in
comparison to the competition (See Appendix A for figures with additional pattern lengths).
We posit that this gain is due to the likelihood of both of the rank queries associated with
a step of extendLeft targeting the same block increasing as the number matching suffixes
becomes lower. This feature allows the second query to act on fully cached memory making
the simple scanning approaches very fast in practice.

5 Concluding Remarks

We have described, engineered, and experimentally analysed two strikingly simple FM indexes,
which often outperform more complex prior art. We close with three avenues for future work.

Firstly, our indexes were designed with genomics applications in mind and so, therefore,
the approach we selected for encoding and decoding run heads is likely to be sub-optimal
for data sets on larger alphabets. We believe that improving the run-head encoding with,
e.g., Huffman codes, and allowing the character encoding, in some cases, to exceed eight bits,
would improve compression with a negligible impact on query performance.

For larger alphabets, the space overhead incurred by the precomputed ranks stored at
each block quickly becomes substantial. To mitigate this, it may be fruitful to treat rare
symbols differently, possibly with an entirely different rank structure, avoiding the need to
store a full σ precomputed ranks at each block.

Finally, as mentioned in Section 3, selecting encoding on a per-block basis was explored
but discarded as the overhead for decoding was too high to be practical with out currently
available block encodings. Block encodings designed specifically for fast decoding of blocks
with specific attributes may prove fast enough in practice to be worth the overhead in
encoding detection when querying.
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Figure 4 Mean match counting per symbol query times and bits per symbol for patterns of
length 30. Our sbt_rlbwt and rb_rlbwt variants with default parameters are as fast or faster than
the competition for genomics data, and compress significantly better than the closest competitors
in query time. For the more general data sets we remain competitive but lose out in compression,
possibly due to our implementation not doing any entropy-based compression, and thus encoding run
heads inefficiently. However, the simple run head encoding does translate to good query performance.
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A Additional match counting results on AMD EPYC 7452
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Figure 5 Mean match counting per symbol query times and bits per symbol for patterns of
length 10.
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Figure 6 Mean match counting per symbol query times and bits per symbol for patterns of
length 50.
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B Intel Xeon E7-8890 v4 experiment results
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Figure 7 Performance trade-offs for varying block sizes. Run on Intel Xeon E7-8890 v4.
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Figure 8 Mean match counting per symbol query times and bits per symbol for patterns of length
10. Run on Intel Xeon E7-8890 v4.
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Figure 9 Mean match counting per symbol query times and bits per symbol for patterns of length
30. Run on Intel Xeon E7-8890 v4.
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Figure 10 Mean match counting per symbol query times and bits per symbol for patterns of
length 50. Run on Intel Xeon E7-8890 v4.
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