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Abstract
Optimizing over the efficient set of a discrete multi-objective problem is a challenging issue. The
main reason is that, unlike when optimizing over the feasible set, the efficient set is implicitly
characterized. Therefore, methods designed for this purpose iteratively generate efficient solutions
by solving appropriate single-objective problems. However, the number of efficient solutions can be
quite large and the problems to be solved can be difficult practically. Thus, the challenge is both to
minimize the number of iterations and to reduce the difficulty of the problems to be solved at each
iteration.

In this paper, a new enumeration scheme is proposed. By introducing some constraints and
optimizing over projections of the search region, potentially large parts of the search space can be
discarded, drastically reducing the number of iterations. Moreover, the single-objective programs to
be solved can be guaranteed to be feasible, and a starting solution can be provided allowing warm
start resolutions. This results in a fast algorithm that is simple to implement.

Experimental computations on two standard multi-objective instance families show that our
approach seems to perform significantly faster than the state of the art algorithm.
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1 Introduction

For problems involving multiple objectives, solutions of interest are efficient solutions for
which there is no other solution which dominates it, meaning that it is at least as good on
all objectives and strictly better on at least one objective. The resulting efficient set is often
of large cardinality for multi-objective discrete problems, and in particular multi-objective
combinatorial optimization (MOCO) problems. In order to discriminate among efficient
solutions, a natural approach is to optimize, over the efficient set, a value function Φ which
represents a major objective or the preferences of a specific decision maker. A special case
of interest is the determination of the nadir point which, when considering objectives to be
minimized, corresponds to the worst values achieved by efficient solutions for each objective.
This valuable information allowing a decision maker to better appreciate the values that
he/she could expect, can indeed be seen as maximizing independently each objective function
over the efficient set.

When the function Φ to be optimized guarantees to return an efficient solution (e.g. when
Φ is a positively weighted sum of the objective functions), optimizing Φ over the efficient
set can be performed by optimizing Φ over the feasible set. In general, however, optimizing
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9:2 Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

Φ directly over the feasible set will return a dominated solution. The difficulty stems from
the fact that, unlike the feasible set, the efficient set is not explicitly defined by a set of
constraints.

A trivial approach consists of enumerating the entire efficient set, computing the image
of each solution through function Φ before finding the optimal one. However, as mentioned
before, this is not a convenient approach since computing the efficient set can be intractable
due to its large cardinality. For this reason, most approaches, including ours, try to find an
optimal solution by enumerating the smallest possible subset of efficient solutions.

After stating the problem formally in Section 2, we briefly review the literature indicating
the positioning of our approach among existing approaches (Section 3). We then state some
preliminary results (Section 4) before presenting our algorithm in Section 5. Experimental
results on two standard MOCO problems are then reported in Section 6. Some conclusions
and perspectives are finally presented.

2 Problem statement

In the following, vectors are written in bold contrarily to scalars. Components of vectors are
specified as indices.

2.1 Basic definitions and notations
Given a discrete set X of feasible solutions, defined by constraints on n decision variables,
and p objective functions or criteria f = (f1, . . . , fp),

we consider the following multi-objective problem:

(MOP)
{

min f(x) = (f1(x), . . . , fp(x))
s.t. x ∈ X

For any feasible solution x ∈ X , its image y = f(x) is referred to as a feasible point and
Y = f(X ) denotes the set of feasible points. In this setting Rn and Rp, will be referred to as
the decision space and the objective space, respectively.

Given p dimensional points in Rp, we consider the following binary relations; they are
respectively referred to as (Pareto) dominance, strong dominance and weak dominance:

y ⪯ y′ ⇐⇒
{

yi ≤ y′
i ∀i ∈ {1, . . . , p}

y ̸= y′

y ≺ y′ ⇐⇒ yi < y′
i ∀i ∈ {1, . . . , p}

y � y′ ⇐⇒ yi ≤ y′
i ∀i ∈ {1, . . . , p}

The set YN , which contains the points that are non-dominated, is defined by: YN = {y ∈
Y,∄y′ ∈ Y, y′ ⪯ y}. The subset of feasible solutions that lead to a non-dominated point is
referred to as the efficient set and is denoted by XE = f−1(YN ). It should be observed that
several efficient solutions may correspond to the same non-dominated point. Solving problem
(MOP) is then usually understood as determining YN and providing one efficient solution
associated with each non-dominated point in YN . Many algorithms have been proposed for
solving problem (MOP) in the discrete case including [9, 13, 12, 6, 2, 14]. As will be seen in
Section 3, algorithms for optimizing over the efficient set have been strongly influenced by
these algorithms.

Finally, y−k ∈ Rp−1 denotes the projection of y in the direction k i.e. the point y where
component k has been omitted, that is y−k = (y1, . . . , yk−1, yk+1, . . . , yp).
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2.2 Problem statement
Given a function Φ : X → R to be minimized, the problem of optimizing Φ over the efficient
set of X can be stated as follows:

(MOPE)
{

min Φ(x)
s.t. x ∈ XE

The difficulty of this problem stems from the fact that XE is not characterized explicitly,
i.e. as a set of constraints. Note that under certain assumptions on Φ, this problem amounts
to optimizing over the feasible set, making the problem much simpler. In particular, this
is the case when the optima of Φ are guaranteed to be non-dominated, as stated later in
Theorem 2. In general, however, optimizing over the feasible set returns a solution which is
not efficient and provides a lower bound on Φ which may be very far from the optimal value.

3 Related works and contribution of this paper

Approaches optimizing over the efficient set usually rely on the concept of search region that
has been formalized in [8, 4], which is described in Section 4.1. Informally, the search region
associated to a set of points N corresponds to the subset of the objective space containing
points not dominated by any point in N .

Most methods dealing with the discrete case for problem (MOPE) follow the same general
scheme. They iteratively minimize Φ over the current search region to obtain a candidate
point y. Since y is potentially dominated, an additional effort is required to check the
Pareto-optimality of the candidate. This step is usually performed by solving a program
leading to a point y′ ∈ YN that dominates y. Among all efficient solutions x′ corresponding
to y′, i.e. such that x′ ∈ f−1(y′), one optimizing function Φ is selected and retained if it
improves the current best value of Φ. Convergence is reached when there is no feasible point
in the current search region or when the solution of the first phase is non-dominated.

The evolution of the proposed methods for optimizing over the efficient set of a discrete
multi-objective problem (problem (MOPE) ) follows the evolution of the proposed methods
for generating the non-dominated set of a discrete multi-objective problem (problem (MOP) )
and is actually related to the evolution of the way of representing the search region.

The oldest methods for solving problem (MOP) , such as [9, 13], used a complete and
implicit representation of the search region. This involves imposing constraints stating that
the new non-dominated point to be generated should improve on at least one objective with
respect to all non-dominated points previously generated. This may be achieved by adding
disjunctive constraints as shown in [13]. While quite easy to implement, the main drawback
of this approach is the growth of the number of constraints which makes it impossible to solve
other than small size instances. Similarly, the oldest methods for solving problem (MOPE) ,
such as [5, 3] use a complete and implicit representation of the search region, with the same
drawbacks as for problem (MOP) .

The current methods for solving problem (MOP) resort to a decomposition of the search
region into a union of search zones which allows solving at each iteration problems of constant
size testing the existence of new non-dominated points in a search zone. The clear advantage
is that the required optimization is relatively fast. The corresponding algorithms, such as
[12, 6, 2, 14], mostly differ on how search zones are defined (note that sometimes a superset
of the search region is stored), how search zones are explored (i.e. which search zone should
be explored first and how) and how the search region is updated (i.e. how to modify the
search zones so as to remove the part dominated by a new point) - see [14] for more details.

SEA 2023
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Following this evolution, the most recent algorithms for solving problem (MOPE) resort
to a decomposition of the search region, and were often proposed by the same authors who
adapted their decomposition approach to problem (MOPE) [1, 11] or to its special case of
determining the nadir point [10, 7]. Similarly the algorithm proposed in this paper can be
seen as an adaptation of our previous algorithm for problem (MOP) presented in [14]. While
preserving the positive features of our previous approach (the definition of rules allowing
many search zones to be discarded without exploring them, the guarantee that the required
optimization problems are feasible and the existence of an initial feasible solution provided to
the solver, which considerably speeds up the solution times,...), our adaptation also includes
new positive features specific to problem (MOPE) . In particular, by focusing on the iterative
improvement of function Φ, we define new rules to discard additional search zones which
cannot contain efficient solutions improving Φ.

4 Preliminary results

4.1 Search region, search zones
Given a set of N points, the corresponding search region denoted by S(N) corresponds to
the set of points that are not dominated by a point of N , i.e.

S(N) = {y ∈ Rp : ∄ȳ ∈ N, ȳ � y}

The search region, which describes the part of the objective space where undiscovered
non-dominated points may lie, can be defined as a union of search zones delimited by local
upper bounds (see [8] for more details). Denoting U(N) as the set of these local upper bounds,
we have then:

y ∈ S(N) ⇐⇒ ∃u ∈ U(N) : y ≺ u

When a new point y is found, the search region must be updated by removing the part
dominated by y. This is done by splitting each zone strictly dominated by y into p new
zones, referred to as children. Child i of u is ui = (u1, . . . , ui−1, yi, ui+1, . . . , up).

Updating the search region can lead to redundancies, i.e. zones that are included in
others. Since only maximal zones are required to represent the search region, [8, 4] have
proposed some methods to avoid generating redundant zones. One of these relies on the
identification of the defining points, that are the points in N which define the components of
the local upper bounds.

▶ Definition 1. A point y ∈ N is a defining point for the component i of u if and only if
yi = ui and y−i ≺ u−i.

The following result allows the efficient identification of maximal local upper bounds.

▶ Theorem 1 ([8]). u is maximal if there exists at least one defining point for every bounded
component of u.

In the following, Di(u) denotes the set of defining points of ui.

4.2 Finding a non-dominated point
A well known theorem in multi-objective optimization states that some functions are guar-
anteed to lead to a non-dominated point when being optimized. Such functions are called
strongly monotone and preserve the Pareto-dominance. More formally:
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▶ Definition 2. A function g : Y 7→ R is said to be strongly monotone if and only if

∀(y, y′) ∈ Y2, y ⪯ y′ =⇒ g(y) < g(y′)

▶ Theorem 2. Let g be a strongly monotone function and u ∈ Rp. Then, if problem
{min g(y) : y ∈ Y, y � u} admits y∗ as an optimal solution, then y∗ ∈ YN .

Proof. Due to the strong monotonicity of g, any point ȳ ∈ Y dominating y∗ should verify
g(ȳ) < g(y∗). Moreover, we have ȳ ⪯ y∗ � u, thus ȳ is feasible, contradicting the optimality
of y∗. ◀

5 Algorithm statement

The proposed algorithm iteratively explores the search region, trying to improve the current
best known value ϕ of function Φ while limiting the number of search zones to be explored,
and stops when the search region becomes empty.

5.1 Exploration of the search region
Since the search region is defined as a list of search zones, each zone is investigated independ-
ently. The exploration of the zone bounded by u is performed by solving integer programs
over a projection of u. All these programs are guaranteed to be feasible, and an initial
feasible solution can be provided in each case (warm start). These two properties usually
lead to faster solution times.

First, a lower bound over the value of Φ is computed by solving the program:

(Π(ℓ, u)) = {min Φ(x) : x ∈ X , f−ℓ(x) ≺ u−ℓ}

Note that, by Definition 1 and Theorem 1, if uℓ is bounded then any defining point in
Dℓ(u) is feasible for problem (Π(ℓ, u)), which allows us to optimize this problem using a
warm start. Even if the resulting optimal solution x̂ is not guaranteed to be efficient, it
provides a lower bound on Φ over the zone delimited by u, but also over some similar search
zones as stated by the following result.

▶ Proposition 3. Let u′ ∈ Rp be a local upper bound such that u′
−ℓ � u−ℓ for some

ℓ ∈ {1, . . . , p}. If (Π(ℓ, u)) admits an optimal solution x̂, then Φ(x̂) is a lower bound for any
feasible point in the zone delimited by u′.

Proof. Since u′
−ℓ � u−ℓ, every x ∈ X whose image by f is in the zone delimited by u′ is

feasible for Π(ℓ, u). ◀

Note that Proposition 3 applies for u in particular. Therefore, when the optimal value
of problem (Π(ℓ, u)) does not improve ϕ, all search zones delimited by local upper bounds
triggering Proposition 3 can be discarded. Otherwise, we proceed to the next step aiming at
identifying a candidate while possibly discarding other search zones.

For this purpose, we look for a solution that minimizes fℓ over the same projection, while
improving ϕ. This is performed by solving:

(P (ℓ, u)) = {min fℓ(x) : x ∈ X , f−ℓ(x) ≺ u−ℓ, Φ(x) < ϕ}

Observe that, at this stage, the optimal solution returned by problem (Π(ℓ, u)) can be
used as a warm start for problem (P (ℓ, u)). This program does not necessarily return an

SEA 2023
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efficient solution due to the additional constraint over the value of Φ. It provides however a
lower bound on objective fℓ over all efficient solutions that improve the estimation over the
projection. The following result exploits this property in order to discard some search zones.

▶ Proposition 4. Let u′ ∈ Rp be a local upper bound such that u′
−ℓ � u−ℓ for some

ℓ ∈ {1, . . . , p}. If (P (ℓ, u)) yields a solution x̄ such that u′
ℓ ≤ fℓ(x̄), then no point in the

zone delimited by u′ improves ϕ which can thus be discarded.

Proof. Any solution x that is feasible for P (ℓ, u′) is also feasible for P (ℓ, u). Thus, we have
u′

ℓ ≤ fℓ(x̄) ≤ fℓ(x), meaning that f(x) cannot belong to the zone bounded by u′. Due to
the constraint Φ(x) < ϕ in program (P (ℓ, u)), the image by f of any improving solution
cannot belong to this zone. ◀

As before, Proposition 4 applies for u in particular.
While solution x̄ of (P (ℓ, u)) improves ϕ, its efficiency is not guaranteed. Therefore, we

look for an efficient solution dominating x̄, by solving the following program that optimizes a
strongly monotone function (guaranteeing efficiency by Theorem 2) and discriminates among
the resulting optimal solutions by optimizing Φ.

(OptEff) = {lexmin
{

p∑
i=1

fi(x), Φ(x)
}

: x ∈ X , f(x) � f(x̄)}

Note that x̄ is feasible for this problem and can thus be used as a warm start. The solution
x∗ of problem (OptEff) while being efficient is no longer guaranteed to improve ϕ.

It is important to observe that the search region is reduced at each iteration. Indeed,
at least u is discarded by application of Proposition 3 or 4, or a new non-dominated point
y∗ = f(x∗) is found in the zone bounded by u and the region it dominates is thus removed
(by splitting the zones y∗ belongs to). The convergence of the resulting algorithm (see
Algorithm 1) is therefore guaranteed under standard conditions ensuring that XE is finite,
trivially satisfied in particular for MOCO problems.

5.2 Updating the search region
Each time a non-dominated point y∗ = f(x∗) is found, the search region must be updated by
removing the part dominated by y∗. The basic operation is described in [8] and is performed
in two steps. First, the zones y∗ belongs to must be split by replacing the corresponding
local upper bounds u by their p children ui, i ∈ {1, . . . , p}. Second, the search zones that
are redundant, i.e. included in others, must be discarded. Moreover, by application of
Propositions 3 and 4, additional zones can be ignored.

We associate to each local upper bound u a lower bound on Φ denoted by lΦ(u). This
lower bound is iteratively updated each time Proposition 3 can be applied, i.e. each time
Π(ℓ, u′) is solved for a zone u′ such that u−ℓ � u′

−ℓ. If the lower bound of a search zone is
worse than ϕ, the zone is discarded.

It is also important to notice that Propositions 3 and 4 can be triggered at further
iterations. For this reason, we store the successive results of problems (Π(ℓ, u)) and (P (ℓ, u))
in archives denoted by AΠ and AP , respectively. Entries in AΠ are 3-uples of the form
(u, ℓ, Φ(x̂)) and entries in AP are 3-uples of the form (u, ℓ, fℓ(x̄)). Before adding a new child
v, the archives are consulted. If Propositions 3 and 4 can be applied using an entry of AΠ
or AP , the child can be discarded. The use of balanced trees to store the content of each
archive allows us to perform efficient lookups since only lower bounds that are greater than
ϕ (for AΠ) or greater than vj for some j ∈ {1, . . . , p} (in AP ) are relevant.

This update procedure is described in Algorithm 2.
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5.3 Selecting a search zone
To increase the impact of Propositions 3 and 4, we want to prioritize maximal projections of
local upper bounds, i.e. we want to select u and ℓ such that there is no local upper bound
u′ such that u−ℓ � u′

−ℓ. Moreover, we want to select ℓ such that uℓ is bounded in order to
exploit Theorem 1 to provide a defining point of uℓ as a starting solution for (Π(ℓ, u)), which
is always possible except at the first iteration.

For this reason, we suggest to compute the volume of the projection:

h(u, ℓ) =
p∏

i=1
i ̸=ℓ

ui − yI
i

where yI denotes the ideal point of (MOP) , which can be obtained by optimizing independ-
ently each objective function fi over X .

Then, we select the projection maximizing this volume, among the current set U of local
upper bounds:

(u∗, ℓ) = argmax u∈U
i∈{1,...,p}

{h(u, i)}

Algorithm 1 Optimization over the efficient set.

Input :X , f , Φ
Output : ϕ, xopt

/* Initialize the estimation of Φ, the set of non-dominated points,
the list of upper bounds and the archives */

1 ϕ←∞, N ← ∅, U ← {(∞, . . . ,∞)}, AΠ ← ∅, AP ← ∅
2 while U ̸= ∅ do
3 (u∗, ℓ)← argmax u∈U

i∈{1,...,p}
{h(u, i)}

4 x̂← argmin {Φ(x) : x ∈ X , f(x)−ℓ ≺ u∗
−ℓ}

5 AΠ ← AΠ ∪ {(u∗, ℓ, Φ(x̂))}
6 if Φ(x̂) ≥ ϕ then
7 U ← U \ {v ∈ U , v−ℓ � u∗

−ℓ, vℓ ≥ fℓ(x̂)}
8 else
9 x̄← argmin {fℓ(x) : x ∈ X , f−ℓ(x) ≺ u∗

−ℓ, Φ(x) < ϕ}
10 x∗ ← arglexmin {

∑p
i=1 fi(x), Φ(x) : x ∈ X , f(x) � f(x̄)}

11 N ← N ∪ {x∗}
12 if Φ(x∗) < ϕ // Updating the estimation
13 then
14 ϕ← Φ(x∗), xopt ← x∗

15 update(U , ϕ, u∗
−ℓ, Φ(x̂), fℓ(x̄), x∗, f(x∗))

16 AP ← AP ∪ {(u∗, ℓ, fℓ(x̄))}

6 Computational experiments

The evaluation of our algorithm (referred to as TV in the following), is performed using
instances of standard MOCO problems where Φ is a linear combination of the decision

SEA 2023
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Algorithm 2 Updating the search region.

Input :U , the search region to be updated
ϕ, the value of the best known solution
u∗

−ℓ, the explored projection
Φ(x̂), the result of Π(ℓ, u∗)
ȳℓ, the result of P (ℓ, u∗)
x∗ and y∗, the efficient solution and its associated point

Output :U , the updated search region
1 children← ∅

/* Computing the maximal children */
2 foreach u ∈ U do
3 if y∗ ≺ u then
4 U ← U \ {u}
5 foreach i ∈ {1, . . . , p} do
6 ui ← (u1, . . . , ui−1, y∗

i , ui+1, . . . , up)
/* Computing the defining points of each bounded component */

7 Dj(ui)← {y ∈ Dj(u), yi < y∗
i }, ∀j ∈ {1, . . . , p}, ui

j ̸=∞
8 Di(ui)← {f(x∗)}
9 if Dj(ui) ̸= ∅, ∀j ∈ {1, . . . , p}, ui

j ̸=∞ // The child is maximal
10 and ∄(v, j, opt) ∈ AΠ : ui

−j ⪯ v−j , opt ≥ ϕ // No archived problem
triggers Proposition 3

11 and ∄(v, j, opt) ∈ AP : ui
−j ⪯ v−j , opt ≥ ui

j // No archived problem
triggers Proposition 4

12 then
13 children← children ∪ {ui}

14 else if y∗ � u then
/* y∗ may be a new defining point for u */

15 Dj(u)← Dj(u) ∪ {y∗} ∀j ∈ {1, . . . , p}, y∗
−j ≺ u−j

16 U ← U ∪ children
/* Application of the reduction rules */

17 foreach u ∈ U do
18 if u−ℓ � u∗

−ℓ then
19 if ȳℓ ≥ uℓ then

/* Proposition 4 */
20 U ← U \ {u}
21 else

/* Proposition 3 */
22 lΦ(u)← max {lΦ(u), Φ(x̂)}

23 if lΦ(u) ≥ ϕ then
24 U ← U \ {u} // The lower bound is worse than the current

estimation
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variables, as done for most other algorithms. Moreover we propose to compare TV with a
state of the art algorithm. Natural candidates are the most recent algorithms which were
themselves compared to previous ones and shown to achieve the best performances. The two
most recent algorithms are [1, 11]. Comparisons in [1] report significantly better results with
respect to the algorithm proposed in [5]. Comparisons in [11], for which no implementation
is available, report contrasted results in particular between algorithms presented in these two
papers. Moreover, algorithms in [11] deal with a special case where function Φ is a weighted
combination of the objectives, with at least one negative weight. Therefore, we selected the
algorithm proposed in [1] (referred to as BCS in the following) as a reference algorithm,
using the C++ implementation provided by the authors.

Experiments have been conducted on a Linux NixOS virtual machine (AMD EPYC 7702
64-Core) running at 2000 Mhz and having 32 G of RAM. The experiments are restricted to
run on a single thread, but without memory limit (less than 32G). The underlying discrete
solver is IBM Cplex 22.10. Our code is written using the Haskell programming language and
a handcrafted API for Cplex. This code is available online2. If an instance takes more than
two hours to be solved, the tested approach is considered to have timed out.

6.1 Instances
Our approach has been validated on two sets of instances that are described in this section.
In each instance, the function Φ to be minimized is randomly generated in a similar way as
the objective functions.

6.1.1 MOKP
Given a set of n items, each item i having p profit values vj

i , j ∈ {1, . . . , p} and a weight
wi, the multi-objective knapsack problem (MOKP) consists of selecting a subset of items
considering the total values on each objective, without exceeding a certain weight capacity
W . This problem can be stated as:

(MOKP )


max fj(x) =

∑n
i=1 vj

i xi ∀j ∈ {1, . . . , p}
s.t.

∑n
i=1 wixi ≤W

xi ∈ {0, 1} i ∈ {1, . . . , n}

Coefficients vj
i and wi are uniformly sampled in {1, . . . , 100}, and W is set to

∑n

i=1
wi

2 .
10 instances of size n = 100 and p = 3, 4, 5 have been generated.

6.1.2 MOAP
Given n tasks to be performed on n machines and p costs cj

ik of assigning task i to machine
k, the multi-objective assignment problem consists of determining an assignment considering
the total cost on each objective. This problem can be stated as:

(MOAP )


min

∑n
i=1

∑n
k=1 cj

ikxik ∀j ∈ {1, . . . , p}
s.t.:

∑n
i=1 xik = 1 k ∈ {1, . . . , n}∑n
k=1 xik = 1 i ∈ {1, . . . , n}

xik ∈ {0, 1} i ∈ {1, . . . , n}, k ∈ {1, . . . , n}

2 https://github.com/tambysatya/EfficientSetOptmizer
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(a) p = 3. (b) p = 4.

(c) p = 5.

Figure 1 Performance profiles on multi-objective knapsack problem (higher is better).

Coefficients cj
ik are uniformly sampled in {1, . . . , 25}. 10 instances of size n = 30 and p = 3, 4

have been generated.

6.2 Analysis
We first propose a comparative analysis of the CPU time required by BCS and TV on both
families of instances. Performance profiles are reported in Figures 1 and 2. These plots
represent the percentages of instances solved in less than t seconds, for t ≤ 7200s. We can
see that TV clearly outperforms BCS on both MOKP and MOAP instances. In particular,
on the tri-objective MOKP and on all MOAP instances, TV solves each instance faster than
the most fastly solved instance by BCS. In addition, BCS is unable to solve any instance of
MOAP with 4 objectives and two instances of MOKP with 5 objectives while TV solves all
of them in less than two hours. For the MOKP with 4 objectives, TV solves all instances in
less than 500 seconds while BCS solves only 2 of these in this timelapse.

Second, BCS and TV are evaluated according to several measures in Tables 1 and 2. For
both algorithms, the average cpu-time, number of iterations and the number of generated
non-dominated points are presented. Additional information is reported for TV : the maximum
and average size of the search region, the percentage of zones that are discarded by reduction
rules induced by Propositions 3 and 4 and using the archives.

The average CPU time spent on each test set obviously matches the observations made
from the performance profiles, validating the performance of TV against BCS, and will thus
not be discussed. The number of iterations required to compute the optimum for each test
set also shows that our approach converge faster. These two measures are inter-related,
especially since each iteration of BCS involves solving problems with disjunctive constraints
which are likely more difficult to be optimized and which can be infeasible while TV solves
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(a) p = 3. (b) p = 4.

Figure 2 Performance profiles on multi-objective assignment problem (higher is better).

Table 1 Performance measures for MOKP

mean
p n CPU (s) #It |N | |U|max |U|avg Reductions (%) Archive (%)
3 100 TV 16.9 218.3 172.7 91.8 44.67 27.65 0.50

BCS 85.8 287.0 155.5
4 100 TV 135.8 1003.8 560.5 1237.4 696.02 14.63 0.88

BCS 1457.1 1242.7 436.3
5 100 TV 720.3 3123.2 1071.9 12493.2 6852.99 8.38 0.86

BCS -

Table 2 Performance measures for MOAP.

mean
p n × n CPU (s) #It |N | |U|max |U|avg Reductions (%) Archive (%)
3 30 × 30 TV 169.8 561.9 475.5 177.3 93.78 25.41 0.32

BCS 2134.0 2042.7 1020.5
4 30 × 30 TV 3396.0 5140.9 3267.5 10609.4 5319.58 13.88 0.33

BCS -
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only feasible problems that are augmented with budget constraints only. Regarding MOKP,
we can observe that, while converging faster than BCS, TV generates a slightly larger number
non-dominated points (for p = 3, 4). This is no longer true for MOAP, where BCS requires
the generation of about four times more non-dominated points (for p = 3).

To perform a more detailed analysis of TV, several points must be discussed. First, the
maximum and average size of the current search region remains “reasonable”, suggesting
that time is mainly spent in exploring zones and justifying our aim of reducing the number
of calls to the underlying discrete solver and helping it by providing feasible problems for
which initial feasible solutions are also provided (warm start). Second, we can see that
reduction rules are quite efficient in particular for tri-criteria case where about a quarter
of the children zones are discarded, both for MOKP and MOAP. As expected given the
conditions for triggering these rules, this proportion decreases for 4 objectives (around 15%)
to become less than 10% when p = 5. Conversely, despite being significantly smaller, the
proportion of zones that are discarded using the archives is rather stable when the number
of objectives grows.

7 Conclusion

While strongly relying on mechanisms developed in [14] that already proved quite successful
for problem (MOP) (reduction rules to reject zones without probing them, or providing an
initial solution for every integer program to be solved), this algorithm, proposed for problem
(MOPE) , takes advantage of new results, notably the computation of local lower bounds
on the function to be minimized over the efficient set. Additional reduction rules are thus
proposed, allowing pruning the search space and converging faster. Our experiments on
the multi-objective knapsack and assignment problems show promising results since this
approach seems to perform significantly better than the state of the art algorithms.

Besides technically improving the current method, further works may concern studying
the optimization of specific functions. For instance, a natural extension would be to apply
this method to the computation of the nadir point, whose components are the worst possible
values taken by the non-dominated points. Our perspective in this respect is to make use of
specific properties of this point so as to adapt our approach to this problem.
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