
Quantum Mass Production Theorems
William Kretschmer #Ñ

University of Texas at Austin, TX, USA

Abstract
We prove that for any n-qubit unitary transformation U and for any r = 2o(n/ log n), there exists a
quantum circuit to implement U⊗r with at most O(4n) gates. This asymptotically equals the number
of gates needed to implement just a single copy of a worst-case U . We also establish analogous
results for quantum states and diagonal unitary transformations. Our techniques are based on the
work of Uhlig [Math. Notes 1974], who proved a similar mass production theorem for Boolean
functions.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory; Theory
of computation → Circuit complexity

Keywords and phrases mass production, quantum circuit synthesis, quantum circuit complexity

Digital Object Identifier 10.4230/LIPIcs.TQC.2023.10

Related Version Previous Version: https://arxiv.org/abs/2212.14399

Funding Supported by an NDSEG fellowship.

Acknowledgements Part of this work was done while the author attended the 2022 Extended
Reunion for the Quantum Wave in Computing at the Simons Institute for the Theory of Computing.
We thank Alex Meiburg for helpful discussions.

1 Introduction

If a computational task requires c resources, then common sense dictates that repeating
the same task r times should require roughly c · r resources. In many settings, including
query complexity [11] and communication complexity [12, 4], this intuition can be made
rigorous: such results are known as direct sum theorems. Closely related are direct product
theorems, which show that, with a fixed computational budget, the probability of successfully
performing r independent tasks decays in r. We recommend [7, Chapter 1] for a good
overview of the topic.

Nevertheless, direct sum and direct product theorems are not universal. Some computa-
tional settings exhibit a “mass production” phenomenon, in which the cost of performing the
same task many times in parallel does not scale linearly with the number of repetitions. A
well-known example [13, 7] is based on the circuit complexity of matrix-vector multiplication.
For a matrix M ∈ {0, 1}n×n, define fM : {0, 1}n → {0, 1}n by fM (v) = Mv, where addition
and multiplication are taken mod 2. Then a simple counting argument implies that for most
M , the complexity of implementing fM via a Boolean circuit is at least Ω(n2/ logn), as
measured by the number of 2-bit AND, OR, and NOT gates. Yet, by observing that fn

M

(i.e. fM repeated n times) is simply a matrix-matrix multiplication, we find that the cost of
implementing fn

M is only O(nω), where ω < 2.38 is the exponent of matrix multiplication
[3, 8] – substantially less than the naive bound of O(n3).

One might be left with the impression that such mass production phenomena can only
occur for extremely special functions, like matrix multiplication, that have a particular
algebraic or combinatorial structure. Remarkably, this intuition fails dramatically in the
setting of Boolean circuit complexity. A theorem of Uhlig [17, 18, 19] shows that for any

© William Kretschmer;
licensed under Creative Commons License CC-BY 4.0

18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023).
Editors: Omar Fawzi and Michael Walter; Article No. 10; pp. 10:1–10:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kretsch@cs.utexas.edu
https://www.cs.utexas.edu/~kretsch/
https://orcid.org/0000-0002-7784-9817
https://doi.org/10.4230/LIPIcs.TQC.2023.10
https://arxiv.org/abs/2212.14399
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Quantum Mass Production Theorems

Boolean function f : {0, 1}n → {0, 1} and for any r = 2o(n/ log n), there exists a Boolean
circuit implementing fr with at most O

(2n

n

)
gates. Asymptotically, this equals the number

of gates needed to evaluate a worst-case f on a single input, by the well-known counting
argument of Shannon [15]. In fact, Uhlig even showed that the leading constant in the big-O
does not increase with r, and hence arbitrary Boolean functions can be mass produced with
essentially no overhead.

1.1 This Work
In this work, we consider the natural question of whether a similar mass production phe-
nomenon holds for quantum circuit complexity. Our question is well-motivated by recent
works demonstrating that for certain learning tasks, algorithms with access to many copies of
a quantum state on a quantum memory can be exponentially more powerful than algorithms
that have access only to single copies of the state at a time [6, 10, 5]. Indeed, these results
suggest that optimizing the complexity of mass producing quantum states and processes
could have valuable applications. We also view our question as interesting from a purely
theoretical perspective, especially considering that Uhlig’s theorem for classical functions has
recently found complexity-theoretic applications in characterizing the minimum circuit size
problem [14, 9].

For simplicity, we consider quantum circuit complexity in the setting of qubit quantum
circuits, using the universal gate set of arbitrary single-qubit gates plus CNOT gates with
all-to-all connectivity. We also allow ancilla qubits initialized to |0⟩, so long as they are reset
to |0⟩ at the end of the computation. We measure circuit complexity in terms of the CNOT
count. This measure is justified by the fact that multiple-qubit gates are more error-prone
and expensive to implement than single-qubit gates, and also by the observation that the
number of single-qubit gates is related to the CNOT count by at most a factor of 4 in any
irredundant circuit.

In analogy with Uhlig’s theorem [17, 18, 19], our main result establishes mass production
theorems for both quantum states and unitary transformations.

▶ Theorem 1. Let |ψ⟩ be an n-qubit quantum state, and let r = 2o(n/ log n). Then there exists
a quantum circuit with at most (1 + o(1))2n CNOT gates to prepare |ψ⟩⊗r.

▶ Theorem 2. Let U be an n-qubit unitary transformation, and let r = 2o(n/ log n). Then
there exists a quantum circuit with at most (5/2 + o(1))4n CNOT gates to implement U⊗r.

Note that the factor 2n (respectively, 4n), in Theorem 1 (respectively, Theorem 2) is
optimal, because it asymptotically equals the number of CNOT gates needed to prepare a
single copy of an arbitrary n-qubit state (respectively, to implement an arbitrary n-qubit
unitary once), up to a small multiplicative constant [16]. Above, we made the leading
constants explicit only to illustrate that they are not too large, and thus to demonstrate that
these theorems have some hope of becoming practical. We leave a full optimization of these
constants and the factors hidden in the o(1) to future work.

1.2 Proof Overview
Our results build heavily on the simple proof of Uhlig’s theorem given in [19], which
we now briefly summarize. The proof proceeds by first showing that for an arbitrary
f : {0, 1}n → {0, 1}, one can compute 2 copies of f using roughly 2n

n gates – the same cost

W. Kretschmer 10:3

as is needed to compute a single copy of a worst-case f . Then, Uhlig shows that we can
generalize to a larger number of repetitions r by a straightforward recursive argument. So,
we focus on the r = 2 case.

Fix a parameter k do be chosen later, and define for each 0 ≤ i ≤ 2k − 1 the function
fi : {0, 1}n−k → {0, 1} to be the restriction of f obtained by fixing the first k bits to be the
binary representation of i. So, for example,

f(0, 0, . . . , 0︸ ︷︷ ︸
k times

, xk+1, . . . , xn) = f0(xk+1, . . . , xn).

Next, we define a set of functions gℓ : {0, 1}n−k → {0, 1} for each 0 ≤ ℓ ≤ 2k by:
g0 = f0.
gℓ = fℓ−1 ⊕ fℓ if 1 ≤ ℓ ≤ 2k − 1.
g2k = f2k−1.

Observe that

fi =
i⊕

ℓ=0
gℓ =

2k⊕
ℓ=i+1

gℓ. (1)

Now, suppose that we have a pair of inputs x, y ∈ {0, 1}n to f , and our goal is to evaluate f(x)
and f(y) simultaneously. Let i and j denote the integers whose binary representations are the
first k bits of x and y, respectively. Assume without loss of generality that i ≤ j. Uhlig’s idea
is to evaluate f(x) using the decomposition fi =

⊕i
ℓ=0 gℓ and f(y) using fj =

⊕2k

ℓ=j+1 gℓ.
The key observation is that in doing so, we only need to evaluate each gℓ at most once. The
cost of computing f(x) and f(y) this way is dominated by computing the gℓs. So, the total
size of the circuit is roughly

(
2k + 1

) (
2n−k

n− k

)
,

because there are 2k + 1 different gℓs, and each gℓ is a function on n− k bits. For reasonable
choices of k, this is asymptotically (1 + o(1)) 2n

n , as desired.
Our main insight is that the same general approach generalizes straightforwardly from

mass producing Boolean functions to mass producing diagonal unitary matrices, which we
establish in Theorem 4. In one sense, the only conceptual change between our proof and
Uhlig’s is that we work with the group of complex units under multiplication, rather than the
group {0, 1} under XOR. Nevertheless, our proof requires some care, as we do not deal with
diagonal matrices directly. Rather, we mass produce the direct sum of a diagonal unitary
with its inverse. In other words, for an n-qubit diagonal unitary U , we find it more convenient
to work with the diagonal unitary on n+ 1 qubits that applies U when the last qubit is |0⟩,
and U† when the last qubit is |1⟩. The intuitive reason why we require this change is that the
XOR function is its own inverse, whereas multiplication by a complex unit is generally not.

Finally, once we have established Theorem 4 for diagonal unitary transformations, we
obtain the mass production theorems for quantum states and general unitary transformations
by using well-known decompositions of states and unitaries into diagonal gates [16].

TQC 2023

10:4 Quantum Mass Production Theorems

2 Preliminaries

2.1 Basic Notation

We denote by 1{p} the function that evaluates to 1 if proposition p is true, and 0 otherwise.
If α is a complex number, we let α∗ denote its complex conjugate. We denote by T :=
{a+ bi : |a|2 + |b|2 = 1} the set of complex units. For a function f : {0, 1}n → T, denote by
f̄ : {0, 1}n+1 → T the function defined by f̄(x, c) = f(x)1−2c, so that f̄ evaluates to f when
c = 0 and evaluates to f∗ when c = 1. We freely identify a function f : {0, 1}n → T with
the corresponding diagonal unitary transformation U that acts as U |x⟩ = f(x) |x⟩ on basis
states x ∈ {0, 1}n.

We use standard notation for quantum circuits, including CNOT, Toffoli, and Fredkin
gates. We also borrow a large amount of notation and terminology from [16], as we detail
further below. We define the x-, y-, and z-axis rotations by:

Rx(θ) =
(

cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
,

Ry(θ) =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
,

Rz(θ) =
(
e−iθ/2 0

0 eiθ/2

)
.

2.2 Multiplexors

A multiplexor with s select qubits and d data qubits is a block-diagonal (s+ d)-qubit unitary
transformation that preserves every computational basis state |x⟩ on the select qubits. For
brevity, we call such a unitary an (s, d)-multiplexor. An (s, 1)-multiplexor in which all of
the diagonal blocks are Rz on the data qubit may alternatively be called a multiplexed Rz

(analogously for Rx and Ry). Collectively, multiplexed Rx, Ry, and Rz are called multiplexed
rotations. Observe that an (s, 1)-multiplexed Rz is equivalent to a unitary implementing f̄
for some f : {0, 1}s → T.

We require the following basic fact about implementing multiplexed rotations:

▶ Proposition 3 ([16, Theorem 8]). Let U be an (n, 1)-multiplexed rotation. Then there exists
a quantum circuit with at most 2n CNOT gates to implement U .

2.3 Generic Gates

As in [16], we use circuit diagrams containing generic gates. An equivalence of two circuit
diagrams containing generic gates means that for any assignment of parameters to the generic
gates on one side, there exists an assignment of parameters to the gates on the other side
that makes the two circuits compute the same operator. We use the following notation for
generic gates:

W. Kretschmer 10:5

/ A generic unitary gate.

/ ∆ A generic diagonal unitary gate.

Rz An Rz gate for some unspecified θ. Conventions for Rx and Ry are analogous.

/

/

A generic multiplexor, with select qubits on the upper register and data qubits
on the lower register

/

Rz

A multiplexed Rz. Conventions for Rx and Ry are analogous.

3 Diagonal Unitaries and Multiplexors

We begin by generalizing the proof of Uhlig’s theorem [19] to diagonal unitary matrices (or,
more precisely, multiplexed Rz gates).

▶ Theorem 4. Let f : {0, 1}n → T and let r = 2o(n/ log n). Then there exists a quantum
circuit with at most (1 + o(1))2n CNOT gates to implement f̄⊗r.

Proof. Without loss of generality, let r = 2t for some t = o(n/ logn). Our proof proceeds
by induction on t: for fixed k (chosen later) and for every n > k · t, we construct for each
f : {0, 1}n → T a circuit Cf,n,k,t computing f̄⊗2t . We proceed in order: first we construct
Cf,n,k,1 for every n and f , then Cf,n,k,2 for every n and f , then Cf,n,k,3 for every n and f ,
and so on. Ultimately, we show that there exists a universal constant d such that the number
of CNOT gates in Cf,n,k,t, denoted sn,k,t, satisfies the bound:

sn,k,t ≤
(
2k + 1

)t (
2n−tk + 2tdn

)
. (2)

We begin by describing the construction of Cf,n,k,1. For each 0 ≤ i ≤ 2k − 1, let
fi : {0, 1}n−k → T denote the restriction of f obtained by fixing the first k bits to the binary
representation of i. For each 0 ≤ i ≤ 2k, define gi : {0, 1}n−k → T by:

g0 = f0.

gℓ = f∗
ℓ−1fℓ if 1 ≤ ℓ ≤ 2k − 1.

g2k = f∗
2k−1.

Observe that

fi =
i∏

ℓ=0
gℓ =

2k∏
ℓ=i+1

g∗
ℓ . (3)

The key idea in the remainder of the proof is to evaluate f̄ on a pair of inputs (x, y) using the
two decompositions in (3), one each for x and y. Indeed, the following algorithm accomplishes
this.

TQC 2023

10:6 Quantum Mass Production Theorems

Algorithm 1 Evaluate f̄⊗2.

Input: x, y ∈ {0, 1}n, cx, cy ∈ {0, 1}
Output: f̄(x, cx) · f̄(y, cy)

1 α := 1
2 if x ≤ y then /* viewing x, y as integers w/ highest order bits x1, y1 */
3 m := x; cm := cx /* set m = min{x, y}, M = max{x, y} */
4 M := y; cM := cy

5 else
6 m := y; cm := cy

7 M := x; cM := cx

8 for 0 ≤ ℓ ≤ 2k do
9 if ℓ ≤ m[1:k] then /* x[i:j] denotes bits i through j of x */

10 Multiply α by ḡℓ(m[k+1:n], cm)
11 else if ℓ > M[1:k] then
12 Multiply α by ḡℓ(M[k+1:n], 1 − cM) /* note negation on cM */
13 else
14 Multiply α by 1
15 return α

Here, the ℓ ≤ m[1:k] clause corresponds to the multiplication
∏m[1:k]

ℓ=0 gℓ, while the ℓ >
M[1:k] clause corresponds to

∏2n

ℓ=M[1:k]
g∗

ℓ . An equivalent reformulation of Algorithm 1 is
given below.

Algorithm 2 Evaluate f̄⊗2

Input: x, y ∈ {0, 1}n, cx, cy ∈ {0, 1}
Output: f̄(x, cx) · f̄(y, cy)

1 α := 1
2 if x ≤ y then
3 m := x; cm := cx

4 M := y; cM := cy

5 else
6 m := y; cm := cy

7 M := x; cM := cx

8 for 0 ≤ ℓ ≤ 2k do
9 a := 1{ℓ ≤ m[1:k]} /* at most one of a, b is nonzero */

10 b := 1{ℓ > M[1:k]}
11 z := a ·m[k+1:n] ⊕ b ·M[k+1:n]
12 c := a · cm ⊕ b · (1 − cM)
13 Multiply α by ḡℓ(z, c)
14 Multiply α by g∗

ℓ (0n−k)(1−a)·(1−b) /* undo added phase in case a = b = 0
*/

15 return α

Algorithm 2 readily extends to a quantum circuit implementation. Define a pair of
classical reversible circuits An and Bn,k,ℓ whose input and output behavior are given in
Figure 1. Using An and Bn,k,ℓ, via the same strategy as Algorithm 2, we obtain the quantum
circuit Cf,n,k,1 defined in Figure 2 that implements f̄⊗2.

W. Kretschmer 10:7

x ∈ {0, 1}n /

An

x

y ∈ {0, 1}n / y

0 1{x > y}
(a) The circuit An.

0

Bn,k,ℓ

1{ℓ ≤ m[1:k]}

0 1{ℓ > M[1:k]}
m ∈ {0, 1}n / m

M ∈ {0, 1}n / M

(b) The circuit Bn,k,ℓ.

Figure 1 Inputs and outputs of reversible circuits An and Bn,k,ℓ.

|0n−k⟩ /
z

ḡℓ

|0⟩
c

|0⟩

Bn,k,ℓ

a
• •

∗
• •

B†
n,k,ℓ

|0⟩
b

• • • •

x /

An

×
m

• • ×

A†
n

y / ×
M

• • ×

|0⟩
x>y

• • • •

cx ×
cm

• • ×

cy ×
cM

×

Repeat for each 0 ≤ ℓ ≤ 2k

Figure 2 Circuit diagram of Cf,n,k,1. The Toffoli gates with controls acting on the x and y

registers are understood to be arrays of n − k Toffoli gates between the corresponding qubits of the
control and target registers. The gate marked ∗ adds a phase of g∗

ℓ (0n−k) if both qubits are |0⟩ and
otherwise does nothing. For convenience, several of the wires are labeled with the values they take
on corresponding to variables in Algorithm 2.

By Proposition 3, for every ℓ, ḡℓ can be implemented using at most 2n−k CNOT gates,
because ḡℓ is equivalent to an (n− k, 1)-multiplexed Rz. Moreover, it is easy to see that An

and Bn,k,ℓ can be implemented using at most O(n) CNOT gates each, because comparison
of two n-bit integers can be performed by a classical circuit of at most O(n) gates. As a
consequence, we conclude that there exists a constant d such that:

sn,k,1 ≤
(
2k + 1

) (
2n−k + dn

)
. (4)

This is certainly less than the bound in (2), so this establishes the base case of the induction
proof.

Now we proceed to the induction step on t. Suppose that for every n > k · (t− 1), we
have a circuit Cf,n,k,t−1 computing f̄⊗2t−1 with CNOT count bounded by

sn,k,t−1 ≤
(
2k + 1

)t−1 (
2n−(t−1)k + 2t−1dn

)
. (5)

To construct Cf,n,k,t, we start by first taking 2t−1 copies of Cf,n,k,1. Then, for each 0 ≤ ℓ ≤ 2k,
we replace each of the 2t−1 sub-circuits that compute ḡℓ with Cgℓ,n−k,k,t−1. Then, the number

TQC 2023

10:8 Quantum Mass Production Theorems

of gates in Cf,n,k,t is bounded by:

sn,k,t ≤
(
2k + 1

) (
sn−k,k,t−1 + 2t−1dn

)
≤

(
2k + 1

) ((
2k + 1

)t−1 (
2n−k−(t−1)k + 2t−1d(n− k)

)
+ 2t−1dn

)
≤

(
2k + 1

)t (
2n−tk + 2t−1dn

)
+

(
2k + 1

)
2t−1dn

≤
(
2k + 1

)t (
2n−tk + 2tdn

)
,

where the first line substitutes (5) for the cost of the ḡℓ’s and otherwise uses the same bound
as (4) for the non-ḡℓ gates, and the second line applies the induction hypothesis (5). This
establishes the induction step, and thus (2) holds for every n > k · t.

Choose k = ⌈logn⌉. Then:

sn,k,t ≤
(
2k + 1

)t (
2n−tk + 2tdn

)
= 2kt

(
1 + 1

2k

)t (
2n−tk + 2tdn

)
≤ 2ktet/2k (

2n−tk + 2tdn
)

≤ 2kt(1 + o(1))
(
2n−tk + 2tdn

)
≤ 2kt(1 + o(1))

(
2n−tk + o

(
2n−tk

))
≤ (1 + o(1))2n,

where we applied the exponential inequality in the third line, and used the assumption
t ≤ o(n/ logn) in the fourth and fifth lines. This proves the theorem. ◀

Theorem 4 straightforwardly generalizes to arbitrary multiplexed rotations and multi-
plexors with a single data qubit, as below.

▶ Corollary 5. Let U be an (n, 1)-multiplexed rotation, and let r = 2o(n/ log n). Then there
exists a quantum circuit with at most (1 + o(1))2n CNOT gates to implement U⊗r.

Proof. The Rz case follows by observing that f̄ is exactly an (n, 1)-multiplexed Rz in
Theorem 4. This also extends to multiplexed Rx and Ry, because multiplexed Rx, Ry, and
Rz are equivalent up to conjugation by single-qubit unitaries on the data qubit. That is,
there exist single-qubit unitaries U and V such that:

/ ∼=
/ ∼=

/

Rz U Rx U† V Ry V †

Hence, the CNOT count is identical for multiplexed Rx and Ry as well. ◀

▶ Corollary 6. Let U be an (n, 1)-multiplexor, and let r = 2o(n/ log n). Then there exists a
quantum circuit with at most (4 + o(1))2n CNOT gates to implement U⊗r.

Proof. By [16, Theorem 6], an arbitrary (n, 1)-multiplexor may be implemented via a product
of 4 (n, 1)-multiplexed rotations, as below.

|0⟩

∼=

|0⟩

∼=

|0⟩ Rz

/ / ∆ /

Rz Ry Rz Rz Ry Rz

Applying Corollary 5 to each of the multiplexed rotations on the right side above completes
the proof. ◀

W. Kretschmer 10:9

4 States and General Unitaries

We now prove the main results of this work that generalize the mass production theorems
above to state preparation and unitary compilation. The proofs proceed via the techniques
of [16], by decomposing operators into multiplexors.

▶ Theorem 1. Let |ψ⟩ be an n-qubit quantum state, and let r = 2o(n/ log n). Then there exists
a quantum circuit with at most (1 + o(1))2n CNOT gates to prepare |ψ⟩⊗r.

Proof. By [16, Theorem 9], for any n-qubit quantum state |ψ⟩, there exists an (n− 1)-qubit
state |φ⟩ such that |ψ⟩ has the following decomposition.

/ |φ⟩

Rz Ry |0⟩

|ψ⟩

Applying this decomposition recursively, we conclude that |ψ⟩ can be prepared by a circuit
consisting of a pair of (ℓ, 1)-multiplexed rotations for each 1 ≤ ℓ ≤ n − 1, and a pair of
single-qubit gates.

Apply Corollary 5 to the (ℓ, 1)-multiplexed rotations for each ⌈n/2⌉ ≤ ℓ ≤ n − 1, and
otherwise apply Proposition 3 r times for each 1 ≤ ℓ ≤ ⌈n/2⌉ − 1. Then the total number of
CNOT gates to prepare |ψ⟩⊗r is upper bounded by

r ·
⌈n/2⌉−1∑

ℓ=1
2ℓ +

n−1∑
ℓ=⌈n/2⌉

(1 + o(1))2ℓ ≤ r2⌈n/2⌉ + (1 + o(1))2n

≤ 2⌈n/2⌉+o(n/ log n) + (1 + o(1))2n

≤ (1 + o(1))2n ◀

▶ Theorem 2. Let U be an n-qubit unitary transformation, and let r = 2o(n/ log n). Then
there exists a quantum circuit with at most (5/2 + o(1))4n CNOT gates to implement U⊗r.

Proof. By [16, Theorem 11], an arbitrary multiplexor can be expressed as below.

/

∼=

/

Ry

/ /

This decomposition is also valid when the multiplexor on the left side of the equivalence
has 0 select bits. A recursive application of this decomposition implies that an arbitrary
n-qubit unitary may be expressed as a product of 2n − 1 different (n− 1, 1)-multiplexors, of
which 2n−1 − 1 are multiplexed Ry gates, and the remaining 2n−1 are arbitrary multiplexors.
Applying Corollary 5 and Corollary 6 to these multiplexors gives the desired bound. ◀

5 Conclusion and Outlook

We have demonstrated that mass production phenomena are not unique to classical compu-
tation, and that they extend to quantum circuit complexity as well. As the message of this
work is primarily conceptual in nature, we have not attempted to optimize every aspect of
our results. Indeed, our mass production theorems could be extended further in a variety of
ways; we outline a few such possibilities below.

TQC 2023

10:10 Quantum Mass Production Theorems

If our results have any hope of being used in practice, then still more work needs to be
done to optimize various constants. We suspect that the leading constant in Theorem 2
could be brought down from 5/2 to 1 with a more clever decomposition into multiplexors.
The factors hidden in the o(1) could probably be optimized further as well, especially those
related to the constant factor d that appears in Theorem 4. Indeed, we believe that much of
the redundancy in computing and uncomputing Bn,k,ℓ for each 0 ≤ ℓ ≤ 2k could be reduced
by more careful accounting.

It is also worth attempting to optimize other parameters of practical relevance, such as
constraints on the gate set, locality, depth, and ancilla qubit count. In principle, our proof
should allow for some tradeoff between depth and ancilla count, because the ḡℓs in Figure 2
can either be evaluated sequentially or in parallel. Another particularly interesting question
is whether ancilla qubits are necessary at all to achieve quantum mass production.

We leave open the circuit complexity of quantum mass production in other parameter
regimes. As Theorem 1 and Theorem 2 only apply when r = 2o(n/ log n), it is natural to ask
what happens when r is much larger. For Boolean functions, it is known that for any n-bit f ,
the “asymptotic complexity” of mass production limr→∞

C(fr)
r is bounded by poly(n) [13, 2],

where C(fr) denotes the Boolean circuit complexity of implementing r copies of f . However,
it is unclear whether the same approach would generalize to quantum circuits.

Lastly, we ask: are there any restricted examples of quantum circuits that exhibit a
mass production phenomenon? What about Clifford circuits? We observe if one allows
implementation by non-Clifford gates, then n copies of an arbitrary Clifford operation can
be implemented by a circuit with at most O(nω) gates, where ω is the exponent of matrix
multiplication. By the “canonical form theorem” of Aaronson and Gottesman [1], every
Clifford circuit can be expressed in the form H-C-P-C-P-C-H-P-C-P-C, where each letter
corresponds to a layer of Hadamard, CNOT, or phase gates. The Hadamard and phase layers
contain at most O(n) gates total, so it suffices to show how to implement n copies of a CNOT
circuit using O(nω) gates. For any M ∈ Fn×n

2 , define UM as the unitary transformation that
acts as UM |x⟩ |y⟩ = |x⟩ |y ⊕Mx⟩ on computational basis states. As every CNOT circuit
implements an invertible linear transformation |x⟩ → |Mx⟩ for some M ∈ Fn×n

2 , a CNOT
circuit can be implemented using UM and UM−1 and O(n) additional gates via:

|x⟩ |0n⟩ UM−−→ |x⟩ |Mx⟩
UM−1−−−−→ |0n⟩ |Mx⟩ SWAP−−−−→ |Mx⟩ |0n⟩ .

Then, as in Section 1, we can mass produce UM and UM−1 using fast matrix multiplication.

References
1 Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Phys. Rev.

A, 70:052328, November 2004. doi:10.1103/PhysRevA.70.052328.
2 Andreas Albrecht. On simultaneous realizations of Boolean functions, with applications. In

Gottfried Wolf, Tamáas Legendi, and Udo Schendel, editors, Parcella ’88, pages 51–56, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg. doi:10.1007/3-540-50647-0_102.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539, 2021. doi:10.1137/1.9781611976465.32.

4 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC ’10, pages 67–76, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1806689.1806701.

5 Matthias C. Caro. Learning quantum processes and Hamiltonians via the Pauli transfer matrix,
2022. arXiv:2212.04471.

https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1007/3-540-50647-0_102
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1145/1806689.1806701
http://arxiv.org/abs/2212.04471

W. Kretschmer 10:11

6 Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. Exponential separations between
learning with and without quantum memory. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 574–585, 2022. doi:10.1109/FOCS52979.
2021.00063.

7 Andrew Donald Drucker. The complexity of joint computation. PhD thesis, Massachusetts
Institute of Technology, 2012. URL: http://dspace.mit.edu/handle/1721.1/7582.

8 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing, 2022. arXiv:2210.10173.

9 Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 968–979. IEEE, 2022. doi:10.1109/FOCS54457.2022.00095.

10 Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni,
Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, and Jarrod R. McClean.
Quantum advantage in learning from experiments. Science, 376(6598):1182–1186, 2022.
doi:10.1126/science.abn7293.

11 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for deterministic
and randomized decision tree complexity. Information Processing Letters, 110(20):893–897,
2010. doi:10.1016/j.ipl.2010.07.020.

12 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in communication
complexity via message compression. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow,
and Gerhard J. Woeginger, editors, Automata, Languages and Programming, pages 300–315,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/3-540-45061-0_26.

13 Wolfgang J. Paul. Realizing Boolean functions on disjoint sets of variables. Theoretical
Computer Science, 2(3):383–396, 1976. doi:10.1016/0304-3975(76)90089-X.

14 Hanlin Ren and Rahul Santhanam. Hardness of KT Characterizes Parallel Cryptography. In
Valentine Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume
200 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:58, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
CCC.2021.35.

15 Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System
Technical Journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.

16 Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. Synthesis of quantum-logic
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(6):1000–1010, 2006. doi:10.1109/TCAD.2005.855930.

17 Dietmar Uhlig. On the synthesis of self-correcting schemes from functional elements with a
small number of reliable elements. Matematicheskie Zametki, 15(6):937–944, 1974. In Russian.
URL: http://mi.mathnet.ru/mz7425.

18 Dietmar Uhlig. On the synthesis of self-correcting schemes from functional elements with
a small number of reliable elements. Mathematical notes of the Academy of Sciences of the
USSR, 15(6):558–562, 1974. Translated from Russian. doi:10.1007/BF01152835.

19 Dietmar Uhlig. Networks Computing Boolean Functions for Multiple Input Values, pages
165–173. London Mathematical Society Lecture Note Series. Cambridge University Press,
1992. doi:10.1017/CBO9780511526633.013.

TQC 2023

https://doi.org/10.1109/FOCS52979.2021.00063
https://doi.org/10.1109/FOCS52979.2021.00063
http://dspace.mit.edu/handle/1721.1/7582
http://arxiv.org/abs/2210.10173
https://doi.org/10.1109/FOCS54457.2022.00095
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1016/j.ipl.2010.07.020
https://doi.org/10.1007/3-540-45061-0_26
https://doi.org/10.1016/0304-3975(76)90089-X
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1109/TCAD.2005.855930
http://mi.mathnet.ru/mz7425
https://doi.org/10.1007/BF01152835
https://doi.org/10.1017/CBO9780511526633.013

	1 Introduction
	1.1 This Work
	1.2 Proof Overview

	2 Preliminaries
	2.1 Basic Notation
	2.2 Multiplexors
	2.3 Generic Gates

	3 Diagonal Unitaries and Multiplexors
	4 States and General Unitaries
	5 Conclusion and Outlook

