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Abstract
We study how the choices made when designing an oracle affect the complexity of quantum property
testing problems defined relative to this oracle. We encode a regular graph of even degree as an
invertible function f , and present f in different oracle models. We first give a one-query QMA
protocol to test if a graph encoded in f has a small disconnected subset. We then use representation
theory to show that no classical witness can help a quantum verifier efficiently decide this problem
relative to an in-place oracle. Perhaps surprisingly, a simple modification to the standard oracle
prevents a quantum verifier from efficiently deciding this problem, even with access to an unbounded
witness.
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1 Introduction

Computational complexity is the study of the innate amount of resources required to complete
some task. We assign complexity classes to sets of tasks that require similar amounts of
resources; from here, the goal is to understand the relationship between complexity classes.
There has been some success proving that two complexity classes are equal, for example
IP = PSPACE [25], the PCP theorem [7], and MIP∗ = RE [17]; however, proving that two
complexity classes are unequal has been much more elusive. For example, we cannot prove
P ̸= PSPACE, let alone P ̸= NP.
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11:2 On the Power of Nonstandard Quantum Oracles

One response to this difficulty is to equip a computational model with an oracle, which
computes a fixed (but arbitrarily powerful) quantity in a single timestep. It is often easier to
prove that a statement (e.g. P ≠ NP) is true relative to an oracle; furthermore, this restricts
the kinds of proof techniques that can show the statement is false without an oracle. In
addition to separating complexity classes, oracles and query complexity naturally arise in
cryptography (e.g. [19]) and learning theory (e.g. [20]).

Even with respect to an oracle, proving that some complexity classes are unequal can be
surprisingly difficult. Notably, Aharonov and Naveh define QCMA, a subset of QMA where
the witness is a classical bitstring [3], and ask if QCMA ⊊ QMA. Aaronson and Kuperberg
conjecture that an oracle separates these classes, but only prove a “quantum oracle” where
this occurs [2]. Subsequent works [11, 22] remove the “quantumness” from the oracle model,
but still use models with internal randomness or other nonstandard aspects.

We consider quantum property testing problems defined relative to oracles from various
oracle models: encoding the edges of a graph in an invertible function f , we present f as
either a standard oracle or in-place oracle, with or without internal randomness. With mild
restrictions on the workspace of quantum verifiers, we find:
1. In several oracle models presenting f , a quantum witness can help a quantum verifier

efficiently decide if the graph encoded in f has a small disconnected subset.
2. Where f is presented as a randomized in-place oracle, no classical witness can help a

quantum verifier efficiently decide this problem.
3. Where f is presented as a randomized phase oracle, no witness of any type or size can

help a quantum verifier efficiently decide this problem.
Our results highlight that the quantum complexity of a task defined relative to an oracle is
influenced by the choice of oracle model.

1.1 Our techniques
We use a well-known fact of Petersen to encode the edges of any even-degree regular graph in
an invertible function f . We then consider natural ways to install f within an oracle; we say
that f is presented as a particular kind of oracle. For example, a standard oracle presents
f through the map |c, x⟩ 7→ |c⊕ f(x), x⟩, while an in-place oracle presents f through the
map |x⟩ 7→ |f(x)⟩. In general, we consider oracles that give access both to f and f−1. An
oracle may also have internal randomness: on every query to a randomized oracle, f is chosen
uniformly at random from a fixed set of functions F .

Consider the Laplacian Lf of a graph encoded in f . We first provide a test such that
for any input state |ψ⟩, the test succeeds with probability expressible in terms of ⟨ψ|Lf |ψ⟩,
independently of how an oracle presents f . We use this test to construct a QMA protocol
verifying that the graph is not an expander graph. This problem is primarily motivated
by the preimage-testing problem of Fefferman and Kimmel [11], which separates QMA and
QCMA relative to a nonstandard oracle. They encode an invertible function π in an oracle
without efficient access to π−1, and test a property of π−1; by design, this property can be
verified but not easily computed. Crucially, we view a permutation and its inverse as the
edges of an undirected graph; properties of undirected graphs are not sensitive to the ordering
of (x, π(x)). We use multiple permutations to study graphs of higher degree, and notice that
detecting if a graph has a non-expanding region is hard without traversing most of the graph.
Some of these ideas are related to the component mixer concept of Lutomirski [21], and are
simultaneously and independently explored by Natarajan and Nirkhe [22].

A randomized oracle presenting a set of functions F can be seen as a quantum channel,
so small changes to F cause statistically indistinguishable changes to the oracle. We use this
flexibility to modify non-expansion testing to a simple permutation problem: do the functions
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f ∈ F stabilize a small set V ⊆ [N ], or is F the set of all permutations on [N ]? Notice that
F is a group in both cases. When an oracle presenting F preserves the group structure of F ,
we can use representation theory. For this problem, this is satisfied by an in-place oracle;
the oracle is then an orthogonal projector onto one of two symmetric subspaces of matrices.
After finding an orthogonal basis for each subspace, we construct a hybrid argument to
prove that only witnesses with knowledge of V can help a quantum verifier efficiently decide
this problem. We also use representation theory to give a QCMA protocol for an analogous
permutation problem in randomized standard oracles.

We finally study the permutation problem in a randomized phase oracle. We directly
analyze the effect of the oracle on any input density matrix; with high probability, the oracle
decreases the magnitude of every off-diagonal term by a 1

2poly(n) factor. We then construct a
hybrid argument, bounding our measure of progress using an inequality relating the sizes
of Schatten p-norms. When the state space is not too large, we prove that an exponential
number of queries are required to distinguish most YES instances from the NO instance,
regardless of input state. As a result, no witness can help a verifier distinguish YES from NO.

Note that our quantum verifiers are not fully general. Our lower bound techniques restrict
the number of extra workspace qubits in the verifier; however, our upper bounds also work in
this setting. In Section 3.2, we explain these restrictions in more detail and discuss prospects
for generalizing our results.

1.2 Related work
Quantum oracle models

A fundamental constraint of quantum oracle models is that they must be unitary. We
describe several nonstandard oracle models used in quantum computing:

A quantum oracle is any unitary operation U in the full Hilbert space. Although the
operation is unitary, the verifier doesn’t necessarily have access to U−1. Oracles like these
are not typically classical because the unitary’s action is not efficiently and classically
representable.
An in-place oracle maps |x⟩ → |π(x)⟩ for some classical invertible function π. Again, this
computation is not efficiently reversible since the verifier may not have access to π−1.
When a standard oracle gives access to π−1, an in-place oracle query can be simulated in
two queries; otherwise, an exponential number of queries are required to construct one
from the other [18].
A phase oracle puts the output of a classical function f in the phase of a basis state.
We consider the map |x⟩ → ef(x)·2πi/N |x⟩. To contrast, note that the map |c, x⟩ →
ecf(x)·2πi/N |c, x⟩ is unitarily equivalent to the standard oracle.

All of these oracles can optionally have internal randomness, as considered by Harrow and
Rosenbaum [16]; we call these randomized oracles. On every query to a randomized oracle, a
unitary is chosen at random from a fixed set. This can be very powerful; for example, [16]
gives examples of randomized oracles where problems impossible to decide with classical
queries can be decided with a single quantum query.

QMA and QCMA

The Merlin-Arthur style of complexity classes considers a decision problem and two players.
The magician (Merlin) has claimed the answer to the decision problem is YES, and gives the
verifier a token (the proof or witness) to convince them. The verifier (Arthur) must then

TQC 2023



11:4 On the Power of Nonstandard Quantum Oracles

ensure the answer is actually YES. Given a problem with size n, the verifier must accept
a correct witness (i.e. when the answer is YES) with probability 1/q higher than a “lying”
witness (i.e. when the answer is NO) for some q = poly(n). The set of problems that can be
decided this way in a classical setting is known as Merlin Arthur (MA). If the verifier is a
quantum computer, this is QCMA; if the witness can be any quantum state, this is QMA.

Table 1 Complexity classes in the style of Merlin-Arthur. QCMA is a subset of QMA where the witness
can be efficiently written as a classical bitstring.

verifier is classical verifier is quantum

witness is classical MA QCMA

witness is quantum - QMA

Since any classical bitstring can be efficiently written as a quantum state, QCMA ⊆ QMA.
But is the reverse true? Even the oracle version of this problem is open: at the top of a
recent list of open problems, Aaronson asks for a standard oracle that separates the two
classes [1]. All previous progress [2, 11, 22] relies on specifically chosen nonstandardness in
the oracle.

Natarajan and Nirkhe [22] make progress on a standard oracle separation of QMA and
QCMA by constructing an oracle with randomness. They simultaneously and independently
provide a QMA protocol for testing non-expansion of a graph in an oracle. To prove their
lower bound, they combine the adversary method, the polynomial method, and a reduction
to a problem of Ambainis, Childs, and Liu [5]. However, their notion of randomness is
different from ours and other works [16, 11, 6], and acts as follows: when an oracle is first
queried, it chooses a function f from a distribution, but on subsequent queries, it uses the
same function f . By contrast, our notion of randomness is memoryless: an oracle chooses f
from a uniform distribution on F for every query. This allows one to make small changes
to F without affecting the success of the QMA protocol; we use this flexibility to study a
simpler permutation problem.

2 Our setup

Consider a d-regular graph on N := 2n vertices for any n and even d. We show that an
invertible function can list the edges adjacent to each vertex in G.

▶ Definition 2.1 (Graph-coded function). Consider a d-regular graph G (for even d) on N

vertices. A G-coded function is a function f : [N ] × [d/2] → [N ], such that fi(x) := f(x, i) is
a bijection for each i ∈ [d/2], and each edge is uniquely represented by a tuple (x, fi(x)).

▶ Remark 2.2 (Even-degree regular graphs have graph-coded functions). Every regular graph
G of even degree has a G-coded function.

Proof. A d-regular graph G of even degree always has a 2-factorization [23]. This means that
the edges of G can be partitioned into d/2 edge-disjoint subgraphs [E1, . . . , Ed/2] where in
each Ei, all vertices have degree two (i.e. a collection of cycles). Thus, we can represent each
Ei with a permutation πi, where the edge (x, y) ∈ Ei if and only if πi(x) = y or πi(y) = x.
Then f(x, i) := πi(x) is a G-coded function. ◀

Graph-coded functions f are bijective, and therefore invertible. We now present f in
various oracle models. Note that we define all oracles with access both to f and f−1.
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▶ Definition 2.3 (An oracle model presents a function f). For each oracle model below (e.g.
standard oracle), we say that this oracle model presents the function f .

▶ Remark 2.4. For notational convenience, we refer to a qubit z that controls the inversion
of a function f as taking on values in {±1}, so that fz is either f1 = f or f−1.

▶ Definition 2.5 (Standard oracle). For any f : [N ] → [N ], define Uf : C2N2 → C2N2 as

Uf

∑
c,x∈[N ],z∈{±1}

αc,x,z |c, x, z⟩ :=
∑

c,x∈[N ],z∈{±1}

αc,x,z |c⊕ fz(x), x, z⟩ . (1)

▶ Definition 2.6 (In-place oracle [18]). For any permutation π : [N ] → [N ], define Ũπ :
C2N → C2N as

Ũπ

∑
x∈[N ],z∈{±1}

βx,z |x, z⟩ :=
∑

x∈[N ],z∈{±1}

βx,z |πz(x), z⟩ . (2)

▶ Remark 2.7 ([18]). A standard oracle Uf (with access to f−1) can simulate an in-place
oracle Ũf in two queries:

(I ⊗X) ◦ Uf ◦ (SWAPn,n ⊗X) ◦ Uf |0⟩⊗n |x, z⟩ = |0⟩⊗n |fz(x), z⟩ . (3)

▶ Definition 2.8 (N th root of unity). Define the N th root of unity as ωN := e2πi/N .

▶ Definition 2.9 (Phase oracle). For any function f : [N ] → [N ], define Uf : C2N → C2N as

Uf

∑
x∈[N ],z∈{±1}

αx,z |x, z⟩ :=
∑

x∈[N ],z∈{±1}

αx,zω
fz(x)
N |x, z⟩ . (4)

We describe how an oracle in our setup exhibits internal randomness. On each query, a
randomized oracle chooses a function uniformly from a set F . We say that a randomized
oracle presents F .

▶ Remark 2.10. Given a unitary U , we use the notation U to denote an operator on density
matrices; that is,

U [ρ] := UρU† . (5)

▶ Definition 2.11 (Randomized oracle (e.g. [16, 11])). For any set F of functions f : [N ] →
[N ] corresponding to oracles {Uf | f ∈ F}, define the linear operator OF as

OF := 1
|F |

∑
f∈F

Uf . (6)

We match the notation of randomized oracle OF with oracle Uf ; e.g. ÕF is a randomized
in-place oracle.

2.1 Problem statements
The problems below are not fully specified without the choice of oracle model. We prepend
the names below with the choice of oracle model; for example, we denote Problem 2.12 in a
standard oracle as STANDARD NON-EXPANSION(d, α, ε).

TQC 2023



11:6 On the Power of Nonstandard Quantum Oracles

▶ Problem 2.12 (NON-EXPANSION(d, α, ε)). Consider an oracle Uf presenting a G-coded
function f .
1. In a YES instance, we are promised that G is a union of two disconnected d-regular

graphs, and that the smaller graph has Nα vertices.
2. In a NO instance, we are promised that G is d-regular and has spectral gap at least ε (for

example, an expander graph).
The problem is to decide whether Uf is a YES instance or NO instance.

We also consider a version of this problem with randomized oracles, where each randomized
YES instance is specified by the set of vertices V of the smaller graph. On each query, an
oracle chooses an graph-coded function f uniformly at random that corresponds to a graph
where V and [N ]/V are disconnected.

▶ Problem 2.13 (RANDOMIZED NON-EXPANSION(d, α, ε)). Consider a randomized oracle
OF presenting a set of graph-coded functions F .
1. Each subset V ⊆ [N ] of size |V | = Nα specifies a YES instance OFV

. Let FV be the set
of all G-coded functions of d-regular graphs G with no edges between V and [N ]/V .

2. There is a single NO instance OF∅ . Let F∅ be the set of all G-coded functions of d-regular
graphs G with spectral gap at least ε.

The problem is to decide whether O is a YES instance or a NO instance.

In the configuration model of a random graph, FV contains all functions f(x, i) such that
fi(x) := f(x, i) is the union of a permutation on [N ]/V and a permutation on V . In fact, we
can use the oracle’s internal randomness to adjust the underlying set F , and even consider
graphs that are not typically expander graphs.

▶ Definition 2.14 (Subset indicator). For a set V ⊆ [N ], define the function iV : [N ] →
{V, [N ]/V } as

iV (x) =
{
V x ∈ V

[N ]/V x /∈ V .
(7)

▶ Definition 2.15 (Permutations that stabilize a subset). For a set V ⊆ [N ], define the set of
permutations

TV := {π : [N ] → [N ] : iV (x) = iV (π(x)) ∀x ∈ [N ]} . (8)

We say that TV stabilizes the subset V .

▶ Problem 2.16 (RANDOMIZED HIDDEN SUBSET(α)). Consider a randomized oracle OF

presenting a set of functions F .
1. Each subset V ⊆ [N ] of size |V | = Nα specifies a YES instance OTV

.
2. There is a single NO instance OT∅ , where T∅ is the set of all permutations of [N ].

The problem is to decide whether O is a YES instance or a NO instance.

Notice that RANDOMIZED HIDDEN SUBSET(α) is exactly RANDOMIZED NON-
EXPANSION(2, α, 0).

Notice that TV is a group under function composition. One can generalize this algebraic
structure to a problem distinguishing oracles presenting subgroups of T∅ from an oracle
presenting T∅:

▶ Problem 2.17 (RANDOMIZED HIDDEN SUBGROUP(×, {Hi})). Consider the set T∅ of
all permutations on [N ] as a group with operation ×, such that each Hi ⊊ T∅ is also a group.
Suppose a randomized oracle O presents either T∅ or any Hi.
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1. Each subgroup Hi specifies a YES instance OHi
.

2. There is a single NO instance OT∅ , where T∅ is the set of all permutations of [N ].
The problem is to decide whether O is a YES instance or a NO instance.

For example, RANDOMIZED HIDDEN SUBSET(α) is a special case of RANDOMIZED HIDDEN
SUBGROUP(×, {Hi}) using the group operation of function composition.

3 Our results

3.1 Non-expansion and quantum witness
Our first result shows that there is a one-query QMA protocol for NON-EXPANSION(d, α, ε)
in many oracle models presenting a graph-coded function.

▶ Theorem 3.1. There is a QMA protocol for STANDARD NON-EXPANSION(d, α, ε) and
IN-PLACE NON-EXPANSION(d, α, ε) at every even d ≥ 4, all 0 < α < 1

2 , and all constant
ε > 0.

Graphs with good expansion are well-connected despite their sparsity. For any graph G,
let AG be the adjacency matrix of G, and LG = dI −AG be the graph Laplacian of G. The
smallest eigenvalue of LG is λ1(LG) = 0, and the next-smallest eigenvalue λ2(LG) measures
the expansion of G. In this framework, NON-EXPANSION(d, α, ε) asks if an oracle presenting
a G-coded function has λ2(LG) = 0 (YES), or if λ2(LG) ≥ ε (NO).

At the heart of our protocol is the spectral test, which takes an input state |ψ⟩ and
fails with probability proportional to ⟨ψ|LG |ψ⟩. We describe the spectral test for both
standard oracles and in-place oracles in Appendix A.1. A state that passes the spectral test
is essentially supported on a subspace according to λ(LG) = o( 1

poly(n) ); in a NO instance,
this is one-dimensional, and in a YES instance, this is at least two-dimensional. In fact, the
uniform superposition over all inputs, |+⟩⊗n, is always in this subspace. As a result, our
protocol (Theorem 3.1) either runs the spectral test, or checks if the input state is close to
|+⟩⊗n.

Consider the randomized variant of NON-EXPANSION(d, α, ε). The graph of any graph-
coded function presented in a YES instance is guaranteed to have a small set V (i.e. |V | = Nα)
disconnected from the rest of the graph. As a result, there is a state, defined only by the
vertices of V , that is all-but-negligibly supported in the λ(LG) = 0 subspace. This state is
the subset state |V ⟩:

▶ Definition 3.2 (Subset state). For any non-empty subset S ⊆ [N ], define the subset state
of S as

|S⟩ := 1√
|S|

∑
x∈S

|x⟩ . (9)

Since |V ⟩ is a good witness for every graph encoded in a YES instance, the QMA protocol
works just as well in the randomized setting (Theorem A.4).

Randomized oracles that present a set F of graph-coded functions are stable to small
changes in the set F . In fact, an oracle presenting F encoding all d-regular expander graphs
is indistinguishable from an oracle presenting F encoding all d-regular graphs. The latter
oracle can be simulated with d/2 queries to the NO instance of RANDOMIZED HIDDEN
SUBSET(α); we show in Theorem A.5 that the same QMA protocol can also decide this
problem.
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11:8 On the Power of Nonstandard Quantum Oracles

3.2 Randomized in-place oracles and classical witness
Our second result shows that a general class of verifiers cannot decide IN-PLACE RANDOM-
IZED HIDDEN SUBSET(α).

▶ Theorem 3.3 (informal). No quantum verifier with O(log(n)) additional workspace qubits
can efficiently decide IN PLACE RANDOMIZED HIDDEN SUBSET(α) given a polynomial
sized classical witness.

Recall that in this problem, a verifier has access to a quantum channel and a polynomial-sized
classical witness, and must distinguish whether the oracle presents a uniformly random
permutation or a permutation that stabilizes a hidden subset V . Let Y be the set of all YES
instances; note that each instance is uniquely defined by a subset V .

Suppose there exists a QCMA algorithm for this problem. Since there are at most
O(2poly(n)) different classical witnesses, there exists a set of YES instances Y ′ that share the
same witness, such that |Y ′| / |Y| = Ω(2−poly(n)). We can refute the existence of such an
algorithm by proving that the same verification “strategy” cannot distinguish all instances
of Y ′ from the NO case with non-negligible probability. A “strategy” is exactly a quantum
algorithm: a series of unitaries and oracle queries, followed by a POVM. Without loss of
generality, a T -query algorithm alternates between unitaries and oracle queries on HO ⊗ HW

followed by a measurement1, where HO is the Hilbert space of the “oracle” qubits and HW

is the extra workspace:

EO[ρ0] = (O ⊗ I) ◦ UT ◦ . . . ◦ U2 ◦ (O ⊗ I) ◦ U1[ρ0] . (10)

One may try to use the hybrid argument of Bennett, Bernstein, Brassard, and Vazirani [8] and

Ambainis [4] to prove that the diamond norm
∣∣∣∣EÕTV

− EÕT∅

∣∣∣∣
⋄

is small in expectation over

the choice of ÕTV
∈ Y ′. This would imply that the verifier cannot distinguish all instances of

Y ′ with the same strategy. We can consider the optimal distinguishing probability in terms

of
∣∣∣∣EÕTV

[ρ0] − EÕT∅
[ρ0]

∣∣∣∣
1

for some fixed ρ0 ∈ HO ⊗ HW .

However, this statistical argument does not hold for some choices of Y ′. Consider the
following simple example: Y ′ contains all V such that 1 ∈ V . First, Y ′ satisfies the size
implied by the pigeonhole principle. Second, for ρ0 = |1⟩⟨1| ⊗ I,

∣∣∣ÕTV
[ρ0] − ÕT∅ [ρ0]

∣∣∣
1

is large
for all instances in Y ′, since |1⟩ ⟨1| mixes only within a small subset. Note that this only
implies the existence of an instance-specific POVM distinguishing each YES instance in Y ′

from the NO instance. By contrast, a verification strategy has a fixed POVM {E, I − E}.
This allows us to prove that the following value is small on average over the choice of V :∣∣∣∣Tr

[
EEÕTV

[ρ0]
]

− Tr
[
EEÕT∅

[ρ0]
]∣∣∣∣ (11)

We must bound this value for arbitrary choices of E, ρ0 and Ui fixed in the algorithm.
In order to do this, we leverage tools from representation theory; this allows us to see
randomized oracles in our problem as orthogonal projectors into a subspace of matrices with
low dimension, and prove that the density matrix of good distinguishers is characterized

1 Note that the last operation does not have to be a unitary – one can simply replace a unitary followed
by a POVM with another equivalent POVM.
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by the hidden subset. One caveat of our technique is that the verifier is only allowed to
have O(log(n)) extra workspace qubits. This restriction is necessary to reduce the subspace
dimension to regimes we can handle.

Representation theory has been previously used to study symmetric operators on variables
(in probability) or qubits (in quantum computing) using the language of de Finetti theo-
rems (e.g. [15]); these operators project into subspaces of permutation-invariant sequences
or quantum states. By contrast, we notice that some randomized oracles are symmetric
operators on density matrices. This allows us to explicitly find an orthogonal basis for the
associated symmetric subspaces. We match oracle models with problems with the same
group structure: RANDOMIZED HIDDEN SUBSET(α) for in-place oracles in Appendix B.1,
and an analogous special case of RANDOMIZED HIDDEN SUBGROUP(×, {Hi}) for standard
oracles in Appendix B.2.

3.3 Randomized phase oracles: no witness can help
Our third result shows that deciding RANDOMIZED HIDDEN SUBSET(α) in a phase oracle
is much harder than other oracle models we consider. A random phase has zero expectation.
We use this fact to show that queries to most YES instances and the NO instance reduce the
magnitude of each off-diagonal of the density matrix by an exponential factor, regardless of
the input state. We bound the Frobenius norm of the difference of query outputs to show
that these instances are statistically indistinguishable when the state space is not too large.
As a result, no untrustworthy witness can help decide this problem.

▶ Theorem 3.4 (informal). No quantum verifier with o(n) additional workspace qubits can
efficiently decide PHASE RANDOMIZED HIDDEN SUBSET(α) given any unbounded witness.
Moreover, these verifiers require an exponential number of queries to statistically distinguish
a YES instance from the NO instance, for each of asymptotically all YES instances.

We defer the formal proof to Appendix C. Note that the query lower bound here is
statistical. In the NO instance, a witness is designed to fool the verifier; in order to overcome
this, the verifier must use the witness in tandem with the oracle. But this cannot be
done efficiently: distinguishing the NO instance from nearly any YES instance requires an
exponential number of queries, regardless of input state.

In fact, Theorem 3.4 holds for any oracle that sends |c, x, z⟩ → ω
c·fz(x)
N |c, x, z⟩, where the

c register has k = o(n) qubits, while at k = n qubits, the oracle is unitarily equivalent to a
standard oracle, and thus has a QMA protocol for RANDOMIZED HIDDEN SUBSET(α) by
Theorem 3.1.
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A Verifying non-expansion with a quantum witness

A.1 The spectral test
We give a test that takes an input state |ψ⟩ =

∑
x∈[N ] ax |x⟩ on n qubits, and fails with

probability proportional to ⟨ψ|LG |ψ⟩. This relies on a curious fact:

▶ Lemma A.1. Consider a d-regular graph G (for even d) on 2n vertices and a G-coded
function f . Suppose we have a normalized quantum state |ψ⟩ =

∑
x∈[N ] ax |x⟩ on n qubits.

Then∑
i∈[d/2]

∑
x∈[N ]

∥ax ± af(x,i)∥2 = d± ⟨ψ|AG |ψ⟩ . (12)

Proof.∑
i∈[d/2]

∑
x∈[N ]

∥ax ± af(x,i)∥2 =
∑

i∈[d/2]

∑
x∈[N ]

∥ax∥2 + ∥af(x,i)∥2 ± (axa
∗
f(x,i) + a∗

xaf(x,i)) (13)

= d±
∑

i∈[d/2]

∑
x∈[N ]

(axa
∗
f(x,i) + a∗

xaf(x,i)) (14)

= d± ⟨ψ|AG |ψ⟩ . (15)

◀

We construct the spectral test with one query either to a standard oracle or in-place oracle
presenting a graph-coded function f . The former (Procedure A.2) is a SWAP test but with
an oracle query in the middle. The latter (Procedure A.3) relies on controlled access to the
in-place oracle.

▶ Procedure A.2 (Spectral test with a standard oracle). Consider a d-regular graph G on
N = 2n vertices where d is even, and normalized state |ψ⟩ =

∑
x∈[N ] ax |x⟩ ∈ CN . We

assume access to a standard oracle Uf : Ck×k for k = N22⌈log2 d⌉, which acts on a basis
vector as

Uf |c, x, i, z⟩ = |c⊕ fz(x, i), x, i, z⟩ , (16)

for c, x ∈ [N ], i ∈ 2⌈log2 d⌉−1, and z ∈ {±1}.
1. Pick i ∈ [d/2] uniformly at random, and prepare the state |i⟩ ∈ C2⌈log2 d⌉−1 .
2. Prepare a qubit in the state |+⟩ = |1⟩+|−1⟩√

2 ∈ C2. (Recall that we label the values of this
register in {±1}.)

3. Combine n registers |0⟩⊗n, the input state |ψ⟩, and |i⟩ and |+⟩ to create |0⟩⊗n |ψ⟩ |i⟩ |+⟩.
4. Apply the oracle Uf , which creates the state

1√
2

∑
x∈[N ]

ax

(
|f(x, i)⟩ |x⟩ |i⟩ |1⟩ +

∣∣f−1(x, i)
〉

|x⟩ |i⟩ |−1⟩
)
. (17)

5. Swap the first two sets of n qubits, controlled by the last qubit. This creates the state

1√
2

∑
x∈[N ]

ax

(
|f(x, i)⟩ |x⟩ |i⟩ |1⟩ + |x⟩

∣∣f−1(x, i)
〉

|i⟩ |−1⟩
)

(18)

= 1√
2

∑
x∈[N ]

ax |f(x, i)⟩ |x⟩ |i⟩ |1⟩ + 1√
2

∑
x∈[N ]

af(x,i) |f(x, i)⟩ |x⟩ |i⟩ |−1⟩ . (19)
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6. Apply a Hadamard on the last qubit, which creates the state

1
2

∑
x∈[N ]

(ax + af(x,i)) |f(x, i)⟩ |x⟩ |i⟩ |1⟩ + 1
2

∑
x∈[N ]

(ax − af(x,i)) |f(x, i)⟩ |x⟩ |i⟩ |−1⟩ .

(20)

7. Measure the last qubit and accept if it is 1.
Moreover, by Lemma A.1, this procedure fails with probability

1
d/2

∑
i∈[d/2]

∑
x∈[N ]

∥ax − af(x,i)∥2

4 = ⟨ψ|LG |ψ⟩
2d . (21)

▶ Procedure A.3 (Spectral test with an in-place oracle). Consider a d-regular graph G on
N = 2n vertices where d is even, and normalized state |ψ⟩ =

∑
x∈[N ] ax |x⟩ ∈ CN . We

assume controlled access to an in-place oracle Ũf : Ck×k for k = N2⌈log2 d⌉+1, which acts on
a basis vector as

Ũf |a, x, i, z⟩ = |a, fa·z(x, i), i, z⟩ . (22)

for control qubit a ∈ {0, 1}, x ∈ [N ], i ∈ 2⌈log2 d⌉−1, and z ∈ {±1}.2

1. Pick i ∈ [d/2] uniformly at random, and prepare the state |i⟩ ∈ C2⌈log2 d⌉−1 .
2. Prepare a qubit in the state |+⟩ = |0⟩+|1⟩√

2 ∈ C2.
3. Combine |+⟩, the input state |ψ⟩, |i⟩, and a register |1⟩ to create |+⟩ |ψ⟩ |i⟩ |1⟩.
4. Apply the oracle Ũf , which creates the state

1√
2

∑
x∈[N ]

ax (|0⟩ |x⟩ + |1⟩ |f(x, i)⟩) |i⟩ |1⟩ (23)

= 1√
2

∑
x∈[N ]

(ax |0⟩ + af−1(x,i) |1⟩) |x⟩ |i⟩ |1⟩ . (24)

5. Apply a Hadamard on the first qubit, which creates the state

1
2

∑
x∈[N ]

(
(ax + af−1(x,i)) |0⟩ + (ax − af−1(x,i)) |1⟩

)
|x⟩ |i⟩ |1⟩ . (25)

6. Measure the first qubit and accept if it is 0.
Moreover, by Lemma A.1, this procedure fails with probability

1
d/2

∑
i∈[d/2]

∑
x∈[N ]

∥ax − af−1(x,i)∥2

4 = ⟨ψ|LG |ψ⟩
2d . (26)

A.2 A one-query protocol
▶ Theorem 3.1. There is a QMA protocol for STANDARD NON-EXPANSION(d, α, ε) and
IN-PLACE NON-EXPANSION(d, α, ε) at every even d ≥ 4, all 0 < α < 1

2 , and all constant
ε > 0.

2 Note that this procedure does not actually need access to the inverse of f to conduct the spectral test.
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Proof. Suppose the oracle presents a G-coded function. Let λ1 ≤ λ2 ≤ · · · ≤ λN be the
eigenvalues of the graph Laplacian LG. Note that the smallest eigenvalue of a regular graph
G is λ1 = 0. We always choose the eigenvector associated with λ1 as a uniform superposition
over vertices of the graph (i.e. |λ1⟩ := |[N ]⟩ = |+⟩⊗n).

Suppose Arthur receives a state |ψ⟩ =
∑

i∈[N ] αi |λi⟩ from Merlin. Consider the following
strategy:

With probability 1
2 , measure |ψ⟩ in the Hadamard basis. Fail if it is in the basis state

according to |+⟩⊗n, and pass otherwise.

With probability 1
2 , use the spectral test (Procedure A.2 or Procedure A.3, respectively).

The probability of failure FAIL is

FAIL = 1
2∥ ⟨ψ| |+⟩⊗n ∥2 + 1

2
⟨ψ|LG |ψ⟩

2d (27)

= 1
2

(
∥α1∥2 + 1

2d

N∑
i=1

λi∥αi∥2
)
. (28)

In a NO instance, λk = Ω(1) for all k > 1. So the probability of failure is always a positive
constant:

FAILNO = 1
2∥α1∥2 + 1

2d

N∑
i=2

Ω(∥αi∥2) = Ω(
N∑

i=1
∥αi∥2) = Ω(1) . (29)

In a YES instance, the spectrum of LG is the combined spectrum of the two disconnected
graphs. This means λ1 = λ2 = 0, and the associated eigenvectors are linear combinations of
|V ⟩ and |[N ]/V ⟩. Recall that |λ1⟩ := |+⟩⊗n. We find the orthogonal eigenvector |λ2⟩ in this
subspace by inspection:

|λ2⟩ =
√
N − |V |
N

|V ⟩ +
√

|V |
N

|[N ]/V ⟩ . (30)

Note that any vector with ∥α2∥2 = 1 − o( 1
poly(n) ) has negligible probability of failure:

FAILYES = 1
2∥α1∥2 + 1

2d

N∑
i=1

λi∥αi∥2 = O(∥α1∥2 +
N∑

i=3
∥αi∥2) = O(1 − ∥α2∥2) . (31)

Suppose Merlin sends the subset state |V ⟩. Since ∥ ⟨V |λ2⟩ ∥2 = 1 − |V |
N = 1 −O( 1

2poly(n) ), the
strategy has probability of failure O( 1

2poly(n) ). ◀

In general, the spectral test can be used in a QMA protocol to test the magnitude of the
second-smallest or largest eigenvalue of a graph Laplacian to inverse polynomial precision.
The former is a measure of the quality of a graph’s expansion, and the latter is related to a
measure of a graph’s bipartiteness named the bipartiteness ratio [26].

Because this QMA protocol requires only one query of either a standard oracle or an
in-place oracle, it works even when these oracles are randomized.

▶ Theorem A.4. There is a QMA protocol for STANDARD RANDOMIZED NON-
EXPANSION(d, α, ε) and IN-PLACE RANDOMIZED NON-EXPANSION(d, α, ε) at every even
d ≥ 4, all 0 < α < 1

2 , and all constant ε > 0.
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Proof. The strategy in Theorem 3.1 also works here. Consider any G-coded function
presented in a YES instance; the same vertices V are exactly the vertices of the smaller
component of G. So the witness |V ⟩ is close to the second eigenvector |λ2⟩, and the failure
probability is negligible. Now consider any G-coded function presented in a NO instance. By
definition, G is an expander graph, so the failure probability is always a positive constant. ◀

Because a randomized oracle chooses a function uniformly from a set F , it is statistically
indistinguishable from an oracle with exponentially small changes to F . We use this
fact to simplify the NO instance in RANDOMIZED NON-EXPANSION(d, α, ε). Suppose
the NO instance instead presents graph-coded functions of all d-regular graphs. Since
1 − O( 1

poly(N) ) = 1 − O( 1
2poly(n) ) graphs have a constant spectral gap [12] when d > 2, the

failure probability in the QMA protocol changes by at most O( 1
2poly(n) ).

Notice that with this modification, the oracles are exactly d/2 copies of the oracles in
RANDOMIZED HIDDEN SUBSET(α). One way to interpret this is that the randomization
offers a substitute for expander graphs. An expander graph is sparse but well-mixing; a
randomized oracle query instantaneously mixes across a graph’s connected component. As a
result, we can distinguish degree-2 graphs with this QMA protocol, even though they are not
typically expander graphs:

▶ Theorem A.5. There is a QMA protocol for STANDARD RANDOMIZED HIDDEN
SUBSET(α) and IN-PLACE RANDOMIZED HIDDEN SUBSET(α) for all 0 < α < 1

2 .

Proof. Perhaps surprisingly, the strategy in Theorem 3.1 also works here:
Consider the graph G of any G-coded function presented in a YES instance. By definition,
the vertices V are disconnected from all vertices in [N ]/V . So the witness |V ⟩ is close to
the second eigenvector |λ2⟩, and the failure probability is negligible.
Consider the NO instance. Then f is chosen uniformly from the set T∅ of all permutations
of [N ]. Then the spectral test fails with probability

E
π∈T∅

[
d− ⟨ψ|Aπ |ψ⟩

2d

] ∣∣∣∣∣
d=2

= 1
2 − 1

4 E
π∈T∅

[⟨ψ|Aπ |ψ⟩] (32)

= 1
2 − 1

4

 1
N !

∑
π∈T∅

⟨ψ|Aπ |ψ⟩

 (33)

= 1
2 − 1

8

 1
(N !)2

∑
π1,π2∈T∅

⟨ψ| (Aπ1 +Aπ2) |ψ⟩

 . (34)

The matrix Aπ1 +Aπ2 determines the adjacency matrix of a random 4-regular graph in
the configuration model; as a result,

E
π∈T∅

[
d− ⟨ψ|Aπ |ψ⟩

2d

] ∣∣∣∣∣
d=2

= E
π1,π2∈T∅

[
d− ⟨ψ|Aπ1,π2 |ψ⟩

2d

] ∣∣∣∣∣
d=4

. (35)

Since a random 4-regular graph has constant spectral gap with probability 1−O( 1
poly(N) ) =

1 − O( 1
2poly(n) ) [12], the failure probability is at least FAILYES from Theorem 3.1, less

O( 1
2poly(n) ). So the failure probability is Ω(1), just as before. ◀
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B Randomized oracles and symmetric subspaces

We first formalize how randomized oracles are orthogonal projectors. We include the proofs
in the arXiv version.

▶ Definition B.1 (Representation of a group). Consider a group G and a vector space V. A
representation of G is a map R that sends each g ∈ G to a linear operator R(g) : V → V
such that R(g1g2) = R(g1) ◦R(g2) for all g1, g2 ∈ G.

▶ Theorem B.2 (Projecting onto the symmetric subspace [15, Proposition 2]). Consider a
finite group G, a vector space V, and a representation R : G → L(V). Then the operator

ΠR := 1
|G|

∑
g∈G

R(g) (36)

is an orthogonal projector onto VG ⊆ V, where

VG := {v ∈ V : R(g)[v] = v ∀g ∈ G} . (37)

▶ Theorem B.3 (Oracles on density matrices form a representation). Consider a group G of
functions f : [N ] → [N ] with bitwise ⊕ as the group operation. Then the map f 7→ Uf is a
representation over the vector space of 2N2 × 2N2 complex matrices.

Similarly, consider a group G̃ of permutations π : [N ] → [N ] with composition as the
group operation. Then the map π 7→ Ũπ is a representation over the vector space of 2N × 2N
complex matrices.

▶ Theorem B.4 (Some randomized oracles are orthogonal projectors). Consider a group G of
functions f : [N ] → [N ] with bitwise ⊕ as the group operation. Then OG is an orthogonal
projector, under the Frobenius inner product (x|y) = Tr

[
x†y

]
for x, y ∈ C2N2×2N2 , onto

VG := {ρ ∈ C2N2×2N2
: Uf [ρ] = ρ∀f ∈ G} . (38)

Similarly, consider a group G̃ of permutations π : [N ] → [N ] with composition as the
group operation. Then Õ

G̃
is an orthogonal projector, under the Frobenius inner product

(x|y) = Tr
[
x†y

]
for x, y ∈ C2N×2N , onto

Ṽ
G̃

:= {ρ ∈ C2N×2N : Ũπ[ρ] = ρ∀π ∈ G̃} . (39)

In IN-PLACE RANDOMIZED HIDDEN SUBSET(α), a quantum verifier is either given
ÕT∅ (NO) or ÕTV

for some V ⊆ [N ] where |V | = Nα (YES). Since TV ⊆ T∅, the symmetric
subspace according to T∅ is a subspace of that according to TV , i.e. ṼT∅ ⊆ ṼTV

. So we can
exactly find the basis of the symmetric subspaces ṼT∅ and ṼTV

(see the arXiv version for
details). This key property is used throughout Appendix B.1.

B.1 In-place oracles: when classical witnesses are not enough
We interpret IN-PLACE RANDOMIZED HIDDEN SUBSET(α) as distinguishing the set of all
permutations from a subgroup that stabilizes a small subset V ⊆ [N ]. In Theorem 3.3, we
prove that classical witnesses designed for the verifier to choose YES cannot help a quantum
verifier efficiently decide this problem. This requires three main lemmas. First, we show
in Lemma B.6 that input states distinguishing a YES instance or NO instance must have
knowledge of the hidden subset V (either as a subset state |V ⟩ or a mixed state IV ). However,
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no density matrix can be close to too many subset states |V ⟩ (Lemma B.7), and no POVM
can choose the right answer for too many mixed states IV (Lemma B.8). We combine these
facts in a hybrid argument; note that we must fix an algorithm by its unitaries and its
POVM. We formally state the lemmas (proofs are in the arXiv version), and then prove
Theorem 3.3.

We use the following measure of “progress” for the hybrid argument:

▶ Definition B.5 (Difference of oracle queries). For any ρ, let dV,ρ be the difference of the
two oracle queries

dV,ρ := ÕTV
[ρ] − ÕT∅ [ρ] . (40)

If the nuclear norm of dV,ρ is non-negligible, we say that ρ is a good distinguisher of ÕTV

and ÕT∅ . We show that every good distinguisher ρ has a certain form; we include the proof
in the arXiv version.

▶ Lemma B.6 (Good distinguishers have a certain form). Consider a density matrix ρ and
up to O(log(n)) extra workspace qubits. Suppose ∥dV,ρ∥1 = Ω( 1

poly(n) ). Then among the
quantities

⟨V, z| ρ |V, z⟩ , (41)

Tr
[
ρ

(
IV,z − |V |

N
I[N ],z

)]
, (42)

for any z ∈ {±1}, at least one has magnitude Ω( 1
poly(n) ).

We now state two lemmas about subsets and subset states. These help us prove that
no quantum state can be a good distinguisher of too many YES instances. We include the
proofs in the arXiv version.

▶ Lemma B.7 (Can’t approximate too many subset states). Consider a Hermitian N ×N

matrix ρ that is positive semidefinite and has trace at most 1. Consider the set of all subsets
V ⊆ [N ], where |V | = Nα for a fixed 0 < α < 1

2 . Then the fraction of subsets V such that
⟨V | ρ |V ⟩ = Ω( 1

poly(n) ) decreases faster than any exponential in poly(n).

▶ Lemma B.8 (Not too many subsets can have elevated mean). Consider any N ×N POVM
{E, I −E}, and the set of all subsets V ⊆ [N ], where |V | = Nα for a fixed 0 < α < 1

2 . Then
the fraction of subsets V where

|f(V )| :=
∣∣∣∣ 1
|V |

Tr[IV E] − 1
N

Tr[E]
∣∣∣∣ = Ω( 1

poly(n) ) , (43)

decreases faster than any exponential in poly(n).

Intuitively, Lemma B.7 and Lemma B.8 hold because subset states can approximate any
quantum state well. Grilo, Kerenidis, and Sikora [14] show that for any n-qubit quantum
state |ψ⟩, there exists a subset state |S⟩ such that | ⟨S|ψ⟩ | ≥ 1

8
√

n+3 .
We now prove the main statement:

▶ Theorem 3.3 (formal). No quantum verifier that entangles oracle queries with at
most O(log(n)) additional qubits can efficiently decide IN PLACE RANDOMIZED HIDDEN
SUBSET(α) for any 0 < α < 1

2 , even with a polynomial-length classical witness designed for
the verifier to choose YES.

https://arxiv.org/pdf/2212.00098.pdf
https://arxiv.org/pdf/2212.00098.pdf
https://arxiv.org/pdf/2212.00098.pdf
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Proof. Let the set of YES instances be Y ; note that each YES instance corresponds to a set
V ⊆ [N ] where |V | = Nα, for some fixed 0 < α < 1

2 .
Suppose for contradiction that there is a protocol for this problem at some α < 1

2 . Then
the verifier can distinguish ÕT∅ from any ÕTV

in a polynomial number of queries using
a classical witness of size O(poly(n)). By the pigeonhole principle, there must exist a set
of YES instances Y ′ such that |Y ′|/|Y| = Ω( 1

2poly(n) ), where the verifier can use the same
algorithm to distinguish ÕT∅ from every YES instance in Y ′.

We then construct a hybrid argument in the style of Bennett, Bernstein, Brassard, and
Vazirani [8] and Ambainis [4], which interpolates from queries of one oracle to queries of
another oracle. For simplicity we write the proof without extra workspace qubits; however, we
can have up to O(log(n)) extra workspace qubits to satisfy Lemma B.6. Any polynomial query
algorithm can be written as a set of unitaries A = {U (1), . . . , U (k)} for some k = O(poly(n))
(alternating between unitary evolutions and oracle queries), and a POVM {E, I−E}. Consider
the following “hybrid” algorithms:

▶ Definition B.9. Given any set of k unitaries A = {U (1), . . . , U (k)}, define the hybrid
algorithm

AV,ℓ [ρ0] = Õ(k)
TV

◦ U (k) ◦ · · · ◦ Õ(ℓ+1)
TV

◦ U (ℓ) ◦ Õ(ℓ)
T∅

◦ U (ℓ) ◦ . . . Õ(1)
T∅

◦ U (1) [ρ0] , (44)

which evolves ρ0 under the oracle OT∅ for ℓ steps and under OTV
for the other k − ℓ steps.

Then the following is true for each ÕTV
∈ Y ′:

Ω( 1
poly(n) ) = |Tr[EAV,k[ρ0]] − Tr[EAV,0[ρ0]]| ≤

k−1∑
i=0

|Tr[EAV,i+1[ρ0]] − Tr[EAV,i[ρ0]]| ,

(45)

which implies

Ω( 1
poly(n) ) =

k−1∑
i=0

∣∣∣Tr
[
E

(
Õ(k)

TV
◦ . . . U (i) ◦

(
Õ(i)

TV
− Õ(i)

T∅

)
[ρ(i)]

)]∣∣∣ =
k−1∑
i=0

∣∣Tr
[
EV,(i)dV,ρ(i)

]∣∣ ,

(46)

for the operator EV,(i) constructed by

EV,(i) = U†(i) ◦ Õ(i)
TV

◦ · · · ◦ U†(k) ◦ Õ(k)
TV

[E] . (47)

By Fact D.8, the operators EV,(i) and I−EV,(i) are also Hermitian and positive semidefinite,
so {EV,(i), I − EV,(i)} is a POVM.

Using the pigeonhole principle, there must be a step ℓ in the summation with magnitude
Ω( 1

poly(n) ). Each ÕTV
∈ Y ′ has such a step. Again by the pigeonhole principle, there is a ℓ∗

and set Y∗ ⊆ Y ′ where∣∣∣Tr
[
EV,(ℓ∗)dV,ρ(ℓ∗)

]∣∣∣ = Ω( 1
poly(n) ) , (48)

and |Y∗|/|Y ′| ≥ 1
k = Ω( 1

poly(n) ). Notice that this implies |Y∗|/|Y| = Ω( 1
2poly(n) ).

Since the trace of M with a POVM operator is at most ∥M∥1 (Fact D.5), we have for all
ÕTV

∈ Y∗,

Ω( 1
poly(n) ) =

∣∣∣Tr
[
EV,(ℓ∗)dV,ρ(ℓ∗)

]∣∣∣ ≤
∥∥dV,ρ(ℓ∗)

∥∥
1 . (49)
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When queries are entangled with at most O(log(n)) additional qubits, the premise of
Lemma B.6 holds; then one of the quantities in the theorem statement must be large.
However, Lemma B.7 says that a given ρ can only satisfy either of the first two quantities
for a smaller-than-exponential fraction of Y. So for most choices of ÕTV

∈ Y∗,

Tr
[
ρ(ℓ∗)

(
IV,z − |V |

N
I[N ],z

)]
= Ω( 1

poly(n) ) . (50)

for at least one of z ∈ {±1}.
Inspecting the proof of Lemma B.6, this implies dV,ρ(ℓ∗) can only have Ω( 1

poly(n) ) weight
on C4,z for some z ∈ {±1} across all matrices in C. In fact, for most choices of ÕTV

∈ Y∗,
we show that this is also true for

dV,ℓ∗,j := Õ(ℓ∗+j)
TV

◦ U (ℓ∗+j) ◦ · · · ◦ Õ(ℓ∗+1)
TV

◦ U (ℓ∗+1) ◦ dV,ρ(ℓ∗) , (51)

for all 0 ≤ j ≤ k − ℓ∗. We show this by induction. Note that by Fact D.5 and the fact that
dV,ℓ∗,k−ℓ∗ is the difference of two objects with nuclear norm 1, ∥dV,ℓ∗,k−ℓ∗∥1 = Ω( 1

poly(n) ) =
O(1).

Consider dV,ℓ∗,i for some 1 ≤ i ≤ k − ℓ∗, which can be represented with the basis C. By
Fact D.9, it has Frobenius norm at most ∥dV,ρ(ℓ∗)∥F r = O( 1√

|V |
). So it must have o( 1

poly(n) )

weight on pure states. Inspecting the basis C, this means dV,ρ(ℓ∗) can only have Ω( 1
poly(n) )

weight on C4,z or 1
N I[N ],z for z ∈ {±1}. By Fact D.9, dV,ρ(ℓ∗) has nuclear norm at least

∥dV,ℓ∗,k−ℓ∗∥1 = Ω( 1
poly(n) ), so it must have Ω( 1

poly(n) ) weight on at least one such matrix.
Suppose for contradiction that the matrix is 1

N I[N ],z for z ∈ {±1}. Then

Ω( 1
poly(n) ) = Tr

[
I[N ],zÕTV

[
U (ℓ∗+i) [dV,ℓ∗,i−1]

]]
= Tr

[(
U (ℓ∗+i)† ◦ Õ†

TV
[I[N ],z]

)
dV,ℓ∗,i−1

]
.

(52)

By the inductive hypothesis, dV,ℓ∗,i−1 only has Ω( 1
poly(n) ) weight on some C4,z for z ∈ {±1}.

Then for some z′ ∈ {±1},

Ω( 1
poly(n) ) = Tr

[(
U (ℓ∗+i)† ◦ Õ†

TV
[I[N ],z]

) (
1

|V |
IV,z′ − 1

N
I[N ],z′

)]
. (53)

Notice that for any unitary U , the object {U (ℓ∗+i)† ◦Õ†
TV

[I[N ],z=+1],U (ℓ∗+i)† ◦Õ†
TV

[I[N ],z=−1]}
forms a POVM. By Lemma B.8, this can only be satisfied at either z ∈ {±1} for a smaller-
than-exponential fraction of choices of V . So for most choices of ÕTV

∈ Y∗ (i.e. a Ω( 1
2poly(n) )

fraction of choices of V ), dV,ℓ∗,i has Ω( 1
poly(n) ) weight on C4,z for at least one of z ∈ {±1},

and for no other matrices in C.
Since Ω( 1

poly(n) ) = |Tr[EdV,ℓ∗,k−ℓ∗ ]|, our supposition then implies that for one of z ∈ {±1},

Ω( 1
poly(n) ) = |Tr[EC4,z]| =

∣∣∣∣Tr
[
E

(
1

|V |
IV,z − 1

N
I[N ],z

)]
±O( 1

2poly(n) )
∣∣∣∣ . (54)

But by Lemma B.8, this can only be satisfied at either z ∈ {±1} for a smaller-than-
exponential fraction of Y. This is a contradiction. So there can be no efficient protocol for
this problem. ◀
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B.2 Standard oracles: when classical witnesses are enough
As shown in Theorem B.3, randomized standard oracles can also form a representation.
But the preserved group structure is much different than for randomized in-place oracles.
Consider the set T∅ of permutations on [N ]. For any f1, f2 ∈ T∅, the element f1f2 in this
group structure acts for all x ∈ [N ] and z ∈ {±1} as

(f1f2)z(x) = fz
1 (x) ⊕ fz

2 (x) . (55)

Note that this operation is abelian; that is, (f1f2) = (f2f1). Any finite abelian group can
always be represented as the direct sum of cyclic groups. In fact, under this group operation,
T∅ can be decomposed by the input x ∈ [N ] and function inverter z ∈ {±1}:

T∅ =
⊕

x∈[2n],z∈{±1}

Z2n . (56)

With this group operation, the only possible subgroups of T∅ have the form⊕
x∈[2n],z∈{±1}

Z2kx,z , (57)

for 0 ≤ kx,z ≤ n. As a result, there is a QCMA protocol to distinguish any strict subgroup of
T∅ from T∅.

▶ Theorem B.10. There is a one-query QCMA protocol for STANDARD RANDOMIZED
HIDDEN SUBGROUP(×, {Hi}) when the group operation × is bitwise XOR, for any valid
{Hi}.

Proof. Suppose the classical witness is a bitstring of length at least n+ 1. The verifier can
then:
1. Use the first n bits to construct x and the next bit to construct z.
2. Prepare the state |0⟩⊗n |x, z⟩.
3. Apply OH , creating the state |fz(x)⟩ |x, z⟩ for some f ∈ H.
4. Measure the first n qubits, and accept if the result is even.3
Consider a YES instance associated with a subgroup H ⊊ T∅. Then H will have some
x ∈ [N ], z ∈ {±1} such that kx,z < n. A witness can store x and z; since kx,z < n, fz(x)
will be even with probability 1.

In the NO instance, H = T∅. Then fz(x) is even with probability 0.5 for every x ∈
[N ], z ∈ {±1}. ◀

Note that Theorem B.10 holds even if the randomized standard oracle OF does not have
access to the function inverse.

C No witness is enough for phase oracles

▶ Theorem 3.4 (formal). No quantum verifier that entangles oracle queries with at most
o(n) additional qubits can efficiently decide PHASE RANDOMIZED HIDDEN SUBSET(α) for
any 0 < α < 1

2 , even with any witness designed for the verifier to choose YES. Moreover,
these verifiers require an exponential number of queries to statistically distinguish a YES
instance from the NO instance, for each of asymptotically all YES instances.

3 Depending on the encoding, one can simply measure the nth qubit, and accept if the result is 0.
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Proof. We now prove the query lower bound. Let k be the number of queries required to
distinguish OTV

from OT∅ . Consider any algorithm that distinguishes the two instances,
defined by a starting state ρ0, k unitaries, k oracle queries, and a POVM {E, I − E}. In the
framework of hybrid algorithms (Definition B.9),

Ω( 1
poly(n) ) = |Tr[EAV,k[ρ0]] − Tr[EAV,0[ρ0]]| (58)

≤ ∥AV,k[ρ0] −AV,0[ρ0]∥1 (59)
≤ k max

i∈{0,...,k−1}
∥AV,i+1[ρ0] −AV,i[ρ0]∥1 (60)

≤ k max
i∈{0,...,k−1}

∥∥∥OTV
[ρ(i)] − OT∅ [ρ(i)]

∥∥∥
1
, (61)

where the last line follows because randomized oracles do not increase the nuclear norm
(Fact D.9).

We now bound
∥∥OTV

[ρ] − OT∅ [ρ]
∥∥

1 for any ρ. Recall that a phase oracle OF acts as

OF [|x1, z1⟩ ⟨x2, z2|] = 1
|F |

∑
f∈F

ω
fz1 (x1)−fz2 (x2)
N |x1, z1⟩ ⟨x2, z2| , (62)

for any x1, x2 ∈ [N ] and z1, z2 ∈ {±1}. So every basis vector |x1, z1⟩ ⟨x2, z2| acquires a
coefficient cx1,z1,x2,z2 .

We start with OT∅ (the NO instance). When (x1, z1) = (x2, z2), the coefficient is 1.
When x1 ̸= x2, fz(x1) and f−z(x2) are uniformly likely to be any value, so the coefficient is

1
N2

∑
a∈[N ],b∈[N ]

ωa−b
N = 1

N2

∥∥∥∥∥∥
∑

a∈[N ]

ωa
N

∥∥∥∥∥∥
2

= 0 . (63)

Similarly, when x1 ̸= x2, fz(x1) and fz(x2) are uniformly likely to be any unequal values;
the coefficient is

1
N(N − 1)

∑
a∈[N ],b∈[N ],a̸=b

ωa−b
N = 1

N(N − 1)
[ ∑

a∈[N ],b∈[N ]

ωa−b
N −

∑
a∈[N ]

ωa−a
N

]
= − 1

N − 1 .

(64)

We now consider OTV
(a YES instance). When (x1, z1) = (x2, z2), the coefficient is again

1. When x1 ̸= x2, the values of fz(x1) and f−z(x2) are uniformly likely to be any value in
iV (x1) and iV (x2), respectively, so the coefficient is

1
|iV (x1)| × |iV (x2)|

∑
a∈iV (x1),b∈iV (x2)

ωa−b
N . (65)

Similarly, when x1 ̸= x2, fz(x1) and fz(x2) are uniformly likely to be any unequal values in
iV (x1) and iV (x2), respectively, so the coefficient is

1
|iV (x1)| × |iV (x2)|

∑
a∈iV (x1),b∈iV (x2),a ̸=b

ωa−b
N =

(∑
a∈iV (x1),b∈iV (x2) ω

a−b
N

)
− δ|iV (x1)|

|iV (x1)| × |iV (x2) − δ|
,

(66)

where δ is 1 if iV (x1) = iV (x2) and 0 otherwise.
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Consider the object OTV
[ρ] − OT∅ [ρ] as the sum of two matrices AV + BV . Let AV

contain the (V, z) × (V, z) submatrix for both z ∈ {±1}, and BV contain the rest of the
entries. When the oracle query is entangled with o(n) additional qubits, AV has rank O(|V |),
and BV has rank O(N).

Since the roots of unity sum to zero,
∑

a∈V ω
a
N = −

∑
a∈[N ]/V ω

a
N for any V ⊆ [N ].

Because of this,∥∥∥∥∥∥
∑

a,b∈iV (x)

ωa−b
N

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑

a∈iV (x)

ωa
N

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∑
a∈V

ωa
N

∥∥∥∥∥
2

= O(|V |2) . (67)

As a result, all coefficients in BV are O( 1
N1−α ).

In Lemma C.1, we show that for asymptotically all choices of V , all coefficients in AV are
O( 1

N3α/4 ). This argument uses a Chernoff bound and a central limit argument on samples
without replacement.

We bound the nuclear norm of OTV
[ρ] − OT∅ [ρ] with the rank and Frobenius norm of

AV and BV (Fact D.3):∥∥OTV
[ρ] − OT∅ [ρ]

∥∥
1 ≤ ∥AV ∥1 + ∥BV ∥1 (68)

= O(
√
V )∥AV ∥F r +O(

√
N)∥BV ∥F r (69)

≤
(
O(

√
V )O(N−3α/4) +O(

√
N)O(Nα−1)

)
∥ρ∥F r (70)

= O(N−α/4 +Nα−1/2) . (71)

Thus, for most choices of V , distinguishing OTV
and OT∅ requires k = Ω(min(Nα/4, N1/2−α))

queries. ◀

We now prove the Chernoff bound:

▶ Lemma C.1. Fix any 0 < α < 1
2 , and consider all subsets V ⊆ [N ] such that |V | = Nα.

Then for all but a doubly exponentially small fraction of choices of V ,∥∥∥∥∥∥ 1
N2α

∑
a,b∈V

ωa−b
N

∥∥∥∥∥∥ = O( 1
N3α/4 ) . (72)

Proof. Consider the distribution X = {ωk
N } where k is chosen uniformly from N . Both

Re(X) and Im(X) have mean zero and variance at most 1.
Take a size-Nα sample from the distribution X, without replacement. Denote Y as

the distribution of the sample mean. Both Re(Y ) and Im(Y ) have expectation Re(X) =
Im(X) = 0, and variance

σ2
X

Nα
(1 − Nα − 1

N − 1 ) ≤ 1
Nα

. (73)

Even when sampling without replacement, Y is asymptotically normally distributed [10]. So
its moment generating function is

MGFY [t] = etµY +σ2
Y t2/2 ≤ et2/Nα

. (74)

We use a Chernoff bound to estimate when Y has magnitude at least N−3α/8. Notice that

Pr[Y ≥ a] = Pr
[
etY ≥ eta

]
≤ e−atMGFY [t] ≤ et2/Nα

e−at , (75)

TQC 2023



11:22 On the Power of Nonstandard Quantum Oracles

so

Pr
[
Y ≥ 0.5

N3α/8

]
≤ inf

t≥0
exp

(
t2

Nα
− 0.5t

N3α/8

)
≤

t=2Nα/2
exp

(
4 − Nα/8)

= O( 1
exp(exp(n)) ) . (76)

This implies that Y has magnitude at most N−3α/8 (and Y 2 at most N−3α/4) except in a
doubly exponentially small fraction of choices of V . ◀

▶ Remark C.2. Consider an oracle that sends |c, x, z⟩ → ω
c·fz(x)
N |c, x, z⟩, where the c register

has k qubits. Note that Theorem 3.4 applies whenever k = o(n). However, there must be a
phase transition, since at k = n, this oracle is unitarily equivalent to a standard oracle, and
thus has a QMA protocol for RANDOMIZED HIDDEN SUBSET(α) in Appendix A.

D Norms and inner products

Note that we work with arbitrary matrices, not just positive semidefinite ones.

▶ Definition D.1 (Nuclear norm of a matrix). The nuclear norm of a matrix M is the sum of
its singular values; that is,

∥M∥1 =
∑

i

σi(M) = Tr
[√

M†M
]
. (77)

▶ Definition D.2 (Frobenius norm and inner product of a matrix). The Frobenius inner product
of N ×N matrices A,B is

(A|B) = Tr
[
A†B

]
(78)

This induces a norm, which is the square root of the sum of squares of the singular values:

∥A∥F r =
√∑

i

σi(A)2 =
√ ∑

ij∈[N ]

|Aij |2 . (79)

▶ Fact D.3. The nuclear norm of a matrix is at most the product of its Frobenius norm and
the square root of its rank.

Proof. See Rennie [24] for a proof with explanation. ◀

▶ Fact D.4 (Nuclear norm of a positive semidefinite matrix). The nuclear norm of a positive
semidefinite Hermitian matrix is simply its trace; that is, if ρ is Hermitian and positive
semidefinite, then

∥ρ∥1 = Tr[ρ] . (80)

Proof. For a Hermitian and positive semidefinite matrix, the eigenvalues are all real and
nonnegative, so the singular values are exactly the eigenvalues. Alternatively, notice that
ρ =

√
ρ†ρ and use Definition D.1. ◀

▶ Fact D.5 (POVM trace is at most the nuclear norm). Consider any Hermitian matrix M
and a POVM {E, I − E}. Then

Tr[EM ] ≤ ∥M∥1 . (81)
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Proof. Consider the singular value decomposition of a Hermitian M = UDU†. Then

Tr[EM ] = Tr
[
(U†EU)D

]
= Tr[E′D] (82)

for some matrix E′. Note that {E′, I −E′} make a POVM; they have the same eigenvalues
of {E, I −E}, respectively, and so are both positive semidefinite. Recall that the diagonal
elements of a POVM are all nonnegative and at most 1. Then

Tr[EM ] = Tr[E′D] =
∑

i

E′
iiDi ≤

∑
i

|Di| = ∥D∥1 = ∥M∥1 . (83)

◀

▶ Fact D.6 (Trace of outer product is inner product). Consider vectors |x⟩ , |y⟩ ∈ Cm and a
matrix A ∈ Cm×m. Then the inner product of |y⟩ ⟨x| and A is

Tr
[
(|y⟩ ⟨x|)†A

]
= Tr[A |x⟩ ⟨y|] = ⟨y|A |x⟩ . (84)

Proof.

Tr[A |x⟩ ⟨y|] = Tr

 ∑
i,k∈[m]

 ∑
j∈[m]

Aijxj


i

y†
k

 =
∑

k,j∈[m]

Akjxjy
†
k = ⟨y|A |x⟩ . (85)

◀

▶ Remark D.7 (Orthogonal basis for an input density matrix). We can decompose ρ into a basis
M that is orthogonal under the Frobenius inner product (a|b) = Tr

[
a†b

]
:

ρ =
∑

M∈M
cMM . (86)

Because the basis is orthogonal, for any M ∈ M,

Tr
[
M†ρ

]
=

∑
M ′∈M

cM ′ Tr
[
M†M ′] = cM ∥M∥2

F r . (87)

Moreover, by Cauchy-Schwarz, the inner product of M and ρ is at most the product of the
norm of each, so

∥cMM∥F r =
∣∣Tr

[
M†ρ

]∣∣
∥M∥F r

≤ ∥ρ∥F r . (88)

We also state two properties that hold for any randomized oracle:

▶ Fact D.8 (Randomized oracles preserve trace, Hermiticity, and positive semidefiniteness).
Consider any randomized oracle OF corresponding to a set of functions f ∈ F . Then OF

preserves the trace of its input. Moreover, if the input M is Hermitian, so is OF [M ]; if M
is also positive semidefinite, so is OF [M ].

Proof. Consider any input matrix M . Then

Tr[OF [M ]] = Tr

 1
|F |

∑
f∈F

Uf [M ]

 = 1
|F |

∑
f∈F

Tr
[
UfMU†

f

]
= 1

|F |
∑
f∈F

Tr[M ] = Tr[M ] .

(89)
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Now suppose M is Hermitian; that is, M† = M . Then

OF [M ]† =
( 1

|F |
∑
f∈F

Uf [M ]
)† = 1

|F |
∑
f∈F

(
UfMU†

f )† = 1
|F |

∑
f∈F

UfM
†Uf = OF [M ] . (90)

Furthermore, suppose M is positive semidefinite; that is, there is a matrix B such that
M = B†B. Then

OF [M ] = 1
|F |

∑
f∈F

Uf [M ] = 1
|F |

∑
f∈F

UfB
†BU†

f =
∑
f∈F

(BUf )† (BUf ) , (91)

which is a sum of positive semidefinite matrices. Thus, OF [M ] is positive semidefinite. ◀

▶ Fact D.9 (Randomized oracles do not increase nuclear norm or Frobenius norm). Consider
any randomized oracle OF corresponding to a set of functions f ∈ F . Then OF does not
increase the nuclear norm nor the Frobenius norm of its input.

Proof. Recall that both the nuclear norm and Frobenius norm are unitarily invariant. Now
consider any input matrix M . Then the nuclear norm of OF [M ] is

∥OF [M ]∥1 =

∥∥∥∥∥∥ 1
|F |

∑
f∈F

UfMU†
f

∥∥∥∥∥∥
1

≤ 1
|F |

∑
f∈F

∥∥∥UfMU†
f

∥∥∥
1

= 1
|F |

∑
f∈F

∥M∥1 = ∥M∥1 . (92)

The Frobenius norm of OF [M ] follows in exactly the same way. ◀

We use one additional property of density matrices in the proof of Lemma B.6:

▶ Fact D.10. Consider any N × N density matrix ρ and normalized states |v⟩ , |w⟩. If
| ⟨v| ρ |w⟩ | = Ω( 1

poly(n) ), then both ⟨v| ρ |v⟩ and ⟨w| ρ |w⟩ are Ω( 1
poly(n) ).

Proof. Recall that a density matrix is Hermitian and positive semidefinite, so it is diagonal-
izable and has real and nonnegative eigenvalues. As a result, it has a decomposition

ρ = S†ΛS = S†
√

Λ
√

ΛS = (
√

ΛS)†(
√

ΛS) = A†A , (93)

for some diagonal Λ and A :=
√

ΛS. Then by Cauchy-Schwarz,

| ⟨v| ρ |w⟩ |2 =
∣∣(A |v⟩)†(A |w⟩)

∣∣2 ≤
∣∣(A |v⟩)†(A |v⟩)

∣∣ ·
∣∣(A |w⟩)†(A |w⟩)

∣∣ = ⟨v| ρ |v⟩ · ⟨w| ρ |w⟩ .

(94)

Since Tr[ρ] = 1, ⟨ψ| ρ |ψ⟩ ≤ 1 for all normalized states |ψ⟩. Thus, both ⟨v| ρ |v⟩ and ⟨w| ρ |w⟩
are at least | ⟨v| ρ |w⟩ |2 = Ω( 1

poly(n) ). ◀
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E Our setup contrasted with a discrete-time quantum walk

The way one stores a graph in an oracle drastically changes the difficulty of some problems.
Consider a discrete-time quantum walk [27], which allows a vertex access to a superposition
of its neighbors.4 Given a d-regular graph G(V,E), the operator W : CN2×N2 acts as

W =

 ∑
(j,k)∈E

|j, k⟩ ⟨k, j|

C (95)

C =
∑
j∈V

|j⟩ ⟨j| ⊗ (2 |∂j⟩ ⟨∂j | − I) (96)

|∂j⟩ = 1√
d

∑
(j,k)∈E

|k⟩ . (97)

Using a discrete-time quantum walk, we can learn about the mixing properties of the
associated graph; these are fundamentally related to the graph’s spectral gap [13].

By contrast, we query each neighbor of a vertex v ∈ G with the value of the registers
encoding i ∈ [d/2] (defined by a G-coded function). For example, [5] uses a similar oracle to
show that deciding whether a graph is a single expander graph or two equal-sized disconnected
expander graphs is outside of BQP. Intuitively, a lack of superposition access to neighbors of
a vertex makes it harder for a quantum computer to “traverse” the graph.

4 [9, Chapter 17] has a good introduction to this topic.
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