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Abstract
The recently-defined No Low-energy Sampleable States (NLSS) conjecture of Gharibian and Le
Gall [16] posits the existence of a family of local Hamiltonians where all states of low-enough constant
energy do not have succinct representations allowing perfect sampling access. States that can be
prepared using only Clifford gates (i.e. stabilizer states) are an example of sampleable states, so the
NLSS conjecture implies the existence of local Hamiltonians whose low-energy space contains no
stabilizer states. We describe families that exhibit this requisite property via a simple alteration to
local Hamiltonians corresponding to CSS codes. Our method can also be applied to the recent NLTS
Hamiltonians of Anshu, Breuckmann, and Nirkhe [4], resulting in a family of local Hamiltonians
whose low-energy space contains neither stabilizer states nor trivial states. We hope that our
techniques will eventually be helpful for constructing Hamiltonians which simultaneously satisfy
NLSS and NLTS.
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1 Introduction

Local Hamiltonians are ubiquitous in quantum physics and quantum computation. From
the physical perspective, Hamiltonians describe the dynamics and energy spectra of closed
quantum systems, with “local” Hamiltonians corresponding to models where only a small
number of particles can directly interact with each other. From the computational perspective,
local Hamiltonians naturally generalize well-studied constraint satisfaction problems through
the “local Hamiltonian problem”, which asks about the complexity of approximating the
ground-state energy of local Hamiltonians.
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14:2 Local Hamiltonians with No Low-Energy Stabilizer States

▶ Definition (LH-δ(n)). A k-local Hamiltonian, H = 1
m

∑m
i=1 Hi, is a sum of m = poly(n)

Hermitian matrices, Hi ∈ C2n×2n , where each Hi acts non-trivially on at most k = O(1)
qubits1 and has bounded spectral norm, ∥Hi∥ ≤ 1.

Given a local Hamiltonian, H, and two real numbers a < b with b− a > δ(n), the local
Hamiltonian problem with promise gap δ(n) is to decide if (1) there is a state with
energy ⟨ψ0| H |ψ0⟩ ≤ a or (2) all states have energy ⟨ψ| H |ψ⟩ ≥ b, given that one of these
cases is true.2 The value δ(n) is called the promise gap of the problem.

LH is a natural quantum analogue of the NP-complete constraint satisfaction problem
(CSP):3 the local terms serve as quantum constraints on an n-qubit state, and the energy of a
local term corresponds to how well the state satisfies that local constraint. The lowest energy
state – or ground-state – of H is the state that optimally satisfies all of the local constraints.

It is straightforward to show that CSP is NP-complete for a promise gap δ(n) = 1/poly(n),
and the celebrated classical PCP Theorem [7, 8] shows that [surprisingly] CSP is still NP-
complete when δ(n) = Ω(1), a constant. Since LH is the quantum generalization of a CSP
we can similarly ask whether it is complete for the class QMA, the quantum version of NP.
Kitaev showed that LH is QMA-complete for δ(n) = 1/poly(n) when he originally defined
the class of QMA problems [19]. Perhaps the most important open question in quantum
complexity theory is whether or not a quantum version of the PCP theorem holds. The
“quantum PCP conjecture” [3, 1] states that LH with a constant promise gap is QMA-hard;
the conjecture has thus far eluded proof.

As a possible step towards proving quantum PCP, Freedman and Hastings suggested
the No Low-energy Trivial States (NLTS) conjecture which is implied by the quantum PCP
conjecture (assuming NP ̸= QMA). A local Hamiltonian has the NLTS property if there
is a constant strictly larger than the ground-state energy which lower bounds the energy
of any state preparable in constant-depth (“trivial states”). The NLTS conjecture posits
the existence of an NLTS Hamiltonian. This seemingly simpler problem remained open for
nearly a decade until Anshu and Breuckmann solved the combinatorial version [5], followed
shortly after by a complete proof by Anshu, Breuckmann, and Nirkhe [4]. They explicitly
constructed an NLTS Hamiltonian using recently developed asymptotically-good quantum
LDPC codes [20].

While the NLTS Theorem makes significant progress, there are still many other properties
that a candidate Hamiltonian must satisfy in order to be QMA-hard with a constant promise
gap. For instance, Gharibian and Le Gall defined the No Low-energy Sampleable States
(NLSS) conjecture [16]. A state, |ψ⟩ is “sampleable” if a classical computer can efficiently
draw an x ∈ {0, 1}n from the distribution defined by p(x) = |⟨x|ψ⟩|2 and can calculate
all of the amplitudes, ⟨x|ψ⟩.4 A local Hamiltonian has the NLSS property if there is a
constant which lower-bounds the energy of every sampleable state. The NLSS conjecture
posits the existence of an NLSS Hamiltonian, and Gharibian and Le Gall showed that unless
MA = QMA the quantum PCP conjecture implies the NLSS conjecture.

1 Hi = hi ⊗ I2n−k where hi is a 2k × 2k Hermitian matrix and I2n−k is the 2n−k × 2n−k identity matrix
2 This is equivalent to deciding if H has an eigenvalue less than a or if all of the eigenvalues of H are

larger than b, which is the more typical formulation of the problem.
3 Technically LH is a generalization of the decision problem MAX-k-CSP.
4 The more proper terminology, as in [16], would be that |ψ⟩ has a succinct representation allowing

perfect sampling access. We will not be directly addressing the NLSS conjecture, so we will use the
term “sampleable” for brevity.
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In this paper we examine a simplified version of the NLSS conjecture, where instead of
sampleable states we consider stabilizer states. A stabilizer state is the unique state stabilized
by a commuting subgroup of the Pauli group with size 2n. Equivalently, stabilizer states
are those states that can be prepared using only Clifford gates, i.e. Hadamard, Phase, and
CNOT gates. We say that a local Hamiltonian has the No Low-energy Stabilizer States
(NLCS)5 property if there is a constant which lower-bounds the energy of any stabilizer
state.6 The Gottesman-Knill Theorem [18] shows that any stabilizer state can be efficiently
sampled, so any NLSS Hamiltonian must also be an NLCS Hamiltonian. We show that a
generic construction can be used to produce many NLCS Hamiltonians.

To prove the NLCS property for a particular local Hamiltonian one must show an explicit
lower bound on the energy of all stabilizer states. Let H = 1

m

∑
Hi be a local Hamiltonian

and let |ψ⟩ be an n-qubit state. The energy of any particular Hamiltonian term can be
expressed as ⟨ψ| Hi |ψ⟩ = Tr

[
ψAi

hi

]
, where Ai is the set of qubits where Hi acts non-trivially,

ψAi
is the reduced state of |ψ⟩ on Ai, and hi is the non-trivial part of Hi. Suppose for

simplicity that |Ai| = k for all i. One particularly strong way to lower-bound the energy of
|ψ⟩ would be to “locally” bound each energy term. That is, prove that each Tr

[
ψAi

hi

]
is

lower-bounded by a constant. In general this is not an easy task. However, stabilizer states
have a rather convenient property: we show in Claim 3 that if |ψ⟩ is a stabilizer state, then
every ψAi is a convex combination of stabilizer states on k qubits. Thus, to lower-bound
Tr

[
ψAi

hi

]
for every n-qubit stabilizer state, |ψ⟩, it is sufficient to lower-bound the quantity

⟨ζ|hi |ζ⟩ for every k-qubit stabilizer state |ζ⟩.
This observation leads to a rather simple NLCS Hamiltonian. First, consider the Hamil-

tonian H0 = 1
n

∑
|1⟩⟨1|i where |1⟩⟨1|i is the projector to |1⟩ on the i-th qubit and identity

elsewhere. All of the local terms are the single-qubit projector |1⟩⟨1|. Clearly, we cannot
lower-bound the energy of stabilizer states since |0⟩ has energy 0. We can fix this, however,
by instead considering a “conjugated” version of H0:

H̃0 ≡ 1
n

n∑
i=1

(
ei π

8 Y |1⟩⟨1| e−i π
8 Y

)
|i,

which can alternatively be expressed as H̃0 = (ei π
8 Y )⊗nH0(e−i π

8 Y )⊗n. Each local term is
the single-qubit projector ei π

8 Y |1⟩⟨1| e−i π
8 Y , and it is straightforward to calculate that every

single-qubit stabilizer state has high energy under this local term. We give a self-contained
proof that H̃0 is NLCS in Appendix B.

The quantum PCP conjecture not only implies the existence of NLTS/NLCS/NLSS
Hamiltonians, but also the existence of simultaneous NLTS/NLCS/NLSS Hamiltonians. The
process of conjugating a local Hamiltonian by a low-depth circuit conveniently preserves the
NLTS property. That is, if H is NLTS and C is a constant-depth circuit, then C†HC is also
NLTS (see Lemma 4).

We note that since |1⟩⟨1| = 1
2 (I−Z) the Hamiltonian H0 is an example of a CSS

Hamiltonian, i.e. the local Hamiltonian terms are of the form 1
2 (I−Pi) where the Pi’s are

commuting X and Z type Pauli operators. As the Hamiltonian H̃0 is simply H0 conjugated

5 The “C” in NLCS stands for Clifford, since states prepared by Clifford circuits and stabilizer states are
equivalent.

6 The existence of NLCS Hamiltonians has been suggested before as a direct consequence of the quantum
PCP conjecture, for instance in [6]. We discuss the relationship of NLCS and more to the quantum
PCP conjecture in Section 1.1.

TQC 2023
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by a depth-1 circuit (e−i π
8 Y )⊗n it may be natural to ask whether the same procedure can

be done to the NLTS Hamiltonians from [4] as they are also CSS Hamiltonians. The main
result of our paper is the following:

▶ Theorem 1 (Informal version of Theorem 12). Let HNLT S be the NLTS local Hamiltonian
from [4]. The local Hamiltonian given by H̃NLT S ≡ (ei π

8 Y )⊗nHNLT S(e−i π
8 Y )⊗n satisfies

both NLTS and NLCS.

We prove Theorem 12 by exhibiting local lower bounds on the individual Hamiltonian
terms. In particular, we show that if h = 1

2 (I−P⊗k) is a k-local term where P ∈ {X,Z},
then

⟨ζ| (ei π
8 Y )⊗kh(e−i π

8 Y )⊗k |ζ⟩ ≥ sin2(π/8)

for every k-qubit stabilizer state |ζ⟩, as long as k is odd. Combining this lower bound with
the fact that the reduced state of a stabilizer state is a convex combination of stabilizer states,
we have that conjugating a CSS Hamiltonian by (e−i π

8 Y )⊗n results in an NLCS Hamiltonian,
at least in the case that many of the Hamiltonian terms act on an odd number of qubits.

The condition of odd weight is unfortunately a necessary condition of our local techniques:
if k is even then there is always a k-qubit stabilizer state with ⟨ζ0| (ei π

8 Y )⊗kh(e−i π
8 Y )⊗k |ζ0⟩ =

0. Nonetheless, we prove in Section 4 of the Full Version that there is an explicit NLTS
Hamiltonian from [4] where every local term acts on an odd number of qubits. Since
conjugating by a constant-depth circuit preserves NLTS, we ultimately have that H̃NLT S

satisfies both NLTS and NLCS.

1.1 Implications of the quantum PCP conjecture
We turn now to the question of what Hamiltonians are guaranteed to exist by the quantum
PCP conjecture. The quantum PCP conjecture has two main formulations; we focus here on
the gap amplification version. See [2] for a great survey on the conjecture.

▶ Conjecture (Conjecture 1.3 of [2]). Let ϵ > 0 be a constant. LH-ϵ is QMA-hard under
quantum polynomial-time reductions.

In other words, the conjecture says there is a worst-case local Hamiltonian whose ground state
energy is QMA-hard to approximate within a constant. Approximating ground-state energies
and finding ground states of local-Hamiltonians are of central importance to condensed
matter theory and quantum simulation algorithms. If true, the quantum PCP conjecture
says that there are some Hamiltonians whose ground-state energies we could never hope to
approximate, let alone find their ground states.7

The key insight of [14] when they defined the NLTS conjecture was that some states have
properties which allow their ground state energies to be calculated in a smaller complexity class
than QMA. For a constant, k, we say that an n-qubit state, ρ, is k-locally-approximable
if it has a polynomial-sized classical description from which every k-local reduced state,
ρA ≡ Tr−A[ρ] where |A| ≤ k, can be approximated to inverse-polynomial precision in
polynomial-time. Consider the following simple result:

▶ Fact 2. Suppose H = 1
m

∑m
i=1 Hi is a k-local Hamiltonian and ρ is a k-locally approximable

state. The energy of ρ under H can be approximated to inverse-polynomial precision in NP.

7 Unless, of course, one believes QMA ⊆ P or some other weakening of QMA.
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Proof. Each Hi acts non-trivially on at most k qubits, Ai ⊂ [n], so the energy of ρ for Hi is
Tr[ρHi] = Tr

[
ρAi

hi

]
, where hi ≡ Tr−Ai

[Hi] is the non-trivial part of Hi. Since hi ∈ C2k×2k

and by assumption we can efficiently compute ρAi
to inverse-polynomial precision from

the classical description of ρ, each Tr[ρHi] can be brute-force approximated in polynomial-
time. ◀

Trivial states are locally approximable. If |ψ⟩ is a trivial state then there is a constant-
depth circuit such that |ψ⟩ = C |0⟩⊗n. For a set of k qubits, A, the only gates that contribute
to ψA are those in the reverse-lightcone8 of A. As the reverse-lightcone has size at most k2d,
a constant, only a constant number of gates from C are needed to brute-force approximate
ψA. Thus, we can approximate local reduced states of |ψ⟩⟨ψ| from the classical description
of C.

The assumption of being able to compute local reduced states also holds for stabilizer
states. Suppose |ψ⟩ is an n-qubit stabilizer state. Since |ψ⟩ is a stabilizer state there are
n independent and commuting Pauli operators {P1, . . . , Pn} that stabilize |ψ⟩. The list of
these Pauli operators will serve as the classical description of |ψ⟩⟨ψ| from which local reduced
states can be computed. The reduced state ψA can be written as

ψA = 1
2k

∑
P ∈GA

P, (1)

where GA is the subgroup of the stabilizers of |ψ⟩ which act non-trivially only on qubits
in A. There are 4k such Pauli group elements (ignoring phases) which we denote by PA.
For P ∈ PA, one of ±P is in the stabilizer group of |ψ⟩ if and only if P commutes with
every stabilizer generator. So, we can determine the elements of GA by brute-force checking
which elements of PA commute with every generator.9 This computation can be done in
polynomial-time since there are only a constant number of Pauli operators to check, so using
Equation (1) we can compute ψA efficiently.

Thus, in addition to being an implication of NLSS, NLCS Hamiltonians are also implied
by the quantum PCP conjecture assuming NP ̸= QMA: if every local Hamiltonian has a
low-energy stabilizer state then the ground state energy could be computed in NP via Fact 2.

2 Preliminaries

For a natural number, n, we denote [n] ≡ {1, . . . , n}. For a subset, A ⊆ [n], we denote the
set complement by −A ≡ [n] \ A and the partial trace over the qubits in A by TrA. In
particular, Tr−A[|ψ⟩⟨ψ|] denotes the local density matrix of |ψ⟩ on the qubits in A.

2.1 States
Let C = {Cn} be a countable family of quantum circuits consisting of one and two-qubits
gates where each Cn acts on n qubits. If the depth of Cn is upper bounded by a function
d(n) for all n, then we say C is a depth-d(n) family of quantum circuits. If d(n) = O(1)
then we say C is a depth-O(1) (or constant-depth) family of quantum circuits. Similarly, if
d(n) = poly(n) then we say C is a depth-poly(n) (or polynomial-sized) family of quantum
circuits.

8 See Figure 1(a).
9 It remains to determine whether +P or −P is in the stabilizer group. Although slightly more complicated,

this can be done in polynomial-time independent of the weight of P .

TQC 2023



14:6 Local Hamiltonians with No Low-Energy Stabilizer States

The single-qubit Pauli group is the set P1 ≡ {iℓP | P ∈ {I, X, Y, Z}, ℓ ∈ {0, 1, 2, 3}},
and the n-qubit Pauli group is its n-fold tensor-power, Pn =

⊗
i∈[n] P1. For an element

S = P1 ⊗ · · · ⊗ Pn ∈ Pn, the weight of S is defined to be the number of qubits where Pi is
not identity, i.e. wt(S) =

∣∣{Pi | Pi ̸= iℓ I}
∣∣. We denote the set of these qubits where S acts

non-trivially by N(S) ⊆ [n].
The n-qubit Clifford group, Cn, is the set of unitary operators which stabilize the

Pauli group.It is well-known that Cn is generated by the set {H,P,CNOT}, where H is the
single-qubit Hadamard gate, P is the single-qubit phase gate, and CNOT is the two-qubit
controlled-NOT gate. A Clifford circuit is defined to be any element of the Clifford group.

Let ψ be a [possibly mixed] state on n qubits and let N ≥ n. If there is a quantum circuit,
C, acting on N qubits such that ψ = TrN [C

∣∣0N
〉〈

0N
∣∣C†] then we say that C prepares ψ.

ψ is said to be: a trivial state if there is a constant-depth quantum circuit preparing it, an
[efficiently] preparable state if there is a polynomial-sized circuit preparing it, a Clifford
state if there is a polynomial-sized Clifford circuit preparing it, and an almost Clifford
state if there is a polynomial-sized quantum circuit containing Clifford + O(log(n)) T-gates
preparing it. A pure state, |ψ⟩ is said to be a sampleable state if (1) there is a classical
algorithm exactly computing ⟨x|ψ⟩ for every x ∈ {0, 1}n and (2) there is a classical algorithm
that exactly samples x ∈ {0, 1}n from the distribution p(x) = |⟨x|ψ⟩|2.

A stabilizer group is an abelian subgroup, G, of Pn not containing − I. As a finite
group, we can always find a list of mutually independent and commuting generators, S =
{S1, . . . , Sk}, of G. We will refer simply to the subgroup ⟨S⟩ = G when this generating set is
clear. Note that given a stabilizer group, there is a well-defined stabilizer code [17, 12, 13],
CS , which is the common +1 eigenspace of the operators in ⟨S⟩.

If a given stabilizer group has a generating set, S, consisting of tensor products of only
Pauli X and I or only Pauli Z and I, then we say CS is a CSS code and that S generates a
CSS code.

The stabilizer group of a pure state, |ψ⟩, is the subgroup of the Pauli group defined
by Stab(|ψ⟩) ≡ {P ∈ Pn | P |ψ⟩ = |ψ⟩}. We say that a P ∈ Stab(|ψ⟩) stabilizes |ψ⟩. Note
that Stab(|ψ⟩) is an abelian subgroup of the Pauli group not containing − I, and so it is a
valid stabilizer group as before.

A pure state, |ψ⟩, is said to be a stabilizer state if |Stab(|ψ⟩)| = 2n, or equivalently, if
there are n independent Pauli operators that stabilize |ψ⟩. We note that |ψ⟩⟨ψ| = 1

2n

∑
g∈G g

where G = Stab(|ψ⟩).
A mixed state, ψ, is said to be a stabilizer state if ψ is a convex combination of pure

stabilizer states, i.e. ψ =
∑

j pj |φj⟩⟨φj | where each |φj⟩ is a pure stabilizer state on n qubits,∑
j pj = 1, and pj ≥ 0.
All of the states defined here are related to one another via the following:

trivial Clifford/Stabilizer

almost Clifford

preparable sampleable

some T gates

increase depth

arbitrary T gates
[11]

(2)

By definition of the Clifford group, stabilizer states and Clifford states are equivalent
for pure states. We will interchangeably use the terms “stabilizer state” and “Clifford state”
even for mixed states, which is motivated by the following result:

▷ Claim 3. If ψ is a Clifford state, then it is also a stabilizer state.



N. J. Coble, M. Coudron, J. Nelson, and S. S. Nezhadi 14:7

A proof can be found in Appendix A.1. Claim 3 says that the reduced state of a pure
stabilizer state is a convex combination of pure stabilizer states on the subsystem. This is
essential in our energy lower bound arguments: To lower-bound the energy of all n-qubit
stabilizer states for a k-local term of the Hamiltonian, Hi, it is sufficient to lower-bound the
energy of all k-qubit stabilizer states for the non-trivial part of Hi.

2.2 Hamiltonians

A k-local Hamiltonian, H(n), is a Hermitian operator on the space of n qubits, (C2)⊗n,
which can be written as a sum H(n) = 1

m

∑m
i=1 Hi, where each Hi is a Hermitian matrix

acting non-trivially on only k qubits and with spectral norm ∥Hi∥ ≤ 1. A family of k-local
Hamiltonians, {H(n)}, is a countable set of k-local Hamiltonians indexed by system size, n,
where k = O(1) and m = poly(n). We will often use the term “local Hamiltonian” to mean a
family of k-local Hamiltonians.

The ground-state energy of H is E0 ≡ minρ Tr[ρH], where the minimization is taken
over all n-qubit mixed states. H is said to be frustration-free if E0 = 0. A state, ψ, is
said to be a ground state of H if Tr[ψH] = E0. A state, ψ, is said to be an ϵ-low-energy
state of H if Tr[ψH] < E0 + ϵ. If ψ = |ψ⟩⟨ψ| is a pure state, this condition simplifies to
⟨ψ| H |ψ⟩ < λmin(H) + ϵ, where λmin(H) is the smallest eigenvalue of H. For frustration-free
Hamiltonians this is equivalent to ⟨ψ| H |ψ⟩ < ϵ. All of the Hamiltonians we consider will be
frustration-free.

For S ∈ Pn, we denote the orthogonal projector to the +1 eigenspace of S by ΠS , i.e.
ΠS ≡ I −S

2 . Since ΠS acts non-trivially on only wt(S) qubits, we can write ΠS = ΠS |N(S)
⊗ I[n]\N(S).

Given a stabilizer group, ⟨S⟩, with generating set S, the stabilizer Hamiltonian
associated to S is HS ≡ 1

|S|
∑

S∈S ΠS . If each qubit is acted on non-trivially by at most
wt(S) elements of S, then HS is a wt(S)-local Hamiltonian. If C is the Stabilizer code
associated with S, then every |ψ⟩ ∈ C is a zero-energy state of HS . In particular, HS is
frustration-free with ground-state space C. If S generates a CSS code then we say HS is a
CSS Hamiltonian.

If {⟨Sn⟩ | ⟨Sn⟩ ≤ Pn} is a countable family of stabilizer groups then the family of
stabilizer (or CSS) Hamiltonians associated with {Sn} is {HSn

}. This will be a family of
local Hamiltonians when: (1) each qubit is acted on non-trivially by at most wt(Sn) elements
of Sn, (2) wt(Sn) = O(1), and (3) |Sn| = Θ(n). Such families, {⟨Sn⟩}, of stabilizer groups
correspond to quantum LDPC code families.

For each of the states in the previous section we can consider an analogue of NLTS.

▶ Definition. A family of k-local Hamiltonians, {H(n)}, is said to have the ϵ-NLXS
property if for all sufficiently large n, H(n) has no ϵ-low-energy states of type X. The family,
{H(n)}, is said to have the NLXS property if it is ϵ-NLXS for some constant ϵ.

The following implications between the NLXS theorems/conjectures and quantum PCP
conjecture hold. A complexity inequality next to an arrow denotes an implication that holds
if the separation is true, e.g. if the quantum PCP conjecture is true and MA ̸= QMA, then
NLSS is true.

TQC 2023



14:8 Local Hamiltonians with No Low-Energy Stabilizer States

qPCP conjecture

NLPS NLSS

NLACS

NLTS NLCS

QCMA̸=QMA MA̸=QMA[16]

NP ̸=QMA

(3)

The relationships between each of the NLXS results are implicitly given by Diagram 2. Trivial
states, stabilizer states, and almost Clifford states are all examples of locally-approximable
states, so they following from the quantum PCP conjecture via Fact 2. The implication of
NLSS was given by Gharibian and Le Gall when they originally defined NLSS [16]. The
implication of NLPS is well-known: if every local Hamiltonian has a low-energy preparable
state, C |0⟩⊗n, then given the classical description of C a quantum prover could simply prepare
the state and measure its energy. This would put LH-ϵ ∈ QCMA, implying QMA = QCMA if
the quantum PCP conjecture is true.

For a family of k-local Hamiltonians, {H(n)}, and a family, C = {Cn}, of depth-O(1)
quantum circuits, we define the C-rotated version of {H(n)} as {H(n)}C ≡ {Cn

†H(n)Cn}.
This is still a family of local Hamiltonians, albeit with a possibly different k than the
original Hamiltonian. This is because the only qubits that interact non-trivially with a single
Hamiltonian term, C†HiC, are those qubits in the reverse-lightcone of the qubits acted on
by Hi. The number of qubits in the reverse-lightcone of a single qubit grows exponentially
in the depth of a circuit, which is still constant since C is constant-depth. See Figure 1 for
an example of this. When C = V ⊗n is the tensor-product of a single-qubit gate, V , we will
use the term “V -rotated” as opposed to “V ⊗n-rotated”.

The utility of considering a C-rotated Hamiltonian is that in addition to preserving
locality, the NLTS property is also preserved.

▶ Lemma 4. If {H(n)} is a family of ϵ0-NLTS local Hamiltonians and C = {Cn} is a family
of constant-depth circuits, then {H(n)}C is also ϵ0-NLTS.

Proof. Suppose that {H(n)}C is not NLTS. By definition, for every ϵ > 0 there is an n and
constant-depth circuit Uϵ,n such that Uϵ,n |0⟩⊗n is an ϵ-low-energy state of C†

nH(n)Cn, i.e.

⟨0|⊗n
U†

ϵ,nC
†
nH(n)CnUϵ,n |0⟩⊗n

< λmin(C†
nH(n)Cn) + ϵ.

Since Cn is a unitary operator the minimum eigenvalues of H(n) and C†
nH(n)Cn are equal.

Defining |ψϵ0,n⟩ ≡ CnUϵ0,n |0⟩⊗n we have

⟨ψϵ0,n| H(n) |ψϵ0,n⟩ < λmin(H(n)) + ϵ0,

i.e. |ψϵ0,n⟩ is an ϵ0-low-energy state of H(n). Since CnUϵ0,n is a constant-depth circuit this
implies that H(n) has a low-energy trivial state, contradicting the assumption of ϵ0-NLTS. ◀



N. J. Coble, M. Coudron, J. Nelson, and S. S. Nezhadi 14:9

Figure 1 (a) Consider a constant-depth circuit, C. The [blue] highlighted gates on the right of
the figure represent the “lightcone” of qubit q, i.e. the set of gates that can be traced back to q.
The [orange] highlighted gates on the left of the figure represent the gates in the “reverse-lightcone”
of qubit p, i.e. the gates that will ultimately affect p.
(b) Consider a single k-local Hamiltonian term, Hi, that acts only on qubits p, q, and r. When
conjugating Hi with C, any gate not in the reverse-lightcone of one of p, q, or r will cancel with its
inverse. The number of qubits in the reverse-lightcone of any one qubit is ≤ 2d where d is the depth
of C, so C†HiC will be at most k2d-local. Note that we have only drawn a 2D geometrically-local
circuit here, whereas this upper bound holds for a constant-depth circuit with arbitrary connectivity.

3 NLCS from CSS codes

We will show that rotating by the tensor product of a single-qubit gate is sufficient to turn
most CSS Hamiltonians into NLCS Hamiltonians, including the quantum Tanner codes
used in [4]. In particular, we consider the single-qubit gate D ≡ e−i π

8 Y and rotate a CSS
Hamiltonian by D⊗n. For a local Hamiltonian, H(n), we will denote its D-rotated version
by H̃(n) ≡ D†⊗nH(n)D⊗n. We denote the D-rotated projector associated with a Pauli
element S ∈ Pn by Π̃S ≡ D⊗nΠSD

†⊗n. By definition, we have Π̃S = Π̃S |N(S) ⊗ I[n]\N(S),
where Π̃S |N(S)= D⊗ wt(S)ΠS |N(S) D

†⊗wt(S). Note that we have not explicitly included D in
the above notations since D will refer exclusively to e−i π

8 Y , throughout.
We have the following result:

▶ Theorem 5. Let {HSn
} be a family of CSS Hamiltonians associated with a family of

quantum (CSS) LDPC codes, {⟨Sn⟩}. Suppose for every n a constant fraction, α > 0, of the
generators S ∈ Sn have odd weight. Then {H̃Sn} is a family of NLCS Hamiltonians.

We prove this by giving local lower bounds on the energies of D-rotated projectors
associated with CSS generators. As a technical requirement, these lower bounds only hold
when the weight of a generator is odd.

Recall that, up to a permutation of the qubits, the generators of a CSS code can be
written as either X̄⊗ I or Z̄⊗ I, where X̄ ≡ X⊗k and Z̄ ≡ Z⊗k. First consider what happens
to the projectors ΠX̄ and ΠZ̄ when rotating by D:

▷ Claim 6.

Π̃X̄ = I− H⊗k

2 , Π̃Z̄ = I−(−X HX)⊗k

2 .
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These identities are derived in Appendix A.2. The local lower bounds will be a result of
the following:

▶ Lemma 7. If k is odd, then for every k-qubit stabilizer state, |η⟩, we have
∣∣∣⟨η| H⊗k |η⟩

∣∣∣ ≤
1√
2 . On the other hand, if k is even then there exists a k-qubit stabilizer state, |η0⟩, with

⟨η0| H⊗k |η0⟩ = 1.

The proof will use the following result on the geometry of stabilizer states:

▶ Fact 8 (Corollary 3 of [15]). Let |ζ⟩ , |ξ⟩ be two stabilizer states. If |⟨ζ|ξ⟩| ̸= 1, then
|⟨ζ|ξ⟩| ≤ 1√

2 .

Proof of Lemma 7. Since H is a Clifford gate, H⊗k |η⟩ is a stabilizer state. We will show
that

∣∣∣⟨η| H⊗k |η⟩
∣∣∣ ̸= 1 in the case of odd k, which by Fact 8 will imply the bound.

Recall that |η⟩⟨η| = 1
|G|

∑
g∈G g, where G ≡ Stab(|η⟩). We have two cases:

(1) (Every S ∈ G contains an I or a Y in some position) In this case, we calculate

⟨η| H⊗k |η⟩ = Tr
[
|η⟩⟨η| H⊗k

]
,

= 1
|G|

∑
g∈G

Tr
[
gH⊗k

]
,

= 1
|G|

∑
g∈G

∏
i∈[k]

Tr[gi H],

= 0,

where the last line follows since gj ∈ {I, Y } for some j, and Tr[H] = Tr[Y H] = 0.
(2) (There is an S ∈ G which consists of only X’s and Z’s) Consider the case when k is odd.

Since wt(S) = k, S contains either (1) an odd number of X’s and an even number of
Z’s or (2) an even number of X’s and an odd number of Z’s. We focus on the former
situation; the latter is similar.
Note that

∣∣∣⟨η| H⊗k |η⟩
∣∣∣ = 1 if and only if H⊗k |η⟩ and |η⟩ have the same stabilizer group.

Since S stabilizes |η⟩, H⊗k SH⊗k stabilizes H⊗k |η⟩. We know how H conjugates Pauli
operators: X 7→ Z, Z 7→ X, and Y 7→ −Y . By assumption, S has an odd number of
X’s and an even number of Z’s, so H⊗k SH⊗k will have an even number of X’s and an
odd number of Z’s. Therefore, we have that S · (H⊗k SH⊗k) = −(H⊗k SH⊗k) · S, which
implies S and H⊗k SH⊗k cannot both be elements of the same stabilizer group. Hence,
Stab(|η⟩) ̸= Stab(H⊗k |η⟩) and

∣∣∣⟨η| H⊗k |η⟩
∣∣∣ ̸= 1.

Since in both cases
∣∣∣⟨η| H⊗k |η⟩

∣∣∣ ̸= 1, by Fact 8 we must have that
∣∣∣⟨η| H⊗k |η⟩

∣∣∣ ≤ 1√
2 when

k is odd. We note that the above proof will not work for even k, since it can be the case
that all stabilizers have an even number of X’s and Z’s (or both odd). In this case H⊗k will
be in the normalizer of G, and the two stabilizer groups may be equal.

We can easily find an example with even k where no non-trivial upper bound can be
found. Note that |Φ+⟩ ≡ 1√

2 (|00⟩ + |11⟩) is a +1 eigenstate of H⊗2, so for even k define
|η0⟩ ≡ |Φ+⟩⊗k/2. ◀

We can now prove the local lower bound on odd-weight CSS generators.

▶ Lemma 9. For every k-qubit stabilizer state, |η⟩, ⟨η| Π̃X̄ |η⟩ ≥ ck and ⟨η| Π̃Z̄ |η⟩ ≥ ck,
where ck = 0 if k is even and ck = sin2( π

8 ) if k is odd.
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Proof. Let |η⟩ be a k-qubit stabilizer state. We first consider ⟨η| Π̃X̄ |η⟩:

⟨η| Π̃X̄ |η⟩ ≡ ⟨η|D†⊗k

(
I−X̄

2

)
D⊗k |η⟩ , (4)

(By Claim 6) = ⟨η| I− H⊗k

2 |η⟩ (5)

= 1
2

(
1 − ⟨η| H⊗k |η⟩

)
. (6)

The bound follows from Lemma 7, since sin2( π
8 ) = 1

2 (1 − 1√
2 ).

For ⟨η| Π̃Z̄ |η⟩, we have:

⟨η| Π̃Z̄ |η⟩ ≡ ⟨η|D†⊗k

(
I−Z̄

2

)
D⊗k |η⟩ , (7)

(By Claim 6) = ⟨η| I−(−X HX)⊗k

2 |η⟩ (8)

= 1
2

(
1 − ⟨η| (−X HX)⊗k |η⟩

)
, (9)

= 1
2

(
1 − (−1)k ⟨ζ| H⊗k |ζ⟩

)
(10)

where |ζ⟩ ≡ X⊗k |η⟩ is another stabilizer state since X = X† is in the Clifford group. The
bound follows again from Lemma 7. ◀

Lemma 9 implies the following lower bound for n-qubit stabilizer states.

▶ Lemma 10. Let S ∈ Pn be a tensor product of only Pauli X and I or only Pauli Z and I.
Denote k = wt(S). For every n-qubit stabilizer state, |η⟩, ⟨η| Π̃S |η⟩ ≥ ck.

Proof. Recall that Π̃S = Π̃S |N(S) ⊗ I[n]\N(S), so

⟨η| Π̃S |η⟩ = Tr
[
ηN(S)Π̃S |N(S)

]
, (11)

where ηN(S) ≡ Tr−N(S)[|η⟩⟨η|] is the reduced state of |η⟩ on N(S) ⊂ [n]. Since ηN(S) is the
reduced state of a Clifford state, by Claim 3 there are pure stabilizer states on k qubits,
{|ηj⟩} such that ηN(S) =

∑
j pj |ηj⟩⟨ηj |. The lower bound follows by applying Lemma 9 to

each ⟨ηj | Π̃S |N(S) |ηj⟩. ◀

We can now prove Theorem 5.

▶ Theorem 5. Let {HSn} be a family of CSS Hamiltonians associated with a family of
quantum (CSS) LDPC codes, {⟨Sn⟩}. Suppose for every n a constant fraction, α > 0, of the
generators S ∈ Sn have odd weight. Then {H̃Sn

} is a family of NLCS Hamiltonians.

Proof. By definition, H̃Sn
= 1

|Sn|
∑

S∈Sn
Π̃S where Π̃S is the D-rotated projector associated

with S ∈ Sn. Let ψ be a stabilizer state on n qubits. We will directly lower-bound the energy
of ψ.

By definition, ψ =
∑

j pj |φj⟩⟨φj |, where each |φj⟩ is a pure stabilizer state on n qubits.
We have:
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Tr
[
ψH̃Sn

]
=

∑
j

pj ⟨φj | H̃Sn |φj⟩ , (12)

= 1
|Sn|

∑
S∈Sn

∑
j

pj ⟨φj | Π̃S |φj⟩ , (13)

(By Lemma 10) ≥ 1
|Sn|

∑
S∈Sn

cwt(S)
∑

j

pj , (14)

(Definition of ck) = 1
|Sn|

∑
S∈Sn:wt(S), odd

sin2
(π

8

)
, (15)

= α sin2
(π

8

)
, (16)

where the last line follows by assumption α|Sn| terms of Sn have odd weight. Since this holds
for all stabilizer states, ψ, we have that {H̃Sn

} is ϵ-NLCS with ϵ = α sin2( π
8 ) = Ω(1). ◀

We now turn to our main result, the existence of a simultaneous NLTS and NLCS family
of local Hamiltonians. Recall the NLTS result of [4]:

▶ Theorem (Theorem 5 of [4], simplified). There exists a constant ϵ0 > 0 and an explicit
family of CSS Hamiltonians associated with a family of quantum LDPC codes, {⟨Sn⟩}, which
is ϵ0-NLTS.

In order to use our Theorem 5, we require that a constant fraction of the stabilizer generators
in Sn have an odd weight. It is not immediately clear that this would be true for the quantum
Tanner codes from [20]. However, we have the following result:

▷ Claim 11. There exists an explicit family of CSS codes satisfying the conditions of
Theorem 5 of [4] such that every stabilizer-generator has odd weight.

Section 4 of the Full Version is dedicated to proving Claim 11. The proof is rather
straightforward and relies on the random choice of local codes in the construction of quantum
Tanner codes. Essentially, we show that the local codes of the two component classical
Tanner codes of a quantum Tanner code can be chosen such that all of the parity-checks of
the global codes have odd weight. This implies that all of the stabilizer-generators of the
quantum Tanner code also have odd weight.

With Claim 11, we are now prepared to prove the main result of our paper.

▶ Theorem 12. Let {H(n)} be the family of CSS Hamiltonians from Claim 11. The D-rotated
version, {H̃(n)}, is a family of simultaneous NLTS and NLCS local Hamiltonians.

Proof. Since {H(n)} satisfies the conditions of Theorem 5 of [4] it is a valid local Hamiltonian,
and it is ϵ0-NLTS for some constant ϵ0 > 0. Since D⊗n is a depth-O(1) circuit by Lemma 4
the D-rotated family {H̃(n)} is also ϵ0-NLTS.

By Claim 11, all of the stabilizer terms of H(n) have odd weight for every n. Thus,
by Theorem 5 {H̃(n)} is ϵ1-NLCS for ϵ1 ≡ sin2(π

8 ). Letting ϵ′ ≡ min{ϵ0, ϵ1}, we have that
{H̃(n)} is both ϵ′-NLTS and ϵ′-NLCS. ◀
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4 Future work

(1) The most immediate problem raised by this work is to show that rotating arbitrary
CSS Hamiltonians by (e−i π

8 Y )⊗n yields NLCS Hamiltonians. We have shown this when
a constant fraction of the stabilizer generators have odd weight, which is a technical
requirement of our proof technique. Nonetheless, we believe all e−i π

8 Y -rotated CSS
Hamiltonians are NLCS. A first step would be to show this for H ≡ 1

n

∑
|11⟩⟨11|i,i+1 =

1
n

∑ 1
2 (I−ZiZi+1), which has only even weight stabilizer generators.

(2) NLACS Hamiltonians are an implication of either NLSS or the quantum PCP conjecture
together with NP ̸= QMA (see Diagram 3), so we believe they exist. In Appendix
B we give a self-contained proof that the simple D-rotated zero Hamiltonian, H̃0 =
1
n

∑
(ei π

8 Y |1⟩⟨1| e−i π
8 Y )i, is NLCS, and in Appendix B.1, we give a sharp lower-bound

on the energy of states produced by Clifford + 1 T gate under H̃0. We also conjecture a
sharp lower-bound on the energy for states prepared by Clifford + t T gates, for any
t ≤ n.

(3) We hope that our techniques may lead to local Hamiltonians which satisfy NLSS. Consider
the zero Hamiltonian, H0 = 1

n

∑
|1⟩⟨1|i, and a family of Haar-random low-depth circuits,

C = {Cn}. The unique ground-state of the local Hamiltonian CH0C
† is exactly C |0n⟩,10

which is not sampleable (as defined in Section 2) unless P = #P [9, 21]. We hope that
the same is true for states of low-enough constant energy, but new techniques would be
necessary to show this. If true, CH0C

† would be an NLSS Hamiltonian unless P = #P.
Analogously to our result for simultaneous NLTS and NLCS, one may hope that rotating
arbitrary CSS Hamiltonians by random low-depth circuits could also yield simultaneous
NLTS and NLSS. However, there are many unresolved prerequisites needed to show this.
For example, for a CSS Hamiltonian, H, every ground-state of CHC† has the form C |ψ⟩
for a codestate |ψ⟩. It is not a fortiori true that applying a random low-depth circuit to
codestates of a CSS code will result in a state that is not sampleable, so it is not clear
that even the ground-space of such a Hamiltonian is not sampleable.

(4) It is important to note that the technique of rotating Hamiltonians by a constant-depth
circuit, while potentially useful for establishing NLSS, seemingly cannot provide certain
other prerequisites of the quantum PCP conjecture. For example, Fact 2 says that the
energies of locally-approximable states can be computed in NP, and so the quantum
PCP conjecture implies the following (assuming NP ̸= QMA):

▶ Conjecture 13 (No Low-energy Locally-approximable States (NLLS)). There exists a
family of local Hamiltonians, H(n), and a constant ϵ > 0 such that all ϵ-low-energy states
of H(n) are not locally-approximable.

A closely-related conjecture (“no low-lying classically-evaluatable states” conjecture) was
very recently stated in [22].11 Rotating by a constant-depth circuit preserves the NLLS
property in the same way that it preserves the NLTS property, thus ruling out the use of
rotating Hamiltonians in solving the NLLS conjecture.

10 Note that we typically denote rotating by C as C†HC, not CHC†. We have swapped the order here so
that the ground state is C |0n⟩, as opposed to C† |0n⟩.

11 Note that these conjectures would not imply LH-ϵ /∈ NP as it would not rule out Hamiltonians whose
ground-state energies have indirect NP-witnesses. [10] constructs such witnesses for certain commuting
Hamiltonians.
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Furthermore, for any CSS Hamiltonian rotated by a constant-depth circuit, which includes
every construction considered in this paper, the local Hamiltonian problem is contained
in NP. To see this, note that every C-rotated CSS Hamiltonian has a ground state of
the form C† |φ⟩ for some stabilizer state |φ⟩. Such states are locally-approximable since
the local density matrices can be efficiently calculated by using a combination of the
local density matrix calculation for trivial states and stabilizer states.
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A Omitted proofs

A.1 Mixed Clifford states
▶ Definition 14. Let G be a stabilizer group, P = P1 ⊗ · · · ⊗ Pn ∈ Pn be any Pauli operator,
and A ⊆ [n] be any subset of n qubits. We define the set GA,P to be

GA,P ≡
{
gA

∣∣∣ g ∈ G, gj = Pj for all j /∈ A
}
,

where gA denote the restriction of g to A (note that gA acts on |A| qubits, not n qubits).

GA,P can be thought of as all of the elements of G which are equal to P outside of the
subset A, though we consider the restriction of these elements to A only (including overall
phases). By abuse of notation we will denote Gi,P ≡ G{i},P and G−A,P ≡ G[n]\A,P for
i ∈ [n]. We denote the special case of GA,I by GA. GA ≡ {gA | g ∈ G and N(g) ⊆ A} ∪ {IA}
is the set of all elements in G which act non-trivially only on qubits in A.

Claim 3 is immediate from the following two well-known facts.

▶ Fact 15. Let G ≤ Pn be a stabilizer group and C the associated codespace. 1
|G|

∑
g∈G g is

the projector onto C. If |G| = 2n, then 1
2n

∑
g∈G g = |ψ⟩⟨ψ|, where |ψ⟩ is the stabilizer state

associated with G. Otherwise, |G| = 2n−r for r > 0 and there are 2r logical basis states of C.
Let {|x̄⟩} denote the logical computational basis states for C. Then

1
2n−r

∑
g∈G

g =
∑
x∈Fr

2

|x̄⟩⟨x̄| .

▶ Fact 16. Suppose |ψ⟩ is a stabilizer state on N qubits with stabilizer group G and let A
be a subset of the qubits of size n. By Fact 15 we can write |ψ⟩⟨ψ| = 1

2N

∑
g∈G g. The local

state on A, ψ ≡ Tr−A[|ψ⟩⟨ψ|], is equal to

ψ = 1
2n

∑
ĝ∈GA

ĝ.

TQC 2023

http://arxiv.org/abs/1711.07848
https://doi.org/10.1145/3519935.3519991
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
http://arxiv.org/abs/quant-ph/9807006
https://doi.org/10.1090/gsm/047
http://arxiv.org/abs/2202.13641
https://doi.org/10.48550/ARXIV.1909.06210
https://doi.org/10.48550/ARXIV.1909.06210
https://doi.org/10.48550/ARXIV.2302.11578


14:16 Local Hamiltonians with No Low-Energy Stabilizer States

▷ Claim 3. If ψ is a Clifford state, then it is also a stabilizer state.

Proof. By definition, there is a pure Clifford state |ψ⟩ on N ≥ n qubits and a subset A of
n qubits such that ψ = Tr−A[|ψ⟩⟨ψ|]. Let G ≡ Stab(|ψ⟩), and let GA be defined as in Fact
16. By definition, GA is an abelian subgroup of Pn not containing − I, and so it is a valid
stabilizer group. Let |GA| = 2n−r. We have

(By Fact 16) ψ = 1
2r2n−r

∑
ĝ∈GA

ĝ, (17)

(By Fact 15) = 1
2r

∑
x∈Fr

2

|x̄⟩⟨x̄| . (18)

Since each |x̄⟩⟨x̄| is a stabilizer state on n qubits and
∑

x∈Fr
2

1
2r = 1, the statement is proven.

◁

A.2 Rotated projectors

Return to Claim 6.

▷ Claim 6.

Π̃X̄ = I− H⊗k

2 , Π̃Z̄ = I−(−X HX)⊗k

2 .

Proof. We will show that D†XD = H and D†ZD = −X HX. As ΠX̄ ≡ ( 1
2 )(I−X) and

ΠZ̄ ≡ ( 1
2 )(I−Z), the result follows.

D†XD =
(

cos
(π

8

)
I+ sin

(π
8

)
ZX

)
X

(
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

=
(

cos
(π

8

)
X + sin

(π
8

)
Z

) (
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

= cos2
(π

8

)
X + sin

(π
8

)
cos

(π
8

)
Z + sin

(π
8

)
cos

(π
8

)
Z − sin2

(π
8

)
X,

= cos
(π

4

)
Z + sin

(π
4

)
X,

= 1√
2

(Z +X),

= H .

D†ZD =
(

cos
(π

8

)
I+ sin

(π
8

)
ZX

)
Z

(
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

=
(

cos
(π

8

)
Z − sin

(π
8

)
X

) (
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

= cos2
(π

8

)
Z − sin

(π
8

)
cos

(π
8

)
X − sin

(π
8

)
cos

(π
8

)
X − sin2

(π
8

)
Z,

= cos
(π

4

)
Z − sin

(π
4

)
X,

= 1√
2

(Z −X),

= −X HX. ◁
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B A simple NLCS Hamiltonian

The goal of this section is to demonstrate the existence of a simple family of NLCS Hamilto-
nians.

▶ Definition 17. The zero Hamiltonian, H(n)
0 is defined as

H(n)
0 ≡ 1

n

n∑
i=1

|1⟩⟨1|i ⊗ I[n]\{i} .

Note that H(n)
0 |x⟩ = |x|

n |x⟩ for all x ∈ Fn
2 . In particular, the unique ground state of H(n)

0 is
|0⟩⊗n with energy 0. For n = 1 we have H(1)

0 = |1⟩⟨1|, so we can write the zero Hamiltonian
on n qubits as

H(n)
0 ≡ 1

n

n∑
i=1

H(1)
0 ⊗ I[n]\{i} .

▶ Remark. Define a set of stabilizer generators, Sn ≡ {Z1, . . . , Zn} where Zi is a Pauli Z on
qubit i and identity elsewhere. The zero Hamiltonian is the CSS Hamiltonian associated
with ⟨Sn⟩, since |1⟩⟨1| = I−Z

2 . The results of this section are a direct corollary of the results
in Section 3. ⌟

Let D ≡ e−i π
8 Y . We define the D-rotated zero Hamiltonian as

H̃(n)
0 ≡ 1

n

n∑
i=1

H̃(1)
0 ⊗ I[n]\{i},

where H̃(1)
0 = D† |1⟩⟨1|D. We will prove the D-rotated zero Hamiltonian is NLCS by

demonstrating a simple lower bound on the energy of stabilizer states for each local term.
Since the reduced state of every stabilizer state is a convex combination of stabilizer states
by Claim 3, these “local” lower bounds imply a global lower bound for all stabilizer states.
We have the following local energy bound. Note that

▶ Lemma 18. If |η⟩ is a single-qubit stabilizer state, then ⟨η| H̃(1)
0 |η⟩ ≥ sin2( π

8 ).

Proof. By definition H̃
(1)
0 = D† |1⟩⟨1|D, so ⟨η| H̃(1)

0 |η⟩ = |⟨1|D |η⟩|2. As

D = cos
(π

8

)
I−i sin

(π
8

)
Y = cos

(π
8

)
I+ sin

(π
8

)
XZ,

we have

D =
[
cos

(
π
8

)
− sin

(
π
8

)
sin

(
π
8

)
cos

(
π
8

) ]
.

There are only six single-qubit stabilizer states and it is easy to verify that the minimum
value of |⟨1|D |η⟩|2 is sin2( π

8 ). ◀

▶ Corollary 19. If η is a single-qubit mixed stabilizer state, then Tr
[
ηH̃(1)

0

]
≥ sin2( π

8 ).

Proof. By definition, η =
∑

j pj |φj⟩⟨φj |, where each |φj⟩ is a pure stabilizer state on a single
qubit. The lower bound follows by applying Lemma 18 to each |φj⟩. ◀

We now have the following global lower bound.
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14:18 Local Hamiltonians with No Low-Energy Stabilizer States

▶ Lemma 20. If |η⟩ is an n-qubit stabilizer state, then ⟨η| H̃(n)
0 |η⟩ ≥ sin2( π

8 ).

Proof. By definition, H̃(n)
0 = 1

n

∑n
i=1 H̃(1)

0 |i ⊗ I[n]\{i}, so

⟨η| H̃(n)
0 |η⟩ = 1

n

n∑
i=1

Tr
[
ηiH̃(1)

0

]
,

where ηi ≡ Tr−i[|η⟩⟨η|] is the reduced state of |η⟩ on qubit i. Since ηi is the reduced density
matrix of a Clifford state, by Claim 3 it is also a stabilizer state. The bound follows by
applying Corollary 19 to each term in the summation. ◀

▶ Proposition 21. {H̃(n)
0 } is a family of NLCS Hamiltonians.

Proof. By definition, ψ =
∑

j pj |φj⟩⟨φj |, where each |φj⟩ is a pure stabilizer state on n

qubits. The lower bound follows by applying Lemma 20 to each |φj⟩. Thus, every n-qubit
stabilizer state has energy at least sin2( π

8 ) with respect to H̃(n)
0 , which implies H̃(n)

0 is ϵ-NLCS
with ϵ = sin2( π

8 ). ◀

B.1 Towards NLACS
There are several notions of how “non-Clifford” a state is, the number of T gates being a
common one. The notion we consider here is the number of arbitrary Pauli-rotation gates,
eiθP for θ ∈ [0, 2π) and P ∈ Pn, as it encapsulates the T gate count.12

▶ Lemma 22. Let C be a quantum circuit on n-qubits containing polynomially many Clifford
gates and at most t arbitrary Pauli-rotation gates, eiθjP ′

j . There exist t Pauli operators,
{Pj} ⊂ Pn and a stabilizer state |φ⟩ such that

C |0⟩⊗n =
∏
j∈[t]

[
eiθjPj

]
|φ⟩ , (19)

where by convention C |0⟩⊗n = |φ⟩ if t = 0.

Proof. By definition we can decompose C as

C = Cte
iθtP ′

tCt−1 . . . e
iθ2P ′

2C1e
iθ1P ′

1C0, (20)

where each Cℓ is a Clifford circuit.
For every j ∈ [t] we have eiθjP ′

j = cos(θj) I+i sin(θj)P ′
j . Since Clifford gates normalize

the Pauli group, for every Clifford circuit, C ′, and every Pauli operator, P ′ ∈ Pn, there is
another Pauli operator, P ′′ ∈ Pn, such that C ′(cos θ I+i sin θP ′) = (cos θ I+i sin θP ′′)C ′.
Thus, we can move each Clifford circuit, Cℓ, past all of the Pauli-rotation gates by changing
only the individual Pauli operators via the conjugation relations of Cℓ.

Ultimately, we can rewrite C as

C = eiθtPt . . . eiθ2P2eiθ1P1Ct . . . C1C0, (21)

for t Pauli operators, {Pt}, as desired. ◀

12 The T gate is equal to T = cos
(

π
8

)
I+i sin

(
π
8

)
Z = ei π

8 Z .
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Proposition 21 shows that the D-rotated zero Hamiltonian, H̃0 = 1
n

∑ (
D† |1⟩⟨1|D

)
i
, is

sin2 (
π
8

)
-NLCS. It is natural to question if H̃0 is also ϵ-NLACS for some appropriate constant

ϵ. In this section we will prove an explicit lower-bound on all states prepared by Clifford
gates + at most 1 Pauli-rotation gate:

⟨ψ| H̃(n)
0 |ψ⟩ ≥

(
1 − 1

n

)
sin2

(π
8

)
. (22)

In fact, there is numerical evidence suggesting the following lower bound for an arbitrary
number of Pauli-rotation gates, though we have been unable to prove it analytically:

▶ Conjecture 23. Let |ψ⟩ be an n-qubit state prepared by a Clifford circuit plus at most
t Pauli-rotation gates. For the D-rotated zero-Hamiltonian, H̃(n)

0 , the energy of |ψ⟩ is
lower-bounded as

⟨ψ| H̃(n)
0 |ψ⟩ ≥

(
1 − t

n

)
sin2

(π
8

)
. (23)

In particular, if there is a constant β ∈ [0, 1) such that t ≤ βn for all sufficiently large n,
then the energy of |ψ⟩ is lower-bounded by (1 − β) sin2 (

π
8

)
> 0, a constant.

By Lemma 22, the most general such state is a stabilizer state with t Pauli-rotation gates
applied to it and no intermediate circuits between them. The intuition behind Conjecture 23
is that the only way to reduce the energy of a stabilizer state is to “undo” one of the D gates
conjugating the Hamiltonian. For instance, to produce a state with sub-constant energy one
could apply n− o(n) D gates to |0⟩⊗n.

We note also that is in unclear what, if any, similar lower bound could be shown for
an arbitrary D-rotated CSS Hamiltonian (as considered in Theorem 5). We leave this as
an open problem, as well. For now, we consider the case of t = 1 for the D-rotated zero
Hamiltonian.

First, recall the following definition.

▶ Definition 14. Let G be a stabilizer group, P = P1 ⊗ · · · ⊗ Pn ∈ Pn be any Pauli operator,
and A ⊆ [n] be any subset of n qubits. We define the set GA,P to be

GA,P ≡
{
gA

∣∣∣ g ∈ G, gj = Pj for all j /∈ A
}
,

where gA denote the restriction of g to A (note that gA acts on |A| qubits, not n qubits).

The following lemma gives an explicit description of the local density matrices of states
with at most 1 Pauli-rotation gate.

▶ Lemma 24. Let |ψ⟩ = eiθP |φ⟩ for P ∈ Pn, θ ∈ [0, 2π), and let |φ⟩ be a stabilizer state
with G ≡ Stab(|φ⟩). For A ⊂ [n] we can write ψA ≡ Tr−A[|ψ⟩⟨ψ|] as

ψA = 1
2|A|

∑
ĝ∈GA

(
cos2(θ)ĝ + sin2(θ)PAĝPA

)
+ 1

2|A|

∑
g′∈GA,P

i sin(θ) cos(θ)[PA, g
′]. (24)

The left part of this expression can be thought of as the stabilizer part of ψA, as it is the
convex combination of two stabilizer states, and the right hand part can be thought of as the
non-stabilizer part, as it equals zero if P ∈ G or if PA = I.
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Proof. Since |φ⟩ is a stabilizer state there is a stabilizer group G with |G| = 2n such that
|φ⟩⟨φ| = 1

2n

∑
g∈G g. Using the exponential of Pauli matrices we have

ψ = 1
2n

∑
g∈G

(cos(θ) I+i sin(θ)P )g(cos(θ) I−i sin(θ)P ), (25)

= 1
2n

∑
g∈G

cos2(θ)g + sin2(θ)PgP + i sin(θ) cos(θ)Pg − i sin(θ) cos(θ)gP, (26)

= 1
2n

∑
g∈G

(
cos2(θ)g + sin2(θ)PgP

)
+ 1

2n

∑
g∈G

(
i sin(θ) cos(θ)(Pg − gP )

)
. (27)

Consider tracing out all qubits outside of the set A. The only Pauli group element with
nonzero trace is I, which has trace 2. For the left term in Equation (27), we have

1
2n

∑
g∈G

(
cos2(θ) Tr−A[g] + sin2(θ) Tr−A[PgP ]

)
(28)

= 1
2n

∑
g∈G

(
cos2(θ)gA

∏
j∈[n]\A

Tr[gj ] + sin2(θ)PAgAPA

∏
j∈[n]\A

Tr[PjgjPj ]
)
, (29)

= 1
2n

∑
g∈G

(
cos2(θ)gA + sin2(θ)PAgAPA

)( ∏
j∈[n]\A

Tr[gj ]
)
, (30)

= 1
2|A|

∑
ĝ∈GA

(
cos2(θ)ĝ + sin2(θ)PAĝPA

)
, (31)

where the last line follows since only those g ∈ G which are identity outside of A will have
nonzero trace, and the product of the individual traces when non-zero is 2n−|A|.

Similarly, for the right term in Equation (27) we have

1
2n

∑
g∈G

(
i sin(θ) cos(θ) Tr−A[Pg − gP ]

)
, (32)

= 1
2n

∑
g∈G

(
i sin(θ) cos(θ)[PA, gA]

)( ∏
j∈[n]\A

Tr[Pjgj ]
)
, (33)

= 1
2|A|

∑
g′∈GA,P

i sin(θ) cos(θ)[PA, g
′], (34)

where the last line follows again since the trace will be non-zero only if gj = Pj for all
j /∈ A. ◀

▶ Lemma 25.

⟨ψ| H̃(n)
0 |ψ⟩ ≥

(
1 − 1

n

)
sin2

(π
8

)
. (35)

Proof. By Lemma 22 there is a Pauli operator, P , and an n-qubit Clifford state |φ⟩ such
that |ψ⟩ = eiθP |φ⟩. Let G ≡ Stab(|φ⟩).

Recall that by definition H̃(n)
0 = 1

n

∑n
i=1 H̃(1)

0 |i ⊗ I[n]\{i}, so

⟨ψ| H̃(n)
0 |ψ⟩ = 1

n

n∑
i=1

Tr
[
ψiH̃(1)

0

]
, (36)
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where ψi ≡ Tr−i[|ψ⟩⟨ψ|] is the reduced state of |ψ⟩ on qubit i. We will show that at most
one of the terms in this summation can be 0, and that the remainder of the terms are
lower-bounded by sin2 (

π
8

)
.

By Lemma 24 we can write the reduced state as

ψi = 1
2

∑
ĝ∈Gi

(
cos2(θ)ĝ + sin2(θ)PiĝPi

)
+ 1

2
∑

g′∈Gi,P

i sin(θ) cos(θ)[Pi, g
′]. (37)

We proceed in cases:
(1) If P ∈ G, Pi = I, Gi,P = ∅, or Gi,P = {I} then ψi is a stabilizer state, so Tr

[
ψiH̃(1)

0

]
≥

sin2 (
π
8

)
.

(2) Suppose the four conditions from Case I. do not hold. It must be that Gi,P = {I, P ⋆}
for some P ⋆ ∈ P1 \ {I, Pi}; P ⋆ cannot be Pi as this would imply P ∈ G. Note that Gi,P

cannot be any larger as this would contradict the fact G is a stabilizer group. We now
consider cases for Gi.
(a) If Gi = {I}, then ψi can be written as

ψi = 1
2 I+1

2 i sin(θ) cos(θ)[Pi, P
⋆], (38)

= 1
2 I+1

4 sin(2θ)σ, (39)

since Pi ̸= P ⋆ and 2i[Pi, P
⋆] = σ for some non-identity Pauli. The desired bound

holds by direct computation over σ ∈ P \ {± I}.
(b) If Gi is non-trivial then Gi = {I, P ⋆} since it must commute with the g ∈ G which

satisfies gi = P ⋆ and g−i = P−i (which exists since we are in Case II.) Since
P ⋆ /∈ {I, Pi} we can write ψi as

ψi = 1
2 I+1

2
(

cos2(θ) − sin2(θ)
)
P ⋆ + 1

2 i sin(θ) cos(θ)[Pi, P
⋆], (40)

= 1
2 I+1

2 cos(2θ)P ⋆ + 1
4 sin(2θ)i[Pi, P

⋆]. (41)

By direct computation we have the following:
(i) If Pi ̸= Y then Tr

[
ψiH̃(1)

0

]
≥ sin2 (

π
8

)
regardless of θ.

(ii) If Pi = Y and P ⋆ ̸= Z then Tr
[
ψiH̃(1)

0

]
≥ sin2 (

π
8

)
regardless of θ.

(iii) If Pi = Y and P ⋆ = Z then Tr
[
ψiH̃(1)

0

]
≥ 0 with possible equality.

To recap the cases, ψi can have energy less than sin2 (
π
8

)
only if (1) Pi = Y , (2) Zi ∈ G,

and (3) there is a g ∈ G such that gi = Z and g−i = P−i, i.e. g and P agree on every qubit
except i.

We must show that at most one qubit can satisfy all three of these condition for a given
P ∈ Pn and stabilizer group G. Suppose there are two such qubits, i and j, which satisfy (1)
Pi = Pj = Y , (2) Zi, Zj ∈ G, and (3) there exist g, h ∈ G such that gi = hj = Z, g−i = P−i,
and h−j = P−j . By condition (3) gi = Z and gj = Y and by condition (2) Zj ∈ G, but this
implies that gZj = −Zjg, which contradicts the fact that G is abelian. Thus, at most a
single qubit can satisfy the conditions required for the reduced state ψi to have energy less
than sin2 (

π
8

)
, which implies the desired lower bound. ◀
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