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Abstract
Collapse binding and collapsing were proposed by Unruh (Eurocrypt ’16) as post-quantum strength-
enings of computational binding and collision resistance, respectively. These notions have been very
successful in facilitating the “lifting” of classical security proofs to the quantum setting. A basic and
natural question remains unanswered, however: are they the weakest notions that suffice for such
lifting?

In this work we answer this question in the affirmative by giving a classical commit-and-open
protocol which is post-quantum secure if and only if the commitment scheme (resp. hash function)
used is collapse binding (resp. collapsing). We also generalise the definition of collapse binding to
quantum commitment schemes, and prove that the equivalence carries over when the sender in this
commit-and-open protocol communicates quantum information.

As a consequence, we establish that a variety of “weak” binding notions (sum binding, CDMS
binding and unequivocality) are in fact equivalent to collapse binding, both for post-quantum and
quantum commitments.

Finally, we prove a “win-win” result, showing that a post-quantum computationally binding
commitment scheme that is not collapse binding can be used to build an equivocal commitment
scheme (which can, in turn, be used to build one-shot signatures and other useful quantum primitives).
This strengthens a result due to Zhandry (Eurocrypt ’19) showing that the same object yields
quantum lightning.
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1 Introduction

The advent of quantum computing has led to a deep reevaluation of central ideas in cryp-
tography. Most prominently, the hardness assumptions upon which many widely-used
cryptographic schemes are based do not hold with respect to quantum computation. The
past two decades have seen a great deal of progress in tackling this issue, by devising new
schemes based on post-quantum assumptions.

This is, however, only part of the picture. Quantum computation is not simply more
powerful than classical, it is fundamentally different in nature. Quantum information exhibits
properties like superposition and unclonability that have no classical analogue. As such,
we must also revisit another key ingredient in the study of cryptography: definitions. A
number of works explore the implications of quantum information for security definitions;
some examples include random oracles [6], message authentication codes [7, 17], as well as
signatures and CCA-secure encryption [8].
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2:2 On the Necessity of Collapsing

This work studies the notion of computational binding (and the related notion of collision
resistance) against quantum adversaries. While a natural quantum analogue of computational
binding asserts that it is infeasible for a quantum computer to furnish valid openings of a
commitment to more than one message, [1] demonstrated that this definition is not sufficient
for many applications of commitment schemes. The key issue is that while binding rules
out finding openings to distinct messages simultaneously, it does not rule out being able to
“choose” the message that is opened. Note that this is an exclusively quantum problem: a
classical algorithm able to make such a choice can break computational binding via rewinding.

Unruh [24] proposed post-quantum strengthenings of computational binding and collision
resistance (for classical protocols) called collapse binding and collapsing, respectively. These
have since become central in post-quantum cryptography: a sequence of works [24, 20, 3,
10, 11, 21] has demonstrated that this strengthening is sufficient to prove post-quantum
security for various important schemes. Roughly speaking, these properties state that an
adversary that has committed to a superposition of messages cannot tell whether or not that
superposition has been measured.

Collapsing hash functions can be built from LWE [23]; additionally, any CRH that
satisfies a certain regularity property is collapsing, which includes constructions from LPN
and isogenies, and plausibly functions like SHA [30, 9]. Nonetheless, in general there remains
a gap between collapsing and collision resistance. Zhandry [28, 29] showed that the existence
of a hash function in this gap implies the existence of quantum lightning, which (among other
things) yields public-key quantum money.

Quantum commitments

So far we have restricted our attention to the security of classical schemes against quantum
adversaries (post-quantum security). Complicating matters further, however, quantum com-
munication enables the construction of “intrinsically quantum” cryptographic constructions
for which classical notions of security may not even apply. In quantum commitment schemes,
where commitments and openings are (possibly entangled) quantum states, the basic notion
of computational binding does not have a clear analogue; indeed, finding an appropriate
definition of binding for quantum commitments has proved difficult [14, 27, 15, 4, 5], even in
the statistical case, owing to an adversary’s ability to commit to a superposition of messages.

2 Results

In this work we investigate collapse binding and related properties. We first propose a
definition of collapse binding for quantum commitments (formalised in Definition 20). Then,
using chosen-bit binding as a bridge, we show that collapse binding is equivalent to CBB
(Theorems 2 and 4) and sum binding (Corollary 5), among others, both for post-quantum
and quantum commitments.

Lastly, we use quantum rewinding techniques to show that, if computational and collapse
binding are distinct, then a commitment scheme in this gap can be used to construct a
one-shot equivocal scheme and, consequently, a variety of useful quantum cryptographic
primitives (see Section 6).

▶ Remark 1 (Quantum vs. post-quantum results). For clarity, in this section we discuss
the post-quantum versions of our experiments and results. We stress, however, that our
proofs hold with respect to both quantum and classical (i.e., post-quantum) versions of the
experiments.
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(Note that, as the standard definition of quantum commitment schemes does not include
post-quantum as a special case, this is not trivial; see Section 2.2 for a discussion.) ⌟

2.1 Chosen-bit binding commitments
We introduce a new notion of binding we call chosen-bit binding, which is defined in terms of
an interactive game against a (potentially quantum) adversary Adv.

Let COM = (Gen,Commit) be a commitment scheme for the set of messages M = {0, 1}ℓ(λ).
The chosen-bit binding experiment is as follows. (See Experiment 25 for the general version.)
1. Sample a commitment key ck← Gen(1λ).
2. Obtain an index-commitment pair (i, com)← Adv(ck).
3. Sample b← {0, 1} uniformly at random.
4. Obtain a message-opening pair (m,ω)← Adv(b).
5. Output 1 if mi = b and Commit(ck,m, ω) = com.

We say that COM is chosen-bit binding (CBB) if, for every efficient adversary Adv, the
above experiment outputs 1 with probability at most 1/2 + negl(λ). Note that the definition
of CBB is agnostic to the actual form of the commitment, which is used only as an abstract
functionality. It therefore readily applies to both classical and quantum commitments, as
well as to schemes where the commit or reveal phases are interactive1 (or even to “physical”
commitments like a locked safe).

Note, also, that CBB is equivalent to requiring that COM be a sum-binding bit commitment
at every coordinate i ∈ [ℓ] (which is distinct from Definition 18, the natural generalisation
of sum binding to message spaces with size larger than 2); the CBB experiment concisely
captures all ℓ sum binding experiments into one.

It is straightforward to show, via rewinding, that classical CBB is equivalent to computa-
tional binding. Our first result is an equivalence between CBB against quantum adversaries
and collapsing.

▶ Theorem 2. A classical commitment scheme is collapse binding if and only if it is
post-quantum chosen-bit binding.

Our results establish that collapsing is a “minimal” assumption which allows one to
prove post-quantum security for the important class of commit-and-open sigma protocols
(3-message protocols where the prover initiates, consisting of (1) commitments to s strings;
(2) a challenge C ⊆ [s]; and (3) for each i ∈ C, an opening of the ith string). Indeed, it was
shown in [21] that any classically secure commit-and-open protocol is post-quantum secure
when instantiated with a collapse binding commitment. Our result yields a converse:

▶ Corollary 3. There exists a classical commit-and-open protocol which is insecure when
instantiated with a commitment that is not collapse binding.

We note, however, that Theorem 2 follows from a more general result: since Definition 20
captures collapse binding of commitments with either classical or quantum messages, we
prove the equivalence between collapse and chosen-bit binding for a generalisation that
captures both quantum and post-quantum schemes (Definition 14; see also Remark 16).

1 In this work we restrict our attention to noninteractive commitments. All of our results easily generalise
to the setting where the commit phase is interactive. However, the definition of collapse binding seems
to crucially rely on the reveal phase being noninteractive.
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2:4 On the Necessity of Collapsing

▶ Theorem 4. A quantum commitment scheme is collapse binding if and only if it is
chosen-bit binding.

Several works [15, 25, 5] aim to surmount the difficulties of basing cryptographic protocols
on the binding guarantees of quantum commitments, especially for computational security.
We hope that introducing a notion of collapse binding for quantum commitments will allow
for some of the successes in the post-quantum case to be carried over to the quantum setting.

2.2 Connections to existing notions

▶ Corollary 5. Sum binding is equivalent to collapse binding for quantum and post-quantum
bit commitments.

This corollary improves upon and generalises results from prior work. In the classical (post-
quantum) setting, Unruh [23] proves that collapse binding implies sum binding; one of the
main contributions of this paper is proving the converse.2

In the quantum setting, Yan [26, Appendix F] shows that for parallel repetitions of
“canonical” quantum bit commitments (which capture the one-bit case of the schemes in
Experiments 17 and 25), sum binding implies collapse binding – though that work does
not give a definition of the latter.3 Definition 20 is the natural extension of collapse
binding to quantum commitments (which does not appear in prior work), and enables us to
generalise Yan’s result to arbitrary string commitments; note that these include compressing
commitments, which implies an analogous equivalence for hash functions (see Section 2.2.2).

For general ℓ, (classical) chosen-bit binding is a special case of so-called “CDMS binding”
[12, 24]. Informally, a commitment is CDMS binding with respect to a function class F if for
every f : X → Y in F and every efficient adversary Adv,

Pr
y

[Adv(y) opens com to m s.t. f(m) = y] ≤ 1
|Y |

+ negl(λ) ,

where com is a fixed commitment previously output by Adv and y is chosen uniformly at
random from Y . Unruh [23] showed that collapsing implies CDMS binding for all function
classes where |Y | is polynomial. CBB is easily seen to be equivalent to CDMS binding when
F is the class of one-bit projection functions; we hence obtain the following corollary.

▶ Corollary 6. CDMS binding against quantum adversaries is equivalent to collapse binding.

It also follows that CDMS binding for one-bit projections implies CDMS binding for all
function classes with polynomial range.

2 We note that the following seemingly simpler strategy towards Theorem 2 does not suffice: (i) prove sum
binding implies collapse binding for bit commitments; then (ii) use Unruh’s parallel repetition theorem
[23] to “lift” the equivalence to string commitments. This strategy only works for parallel repetitions of
bit commitments, whereas Theorem 2 holds for any string commitment (and extends to hash functions).

3 In fact, [26] shows that for canonical quantum commitments, (i) honest binding (a seemingly weaker
notion) is equivalent to sum binding; and (ii) honest binding implies a “computational collapse” property
that is equivalent to collapse binding. This result relies on the particular structure of canonical quantum
bit commitments.
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2.2.1 Somewhere statistical binding and parallel repetition
Unlike collapse binding, which is defined in terms of a quantum interaction, chosen-bit
binding is defined in terms of a classical interaction with a (potentially quantum) adversary.
This enables “fully classical” proofs that previously required quantum machinery, as we
demonstrate next.

We use the chosen-bit binding definition to reprove two known results: the (folklore) fact
that somewhere statistically binding (SSB) commitment schemes are collapse binding; and
the preservation of the collapse-binding property under parallel repetitions [24].

▶ Lemma 7. Any somewhere-statistically binding commitment scheme is chosen-bit binding;
in particular, post-quantum SSB commitment schemes are collapsing.

▶ Lemma 8. If a commitment scheme COM is chosen-bit binding, then is k-fold parallel
repetition COMk is also chosen-bit binding.

2.2.2 Hash functions
While we shall only discuss commitment schemes in the body of the paper, for our purposes
collision-resistant hash functions are binding (but not hiding) classical commitment schemes
where the length of the randomness is zero; therefore, many of our results extend to CRHs
mutatis mutandis.

More precisely, consider the analogous (classical) chosen-bit binding experiment for a
family Hλ ⊆ {0, 1}m(λ) → {0, 1}n(λ) of hash functions defined next.
1. Sample h← Hλ.
2. Obtain (y, i)← Adv(h), where y ∈ {0, 1}n(λ) and i ∈ [m(λ)].
3. Choose b← {0, 1} uniformly at random.
4. Obtain x← Adv(b).
5. Output 1 if h(x) = y and xi = b.

We say that H is classically (resp. post-quantum) chosen-bit binding (CBB) if for every
efficient classical (resp. quantum) adversary Adv, the above experiment outputs 1 with
probability at most 1/2 + negl(λ).

Classical chosen-bit binding for hash functions is easily seen to be equivalent to collision
resistance, and, by an essentially identical argument to Theorem 2, we can show that
post-quantum CBB is equivalent to collapsing.

▶ Corollary 9. A hash family H is collapsing if and only if it is post-quantum chosen-bit
binding.

Note that CBB also implies a method by which a quantum falsifier can convince a classical
party that a hash function is not collapsing.

2.3 Equivocality
A (classical) commitment scheme is one-shot equivocal [2] if it has an additional functionality
Eq, the equivocator, which produces a commitment string com and then, given a message m,
outputs a valid opening ω to it (with probability close to 1).4 In other words, Eq generates a
commitment com it can equivocate to any message of its choice (but only once, if the scheme
is computationally binding).

4 While [2] defines equivocality for hash functions, it easily extends to commitment schemes. Indeed, the
functionality they require is that of a commitment, which suffices to ensure security of the cryptographic
objects constructed in that work.
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2:6 On the Necessity of Collapsing

We observe first that what [2] call “unequivocality” – roughly, that achieving the above
with any nontrivial advantage is computationally infeasible – implies chosen-bit binding, and
hence collapsing. This resolves an open question of [2].

However, we are able to show something much stronger, in the spirit of the “win-win”
results of [28, 29]. In particular, we show that if a commitment scheme is (almost everywhere)
not collapse binding, then it is one-shot equivocal. Note that the latter is a much stronger
property than the negation of unequivocality, since Eq must succeed with probability close
to 1. More formally, we obtain the following.5

▶ Theorem 10 (Theorem 41, informally stated). If COM is a post-quantum computationally
but not sum-binding commitment scheme, it can be transformed into a one-shot equivocal
scheme.

Our proof uses recent quantum rewinding techniques [11] to amplify success probability. We
remark that while [21, 11] build upon “Unruh’s lemma” [22] – which shows that if a pair
of projective measurements succeed with sufficiently high probability, then so does their
sequential application – it is insufficient for our purposes.

We instead use an early quantum rewinding lemma [13], which ensures one-shot equivoc-
ality for any inverse-polynomial advantage against COM in the collapse binding experiment
(Unruh’s lemma would only apply assuming constant advantage).

3 Preliminaries

We denote by λ ∈ N the security parameter, and when we refer to probabilistic/quantum
polynomial-time (PPT/QPT) algorithms, the time complexity is a polynomial in λ. We
denote by negl(λ) any function asymptotically smaller than every inverse polynomial, i.e,
that is o(λ−c) for every c ∈ N.

For n ∈ N, we write [n] to denote the set {1, . . . , n}. For a set S, we write i ← S to
denote that i is sampled uniformly from S. When D is a distribution, its support is denoted
supp(D) and i← D denotes that i is chosen according to D.

We make use of the following simple fact, a consequence of Markov’s inequality, and the
Chernoff bound.

▶ Proposition 11. Let X be a random variable supported on [0, 1]. Then for all α ≥ 0,
Pr[X ≥ α] ≥ E[X]− α.

▶ Proposition 12 (Chernoff bound). Let X1, . . . , Xk be independent Bernoulli random vari-
ables distributed as X. Then, for every δ ∈ [0, 1],

Pr
[

1
k

k∑
i=1

Xi ≥ (1 + δ)E[X]
]
≤ e− δ2kE[X]

3 and

Pr
[

1
k

k∑
i=1

Xi ≤ (1− δ)E[X]
]
≤ e− δ2kE[X]

2 .

We also make use of the Cauchy-Schwarz inequality with respect to the Hilbert-Schmidt
inner product.

5 It is claimed in [2] that if COM is not unequivocal, its parallel repetition COMk is equivocal for large
enough k. This is in fact true, but their argument is flawed; see Remark 34 for a discussion.
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▶ Lemma 13 (Cauchy-Schwarz). For any complex matrices A,B such that A†B is defined,∣∣Tr
(
A†B

)∣∣2 ≤ Tr
(
A†A

)
· Tr
(
B†B

)
.

We say a commitment scheme is classical when all of its communication is classical (but
an adversary may be quantum); that is, we use classical commitments as a shorthand for
classical-message commitments.

By the k-fold parallel repetition of an experiment/interactive protocol, we denote that
which results from repeating it independently k times with the same first message (in our
case, a commitment key ck); the output of the experiment is the conjunction of the outputs
of each execution.

3.1 Quantum information
We recall the basics of quantum information. (Most of the following is taken almost verbatim
from [11].) A (pure) quantum state is a vector |ψ⟩ in a complex Hilbert space H with
∥|ψ⟩∥ = 1; in this work, H is finite-dimensional, and we use |0⟩ to refer to a fixed (“zero”)
state in H. We denote by S(H) the space of Hermitian operators on H. A density matrix is
a positive semi-definite operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix represents a
probabilistic mixture of pure states (a mixed state); the density matrix corresponding to the
pure state |ψ⟩ is |ψ⟩⟨ψ|. Typically we divide a Hilbert space into registers, e.g. H = H1⊗H2,
and we sometimes write H \H2 to denote H1; we also write ρH1 to specify that ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU† = I. The operation
U transforms the pure state |ψ⟩ to the pure state U |ψ⟩, and the density matrix ρ to the
density matrix UρU†.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. If a (unitary U

or) projector Π in a Hilbert space H1 ⊗H2 acts trivially (as the identity I) in H2, we may
write Π or ΠH1 to denote Π ⊗ IH2 . A collection of projectors M = (Πi)i∈S is a projective
measurement when

∑
i∈S Πi = I, and a submeasurement when there exists a projector Π

such that
∑

i∈S Πi = I−Π.
The application of M to a pure state |ψ⟩ yields outcome i ∈ S with probability pi =

∥Πi |ψ⟩∥2; we denote sampling from this distribution by i ← M(ρ), and in this case the
post-measurement state is |ψi⟩ = Πi |ψ⟩ /

√
pi. We also use σ ← M(ρ) to denote the mixture

of post-measurement states Πi |ψ⟩ /
√
pi with probability pi. A two-outcome projective

measurement is called a binary projective measurement, and is written as M = (Π, I−Π),
where Π is associated with the outcome 1, and I−Π with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-
positive trace-preserving (CPTP) map T : S(H) → S(H′). We omit the precise definition
of these maps in this work; we only use the facts that they are trace-preserving (i.e.,
Tr(T (ρ)) = Tr(ρ) for every ρ ∈ S(H)) and linear. For every CPTP map T : S(H) → S(H)
there exists a unitary dilation U that operates on an expanded Hilbert space H⊗K, so that,
with TrK the partial trace operator that traces out K, we have T (ρ) = TrK(U(ρ⊗|0⟩⟨0|K)U†).
This is not necessarily unique; however, if T is described as a circuit then there is a dilation
UT represented by a circuit of size O(|T |).

4 Commitment schemes

In this section, we define commitment schemes and the different notions of binding that
we shall use (except for CBB, whose definition we defer to Section 5). While most of what
follows is not novel, to the best of our knowledge the notion of collapse binding has as yet
only been defined and studied for classical commitments. Our definition generalises that put
forth by [24] (and coincides with it in the classical case).

TQC 2023



2:8 On the Necessity of Collapsing

▶ Definition 14. A quantum commitment scheme COM consists of a PPT algorithm Gen,
a unitary QPT algorithm Commit acting on a 4-tuple of registers K ⊗M⊗ C ⊗ O, and a
“check” subregister S ⊆ C ⊗O.

Commit uses the key register K and message register M as classical controls. The
dimension of K is

∣∣supp
(
Gen(1λ)

)∣∣ and M has ℓ(λ) qubits; its computational basis is labeled
by elements of the message spaces {Mλ}λ∈N, where M = {0, 1}ℓ(λ).

In addition, COM = (Gen,Commit,S) is a bit commitment if ℓ = 1, i.e., if Mλ = {0, 1}
for all λ ∈ N.

As the register S will be clear from context, we use COM = (Gen,Commit) as shorthand
for (Gen,Commit,S). Moreover, we denote by Commitck,m the unitary acting on C ⊗ O as
Commitck,m |ψ⟩ = Commit |ck⟩ |m⟩ |ψ⟩.

▶ Definition 15. A classical commitment scheme COM = (Gen,Commit) is a quantum
commitment scheme where Commit is a PPT algorithm and S = C.

We use function notation for classical commitments, i.e., Commit(ck,m, ω) is the function
computed and inserted (by a bitwise XOR) into the commitment register C.
▶ Remark 16. Our definition of quantum commitment schemes deviates slightly from those
in the literature in order to generalise classical commitments. In prior work it is typically
assumed that quantum commitments are generated deterministically, which is without loss
of generality since any randomness can be “purified out”. Then the challenger may measure
both C and O in the last step to check that Commit†

ck,m indeed inverts the adversary’s
computation (i.e., the challenger checks the register S = C ⊗ O).

However, in classical commitments randomness is inherent and only the C register is
“uncomputed”: the challenger reads ω from O and checks that the contents of C coincide
with Commit(ck,m, ω). This corresponds to applying Commit†

ck,m(C,O) and only measuring
S = C.

(Given this discussion, it is natural to ask whether, for quantum commitments, it suffices
to measure only C. We leave this question to future work.) ⌟

We now define two notions of binding (sum and collapse) that apply to both quantum
and classical commitments. Recall that, in order to be non-trivial, commitment schemes
typically also satisfy a notion of hiding, which we omit since it is not relevant to the current
work.

▶ Experiment 17 (Sum binding). Given an adversary Adv, define the experiment ExpAdv
sum(λ),

parametrised by λ ∈ N, as follows.
1. Generate ck← Gen(1λ).
2. Obtain the commitment register C ← Adv(ck).
3. Sample a (classical) message m←M .
4. Obtain the opening register O ← Adv(m), apply Commit†

ck,m(C,O) and measure S in the
computational basis.

5. Output 1 if the measurement yields |0⟩.

▶ Definition 18. A quantum commitment scheme COM is sum binding if, for all non-uniform
QPT adversaries Adv in Experiment 17,

Pr
[
ExpAdv

sum(λ) = 1
]
≤ 1
|M |
·
(
1 + negl(λ)

)
.

When COM is classical and Adv is PPT (resp. QPT), we say it is classically (resp. post-
quantum) sum binding.
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Note that the definition of sum binding given by [24] refers only to bit commitments; the
above is a natural generalisation to quantum commitments and larger message spaces (which
seems, however, to be of limited use when M is of superpolynomial size).

We proceed to the definition of collapse binding for quantum commitments.

▶ Experiment 19 (Collapse binding). For an adversary Adv, define the experiment ExpAdv
coll (λ)

as follows.
1. Generate ck← Gen(1λ).
2. Obtain the registers C ⊗M⊗O ← Adv(ck).
3. Sample b← {0, 1}. If b = 1, measure M in the computational basis.
4. Obtain b′ ← Adv(M⊗O).
5. Output 1 if b = b′.

We say that Adv is valid if, for all ck ∈ supp
(
Gen(1λ)

)
, the state ρ in C⊗M⊗O ← Adv(ck)

is a mixture of superpositions of valid commitments; that is, ρ =
∑

i pi |ψi⟩⟨ψi| where |ψi⟩
has nonzero amplitude only on computational basis states |com,m, ω⟩ in the image of the
projector Commitck,m |0⟩⟨0|S Commit†

ck,m. (In the post-quantum case, this simplifies to |m,ω⟩
satisfying Commit(ck,m, ω) = com.)

▶ Definition 20. A quantum commitment scheme COM is collapse binding if, for all valid
non-uniform QPT adversaries Adv in Experiment 19,6

Pr
[
ExpAdv

coll (λ) = 1
]
≤ 1

2 + negl(λ) .

Note that the challenger does not return the register C to the adversary in Step 4 for
the purpose of distinguishing; this is crucially used in the proof of Theorem 4, and would
otherwise lead to an unsatisfiable generalisation of classical commitments: an adversary
that sends

∑
m∈M |Commit(ck,m, ω)⟩ |m⟩ |ω⟩ (normalised) and receives all three registers can

detect a measurement with high probability by uncomputing Commit and using the binary
measurement with projector |ψ⟩⟨ψ|M where |ψ⟩ =

∑
m∈M |m⟩.

4.1 Classical binding
We conclude this section with a discussion of notions of binding that we only apply to
classical commitments (with possibly quantum adversaries).

▶ Experiment 21 (Computational binding). Given an adversary Adv, define ExpAdv
bind(λ) as

follows.
1. Generate ck← Gen(1λ).
2. Obtain (m0, ω0,m1, ω1)← Adv(ck).
3. Output 1 if m0 ̸= m1 and Commit(ck,m0, ω0) = Commit(ck,m1, ω1).

▶ Definition 22. A commitment scheme COM is classically (resp. post-quantum) computa-
tionally binding if for all PPT (resp. QPT) adversaries Adv in Experiment 21,

Pr
[
ExpAdv

bind(λ) = 1
]

= negl(λ) .

6 Equivalently, we could drop the validity constraint by measuring the state obtained in Step 2 with the
appropriate binary projective measurement and aborting unless the outcome is 1.

TQC 2023
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Somewhere statistical binding (SSB)

Finally, we recall the notion of somewhere statistical binding, introduced by [19] in the
context of hash functions. Here we present the equivalent notion for commitments; note that
this is different to the more sophisticated notion of SSB commitments given by [16].

▶ Definition 23 (Somewhere statistical binding). Let ℓ be a polynomial in λ. A commitment
scheme COM = (Gen,Commit) is said to be somewhere statistically binding (SSB) if:

For all i, j ∈ [ℓ(λ)], the distributions Gen(1λ, i) and Gen(1λ, j) are computationally
indistinguishable.
For all i ∈ [ℓ(λ)] and all ck ∈ supp

(
Gen(1λ, i)

)
, if Commit(ck,m, ω) = Commit(ck,m′, ω′)

for some (m,ω,m′, ω′), then mi = m′
i.

More precisely, computational indistinguishability of Gen(·, i) and Gen(·, j) is defined by the
experiment defined next.

▶ Experiment 24. Given a commitment scheme COM, define ExpAdv
ssb (λ) as follows.

1. Sample j ← [ℓ(λ)] and generate ck← Gen(1λ, j).
2. Obtain i← Adv(ck).
3. Output 1 if i = j.

Therefore, (Gen,Commit) is classically (resp. post-quantum) somewhere-statistically binding
if for all non-uniform PPT (resp. QPT) adversaries Adv,

Pr
[
ExpAdv

ssb (λ) = 1
]
≤ 1
ℓ

+ negl(λ) .

(And, in addition, commitment keys ck determine the ith coordinate of messages that map
to the same commitment string.)

5 Chosen-bit binding

We begin this section with the definition of our main conceptual tool: the notion of chosen-bit
binding. We define this notion in generality, for quantum schemes (and, owing to Definition 15,
for classical schemes as a special case). Recall that S ⊆ C ⊗O is the subregister checked in a
quantum (de)commitment.

▶ Experiment 25 (Chosen-bit binding). Given a commitment scheme COM, define ExpAdv
cbb (λ)

as follows.
1. Sample ck← Gen(1λ).
2. Obtain the index and commitment register pair (i, C)← Adv(ck).7
3. Sample b← {0, 1}.
4. Obtain the message and opening register pair (m,O)← Adv(b).
5. Apply Commit†

ck,m to C ⊗ O and measure S in the computational basis.
6. Output 1 if mi = b and the measurement outcome is |0⟩.

▶ Definition 26. A quantum commitment scheme is chosen-bit binding if, for all non-uniform
QPT adversaries Adv in Experiment 25,

Pr
[
ExpAdv

cbb (λ) = 1
]
≤ 1

2 + negl(λ) .

7 Alternatively, Adv(ck) may output two quantum registers (I, C); then i is obtained by a computational
basis measurement of I. (An analogous observation holds for Step 4, with (M,O) ← Adv(b) and a
measurement of M.)
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Note that, in the case of bit commitments (i.e., when M = {0, 1}), this notion coincides with
sum binding. Recall that, in the case of classical adversaries, we have:

▶ Lemma 27. A (classical) commitment scheme is chosen-bit binding against classical
adversaries if and only if it is computationally binding.

(The proof of this lemma is straightforward and hence omitted.)
We now prove the first of our main results: an equivalence between chosen-bit binding and

collapse binding. We will make extensive use of the following binary projective measurements
associated with a quantum commitment scheme COM. With

(
|m⟩

)
m∈M

and
(
|ω⟩
)

ω
as

bases for the registers M and O, respectively, we define:
Mck,m := (Πck,m, I−Πck,m) by

Πck,m := Commitck,m

(
|0⟩⟨0|S ⊗ I(C⊗O)\S

)
Commit†

ck,m ; (1)

Mck := (Πck, I−Πck) by

Πck :=
∑

m∈M

|m⟩⟨m|M ⊗Πck,m ; (2)

Mi,b := (Πi,b, I−Πi,b) by

Πi,b :=
∑

m,mi=b

|m⟩⟨m|M ⊗Πck,m ; and (3)

Mi := (Πi, I−Πi) by

Πi :=
∑

b∈{0,1}

|b⟩⟨b|B ⊗Πi,b . (4)

Note that Πck,m (Equation 2) projects onto the subspace of valid commitment-opening register
pairs, and the other measurements do so with additional restrictions: Πck,m (Equation 1)
projects onto valid messages; Πi,b (Equation 3) projects onto (valid) messages with mi = b;
and Πi (Equation 4) onto messages whose ith coordinate overlaps with the contents of B.

▶ Theorem 28 (Theorem 4, restated). A quantum commitment scheme COM is collapse
binding if and only if it is chosen-bit binding.

We first prove (via the contrapositive) that collapse binding implies chosen-bit binding,
which extends [23, Theorem 32] to quantum commitments.

Proof (collapsing ⇒ CBB). Let Adv be an adversary that achieves advantage ε in Experi-
ment 25 (the chosen-bit binding experiment). We may assume, without loss of generality, that
the adversary’s action in Step 4 consists of the application of a unitary U on B⊗M⊗O⊗H
(where B contains the bit received from the challenger and H is an additional workspace
register) followed by a computational basis measurement of M. We construct an adversary
Adv′ for the collapse binding experiment as follows.

Upon receipt of ck:
1. Run Adv(ck) to obtain i ∈ [ℓ] and state ρ on C ⊗M⊗O ⊗H.
2. Apply U ⊗ IC to σ = |+⟩⟨+|B ⊗ ρ followed by the binary projective measurement Mi.
3. If the measurement outcome is 0, overwrite C ⊗M⊗O with a valid commitment (to,

say, the all-zero string). Output i ∈ [ℓ] along with the registers C, M and O.
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2:12 On the Necessity of Collapsing

Upon receipt of M, O:
1. If the measurement outcome in the previous step was 0, stop and output a random bit.
2. Apply U† to B ⊗M⊗O ⊗H and measure B in the {|+⟩ , |−⟩} basis.
3. If the outcome is |+⟩, output 0; otherwise output 1.

Note that Adv′ is valid, as Πck = Πi,0 + Πi,1 (by Equations 2 and 3) and Equation 4
implies TrB,H(ΠiσΠi) ∈ Im(Πi,0 + Πi,1). Moreover, if either (i) the challenger measures or
(ii) the outcome of the first measurement by Adv′ is 0, the experiment outputs a uniformly
random bit.

For the case where the challenger does not measure, we use the following proposition:

▶ Proposition 29. Let P,Q be projectors and ρ a density matrix such that ρQ = ρ. Then

Tr(QPρP ) ≥ Tr(Pρ)2
.

Proof. Tr(Pρ) = Tr(PρQ) ≤
√

Tr(QPρPQ), by Cauchy-Schwarz (Lemma 13). ◀

Assume that b = 0 in Step 3 of Experiment 19, so M is not measured (we deal with
the case b = 1 next). We lower bound the probability that the measurement outcomes of
Adv′(ck) and Adv′(M,O) are 1 and |+⟩, respectively, whereupon the experiment outputs 1:
since σ · |+⟩⟨+| = σ, by Proposition 29,

Tr (|+⟩⟨+|ΠiσΠi) ≥ Tr(Πiσ)2

=
(

1
2 Tr (Πi,0ρ) + 1

2 Tr (Πi,1ρ)
)2

=
(

1
2 + ε

)2
.

Now note that, if b = 1 in Step 3, the M register is measured and B collapses to a
computational basis state, namely, |mi⟩ when the outcome is m; since the adversary measures
B in the Hadamard basis, the experiment outputs 1 with (conditional) probability 1/2 in this
event. Moreover, if the adversary’s first measurement outcome is 0 (an event with 1−Tr(Πiσ)
probability) it outputs a uniformly random bit; in this case, Experiment 19 also outputs 1
with probability 1/2.

Overall, the probability that the experiment outputs 1 is thus

1
4 + 1

2

(
Tr
(
|+⟩⟨+|ΠiσΠi

)
+ 1

2
(
1− Tr(Πiσ)

))
= 1

4 + 1
2

(
Tr
(
|+⟩⟨+|ΠiσΠi

)
+ 1

2

(
1
2 − ε

))
≥ 1

4 + 1
2

((
1
2 + ε

)2
+ 1

2

(
1
2 − ε

))

≥ 1
2 + ε

2 . ◀

Before proving the reverse implication, we show a basic fact about non-commuting
projective measurements. Let M be a projective measurement and B = (D, I−D) a binary
projective measurement. Consider the following experiment applied to a state ρ:
1. Measure i← M.
2. Apply B (and ignore the result).
3. Measure j ← M.
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The following claim gives a lower bound on the probability that i ̸= j in terms of how well
B distinguishes ρ from M(ρ) (which is a measure of how “non-commuting” B and M are).
Variants of this claim have appeared independently and concurrently in [30, 9].

▷ Claim 30. Let D be a projector, M = (Πi)i∈[N ] be a projective submeasurement and ρ be
a Hermitian matrix such that

∑
i Tr(Πiρ) = Tr(ρ). Then

∑
j

∑
i̸=j

Tr(ΠiDΠjρΠjD) ≥
Tr
(
D(ρ−M(ρ))

)2

N · Tr(ρ) .

Proof. Inserting resolutions of the identity, and since (I−
∑

i Πi)ρ = 0,

Tr(Dρ) =
∑

i

Tr(DΠiρΠi) +
∑
i ̸=j

Tr(ΠiDΠjρ)

= Tr(DM(ρ)) +
∑

j

Tr(Π̸=jDΠjρ) ,

where Π̸=j :=
∑

i ̸=j Πi. Applying Cauchy-Schwarz (Lemma 13, with A = √ρ ·ΠjDΠ̸=j and
B = √ρ) yields |Tr(Π̸=jDΠjρ)| ≤

√
Tr(Π̸=jDΠjρΠjD)

√
Tr(ρ). Substituting into the above

equation and squaring we have

Tr
(
D(ρ−M(ρ))

)2

Tr(ρ) ≤

∑
j

√
Tr(Π̸=jDΠjρΠjD)

2

,

and applying Cauchy-Schwarz again (with respect to Euclidean norm and the N -dimensional
pair of vectors with 1 and

√
Tr(Π̸=jDΠjρΠjD) in the jth coordinate, respectively) yields

the claim. ◁

We now prove the reverse implication.

Proof (CBB ⇒ collapsing). Let Adv be an adversary that achieves ε collapsing advantage.
We design an adversary Adv′ for the chosen-bit binding experiment as follows.

Upon receipt of ck:
1. Run Adv(ck) obtain a quantum state ρ in C ⊗M⊗O ⊗H.
2. Output a random index i← [ℓ] and C.

Upon receipt of b:
1. Measure the first i bits of M, obtaining outcomes b1, . . . , bi.
2. If bi ̸= b, apply Adv’s (projective) distinguishing measurement (D, I−D) toM⊗O⊗H.8

3. Measure M in the computational basis. Output the outcome m and the opening
register O.9

Let Mj(ρ) be the map corresponding to measuring the jth qubit of M, i.e.,

Mj(ρ) = ΠiρΠi + (I−Πi)ρ(I−Πi).

8 Here we use that D acts trivially on C.
9 Note that in the case of classical commitments, O is a classical register containing an opening string ω;

equivalently, we may assume O is implicitly measured.
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2:14 On the Necessity of Collapsing

Let M[j] := M1(· · ·Mj−1(Mj(ρ)) · · · ) be the map corresponding to measuring the first j
qubits of M, where M[0] is the identity map. We have that

ρ−M[ℓ](ρ) =
ℓ−1∑
j=0

M[j](ρ)−M[j+1](ρ) =
n−1∑
j=0

ρj −Mj+1(ρj)

where ρj := M[j](ρ).
The adversary’s success probability γ in Experiment 25 can be written as

1
2ℓ
∑
i∈[ℓ]

∑
b∈{0,1}

Tr(Πi,bρi−1) + Tr(Πi,bDΠi,1−bρi−1Πi,1−bD).

Note that the validity of Adv ensures ρi−1 is in the span of Πck, which simplifies the
first term of the sum:

∑
i∈[ℓ]

∑
b∈{0,1} Tr(Πi,bρi−1) =

∑
i∈[ℓ] Tr(ρi−1) = ℓ. It also enables

us to apply Claim 30 with respect to the submeasurement (Πi,0,Πi,1); using the claim and
Cauchy-Schwarz (Lemma 13), we obtain that

γ ≥ 1
2 + 1

4ℓ
∑
i∈[ℓ]

Tr(D(ρi −Mi+1(ρi)))2

≥ 1
2 + 1

4ℓ2

∑
i∈[ℓ]

Tr(D(ρi −Mi+1(ρi)))

2

= 1
2 + 1

4ℓ2

(
Tr
(
D(ρ−M[ℓ](ρ))

))2

= 1
2 +

( ε
2ℓ

)2

where the final equality follows by assumption on Adv. This completes the proof. ◀

5.1 Somewhere statistical binding and parallel repetitions
Using chosen-bit binding, we give “fully classical” proofs that somewhere-statistical binding
commitments are collapse binding, and that the parallel repetition of collapse binding
commitments are collapse binding.

▶ Lemma 31. Post-quantum somewhere statistically binding commitment schemes are
chosen-bit binding against quantum adversaries, and therefore collapse binding.

Proof. Let Adv be an adversary satisfying Pr
[
ExpAdv

cbb (λ) = 1
]

= 1/2 + ε.
We construct an adversary Adv′(ck) for Experiment 24 (SSB) as follows: simulate Ex-

periment 25 (CBB) with the key ck, obtaining (com, i, b,m, ω). (Recall that Experiment 24
is classical, so Adv outputs strings com and ω.) If mi ̸= b or Commit(ck,m, ω) ̸= com (i.e.,
if the adversary loses), output k ← [ℓ]; otherwise, output k ← [ℓ] \ {i}. We denote by j

the uniformly sampled binding index (which determines Gen(1λ, j) as the generator in the
experiment).

The success probability of this adversary is

Pr[k = j] = 1
ℓ
· Pr

[
ExpAdv

cbb (λ) = 0
]

+ 1
ℓ− 1 · Pr

[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
. (5)

Observe that the experiment outputs 1 with probability at most 1/2 when conditioned on j = i

(since, by Definition 23, one of the choices for b ∈ {0, 1} is such that no message-opening pair
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(m,ω) with Commit(ck,m, ω) = com and mi = b exists); that is, Pr
[
ExpAdv

cbb (λ) = 1
∣∣∣ j = i

]
≤

1/2. Hence
1
2 + ε = Pr

[
ExpAdv

cbb (λ) = 1
∣∣∣ j = i

]
Pr[j = i] + Pr

[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]

≤ 1
2 · Pr[j = i] + Pr

[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
.

Note that, if Pr[j = i] ≥ (1 + ε)/ℓ (infinitely often), the adversary that always outputs i has
inverse polynomial advantage. We therefore assume otherwise; then

1
2 + ε ≤ 1 + ε

2ℓ + Pr
[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
,

and so Pr
[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
≥ 1

2 (1− 1
ℓ ) + ε · (1− 1

2ℓ ).

Substituting into (5) and using Pr
[
ExpAdv

cbb (λ) = 0
]

= 1/2− ε (by hypothesis) yields

Pr[k = j] ≥ 1
2ℓ +

1− 1
ℓ

2(ℓ− 1) + ε ·
(1− 1

2ℓ

ℓ− 1 −
1
ℓ

)
= 1
ℓ

+ ε

2ℓ(ℓ− 1) ,

which completes the proof. ◀

Observe that Theorem 28 implies that parallel repetitions preserve collapse binding if
and only if they preserve chosen-bit binding. Then,

▶ Proposition 32. If a quantum commitment scheme COM = (Gen,Commit) is chosen-bit
binding, then its k-fold parallel repetition is also chosen-bit binding.

Proof. Let Adv be an adversary satisfying Pr
[
ExpAdv

cbb (λ) = 1
]

= 1/2+ε in the k-wise parallel
repetition of Experiment 25. (Recall that the same key ck is used in each repetition; we
index message bits by pairs (i, j) ∈ [k]× [ℓ], so that mij is the jth bit of the ith message.)

Then an adversary Adv′(ck) for the original commitment scheme, with the same advantage,
simply executes Adv(ck) to obtain an index (i, j) along with commit registers C1 ⊗ . . .⊗ Ck,
and outputs (j, Ci); upon receipt of b, it obtains (m1, . . . ,mk,O1 ⊗ · · · ⊗ Ok)← Adv(b) and
returns (mi,Oi) in the last step.

Since mij = (mi)j = b and applying Commit†
ck,mi

(Ci,Oi) followed by a measurement of Si

yields |0⟩ with probability at least 1/2+ε (because applying Commit†
ck,m1

⊗· · ·⊗Commit†
ck,mk

to (C1⊗O1)⊗· · ·⊗ (Ck⊗Ok) and measuring S1⊗· · ·⊗Sk yields |0⟩ with probability 1/2+ε),
the result follows. ◀

6 Equivocality

Amos, Georgiou, Kiayias and Zhandry [2] define two closely related notions they call equivocal
and one-shot chameleon collision-resistant hash functions, and show how they can be used
to obtain a variety of interesting quantum cryptographic constructions. Here we consider
a slight variant, which we call a one-shot equivocal commitment scheme. We note that an
equivocal CRHF associated to a predicate p is a one-shot equivocal commitment to the bit
p(x) where x is the hash preimage.10

10 While [2] distinguish between the notions of equivocal and one-shot chameleon hash functions (roughly
speaking, equivocal hashes allow equivocation to some string under a predicate constraint, while one-shot
chameleon hashes equivocate to any string), they also prove how to construct one from the other. We
choose to only define the (syntactically) stronger property, which we call one-shot equivocality – both to
distinguish it from classical notions of equivocality and to evince the connection to one-shot chameleon
hashes.
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▶ Definition 33. A commitment scheme COM = (Gen,Commit) is one-shot equivocal if
there exists a stateful QPT algorithm Eq such that for all messages m ∈M ,

Pr

Commit(ck,m, ω) = com

∣∣∣∣∣∣
ck← Gen(1λ)
com← Eq(ck)
ω ← Eq(m)

 = 1− negl(λ) .

While this definition allows arbitrary message spaces, hereafter we focus on the case
M = {0, 1}. We also note that Definition 18 (sum binding) is identical to a “converse” notion
to the above, which [2] define informally and call unequivocality.

▶ Remark 34. Despite what the terminology may suggest, we stress that (one-shot) equi-
vocality and unequivocality (i.e., sum binding) are not the logical negation of one another:
aside from the usual technical issues of infinitely-often vs. almost-everywhere, equivocality is
syntactically much stronger than “non-unequivocality”, as it requires a correct opening with
all but negligible probability.

It is claimed in [2] that an adversary breaking unequivocality yields a one-shot equivocal
commitment scheme as follows (we adapt their argument to our definitions). The new
commitment is a parallel repetition of the original, where the committed bit is taken to be
the majority of the underlying commitments. To equivocate, we ask the adversary to open
each underlying commitment to the same bit b. The idea is that taking the majority amplifies
the small bias that an adversary achieves. However, this argument has a significant flaw:
what do we do when the adversary fails to equivocate on a particular commitment? In this
case it may either produce an invalid opening, preventing us from opening the commitment
altogether, or even consistently provide openings for 1− b, leading to a valid opening to the
wrong bit!

Regardless, we show in Theorem 41 that the implication still holds: sum binding can be
“boosted” to one-shot equivocality via quantum rewinding. ⌟

One-shot equivocal commitments only differ from equivocal hashes in their mildly weaker
“collision-resistance”, which does not prevent an adversary from efficiently finding distinct
valid openings for the same message. However, we remark that the construction of one-shot
signatures of [2] can be based on one-shot equivocal commitments rather than hashes without
harm to their security: while an adversary may find distinct signatures for the same message,
the resulting scheme still ensures it cannot sign distinct messages. (As a result, subsequent
constructions that rely on one-shot signatures – quantum money and proofs of quantumness,
among others – also satisfy this weakened but sufficient security guarantee.)

Nontrivial (i.e., computationally binding) one-shot equivocal string commitments can
be obtained from one-shot equivocal bit commitments by the usual composition, which we
prove next for completeness.

▶ Proposition 35. If a bit commitment scheme COM = (Gen,Commit) is computationally
binding and one-shot equivocal, then its k-fold parallel repetition is also computationally
binding and one-shot equivocal when k = poly(λ).

Proof. Computational binding follows from the fact that an adversary Adv in the parallel
repetition of Experiment 21 achieving Pr

[
ExpAdv

bind(λ)
]

= ε with message space M = {0, 1}k

immediately yields Adv′ with advantage ε/k when M = {0, 1}: Adv′ samples i← [k], runs
the (bit) experiment with the challenger on this coordinate and simulates the interaction
for coordinates j ̸= i. When ε = poly

(
λ−1), the resulting advantage ε/k is also inverse

polynomial.
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If Eq with quantum auxiliary input ρ is the equivocator for COM, we define Eq′ as the
natural equivocator for the parallel repetition: Eq′(ck), with auxiliary input ρ⊗k, obtains from
each copy of ρ a commitment string comi ← Eq(ck) and a post-measurement state ρi, then
returns (com1, . . . , comk). Upon receipt of a message, Eq′(m) runs each Eq(mi) on the state
ρi, obtains ωi and returns (ω1, . . . , ωk). Since Commit(ck,mi, ωi) = comi with probability
1−negl(λ) for each i, all k openings succeed except with probability k ·negl(λ) = negl(λ). ◀

We will show via quantum rewinding techniques that a commitment scheme that is
computationally but not sum binding is indeed one-shot equivocal. To this end, we first
recall an early “basic quantum rewinding” lemma, first used in [13], which shows that when
two different computations (on the same state) yield prescribed outcomes with sufficiently
high probability, performing the computations sequentially obtains both outcomes with
non-negligible probability. We state a slightly more general statement than [13] and prove it
for completeness.

▶ Lemma 36. For any projectors P,Q and quantum state ρ it holds that

Tr(PQPρ) ≥ 1
4
(

Tr(Pρ) + Tr(Qρ)− 1
)2

.

Proof. Let ε := Tr(Pρ) + Tr(Qρ) − 1. Then Tr((P +Q)ρ) = 1 + ε by assumption and
linearity, and, by Cauchy-Schwarz,

(1 + ε)2 = Tr
(
(P +Q)ρ

)2 ≤ Tr
(
(P +Q)ρ(P +Q)

)
= Tr(Pρ) + Tr(Qρ) + 2 Re Tr(QPρ) .

It follows that Re Tr(QPρ) ≥ ε/2. Then, again by Cauchy-Schwarz (Lemma 13),

ε/2 ≤ Re Tr(QPρ) ≤ |Tr(QPρ)| ≤
√

Tr(QPρPQ) ,

which completes the proof. ◀

Next, we recall Jordan decompositions and two singular vector algorithms that we shall
use in our construction.

▶ Lemma 37 (Jordan decomposition). Any pair of projectors ΠA and ΠB induces a de-
composition of the Hilbert space they act upon into ⊕iSi where each Si has dimension 1
or 2.

The projectors can be written as ΠA =
∑

i |vi⟩⟨vi| and ΠB =
∑

i |wi⟩⟨wi| for Si-bases{∣∣vi

〉
,
∣∣v⊥

i

} 〉
and

{∣∣vi

〉
,
∣∣v⊥

i

} 〉
; the sums range over all Si except the one-dimensional ones

where the projector acts trivially (as the zero projector).

We call the Si Jordan subspaces, and define pi :=
∣∣〈vi

∣∣wi

∣∣〉2 =
∣∣〈v⊥

i

∣∣w⊥
i

〉∣∣2. We also
define the Jordan measurement MJor =

(
ΠJor

i

)
by

ΠJor
i :=

∣∣vi

〉〈
vi

∣∣+
∣∣v⊥

i

〉〈
v⊥

i

∣∣ =
∣∣wi

〉〈
wi

∣∣+
∣∣w⊥

i

〉〈
w⊥

i

∣∣;
that is, MJor projects onto a subspace Si and outputs its index i.

The singular vector algorithms, due to [21, 18], allow us to effectively “filter out” com-
ponents of a quantum state below a threshold of our choice and then “flip” the image of a
projector to its complement if needed.

▶ Lemma 38. Let ΠA,ΠB be projectors described by uniform poly(λ)-size quantum circuits.
Then there exists a (uniform) family {Thresholdθ}θ∈(0,1] of algorithms described by poly(λ)-
size circuits that satisfy the following:

TQC 2023



2:18 On the Necessity of Collapsing

if pi ≥ θ, Thresholdθ(|vi⟩) outputs 1 with probability 1− negl(λ).
if pi ≤ θ/2, Thresholdθ(|vi⟩) outputs 1 with probability negl(λ).

Moreover, Si is invariant under Thresholdθ for all i and θ, and the post-measurement
state is |vi⟩ when the measurement outputs 1.

▶ Lemma 39. Let ΠA,ΠB be projectors described by uniform poly(λ)-size quantum circuits.
Then there exists a (uniform) family of circuits {Transformγ}γ∈(0,1] of size poly(λ)/√γ such
that, when pi ≥ γ, the output (i.e., post-measurement state) of Transform(|vi⟩) is |wi⟩ with
probability 1− negl(λ).

Moreover, Si is invariant under Transformγ for all i and γ.

We are now ready to show that (almost-everywhere) non-unequivocality implies one-shot
equivocality. Our one-shot equivocal commitment scheme is constructed as follows.

▶ Construction 40. Let COM = (Gen,Commit) be a bit commitment scheme. For k ∈ N, we
construct COMk by:

Genk(1λ) runs cki ← Gen(1λ) for each i ∈ [k] and outputs ck := (ck1, . . . , ckk).
Commitk

(
(ck1, . . . , ckk),m, (i, ω)

)
:=
(
i,Commit(cki,m, ω)

)
.

Let Adv be an adversary for ExpAdv
sum with quantum auxiliary input ρ, which applies the

projector Πb and measures the opening register O when asked to open to bit b. We construct
an equivocator Eq, whose auxiliary input consists of k copies of ρ on registers A1, . . . ,Ak, as
follows.

EqAdv
ε (ck1, . . . , ckk;A1 ⊗ · · · ⊗ Ak):

1. For each j ∈ [k]:
a. Run comj ← Adv(ckj ;Aj).
b. Apply the measurement (Π0, I−Π0) followed by Thresholdε2/2 to Aj.

If both outcomes are 1, set j∗ := j and skip to Step 3.
2. If j∗ is unset, output ⊥.
3. Output (j∗, comj∗) as the commitment. (At this point we can discard Aj for j ̸= j∗.)
EqAdv

ε (b;Aj∗):
1. If b = 1, apply Transformε2/4 followed by the measurement (Π1, I−Π1) to Aj∗ .
2. Measure the opening register O ⊂ Aj∗ , obtaining outcome ω, and output (j∗, ω).

Note that COMk = (Genk,Commitk) is not the k-wise parallel repetition of COM (as
decommitting a single coordinate suffices).

▶ Theorem 41. Let ε = ε(λ) be an inverse polynomial, and let COM be a bit commitment
scheme such that Pr

[
ExpAdv

sum(λ) = 1
]

= 1/2 + ε for some QPT adversary Adv and all
sufficiently large λ (i.e., that violates sum binding almost everywhere). Then, with k = λ/ε2,
the commitment scheme COMk of Construction 40 is one-shot equivocal.

Proof. First, note that the running time of Eq is poly(λ), as it executes the QPT algorithm
Adv (at most) k = poly(λ) times; Threshold (which is QPT regardless of the parameter) once;
and Transform (with a poly(λ−1) parameter, in which case it is QPT) at most once.

For each j, denote by ρj the post-measurement state after Step 1a (where the mixture
ρj includes the distribution over ckj as well as the measurement that outputs comj). By
assumption, we have

Tr
(
(Π0 + Π1)ρj

)
≥ 1 + 2ε.
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Hence, by Lemma 36,

Tr
(
Π0Π1Π0ρj

)
≥ ε2 .

Now, consider the distribution obtained by applying (Π0, I− Π0) followed by the Jordan
measurement MJor (with respect to the pair of projectors Π0,Π1), obtaining outcomes (b, i)
and outputting b · pi. Then

E [b · pi] =
∑

i

pi · Tr
(
ΠJor

i Π0ρjΠ0
)

= Tr
((∑

i

piΠ0ΠJor
i Π0

)
ρj

)

= Tr
((∑

i

pi |vi⟩⟨vi|

)
ρj

)

= Tr
((∑

i

|vi⟩⟨vi|

)(∑
i

|wi⟩⟨wi|

)(∑
i

|vi⟩⟨vi|

)
ρj

)
= Tr (Π0Π1Π0ρj)
≥ ε2

where the second-to-last equality uses pi = |⟨vi|wi⟩|2.
Therefore, the probability that Step 1b of EqAdv

ε (ck1, . . . , ckk) sets j∗ to j (which is
unchanged by the Jordan measurement, since MJor commutes with Threshold and Π0) is

Pr
[
b · pi ≥

ε2

2 and Thresholdε2/2(|vi⟩) outputs 1
]
≥
(
1− 2−λ

)
· Pr

[
b · pi ≥

ε2

2

]
≥
(
1− 2−λ

)
· ε

2

2 ,

by Lemma 38 and Proposition 11.
By the Chernoff bound (Proposition 12), the probability j∗ is left unset in all j ∈ [k]

(causing Eq = EqAdv
ε on input (ck1, . . . , ckk) to abort in Step 2) is at most e−Ω(λ) = negl(λ).

We now move on to the analysis of Eq(b). Set ck = cki∗ , com = comi∗ , A = Ai∗ and
recall that (Πb, I−Πb) is the projective measurement corresponding to the whether Adv wins
the sum binding experiment when the challenge is b (that is, Πb projects onto the subspace
spanned by |ck, b, ω⟩ such that Commit(ck, b, ω) = com). Then, if b = 0, the output of Step 2
of Eq(0) is a correct opening (with probability 1), since the post-measurement state of Step 3
of Eq(ck1, . . . , ckk) is contained in Im(Π0); we thus only need to argue that the measurement
(Π1, I−Π1) in Step 1 of Eq(1) outputs 1 except with probability negl(λ).

For a fixed j ∈ [k], consider the distribution of (binary) outcomes that arises from applying
the measurements Thresholdε2/2, Transformε2/4 and (Π1, I−Π1) in this order to an arbitrary
quantum state in Im(Π0). Note that it suffices to show that the first output is 1 and the last
is 0 with probability negl(λ), as this ensures (by a union bound over j) that the probability
Eq(1) fails to return a valid opening remains negligible.

By commutativity of the Jordan measurement with Threshold and Transform (and Π1;
recall that every Si is invariant under all three), the distribution is identical to that which
arises by applying MJor before Thresholdε2/2. We now analyse two cases: (i) when MJor

outputs i such that pi ≤ ε2/4, and (ii) when pi > ε2/4. (Note that the post-measurement
outcome is |vi⟩ in both cases, as the sequence of measurements is applied to a state in
Im(Π0).)
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In case (i), Lemma 38 immediately implies that the outcome of Thresholdε2/2 is 1 with
probability negl(λ). In case (ii), while Lemma 38 does not allow us to analyse the distri-
bution of Thresholdε2/2 (when ε2/4 < pi < ε2/2), it ensures that conditioned on outcome
1 the post-measurement state remains unchanged; then Lemma 39 implies the output
of Transformε2/4(|vi⟩) is |wi⟩ with probability 1 − negl(λ), in which case the (Π1, I − Π1)
measurement always outputs 1.

The probability Thresholdε2/2 outputs 1 and (Π1, I − Π1) outputs 0 is thus negl(λ) in
either case, which concludes the proof. ◀
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