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Abstract
We analyze the complexity of learning n-qubit quantum phase states. A degree-d phase state is
defined as a superposition of all 2n basis vectors x with amplitudes proportional to (−1)f(x), where f

is a degree-d Boolean polynomial over n variables. We show that the sample complexity of learning
an unknown degree-d phase state is Θ(nd) if we allow separable measurements and Θ(nd−1) if
we allow entangled measurements. Our learning algorithm based on separable measurements has
runtime poly(n) (for constant d) and is well-suited for near-term demonstrations as it requires only
single-qubit measurements in the Pauli X and Z bases. We show similar bounds on the sample
complexity for learning generalized phase states with complex-valued amplitudes. We further consider
learning phase states when f has sparsity-s, degree-d in its F2 representation (with sample complexity
O(2dsn)), f has Fourier-degree-t (with sample complexity O(22t)), and learning quadratic phase
states with ε-global depolarizing noise (with sample complexity O(n1+ε)). These learning algorithms
give us a procedure to learn the diagonal unitaries of the Clifford hierarchy and IQP circuits.
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1 Introduction

Quantum state tomography is the problem of learning an unknown quantum state ρ drawn
from a specified class of states by performing measurements on multiple copies of ρ. The
preeminence of this problem in verification of quantum experiments has motivated an in-depth
study of state tomography protocols and their limitations for various classes of quantum
states [23, 40, 5, 46]. The main figure of merit characterizing a state tomography protocol
is its sample complexity defined as the number of copies of ρ consumed by the protocol in
order to learn ρ. Of particular interest are classes of n-qubit quantum states that can be
learned efficiently, such that the sample complexity grows only polynomially with n. Known
examples of efficiently learnable states include Matrix Product States describing weakly
entangled quantum spin chains [17], output states of Clifford circuits [36], output states of
Clifford circuits with a single layer of T gates [30], and high-temperature Gibbs states of
local Hamiltonians [4, 24]. Apart from their potential use in experiments, efficiently learnable
quantum states are of great importance for quantum algorithm design. For example, a
quantum algorithm for solving the dihedral hidden subgroup problem [7] can be viewed as a
tomography protocol for learning so-called hidden subgroup states (although this protocol is
efficient in term of its sample complexity, its runtime is believed to be super-polynomial [7]).

A natural question to then ask is: What are other classes of n-qubit quantum states
that are ubiquitous in quantum computing, which can be learned efficiently? In this work,
we consider the problem of state tomography for phase states associated with (generalized)
Boolean functions. Phase states are encountered in quantum information theory [26],
quantum algorithm design [7], quantum cryptography [29, 11], and quantum-advantage
experiments [13, 15].

By definition, an n-qubit, degree-d binary phase state has the form

|ψf ⟩ = 2−n/2
∑

x∈{0,1}n

(−1)f(x)|x⟩, (1)

where f : {0, 1}n → {0, 1} is a degree-d polynomial, that is,

f(x) =
∑

J⊆[n], |J|≤d

αJ

∏
j∈J

xj (mod 2), (2)

for some coefficients αJ ∈ {0, 1}. Phase states associated with homogeneous degree-2 polyno-
mials f(x) coincide with graph states that play a prominent role in quantum information
theory [26]. Such states can be alternatively represented as

|ψf ⟩ =
∏

(i,j)∈E

CZi,j |+⟩⊗n,

where n qubits live at vertices of a graph, E is the set of graph edges, CZi,j is the controlled-Z
gate applied to qubits i, j, and |+⟩ = (|0⟩ + |1⟩)/

√
2. It is known that the output state

of any Clifford circuit is locally equivalent to a graph state for a suitable graph [44]. Our
results imply that graph states can be learned efficiently using only single-qubit gates and
measurements. The best previously known protocol for learning graph states [36] requires
entangled measurements across two copies of |ψf ⟩. Other examples of circuits producing
phase states include measurement-based quantum computing [42] and a subclass of IQP
circuits (Instantaneous Quantum Polynomial-time), which correspond to degree-3 phase
states [37]. IQP circuits are prevalent in quantum-advantage experiments [13, 15] and are
believed to be hard to simulate classically.
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We also consider generalized degree-d phase states

|ψf ⟩ = 2−n/2
∑

x∈{0,1}n

ωf(x)
q |x⟩, ωq = e2πi/q (3)

where q ≥ 2 is an even integer and f : {0, 1}n → Zq is a degree-d polynomial, that is,

f(x) =
∑

J⊆[n], |J|≤d

αJ

∏
j∈J

xj (mod q). (4)

for coefficients αJ ∈ Zq = {0, 1, . . . , q − 1}. It is also known that generalized degree-d
phase states with q = 2d can be prepared from diagonal unitary operators [18] in the
d-th level of the Clifford hierarchy [22]. Additionally, it is known that the output state
of a random n-qubit Clifford circuit is a generalized q = 4, degree-2 phase state with a
constant probability [12, Appendix D]. Binary and generalized phase states have also found
applications in cryptography [29, 11], and complexity theory [28] (we discuss this in the next
section).

In this work, we consider learning phase states through two types of tomography protocols
based on separable and entangled measurements. The former can be realized as a sequence
of M independent measurements, each performed on a separate copy of |ψf ⟩ (furthermore
our learning algorithms only require single qubit measurements). The latter performs a joint
measurement on the state |ψf ⟩⊗M . Our goal is to then derive upper and lower bounds on
the sample complexity M of learning f , as a function of n and d. In the next section, we
state our main results. Interestingly, our protocols based on separable measurements require
only single-qubit gates and single-qubit measurements making them well suited for near-term
demonstrations.

1.1 Summary of contributions and applications
We first introduce some notation before giving an overview of our contributions. For every
n and d ≤ n/2, let P(n, d) be the set of all degree-d polynomials of the form Eq. (2). Let
Pq(n, d) be the set of all degree-d Zq-valued polynomials of the form Eq. (3). By definition,
P2(n, d) ≡ P(n, d). To avoid confusion, we shall refer to states defined in Eq. (1) as binary
phase states and in Eq. (3) as generalized phase states. Our learning protocol takes as input
integers n, d and M copies of a degree-d phase state |ψf ⟩ with unknown f ∈ P(n, d) (or
f ∈ Pq(n, d)). The protocol outputs a classical description of a polynomial g ∈ P(n, d) (or
g ∈ Pq(n, d)) such that f = g with high probability.

The main result in this work are optimal algorithms for learning phase states if the
algorithm is allowed to make separable or entangled measurements. Prior to our work, we
are aware of only two works in this direction (i) algorithms for efficiently learning degree-1
and degree-2 phase states; (ii) Montanaro [35] considered learning multilinear polynomials
f , assuming we have query access to f , which is a stronger learning model than the sample
access model that we assume for our learning algorithm. In this work, we show that if
allowed separable measurements, the sample complexity of learning binary phase states
and generalized phase states is O(nd). If allowed entangled measurements, we obtain a
sample complexity of O(dnd−1) for learning binary phase states. We further consider settings
where the unknown function f we are trying to learn is known to be sparse, has a small
Fourier-degree and the setting when given noisy copies of the quantum phase state. In
Table 1, we summarize all our main results (except the first two rows, which include the
main prior work in this direction).

TQC 2023
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Table 1 Upper and lower bounds of sample complexity for exact learning of n-qubit phase states
with degree-d. For precise statements of the bounds, we refer the reader to the theorem statements
in this work and in the full version of the paper [6].

Sample complexity Time complexity Measurements

Binary phase state F2-degree-1 [10] Θ(1) O(n3) Separable

Binary phase state F2-degree-2
[36, 43] O(n) O(n3) Entangled

Binary phase state F2-degree-d Θ(nd)
Theorem 7, 10 O(n3d−2) Separable

Binary phase state F2-degree-d Θ(nd−1)
Theorem 9 O(exp(nd log 2)) Entangled

Generalized phase states degree-d Θ(nd)
Theorem 11 O(exp(nd log q)) Separable

Sparse Binary phase state
F2-degree-d, F2-sparsity s

O(2dsn)
[6, Theorem 6] O(23ds3n) Separable

Binary phase state F2-degree-2
with global depolarizing noise ε

n1+O(ε)

[6, Theorem 9] O(2n/log n) Entangled

Binary phase state F2-degree-2
with local depolarizing noise ε

Θ((1 − ε)n)
[6, Theorem 11] O(2n/log n) Entangled

Binary phase state Fourier-degree-d O(22d)
[6, Theorem 7] O(exp(n2)) Entangled

Before we give a proof sketch of these results, we first discuss a couple of motivations for
considering the task of learning phase states and corresponding applications.

Quantum complexity. Recently, there has been a few results in quantum cryptography [29,
3, 11] and complexity theory [28] which used the notion of phase states.

Ji et al. [29] introduced the notion of pseudorandom quantum states as states of the form
|ϕ⟩ = 1√

2n

∑
x∈{0,1}n ω

F (x)
N |x⟩ where F is a pseudorandom function.1 Ji et al. showed that

states of the form |ϕ⟩ are efficiently preparable and statistically indistinguishable from a Haar
random state, which given as input to a polynomial-time quantum algorithm. A subsequent
work of Brakerski [11] showed that it suffices to consider |ϕ′⟩ = 1√

2n

∑
x∈{0,1}n(−1)F (x)|x⟩

(where F again is a pseudorandom function) and such states are also efficiently preparable and
statistically indistinguishable from Haar random states. Subsequently, these states have found
applications in proposing many cryptosystems [3]. Although none of these works discuss
the degree of the phase function F , our result shows implicitly that when F is low-degree,
then |ϕ⟩ is exactly learnable and hence distinguishable from Haar random states, implying
that they cannot be quantum pseudorandom states. In another recent work, Irani et al. [28]
considered the power of quantum witnesses in proof systems. In particular, they showed
that in order to construct the witness to a QMA complete problem, say the ground state

1 We do not discuss the details of pseudorandom functions here, we refer the interested reader to [29].
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|ϕ⟩ to a local-Hamiltonian problem, it suffices to consider a phase state 1√
2n

∑
x(−1)F (x)|x⟩

which has a good overlap to |ϕ⟩. To this end, they show a strong property that, for every
state |τ⟩ and a random Clifford operator U (or, more generally, an element of some unitary
2-design), the state U |τ⟩ has constant overlap with a phase state [28, Lemma A.5]. Our
learning result implicitly shows that, assuming QMA ̸= QCMA, then the phase state that
has constant overlap with the ground space energy of the local Hamiltonian problem, cannot
be of low degree.

Learning quantum circuits. Given access to a quantum circuit U , the goal of this learning
task is to learn a circuit representation of U . The sample complexity for learning a general
n-qubit quantum circuit is known to be 2Θ(n) [16, 34], which is usually impractical.

If we restrict ourselves to particular classes of quantum circuits, there are some known
results for efficient learnability. Low [31] showed that an n-qubit Clifford circuit can be
learned using O(n) samples. However, this result was only an existential proof and requires
access to the conjugate of the circuit. Constructive algorithms were given in Low [31], and
Lai and Cheng [30], both of which showed that Clifford circuits can be learned using O(n2)
samples. Both these algorithms require entangled measurements with the former algorithm
using pretty-good measurement [25], and the latter using Bell sampling. In this work, we
show that Clifford circuits producing degree-2 binary phase states, can be learned in O(n2)
samples, matching their result but only using separable measurements. Moreover, Low [31]
also gave an existential proof of algorithms for learning circuits in the d-th level of the
Clifford hierarchy, using O(nd−1) samples. In this work, we give constructive algorithms for
learning the diagonal elements of the Clifford hierarchy in O(nd) samples using separable
measurements. A direct result of this is that a subset of IQP circuits, which are also
believed to be hard to simulate classically [13, 14], are shown to be efficiently learnable. Our
learning result thus gives an efficient method for verifying IQP circuits that may be part of
quantum-advantage experiments [15, 39].

Learning hypergraph states. We finally observe that degree-3 (and higher-degree) phase
states have appeared in works [42, 45] on measurement-based quantum computing (MBQC),
wherein they refer to these states as hypergraph states. These works show that single-qubit
measurements in the Pauli X or Z basis performed on a suitable degree-3 hypergraph state
are sufficient for universal MBQC. Our learning algorithm gives a procedure for learning these
states in polynomial-time and could potentially be used as a subroutine for verifying MBQC.

1.2 Proof sketch
In this section we briefly sketch the proofs of our main results.

1.2.1 Binary phase states
As we mentioned earlier, Montanaro [36] and Roettler [43] showed how to learn degree-2
phase states using O(n) copies of the state. Crucial to both their learning algorithms was the
following so-called Bell-sampling procedure: given two copies of |ψf ⟩ = 1√

2n

∑
x(−1)f(x)|x⟩

where f(x) = x⊤Ax (where A ∈ Fn×n
2 ), perform n CNOTs from the first copy to the second,

and measure the second copy. One obtains a uniformly random y ∈ Fn
2 and the state

1√
2n

∑
x

(−1)f(x)+f(x+y)|x⟩ = (−1)y⊤Ay

√
2n

∑
x

(−1)x⊤(A+A⊤)·y|x⟩.

TQC 2023
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Using Bernstein-Vazirani [10] one can apply n-qubit Hadamard transform to obtain the
bit string (A + A⊤) · y. Repeating this process O(n logn) many times, one can learn n

linearly independent constraints about A, and along with Gaussian elimination, allows to
learn A + A⊤. Diagonal elements of A can be learned with one additional copy of |ψf ⟩.
Applying a controlled-Z gate between all pairs of qubits i > j for which (A + A⊤)ij = 1
results in the state

∑
x(−1)

∑
i

xiAii |x⟩, which can be learned using Bernstein-Vazarani.
Applying this same Bell-sampling procedure to degree-3 phase states does not easily learn

the phase function. In this direction, from two copies of the degree-3 phase state |ψf ⟩ one
obtains a uniformly random y ∈ Fn

2 and the state |ψgy ⟩ = 1√
2n

∑
x(−1)gy(x)|x⟩ for a degree-2

polynomial gy(x) = f(x) + f(x+ y). One might now hope to apply the degree-2 learning
algorithm from above, but since the single copy of |ψgy ⟩ was randomly generated, it takes
Ω(

√
2n) copies of |ψf ⟩ to obtain enough copies of |ψgy

⟩. Our main idea is to circumvent this
Bell-sampling approach and instead propose two techniques that allow us to learn binary
phase states using separable and entangled measurements which we discuss further below.

Separable measurements, upper bound. Our first result is that we are able to learn binary
phase states using separable measurements with sample complexity O(nd). In order to
prove our upper bounds of sample complexity for learning with separable measurements, we
make a simple observation. Given one copy of |ψf ⟩ = 1√

2n

∑
x(−1)f(x)|x⟩, measure qubits

2, 3, . . . , n in the computational basis. Suppose the resulting string is y ∈ {0, 1}n−1. The
post-measurement state of qubit 1 is then given by

|ψf,y⟩ = 1√
2

[
(−1)f(0y)|0⟩ + (−1)f(1y)|1⟩

]
.

By applying a Hadamard transform to |ψf,y⟩ and measuring, the algorithm obtains p1(y) =
f(0y) + f(1y) mod 2, which can be viewed as the derivative of f in the first direction at
point y. Furthermore observe that p1 is a degree ≤ d− 1 polynomial over (n− 1) variables.
Hence, the learning algorithm repeatedly measures the last (n − 1) qubits and obtains
y(1), . . . , y(M) for M = nd−1 and obtains (y(k), p1(y(k))) for all k = 1, 2, . . . ,M using the
procedure above, which suffices to learn p1 completely. Then the algorithm repeats the same
procedure by measuring all the qubits except the second qubit in the computational basis
and learns the derivative of f in the second direction. This is repeated over all the n qubits.
Through this procedure, a learning algorithm learns the partial derivatives of f in the n
directions and a simple argument shows that this is sufficient to learn f completely. This
gives an overall sample complexity of O(nd). The procedure above only uses single qubit
measurements in the {X,Z} basis.

Separable measurements, lower bound. Given the algorithm for learning binary phase
states using separable measurements, a natural question is: Is the upper bound on sample
complexity we presented above tight? Furthermore, suppose the learning algorithm was
allowed to make arbitrary n-qubit measurements on a single copy of |ψf ⟩, instead of single
qubit measurements (which are weaker than single copy measurements), then could we
potentially learn f using fewer than O(nd) copies?

Here we show that if we allowed arbitrary single copy measurements, then a learning
algorithm needs Ω(nd) many copies of |ψf ⟩ to learn f . In order to prove this lower bound,
our main technical idea is the following. Let f be a degree-d polynomial with n variables
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sampled uniformly at random. Suppose a learning algorithm measures the phase state |ψf ⟩
in an arbitrary orthonormal basis {U |x⟩}x. We show that the distribution describing the
measurement outcome x is “fairly” uniform. In particular,

E
f

[H(x|f)] ≥ n−O(1), (5)

where H(x|f) is the Shannon entropy of a distribution P (x|f) = |⟨x|U∗|ψf ⟩|2. Thus, for
a typical f , measuring one copy of the phase state |ψf ⟩ provides at most O(1) bits of
information about f . Since a random uniform degree-d polynomial f with n variables has
entropy Ω(nd), one has to measure Ω(nd) copies of ψf in order to learn f . To prove Eq. (5),
we first lower bound the Shannon entropy by Renyi-two entropy and bound the latter by
deriving an explicit formula for Ef [|ψf ⟩⟨ψf |⊗2].

Entangled measurements. After settling the sample complexity of learning binary phase
states using separable measurements, one final question question remains: Do entangled
measurements help in reducing the sample complexity? For the case of quadratic polynomials,
we know that Bell measurements (which are entangled measurements) can be used to learn
these states in sample complexity O(n). However, as mentioned earlier, it is unclear how to
extend the Bell measurement procedure for learning larger degree polynomials.

Here, we give a learning algorithm based on the so-called pretty-good measurements
(PGM) that learns |ψf ⟩ for a degree-d polynomial f using O(nd−1) copies of |ψf ⟩. In order
to prove this bound, we follow the following three step approach: (a) we first observe that
in order to learn degree-d binary phase states, the optimal measurement is the pretty good
measurement since the ensemble S = {|ψf ⟩}f is geometrically uniform. By geometrically
uniform, we mean that S can be written as S = {Uf |ϕ⟩}f where {Uf }f is an Abelian group.
(b) We next observe a property about the geometrically uniform state identification problem
(which is new as far as we are aware): suppose S is a geometrically uniform ensemble,
then the success probability of the PGM in correctly identifying f , given copies of |ψf ⟩,
is independent of f , i.e., every element of the ensemble has the same probability of being
identified correctly when measured using the PGM. (c) Finally, we need one powerful tool
regarding the the weight distribution of Boolean polynomials: it was shown in [1] that for any
degree-d polynomial f , the following relation on wt(f) or the fraction of strings in {0, 1}n

for which f is one holds:

|{f ∈ P(n, d) : wt(f) ≤ (1 − ε)2−ℓ}|≤ (1/ε)Cℓ4·( n−ℓ
≤d−ℓ),

for every ε ∈ (0, 1/2) and ℓ ∈ {1, . . . , d − 1}. Using this statement, we can comment on
the average inner product of |⟨ψf |ψg⟩| over all ensemble members with f ̸= g ∈ P(n, d).
Combining this with a well-known result of PGMs, we are able to show that, given M =
O(nd−1) copies of |ψf ⟩ for f ∈ S, the PGM identifies f with probability ≥ 0.99. Combining
observations (a) and (b), the PGM also has the same probability of acceptance given an
arbitrary f ∈ S. Hence, we get an overall upper bound of O(nd−1) for sample complexity of
learning binary phase states using entangled measurements.

The lower bound for entangled measurement setting is straightforward: each quantum
sample 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩ provides n bits of information and the goal is to learn f

which contains O(nd) bits of information, hence by Holevo’s bound, we need at least nd−1

quantum samples in order to learn f with high probability.

TQC 2023
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1.2.2 Generalized phase states
As far as we are aware, ours is the first work that considers the learnability of generalized
phase states (using either entangled or separable measurements). The sample complexity
upper bounds follow the same high-level idea as that in the binary phase state setting.
However, we need a few more technical tools for this setting which we discuss below.

Separable bounds. At a high-level, the learning procedure for generalized phase states is
similar to the procedure for learning binary phase states with the exception of a couple of
subtleties that we need to handle here. Suppose we perform the same procedure as in binary
phase states by measuring the last (n− 1) qubits in the computational basis. We then obtain
a uniformly random y ∈ Fn−1

2 , and the post-measurement state for a generalized phase state
is given by

|ψf,y⟩ = 1√
2

(ωf(0y)
q |0⟩ + ωf(1y)

q |1⟩).

This state is proportional to (|0⟩ + ωc
q|1⟩)/

√
2, where c = f(1y) − f(0y) (mod q). In the

binary case, q = 2, the states associated with c = 0 and c = 1 are orthogonal, so that the
value of c can be learned with certainty by measuring |ψf,y⟩ in the Pauli X basis. However,
in the generalized case, q > 2, the states (|0⟩ + ωc

q|1⟩)/
√

2 with c ∈ Zq are not pairwise
orthogonal. It is then unclear how to learn c given a single copy of |ψf,y⟩. However, we
observe that it is still possible to obtain a value b ∈ Zq such that b ̸= c with certainty.
To this end, consider a POVM whose elements are given by M = {|ϕb⟩⟨ϕb|}b∈Zq

, where
|ϕb⟩ = 1√

2 (|0⟩ − ωb
q|1⟩). Applying this POVM M onto an unknown state (|0⟩ + ωc

q|1⟩)/
√

2
we observe that c is the outcome with probability 0 and furthermore every other outcome
b ̸= c appears with non-negligible probability Ω(q−3).

Hence with one copy of 1√
2n

∑
x∈{0,1}n ω

f(x)
q |x⟩, we obtain uniformly random y ∈ {0, 1}n−1

and b ∈ Zq such that f(1y) − f(0y) ̸= b. We now repeat this process m = O(nd−1) many
times and obtain (y(k), b(k)) for k = 1, 2, . . . ,M such that f(1y(k)) − f(0y(k)) ̸= b(k) for all
k ∈ [M ]. We next show a variant of the Schwartz-Zippel lemma in the following sense: that
for every f ∈ Pq(n, d) and c ∈ Zq, then either f is a constant function or the fraction of
x ∈ Fn

2 for which f(x) ̸= c is at least 2−d. Using this, we show that after obtaining O(2dnd−1)
samples, we can find a polynomial g ∈ Pq(n− 1, d− 1) for which f(1y) − f(0y) = g(y). We
now repeat this protocol for n different directions (by measuring each of the n qubits in
every iteration) and we learn all the n directional derivatives of f , which suffices to learn f

completely.

Entangled bounds. We do not give a result on learning generalized phase states with
entangled measurements. We expect the proof of the sample complexity upper bound for
learning generalized phase states using entangled measurements should proceed similarly to
our earlier analysis of learning binary phase states using entangled measurements. However,
we need a new technical tool that generalizes the earlier work on the weight distribution [2]
of Boolean functions f : Fn

2 → F2 to those of form f : Fn
2 → Zq with q = 2d.

1.2.3 Learning with further constraints
Learning sparse and low-Fourier degree states. A natural constraint to put on top of
having low F2-degree in the polynomial is the sparsity, i.e., number of monomials in the F2
decomposition of f . Sparse low-degree phase states appear naturally when learning circuits
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with few gates. In particular, suppose we are learning a quantum circuit U with s gates from
{Z,CZ, . . . ,Cd−1Z} (where CmZ is the controlled-Z gate with m controls), then the output
of U |+⟩⊗n is a phase state with sparsity-s and degree-d.

One naive approach to learn sparse F2 polynomials is to directly apply our earlier learning
algorithm for binary phase states but this ignores the F2-sparsity information, and doesn’t
improve the sample complexity. Instead, here we use ideas from compressed sensing [20]
to propose a linear program that allows us to improve the sample complexity to O(2dsn).
Finally we make an observation that, if the function has Fourier-degree d, then one can learn
f , given only O(2d logn) many copies of |ψf ⟩, basically using the fact that there are only
22d many such functions, each having at least a 2−d distance between them.

Learning with depolarizing noise. One motivation for learning stabilizer states was potential
experimental demonstrations of the learning algorithm [41]. Here, we consider a theoretical
framework in order to understand the sample complexity of learning degree-2 phase states
under global and local depolarizing noise. In this direction, we present two results. Under
global depolarizing noise, i.e., when we are given ρf = (1 − ε)|ψf ⟩⟨ψf |+ε · I, then it suffices
to take O(n1+ε) many copies ρf in order to learn f . The crucial observation is that one
can use Bell sampling to reduce learning ρf to learning parities with noise, which we can
accomplish using O(n1+ε) samples and in time 2n/(log log n) [32]. Additionally, however, a
simple argument reveals that under local depolarizing noise, the sample complexity of learning
stabilizer states is exponential in n.

1.3 Organization
In Section 2, we introduce phase states, discuss separable and entangled measurements.
In Section 3, we prove our upper and lower bounds for learning binary phase states with
separable and entangled measurements. We omit our results on learning sparse and low-
Fourier-degree phase states, and binary phase states under depolarizing noise from this
version of the paper (see [6]). In Section 4, we prove our upper bound for learning generalized
phase states using separable and entangled measurements. Our algorithms for learning
quantum phase states can be used to learn the corresponding circuits that produce them.
We explicitly discuss the connection between phase states, and the diagonal unitaries in the
d-th level of the Clifford hierarchy and IQP circuits in [6].

2 Preliminaries

2.1 Notation
Let [n] = {1, . . . , n}. Let ei be an n-dimensional vector with 1 in the ith coordinate and 0s
elsewhere. We denote the finite field with the elements {0, 1} as F2 and the ring of integers
modulo q as Zq = {0, 1, . . . , q − 1} with q usually being a power of 2 in this work. For a
Boolean function f : Fn

2 → F2, the bias of f is defined as

bias(f) = E
x

[(−1)f(x)],

where the expectation is over a uniformly random x ∈ {0, 1}n. For g : Fn
2 → Z2d , the bias of g

in the coordinate j ∈ F⋆
2d is defined as biasj(g) = Ex[(ω2d)j·g(x)]. For a function f : Fn

2 → F2,
y ∈ Fn−1

2 and k ∈ [n], we denote (Dkf)(y) = f(yk=1) + f(yk=0), where yi=1, yi=0 ∈ Fn
2 is

defined as: the ith bit of yi=1 equals 1 and yi=0 equals 0 and otherwise equals y.
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3:10 Optimal Algorithms for Learning Quantum Phase States

2.2 Boolean Functions
A Boolean function f : Fn

2 → F2 can be uniquely represented by a polynomial over F2 as
follows (which we call its F2 representation):

f(x) =
∑

J⊆[n]

αJ

∏
i∈J

xi (mod 2), (6)

where αJ ∈ {0, 1}. Similar to Eq. (6), we can write Boolean functions f : Fn
2 → Zq as

f(x) =
∑

J⊆[n]

αJ

∏
i∈J

xi (mod q) (7)

for some integer coefficients αJ ∈ {0, 1, . . . , q − 1}. Throughout this paper, unless explicitly
mentioned, we will be concerned with writing Boolean functions as a decomposition over F2
or Zq with q = 2d. The F2 degree of f is defined as

deg(f) = max{|J |: αJ ̸= 0}.

Similarly for polynomials over Z2d , we can define the degree as the size of the largest monomial
whose coefficient αJ is non-negative.

We will call g : Fn
2 → F2 with g =

∏
i∈J xi as monic monomials over n variables of at

most degree-d, characterized by set J ⊆ [n], |J |≤ d. We will denote the set of these monic
monomials by M(n, d). Note that |M(n, d)|=

∑d
j=0

(
n
j

)
= O(nd). We will denote the set of

polynomials over n variables of F2-degree d as P(n, d). Note that these polynomials are just
linear combinations of monomials in M(n, d). We will denote the set of polynomials over n
variables of F2-degree d with sparsity s as P(n, d, s). Similarly, we will denote Pq(n, d) as
the set of all degree-d Boolean polynomials f : Fn

2 → Zq with n variables. In particular, one
can specify any polynomial f ∈ Pq(n, d) by O(dnd) bits and |Pq(n, d)|≤ 2O(dnd).

Consider a fixed d, and any x ∈ Fn
2 . Let the d-evaluation of x, denoted by evald(x), be

a column vector in F|M(n,d)|
2 with its elements being the evaluations of x under different

monomials g ∈ M(n, d). This can be expressed as follows:

evald(x) =

 ∏
i∈J⊆[n],|J|≤d

xi

⊤

(8)

For a set of points x = (x(1), x(2), . . . , x(m)) ∈ (Fn
2 )m, we will call the matrix in F|M(n,d)|×m

2
with its kth column corresponding to d-evaluations of x(k), as the d-evaluation matrix of x,
and denote it by Qx.

2.3 Useful Lemmas
Let ei ∈ Fn

2 denote the vector of all zeros except for a 1 in the ith coordinate.

▶ Fact 1. Let d ∈ [n], s ≤ |M(n, d)|=
∑d

k=1
(

n
k

)
, and f ∈ P(n, d, s). There exists gi ∈

P(n, d− 1, s) such that gi(x) = f(x+ ei) + f(x) (mod 2) for all x ∈ {0, 1}n.

The proof of this fact is straightforward. Without loss of generality, consider i = 1. For every
f(x) =

∑
S αS

∏
i∈S xi, we can express it as

f(x) = x1p1(x2, . . . , xn) + p2(x2, . . . , xn),
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where p1 has degree ≤ d− 1 and p2 has degree ≤ d. Observe that f(x+ e1) − f(x) is either
p1(x2, . . . , xn) or −p1(x2, . . . , xn) which has degree d− 1 and corresponds to the polynomial
g1 in the fact statements. This applies for every coordinate i.

Note that the polynomial gi above is also often called the directional derivative of f in
direction w and is denoted as Dif .

▶ Fact 2. Let N, s ≥ 1 such that γ = s/N ≤ 1/2. Then we have
s∑

ℓ=1

(
N

ℓ

)
≤ 2Hb(γ)N ≤ 22γ log(1/γ).

where we used above that Hb(γ) = γ log 1
γ + (1 − γ) log 1

1−γ ≤ 2γ log 1
γ (for γ ≤ 1/2).

▶ Lemma 1 (The Schwartz-Zippel Lemma). Let p(y1, . . . , yn) be a nonzero polynomial on n

variables with degree d. Let S be a finite subset of R, with at least d elements in it. If we
assign y1, . . . , yn values from S independently and uniformly at random, then

Pr[p(y1, . . . , yn) = 0] ≤ d

|S|
. (9)

▶ Lemma 2 ([38]). Let p(x1, . . . , xn) be a non-zero multilinear polynomial of degree d. Then

Pr
x∈{0,1}n

[p(x) = 0] ≤ 1 − 2−d,

where the probability is over a uniformly random distribution on {0, 1}n.

We will also need the following structural theorem about Reed-Muller codes which
comments on the weight distribution of Boolean functions f : Fn

2 → F2.

▶ Theorem 3 ([2, Theorem 3]). Let n ≥ 1 and d ≤ n/2. Define |f |=
∑

x∈{0,1}n [f(x) = 1]
and wt(f) = |f |/2n. Then, for every ε ∈ (0, 1/2) and ℓ ∈ {1, . . . , d− 1}, we have that

|{f ∈ P (n, d) : wt(f) ≤ (1 − ε)2−ℓ}|≤ (1/ε)Cℓ4·( n−ℓ
≤d−ℓ).

Fix w = (1 − ε)2n−ℓ and we get

|{f ∈ P (n, d) : |f |≤ w}|≤ (1 − w/2n−ℓ)−Cℓ4·( n−ℓ
≤d−ℓ).

▶ Lemma 4 (Fano’s inequality). Let A and B be classical random variables taking values in
X (with |X |= r) and let q = Pr[A ̸= B]. Then,

H(A|B) ≤ Hb(q) + q log(r − 1),

where H(A|B) is the conditional entropy and Hb(q) is the standard binary entropy.

2.4 Measurements
Throughout this paper we will be concerned with learning algorithms that use either separable
or entangled measurements. Given |ψf ⟩⊗k, a learning algorithm for f is said to use separable
measurements if it only measure each copy of |ψf ⟩ separately in order to learn f . Similarly,
a learning algorithm for f is said to use entangled measurements if it makes an entangled
measurement on the k-fold tensor product |ψf ⟩⊗k. In this direction, we will often use two
techniques which we discuss in more detail below: sampling random partial derivatives in
order to learn from separable measurements and Pretty Good Measurements in order to
learn from entangled measurements.
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3:12 Optimal Algorithms for Learning Quantum Phase States

2.4.1 Separable Measurements
Below we discuss a subroutine that we will use often to learn properties about f : Fn

2 → F2:
given a single copy of |ψf ⟩ = 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩, the subroutine produces a uniformly

random y ∈ Fn−1
2 and f(1y) + f(0y) (mod 2). To this end, suppose we measure qubits

2, 3, . . . , n of |ψf ⟩ in the usual Z basis. We denote the resulting string as y ∈ {0, 1}n−1. The
post-measurement state of qubit 1 is then given by

|ψf,y⟩ = 1√
2

[
(−1)f(0y)|0⟩ + (−1)f(1y)|1⟩

]
. (10)

We note that |ψf,y⟩ is then an X-basis state (|+⟩ or |−⟩) depending on the values of
f(1y) and f(0y). If f(1y) = f(0y), then |ψf,y⟩ = |+⟩ and if f(1y) = f(0y) + 1 (mod 2),
then |ψf,y⟩ = |−⟩. Measuring qubit 1 in the X-basis and qubits 2, 3, . . . , n in the Z-
basis thus produces examples of the form (y, b) where y ∈ {0, 1}n−1 is uniformly random
and b = f(0y) + f(1y) (mod 2). Considering Fact 1 with the basis of e1, we note that
theses examples are of the form (y,D1f(y)), where D1f(y) = f(1y) + f(0y) (mod 2) is the
partial derivative of f along direction e1. Changing the measurement basis chosen above
to ZZ · · ·Xk · · ·Z such that we measure all the qubits in the Z basis except for the kth
qubit which is measured in the X basis, will allow us to obtain random samples of the form
(y,Dkf(y)). Accordingly, we introduce a new subroutine.

▶ Definition 1 (Random Partial Derivative Sampling (RPDS) along ek). For every k ∈ [n],
measuring every qubit of |ψf ⟩ in the Z basis, except the kth qubit which is measured in the
X basis, we obtain a uniformly random y ∈ Fn−1

2 and (Dkf)(y).

2.4.2 Entangled Measurements
In general one could also consider a joint measurement applied to multiple copies of |ψf ⟩,
which we refer to as entangled measurements. In this work, we consider two types of
entangled measurements, Bell sampling and the pretty-good measurement. We omit a
detailed discussion on Bell sampling as we do not include the corresponding results for
learning binary phase states under depolarizing noise (see the full version [6] for more).

Pretty Good Measurements. Consider an ensemble of states, E = {(pi, |ψi⟩)}i∈[m], where
p = {p1, . . . , pm} is a probability distribution. In the quantum state identification problem,
a learning algorithm is given an unknown quantum state |ψi⟩ ∈ E sampled according to the
distribution p and the learning algorithm needs to identity i with probability ≥ 2/3. In this
direction, we are interested in maximizing the average probability of success to identify i.
For a POVM specified by positive semidefinite matrices M = {Mi}i∈[m], the probability of
obtaining outcome j equals ⟨ψi|Mj |ψi⟩ and the average success probability is given by

PM(E) =
m∑

i=1
pi⟨ψi|Mi|ψi⟩.

Let P opt(E) = maxM PM(E) denote the optimal average success probability of E , where the
maximization is over the set of valid m-outcome POVMs. For every ensemble E , the so-called
Pretty Good Measurement (PGM) is a specific POVM (depending on the ensemble E) that
does reasonably well against E . In particular, it is well-known that

P opt(E)2 ≤ PP GM (E) ≤ P opt(E).
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We now define the POVM elements of the pretty-good measurement. Let |ψ′
i⟩ = √

pi|ψi⟩,
and E ′ = {|ψ′

i⟩ : i ∈ [m]} be the set of states in E , renormalized to reflect their probabilities.
Define ρ =

∑
i∈[m]|ψ′

i⟩⟨ψ′
i|. The PGM is defined as the set of measurement operators

{|νi⟩⟨νi|}i∈[m] where |νi⟩ = ρ−1/2|ψ′
i⟩ (the inverse square root of ρ is taken over its non-zero

eigenvalues). We will use the properties of these POVM elements later on and will also need
the following theorems about PGMs.

▶ Theorem 5 ([25]). Let S = {ρ1, . . . , ρm}. Suppose ρ ∈ S is an unknown quantum state
picked from S. Let maxi ̸=j∥√

ρi
√
ρj∥1≤ F . Then, given

M = O((log(m/δ))/log(1/F ))

copies of ρ, the Pretty good measurement identifies ρ with probability at least 1 − δ.

The above theorem in fact implies the following stronger statement immediately (also stated
in [8]) that we use here.

▶ Lemma 6. Let S = {ρ1, . . . , ρm}. Suppose ρ ∈ S is an unknown quantum state picked
uniformly from S. Suppose there exists k such that

1
m

∑
i ̸=j

∥
√
ρ⊗k

i

√
ρ⊗k

j ∥1≤ δ,

then given k copies of ρ, the Pretty Good Measurement identifies ρ with probability at least
1 − δ.

3 Learning Binary Phase States

In this section, we consider the problem of learning binary phase states as given by Eq. (1),
assuming that f is a Boolean polynomial of F2-degree d.

3.1 Learning algorithm using separable measurements
We now describe our learning algorithm for learning binary phase states |ψf ⟩ when f has
F2-degree d, using separable measurements. We carry out our algorithm in n rounds, which
we index by t. In the t-th round, we perform RPDS along et (Def. 1) in order to obtain
samples of the form (y,Dtf(y)) where y ∈ {0, 1}n−1. For an m ≥ 1 to be fixed later, we
use RPDS on m copies of |ψf ⟩ to obtain {

(
y(k), Dtf(y(k))

)
}k∈[m] where y(k) ∈ {0, 1}n−1 is

uniformly random. We now describe how to learn Dtf using these m samples.
Using Fact 1, we know that Dtf ∈ P(n − 1, d − 1). Thus, there are at most N =

|M(n − 1, d − 1)|=
∑d−1

k=1
(

n
k

)
= nO(d) monomials in the F2 representation of Dtf . Let

At ∈ Fm×N
2 be the transpose of the (d− 1)-evaluation matrix (defined in Eq. (8)), such that

the kth row of At corresponds to the evaluations of y(k) under all monomials in M(n−1, d−1),
i.e., (y(k)

S )|S|≤d−1, where y(k)
S =

∏
j∈S y

(k)
j , and let βt = (αS)|S|≤d−1 be the vector of unknown

coefficients. Obtaining {(y(k), Dtf(y(k)))}k∈[m], allows one to solve Atβt = Dtf(y) for βt

(where y = (y(1), . . . , y(m)) and (Dtf(y))k = Dtf(y(k))) and learn the F2-representation of
Dtf completely. Over n rounds, one then learns D1f,D2f, . . . ,Dnf . The F2-representations
of these partial derivatives can then be used to learn f completely, as show in Fact 3. This
procedure is shown in Algorithm 1.

▶ Fact 3. Let f : Fn
2 → F2 be such that f ∈ P(n, d). Learning D1f, . . . ,Dnf suffices to

learn f .
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Proof. Let the F2-representation of the unknown f be

f(x) =
∑

J⊆[n],|J|≤d

αJ

∏
i∈J

xi. (11)

The F2-representation of Dtf for any t ∈ {1, 2, . . . , n} is then given by

Dtf(x) =
∑

J⊆[n]:
t∈J,|J|≤d

αJ

∏
i∈J\t

xi, (12)

where we notice that Dtf only contains those monomials that correspond to sets J containing
the component xt. Let the F2-representation of Dtf with the coefficient vector βt be given
by

Dtf(x) =
∑

S⊂[n],|S|≤d−1

(βt)S

∏
i∈S

xi. (13)

Suppose an algorithm learns D1f, . . . ,Dnf . In order to learn f , we must retrieve the
coefficients αJ from the learned coefficients {βt}t∈{1,2,...,n}. We accomplish this by noting
that (βt)S = αS∪t or in other words, αJ = {βt}J\t, t ∈ J . However, there may be multiple
values of t that will allow us retrieve αJ . For example, suppose f contains the monomial
term x1x2x3 (i.e., J = {1, 2, 3}) then α{1,2,3} could be retrieved from (β1){2,3}, (β2){1,3}, or
(β3){1,2}. When Dtf (or βt) for all t is learned with zero error, all these values coincide and it
doesn’t matter which learned coefficient is used. When there may be error in learning Dtf (or
βt), we can carry out a majority vote: αJ = Majority({(βt)J\t|t ∈ J}) for all J ⊆ [n], |J |≤ d.
The majority vote is guaranteed to succeed as long as there is no error in at least half of the
contributing βt (which is the case in our learning algorithm). ◀

Algorithm 1 Learning binary phase states through separable measurements.

Input: Given M = O((2n)d) copies of |ψf ⟩ where f ∈ P(n, d)
1: for qubit t = 1, . . . , n do
2: Set m = M/n

3: Perform RPDS along et to obtain {(y(k), Dtf(y(k))}k∈[m] by measuring m copies of
|ψf ⟩.

4: Solve the linear system of equations At · βt = Dtf(y) to learn Dtf explicitly.
5: end for
6: Use Fact 3 to learn f using D1f, . . . ,Dnf (let f̃ be the output).

Output: Output f̃

We now prove the correctness of this algorithm.

▶ Theorem 7. Let n ≥ 2, d ≤ n/2. Algorithm 1 uses M = O(2dnd) copies of an unknown |ψf ⟩
for f ∈ P(n, d) and with high probability identifies f using single qubit X,Z measurements.

Proof. Algorithm 1 learns f by learning D1f, . . . ,Dnf and thereby learns f completely.
Here we prove that each Dtf can be learned with m = O(2dnd−1) copies of |ψf ⟩ and an
exponentially small probability of error. This results in an overall sample complexity of
O(2dnd) for learning f and hence |ψf ⟩. Let us consider round t in Algorithm 1. We generate
m constraints {

(
yk, (Dtf)(y(k)

)
}k∈[m] where y(k) ∈ Fn−1

2 by carrying out RPDS along et on
m copies of |ψf ⟩.
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We learn the F2-representation of Dtf by setting up a linear system of equations using
these m samples: Atβt = Dtf(y), where At is the transposed (d − 1)-evaluation matrix
in round t, evaluated over y = (y(1), y(2), . . . y(m)), and βt ∈ F|M(n−1,d−1)|

2 is the collective
vector of coefficients corresponding to the monomials in M(n− 1, d− 1). By construction,
this system has at least one solution. If there is exactly one solution, then we are done.
Otherwise, the corresponding system has a non-zero solution, that is, there exists a non-zero
degree-(d− 1) polynomial g : Fn−1

2 → F2 such that g(y(j)) = 0 for all j = 1, 2, . . . ,m.
Below we prove that the probability of this bad event can be bounded through the

Schwartz-Zippel lemma. Applying Lemma 2 and by noting that yj ∈ F(n−1)
2 are independent

and uniformly distributed, we have that

Pr[g(y(1)) = g(y(2)) = · · · = g(y(m)) = 0] ≤ (1 − 2−d)m ≤ e−m2−d

(14)

Let Pnnz(n, d) be the set of all degree-d polynomials g : Fn
2 → F2 which are not identically

zero. Define event

BAD(y1, . . . , ym) = [∃g ∈ Pnnz(n− 1, d− 1) : g(y1) = . . . = g(ym) = 0 (mod 2)]. (15)

We note that |Pnnz(n− 1, d− 1)|≤ 2N where N = O(nd−1). By union bound and Eq. (14),
we have

Pr[BAD(y(1), . . . , y(m))] ≤ |Pnnz(n− 1, d− 1)|·(1 − 2−d)m ≤ 2nd−1−m2−d(ln 2). (16)

Thus choosing m = O((2n)d−1) is enough to learn all coefficients {αJ}t∈J (through βt) in
the F2 representation of f with an exponentially small probability of error. We need to
repeat this over all the n qubits in order to learn D1f, . . . ,Dnf and then use Fact 3 to learn
f completely. This gives an overall sample complexity of O((2n)d) for learning binary phase
states. Observe that the only measurements that we needed in this algorithm were single
qubit {X,Z} measurements. ◀

▶ Corollary 8. An n-qubit state |ψf ⟩ with the unknown Boolean function f of given Fourier-
sparsity s can be learned with Algorithm 1 that consumes M copies of |ψf ⟩ with probability
1 − 2−Ω(n) provided that M ≥ O(snlog s).

The proof of this corollary simply follows from the following: for a Boolean function, the
Fourier sparsity s of f is related to the F2-degree d of f [9] as d ≤ log s. Along with Theorem 7
we obtain the corollary.

3.2 Learning using entangled measurements
We now consider the problem of learning binary phase states using entangled measurements.
We have the following result.

▶ Theorem 9. Let n ≥ 2, d ≤ n/2. There exists an algorithm that uses M = O((2n)d−1)
copies of an unknown |ψf ⟩ for f ∈ P(n, d) and identifies f using entangled measurements
with probability ≥ 2/3. There is also a lower bound of Ω(nd−1) for learning these states.

Proof. In order to prove this theorem, we follow the following steps. We first observe that the
optimal measurement for our state distinguishing problem is the pretty good measurement
(PGM). Second we observe that the success probability of the PGM is the same for every
concept in the ensemble. We bound the success probability of the PGM using Corollary 6
we get our upper bound.
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For f ∈ P(n, d), let Uf be the unitary defined as Uf = diag({(−1)f(x)}x), that satisfies
Uf |+⟩n = |ψf ⟩. Observe that the set {Uf }f∈P(n,d) is an Abelian group. The ensemble we are
interested in is S = {Uf |+⟩n}f∈P(n,d) and such an ensemble is called geometrically uniform
if the {Uf } is an Abelian group. A well-known result of Eldar and Forney [21] showed that
the optimal measurement for state distinguishing a geometrically uniform (in particular S)
is the pretty-good measurement. We now show that the success probability of the PGM is
the same for every state in the ensemble. In this direction, for M ≥ 1, let σf = |ψf ⟩⟨ψf |⊗M .
The POVM elements of the pretty good measurement {Ef : f ∈ P(n, d)} is given by the
POVM elements Ef = S−1/2σfS

−1/2 where S =
∑

f∈P(n,d) σf . The probability that the
PGM identifies the unknown σf is given by

Pr(f) = Tr(σfEf ) = ⟨ψ⊗M
f |S−1/2|ψ⊗M

f ⟩2.

Our claim is that Pr(f) is the same for every f ∈ P(n, d). Using the Abelian property of the
unitaries {Uf }f , observe that Uf |ψg⟩ = |ψf⊕g⟩ for every f, g ∈ P(n, d). Thus, we have that
(U⊗M

f )†SU⊗M
f = S, which implies that(U⊗M

f )†S−1/2U⊗M
f = S−1/2. Hence it follows that

Pr(f) = (⟨+|⊗M (U⊗M
f )†S−1/2U⊗M

f |+⟩⊗M )2 = (⟨+|⊗MS−1/2|+⟩⊗M )2 = Pr(0),

for every f ∈ P(n, d). Finally, observe that ⟨ψf |ψg⟩ = Ex [(−1)f(x)+g(x)] = 1 − 2 Prx[f(x) ̸=
g(x)]. Let P∗(n, d) be the set of non-constant polynomials in P(n, d). We now have the
following

1
2( n

≤d)
∑
f ̸=g:

f,g∈P (n,d)

∥
√
ρ⊗k

f

√
ρ⊗k

g ∥1=
∑

g∈P ∗(n,d)

(1−2 Pr
x

[g(x) = 1])2k =
∑

g∈P ∗(n,d)

(1−2wt(g))2k

which we can further upper bound as follows

d−1∑
ℓ=1

∑
g∈P ∗(n,d)

(1 − 2|g|/2n)2k ·
[
|g|∈ [2n−ℓ−1, 2n−ℓ − 1]

]
=

∑
g∈P ∗(n,d)

(1 − 2|g|/2n)2k ·
[
|g|∈ [2n−2, 2n−1 − 1]

]

+
d−1∑
ℓ=2

∑
g∈P ∗(n,d)

(1 − 2|g|/2n)2k ·
[
|g|∈ [2n−ℓ−1, 2n−ℓ − 1]

]

≤ 2n−12−2k+C( n−1
≤d−1) +

d−1∑
ℓ=2

(1 − 1
2ℓ

)2k
∑

g∈P ∗(n,d)

[
|g|≤ 2n−ℓ

]
,

where the first equality used that the PGM has the same success probability for every
f, g ∈ P(n, d), third equality used that |g|≥ 2n−d for any non-zero polynomial g ∈ P (n, d) [33]
and last inequality used Theorem 3. For k = O(nd−1) (by picking a sufficiently large constant
in O(·)), the first term is at most ≤ 1/100. To bound the second term, using Theorem 3 we
have

d−1∑
ℓ=2

(1 − 1
2ℓ

)2k
∑

g∈P ∗(n,d)

[
|g|≤ 2n−ℓ

]
≤

d−1∑
ℓ=2

2n−ℓ exp(−2k/2ℓ + (n− ℓ)ℓ4
(
n− ℓ

≤ d− ℓ

)
).

Each term is exp(−nd−1) for k = O(nd−1), so the overall sum is ≤ 1/100. Corollary 6 implies
our desired upper bound.



S. Arunachalam, S. Bravyi, A. Dutt, and T. J. Yoder 3:17

In order to see the lower bound, observe that each state |ψf ⟩ contains n bits of information
and the goal of the learning algorithm is to learn an unknown f , i.e., obtain O(nd) bits of
information. Hence by Holevo’s theorem [27], one requires Ω(nd−1) copies of the unknown
state for state identification.2 ◀

3.3 Lower bounds
In the last section we saw that Θ(nd−1) many copies of |ψf ⟩ with degree-d are necessary and
sufficient to learn f if we allowed only entangled measurements. Earlier we saw that O(nd)
many copies of |ψf ⟩ sufficed to learn f using separable measurements. A natural question is:
Can we learn f using fewer copies if we are restricted to using only separable measurements?
In the theorem below, we provide a lower bound that complements our upper bound, thereby
showing Θ(nd) copies are necessary and sufficient to learn f using separable measurements.

▶ Theorem 10. Let 2 ≤ d ≤ n/2. Suppose there exists an algorithm that with probability
≥ 1/10, learns an n-variate polynomial f ∈ P(n, d), given M copies of the phase state
|ψf ⟩ = 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩, measuring each copy in an arbitrary orthonormal basis,

and performing an arbitrary classical processing. Then M = Ω(log|P(n, d)|) = Ω(nd).

Proof. The proof is given in the full version of this paper [6]. ◀

4 Learning generalized phase states

In this section, we consider the problem of learning generalized phase states |ψf ⟩ as given by
Eq. (3), assuming that f is a degree-d Zq-valued polynomial, f ∈ Pq(n, d). Note that since
our goal is to learn |ψf ⟩ up to an overall phase, we shall identify polynomials which differ
only by a constant shift.

▶ Definition 2. Polynomials f, g ∈ Pq(n, d) are equivalent if f(x) − g(x) is a constant.

To simplify notation, here and below we omit modulo operations keeping in mind that
degree-d polynomials take values in the ring Zq. Thus all equal or not-equal constraints that
involve a polynomial’s value are modulo q.

4.1 Learning using separable measurements
Let q ≥ 2 and d ≥ 1 be integers. For technical reasons, we shall assume that q is even. Let
ωq = e2πi/q. Our main result is as follows.

▶ Theorem 11. Let d ≤ n/2. There exists an algorithm that uses M = O(2dq3nd log q) =
O(nd) copies of a generalized phase state |ψf ⟩ = 1√

2n

∑
x∈{0,1}n ω

f(x)
q |x⟩ with an unknown

polynomial f ∈ Pq(n, d) and outputs a polynomial g ∈ Pq(n, d) such that g is equivalent to
f with the probability at least 1 − 2−Ω(n). The quantum part of the algorithm requires only
single-qubit unitary gates and measurements in the standard basis.

Moreover, suppose there exists an algorithm that with probability ≥ 1/10, learns an n-
variate polynomial f ∈ Pq(n, d), given k copies of |ψf ⟩, measuring each copy in an arbitrary
orthonormal basis, and performing an arbitrary classical processing. Then M = Ω(nd).

2 We refer the reader to Montanaro [35, Proposition 1] for a detailed exposition of this lower bound proof.
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Before stating our learning algorithm and sample complexity, we need the following
lemmas.

▶ Lemma 12. Choose any f ∈ Pq(n, d) and c ∈ Zq. Then either f(x) is a constant function
or the fraction of inputs x ∈ {0, 1}n such that f(x) ̸= c is at least 1/2d.

Proof. We shall use the following simple fact which is proved in [6].

▶ Proposition 1. Consider a function f : {0, 1}n → Zq specified as a polynomial

f(x) =
∑

J⊆[n]

αJ

∏
j∈J

xj (mod q). (17)

Here αJ ∈ Zq are coefficients. The function f is constant if and only if αJ = 0 (mod q) for
all non-empty subsets J ⊆ [n].

We shall prove Lemma 12 by induction in n. The base case of induction is n = d. Clearly,
a non-constant function f : {0, 1}d → Zq takes a value different from c at least one time,
that is, the fraction of inputs x ∈ {0, 1}d such that f(x) ̸= c is at least 1/2d.

Suppose n > d and f ∈ Pq(n, d) is not a constant function. Let d′ be the maximum
degree of non-zero monomials in f . Clearly 1 ≤ d′ ≤ d. Suppose f contains a monomial
αS

∏
j∈S xj where αS ∈ Zq \ {0} and |S|= d′. Since |S|< n, one can choose a variable xi

with i ∈ [n] \ S. Let ga : {0, 1}n−1 → Zq be a function obtained from f by setting the
variable xi to a constant value a ∈ {0, 1}. Clearly, ga ∈ Pq(n − 1, d). The coefficients of
the monomial

∏
j∈S xj in g0 and g1 are αS and αS + αS∪{i} (mod q) respectively. However,

αS∪{i} = 0 (mod q) since otherwise f would contain a monomial xi

∏
j∈S xj of degree larger

than d′. We conclude that both g0 and g1 contain a non-zero monomial αS

∏
j∈S xj . By

Proposition 1, g0 and g1 are not constant functions. Since g0 and g1 are degree-d polynomials
in n− 1 variables, the induction hypothesis gives

Pr
y

[ga(y) ̸= c] ≥ 1
2d
. (18)

Here y ∈ {0, 1}n−1 is picked uniformly at random. Thus

Pr
x

[f(x) ̸= c] = 1
2

[
Pr
y

[g0(y) ̸= c] + Pr
y

[g1(y) ̸= c]
]

≥ 1
2d
. (19)

Here x ∈ {0, 1}n is picked uniformly at random. This proves the induction step. ◀

With this lemma, we are now ready to prove Theorem 11. In the section below we first
describe our learning algorithm and in the next section we prove the theorem by proving the
sample complexity upper bound.

4.1.1 Learning Algorithm in Theorem 11
We are now ready to state our learning algorithm. As in Section 3.1 for learning binary phase
states with separable measurements, we learn generalized phase states through examples
containing information about the derivatives of f(x). The crucial difference between the
binary phase state learning algorithm and the generalized setting is, in the binary case, we
obtained a measurement outcome by that corresponded to by = f(0y) −f(1y), however in the
generalized scenario, we obtain a measurement outcome b′

y that satisfies f(0y) − f(1y) ̸= b′
y.

Nevertheless, we are able to still learn f using such measurement outcomes which we describe
in the rest of the section.
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We now describe the learning algorithm. We carry out the algorithm in n rounds, which
we index by t. For simplicity, we describe the procedure for the first round. Suppose we
measure qubits 2, 3, . . . , n of the state |ψf ⟩ in the Z-basis. Let y ∈ {0, 1}n−1 be the measured
bit string. Note that the probability distribution of y is uniform. The post-measurement
state of qubit 1 is

|ψf,y⟩ = 1√
2

(ωf(0y)
q |0⟩ + ωf(1y)

q |1⟩) (20)

For each b ∈ Zq define a single-qubit state

|ϕb⟩ = 1√
2

(|0⟩ − ωb
q|1⟩) (21)

Using the identity
∑

b∈Zq
ωb

q = 0 one gets

I = 2
q

∑
b∈Zq

|ϕb⟩⟨ϕb| (22)

One can view Eq. (22) as a single-qubit POVM with q elements (2/q)|ϕb⟩⟨ϕb|. Let M be the
single-qubit measurement described by this POVM. Applying M to the state |ψf,y⟩ returns
an outcome b ∈ Zq with the probability

Pr(b|y) := 2
q

|⟨ϕb|ψf,y⟩|2= 1
2q

∣∣∣1 − ωf(1y)−f(0y)−b
q

∣∣∣2
. (23)

Clearly, Pr(b|y) is a normalized probability distribution,
∑

b∈Zq
Pr(b|y) = 1. Furthermore,

f(1y) − f(0y) = b implies Pr(b|y) = 0, (24)

f(1y) − f(0y) ̸= b implies Pr(b|y) ≥ 2
q

sin2 (π/q) = Ω(1/q3). (25)

To conclude, the combined n-qubit measurement consumes one copy of the state |ψf ⟩ and
returns a pair (y, b) ∈ {0, 1}n−1 × Zq such that

f(1y) − f(0y) ̸= b (26)

with certainty and all outcomes b satisfying Eq. (26) appear with a non-negligible probability.
Define a function g : {0, 1}n−1 → Zq such that

g(y) = f(1y) − f(0y). (27)

We claim that g is a degree-(d− 1) polynomial, that is, g ∈ Pq(n− 1, d− 1). Indeed, it is
clear that g(y) is a degree-d polynomial. Moreover, all degree-d monomials in f(x) that
do not contain the variable x1 appear in f(1y) and f(0y) with the same coefficient. Such
monomials do not contribute to g(y). A degree-d monomial in f(x) that contains the variable
x1 contributes a degree-(d− 1) monomial to g(y). Thus g ∈ Pq(n− 1, d− 1), as claimed.

From Eq. (26) one infers a constraint g(y) ̸= bwhenever the combined n-qubit measurement
of |ψf ⟩ returns an outcome (y, b). Suppose we repeat the above process m times obtaining
constraints

g(y(k)) ̸= b(k), k = 1, 2, . . . ,m. (28)

This consumes m copies of |ψf ⟩. We claim that the probability of having more than one
polynomial g ∈ Pq(n− 1, d− 1) satisfying the constraints Eq. (28) is exponentially small if
we choose

m = O(q3 log (q)2dnd−1). (29)
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4.1.2 Sample Complexity bound in Theorem 11
Define a probability distribution π(y⃗, b⃗) where

z⃗ = (y(1), . . . , y(m)) ∈ {0, 1}(n−1)m and b⃗ = (b(1), . . . , b(m)) ∈ (Zq)×m (30)

such that y(j) are picked uniformly at random and b(k) are sampled from the distribution
Pr(b(k)|y(k)) defined in Eq. (23). For each polynomial h ∈ Pq(n− 1, d− 1) define an event

BAD(h) = {(y⃗, b⃗) : h(y(k)) ̸= b(k) for all k ∈ [m]}. (31)

We claim that

Pr[BAD(h)] :=
∑

(y⃗,⃗b)∈BAD(h)

π(y⃗, b⃗) ≤
[
1 − Ω(2−dq−3)

]m (32)

for any h ̸= g. Indeed, consider some fixed k ∈ [m]. The event b(k) ̸= h(y(k)) occurs
automatically if h(y(k)) = g(y(k)). Otherwise, if h(y(k)) ̸= g(y(k)), the event b(k) ̸= h(y(k))
occurs with the probability at most 1 − Ω(1/q3) since b(k) = h(y(k)) with the probability at
least Ω(1/q3) due to Eq. (25). It follows that

Pr
y(k),b(k)

[h(y(k)) ̸= b(k)] ≤ Pr
y(k)

[h(y(k)) = g(y(k))] + Pr
y(k)

[h(y(k)) ̸= g(y(k))]
(
1 − Ω(1/q3)

)
(33)

= 1 − Pr
y(k)

[h(y(k)) ̸= g(y(k))] · Ω(1/q3). (34)

If h and g are equivalent then h(y) = g(y) + c for some constant c ∈ Zq. Note that c ̸= 0
since we assumed h ̸= g. In this case

Pr
y(k)

[h(y(k)) ̸= g(y(k))] = 1. (35)

If h and g are non-equivalent, apply Lemma 12 to a non-constant degree-(d− 1) polynomial
h− g. It gives

Pr
y(k)

[h(y(k)) ̸= g(y(k))] ≥ 1
2d−1 . (36)

In both cases we get

Pr
y(k),b(k)

[h(y(k)) ̸= b(k)] ≤ 1 − Ω(2−dq−3), (37)

which proves Eq. (32) since the pairs (y(k), b(k)) are i.i.d. random variables.
As noted earlier in the preliminaries, observe that |Pq(n − 1, d − 1)|≤ qO(nd−1) =

2O(log (q)nd−1). By the union bound, one can choose m = O(2dq3 log (q)nd−1) such that

Pr

 ⋃
h∈Pq(n−1,d−1)\g

BAD(h)

 ≤ 2O(log (q)nd−1) [
1 − Ω(2−dq−3)

]m ≤ 2−Ω(n). (38)

In other words, the probability that g is the unique element of Pq(n− 1, d− 1) satisfying
all the constraints Eq. (28) is at least 1 − 2−Ω(n). One can identify such polynomial g by
checking the constraints Eq. (28) for every g ∈ Pq(n−1, d−1). If the constraints are satisfied
for more than one polynomial, declare a failure.
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At this point we have learned a polynomial g ∈ Pq(n− 1, d− 1) such that f(1y) −f(0y) =
g(y) for all y ∈ {0, 1}n−1. For simplicity, we ignore the exponentially small failure probability.
Applying the same protocol n times to copies of the quantum state |ψf ⟩ by a cyclic shift of
qubits, one can learn polynomials g0, g1, . . . , gn−1 ∈ Pq(n− 1, d− 1) such that

f(Ci(1y)) − f(Ci(0y)) = gi(y) for all i ∈ [n] and y ∈ {0, 1}n−1, (39)

where C is the cyclic shift of n bits. This consumes M = O(nm) = O(2dq3 log (q)nd) copies
of the state |ψf ⟩. We can assume wlog that f(0n) = 0 since our goal is to learn f(x) modulo
a constant shift. Suppose we have already learned values of f(x) for all bit strings x with
the Hamming weight |x|≤ w (initially w = 0). Any bit string x with |x|= w + 1 can be
represented as x = Ci(1y) for some y ∈ {0, 1}n−1 such that |y|= w. Now Eq. (39) determines
f(x) since |Ci(0y)|= |y|= w so that f(Ci(0y)) is already known and the polynomial gi(y)
has been learned. Proceeding inductively one can learn f(x) for all x.

It remains to note that the POVM Eq. (22) is a probabilistic mixture of projective
single-qubit measurements whenever q is even. Indeed, in this case the states |ϕb⟩ and
|ϕb+q/2⟩ = Z|ϕb⟩ form an orthonormal basis of a qubit, see Eq. (21). Thus the POVM defined
in Eq. (22) can be implemented by picking a random uniform b ∈ Zq and measuring a qubit
in the basis {|ϕb⟩, Z|ϕb⟩}. Thus the learning protocol only requires single-qubit unitary gates
and measurements in the standard basis.

The lower bound in the proof of Theorem 11 follows in a straightforward manner from
the lower bound for binary phase states. Indeed, suppose

f ′(x) =
∑

J∈[n]

αJ

∏
j∈J

xj (mod 2)

is an F2-valued degree-d polynomial, f ′ ∈ P(n, d). Suppose q = 2r for some integer r. Define
a polynomial f(x) = rf ′(x) (mod q). Clearly f ∈ Pq(n, d) and ω

f(x)
q = (−1)f ′(x) for all x,

that is the binary phase state corresponding to f ′ coincides with the generalized phase state
corresponding to f . Using Theorem 10, we obtain a lower bound of M = log|P(n, d)|= Ω(nd)
for learning ψf . This concludes the proof of Theorem 11.

4.2 Learning stabilizer states
We now describe how the algorithm stated in Theorem 11 could be used to learn any n-
qubit stabilizer state (produced by a Clifford circuit applied to |0n⟩ state) using separable
measurements. Note that we can learn a subclass of stabilizer states called graph states
(which are simply binary phase states with d = 2) using Algorithm 1 with the sample
complexity of O(n2) (as shown in Theorem 7).

From a result in [19], we know that a stabilizer state can be represented as follows

|ψ⟩ = 1√
|A|

∑
x∈A

iℓ(x)(−1)q(x)|x⟩, (40)

where A is an affine subspace of Fn
2 , ℓ : Fn

2 → F2 is a linear function and q : Fn
2 → F2 is

quadratic function. Clearly, an alternate form is a generalized phase state with degree-2

|ψf ⟩ = 1√
|A|

∑
x∈A

if(x)|x⟩ (41)

where the summation is over A instead of the entire Fn
2 , and the function f : Fn

2 → Z4 has
its coefficients corresponding to the quadratic monomials take values in {0, 2}. We can now
learn this using separable measurements as stated in the following statement as opposed to
entangled measurements as required by Bell sampling [36].
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▶ Corollary 13. There exists an algorithm that uses M = O(n2) copies of a stabilizer state
|ψf ⟩ = 1√

|A|

∑
x∈A

if(x)|x⟩ with an unknown polynomial f ∈ P4(n, 2) and outputs a polynomial

g ∈ P4(n, 2) such that g is equivalent to f with the probability at least 1 − 2−Ω(n). The
quantum part of the algorithm requires only single-qubit unitary gates and measurements in
the standard basis.

Proof. The subspace A of an unknown stabilizer state can be denoted as a + SA where
a ∈ Fn

2 is a translation vector and SA is a linear subspace of Fn
2 . To learn a and a basis

of the subspace SA, it is enough to measure O(n logn) copies of |ψf ⟩ in the computational
basis. This in turn defines a subset of the n directions {ei} along which we need to search for
non-zero monomials in the partial derivatives of f . We can now use the learning algorithm
in Theorem 11 to learn the unknown stabilizer state using O(n2) copies with the desired
probability. ◀
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