
Improved Algorithm and Lower Bound for Variable
Time Quantum Search
Andris Ambainis #

Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia

Martins Kokainis #

Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia

Jevgēnijs Vihrovs #

Center for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia

Abstract
We study variable time search, a form of quantum search where queries to different items take
different time. Our first result is a new quantum algorithm that performs variable time search with
complexity O(

√
T log n) where T =

∑n

i=1 t2
i with ti denoting the time to check the ith item. Our

second result is a quantum lower bound of Ω(
√

T log T). Both the algorithm and the lower bound
improve over previously known results by a factor of

√
log T but the algorithm is also substantially

simpler than the previously known quantum algorithms.

2012 ACM Subject Classification Theory of computation → Quantum query complexity; Theory of
computation → Quantum complexity theory

Keywords and phrases quantum search, amplitude amplification

Digital Object Identifier 10.4230/LIPIcs.TQC.2023.7

Related Version Full Version: https://arxiv.org/abs/2302.06749

Funding This research was supported by the ERDF project 1.1.1.5/18/A/020.

Acknowledgements We thank Krišjānis Prūsis for useful discussions on the lower bound proof. The
authors are grateful to the anonymous referees for the helpful comments and suggestions.

1 Introduction

We study variable time search [2], a form of quantum search in which the time needed for a
query depends on which object is being queried. Variable time search and its generalization,
variable time amplitude [3] amplification, are commonly used in quantum algorithms. For
example,

Ambainis [3] used variable time amplitude amplification to improve the running time of
HHL quantum algorithm for solving systems of linear equations [12] from Õ(κ2) (where
κ is the condition number of the system) to Õ(κ1+o(1)) in different contexts;
Childs et al. [8] used variable time amplitude amplification to design a quantum algorithm
for solving systems of linear equations with an exponentially improved dependence of the
running time on the required precision;
Le Gall [15] used variable time search to construct the best known quantum algorithm
for triangle finding, with a running time Õ(n5/4) where n is the number of vertices;
De Boer et al. [10] used variable time search to optimize the complexity of quantum
attacks against a post-quantum cryptosystem;
Glos et al. [11] used variable time search to develop a quantum speedup for a classical
dynamic programming algorithm.
Schrottenloher and Stevens [16] used variable time amplitude amplification to transform
a classical nested search into a quantum algorithm, with applications to quantum attacks
on AES.

© Andris Ambainis, Martins Kokainis, and Jevgēnijs Vihrovs;
licensed under Creative Commons License CC-BY 4.0

18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023).
Editors: Omar Fawzi and Michael Walter; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andris.ambainis@lu.lv
https://orcid.org/0000-0002-8716-001X
mailto:martins.kokainis@lu.lv
https://orcid.org/0000-0003-3381-7271
mailto:jevgenijs.vihrovs@lu.lv
https://orcid.org/0000-0002-3143-2610
https://doi.org/10.4230/LIPIcs.TQC.2023.7
https://arxiv.org/abs/2302.06749
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Improved Algorithm and Lower Bound for Variable Time Quantum Search

In those applications, the oracle for the quantum search is a quantum algorithm whose
running time depends on the item that is being queried. For example, we might have a graph
algorithm that uses quantum search to find a vertex with a certain property and the time tv
to check the property may depend on the degree of the vertex v.

In such situations, using standard quantum search would mean that we run the checking
algorithm for the maximum possible time tmax = maxv tv. If most times tv are substantially
smaller, this results in suboptimal quantum algorithms.

A more efficient strategy is to use the variable time quantum search algorithm [2]. It has
two variants: the “known times” variant when times tv for checking various v are known
in advance and can be used to design the algorithm and the “unknown times” variant in
which tv are only discovered when running the algorithm. In the “known times” case, VTS
(variable time search) has complexity O(

√
T) where T =

∑
v t

2
v and there is a matching lower

bound [2].
For the “unknown times” case, the complexity of the variable time search increases

to O(
√
T log1.5 T) and the quantum algorithm becomes substantially more complicated.

Since almost all of the applications of VTS require the “unknown times” setting, it may be
interesting to develop a simpler quantum algorithm.

In more detail, the “unknown times” search works by first running the query algorithm
for a small time T1 and then amplifying v for which the query either returns a positive result
or does not finish in time T1. This is followed by running the query algorithm for longer time
T2, T3, . . . and each time, amplifying v for which the query either returns a positive result or
does not finish in time Ti. To determine the necessary amount of amplification, quantum
amplitude estimation is used. This results in a complex algorithm consisting of interleaved
amplification and estimation steps. This complex structure contributes to the complexity of
the algorithm, via log factors and may also lead to large constants hidden under the big-O.

In this paper, we develop a simple algorithm for variable time search that uses only
amplitude amplification. Our algorithm achieves the complexity of O(

√
T logn) where T is

an upper bound for
∑

v t
2
v provided to the algorithm. (Unlike in the “known times” model,

we do not need to provide t1, . . . , tn but only an estimate for T .) This also improves over
the previous algorithm by a

√
log factor.

To summarize, the key difference from the earlier algorithms [2, 3] is that the earlier
algorithms would use amplitude estimation (once for each amplification step) to determine
the optimal schedule for amplitude amplification for this particular t1, . . . , tn. In contrast,
we use one fixed schedule for amplitude amplification (that depends only on the estimate for
T and not on t1, . . . , tn). While this schedule may be slightly suboptimal, the losses from it
being suboptimal are less than savings from not performing multiple rounds of amplitude
estimations. This also leads to the quantum algorithm being substantially simpler.

Our second result is a lower bound of Ω(
√
T log T), showing that a complexity of Θ(

√
T)

is not achievable. The lower bound is by creating a query problem which can be solved by
variable time search and using the quantum adversary method to show a lower bound for
this problem. In particular, this proves that “unknown times” search is more difficult than
“known times” search (which has the complexity of Θ(

√
T)).

A. Ambainis, M. Kokainis, and J. Vihrovs 7:3

2 Model, definitions, and previous results

We consider the standard search problem in which the input consists of variables x1, . . . , xn ∈
{0, 1} and the task is to find i : xi = 1 if such i exists.

Our model is a generalization of the usual quantum query model. We model a situation
when the variable xi is computed by a query algorithm Qi which is initialized in the state |0⟩
and, after ti steps, outputs the final state |xi⟩ |ψi⟩ for some unknown |ψi⟩. (For most of the
paper, we restrict ourselves to the case when Qi always outputs the correct xi. The bounded
error case is discussed briefly at the end of this section.) In the first ti − 1 steps, Qi can be
in arbitrary intermediate states.

The goal is to construct an algorithm A that finds i : xi = 1 (if such i exists). The
algorithm A can run the query Qi for a chosen t, with Qi outputting xi if ti ≤ t or * (an
indication that the computation is not complete) if ti > t. The complexity of A is the amount
of time that is spent running the query algorithms Qi. Transformations that does not involve
running Qi do not count towards the complexity.

More formally, we assume that, for any T , there is a circuit CT which, on an input∑n
i=1 |i⟩ ⊗ |0⟩ outputs

n∑
i=1

|i⟩ ⊗ |yi⟩ ⊗ |ψi⟩ ,

where yi = xi if ti ≤ T and yi = ∗ if ti > T . The state |ψi⟩ contains intermediate results of
the computation and can be arbitrary. An algorithm A for variable time search consists of
two types of transformations:

circuits CT for various T ;
transformations Ui that are independent of x1, . . . , xn.

If there is no intermediate measurements, an algorithm A is of the form

UkCTk
Uk−1 . . . U1CT1U0

and its complexity is defined as T1 + T2 + . . .+ Tk. In the general case, an algorithm is a
sequence

U0, CT1 , U1, . . . , CTk
, Uk

with intermediate measurements. Depending on the outcomes of those measurements, the
algorithm may stop and output the result or continue with the next transformations. The
complexity of the algorithm is defined as p1T1 + . . .+ pkTk where pi is the probability that
CTi

is performed. (One could also allow Ui and Ti to vary depending on the results of
previous measurements but this will not be necessary for our algorithm.)

If there exists i : xi = 1, A must output one of such i with probability at least 2/3. If
xi = 0, A must output “no such i” with probability at least 2/3.

Known vs. unknown times. This model can be studied in two variants. In the “known
times” variant, the times ti for each i ∈ [n] are known in advance and can be used to design
the search algorithm. In the “unknown times” variant, the search algorithm should be
independent of the times ti, i ∈ [n].

The complexity of the variable time search is characterized by the parameter T =
∑n

i=1 t
2
i .

We summarize the previously known results below.

TQC 2023

7:4 Improved Algorithm and Lower Bound for Variable Time Quantum Search

▶ Theorem 2.1 ([2, 3]).
(a) Algorithm – known times: For any t1, . . . , tn, there is a variable time search algorithm

At1,...,tn
with the complexity O(

√
T).

(b) Algorithm – unknown times: There is a variable time search algorithm A with the
complexity O(

√
T log1.5 T) for the case when t1, . . . , tn are not known in advance.

(c) Lower bound – known times. For any t1, . . . , tn and any variable time search
algorithm At1,...,tn

, its complexity must be Ω(
√
T).

Parts (a) and (c) of the theorem are from [2]. Part (b) is from [3], specialized to the case
of search.

In the recent years there have been attempts to reproduce and improve the aforementioned
results by other means. In [9], the authors obtain a variant of Theorem 2.1(a) by converting
the original algorithms into span programs, which then are composed and subsequently
converted back to a quantum algorithm. More recently, [14] gives variable time quantum walk
algorithm (which generalizes variable time quantum search) by employing a recent technique
of multidimensional quantum walks. While the focus of these two papers is on developing
very general frameworks, our focus is on making the variable time search algorithm simpler.

Concurrently and independently of our work, a similar algorithm for variable time
amplitude amplification was presented in [16], which also relies on recursive nesting of
quantum amplitude amplifications.

Variable time search with bounded error inputs. We present our results for the case when
the queries Qi are perfect (have no error) but our algorithm can be extended to the case if
Qi are bounded error algorithms, at the cost of an extra logarithmic factor.

Let k be the maximum number of calls to CT ’s in an algorithm A. Then, it suffices that
each CT outputs a correct answer with a probability 1 − o(1/k2). This can be achieved by
repeating CT O(log k) times and taking the majority of answers.

Possibly, this logarithmic factor can be removed using methods similar to ones for search
with bounded error inputs in the standard (not variable time) setting [13].

3 Algorithm

We proceed in two steps. We first present a simple algorithm for the case when a sufficiently
good bound on the number of solutions m = |i : xi = 1| are known (Section 3.2). We then
present an algorithm for the general case that calls the simple algorithm multiple times, with
different estimates for the parameter ℓ corresponding to m (Section 3.3).

Both algorithms require an estimate T for which
∑n

i=1 t
2
i ≤ T , with the complexity

depending on T .

3.1 Tools and methods
Before presenting our results, we describe the necessary background about quantum amplitude
amplification [6].

Amplitude amplification – basic construction. Assume that we have an algorithm A that
succeeds with a small probability and it can be verified whether A has succeeded. Amplitude
amplification is a procedure for increasing the success probability. Let

A |0⟩ = sinα |ψsucc⟩ + cosα |ψfail⟩ .

A. Ambainis, M. Kokainis, and J. Vihrovs 7:5

Then, there is an algorithm A(k) that involves k + 1 applications of A and k applications of
A−1 such that

A(k) |0⟩ = sin ((2k + 1)α) |ψsucc⟩ + cos ((2k + 1)α) |ψfail⟩ .

Knowledge of α is not necessary (the way how A(k) is obtained from A is independent of α).

Amplitude amplification – amplifying to success probability 1 − δ. If α is known then
one can choose k = ⌊ π

4α ⌋ to amplify to a success probability close to 1 (since (2k + 1)α will
be close to π

2). If the success probability of A is ϵ, then sinα ≈
√
ϵ and k ≈ π

4
√

ϵ
.

For unknown α, amplification to success probability 1 − δ for any δ > 0 can be still
achieved, via a more complex algorithm. Namely, for any ϵ, δ ∈ (0, 1) and any A, one can
construct an algorithm A(ϵ, δ) such that:

A(ϵ, δ) invokes A and A−1 O(1√
ϵ

log 1
δ) times;

If A succeeds with probability at least ϵ, A(ϵ, δ) succeeds with probability at least 1 − δ.
To achieve this, we first note that performing A(k) for a randomly chosen k ∈ {1, . . . ,M}
for an appropriate M = O

(
1√
ϵ

)
and measuring the final state gives a success probability

that is close to 1/2 (as observed in the proof of Theorem 3 in [6]). Repeating this procedure
O
(
log 1

δ

)
times achieves the success probability of at least 1 − δ.

3.2 Algorithm with a fixed number of stages
Now we present an informal overview of the algorithm when tight bounds on the number
of solutions m = |i : xi = 1| is known. We will define a sequence of times T1, T2, . . . and
procedures A1, A2, We choose T1 = 3

√
T/n (this ensures that at most n/9 of indices

i ∈ [n] have ti ≥ T1) and T2 = 3T1, T3 = 3T2, . . . until d for which Td ≥
√
T . The procedure

A1 creates the superposition
∑n

i=1
1√
n

|i⟩ and runs the checking procedure CT1 , obtaining
state of the form

∑n
i=1

1√
n

|i, ai⟩, where ai ∈ {0, 1, ∗}, with ∗ denoting a computation that
did not terminate. The subsequent procedures Aj are defined as Aj = CTjAj−1(1), i.e., we
first amplify the parts of the state with outcomes 1 or ∗ and then run the checking procedure
CTj .

We express the final state of Aj−1 as

sinαj−1 |ψsucc⟩ + cosαj−1 |ψfail⟩ ,

where |ψsucc⟩ consists of those indices i ∈ [n] which are either 1 or are still unresolved ∗
(and thus have the potential to turn out to be ‘1’). Then the amplitude amplification part
triples the angle αj−1, i.e., amplifies both the “good” and “unresolved” states by a factor
of sin(3αj−1)/ sin(αj−1) ≈ 3. We will show that ℓ = ⌈log9

n
m ⌉ stages are sufficient, i.e., the

procedure Aℓ the amplitude at the “good” states (if they exist) is sufficiently large.
We note that the idea of recursive tripling via amplitude amplification has been used

in other contexts. It has been used to build an algorithm for bounded-error search in [13];
more recently, the recursive tripling trick has also been used in, e.g., [7]. Furthermore, the
repeated tripling of the angle α also explains the scaling factor 3 when defining the sequence
T1, T2, T3 . . .

A formal description follows.
We assume an estimate T ≥

∑
i t

2
i to be known and set

T1 = 3
√
T/n, T2 = 3T1, . . . , Td = 3Td−1,

with d ∈ N s.t. Td−1 <
√
T ≤ Td (equivalently, 9d−1 < n ≤ 9d).

TQC 2023

7:6 Improved Algorithm and Lower Bound for Variable Time Quantum Search

Let M = {i ∈ [n] : xi = 1}, m = |M|. We assume that we know ℓ for which m belongs
to the interval

[
n
9ℓ ,

n
9ℓ−1

)
(so that ℓ = ⌈log9

n
m ⌉).

Under those assumptions, we now describe a variable time search algorithm with para-
meters T, ℓ.

Algorithm 1 VTS algorithm with a fixed number of stages.

Parameters: T , n, ℓ, δ.
1: Run the amplified algorithm A(0.04, δ) where A is the procedure defined below and we

amplify the part of the state for the second register contains ‘1’
2: procedure A
3: Run Aℓ ▷ (defined below)
4: Run CTℓ+1 (or CTd

if ℓ = d)
5: end procedure
6: Measure the state
7: if The second register is ‘1’ then
8: Output i from the first register
9: else

10: Output No solutions.
11: end if
12: procedure Aj ▷ j ∈ [d]
13: if j = 1 then
14: Create the state

∑n
i=1

1√
n

|i⟩
15: Run CT1 , obtaining state of the form

∑n
i=1

1√
n

|i, ai⟩ where ai ∈ {0, 1, ∗}.
16: else
17: Perform the amplified algorithm Aj−1(1), amplifying the basis states with 1 or *

in the second register
18: if j < ℓ then
19: Run CTj

.
20: end if
21: end if
22: end procedure

▶ Lemma 3.1. Algorithm 1 with parameter ℓ = ⌈log9
n
m ⌉ finds an index i ∈ M with probability

at least 1 − δ in time O
(√

T
m log n

m log 1
δ

)
.

Proof. By Sj we denote the sets of those indices whose amplitudes will be amplified after
running Aj , namely, the set of indices for which the query either returns a positive result or
does not finish in time Tj :

Sj = {i ∈ [n] : (Tj < ti) ∨ (ti ≤ Tj ∧ xi = 1)} , j = 0, 1, 2, . . . , d,

where T0 := 0. We note that the sets Sj form a decreasing sequence1, i.e.,

[n] = S0 ⊇ S1 ⊇ S2 ⊇ . . . ⊇ Sd−1 ⊇ Sd = M.

We shall denote the cardinality of Sj by sj ; then

n = s0 ≥ s1 ≥ . . . ≥ sd = m.

1 Since each i s.t. ti ≤ Tj ∧ xi = 1 either satisfies ti ≤ Tj−1 ∧ xi = 1 or ti > Tj−1; in both cases i ∈ Sj−1.

A. Ambainis, M. Kokainis, and J. Vihrovs 7:7

We express the final state of Aj as

sinαj |ψsucc,j⟩ + cosαj |ψfail,j⟩

where |ψsucc,j⟩ consists of basis states with |i⟩, i ∈ Sj , in the first register and |ψfail,j⟩ consists
of basis states with |i⟩, i /∈ Sj , in the first register.

We begin by describing how the cardinality of Sj is related to the amplitude sinαj (the
proof is deferred to Appendix A).

▶ Lemma 3.2. For all j = 1, 2, . . . , ℓ,

sin2 αj = sj

n

j−1∏
k=1

(
sin(3αk)
sinαk

)2
. (1)

Moreover, for any i ∈ Sj, the amplitude at |i, 1⟩ (or |i, ∗⟩, if ti > Tj) equals sin αj√
sj

.

Equation (1) and the trigonometric identity

sin(3α) = (3 − 4 sin2 α) sinα

allows to obtain (for j = 1, 2, . . . , ℓ)

sin(3αj)
sinαj

= 3 − 4 sin2 αj = 3 − 4sj · 9j−1

n

j−1∏
k=1

(
sin(3αk)
3 sinαk

)2
≥ 3 − 4sj

n
· 9j−1, (2)

where the inequality is justified by the observation
∣∣∣ sin(3α)

3 sin α

∣∣∣ ≤ 1. This allows to estimate

sinαℓ =
√
sℓ

n

ℓ−1∏
j=1

sin(3αj)
sinαj

≥ 3ℓ−1
√
sℓ

n

ℓ−1∏
j=1

(
1 − 4sj

27n · 9j

)
, (3)

as long as each factor on the RHS is positive. We argue that it is indeed the case; moreover,
the whole product is lower-bounded by a constant (the proof is deferred to Appendix A):

▶ Lemma 3.3. The following claims hold:
C-1 Each factor on the RHS of (3) is positive: 9jsj

n ≤ 9
4 , thus(

1 − 4sj

27n · 9j

)
≥ 2

3 , for all j ∈ [ℓ− 1].

C-2 The product
∏ℓ−1

j=1

(
1 − 4sj

27n · 9j
)

is lower bounded by 2/3.
C-3 9ℓsℓ ≥ 9ℓsd ≥ n.

From (3) and Lemma 3.3 it is evident that sinαℓ ≥ 2
9

√
9ℓsℓ

n ≥ 2
9 .

However, after running Aℓ, there still could be some unresolved indices i with ti > Tℓ

and some of these unresolved indices may correspond to xi = 0. Our next argument is
that running CTℓ+1 , i.e., the checking procedure for 3Tℓ steps, resolves sufficiently many
indices in M. This argument, however, is necessary only for ℓ < d; for ℓ = d, one runs CTd

instead of CTℓ+1 and the same estimate (4) of the success probability applies, with 8m/9
replaced by m. Also notice that in Algorithm 1 we skipped running CTℓ

at the end of Aℓ and
immediately proceeded with running CTℓ+1 instead. In the analysis, this detail is omitted
for convenience (since it is equivalent to running CTj at the end of each procedure Aj and
additionally running CTℓ+1 after Aℓ).

TQC 2023

7:8 Improved Algorithm and Lower Bound for Variable Time Quantum Search

By the choice of ℓ we have
√

T
m ≤ Tℓ =

√
9ℓT

n and Tℓ+1 ≥ 3
√

T
m . Notice that at most

m/9 of the indices i ∈ [n] can satisfy t2i > T 2
ℓ+1 (otherwise, the sum over those indices already

exceeds m
9 · 9T

m = T). Consequently, after running the checking procedure CTℓ+1 , at least
8m/9 of the indices in M will be resolved to ‘1’. By Lemma 3.2, the amplitude at each of
the respective states |i, 1⟩ is equal to sin αℓ√

sℓ
, therefore the probability to measure ‘1’ in the

second register is at least

8m
9 · sin2 αℓ

sℓ
≥ 8m

9 · 9ℓ

n

1
3

ℓ−1∏
j=1

(
1 − 4sj

27n · 9j

)2

≥ 8
9 ·
(

2
9

)2
> 0.04, (4)

where the first inequality follows from (3) and the second inequality is due to C-2 and C-3.
We conclude that the procedure A finds an index i ∈ M with probability at least 0.04;

its running time is easily seen to be

Tℓ+1 + Tℓ + 3 (Tℓ−1 + 3 (Tℓ−2 + . . .+ 3 (T2 + 3T1))) = (3 + ℓ)Tℓ,

which for our choice of ℓ is of order

O

(
log n

m

√
9ℓ
T

n

)
= O

(
log n

m

√
T

m

)
.

Use O(log 1
δ) rounds amplitude amplification to amplify the success probability of A to 1 − δ,

concluding the proof. ◀

3.3 Algorithm for the general case
When the cardinality of |M| is not known in advance, we run Algorithm 1 with increasing
values of ℓ (which corresponds to exponentially decreasing guesses of m) until either i : xi = 1
is found or we conclude that no such i exists. Algorithm 1 also suffers the “soufflé problem” [5]
in which iterating too much (choosing ℓ in Algorithm 1 larger than its optimal value) may
“overcook” the state and decrease the success probability. For this reason, before running
Algorithm 1 with the next value of ℓ, we re-run it with all the previous values of ℓ to ensure
that the probability of running Algorithm 1 with too large ℓ is small. This ensures that
the algorithm stops in time O

(√
T
m log n

m

)
with high probability. Formally, we make the

following claim:

▶ Lemma 3.4. If M is nonempty, Algorithm 2 finds an index i ∈ M with probability at least
5/6 with complexity O

(√
T
m log n

m

)
. If M is empty, Algorithm 2 outputs No solutions.

with complexity O
(√

T logn
)

.

Proof of Lemma 3.4. Let δ = 1/6; let us remark that each procedure Bk runs in time
O
(
k3k
√
T/n

)
.

Let us consider the case when m = |M| > 0; denote ℓ := ⌈log9
n
m ⌉. The probability of

Bk, k ̸= ℓ, finding an index i ∈ M is lower-bounded by 0; the probability of Bℓ finding an
index i ∈ M is lower-bounded by 1 − δ.

Hence, the total complexity of the algorithm stages j = 1, 2, . . . , ℓ, is of order√
T

n

ℓ∑
j=1

j∑
k=1

k3k =
√
T

n

ℓ∑
j=1

(ℓ+ 1 − j)j3j ≍ ℓ3ℓ

√
T

n
.

and the last step Bℓ finds i ∈ M with probability at least 1 − δ.

A. Ambainis, M. Kokainis, and J. Vihrovs 7:9

Algorithm 2 VTS algorithm for arbitrary number of solutions m.

Parameters: T , n.
Let Bk stand for Algorithm 1 with parameters T , n, k and δ = 1/6.

1: for j = 1, 2, . . . , d do
2: for k = 1, 2, . . . , j do
3: Run Bk

4: If Bk returned i ∈ M, output this i and quit
5: end for
6: end for
7: Output No solutions.

With probability at most δ, the last step fails to find i ∈ M, and then Algorithm 2
proceeds with j = ℓ + 1 and runs the sequence B1, B2, . . . , Bℓ, where the last step finds
i ∈ M with (conditional) probability at least 1 − δ (conditioned on the failure to find i ∈ M
in the previous batch). The complexity of this part is of order

δ

√
T

n

 ℓ∑
j=1

j3j

 ≍ δ

√
T

n
ℓ3ℓ,

where the δ factor reflects the fact the respective procedures are invoked with probability δ.
With (total) probability at most δ2, the algorithm still has not found i ∈ M. Then

Algorithm 2 runs the sequence Bℓ+1, B1, B2, . . . , Bℓ (i.e., finishes with j = ℓ + 1 and
continues with j = ℓ+ 2), where the last step finds i ∈ M with (conditional) probability at
least 1 − δ. The complexity of this part is of order

δ2
√
T

n

(
(ℓ+ 1)3ℓ+1 + ℓ3ℓ

)
≍ δ2

√
T

n
(ℓ+ 1)3ℓ+1.

With (total) probability at most δ3, the algorithm still has not found i ∈ M. Then
Algorithm 2 runs the sequence Bℓ+1,Bℓ+2, B1, B2, . . . , Bℓ, where the last step finds i ∈ M
with (conditional) probability at least 1 − δ. The complexity of this part is of order

δ3
√
T

n

(
(ℓ+ 1)3ℓ+1 + (ℓ+ 2)3ℓ+2 + ℓ3ℓ

)
≍ δ3

√
T

n
(ℓ+ 2)3ℓ+2,

and so on.
For j = d, the final batch B1, B2, . . . , Bℓ is invoked with probability at most δd−ℓ; with

conditional probability at most δ we still fail to find i ∈ M and run the remaining sequence
Bℓ+1, . . . , Bd (which can completely fail finding any i ∈ M as it has no non-trivial lower
bounds on the success probability). The complexity of the latter sequence is of order

δd+1−ℓ

√
T

n

(
(ℓ+ 1)3ℓ+1 + (ℓ+ 2)3ℓ+2 + . . .+ d3d

)
≍ δd+1−ℓ

√
T

n
d 3d.

We see that Algorithm 2 fails with probability at most δd+1−ℓ; since ℓ ≤ d, this is
upper-bounded by δ = 1/6. The total complexity of the algorithm is of order

TQC 2023

7:10 Improved Algorithm and Lower Bound for Variable Time Quantum Search

3ℓ

√
T

n

(
ℓ+ 3δ2(ℓ+ 1) + 9δ3(ℓ+ 2) + . . .+ (3δ)d−ℓ · dδ

)
< 3ℓ

√
T

n

(
ℓ+ ℓ 3δ2

∞∑
i=0

(3δ)i + 3δ2
∞∑

i=1
i(3δ)i−1

)

= 3ℓ

√
T

n

(
ℓ+ ℓ

3δ2

1 − 3δ + 3δ2

(1 − 3δ)2

)
≍ ℓ3ℓ

√
T

n
,

since 3δ = 1/2. Since 3ℓ ≍
√

n
m and ℓ ≍ log n

m , we conclude that the complexity of the

algorithm is O
(√

T
m log n

m

)
, as claimed.

Let us consider the case when M is empty; then with certainty each Bj fails to output
any i, and Algorithm 2 correctly outputs No solutions. In this case, the complexity of the
algorithm is of order√

T

n

d∑
j=1

j∑
k=1

k3k =
√
T

n

d∑
j=1

(d+ 1 − j)j3j ≍ d3d

√
T

n
≍

√
T logn,

since 3d ≍
√
n. ◀

4 Lower bound

For the improved lower bound, we consider a query problem which can be solved with variable
time search. Let g : {0, 1, ⋆}m → {0, 1} be a partial function defined on the strings with
exactly one non-⋆ value, which is the value of the function. The function f we examine
then is the composition of ORn with g. We note that g is also known in the literature as
pSEARCH, which has been used for quantum lower bounds in cryptographic applications [4].

For any i ∈ [n], if the index of the non-⋆ element in the corresponding instance of g is
ji ∈ [m], then we can find this value in O(

√
ji) queries using Grover’s search. This creates

an instance of the variable search problem with unknown times ti =
√
ji. By examining only

inputs with fixed T =
∑n

i=1 t
2
i =

∑n
i=1 ji and the restriction of f on these inputs fT , we

are able to prove a Ω(
√
T log T) query lower bound using the weighted quantum adversary

bound [1]. Since any quantum algorithm for the variable time search also solves fT , this
gives the required lower bound.

▶ Theorem 4.1. Any algorithm that solves variable time search with unknown times ti
requires time Ω(

√
T log T), where T =

∑
i∈[n] t

2
i .

We note that the lower bound of Theorem 4.1 contains a factor of
√

log T while the
upper bound of Lemma 3.4 contains a factor of logn. There is no contradiction between
these two results as the lower bound uses inputs with T = Θ(n logn) and for those inputs
log T = (1 + o(1)) logn.

Proof of Theorem 4.1. Consider a partial function f : D → {0, 1}, where D ⊂
{⋆, 0, 1}[n]×[m], defined as follows. An input x ∈ D if for each i ∈ [n] there is a unique
j ∈ [m] such that xi,j ̸= ⋆; denote this j by jx,i. Then f(x) = 1 iff there exists an i such
that xi,jx,i

= 1.
Suppose that x is given by query access to xi,j . For any i, we can check whether xi,jx,i

= 1
in O(

√
jx,i) queries with certainty in the following way. There is a version of Grover’s search

that detects a marked element out of N elements in O(
√
N) queries with certainty, if the

A. Ambainis, M. Kokainis, and J. Vihrovs 7:11

number of marked elements is either 0 or 1 [6]. By running this algorithm for the first N
elements, where we iterate over N = 1, 2, . . . , 2⌈log2 jx,i⌉, we will detect whether xi,jx,i

= 1 in
O(
√
jx,i) queries with certainty.

Letting ti =
√
jx,i and T =

∑
i∈[n] t

2
i , we get an instance of a variable search problem.

Now fix any value of T and examine only inputs with such T . Denote f restricted on T

by fT . If the quantum query complexity of fT is Q(fT), then any algorithm that solves
variable time search must require at least Ω(Q(fT)) time. In the following, we will prove
that Q(fT) = Ω(

√
T log T).

Adversary bound

We will use the relational version of the quantum adversary bound [1]. Let X ⊆ f−1
T (0)

and Y ⊆ f−1
T (1) and R : X × Y → R≥0 be a weight function. For any input x ∈ X, define

w(x) =
∑

y∈Y R(x, y) and for any i ∈ [n], j ∈ [m], define w(x, i, j) =
∑

y∈Y,xi,j ̸=yi,j
R(x, y).

Similarly define w(y) and w(y, i, j). Then

Q(fT) = Ω
(

min
x∈x,y∈Y

i∈[n],j∈[m]
R(x,y)>0
xi,j ̸=yi,j

√
w(x)w(y)

w(x, i, j)w(y, i, j)

)
.

Input sets

Here we define the subsets of inputs X and Y . First, let k be the smallest positive integer such
that T ≤ 2kk and k is a multiple of 4. Denote d = 2k, then k = log2 d and T = Θ(d log d).
An input z from either X or Y must then satisfy the following conditions.

for each p ∈
[
0, k

2
]
, there are exactly d

2p indices i such that jz,i ∈ [2p, 2p+1); we will call
the set of such indices the p-th block of z;
moreover, for each p and each ℓ ∈ [0, 2p), there are exactly d

22p indices i such that
jz,i = 2p + ℓ.

Consequently, we examine inputs with n = 2k +2k−1 + . . . 2 k
2 and m = 2 k

2 +1 −1. Additionally,
an input y belongs to Y only if there is a unique i such that yi,jy,i = 1. For this i, we also
require jy,i ≥ 2 k

4 +1: equivalently this means that i belongs to a block with p > k
4 .

We verify the value of T ′ =
∑

i∈[n] t
2
i for these inputs. If i belongs to the p-th block of an

input z, then jz,i = Θ(2p), as jz,i ∈ [2p, 2p+1). Then

T ′ =
∑
i∈[n]

t2i =
∑
i∈[n]

jz,i =
∑

p∈[0, k
2]

d

2p
· 2p = d

(
k

2 + 1
)

= Θ(T).

Note that since Q(fT ′) ≤ Q(fT), a lower bound on Q(fT ′) in terms of T will also give us a
lower bound on Q(fT). In the remainder of the proof, we will thus lower bound Q(fT ′).

Relation

For an index i ∈ [n] of an input z that belongs to the p-th block, we define an index weight
Wz,i = 2p. Then we also define values

Bp = d
2p · 2p = d is the total index weight of the p-th block;

Jp = d
22p · 2p = d

2p is the total index weight in the p-th block for any jz,i ∈ [2p, 2p+1).
Note that these values do not depend on the input.

For the relation, we will call the p-th block light if p ∈
[
0, k

4
]

and heavy if p ∈
(

k
4 ,

k
2
]
.

Two inputs x ∈ X and y ∈ Y have R(x, y) > 0 iff:

TQC 2023

7:12 Improved Algorithm and Lower Bound for Variable Time Quantum Search

there are exactly two indices i0, i1 ∈ [n] such that jx,ib
̸= jy,ib

;
i0 is from some light block p0 and i1 is from some heavy block p1 of y; let j0 = jy,i0 and
j1 = jy,i1 ;
yi0,j0 = 0, yi1,j1 = 1.
xi0,j1 = xi1,j0 = 0.

Then let the weight in the relation be

R(x, y) = Wy,i0Wy,i1 = Wx,i1Wx,i0 = 2p02p1 .

Figure 1 illustrates the structure of the inputs and the relation.

+y

0 0 0 · · · 0 0

0

0 0

0
· · ·

0

0

0

1
· · ·

0

. . .

. . .

⋆

⋆

i0 i1

j0

j1

2k 2k−1
2

k

2

1

2

2
k

2

x

0 0 0 · · · 0 0

0

0 ⋆
0

· · ·

0

0

0

⋆
· · ·

0

. . .

. . .

0

0

i0 i1

j0

j1

2k 2k−1
2

k

2

1

2

2
k

2

Figure 1 An example of two inputs x ∈ X and y ∈ Y in the relation. Inputs x and y differ only
in the 4 highlighted positions. All of the empty cells contain ⋆, not shown for readability. For y, the
non-⋆ symbols of the light blocks are located in the left upper area separated by the dashed lines,
while the non-⋆ symbols of the heavy blocks are located in the lower right area. Note that for x, i0

is in a heavy block and i1 is in a light block.

Lower bound

Now we will calculate the values for the adversary bound. Fix two inputs x ∈ X and y ∈ Y

with R(x, y) > 0. First, since for x the index i1 can be any index from any light block and i0
can be any index from any heavy block,

w(x) =
(∑

p0∈[0, k
4]
Bp0

)
·

(∑
p1∈(k

4 , k
2]
Bp1

)
= Θ(d2k2).

A. Ambainis, M. Kokainis, and J. Vihrovs 7:13

For w(y), note that p1 is uniquely determined by the position of the unique symbol 1 in y.
However, the choice for i0 is not additionally constrained, hence

w(y) =
(∑

p0∈[0, k
4]
Bp0

)
· 2p1 = Θ(dk2p1).

Therefore, the nominator in the ratio in the adversary bound is

w(x)w(y) = Θ(d3k32p1).

Now note the following important property: if xi,j ̸= yi,j , then one of xi,j and yi,j is ⋆,
and the other is either 0 or 1. There are in total exactly 4 positions (i, j) where x and y

differ. We will examine each case separately.
(a) i = i0, j = j0. In this case xi,j = ⋆ and yi,j = 0.

For x, i1 is not fixed but j0 is known and hence also p0 is known. Therefore, the total
index weight from the light blocks is Jp0 . On the other hand, the positions of i0 and,
therefore, also p1 are fixed. Thus,

w(x, i, j) = Jp0 · 2p1 = d

2p0
· 2p1 .

For y, both i0 and i1 are fixed, hence

w(y, i, j) = 2p0 · 2p1 < d,

since p0 + p1 ≤ k
4 + k

2 < k. Overall,

w(x, i, j)w(y, i, j) < d

2p0
· 2p1 · d = d2 · 2p1

2p0
.

(b) i = i0, j = j1. In this case xi,j = 0 and yi,j = ⋆.
For x, now the position i0 is fixed, but i1 can be chosen without additional constraints.
The index i0 uniquely defines the value of p1. Hence,

w(x, i, j) =
(∑

p0∈[0, k
4]
Bp0

)
· 2p1 = Θ(dk2p1).

For y, similarly as in the previous case, we have i0 and i1 fixed, thus

w(y, i, j) = 2p0 · 2p1 < d.

Then

w(x, i, j)w(y, i, j) = O(dk2p1 · d) = O(d2k2p1).

(c) i = i1, j = j0. In this case xi,j = 0 and yi,j = ⋆.
For x, i1 is fixed, so it uniquely determines p0. The index i0 can be chosen without
additional restrictions. Hence,

w(x, i, j) = 2p0 ·

(∑
p1∈(k

4 , k
2]
Bp1

)
= Θ(2p0 · dk).

TQC 2023

7:14 Improved Algorithm and Lower Bound for Variable Time Quantum Search

For y, i0 is not fixed but j0 is fixed, which also fixes p0. Therefore, the total index weight
from the light blocks is Jp0 . On the other hand, i1 and p1 are fixed for y by the position
of the symbol 1, thus

w(y, i, j) = Jp0 · 2p1 = d

2p0
· 2p1 .

Their product is

w(x, i, j)w(y, i, j) = Θ
(

2p0 · dk · d

2p0
· 2p1

)
= Θ(d2k2p1).

(d) i = i1, j = j1. In this case xi,j = ⋆ and yi,j = 1.
For x, i1 is fixed, hence p0 is also fixed; i0 is not fixed, but j1 = j and p1 is uniquely
defined. Hence,

w(x, i, j) = 2p0 · Jp1 = 2p0 · d

2p1
.

For y, the position of the symbol 1 must necessarily change, hence

w(y, i, j) = w(y) = Θ(dk2p1).

The product then is

w(x, i, j)w(y, i, j) = Θ
(

2p0 · d

2p1
· dk2p1

)
= Θ(d2k2p0) = O(d2k2p1),

as p0 ≤ k
4 < p1.

We can see that in all cases the denominator in the ratio of the adversary bound is O(d2k2p1).
Therefore,

w(x)w(y)
w(x, i, j)w(y, i, j) = Ω

(
d3k32p1

d2k2p1

)
= Ω(dk2) = Ω(d log2 d)

and since log T = Θ(log(d log d)) = Θ(log d+ log log d) = Θ(log d), we have

Q(fT) ≥ Q(fT ′) = Ω
(√

d log2 d

)
= Ω

(√
T log T

)
. ◀

5 Conclusion

In this paper, we developed a new quantum algorithm and a new quantum lower bound
for variable time search. Our quantum algorithm has complexity O(

√
T logn), compared to

O(
√
T log1.5 T) for the best previously known algorithm (quantum variable time amplitude

amplification [3] instantiated to the case of search). It also has the advantage of being simpler
than previous quantum algorithms for variable time search. If the recursive structure is
unrolled, our algorithm consists of checking algorithms CTi for various times Ti interleaved
with Grover diffusion steps. Thus, the structure is the essentially same as for regular search
and the main difference is that CTi

for different i are substituted at different query steps.
We note that our algorithm has a stronger assumption about T : we assume that an upper

bound estimate T ≥
∑n

i=1 t
2
i is provided as an input to the algorithm and the complexity

depends on this estimate T , rather than the actual
∑n

i=1 t
2
i . Possibly, this assumption can

be removed by a doubling strategy that tries values of T that keep increasing by a factor
of 2 but the details remain to be worked out.

A. Ambainis, M. Kokainis, and J. Vihrovs 7:15

Our quantum lower bound is Ω(
√
T log T) which improves over the previously known

Ω(
√
T) lower bound. This shows that variable time search for the “unknown times” case

(when the times t1, . . . , tn are not known in advance and cannot be used to design the
quantum algorithm) is more difficult than for the “known times” case (which can be solved
with complexity Θ(

√
T)).

A gap between the upper and lower bounds remains but is now just a factor of
√

log T .
Possibly, this is due to the lower bound using a set of inputs for which an approximate
distribution of values ti is fixed. In such a case, the problem may be easier than in the
general case, as an approximately fixed distribution of ti can be used for algorithm design.

References
1 Scott Aaronson. Lower bounds for local search by quantum arguments. SIAM Journal on

Computing, 35(4):804–824, 2006. arXiv:0307149. doi:10.1137/S0097539704447237.
2 Andris Ambainis. Quantum search with variable times. Theory of Computing Systems,

47(3):786–807, 2010. arXiv:0609168. doi:10.1007/s00224-009-9219-1.
3 Andris Ambainis. Variable time amplitude amplification and quantum algorithms for linear

algebra problems. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium
on Theoretical Aspects of Computer Science (STACS 2012), volume 14 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 636–647. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2012. arXiv:1010.4458. doi:10.4230/LIPIcs.STACS.2012.636.

4 Aleksandrs Belovs, Gilles Brassard, Peter Høyer, Marc Kaplan, Sophie Laplante, and Louis
Salvail. Provably secure key establishment against quantum adversaries. In Mark M. Wilde,
editor, 12th Conference on the Theory of Quantum Computation, Communication and Crypto-
graphy (TQC 2017), volume 73 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 3:1–3:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. arXiv:1704.08182.
doi:10.4230/LIPIcs.TQC.2017.3.

5 Gilles Brassard. Searching a quantum phone book. Science, 275(5300):627–628, 1997. doi:
10.1126/science.275.5300.627.

6 Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amp-
lification and estimation. Contemporary Mathematics, 305:53–74, 2002. arXiv:0005055.
doi:10.1090/conm/305/05215.

7 Sourav Chakraborty, Arkadev Chattopadhyay, Peter Høyer, Nikhil S. Mande, Manaswi
Paraashar, and Ronald de Wolf. Symmetry and quantum query-to-communication simulation.
In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on
Theoretical Aspects of Computer Science (STACS 2022), volume 219 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 20:1–20:23, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. arXiv:2012.05233. doi:10.4230/LIPIcs.STACS.
2022.20.

8 Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quantum algorithm for systems
of linear equations with exponentially improved dependence on precision. SIAM Journal on
Computing, 46(6):1920–1950, 2017. arXiv:1511.02306. doi:10.1137/16M1087072.

9 Arjan Cornelissen, Stacey Jeffery, Maris Ozols, and Alvaro Piedrafita. Span programs and
quantum time complexity. In Javier Esparza and Daniel Kráľ, editors, 45th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2020), volume 170
of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:14, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. arXiv:2005.01323. doi:
10.4230/LIPIcs.MFCS.2020.26.

10 Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks on the AJPS
Mersenne-based cryptosystem. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography, pages 101–120, Cham, 2018. Springer International Publishing. Preprint:
https://eprint.iacr.org/2017/1171. doi:10.1007/978-3-319-79063-3_5.

TQC 2023

https://arxiv.org/abs/quant-ph/0307149
https://doi.org/10.1137/S0097539704447237
https://arxiv.org/abs/quant-ph/0609168
https://doi.org/10.1007/s00224-009-9219-1
https://arxiv.org/abs/1010.4458
https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://arxiv.org/abs/1704.08182
https://doi.org/10.4230/LIPIcs.TQC.2017.3
https://doi.org/10.1126/science.275.5300.627
https://doi.org/10.1126/science.275.5300.627
https://arxiv.org/abs/quant-ph/0005055
https://doi.org/10.1090/conm/305/05215
https://arxiv.org/abs/2012.05233
https://doi.org/10.4230/LIPIcs.STACS.2022.20
https://doi.org/10.4230/LIPIcs.STACS.2022.20
https://arxiv.org/abs/1511.02306
https://doi.org/10.1137/16M1087072
https://arxiv.org/abs/2005.01323
https://doi.org/10.4230/LIPIcs.MFCS.2020.26
https://doi.org/10.4230/LIPIcs.MFCS.2020.26
https://eprint.iacr.org/2017/1171
https://eprint.iacr.org/2017/1171
https://eprint.iacr.org/2017/1171
https://doi.org/10.1007/978-3-319-79063-3_5

7:16 Improved Algorithm and Lower Bound for Variable Time Quantum Search

11 Adam Glos, Martins Kokainis, Ryuhei Mori, and Jevgēnijs Vihrovs. Quantum speedups
for dynamic programming on n-dimensional lattice graphs. In Filippo Bonchi and Simon J.
Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2021), volume 202 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 50:1–50:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. arXiv:2104.14384.
doi:10.4230/LIPIcs.MFCS.2021.50.

12 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical Review Letters, 103:150502, 2009. arXiv:0811.3171. doi:
10.1103/PhysRevLett.103.150502.

13 Peter Høyer, Michele Mosca, and Ronald de Wolf. Quantum search on bounded-error inputs.
In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors,
Automata, Languages and Programming, pages 291–299, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg. arXiv:0304052. doi:10.1007/3-540-45061-0_25.

14 Stacey Jeffery. Quantum subroutine composition, 2022. arXiv:2209.14146.
15 François Le Gall. Improved quantum algorithm for triangle finding via combinatorial arguments.

In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 216–225.
IEEE, 2014. arXiv:1407.0085. doi:10.1109/FOCS.2014.31.

16 André Schrottenloher and Marc Stevens. A quantum analysis of nested search problems
with applications in cryptanalysis. Cryptology ePrint Archive, Paper 2022/761, 2022. URL:
https://eprint.iacr.org/2022/761.

A Proofs of Lemmas 3.2 and 3.3

▶ Lemma 3.2. For all j = 1, 2, . . . , ℓ,

sin2 αj = sj

n

j−1∏
k=1

(
sin(3αk)
sinαk

)2
. (1)

Moreover, for any i ∈ Sj, the amplitude at |i, 1⟩ (or |i, ∗⟩, if ti > Tj) equals sin αj√
sj

.

Proof. For each j express the final state of Aj in the canonical basis as
n∑

i=1
βij |i, aij⟩ ,

where aij ∈ {0, 1, ∗} and aij = 0 iff xi = 0 and ti ≤ Tj (i.e., iff i /∈ Sj). Initially, βi0 = n−1/2

for all i. Then

sin2 αj =
∑
i∈Sj

|βij |2 ,

for all j. To see how the amplitude βi(j+1) is related to βij , consider how the state evolves
under Aj+1:

the final state of Aj is∑
i∈[n]\Sj

βij |i, 0⟩ +
∑
i∈Sj

βij |i, aij⟩ ,

by the definition of βij ; moreover, aij ∈ {1, ∗} for all i ∈ Sj .
Amplitude amplification Aj(1) results in the state∑

i∈[n]\Sj

cos(3αj)
cosαj

βij |i, 0⟩ +
∑
i∈Sj

sin(3αj)
sinαj

βij |i, aij⟩ .

https://arxiv.org/abs/2104.14384
https://doi.org/10.4230/LIPIcs.MFCS.2021.50
https://arxiv.org/abs/0811.3171
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/quant-ph/0304052
https://doi.org/10.1007/3-540-45061-0_25
https://arxiv.org/abs/2209.14146
https://arxiv.org/abs/1407.0085
https://doi.org/10.1109/FOCS.2014.31
https://eprint.iacr.org/2022/761

A. Ambainis, M. Kokainis, and J. Vihrovs 7:17

An application of CTj+1 transforms this state to

∑
i∈[n]\Sj

cos(3αj)
cosαj

βij |i, 0⟩ +
∑

i∈Sj\Sj+1

sin(3αj)
sinαj

βij |i, 0⟩ +
∑

i∈Sj+1

sin(3αj)
sinαj

βij

∣∣i, ai(j+1)
〉
.

We conclude that

βi(j+1) =
{
βij

sin(3αj)
sin αj

, i ∈ Sj ,

βij
cos(3αj)

cos αj
, i ∈ [n] \ Sj .

(5)

In particular, for any j ∈ [ℓ] and i ∈ Sj we have

βij = 1√
n

j−1∏
k=1

sin(3αk)
sinαk

,

since each such i is in Sk, k ≤ j − 1, thus, by (5), the respective amplitude gets multiplied
by sin(3αk)

sin αk
at each step. This establishes the second part of the lemma (that the amplitudes

βij are all equal for any i ∈ Sj). For the first part, we arrive at

sin2 αj =
∑
i∈Sj

|βij |2 =
∑
i∈Sj

j−1∏
k=1

(
sin(3αk)
sinαk

)2
= sj

n

j−1∏
k=1

(
sin(3αk)
sinαk

)2
. ◀

▶ Lemma 3.3. The following claims hold:
C-1 Each factor on the RHS of (3) is positive: 9jsj

n ≤ 9
4 , thus(

1 − 4sj

27n · 9j

)
≥ 2

3 , for all j ∈ [ℓ− 1].

C-2 The product
∏ℓ−1

j=1

(
1 − 4sj

27n · 9j
)

is lower bounded by 2/3.
C-3 9ℓsℓ ≥ 9ℓsd ≥ n.

Proof. We will prove the following inequality:

ℓ−1∑
j=1

sj9j <
9n
4 . (6)

Then C-1 will immediately follow, since each term on (6) is nonnegative. Furthermore, also
C-2 follows from (6) via the generalized Bernoulli’s inequality:

ℓ−1∏
j=1

(
1 − 4sj

27n · 9j

)
≥ 1 − 4

27n

ℓ−1∑
j=1

sj9j ≥ 1 − 4
27n · 9n

4 = 2
3 .

First we observe that
d∑

j=1

∑
i∈Sj−1\Sj

t2i =
∑

i∈[n]\M

t2i <
∑
i∈[n]

t2i ≤ T.

Notice that each set difference Sj−1 \ Sj can be characterized as follows:

Sj−1 \ Sj = {i ∈ [n] : (Tj−1 < ti ≤ Tj) ∧ xi = 0} .

TQC 2023

7:18 Improved Algorithm and Lower Bound for Variable Time Quantum Search

Therefore all t2i s.t. i ∈ Sj−1 \ Sj satisfy the bound

t2i ≥ T 2
j−1 =

{
9j−1T

n , j > 1,
0, j = 1.

Thus we obtain the following inequality:

T

n

d∑
j=2

9j−1 |Sj−1 \ Sj | <
d∑

j=1

∑
i∈Sj−1\Sj

t2i < T

or
d−1∑
k=1

9k (sk − sk+1) < n. (7)

We also expand 9ℓsℓ as follows, taking into account sd = m:

9ℓsℓ = 9ℓ (sℓ − sℓ+1) + 1
9 · 9ℓ+1 (sℓ+1 − sℓ+2) + . . .+ 1

9d−1−ℓ
· 9d−1 (sd−1 − sd) + 9ℓm.

From this equality, taking into account sk − sk+1 ≥ 0, we can upper bound 9ℓsℓ as

9ℓsℓ ≤
d−1∑
k=ℓ

9k (sk − sk+1) + 9ℓm (8)

Rewrite (7) as

s1 + 8
9

ℓ−1∑
k=1

9ksk − 9ℓ−1sℓ +
d−1∑
k=ℓ

9k (sk − sk+1) < n

and apply (8) to obtain

s1 + 8
9

ℓ−1∑
k=1

9ksk +
d−1∑
k=ℓ

9k (sk − sk+1) < n+ 9ℓ−1sℓ ≤ n+ 1
9

d−1∑
k=ℓ

9k (sk − sk+1) + 9ℓ−1m

8
9

ℓ−1∑
k=1

9ksk + 8
9

d−1∑
k=ℓ

9k (sk − sk+1) < n− s1 + 9ℓ−1m

8
ℓ−1∑
k=1

9ksk < 9n− 9s1 + 9ℓm < 9n+ 9ℓm.

By the choice of ℓ we have 9ℓ−1 ≤ n
m , therefore we arrive at

8
ℓ−1∑
k=1

9ksk < 9n+ 9 n
m

·m = 18n,

which is equivalent to (6).
Finally, to show C-3, we recall that sℓ ≥ sd = m. Again by the choice of ℓ, 9ℓ ≥ n

m .
Consequently,

9ℓsℓ ≥ n

m
·m = n,

as claimed. ◀

	1 Introduction
	2 Model, definitions, and previous results
	3 Algorithm
	3.1 Tools and methods
	3.2 Algorithm with a fixed number of stages
	3.3 Algorithm for the general case

	4 Lower bound
	5 Conclusion
	A Proofs of Lemmas 2 and 3

