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Preface

The Theory of Quantum Computation, Communication and Cryptography (TQC) conference
is a leading annual international conference for students and researchers working in the
theoretical aspects of quantum information science. The scientific objective of TQC is to
bring together the theoretical quantum information science community to present and discuss
the latest advances in the field. The 18th edition of TQC will be hosted by the University of
Aveiro in Portugal and held from July 24 to July 28, 2023. A list of the previous editions of
TQC follows:

TQC 2022, University of Illinois at Urbana-Champaign, USA
TQC 2021, University of Latvia, Latvia (virtual conference)
TQC 2020, University of Latvia, Latvia (virtual conference)
TQC 2019, University of Maryland, USA
TQC 2018, University of Technology Sydney, Australia
TQC 2017, Université Pierre et Marie Curie, France
TQC 2016, Freie Universität Berlin, Germany
TQC 2015, Université libre de Bruxelles, Brussels, Belgium
TQC 2014, National University of Singapore, Singapore
TQC 2013, University of Guelph, Canada
TQC 2012, University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

We wish to thank the members of the Program Committee and all subreviewers for their
work towards composing the program of the conference. We would also like to thank the
Local Organizing Committee for all their efforts in organizing the conference, as well as the
Steering Committee for maintaining the conference’s high standards. Last but not least, we
thank the authors of all the TQC 2023 submissions.

May 2023
Omar Fawzi and Michael Walter
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Approximate Degree Lower Bounds for Oracle
Identification Problems
Mark Bun # Ñ
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Nadezhda Voronova # Ñ
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Abstract
The approximate degree of a Boolean function is the minimum degree of real polynomial that
approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound
on its quantum query complexity, and generically lifts to a quantum communication lower bound for
a related function.

We introduce a framework for proving approximate degree lower bounds for certain oracle
identification problems, where the goal is to recover a hidden binary string x ∈ {0, 1}n given possibly
non-standard oracle access to it. Our lower bounds apply to decision versions of these problems,
where the goal is to compute the parity of x. We apply our framework to the ordered search and
hidden string problems, proving nearly tight approximate degree lower bounds of Ω(n/ log2 n) for
each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum
query lower bound for the hidden string problem in this regime. Our lower bounds are driven by
randomized communication upper bounds for the greater-than and equality functions.
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1 Introduction

In an oracle identification problem, there is an unknown string x ∈ {0, 1}n. A query algorithm
is given possibly non-standard oracle access to x, and its goal is to reconstruct x by making a
minimal number of queries to this oracle. More specifically, an oracle identification problem
is specified by a fixed family of Boolean functions a1, . . . , aN . A query algorithm may inspect
any value ai(x) of its choice at the cost of one query, and its goal is to determine x. Many
influential problems in the study of quantum algorithms and complexity can be viewed as
oracle identification problems, including van Dam’s original oracle interrogation problem [44],
the Bernstein-Vazirani problem [13], combinatorial group testing [6, 10], symmetric junta
learning [10], and more [15, 4, 5, 32, 25, 34]. In this work, we study two such oracle
identification problems:
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1:2 Approximate Degree Lower Bounds for Oracle Identification Problems

Ordered Search. Consider the following abstraction of the problem of searching an ordered
list of N = 2n elements. Given a list of N bits ai ∈ {0, 1} under the promise that
a0 ≤ a1 ≤ · · · ≤ aN−1, find the (binary encoding of the) minimum index x ∈ {0, 1}n such
that ax = 1. Binary search yields a deterministic algorithm making n queries, and it is
not hard to see that this is optimal for randomized algorithms as well. As for quantum
algorithms, it turns out that a constant-factor speedup is possible [27, 23, 12], but a lower
bound of Ω(n) holds in this model as well [15, 26, 2, 30, 24]. Ordered search may be viewed
as an oracle identification problem where the query algorithm is given oracle access to
a0 = GT0(x), . . . , aN−1 = GTN−1(x), where each “greater-than” function GTi(x) evaluates
to 1 if i ≥ x and to 0 otherwise.

Hidden String. In the hidden string problem, the goal is to reconstruct a hidden string
x ∈ {0, 1}n given information about the presence of absence of potential substrings of x.
That is, the goal is to determine x given “substring oracle” access, i.e., oracle access to
as = ϕs(x) for every binary string s of length at most n, where ϕs(x) evaluates to 1 iff s is a
substring of x. Building on a classical query algorithm of Skiena and Sundaram [43], Cleve
et al. [25] gave a 3n/4 + o(n) quantum query algorithm for this problem, and proved a nearly
matching quantum query lower bound of Ω(n/ log2 n).

The state-of-the-art quantum query lower bounds for both problems are proved via
the quantum adversary method, which in its modern formulation [28], characterizes the
bounded-error quantum query complexity of every function up to a constant factor [38]. The
other major technique for proving quantum query lower bounds is the polynomial method [9],
which lower bounds the quantum query complexity of a function by lower bounding its
approximate degree. The approximate degree of a Boolean function is the least degree of a
real polynomial that approximates it pointwise to error 1/3. Since the acceptance probability
of a T -query quantum algorithm is a polynomial of degree 2T , the approximate degree of
a function is always at most (half of its) quantum query complexity, but it can be much
smaller [3, 1, 42, 18].

In this work, we prove lower bounds of Ω(n/ log2 n) on the approximate degree of (decision
variants) of the ordered search and hidden string problems. These lower bounds are nearly
optimal, as the known quantum (indeed, even classical) query algorithms for these problems
automatically yield O(n) upper bounds on their approximate degree. For the ordered search
problem, Childs and Lee [24] explicitly posed the question of investigating approximate
degree lower bounds to circumvent limitations of the adversary method. Meanwhile, our
lower bound on the approximate degree of the hidden string problem implies a quantum
query lower bound matching the state-of-the-art [25].

Approximate degree is a fundamental measure of the complexity of Boolean functions that
has been the subject of extensive study in its own right (see, e.g., [19] for a recent survey). And
while nearly tight quantum query lower bounds for these problems were already known, we
see two main quantum motivations for recovering these bounds via approximate degree. First,
there are senses in which approximate degree is a more robust lower bound technique than the
adversary method. For example, via Sherstov’s pattern matrix method [39], any approximate
degree lower bound for a Boolean function f can be “lifted” to give the same quantum
communication lower bound for a related two-party function F . Such a generic lifting result
is not known for any other general quantum query lower bound technique. Moreover, variants
of the polynomial method are capable of proving lower bounds against zero-, small-, and
unbounded-error quantum algorithms [9, 14], as well as time-space tradeoffs [33]. Indeed,
using the polynomial method, we give weakly-unbounded-error quantum query lower bounds
for the hidden string problem (see Corollary 2) that significantly improve over the lower
bound implied by the adversary method [25].
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Second, we believe that our approximate degree lower bounds shed additional light
on what makes the ordered search and hidden string problems hard, and may be more
transparent in this regard than existing adversary lower bounds. In particular, our lower
bounds show that it is not only hard for quantum algorithms to reconstruct the hidden
string x, but even to simply compute its parity (a decision problem). The other nearly tight
lower bounds for the problems we consider appear to make essential use of the fact that the
query algorithm needs to reconstruct all of x, and it isn’t clear (at least to us) how to adapt
them to hold for their decision variants. We believe that the technique we introduce, or at
the very least the “indirect” method we use to prove our lower bounds, will be more broadly
useful in understanding the approximate degree and quantum query complexity of other
oracle identification problems.

1.1 Techniques
Here we give a brief summary of the ideas behind our lower bound for ordered search. A
more detailed technical overview, including a discussion of how we apply our framework to
the hidden string problem, appears in Section 2. Full proofs appear in Sections 3 and 4 in
the full version of our paper [20].

The first lower bound for quantum ordered search was given by Buhrman and de Wolf [15],
who actually showed an Ω(

√
n) lower bound on its approximate degree. The starting point

for the proof of our lower bound is their ingenious indirect argument, so let us review it
here. Recall that the ability to solve ordered search on inputs a0 ≤ a1 ≤ · · · ≤ aN−1 enables
recovering the string x ∈ {0, 1}n, where N = 2n, for which every ai = GTi(x). This, in
particular, enables the evaluation of any “hard” Boolean function of x, e.g., its parity. In
light of this, define the partial Boolean function OSN (a0, . . . , aN−1) := parity(x) whenever
there exists an x for which ai = GTi(x) for every i. Let p : {0, 1}N → R be a polynomial of
degree d approximating OSN . It is known that every polynomial approximating parity must
have degree Ω(n), so the goal now is to use this fact to prove a lower bound on the degree
of p. To do so, we use the additional fact that the functions GTi can each be approximated
by a degree O(

√
n) polynomial qi arising from, say, a variant of Grover search. By making p

“robust to noise” in its input without increasing its degree [17, 40], we get that the composed
polynomial p(q0(x), . . . , qN−1(x)) ≈ parity(x) and has degree O(d

√
n). Now the fact that the

approximate degree of parity is Ω(n) implies that d = Ω(
√

n).
In summary, the lower bound for OSN follows from the fact that we can express the

function parity(x) = OSN (GT0(x), . . . , GTN−1(x)), where we have a lower bound on the
approximate degree of parity and an upper bound on the approximate degree of GT. However,
the lower bound gets stuck at degree Ω(

√
n) because the functions GTi themselves require

nontrivial degree O(
√

n) to approximate, and this is tight.
To get an improved lower bound of Ω̃(n) on the approximate degree of OSN , we introduce

the following idea to make GT behave as if it were easier to approximate by low degree
polynomials, while preserving the hardness of parity. Given an input x ∈ {0, 1}n, we
redundantly encode x as a longer string Y(x) ∈ {0, 1}m for some m = poly(n). This encoding
is chosen so that

Access to Y(x) instead of just x itself makes each function GTi(x) approximable by a
much lower degree polynomial. That is, for every i, there exists a polynomial qi of degree
polylog(n) such that qi(Y(x)) ≈ GTi(x) for every x.
Even with access to Y(x), the function parity(x) remains hard to approximate. That is,
for every polynomial p of degree at most n/ polylog(n), we have that p(Y(x)) fails to
approximate parity(x).
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We can now obtain our improved lower bound by applying Buhrman and de Wolf’s ar-
gument to the redundantly encoded inputs. Specifically, given a robust polynomial p :
{0, 1}N → R of degree d approximating OSN , we would have p(q0(Y(x)), . . . , qN−1(Y(x))) ≈
OSN (GT0(x), . . . , GTN−1(x)) = parity(x) for every x. Our upper bound on the degrees of
the qi’s, together with our lower bound on the degree needed to approximate parity, imply
that d polylog n ≥ n/ polylog n, and hence d ≥ Ω̃(n).

All that remains is to construct the appropriate encoding Y . Our approach is inspired by
Nisan’s classic randomized communication protocol for computing the two-party greater-than
function. The most helpful way to think about this protocol for our purposes is as follows.
Suppose Alice and Bob hold strings a, b ∈ {0, 1}n and their goal is to determine whether
the natural number represented by a is at least that represented by b. They may do so by
performing binary search to identify the minimum index j for which aj ̸= bj , at which point
the answer is determined by which of aj or bj is 1. Each step of this binary search can be
conducted by testing the equality of a substring of a with a substring of b. Each equality
test, in turn, may be performed (with high success probability) by comparing the inner
products of a and b with a shared random string. The protocol requires log n steps of binary
search, and each equality test should be repeated O(log log n) times to achieve high success
probability, giving an overall communication cost of Õ(log n).

Now let us see how to turn this communication protocol into a polynomial approximating
GTi(x). Think of x as Bob’s input to the communication protocol, and of Bob’s role as
passively computing an encoding Y(x) that consists of many inner products of x with random
strings. Now thinking of i as Alice’s input, she can compute GTi(x) (with high probability) by
repeatedly querying Y(x) at the locations that correspond to the appropriate inner products
from the protocol described above. This results in a Õ(log n) randomized query algorithm for
computing GTi(x) from Y(x), the success probability of which is a degree-Õ(log n) polynomial
in Y(x).

The final step is to argue that even given Y(x), consisting of many inner products of
random strings with x, the parity function parity(x) remains hard to compute. To see why
this is true, note that a single inner product of x with a random bit string is itself a parity on a
random subset of indices. That is, Y(x) = (parity(x|S1), . . . , parity(x|Sm

)) for random subsets
S1, . . . , Sm ⊆ [n]. The key observation then, is that a degree-d polynomial of these random
parities is able to approximate the full parity(x) if and only if some degree-d polynomial of
these random parities exactly computes parity(x), which in turn happens if and only if a
symmetric difference of at most d of the sets S1, . . . , Sm yields the entire set of indices [n].
As a result, as long as neither the degree d nor the number of random inner products m is
too large, we obtain that parity(x) cannot be approximated using Y(x).1

1.2 Our results in detail

Recall that we introduce a framework that allows us to prove lower bounds on approximate
degree, and hence quantum query complexity. It most naturally applies to decision versions
of oracle identification problems, and extends to the “weakly unbounded error” setting of
error approaching 1/2. We summarize the results we prove using this framework in Table 1.

1 In fact, this argument shows that it is impossible to approximate parity(x) to bounded error, but even
to represent it in sign. This corresponds to a threshold degree lower bound.
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Table 1 Summary of our results and prior work.

Problem Model Error Previous work This work

Unbounded
O(n− log 1

γ ),
Ω(
√

n− log 1
γ ) Ω( n

log2 n
− log 1

γ )Approximate degree and
quantum query complexity,
decision version Constant O(n), Ω(

√
n) Ω( n

log2 n
)

Unbounded Θ(n− log 1
γ ) Ω( n

log2 n
− log 1

γ )
Ordered
search Quantum query complexity,

reconstruction version Constant Θ(n) Ω( n
log2 n

)
Approximate degree and
quantum query complexity,
decision version

Unbounded O(n− log 1
γ ) Ω( n

log2 n
− log 1

γ )

Constant O(n) Ω( n
log2 n

)

Unbounded
O(n− log 1

γ ),
Ω(γ2 n

log2 n
) Ω( n

log2 n
− log 1

γ )

Hidden
string Quantum query complexity,

reconstruction version Constant O(n) Ω( n
log2 n

)

Ordered search. As mentioned, binary search yields a deterministic algorithm making n

queries, which in turn yields a polynomial of degree n that exactly computes OS2n . To
compute this function with error probability 1

2 − γ for some parameter γ > 0, there is an
easy way to modify binary search to obtain an O(n− log 1

γ )-query randomized algorithm (see
Appendix A in the full version of our paper [20] for details). This implies an upper bound of
O(n− log 1

γ ) on the approximate degree of OS2n with error parameter 1/2− γ.
Before this work, the best lower bound on approximate degree (for both bounded and

unbounded error) was obtained by [15] and was Ω(
√

n− log 1
γ ) for approximation to error

1
2 − γ. We significantly improve their result and obtain the following lower bound.

▷ Claim. For every natural number n and 0 < γ < 1/2, every polynomial that approximates
OS2n pointwise to error 1

2 − γ requires degree

Ω
(

n

log2 n
− log 1

γ

)
.

This result is restated as Theorem 12. It shows that it is hard to approximate the decision
version of the ordered search problem OS2n (with parity as the predicate converting from
reconstruction to decision problem) not only to constant error, but even to small advantage
γ over random guessing. For instance, approximating OS2n with advantage γ = 2−n0.99

still requires degree Ω( n
log2 n

). Our lower bound is nearly tight in both the bounded and
unbounded error regimes.

Query complexity of ordered search. Most previous work on the quantum query complexity
of ordered search addressed the bounded error regime and the reconstruction version of the
problem, where the goal is to output the entire string x, rather than a specific Boolean
predicate applied to x. To our knowledge, the best prior lower bound for the decision
version of ordered search with unbounded error follows from [15] as described above and is
Ω(
√

n− log 1
γ ). Note also that the Ω(n) lower bound of [2], stated there for constant error,

also generalizes to a tight lower bound Ω(n− log 1
γ ) for unbounded error, but it appears to

hold only for the reconstruction version of ordered search.
Our application of the polynomial method implies a nearly tight quantum query lower

bound that applies to the decision version of the problem.
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▶ Corollary 1. Every quantum algorithm that computes OS2n (decision version with parity)
with probability of error at most 1

2 − γ requires Ω( n
log2 n

− log 1
γ ) queries.

Hidden string. The work of [43] yields a simple deterministic algorithm making O(n)
queries, which in turn yields a polynomial of degree O(n) that exactly computes
HS2n+1−1(. . . ϕs(x) . . . ) := parity(x) where x ∈ {0, 1}n is the hidden string in question.
Again, this algorithm can be modified to get a O(n − log 1

γ )-query algorithm with error
1/2− γ (see Appendix A in the full version of our paper [20] for details). This implies an
upper bound O(n− log 1

γ ) on the approximate degree of HS2n+1−1.
We give the first lower bound on the approximate degree of the hidden string problem:

▷ Claim. For every natural number n and 0 < γ < 1/2, every polynomial that approximates
HS2n+1−1 to error 1

2 − γ requires degree

Ω
(

n

log2 n
− log 1

γ

)
.

This result is restated as Corollary 21 in the full version of our paper [20] and gives a
nearly tight lower bound for approximating the decision version of HS2n+1−1 to both constant
and weakly unbounded error.

Query complexity of hidden string. Complementing the O(n)-query deterministic algorithm
of [43], it turns out that a constant-factor speedup is possible for quantum algorithms [25].
As for lower bounds, the latter work shows a lower bound Ω( n

log2 n
) on reconstruction by

adversary method. This lower bounds holds for bounded error, but does not generalize well
to unbounded error regime. (By [8, 29], the same proof implies a lower bound of Ω(γ2 n

log2 n
)

for solving the reconstruction version of the hidden string problem with error 1
2 − γ.)

Our approximate degree lower bound recovers their lower bound for bounded error, and
gives a significantly stronger lower bound for the weakly unbounded error regime, both for
the decision version of the problem.

▶ Corollary 2. Every quantum algorithm that computes HS2n+1−1 (decision version with
parity) with probability of error at most 1

2 − γ requires Ω( n
log2 n

− log 1
γ ) queries.

1.3 Further discussion
One of our initial motivations for studying the approximate degree of ordered search came
from the preliminary version of Chattopadhyay et al. [22]. They showed that OSN ◦ IPN

m has
randomized communication complexity Ω(log N ·m), where IPm is a two-party inner product
(mod 2) gadget on m-bit inputs. This was done via an involved simulation argument, showing
how a communication protocol for OSN ◦ IPN

m could be used to construct a randomized
decision tree for OSN . The techniques were specialized to the both the outer function and the
inner function. Subsequent work [21] recovered this result using a generic simulation theorem.
A direct application of Sherstov’s pattern matrix method [39] to our result yields a quantum
communication lower bound of Ω(log N/ log2 log N) on OSN ◦ gN even for a constant-sized
gadget g.

Hoza [31] used ideas conceptually related to ours to nearly recover the known quantum
query (but not approximate degree) lower bound for ordered search. Roughly, he used a
Holevo-information argument to show that if an oracle identification problem specified by
functions a1, . . . , aN can be solved with T quantum queries, then Q∗(A) · T ≳ n, where
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A(i, x) = ai(x) and Q∗ is the bounded-error two-party quantum communication complexity
with shared entanglement. His quantum query lower bound for ordered search follows directly
from the fact that the quantum communication complexity of the two-party greater-than
function GT on n-bit inputs is O(log n). However, without opening up the communication
protocol for GT as we do, it is not clear how to recover an approximate degree lower bound
from his construction.

The idea of indirectly proving approximate degree lower bounds by combining a lower
bound for one problem with an upper bound for another also appears in [11]. They gave a
tight lower bound on the approximate degree of any function of the form f ◦ gn where f is
an n-input symmetric function by combining a known lower bound for parity ◦ gn [41] with a
quantum query and approximate degree upper bound for the combinatorial group testing
problem [10].

We believe it should be possible to extend our techniques to prove new lower bounds
for other oracle identification problems. A family of special cases of oracle identification is
captured by the symmetric junta learning problem [6]. Here, there is a symmetric function
h : {0, 1}k → {0, 1} and each fS takes the form fS(x) = h(x|S). An important instance of
this problem is the combinatorial group testing problem, wherein one takes h = ORk. Belovs
gave a tight upper bound of O(

√
k) [10] for this problem. He also determined the query

complexity for h = EXACT− HALF to be Θ(k1/4) and gave an upper bound of O(k1/4) for
h = MAJ. These upper bounds were also (nearly) recovered algorithmically by Montanaro
and Shao [35]. Despite its similarity to EXACT−HALF, no polynomial lower bound is known
for the majority function MAJ.

In the counterfeit coin problem, there is a hidden string x ∈ {−1, 1}n with Hamming
weight at most k. A query is parameterized by a balanced (i.e., having an equal number of 1’s
and −1’s) string y ∈ {−1, 0, 1}n, and indicates whether ⟨x, y⟩ is zero or non-zero. Iwama et
al. [32] gave a quantum algorithm making O(k1/4) queries and conjectured this is tight, but
no lower bound is known. Note that the oracle here is quite similar to the EXACT− HALF
oracle.

2 Technical ideas

2.1 Our lower bound framework
We begin with a somewhat more abstract description of our framework for proving approx-
imate degree lower bounds for oracle identification problems. The main idea is to provide
additional information about the hidden input to an oracle identification problem so as to
selectively affect the ability of quantum query algorithms and approximating polynomials to
compute the functions we wish to understand.

Recall that an oracle identification problem is specified by a family of functions a1, . . . , aN .
Given query access to the values a1(x), . . . , aN (x), the goal in our decision problems is to
compute the function parity(x). Suppose that we may identify parity(x) = f(a1(x), . . . , aN (x))
for some function f . If we can construct a function Y such that:

Given Y(x), every function ai(x) can be computed by a low-degree polynomial, but
Given Y(x), computing the parity of x requires a high-degree polynomial,

Then by combining these two statements, we see that the function f(a1, . . . , aN ) itself
requires a high-degree polynomial. We apply this framework taking f to be either the OS
function or for the “anchored hidden string” AHS function. The latter also implies a lower
bound for the original (decisional) hidden string function HS described in the introduction.
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In the following sections, we describe the main technical ideas that go into the proofs of
our lower bounds. In order to provide more intuition about the structure of Y, we describe
the steps of constructing it for OS in detail before returning to the generalized framework.

2.2 Ordered search lower bound
First, notice that OSN has the structure of an oracle identification problem since

OSN (GT0n(x), GT0n−11(x), . . . , GT1n(x)) = parity(x)

where N = 2n and GTi(x) = 1 if and only if x ≤ i where i, x ∈ {0, 1}n if compared as
numbers written in binary notation.

We want to show that there exists a function Y of x that we think of as revealing partial
information about x such that:

On one hand, for all i ∈ {0, 1}n there is an algorithm that makes a small number of queries
to Y and can identify the value of GTi(x) with constant probability of success. Note
that a query-efficient algorithm automatically gives rise to a low-degree approximating
polynomial.
On the other hand, approximating the value of parity(x) given Y with any probability
of success requires a lot of queries to Y. Let us denote this auxiliary problem by
PUR(Y) := parity(x).

It is helpful to think of Y itself as an oracle, whose output is given to a polynomial or to a
query algorithm, whose goal is then to compute some other function of x. We describe how
we construct oracle Y through several attempts.

Let us first focus on constructing an oracle Y that meets the first condition. To do so, we
can use the idea behind the O(log n log log n)-bit communication protocol2 for the two-party
communication problem GT to obtain an efficient randomized query algorithm for every
function GTi. In the GT communication problem, Alice and Bob both get a string of n bits
and the goal is to decide if the number represented by Alice’s string is greater than the
number represented by Bob’s string.

In this randomized communication protocol for GT, Alice checks if the first halves of
the inputs are equal and depending on the answer, she either recursively continues on the
first halves of the inputs or the second halves. By doing so, she finds the most significant
bit where the inputs differ. To perform each equality check, both Alice and Bob compute
the inner products modulo 2 of each of the inputs with the same set of some α (publicly)
random strings, Bob sends his values to Alice, and Alice compares these values to the values
she obtained. If the original values were equal, then the inner products will be always equal,
and otherwise, at least one pair of inner products will be unequal with high probability for
sufficiently large α. This elementary operation (i.e., the ability to compute inner products
with random strings) will be exactly what we want our oracle Y to be useful for.

First attempt. We will eventually give a randomized construction of the oracle Y , and to this
end, think of it as taking as input both the hidden string x and a random input r. Let Y(r, x)
be a function that takes a collection of m n-bit strings r ∈ ×i∈[m]({0, 1}n) and x ∈ {0, 1}n,
and outputs m bits, each representing the inner product of ri with x: (Y(r, x))i = ⟨ri, x⟩.

2 A more efficient O(log n)-bit communication protocol is known and underlies our sharpest result for
ordered search. We discuss it in Sections 2.4 and 3.
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Our first attempt, however, will make no use of randomness at all. Let us consider Y(r, x)
where r consists of all possible strings of length n. That is, the output of the oracle consists
of ⟨x, ri⟩ for every ri ∈ {0, 1}n.

Let us now see how to construct a query algorithm Ci that, given oracle access to
Y(r, x), computes GTi(x) with high probability. This algorithm emulates Alice’s side in
the communication protocol, fixing her input to i. It samples random strings used in the
communication protocol, computes the inner products of i with these random strings on its
own, and asks the oracle (emulating Bob) for the inner products of x with the same random
strings.

From the correctness of the communication protocol for GT we can conclude that for all
x, i ∈ {0, 1}n

Pr
r1...,rα log n

[Ci(Y(r, x)) ̸= GTi(x)] < log n · 2−α

where r1 . . . , rα log n are the strings that Ci sampled during the run, and r is a collection of
all n-bit strings. The number of queries is α log n.

Thus we see that this oracle satisfies the first condition: it helps to compute the GTi

efficiently for every i and x. But now there is a problem with the second condition: parity(x) =
PUR(Y) can be computed easily since parity(x) = PUR(Y(r, x)) = ⟨x, 1n⟩. So there is a
1-query algorithm (and hence a degree-1 polynomial) that exactly computes PUR(Y(r, x)),
violating our second condition.

Second attempt. Our goal now is to reduce the efficacy of the oracle Y in terms of how
well it can be used by low-degree polynomials to approximate PUR. To do this, we instead
consider a distribution over the potential oracles defined by the collection of strings used in
the protocol. Let r denote a sequence of the random strings that could appear in one run
of GT protocol described earlier. Let R̂ denote the set of all such sequences. This allows
us to define a distribution of oracles Y[R̂](r, x), where r ← R̂, and for us to consider a
deterministic query algorithm. Let B(r,i) be a deterministic algorithm that is given access to
the Y[R̂](r, x) where r ← R̂ is chosen uniformly at random, and which has the realization of
r and i hardcoded into it. This algorithm is able to emulate the communication protocol
(and the algorithm Ci), but now each time it needs a random string, it uses one provided
in r.

From the correctness of the communication protocol for GT we again can conclude that
for all x, i ∈ {0, 1}n

Pr
r←R̂

[B(r,i)(Y[R̂](r, x)) ̸= GTi(x)] < log n · 2−α.

So, with high probability, B(r,i) computes GTi(x) over the choice of the oracle Y[R̂](r, x) for
r ← R̂.

Does this new oracle satisfy the second condition? Now an approximation to
PUR[R̂](Y[R̂](r, x)) needs to approximate parity(x) when given a set of random parities
from R̂. Indeed, we show this requires high degree, as a consequence of the fact that high
degree polynomial is necessary to construct the full parity of x from random parities.

However, we need to add one more improvement to our structure. For every fixed i, x,
the algorithm B(r,i) when run on Y[R̂](r, x) computes GTi(x) with high probability over
r ← R̂. But we need to switch quantifiers: we want an oracle that is “good” for all possible
inputs for GT simultaneously and, unfortunately, our current construction doesn’t give an
algorithm computing GTi(x) for all i, x ∈ {0, 1}n using the same r ← R̂.

TQC 2023



1:10 Approximate Degree Lower Bounds for Oracle Identification Problems

Third (and final) attempt. So, is there a way to fix the source of randomness so it works
for all possible inputs? Inspired by Newman’s theorem [36] on simulating public randomness
using private randomness in communication complexity, we show that there is. We show
that by taking t = O( n

δ2 ) copies of R̂, denoted R1,R2, . . .Rt, we get a “good base” for the
oracle. Consider a randomized algorithm A(r,i) that, given access to to Y[R′](r, x) with
r ← R′ = ×j∈[t]Rj , does the following:

Sample j ← [t] at random.
Run B(r,i) using the set Rj as the source of randomness.

Following the argument underlying Newman’s theorem, we show that this algorithm
computes GTi(x) with log n · 2−α + δ failure probability. It works for every i and x and
it still makes only α log n queries to the oracle. If we put δ = 1

12 and α = O(log log n)
then the probability of this algorithm failing for some input pair is at most 1

6 with only
α log n = O(log n log log n) queries to the oracle, i.e.,

Pr
r←R′

[A(r,i)(Y[R′](r, x)) ̸= GTi(x)] <
1
6 .

This change also doesn’t increase the “size” of the oracle (i.e., the number of queries it
can answer) too much. This allows us to show that with high probability it is still impossible
to combine the given partial parities to create the full parity using a low-degree polynomial,
so the second condition is also satisfied. So there exists an oracle that allows computing the
GT with low-degree polynomials but requires a high-degree polynomial to compute parity(x)
which is exactly what allows us to prove the lower bound on the approximate degree of OS.

2.3 Technical ideas behind the parity lower bound
Our technique relies on a lower bound on the approximate degree of parity(x), or, more
precisely, on the “Parity Under Randomness R” function PUR[R](Y[R](r, x)) evaluates to
parity(x) on input Y[R](r, x). We, in fact, prove a more general statement lower bounding
the approximate degree of PUR[R] for a class of potential structures R.

Specifically, we show that the parity function is hard, even to sign-represent, and even
given access to Y[R] consisting of inner products of x with random strings ri where each bit
of ri is either fixed to zero or is an unbiased random bit. The only other restriction we need
on Y[R] is that its “size”, i.e., the number of inner products it provides, is small. The bigger
this number is, the worse our the lower bound becomes.

The proof idea is based on the hardness of sign-representing parity as described in [7],
combined with the following combinatorial observation: given a set of n-bit strings (corres-
ponding to samples from R, and in turn to random inner products) where in every string
each bit is either zero or is an unbiased random bit, with high probability no small subset of
them adds up to the all-ones string (which corresponds to the parity function).

2.4 Improved ordered search and anchored hidden string lower bounds
Our generalized lower bound for approximating PUR[R] allows us to obtain other lower
bounds for oracle identification problems. For example, we give a slightly stronger lower
bound for OS than what is implied by the discussion above. There is, in fact, a more efficient
randomized communication protocol for GT that uses O(log n) bits of communication. It
can be converted into randomized query algorithm and thus into a polynomial of degree
O(log n). At the same time, this more efficient protocol is still based on computing equalities
of substrings of inputs, and so the appropriate Y has a very similar structure to the one



M. Bun and N. Voronova 1:11

described above while still satisfying the conditions of the generalized lower bound for PUR.
Moreover, the necessary “size” of Y barely blows up at all. Putting everything together gives
our improved lower bound of Ω

(
n

log2 n

)
on the approximate degree of OS.

Using the same framework, we can also obtain a nearly tight lower bound on the
approximate degree of the anchored hidden string problem AHS. In the anchored hidden
string problem, the goal is to determine the parity of x given oracle access to yi,s = ϕi,s(x)
for every index i and every binary string s of length at most n, where ϕi,s(x) = 1 iff the
substring of x starting at index i matches s. This oracle identification problem has the right
form for our framework since

AHSN ((ϕi,s(x))i∈[n],s∈{0,1}≤n−i+1) = parity(x).

Moreover, each function ϕi,s(x) simply computes the equality function of s with a substring
of x of length |s| starting from position i. As we have already seen, we can compute the
equality function very efficiently given an oracle Y of the right random structure, and such a
Y meets the conditions of our generalized lower bound for PUR[Y]. This directly implies a
lower bound of Ω

(
n

log n

)
on the approximate degree of AHS.

Finally, the last lower bound described in this work is on the approximate degree of HS.
This lower bound follows via a reduction from AHS. This reduction was first introduced
in [25] in the quantum query model, but it holds for polynomial approximation as well.

3 Ordered search and generalized lower bound

In this section we give the formal proof of our lower bound on the approximate degree
of ordered search. We show how our framework is used for this function and prove the
generalized lower bound on parity that we later reuse for the hidden string problem.

3.1 Preliminaries
Our lower bounds on the approximate degree of (a decision version) of ordered search and
the hidden string problem require the following definition of polynomial approximations for
promise problems.

▶ Definition 3. Let f : D → {0, 1} where D ⊆ {0, 1}n for some n ∈ N be a partial
Boolean function. For 1

2 > ε > 0, a polynomial p : {0, 1}n → R is an ε-approximation to
f if |p(x) − f(x)| ≤ ε for every x ∈ D and −ε ≤ p(x) ≤ 1 + ε for all x ∈ {0, 1}n. The
ε-approximate degree of f , denoted d̃egε(f) is the the least degree of a polynomial p that
ε-approximates f . We use the convention d̃eg(f) = d̃eg1/3(f) to refer to the “approximate
degree of f” without qualification.

That is, we require a polynomial approximation to a partial function defined on a domain
D to approximate the function on D and remain bounded outside of D. Note that this is
the type of approximation that arises from quantum query algorithms for promise problems.

We also formally define the ordered search function OS and the family of greater-than
functions GT.

▶ Definition 4. For all i ∈ {0, 1}n define the function GTi : {0, 1}n → {0, 1} to be the
indicator of whether the value of the input is smaller than i: GTi(x) = 1 if and only if x ≤ i

where i and x are compared as numbers written in binary notation.

TQC 2023
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▶ Definition 5. The ordered search function OS2n : {0k12n−k | k ∈ [2n]} → {0, 1} is a
partial function defined the following way: OS2n(0k12n−k) = parity(x) where x ∈ {0, 1}n is
the binary representation of k.

3.2 The notion of a good base
In order to formally define the oracle, i.e. the source of additional information about the
input, we introduce the notion of a “good base” for the oracle. A set R, consisting of tuples
of strings, is a good base if it’s constructed as follows.

Let R′ be a Cartesian product of m′ subsets of {0, 1}n where each subset Rτ is itself
defined by an n-bit string-template τ = τ1τ2 . . . τn ∈ {0, 1}n

Rτ = Sτ1Sτ2Sτ3 . . . Sτn

where S0 = {0} and S1 = {0, 1}.
For example, if τ = 00100010 then Rτ = Sτ1Sτ2Sτ3 . . . Sτn

= S0S0S1S0S0S0S1S0 =
{0}{0}{0, 1}{0}{0}{0}{0, 1}{0} = {00000000, 00000010, 00100000, 00100010}.

Let B = {11} × {12} × . . .× {1n} where 1j = 0i−j10n−j is the string that has the value
1 in j-th position and has the value 0 everywhere else. Let R = B × R′, and thus R is a
Cartesian product of m = n + m′ subsets of {0, 1}n. Note that every r ∈ R is a m-tuple of
n-bit strings:

r = (r1, r2, . . . rm) = (11, 12, . . . , 1n−1, 1n, rn+1, rn+2, . . . , rn+m′)

where each rj is a string of length n, the first n strings are fixed for all r ∈ R, and the last
m′ strings are from some sets Rτ each for some template τ . If r ← R is chosen u.a.r. then
each rj , n < j ≤ m′ is chosen u.a.r. from some Rτ and thus the subsequence of bits of rj

corresponding to ones in τ is a uniformly random string, and the subsequence of bits of rj

corresponding to zeros in τ is the all-zero string.
Any set R with the above structure will be called a good base of size m. Such an R is

helpful for building our oracles as follows.
Let Y[R] : R×{0, 1}n → {0, 1}m be the following function: (Y[R](r, x))j = ⟨rj , x⟩ where

rj is an n-bit string from the collection r ∈ R and the inner product is taken modulo 2. Note
that Y[R] is parameterized by R, so for each good base R the function Y[R] will be different.
We will omit the parameter R later in places where it is clear from context.

Notice the following properties of this function Y[R](r, x) that hold whenever R is a good
base:

For every r ∈ R, the values Y(r, x) completely determine x. Since the first n strings of r

are 11, 12, . . ., 1n−1, 1n, the first n bits of Y(r, x) are exactly bits of x.
Given Y(r, x) for r ← R and r itself, one can compute (with some probability of error)
whether a subsequence of x specified by some pattern τ agrees with some fixed string
s in those indices. To be more specific, if given (Y(r, x))j = ⟨rj , x⟩ where rj is sampled
from Rτ uniformly at random, and rj itself, one can check whether the strings x ∧ τ

(where ∧ denotes bitwise AND) and s ∧ τ are equal for any s ∈ {0, 1}n with one-sided
error probability 1

2 .

So, Y[R](r, x) could be used as an equality oracle for a fixed set of subsequences of x

(predefined by R) when r is chosen uniformly at random from R. Thus, Y[R](r, x) might
give more information about x than x alone and might make some computations on x more
efficient.

On the other hand, some functions of x remain “hard” even when given Y(r, x). We will
later show that parity(x) remains hard to compute even with this additional information.
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3.3 Approximating polynomials for GTi

We start our proof by showing that for some good base ROS the oracle Y[ROS] could be used
to make the computation of GT functions more efficient.

▷ Claim 6. There exists a good base ROS of size m = O(n2 log log n) such that if r ← ROS
is sampled uniformly at random, then with probability at least 2

3 over the choice of r

there exists a family of 2n polynomials {q(r,i) : {0, 1}m → {0, 1} | i ∈ {0, 1}n}, each of
degree at most 2 log n log log n, such that given Y[ROS](r, x) as the input, each polynomial
q(r,i)(Y[ROS](r, x)) approximates the corresponding GTi(x) with error at most 1

6 . That is,

Pr
r←ROS

[
∃i, x ∈ {0, 1}n :

∣∣q(r,i)(Y(r, x))− GTi(x)
∣∣ >

1
6

]
<

1
3 .

Proof. This proof consists of two parts: constructing a good base ROS and showing that it
actually helps to compute every GTi.

Constructing the good base ROS. We are going to construct ROS based on what random
strings are useful in the communication protocol computing GT of two n-bit strings, x and i.
Intuitively, in this protocol, we first need to check if the first half of i and x are equal using
a randomized communication protocol for equality. To do that we need to compute and
compare ⟨x, r⟩ and ⟨i, r⟩, for some number α of random strings r to be determined later,
where each r is sampled from {0, 1}n

2 {0}n
2 . If the computed values ⟨i, r⟩ = ⟨x, r⟩ for all

r we have considered, then we repeat this procedure on the second half of x and i, which
corresponds to computing and comparing ⟨x, r⟩ and ⟨i, r⟩ for α random strings r sampled
from {0}n

2 {0, 1}n
4 {0}n

4 . If, on the other hand, the values were not equal then we repeat this
procedure on the first half of x and i, which corresponds to computing and comparing ⟨x, r⟩
and ⟨i, r⟩ for α random strings r sampled from {0, 1}n

4 {0} 3n
4 . Since we want our oracle to

be useful to emulate this procedure to compute GTi(x), it should “contain” all the random
strings used in this protocol.

Let R̂ = R1n/20n/2 ×
(
R1n/403n/4 ×R0n/21n/40n/4

)
× . . . ×(

×2k−1
i=0 R

02in/2k+1
1n/2k+1

0n−((2i+1)n/2k+1)
)
× . . . ×

(
×n/2

i=0R
02i110n−(2i+1)

)
. See Figure 1

for an illustration.

τ Rτ Structure of Rτ

1n
2 0n

2 {0, 1}n
2 {0}n

2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

1n
4 0 3n

4 {0, 1}n
4 {0} 3n

4 ⋆ ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0
0n

2 1n
4 0n

4 {0}n
2 {0, 1}n

4 {0}n
4 0 0 0 0 0 0 0 0 ⋆ ⋆ ⋆ ⋆ 0 0 0 0

1n
8 0 7n

8 {0, 1}n
8 {0} 7n

8 ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0n

4 1n
8 0 5n

8 {0}n
4 {0, 1}n

8 {0} 5n
8 0 0 0 0 ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0

0n
2 1n

8 0 3n
8 {0}n

2 {0, 1}n
4 {0} 3n

8 0 0 0 0 0 0 0 0 ⋆ ⋆ 0 0 0 0 0 0
0 3n

4 1n
8 0n

8 {0} 3n
4 {0, 1}n

8 {0}n
8 0 0 0 0 0 0 0 0 0 0 0 0 ⋆ ⋆ 0 0

Figure 1 Structure of R̂. Blue cells with ⋆ represent indices in which either a 0 or a 1 could
appear.
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This R̂ describes all the strings used as the source of randomness in the O(log n log log n)
communication protocol for GT, but each of the strings appears in the structure only once
instead of α times. So, we need to duplicate this structure α times to properly simulate the
protocol.

To finish the structure, we are going to add two other steps to the structure. First, we
are going to have some number t of individual “prepackaged” copies to be determined later
for the GT protocol. Let R1 = . . . = Rt = ×αR̂. Each of the copies has enough randomness
and the right structure of that randomness to simulate one full run of the GT protocol. Let
R′ =×j∈[t]Rj which allows us to handle t runs. Secondly, we want to be able to obtain
the value of any specific index of x, so we add a set of “basis” strings to the structure:
B = {11} × {12} × . . .× {1n} = {10 . . . 0} × {010 . . . 0} × . . .× {00 . . . 010} × {00 . . . 01}.

The final underlying structure of the oracle will be a Cartesian product of R′ and B:
ROS = B ×R′ = B × (×j∈[t]Rj). See Figure 2 for an illustration.

B R1 R2 Rt−1 Rt

α copies α copies α copies α copies
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

× × × . . . × ×

Figure 2 Structure of ROS. Each Rj consist of α copies of R̂.

We also set the parameters to be α = 2 log (log n), t = 250n ln 2. Notice that this set
ROS is a good base by construction and has size m = n + αtn = n + cn2 log (log n) for some
constant c.

Constructing the family of approximating polynomials. In order to prove this claim, we
first describe a randomized query algorithm that computes GTi(x) correctly for all i and
x with high probability given Y[ROS](r, x) as input. We then explain how to convert this
query algorithm into a polynomial. The algorithm construction itself consists of two parts.
In the first part, for all j ∈ [t] we show the existence of a deterministic algorithm B(r,i,j) that,
given Y(r, x), can compute GTi(x) for every specific x, i ∈ {0, 1}n with good probability over
the choice of r ← ROS, and this algorithm is only going to use the parts of the input that
correspond to Rj and B. In the second part, we show that the algorithm A(r,i) that chooses
a copy j to use randomly and runs B(r,i,j), computes GTi(x) correctly for all i and x with
high probability given Y(r, x) as input.

For all i ∈ {0, 1}n, j ∈ [t], r ∈ ROS let B(r,i,j)(Y(r, x)) be the following deterministic
algorithm.

1. Set ℓ = 0, u = n/2
2. While ℓ < u:
3. Set τ = 0ℓ1u−ℓ0n−u

4. For all indices v ∈ [m] corresponding to n-bit strings drawn from Rτ within the j-th
copy Rj :

5. Compute ⟨i, rv⟩ and compare it to (Y(r, x))v = ⟨x, rv⟩.
6. If for all such v the inner products are equal, i.e., ⟨i, rv⟩ = (Y(r, x))v, then set

tmp = u, u = u + (u− ℓ)/2, ℓ = tmp and go step 2.
7. Otherwise, set u = (u + ℓ)/2 and go step 2
8. Compare iℓ = ⟨i, 1ℓ⟩ and (Y(r, x))ℓ = ⟨x, 1ℓ⟩ = xℓ. If xℓ ≤ iℓ then accept. Otherwise,

reject.
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The last step is possible specifically because of B in the structure of ROS: rℓ = 1ℓ

for all ℓ ≤ n and for all r ∈ ROS. Notice that this algorithm emulates the randomized
communication protocol for the GT communication problem.

In general, the algorithm emulates the randomized communication protocol for equality
on the first half of the segment [ℓ, u + (u − ℓ)] in x and i, and depending on the result it
splits the inputs into smaller segments and continues recursively. In the end, if all the runs
of equality protocols were correct, the algorithm finds and compares the most significant bit
where x and i differ.

By [37] we know that this algorithm computes GTi(x) with probability at least 1 −
(log n)2−α = 1− (log n)2−2 log (log n) = 1− 1

log n ≥
11
12 for sufficiently large n independently of

the choice of j ∈ [t]. That is, for all j ∈ [t] and for all i, x ∈ {0, 1}n,

Pr
r←ROS

[B(r,i,j)(Y(r, x)) = GTi(x)] ≥ 11
12 .

This algorithm makes at most α log n = 2 log n log log n queries to the oracle Y(r, x). Note
that this algorithm needs access to the specific r needed to compute every ⟨i, rv⟩ and we
enable this by “hardcoding” this r into the algorithm and creating a separate algorithm for
each possible r.

We have shown that for every fixed i, x ∈ {0, 1}n there are many r ∈ ROS that if used
as a first input for the oracle Y allow B(r,i,j) to compute GTi(x). Unfortunately, this is not
enough: our algorithm should be universal, i.e., we want a single algorithm that with high
probability over r succeeds on all i and x. On the other hand, B(r,i,j) only uses one fixed
“package” of random strings, namely the j-th package.

Let W (i, x, r, j) be the indicator that the j-th package of random strings in r defines a set
of “bad” random strings for (i, x): W (i, x, r, j) = 1 if and only if B(r,i,j)(Y(r, x)) ̸= GTi(x).
We established that B(r,i,j)(Y(r, x)) works well if given a random r ← ROS for every j ∈ [t]
and the probability of this algorithm outputting an incorrect answer is at most 1

12 . So for all
i, x ∈ {0, 1}n, j ∈ [t], we have

Pr
r←ROS

[W (i, x, r, j) = 1] = Er←ROS [W (i, x, r, j)] ≤ 1
12 .

We can’t immediately get a useful upper bound on the probability of r ← R working out for
all i and x at the same time. To achieve this, we’ll design a new algorithm that uses all t

packages of random strings. Its construction and analysis are inspired by Newman’s classic
argument used for simulating public randomness by private randomness in communication
protocols.

For all i ∈ {0, 1}n, r ∈ ROS let A(r,i)(Y(r, x)) be the following randomized algorithm:
Choose j ← [t] uniformly at random.
Run B(r,i,j)(Y(r, x)).

Let us now analyse A(r,i). The number of queries that A(r,i) makes to the oracle is the same
as B(r,i,j) which is α log n = 2 log n log log n. We fix a pair (i, x) and evaluate the following
probability.

Pr
r←ROS

[
Pr

j←[t]
[B(r,i,j) ̸= GTi(x)] >

1
6

]
= Pr

r←ROS

1
t

∑
j∈[t]

W (i, x, r, j) >
1
6

 .

We established that Er←ROS [W (i, x, r, j)] ≤ 1
12 and so by Hoeffding’s inequality,

Pr
r←ROS

1
t

∑
j∈[t]

W (i, x, r, j) >
1
12 + 1

12

 ≤ e−2 t
144 ≤ 2− 500n

144 .
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By a union bound over all possible i, x ∈ {0, 1}n,

Pr
r←ROS

∃i, x ∈ {0, 1}n : 1
t

∑
j∈[t]

W (i, x, r, j) >
1
6

 ≤ 22n2− 500n
144 ≤ 2−n <

1
3 .

Therefore, we have proven that

Pr
r←ROS

[
∃i, x ∈ {0, 1}n : Pr

j←[t]
[A(r,i)(Y(r, x))) ̸= GTi(x)] >

1
6

]
<

1
3 .

The last step is to convert this family of query algorithms into a family of approximating
polynomials. Let q(r,i) denote the acceptance probability of A(r,i). A standard argument
(e.g., [16, Theorem 15]) implies that this is a polynomial of degree at most 2 log n log log n

such that

Pr
r←ROS

[
∃i, x ∈ {0, 1}n :

∣∣q(r,i)(Y(r, x))− GTi(x)
∣∣ >

1
6

]
<

1
3 ,

which is exactly what we were looking for. ◁

We successfully converted the most well-known communication protocol for GT that
requires O(log n log log n) bits of communication into a family of polynomials of degree
O(log n log log n) that approximates GTi. It’s known that there is a better communication
protocol for GT that requires only O(log n) bits of communication, as observed by Nisan [37].
The next claim establishes that this more efficient protocol can be converted into a family of
polynomials as well.

▷ Claim 7. There exists a good base ROS++ of size m = O(n3 log n) such that if r ← ROS++
is sampled uniformly at random, then with probability at least 2

3 over the choice of r there
exists a family of polynomials {q(r,i) : {0, 1}m → {0, 1} | i ∈ {0, 1}n}, each of degree at
most O(log n), such that given Y(r, x) as the input, each polynomial q(r,i)(Y[ROS++](r, x))
approximates the corresponding GTi(x) with error at most 1

6 . That is,

Pr
r←ROS++

[
∃i, x ∈ {0, 1}n :

∣∣q(r,i)(Y(r, x))− GTi(x)
∣∣ >

1
6

]
<

1
3 .

The proof of Claim 7 is similar to the proof of Claim 6 and can be found in Appendix B in
the full version of our paper [20].

3.4 General lower bound
To complete the framework and to obtain the lower bound for Ordered Search we need to
show why computing the parity is hard even given Y[ROS] or Y[ROS++]. We will show a
stronger lower bound that would allow us to reuse this lower bound for other applications.
Specifically, we will show that computing the parity of input x remains hard given Y[R] for
any good base R of small size.

3.4.1 Combinatorial claim
The hardness of parity in this model is based on the following statement. For every good base
R of small size with high probability over the sample r ← R for every set of n-bit strings
taken from the collection r of size at most O( n

log n ), the bitwise parity of these strings is not
equal to the all-ones string.
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▷ Claim 8. For every good base R of size m with probability at least 2
3 over the choice of

r ← R for every set of elements T ⊆ [m] of size at most d = n
4 log m − 1, the bitwise parity of

n-bit strings ri, i ∈ T from the collection r ← R is not equal to the all-ones string:

Pr
r←R

[
∀T ⊆ [m], |T | ≤ d :

⊕
i∈T

ri ̸= 1n

]
≥ 2

3 .

Proof. Fix an arbitrary good base R of size m. Fix a set T ⊆ [m] where |T | ≤ d. We want
to bound the probability Prr←R[

⊕
i∈T ri = 1n] that for this r and for this T the strings

corresponding to the indices in T sum up to the string of all ones. Fix a specific index
k ∈ [n]. We compute the probability that index k is set to 1 in

⊕
i∈T ri. To do this we need

to understand how the candidate strings ri, i ∈ T can influence this value.
There are three possible scenarios for each index k:
(Type I) There is at least one string ri ∈ {0, 1}n with i ∈ T such that it is chosen from
Rτ where τk = 1. Then in each such string, the bit at index k is sampled independently
at random with probability 1

2 . Thus Prr←R[⟨
⊕

i∈T ri, 1k⟩ = 1] = 1
2 .

(Type II) There are no strings ri, i ∈ T such that ri is chosen from Rτ and τk = 1, but
there is ri, i ∈ T that is chosen from B, such that ri = 1k. Then the value of ⟨

⊕
i∈T ri, 1k⟩

is one since there is exactly one string in this sum with the kth index value set to one.
Thus Prr←R[⟨

⊕
i∈T ri, 1k⟩ = 1] = 1.

(Type III) There are no strings ri, i ∈ T such that ri is chosen from Rτ and τk = 1, and
there is no ri, i ∈ T that is chosen from B, such that ri = 1k. Then for all strings ri the
index k is 0, so Prr←R[⟨

⊕
i∈T ri, 1k⟩ = 1] = 0.

Index k 1 2 3 4 5 6 7 8
ri1 ⋆ ⋆ ⋆ ⋆ 0 0 ⋆ 0

ri2 ⋆ ⋆ ⋆ 0 0 0 0 0

ri3 ⋆ 0 ⋆ ⋆ 0 0 ⋆ 0

ri4 0 ⋆ 0 0 0 0 0 0

ri5 0 0 1 0 0 0 0 0

ri6 0 0 0 0 1 0 0 0

Type I I I I II III I III
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Prr←R[⟨
⊕

i∈T ri, 1k⟩] 1/2 1/2 1/2 1/2 1 0 1/2 0

Figure 3 Example of index types, T = {i1, i2, i3, i4, i5, i6}.

Notice that T fully defines the types of all indices and thus the values of ⟨
⊕

i∈T ri, 1k⟩ for
k of types II and III don’t depend on the choice of r ← R. On the other hand, the values
of indices of type I do depend on the choice of r ← R. Each of them is either a parity of
independent random bits or the negation of a parity of independent random bits which is
fixed by T too. Thus they behave as independent bits themselves and therefore the values
⟨
⊕

i∈T ri, 1k⟩ are mutually independent for all indices k.
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Denote by nI, nII, nIII the numbers of indices of each type. Notice that nI + nII + nIII = n

and nII ≤ d. Then in this notation

Pr
r←R

[⊕
i∈T

ri = 1n

]
=

(
1
2

)nI

1nII0nIII .

If there exists k ∈ [n] of the third type, the probability Prr←R[
⊕

i∈T ri = 1n] becomes 0,
so to upper bound the probability we may assume all the indices have one of the first two
types. And, since nII ≤ d, to maximize the value we assume that nII = d. Thus we have

Pr
r←R

[⊕
i∈T

ri = 1n

]
=

(
1
2

)n−nII

1nII ≤ 1d

(
1
2

)n−d

= 2−(n−d).

Since d = n
4 log m − 1 and m ≥ n, we have n− d > n

2 for sufficiently large n. So for a fixed T ,

Pr
r←R

[⊕
i∈T

ri = 1n

]
< 2−n

2 .

There are
(

m
≤d

)
ways to choose the set T , so by a union bound over the choice of T , the

probability that for some set of size at most d the value
⊕

i∈T ri is equal to the string of all
ones is

Pr
r←R

[
∃T ⊆ [m], |T | ≤ d :

⊕
i∈T

ri = 1n

]
≤

(
m

≤ d

)
2−n

2 = 2−n
2

d∑
d′=0

(
m

d′

)
≤ 2−n

2

d∑
d′=0

md′

≤ 2−n
2 md+1 = 2−n

2 m
n

4 log m = 2−n
2 2

n
4 log m log m = 2 n

4−
n
2 = 2−n

4 <
1
3 . ◁

3.4.2 Lower bound on the degree of PUR[R]
For every good base R and for every fixed r ∈ R define the function PUR[R]r : D[R]r → {0, 1}
where D[R]r = {Y[R](r, x) | x ∈ {0, 1}n} is the subset of {0, 1}m where each domain point
corresponds to one specific x ∈ {0, 1}n and is consistent with the fixed r. This function
outputs the parity of the string encoded by the input: PUR[R]r(Y(r, x)) = parity(x). It is
well defined since parity(x) =

⊕
ri∈B⟨x, ri⟩ =

⊕
i∈[n](Y(r, x))i. Note that both D[R]r and

PUR[R] are parameterized by R and, as with Y[R], we will omit the parameter later in
places where the parameter is clear from the context.

Our goal is to show that PUR[R] is hard to approximate if R is a good base of small
size. We do this by showing that for every good base R of size m if r ← R u.a.r. then every
polynomial p of degree at most d = O( n

log m ) is completely uncorrelated with PUR[R]r(Y(r, x))
with high probability over the choice of r.

▶ Theorem 9. For every good base R of size m if r ← R u.a.r. then with probability at
least 2

3 over the choice of r every polynomial p : {0, 1}m → R of degree at most d = n
4 log m − 1

doesn’t approximate PUR[R]r:

Pr
r←R

[
∀ε <

1
2 , ∀p, deg(p) ≤ d, ∃y ∈ D[R]r : |p(y)− PUR[R]r(y)| > ε

]
≥ 2

3

Note that Theorem 9 rules out approximating polynomials that may be unbounded outside
of the domain of PUR[R]r. That is, it asserts that there is no low-degree approximating
polynomial even when that polynomial is permitted to take values outside of [0, 1] on points
outside of the domain of PURr. Note also that since the lower bound applies for all ε < 1/2,
it actually entails a threshold degree lower bound on computing PUR[R].
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Proof. Fix an arbitrary good base R of size m.
For convenience in this proof, let us change notation to consider polynomials approx-

imations over {−1, 1} instead of over {0, 1}. Define Y ′ : R × {−1, 1}n → {−1, 1}m to
be (Y ′(r, x′))i = 1 − 2(Y(r, ( 1−x′

1
2 ,

1−x′
2

2 , . . . ,
1−x′

n

2 )))i = 1 − 2⟨x, ri⟩ where ri is the vector
corresponding to ith component of Y(r, x) and x ∈ {0, 1}n is the vector that corresponds
to x′ ∈ {−1, 1}n: xi = 1−x′

i

2 for all i ∈ [n]. Notice that this change of notation satisfies the
following: if a ∈ {0, 1} and a′ is the corresponding value in the new notation a′ ∈ {−1, 1}
then a′ = (−1)a.

Let’s also rewrite PURr in this new notation. Let D′r represent the domain of PUR′r: D′r =
{Y ′(r, x′) | x′ ∈ {−1, 1}n} and the function PUR′r : D′r → {−1, 1} be PUR′r(Y ′1,Y ′2, . . . ,Y ′m) =
1− 2PURr( 1−Y′

1
2 ,

1−Y′
2

2 , . . . ,
1−Y′

m

2 ).
Note that every polynomial p′ : {−1, 1}m → R that approximates PUR′r to error ε can be

converted by a linear transformation into a polynomial p : {0, 1}m → R of the same degree
that approximates PURr to error ε/2. So it suffices to prove that no polynomial p′ of degree
at most d approximates PUR′r to error ε < 1.

Assume toward a contradiction that there is a polynomial p′ of degree d that approximates
PUR′r. This means that there exists ε < 1 such that for all y′ ∈ D′r,∣∣p′(y′)− PUR′r(y′)

∣∣ < ε.

Consider the following expression:

1
2n

∣∣∣∣∣∣
∑

y′∈D′
r

PUR′
r(y′)(PUR′

r(y′) − p′(y′))

∣∣∣∣∣∣ ≤ 1
2n

(
max

y′∈D′
r

∣∣p′(y′) − PUR′
r(y′)

∣∣)  ∑
y′∈D′

r

∣∣PUR′
r(y′)

∣∣
<

1
2n

ε|D′
r| = ε.

(1)

The last equality holds because Y ′(r, ·) is surjective, and hence |D′r| = 2n. On the other
hand,

1
2n

∣∣∣∣∣∣
∑

y′∈D′
r

PUR′
r(y′)(PUR′

r(y′) − p′(y′))

∣∣∣∣∣∣ = 1
2n

∣∣∣∣∣∣
 ∑

y′∈D′
r

PUR′
r(y′)PUR′

r(y′)

−

 ∑
y′∈D′

r

PUR′
r(y′)p′(y′)

∣∣∣∣∣∣
= 1

2n

∣∣∣∣∣∣|D′
r| −

 ∑
y′∈D′

r

PUR′
r(y′)p(y′)

∣∣∣∣∣∣ .

(2)

We now show that with high probability the expression above is equal to |D
′
r|

2n .

▷ Claim 10. With probability at least 2
3 over the choice of r ← R, for every polynomial

p′ : {−1, 1}m → R of degree at most d = n
4 log m − 1 we have∑

y′∈D′
r

PUR′r(y′)p′(y′) = 0.

Proof. Fix a polynomial p′ of degree at most d = n
4 log m − 1. By linearity it suffices to

consider the case where p′ is a monomial, p′(y′) =
∏

j∈T y′j for some T ⊆ [m], |T | ≤ d. So

∑
y′∈D′

r

PUR′r(y′)p′(y′) =
∑

x′∈{−1,1}n

 ∏
i∈[n]

(x′i)

 ∏
j∈T

(Y ′(r, x′))j
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=
∑

x∈{0,1}n

(
(−1)⟨x,1n⟩

) ∏
j∈T

(−1)⟨x,rj⟩

 =
∑

x∈{0,1}n

(−1)⟨x,1n⟩(−1)
∑

j∈T
⟨x,rj⟩

=
∑

x∈{0,1}n

(−1)⟨x,1n⟩(−1)⟨x,
⊕

j∈T
rj⟩ =

∑
x∈{0,1}n

(−1)⟨x,1n⊕(
⊕

j∈T
rj)⟩

This expression is not zero if and only if
⊕

j∈T rj = 1n. By Claim 8 the probability that
such T exists is at most 1

3 . So the probability over the choice of r for some polynomial
p′ : {−1, 1}m → R of degree at most d = n

4 log m − 1 to have∑
y′∈D′

r

PUR′r(y′)p′(y′) ̸= 0

is at most 1
3 . ◁

Combining expressions (1) and (2) and Claim 10, we have that with probability at least
2
3 ,

ε >
1

2n

∣∣∣∣∣∣
∑

y′∈D′
r

PUR′
r(y′)(PUR′

r(y′) − p′(y′))

∣∣∣∣∣∣ = 1
2n

∣∣∣∣∣∣|D′
r| −

 ∑
y′∈D′

r

PUR′
r(y′)p′(y′)

∣∣∣∣∣∣ = |D′
r|

2n
= 1.

And so ε > 1 which contradicts our assumption. Thus PUR′r(Y(r, x)) cannot be ap-
proximated by a polynomial of degree at most n

4 log m − 1 with probability at least 2
3 over

the choice r ← R sampled uniformly at random. And therefore PURr(Y(r, x)) cannot be
ε-approximated for every constant ε < 1

2 with a polynomial of degree less than n
4 log m with

probability at least 2
3 over the choice r ← R sampled uniformly at random for any good base

R of size m. ◀

3.5 Lower bound for ordered search
Finally, we combine our general lower bound on the approximate degree of PUR with the
upper bound on approximating GTi to conclude our lower bound on the approximate degree
of ordered search. We will use the statement of Claim 7 with a lower degree of polynomials
approximating GTi since, even though its proof is more complicated than the proof of the
weaker bound, as it allows us to obtain a better lower bound on ordered search.

First, we apply Theorem 9 to obtain a lower bound on the approximate degree for
PUR[ROS++].

▶ Corollary 11. If r ← ROS++ u.a.r. then with probability at least 2
3 over the choice of

r every polynomial p : {0, 1}m → R of degree at most d = n
16 log n − 1 fails to approximate

PUR[ROS++]r:

Pr
r←ROS++

[
∀ε <

1
2 , ∀p, deg(p) ≤ d, ∃y ∈ D[ROS++]r : |p(y)− PUR[ROS++]r(y)| > ε

]
≥ 2

3 .

Proof. The set ROS++ is a good base and has size m = O(n3 log n). By Theorem 9, with
probability at least 2

3 over the choice of r every polynomial p : {0, 1}m → R of degree at most
n

4 log m − 1 fails to approximate PUR[ROS++]r. But since the size of ROS++ is m ≤ n4 for
sufficiently large n then every polynomial of degree at most d = n

16 log n − 1 = n
4 log n4 − 1 ≤

n
4 log m − 1 fails to approximate PUR[ROS++]r. ◀

By combining Claim 7 and Corollary 11, we obtain the following.
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▶ Theorem 12. The approximate degree of ordered search is

d̃eg 1
2−γ(OS2n) = Ω

(
n

log2 n
− log 1

γ

)
where γ could depend on n, 0 < γ < 1

2 .

Proof. Suppose OS2n can be ( 1
2 − γ)-approximated by a bounded polynomial of degree d for

some 1
2 > γ > 0. By [40, Theorem 1.1], for every δ > 0, this polynomial can be converted to

a polynomial p of degree O(d + log 1
δ ) that ( 1

2 − γ + δ)-approximates OS2n and is robust to
noise in its inputs. That is,

|OSN (y)− p(y + ∆)| < 1
2 − γ + δ

for all y ∈ {0, 1}N , all ∆ ∈ [− 1
6 , 1

6 ]N , and N = 2n. If we put δ = γ
2 , then p is a ( 1

2 −
γ
2 )-

approximating polynomial for OS2n with degree O
(

d + log
(

1
γ

))
.

Note that OS2n(GT0n(x), GT0n−11(x), . . . , GT1n(x)) = PUR[ROS++]r(Y(r, x)) for every
r ∈ ROS++. So by Claim 7, there exists a constant c such that the composed
polynomial p(q(r,0n)(Y(r, x)), q(r,0n−11)(Y(r, x)), . . . q(r,1n)(Y(r, x))) has degree at most
deg(p) maxi(deg(q(r,i))) = c

(
d + log

(
1
γ

))
log n and approximates PUR[ROS++]r(Y(r, x))

to error ( 1
2 −

γ
2 ) with probability at least 2

3 over the choice of r ← ROS++. This holds
because although the polynomials q(r,i) do not compute the functions GTi exactly, but only
approximate them with small error, the outer polynomial p is robust to this small error in
the inputs. Note also that while the composed polynomial is bounded on the domain of
PURr, it may be arbitrarily unbounded on points outside its domain.

On the other hand, by Claim 11, with probability at least 2
3 over the choice of r,

the function PUR[ROS++]r cannot be approximated to any error ( 1
2 −

γ
2 ) ∈ (0, 1

2 ) by a
polynomial in Y of degree less than n

16 log n . By a union bound, with probability at least
1 − (1 − 2

3 ) − (1 − 2
3 ) = 1

3 both conditions on r hold simultaneously. Thus there exists
r ∈ ROS++ such that p(q(r,0n)(Y(r, x)), q(r,0n−11)(Y(r, x)), . . . q(r,1n)(Y(r, x))) approximates
PURr(Y(r, x)) and PURr(Y(r, x)) cannot be approximated by a polynomial of degree less
than n

16 log n . So

c

(
d + log

(
1
γ

))
log n ≥ n

16 log n
.

And thus

d + log
(

1
γ

)
≥ n

16c log2 n
,

so we conclude that

d = Ω
(

n

log2 n
− log

(
1
γ

))
. ◀
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scheme (which can, in turn, be used to build one-shot signatures and other useful quantum primitives).
This strengthens a result due to Zhandry (Eurocrypt ’19) showing that the same object yields
quantum lightning.
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2:2 On the Necessity of Collapsing

This work studies the notion of computational binding (and the related notion of collision
resistance) against quantum adversaries. While a natural quantum analogue of computational
binding asserts that it is infeasible for a quantum computer to furnish valid openings of a
commitment to more than one message, [1] demonstrated that this definition is not sufficient
for many applications of commitment schemes. The key issue is that while binding rules
out finding openings to distinct messages simultaneously, it does not rule out being able to
“choose” the message that is opened. Note that this is an exclusively quantum problem: a
classical algorithm able to make such a choice can break computational binding via rewinding.

Unruh [24] proposed post-quantum strengthenings of computational binding and collision
resistance (for classical protocols) called collapse binding and collapsing, respectively. These
have since become central in post-quantum cryptography: a sequence of works [24, 20, 3,
10, 11, 21] has demonstrated that this strengthening is sufficient to prove post-quantum
security for various important schemes. Roughly speaking, these properties state that an
adversary that has committed to a superposition of messages cannot tell whether or not that
superposition has been measured.

Collapsing hash functions can be built from LWE [23]; additionally, any CRH that
satisfies a certain regularity property is collapsing, which includes constructions from LPN
and isogenies, and plausibly functions like SHA [30, 9]. Nonetheless, in general there remains
a gap between collapsing and collision resistance. Zhandry [28, 29] showed that the existence
of a hash function in this gap implies the existence of quantum lightning, which (among other
things) yields public-key quantum money.

Quantum commitments

So far we have restricted our attention to the security of classical schemes against quantum
adversaries (post-quantum security). Complicating matters further, however, quantum com-
munication enables the construction of “intrinsically quantum” cryptographic constructions
for which classical notions of security may not even apply. In quantum commitment schemes,
where commitments and openings are (possibly entangled) quantum states, the basic notion
of computational binding does not have a clear analogue; indeed, finding an appropriate
definition of binding for quantum commitments has proved difficult [14, 27, 15, 4, 5], even in
the statistical case, owing to an adversary’s ability to commit to a superposition of messages.

2 Results

In this work we investigate collapse binding and related properties. We first propose a
definition of collapse binding for quantum commitments (formalised in Definition 20). Then,
using chosen-bit binding as a bridge, we show that collapse binding is equivalent to CBB
(Theorems 2 and 4) and sum binding (Corollary 5), among others, both for post-quantum
and quantum commitments.

Lastly, we use quantum rewinding techniques to show that, if computational and collapse
binding are distinct, then a commitment scheme in this gap can be used to construct a
one-shot equivocal scheme and, consequently, a variety of useful quantum cryptographic
primitives (see Section 6).

▶ Remark 1 (Quantum vs. post-quantum results). For clarity, in this section we discuss
the post-quantum versions of our experiments and results. We stress, however, that our
proofs hold with respect to both quantum and classical (i.e., post-quantum) versions of the
experiments.
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(Note that, as the standard definition of quantum commitment schemes does not include
post-quantum as a special case, this is not trivial; see Section 2.2 for a discussion.) ⌟

2.1 Chosen-bit binding commitments
We introduce a new notion of binding we call chosen-bit binding, which is defined in terms of
an interactive game against a (potentially quantum) adversary Adv.

Let COM = (Gen,Commit) be a commitment scheme for the set of messages M = {0, 1}ℓ(λ).
The chosen-bit binding experiment is as follows. (See Experiment 25 for the general version.)
1. Sample a commitment key ck← Gen(1λ).
2. Obtain an index-commitment pair (i, com)← Adv(ck).
3. Sample b← {0, 1} uniformly at random.
4. Obtain a message-opening pair (m,ω)← Adv(b).
5. Output 1 if mi = b and Commit(ck,m, ω) = com.

We say that COM is chosen-bit binding (CBB) if, for every efficient adversary Adv, the
above experiment outputs 1 with probability at most 1/2 + negl(λ). Note that the definition
of CBB is agnostic to the actual form of the commitment, which is used only as an abstract
functionality. It therefore readily applies to both classical and quantum commitments, as
well as to schemes where the commit or reveal phases are interactive1 (or even to “physical”
commitments like a locked safe).

Note, also, that CBB is equivalent to requiring that COM be a sum-binding bit commitment
at every coordinate i ∈ [ℓ] (which is distinct from Definition 18, the natural generalisation
of sum binding to message spaces with size larger than 2); the CBB experiment concisely
captures all ℓ sum binding experiments into one.

It is straightforward to show, via rewinding, that classical CBB is equivalent to computa-
tional binding. Our first result is an equivalence between CBB against quantum adversaries
and collapsing.

▶ Theorem 2. A classical commitment scheme is collapse binding if and only if it is
post-quantum chosen-bit binding.

Our results establish that collapsing is a “minimal” assumption which allows one to
prove post-quantum security for the important class of commit-and-open sigma protocols
(3-message protocols where the prover initiates, consisting of (1) commitments to s strings;
(2) a challenge C ⊆ [s]; and (3) for each i ∈ C, an opening of the ith string). Indeed, it was
shown in [21] that any classically secure commit-and-open protocol is post-quantum secure
when instantiated with a collapse binding commitment. Our result yields a converse:

▶ Corollary 3. There exists a classical commit-and-open protocol which is insecure when
instantiated with a commitment that is not collapse binding.

We note, however, that Theorem 2 follows from a more general result: since Definition 20
captures collapse binding of commitments with either classical or quantum messages, we
prove the equivalence between collapse and chosen-bit binding for a generalisation that
captures both quantum and post-quantum schemes (Definition 14; see also Remark 16).

1 In this work we restrict our attention to noninteractive commitments. All of our results easily generalise
to the setting where the commit phase is interactive. However, the definition of collapse binding seems
to crucially rely on the reveal phase being noninteractive.
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2:4 On the Necessity of Collapsing

▶ Theorem 4. A quantum commitment scheme is collapse binding if and only if it is
chosen-bit binding.

Several works [15, 25, 5] aim to surmount the difficulties of basing cryptographic protocols
on the binding guarantees of quantum commitments, especially for computational security.
We hope that introducing a notion of collapse binding for quantum commitments will allow
for some of the successes in the post-quantum case to be carried over to the quantum setting.

2.2 Connections to existing notions

▶ Corollary 5. Sum binding is equivalent to collapse binding for quantum and post-quantum
bit commitments.

This corollary improves upon and generalises results from prior work. In the classical (post-
quantum) setting, Unruh [23] proves that collapse binding implies sum binding; one of the
main contributions of this paper is proving the converse.2

In the quantum setting, Yan [26, Appendix F] shows that for parallel repetitions of
“canonical” quantum bit commitments (which capture the one-bit case of the schemes in
Experiments 17 and 25), sum binding implies collapse binding – though that work does
not give a definition of the latter.3 Definition 20 is the natural extension of collapse
binding to quantum commitments (which does not appear in prior work), and enables us to
generalise Yan’s result to arbitrary string commitments; note that these include compressing
commitments, which implies an analogous equivalence for hash functions (see Section 2.2.2).

For general ℓ, (classical) chosen-bit binding is a special case of so-called “CDMS binding”
[12, 24]. Informally, a commitment is CDMS binding with respect to a function class F if for
every f : X → Y in F and every efficient adversary Adv,

Pr
y

[Adv(y) opens com to m s.t. f(m) = y] ≤ 1
|Y |

+ negl(λ) ,

where com is a fixed commitment previously output by Adv and y is chosen uniformly at
random from Y . Unruh [23] showed that collapsing implies CDMS binding for all function
classes where |Y | is polynomial. CBB is easily seen to be equivalent to CDMS binding when
F is the class of one-bit projection functions; we hence obtain the following corollary.

▶ Corollary 6. CDMS binding against quantum adversaries is equivalent to collapse binding.

It also follows that CDMS binding for one-bit projections implies CDMS binding for all
function classes with polynomial range.

2 We note that the following seemingly simpler strategy towards Theorem 2 does not suffice: (i) prove sum
binding implies collapse binding for bit commitments; then (ii) use Unruh’s parallel repetition theorem
[23] to “lift” the equivalence to string commitments. This strategy only works for parallel repetitions of
bit commitments, whereas Theorem 2 holds for any string commitment (and extends to hash functions).

3 In fact, [26] shows that for canonical quantum commitments, (i) honest binding (a seemingly weaker
notion) is equivalent to sum binding; and (ii) honest binding implies a “computational collapse” property
that is equivalent to collapse binding. This result relies on the particular structure of canonical quantum
bit commitments.
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2.2.1 Somewhere statistical binding and parallel repetition
Unlike collapse binding, which is defined in terms of a quantum interaction, chosen-bit
binding is defined in terms of a classical interaction with a (potentially quantum) adversary.
This enables “fully classical” proofs that previously required quantum machinery, as we
demonstrate next.

We use the chosen-bit binding definition to reprove two known results: the (folklore) fact
that somewhere statistically binding (SSB) commitment schemes are collapse binding; and
the preservation of the collapse-binding property under parallel repetitions [24].

▶ Lemma 7. Any somewhere-statistically binding commitment scheme is chosen-bit binding;
in particular, post-quantum SSB commitment schemes are collapsing.

▶ Lemma 8. If a commitment scheme COM is chosen-bit binding, then is k-fold parallel
repetition COMk is also chosen-bit binding.

2.2.2 Hash functions
While we shall only discuss commitment schemes in the body of the paper, for our purposes
collision-resistant hash functions are binding (but not hiding) classical commitment schemes
where the length of the randomness is zero; therefore, many of our results extend to CRHs
mutatis mutandis.

More precisely, consider the analogous (classical) chosen-bit binding experiment for a
family Hλ ⊆ {0, 1}m(λ) → {0, 1}n(λ) of hash functions defined next.
1. Sample h← Hλ.
2. Obtain (y, i)← Adv(h), where y ∈ {0, 1}n(λ) and i ∈ [m(λ)].
3. Choose b← {0, 1} uniformly at random.
4. Obtain x← Adv(b).
5. Output 1 if h(x) = y and xi = b.

We say that H is classically (resp. post-quantum) chosen-bit binding (CBB) if for every
efficient classical (resp. quantum) adversary Adv, the above experiment outputs 1 with
probability at most 1/2 + negl(λ).

Classical chosen-bit binding for hash functions is easily seen to be equivalent to collision
resistance, and, by an essentially identical argument to Theorem 2, we can show that
post-quantum CBB is equivalent to collapsing.

▶ Corollary 9. A hash family H is collapsing if and only if it is post-quantum chosen-bit
binding.

Note that CBB also implies a method by which a quantum falsifier can convince a classical
party that a hash function is not collapsing.

2.3 Equivocality
A (classical) commitment scheme is one-shot equivocal [2] if it has an additional functionality
Eq, the equivocator, which produces a commitment string com and then, given a message m,
outputs a valid opening ω to it (with probability close to 1).4 In other words, Eq generates a
commitment com it can equivocate to any message of its choice (but only once, if the scheme
is computationally binding).

4 While [2] defines equivocality for hash functions, it easily extends to commitment schemes. Indeed, the
functionality they require is that of a commitment, which suffices to ensure security of the cryptographic
objects constructed in that work.
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We observe first that what [2] call “unequivocality” – roughly, that achieving the above
with any nontrivial advantage is computationally infeasible – implies chosen-bit binding, and
hence collapsing. This resolves an open question of [2].

However, we are able to show something much stronger, in the spirit of the “win-win”
results of [28, 29]. In particular, we show that if a commitment scheme is (almost everywhere)
not collapse binding, then it is one-shot equivocal. Note that the latter is a much stronger
property than the negation of unequivocality, since Eq must succeed with probability close
to 1. More formally, we obtain the following.5

▶ Theorem 10 (Theorem 41, informally stated). If COM is a post-quantum computationally
but not sum-binding commitment scheme, it can be transformed into a one-shot equivocal
scheme.

Our proof uses recent quantum rewinding techniques [11] to amplify success probability. We
remark that while [21, 11] build upon “Unruh’s lemma” [22] – which shows that if a pair
of projective measurements succeed with sufficiently high probability, then so does their
sequential application – it is insufficient for our purposes.

We instead use an early quantum rewinding lemma [13], which ensures one-shot equivoc-
ality for any inverse-polynomial advantage against COM in the collapse binding experiment
(Unruh’s lemma would only apply assuming constant advantage).

3 Preliminaries

We denote by λ ∈ N the security parameter, and when we refer to probabilistic/quantum
polynomial-time (PPT/QPT) algorithms, the time complexity is a polynomial in λ. We
denote by negl(λ) any function asymptotically smaller than every inverse polynomial, i.e,
that is o(λ−c) for every c ∈ N.

For n ∈ N, we write [n] to denote the set {1, . . . , n}. For a set S, we write i ← S to
denote that i is sampled uniformly from S. When D is a distribution, its support is denoted
supp(D) and i← D denotes that i is chosen according to D.

We make use of the following simple fact, a consequence of Markov’s inequality, and the
Chernoff bound.

▶ Proposition 11. Let X be a random variable supported on [0, 1]. Then for all α ≥ 0,
Pr[X ≥ α] ≥ E[X]− α.

▶ Proposition 12 (Chernoff bound). Let X1, . . . , Xk be independent Bernoulli random vari-
ables distributed as X. Then, for every δ ∈ [0, 1],

Pr
[

1
k

k∑
i=1

Xi ≥ (1 + δ)E[X]
]
≤ e− δ2kE[X]

3 and

Pr
[

1
k

k∑
i=1

Xi ≤ (1− δ)E[X]
]
≤ e− δ2kE[X]

2 .

We also make use of the Cauchy-Schwarz inequality with respect to the Hilbert-Schmidt
inner product.

5 It is claimed in [2] that if COM is not unequivocal, its parallel repetition COMk is equivocal for large
enough k. This is in fact true, but their argument is flawed; see Remark 34 for a discussion.
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▶ Lemma 13 (Cauchy-Schwarz). For any complex matrices A,B such that A†B is defined,∣∣Tr
(
A†B

)∣∣2 ≤ Tr
(
A†A

)
· Tr
(
B†B

)
.

We say a commitment scheme is classical when all of its communication is classical (but
an adversary may be quantum); that is, we use classical commitments as a shorthand for
classical-message commitments.

By the k-fold parallel repetition of an experiment/interactive protocol, we denote that
which results from repeating it independently k times with the same first message (in our
case, a commitment key ck); the output of the experiment is the conjunction of the outputs
of each execution.

3.1 Quantum information
We recall the basics of quantum information. (Most of the following is taken almost verbatim
from [11].) A (pure) quantum state is a vector |ψ⟩ in a complex Hilbert space H with
∥|ψ⟩∥ = 1; in this work, H is finite-dimensional, and we use |0⟩ to refer to a fixed (“zero”)
state in H. We denote by S(H) the space of Hermitian operators on H. A density matrix is
a positive semi-definite operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix represents a
probabilistic mixture of pure states (a mixed state); the density matrix corresponding to the
pure state |ψ⟩ is |ψ⟩⟨ψ|. Typically we divide a Hilbert space into registers, e.g. H = H1⊗H2,
and we sometimes write H \H2 to denote H1; we also write ρH1 to specify that ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU † = I. The operation
U transforms the pure state |ψ⟩ to the pure state U |ψ⟩, and the density matrix ρ to the
density matrix UρU †.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. If a (unitary U

or) projector Π in a Hilbert space H1 ⊗H2 acts trivially (as the identity I) in H2, we may
write Π or ΠH1 to denote Π ⊗ IH2 . A collection of projectors M = (Πi)i∈S is a projective
measurement when

∑
i∈S Πi = I, and a submeasurement when there exists a projector Π

such that
∑

i∈S Πi = I−Π.
The application of M to a pure state |ψ⟩ yields outcome i ∈ S with probability pi =

∥Πi |ψ⟩∥2; we denote sampling from this distribution by i ← M(ρ), and in this case the
post-measurement state is |ψi⟩ = Πi |ψ⟩ /

√
pi. We also use σ ← M(ρ) to denote the mixture

of post-measurement states Πi |ψ⟩ /
√
pi with probability pi. A two-outcome projective

measurement is called a binary projective measurement, and is written as M = (Π, I−Π),
where Π is associated with the outcome 1, and I−Π with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-
positive trace-preserving (CPTP) map T : S(H) → S(H′). We omit the precise definition
of these maps in this work; we only use the facts that they are trace-preserving (i.e.,
Tr(T (ρ)) = Tr(ρ) for every ρ ∈ S(H)) and linear. For every CPTP map T : S(H) → S(H)
there exists a unitary dilation U that operates on an expanded Hilbert space H⊗K, so that,
with TrK the partial trace operator that traces out K, we have T (ρ) = TrK(U(ρ⊗|0⟩⟨0|K)U †).
This is not necessarily unique; however, if T is described as a circuit then there is a dilation
UT represented by a circuit of size O(|T |).

4 Commitment schemes

In this section, we define commitment schemes and the different notions of binding that
we shall use (except for CBB, whose definition we defer to Section 5). While most of what
follows is not novel, to the best of our knowledge the notion of collapse binding has as yet
only been defined and studied for classical commitments. Our definition generalises that put
forth by [24] (and coincides with it in the classical case).

TQC 2023



2:8 On the Necessity of Collapsing

▶ Definition 14. A quantum commitment scheme COM consists of a PPT algorithm Gen,
a unitary QPT algorithm Commit acting on a 4-tuple of registers K ⊗M⊗ C ⊗ O, and a
“check” subregister S ⊆ C ⊗O.

Commit uses the key register K and message register M as classical controls. The
dimension of K is

∣∣supp
(
Gen(1λ)

)∣∣ and M has ℓ(λ) qubits; its computational basis is labeled
by elements of the message spaces {Mλ}λ∈N, where M = {0, 1}ℓ(λ).

In addition, COM = (Gen,Commit,S) is a bit commitment if ℓ = 1, i.e., if Mλ = {0, 1}
for all λ ∈ N.

As the register S will be clear from context, we use COM = (Gen,Commit) as shorthand
for (Gen,Commit,S). Moreover, we denote by Commitck,m the unitary acting on C ⊗ O as
Commitck,m |ψ⟩ = Commit |ck⟩ |m⟩ |ψ⟩.

▶ Definition 15. A classical commitment scheme COM = (Gen,Commit) is a quantum
commitment scheme where Commit is a PPT algorithm and S = C.

We use function notation for classical commitments, i.e., Commit(ck,m, ω) is the function
computed and inserted (by a bitwise XOR) into the commitment register C.
▶ Remark 16. Our definition of quantum commitment schemes deviates slightly from those
in the literature in order to generalise classical commitments. In prior work it is typically
assumed that quantum commitments are generated deterministically, which is without loss
of generality since any randomness can be “purified out”. Then the challenger may measure
both C and O in the last step to check that Commit†

ck,m indeed inverts the adversary’s
computation (i.e., the challenger checks the register S = C ⊗ O).

However, in classical commitments randomness is inherent and only the C register is
“uncomputed”: the challenger reads ω from O and checks that the contents of C coincide
with Commit(ck,m, ω). This corresponds to applying Commit†

ck,m(C,O) and only measuring
S = C.

(Given this discussion, it is natural to ask whether, for quantum commitments, it suffices
to measure only C. We leave this question to future work.) ⌟

We now define two notions of binding (sum and collapse) that apply to both quantum
and classical commitments. Recall that, in order to be non-trivial, commitment schemes
typically also satisfy a notion of hiding, which we omit since it is not relevant to the current
work.

▶ Experiment 17 (Sum binding). Given an adversary Adv, define the experiment ExpAdv
sum(λ),

parametrised by λ ∈ N, as follows.
1. Generate ck← Gen(1λ).
2. Obtain the commitment register C ← Adv(ck).
3. Sample a (classical) message m←M .
4. Obtain the opening register O ← Adv(m), apply Commit†

ck,m(C,O) and measure S in the
computational basis.

5. Output 1 if the measurement yields |0⟩.

▶ Definition 18. A quantum commitment scheme COM is sum binding if, for all non-uniform
QPT adversaries Adv in Experiment 17,

Pr
[
ExpAdv

sum(λ) = 1
]
≤ 1
|M |
·
(
1 + negl(λ)

)
.

When COM is classical and Adv is PPT (resp. QPT), we say it is classically (resp. post-
quantum) sum binding.
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Note that the definition of sum binding given by [24] refers only to bit commitments; the
above is a natural generalisation to quantum commitments and larger message spaces (which
seems, however, to be of limited use when M is of superpolynomial size).

We proceed to the definition of collapse binding for quantum commitments.

▶ Experiment 19 (Collapse binding). For an adversary Adv, define the experiment ExpAdv
coll (λ)

as follows.
1. Generate ck← Gen(1λ).
2. Obtain the registers C ⊗M⊗O ← Adv(ck).
3. Sample b← {0, 1}. If b = 1, measure M in the computational basis.
4. Obtain b′ ← Adv(M⊗O).
5. Output 1 if b = b′.

We say that Adv is valid if, for all ck ∈ supp
(
Gen(1λ)

)
, the state ρ in C⊗M⊗O ← Adv(ck)

is a mixture of superpositions of valid commitments; that is, ρ =
∑

i pi |ψi⟩⟨ψi| where |ψi⟩
has nonzero amplitude only on computational basis states |com,m, ω⟩ in the image of the
projector Commitck,m |0⟩⟨0|S Commit†

ck,m. (In the post-quantum case, this simplifies to |m,ω⟩
satisfying Commit(ck,m, ω) = com.)

▶ Definition 20. A quantum commitment scheme COM is collapse binding if, for all valid
non-uniform QPT adversaries Adv in Experiment 19,6

Pr
[
ExpAdv

coll (λ) = 1
]
≤ 1

2 + negl(λ) .

Note that the challenger does not return the register C to the adversary in Step 4 for
the purpose of distinguishing; this is crucially used in the proof of Theorem 4, and would
otherwise lead to an unsatisfiable generalisation of classical commitments: an adversary
that sends

∑
m∈M |Commit(ck,m, ω)⟩ |m⟩ |ω⟩ (normalised) and receives all three registers can

detect a measurement with high probability by uncomputing Commit and using the binary
measurement with projector |ψ⟩⟨ψ|M where |ψ⟩ =

∑
m∈M |m⟩.

4.1 Classical binding
We conclude this section with a discussion of notions of binding that we only apply to
classical commitments (with possibly quantum adversaries).

▶ Experiment 21 (Computational binding). Given an adversary Adv, define ExpAdv
bind(λ) as

follows.
1. Generate ck← Gen(1λ).
2. Obtain (m0, ω0,m1, ω1)← Adv(ck).
3. Output 1 if m0 ̸= m1 and Commit(ck,m0, ω0) = Commit(ck,m1, ω1).

▶ Definition 22. A commitment scheme COM is classically (resp. post-quantum) computa-
tionally binding if for all PPT (resp. QPT) adversaries Adv in Experiment 21,

Pr
[
ExpAdv

bind(λ) = 1
]

= negl(λ) .

6 Equivalently, we could drop the validity constraint by measuring the state obtained in Step 2 with the
appropriate binary projective measurement and aborting unless the outcome is 1.
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Somewhere statistical binding (SSB)

Finally, we recall the notion of somewhere statistical binding, introduced by [19] in the
context of hash functions. Here we present the equivalent notion for commitments; note that
this is different to the more sophisticated notion of SSB commitments given by [16].

▶ Definition 23 (Somewhere statistical binding). Let ℓ be a polynomial in λ. A commitment
scheme COM = (Gen,Commit) is said to be somewhere statistically binding (SSB) if:

For all i, j ∈ [ℓ(λ)], the distributions Gen(1λ, i) and Gen(1λ, j) are computationally
indistinguishable.
For all i ∈ [ℓ(λ)] and all ck ∈ supp

(
Gen(1λ, i)

)
, if Commit(ck,m, ω) = Commit(ck,m′, ω′)

for some (m,ω,m′, ω′), then mi = m′
i.

More precisely, computational indistinguishability of Gen(·, i) and Gen(·, j) is defined by the
experiment defined next.

▶ Experiment 24. Given a commitment scheme COM, define ExpAdv
ssb (λ) as follows.

1. Sample j ← [ℓ(λ)] and generate ck← Gen(1λ, j).
2. Obtain i← Adv(ck).
3. Output 1 if i = j.

Therefore, (Gen,Commit) is classically (resp. post-quantum) somewhere-statistically binding
if for all non-uniform PPT (resp. QPT) adversaries Adv,

Pr
[
ExpAdv

ssb (λ) = 1
]
≤ 1
ℓ

+ negl(λ) .

(And, in addition, commitment keys ck determine the ith coordinate of messages that map
to the same commitment string.)

5 Chosen-bit binding

We begin this section with the definition of our main conceptual tool: the notion of chosen-bit
binding. We define this notion in generality, for quantum schemes (and, owing to Definition 15,
for classical schemes as a special case). Recall that S ⊆ C ⊗O is the subregister checked in a
quantum (de)commitment.

▶ Experiment 25 (Chosen-bit binding). Given a commitment scheme COM, define ExpAdv
cbb (λ)

as follows.
1. Sample ck← Gen(1λ).
2. Obtain the index and commitment register pair (i, C)← Adv(ck).7
3. Sample b← {0, 1}.
4. Obtain the message and opening register pair (m,O)← Adv(b).
5. Apply Commit†

ck,m to C ⊗ O and measure S in the computational basis.
6. Output 1 if mi = b and the measurement outcome is |0⟩.

▶ Definition 26. A quantum commitment scheme is chosen-bit binding if, for all non-uniform
QPT adversaries Adv in Experiment 25,

Pr
[
ExpAdv

cbb (λ) = 1
]
≤ 1

2 + negl(λ) .

7 Alternatively, Adv(ck) may output two quantum registers (I, C); then i is obtained by a computational
basis measurement of I. (An analogous observation holds for Step 4, with (M,O) ← Adv(b) and a
measurement of M.)
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Note that, in the case of bit commitments (i.e., when M = {0, 1}), this notion coincides with
sum binding. Recall that, in the case of classical adversaries, we have:

▶ Lemma 27. A (classical) commitment scheme is chosen-bit binding against classical
adversaries if and only if it is computationally binding.

(The proof of this lemma is straightforward and hence omitted.)
We now prove the first of our main results: an equivalence between chosen-bit binding and

collapse binding. We will make extensive use of the following binary projective measurements
associated with a quantum commitment scheme COM. With

(
|m⟩

)
m∈M

and
(
|ω⟩
)

ω
as

bases for the registers M and O, respectively, we define:
Mck,m := (Πck,m, I−Πck,m) by

Πck,m := Commitck,m

(
|0⟩⟨0|S ⊗ I(C⊗O)\S

)
Commit†

ck,m ; (1)

Mck := (Πck, I−Πck) by

Πck :=
∑

m∈M

|m⟩⟨m|M ⊗Πck,m ; (2)

Mi,b := (Πi,b, I−Πi,b) by

Πi,b :=
∑

m,mi=b

|m⟩⟨m|M ⊗Πck,m ; and (3)

Mi := (Πi, I−Πi) by

Πi :=
∑

b∈{0,1}

|b⟩⟨b|B ⊗Πi,b . (4)

Note that Πck,m (Equation 2) projects onto the subspace of valid commitment-opening register
pairs, and the other measurements do so with additional restrictions: Πck,m (Equation 1)
projects onto valid messages; Πi,b (Equation 3) projects onto (valid) messages with mi = b;
and Πi (Equation 4) onto messages whose ith coordinate overlaps with the contents of B.

▶ Theorem 28 (Theorem 4, restated). A quantum commitment scheme COM is collapse
binding if and only if it is chosen-bit binding.

We first prove (via the contrapositive) that collapse binding implies chosen-bit binding,
which extends [23, Theorem 32] to quantum commitments.

Proof (collapsing ⇒ CBB). Let Adv be an adversary that achieves advantage ε in Experi-
ment 25 (the chosen-bit binding experiment). We may assume, without loss of generality, that
the adversary’s action in Step 4 consists of the application of a unitary U on B⊗M⊗O⊗H
(where B contains the bit received from the challenger and H is an additional workspace
register) followed by a computational basis measurement of M. We construct an adversary
Adv′ for the collapse binding experiment as follows.

Upon receipt of ck:
1. Run Adv(ck) to obtain i ∈ [ℓ] and state ρ on C ⊗M⊗O ⊗H.
2. Apply U ⊗ IC to σ = |+⟩⟨+|B ⊗ ρ followed by the binary projective measurement Mi.
3. If the measurement outcome is 0, overwrite C ⊗M⊗O with a valid commitment (to,

say, the all-zero string). Output i ∈ [ℓ] along with the registers C, M and O.
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2:12 On the Necessity of Collapsing

Upon receipt of M, O:
1. If the measurement outcome in the previous step was 0, stop and output a random bit.
2. Apply U† to B ⊗M⊗O ⊗H and measure B in the {|+⟩ , |−⟩} basis.
3. If the outcome is |+⟩, output 0; otherwise output 1.

Note that Adv′ is valid, as Πck = Πi,0 + Πi,1 (by Equations 2 and 3) and Equation 4
implies TrB,H(ΠiσΠi) ∈ Im(Πi,0 + Πi,1). Moreover, if either (i) the challenger measures or
(ii) the outcome of the first measurement by Adv′ is 0, the experiment outputs a uniformly
random bit.

For the case where the challenger does not measure, we use the following proposition:

▶ Proposition 29. Let P,Q be projectors and ρ a density matrix such that ρQ = ρ. Then

Tr(QPρP ) ≥ Tr(Pρ)2
.

Proof. Tr(Pρ) = Tr(PρQ) ≤
√

Tr(QPρPQ), by Cauchy-Schwarz (Lemma 13). ◀

Assume that b = 0 in Step 3 of Experiment 19, so M is not measured (we deal with
the case b = 1 next). We lower bound the probability that the measurement outcomes of
Adv′(ck) and Adv′(M,O) are 1 and |+⟩, respectively, whereupon the experiment outputs 1:
since σ · |+⟩⟨+| = σ, by Proposition 29,

Tr (|+⟩⟨+|ΠiσΠi) ≥ Tr(Πiσ)2

=
(

1
2 Tr (Πi,0ρ) + 1

2 Tr (Πi,1ρ)
)2

=
(

1
2 + ε

)2
.

Now note that, if b = 1 in Step 3, the M register is measured and B collapses to a
computational basis state, namely, |mi⟩ when the outcome is m; since the adversary measures
B in the Hadamard basis, the experiment outputs 1 with (conditional) probability 1/2 in this
event. Moreover, if the adversary’s first measurement outcome is 0 (an event with 1−Tr(Πiσ)
probability) it outputs a uniformly random bit; in this case, Experiment 19 also outputs 1
with probability 1/2.

Overall, the probability that the experiment outputs 1 is thus

1
4 + 1

2

(
Tr
(
|+⟩⟨+|ΠiσΠi

)
+ 1

2
(
1− Tr(Πiσ)

))
= 1

4 + 1
2

(
Tr
(
|+⟩⟨+|ΠiσΠi

)
+ 1

2

(
1
2 − ε

))
≥ 1

4 + 1
2

((
1
2 + ε

)2
+ 1

2

(
1
2 − ε

))

≥ 1
2 + ε

2 . ◀

Before proving the reverse implication, we show a basic fact about non-commuting
projective measurements. Let M be a projective measurement and B = (D, I−D) a binary
projective measurement. Consider the following experiment applied to a state ρ:
1. Measure i← M.
2. Apply B (and ignore the result).
3. Measure j ← M.
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The following claim gives a lower bound on the probability that i ̸= j in terms of how well
B distinguishes ρ from M(ρ) (which is a measure of how “non-commuting” B and M are).
Variants of this claim have appeared independently and concurrently in [30, 9].

▷ Claim 30. Let D be a projector, M = (Πi)i∈[N ] be a projective submeasurement and ρ be
a Hermitian matrix such that

∑
i Tr(Πiρ) = Tr(ρ). Then

∑
j

∑
i̸=j

Tr(ΠiDΠjρΠjD) ≥
Tr
(
D(ρ−M(ρ))

)2

N · Tr(ρ) .

Proof. Inserting resolutions of the identity, and since (I−
∑

i Πi)ρ = 0,

Tr(Dρ) =
∑

i

Tr(DΠiρΠi) +
∑
i̸=j

Tr(ΠiDΠjρ)

= Tr(DM(ρ)) +
∑

j

Tr(Π ̸=jDΠjρ) ,

where Π̸=j :=
∑

i̸=j Πi. Applying Cauchy-Schwarz (Lemma 13, with A = √ρ · ΠjDΠ̸=j and
B = √ρ) yields |Tr(Π ̸=jDΠjρ)| ≤

√
Tr(Π ̸=jDΠjρΠjD)

√
Tr(ρ). Substituting into the above

equation and squaring we have

Tr
(
D(ρ−M(ρ))

)2

Tr(ρ) ≤

∑
j

√
Tr(Π ̸=jDΠjρΠjD)

2

,

and applying Cauchy-Schwarz again (with respect to Euclidean norm and the N -dimensional
pair of vectors with 1 and

√
Tr(Π ̸=jDΠjρΠjD) in the jth coordinate, respectively) yields

the claim. ◁

We now prove the reverse implication.

Proof (CBB ⇒ collapsing). Let Adv be an adversary that achieves ε collapsing advantage.
We design an adversary Adv′ for the chosen-bit binding experiment as follows.

Upon receipt of ck:
1. Run Adv(ck) obtain a quantum state ρ in C ⊗M⊗O ⊗H.
2. Output a random index i← [ℓ] and C.

Upon receipt of b:
1. Measure the first i bits of M, obtaining outcomes b1, . . . , bi.
2. If bi ̸= b, apply Adv’s (projective) distinguishing measurement (D, I−D) toM⊗O⊗H.8

3. Measure M in the computational basis. Output the outcome m and the opening
register O.9

Let Mj(ρ) be the map corresponding to measuring the jth qubit of M, i.e.,

Mj(ρ) = ΠiρΠi + (I−Πi)ρ(I−Πi).

8 Here we use that D acts trivially on C.
9 Note that in the case of classical commitments, O is a classical register containing an opening string ω;

equivalently, we may assume O is implicitly measured.
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Let M[j] := M1(· · ·Mj−1(Mj(ρ)) · · · ) be the map corresponding to measuring the first j
qubits of M, where M[0] is the identity map. We have that

ρ−M[ℓ](ρ) =
ℓ−1∑
j=0

M[j](ρ)−M[j+1](ρ) =
n−1∑
j=0

ρj −Mj+1(ρj)

where ρj := M[j](ρ).
The adversary’s success probability γ in Experiment 25 can be written as

1
2ℓ
∑
i∈[ℓ]

∑
b∈{0,1}

Tr(Πi,bρi−1) + Tr(Πi,bDΠi,1−bρi−1Πi,1−bD).

Note that the validity of Adv ensures ρi−1 is in the span of Πck, which simplifies the
first term of the sum:

∑
i∈[ℓ]

∑
b∈{0,1} Tr(Πi,bρi−1) =

∑
i∈[ℓ] Tr(ρi−1) = ℓ. It also enables

us to apply Claim 30 with respect to the submeasurement (Πi,0,Πi,1); using the claim and
Cauchy-Schwarz (Lemma 13), we obtain that

γ ≥ 1
2 + 1

4ℓ
∑
i∈[ℓ]

Tr(D(ρi −Mi+1(ρi)))2

≥ 1
2 + 1

4ℓ2

∑
i∈[ℓ]

Tr(D(ρi −Mi+1(ρi)))

2

= 1
2 + 1

4ℓ2

(
Tr
(
D(ρ−M[ℓ](ρ))

))2

= 1
2 +

( ε
2ℓ

)2

where the final equality follows by assumption on Adv. This completes the proof. ◀

5.1 Somewhere statistical binding and parallel repetitions
Using chosen-bit binding, we give “fully classical” proofs that somewhere-statistical binding
commitments are collapse binding, and that the parallel repetition of collapse binding
commitments are collapse binding.

▶ Lemma 31. Post-quantum somewhere statistically binding commitment schemes are
chosen-bit binding against quantum adversaries, and therefore collapse binding.

Proof. Let Adv be an adversary satisfying Pr
[
ExpAdv

cbb (λ) = 1
]

= 1/2 + ε.
We construct an adversary Adv′(ck) for Experiment 24 (SSB) as follows: simulate Ex-

periment 25 (CBB) with the key ck, obtaining (com, i, b,m, ω). (Recall that Experiment 24
is classical, so Adv outputs strings com and ω.) If mi ̸= b or Commit(ck,m, ω) ̸= com (i.e.,
if the adversary loses), output k ← [ℓ]; otherwise, output k ← [ℓ] \ {i}. We denote by j

the uniformly sampled binding index (which determines Gen(1λ, j) as the generator in the
experiment).

The success probability of this adversary is

Pr[k = j] = 1
ℓ
· Pr

[
ExpAdv

cbb (λ) = 0
]

+ 1
ℓ− 1 · Pr

[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
. (5)

Observe that the experiment outputs 1 with probability at most 1/2 when conditioned on j = i

(since, by Definition 23, one of the choices for b ∈ {0, 1} is such that no message-opening pair
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(m,ω) with Commit(ck,m, ω) = com and mi = b exists); that is, Pr
[
ExpAdv

cbb (λ) = 1
∣∣∣ j = i

]
≤

1/2. Hence
1
2 + ε = Pr

[
ExpAdv

cbb (λ) = 1
∣∣∣ j = i

]
Pr[j = i] + Pr

[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]

≤ 1
2 · Pr[j = i] + Pr

[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
.

Note that, if Pr[j = i] ≥ (1 + ε)/ℓ (infinitely often), the adversary that always outputs i has
inverse polynomial advantage. We therefore assume otherwise; then

1
2 + ε ≤ 1 + ε

2ℓ + Pr
[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
,

and so Pr
[
ExpAdv

cbb (λ) = 1 ∧ j ̸= i
]
≥ 1

2 (1− 1
ℓ ) + ε · (1− 1

2ℓ ).

Substituting into (5) and using Pr
[
ExpAdv

cbb (λ) = 0
]

= 1/2− ε (by hypothesis) yields

Pr[k = j] ≥ 1
2ℓ +

1− 1
ℓ

2(ℓ− 1) + ε ·
(1− 1

2ℓ

ℓ− 1 −
1
ℓ

)
= 1
ℓ

+ ε

2ℓ(ℓ− 1) ,

which completes the proof. ◀

Observe that Theorem 28 implies that parallel repetitions preserve collapse binding if
and only if they preserve chosen-bit binding. Then,

▶ Proposition 32. If a quantum commitment scheme COM = (Gen,Commit) is chosen-bit
binding, then its k-fold parallel repetition is also chosen-bit binding.

Proof. Let Adv be an adversary satisfying Pr
[
ExpAdv

cbb (λ) = 1
]

= 1/2+ε in the k-wise parallel
repetition of Experiment 25. (Recall that the same key ck is used in each repetition; we
index message bits by pairs (i, j) ∈ [k]× [ℓ], so that mij is the jth bit of the ith message.)

Then an adversary Adv′(ck) for the original commitment scheme, with the same advantage,
simply executes Adv(ck) to obtain an index (i, j) along with commit registers C1 ⊗ . . .⊗ Ck,
and outputs (j, Ci); upon receipt of b, it obtains (m1, . . . ,mk,O1 ⊗ · · · ⊗ Ok)← Adv(b) and
returns (mi,Oi) in the last step.

Since mij = (mi)j = b and applying Commit†
ck,mi

(Ci,Oi) followed by a measurement of Si

yields |0⟩ with probability at least 1/2+ε (because applying Commit†
ck,m1

⊗· · ·⊗Commit†
ck,mk

to (C1⊗O1)⊗· · ·⊗ (Ck⊗Ok) and measuring S1⊗· · ·⊗Sk yields |0⟩ with probability 1/2+ε),
the result follows. ◀

6 Equivocality

Amos, Georgiou, Kiayias and Zhandry [2] define two closely related notions they call equivocal
and one-shot chameleon collision-resistant hash functions, and show how they can be used
to obtain a variety of interesting quantum cryptographic constructions. Here we consider
a slight variant, which we call a one-shot equivocal commitment scheme. We note that an
equivocal CRHF associated to a predicate p is a one-shot equivocal commitment to the bit
p(x) where x is the hash preimage.10

10 While [2] distinguish between the notions of equivocal and one-shot chameleon hash functions (roughly
speaking, equivocal hashes allow equivocation to some string under a predicate constraint, while one-shot
chameleon hashes equivocate to any string), they also prove how to construct one from the other. We
choose to only define the (syntactically) stronger property, which we call one-shot equivocality – both to
distinguish it from classical notions of equivocality and to evince the connection to one-shot chameleon
hashes.
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▶ Definition 33. A commitment scheme COM = (Gen,Commit) is one-shot equivocal if
there exists a stateful QPT algorithm Eq such that for all messages m ∈M ,

Pr

Commit(ck,m, ω) = com

∣∣∣∣∣∣
ck← Gen(1λ)
com← Eq(ck)
ω ← Eq(m)

 = 1− negl(λ) .

While this definition allows arbitrary message spaces, hereafter we focus on the case
M = {0, 1}. We also note that Definition 18 (sum binding) is identical to a “converse” notion
to the above, which [2] define informally and call unequivocality.

▶ Remark 34. Despite what the terminology may suggest, we stress that (one-shot) equi-
vocality and unequivocality (i.e., sum binding) are not the logical negation of one another:
aside from the usual technical issues of infinitely-often vs. almost-everywhere, equivocality is
syntactically much stronger than “non-unequivocality”, as it requires a correct opening with
all but negligible probability.

It is claimed in [2] that an adversary breaking unequivocality yields a one-shot equivocal
commitment scheme as follows (we adapt their argument to our definitions). The new
commitment is a parallel repetition of the original, where the committed bit is taken to be
the majority of the underlying commitments. To equivocate, we ask the adversary to open
each underlying commitment to the same bit b. The idea is that taking the majority amplifies
the small bias that an adversary achieves. However, this argument has a significant flaw:
what do we do when the adversary fails to equivocate on a particular commitment? In this
case it may either produce an invalid opening, preventing us from opening the commitment
altogether, or even consistently provide openings for 1− b, leading to a valid opening to the
wrong bit!

Regardless, we show in Theorem 41 that the implication still holds: sum binding can be
“boosted” to one-shot equivocality via quantum rewinding. ⌟

One-shot equivocal commitments only differ from equivocal hashes in their mildly weaker
“collision-resistance”, which does not prevent an adversary from efficiently finding distinct
valid openings for the same message. However, we remark that the construction of one-shot
signatures of [2] can be based on one-shot equivocal commitments rather than hashes without
harm to their security: while an adversary may find distinct signatures for the same message,
the resulting scheme still ensures it cannot sign distinct messages. (As a result, subsequent
constructions that rely on one-shot signatures – quantum money and proofs of quantumness,
among others – also satisfy this weakened but sufficient security guarantee.)

Nontrivial (i.e., computationally binding) one-shot equivocal string commitments can
be obtained from one-shot equivocal bit commitments by the usual composition, which we
prove next for completeness.

▶ Proposition 35. If a bit commitment scheme COM = (Gen,Commit) is computationally
binding and one-shot equivocal, then its k-fold parallel repetition is also computationally
binding and one-shot equivocal when k = poly(λ).

Proof. Computational binding follows from the fact that an adversary Adv in the parallel
repetition of Experiment 21 achieving Pr

[
ExpAdv

bind(λ)
]

= ε with message space M = {0, 1}k

immediately yields Adv′ with advantage ε/k when M = {0, 1}: Adv′ samples i← [k], runs
the (bit) experiment with the challenger on this coordinate and simulates the interaction
for coordinates j ̸= i. When ε = poly

(
λ−1), the resulting advantage ε/k is also inverse

polynomial.
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If Eq with quantum auxiliary input ρ is the equivocator for COM, we define Eq′ as the
natural equivocator for the parallel repetition: Eq′(ck), with auxiliary input ρ⊗k, obtains from
each copy of ρ a commitment string comi ← Eq(ck) and a post-measurement state ρi, then
returns (com1, . . . , comk). Upon receipt of a message, Eq′(m) runs each Eq(mi) on the state
ρi, obtains ωi and returns (ω1, . . . , ωk). Since Commit(ck,mi, ωi) = comi with probability
1−negl(λ) for each i, all k openings succeed except with probability k ·negl(λ) = negl(λ). ◀

We will show via quantum rewinding techniques that a commitment scheme that is
computationally but not sum binding is indeed one-shot equivocal. To this end, we first
recall an early “basic quantum rewinding” lemma, first used in [13], which shows that when
two different computations (on the same state) yield prescribed outcomes with sufficiently
high probability, performing the computations sequentially obtains both outcomes with
non-negligible probability. We state a slightly more general statement than [13] and prove it
for completeness.

▶ Lemma 36. For any projectors P,Q and quantum state ρ it holds that

Tr(PQPρ) ≥ 1
4
(

Tr(Pρ) + Tr(Qρ)− 1
)2

.

Proof. Let ε := Tr(Pρ) + Tr(Qρ) − 1. Then Tr((P +Q)ρ) = 1 + ε by assumption and
linearity, and, by Cauchy-Schwarz,

(1 + ε)2 = Tr
(
(P +Q)ρ

)2 ≤ Tr
(
(P +Q)ρ(P +Q)

)
= Tr(Pρ) + Tr(Qρ) + 2 Re Tr(QPρ) .

It follows that Re Tr(QPρ) ≥ ε/2. Then, again by Cauchy-Schwarz (Lemma 13),

ε/2 ≤ Re Tr(QPρ) ≤ |Tr(QPρ)| ≤
√

Tr(QPρPQ) ,

which completes the proof. ◀

Next, we recall Jordan decompositions and two singular vector algorithms that we shall
use in our construction.

▶ Lemma 37 (Jordan decomposition). Any pair of projectors ΠA and ΠB induces a de-
composition of the Hilbert space they act upon into ⊕iSi where each Si has dimension 1
or 2.

The projectors can be written as ΠA =
∑

i |vi⟩⟨vi| and ΠB =
∑

i |wi⟩⟨wi| for Si-bases{∣∣vi

〉
,
∣∣v⊥

i

} 〉
and

{∣∣vi

〉
,
∣∣v⊥

i

} 〉
; the sums range over all Si except the one-dimensional ones

where the projector acts trivially (as the zero projector).

We call the Si Jordan subspaces, and define pi :=
∣∣〈vi

∣∣wi

∣∣〉2 =
∣∣〈v⊥

i

∣∣w⊥
i

〉∣∣2. We also
define the Jordan measurement MJor =

(
ΠJor

i

)
by

ΠJor
i :=

∣∣vi

〉〈
vi

∣∣+
∣∣v⊥

i

〉〈
v⊥

i

∣∣ =
∣∣wi

〉〈
wi

∣∣+
∣∣w⊥

i

〉〈
w⊥

i

∣∣;
that is, MJor projects onto a subspace Si and outputs its index i.

The singular vector algorithms, due to [21, 18], allow us to effectively “filter out” com-
ponents of a quantum state below a threshold of our choice and then “flip” the image of a
projector to its complement if needed.

▶ Lemma 38. Let ΠA,ΠB be projectors described by uniform poly(λ)-size quantum circuits.
Then there exists a (uniform) family {Thresholdθ}θ∈(0,1] of algorithms described by poly(λ)-
size circuits that satisfy the following:
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if pi ≥ θ, Thresholdθ(|vi⟩) outputs 1 with probability 1− negl(λ).
if pi ≤ θ/2, Thresholdθ(|vi⟩) outputs 1 with probability negl(λ).

Moreover, Si is invariant under Thresholdθ for all i and θ, and the post-measurement
state is |vi⟩ when the measurement outputs 1.

▶ Lemma 39. Let ΠA,ΠB be projectors described by uniform poly(λ)-size quantum circuits.
Then there exists a (uniform) family of circuits {Transformγ}γ∈(0,1] of size poly(λ)/√γ such
that, when pi ≥ γ, the output (i.e., post-measurement state) of Transform(|vi⟩) is |wi⟩ with
probability 1− negl(λ).

Moreover, Si is invariant under Transformγ for all i and γ.

We are now ready to show that (almost-everywhere) non-unequivocality implies one-shot
equivocality. Our one-shot equivocal commitment scheme is constructed as follows.

▶ Construction 40. Let COM = (Gen,Commit) be a bit commitment scheme. For k ∈ N, we
construct COMk by:

Genk(1λ) runs cki ← Gen(1λ) for each i ∈ [k] and outputs ck := (ck1, . . . , ckk).
Commitk

(
(ck1, . . . , ckk),m, (i, ω)

)
:=
(
i,Commit(cki,m, ω)

)
.

Let Adv be an adversary for ExpAdv
sum with quantum auxiliary input ρ, which applies the

projector Πb and measures the opening register O when asked to open to bit b. We construct
an equivocator Eq, whose auxiliary input consists of k copies of ρ on registers A1, . . . ,Ak, as
follows.

EqAdv
ε (ck1, . . . , ckk;A1 ⊗ · · · ⊗ Ak):

1. For each j ∈ [k]:
a. Run comj ← Adv(ckj ;Aj).
b. Apply the measurement (Π0, I−Π0) followed by Thresholdε2/2 to Aj.

If both outcomes are 1, set j∗ := j and skip to Step 3.
2. If j∗ is unset, output ⊥.
3. Output (j∗, comj∗) as the commitment. (At this point we can discard Aj for j ̸= j∗.)
EqAdv

ε (b;Aj∗):
1. If b = 1, apply Transformε2/4 followed by the measurement (Π1, I−Π1) to Aj∗ .
2. Measure the opening register O ⊂ Aj∗ , obtaining outcome ω, and output (j∗, ω).

Note that COMk = (Genk,Commitk) is not the k-wise parallel repetition of COM (as
decommitting a single coordinate suffices).

▶ Theorem 41. Let ε = ε(λ) be an inverse polynomial, and let COM be a bit commitment
scheme such that Pr

[
ExpAdv

sum(λ) = 1
]

= 1/2 + ε for some QPT adversary Adv and all
sufficiently large λ (i.e., that violates sum binding almost everywhere). Then, with k = λ/ε2,
the commitment scheme COMk of Construction 40 is one-shot equivocal.

Proof. First, note that the running time of Eq is poly(λ), as it executes the QPT algorithm
Adv (at most) k = poly(λ) times; Threshold (which is QPT regardless of the parameter) once;
and Transform (with a poly(λ−1) parameter, in which case it is QPT) at most once.

For each j, denote by ρj the post-measurement state after Step 1a (where the mixture
ρj includes the distribution over ckj as well as the measurement that outputs comj). By
assumption, we have

Tr
(
(Π0 + Π1)ρj

)
≥ 1 + 2ε.
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Hence, by Lemma 36,

Tr
(
Π0Π1Π0ρj

)
≥ ε2 .

Now, consider the distribution obtained by applying (Π0, I− Π0) followed by the Jordan
measurement MJor (with respect to the pair of projectors Π0,Π1), obtaining outcomes (b, i)
and outputting b · pi. Then

E [b · pi] =
∑

i

pi · Tr
(
ΠJor

i Π0ρjΠ0
)

= Tr
((∑

i

piΠ0ΠJor
i Π0

)
ρj

)

= Tr
((∑

i

pi |vi⟩⟨vi|

)
ρj

)

= Tr
((∑

i

|vi⟩⟨vi|

)(∑
i

|wi⟩⟨wi|

)(∑
i

|vi⟩⟨vi|

)
ρj

)
= Tr (Π0Π1Π0ρj)
≥ ε2

where the second-to-last equality uses pi = |⟨vi|wi⟩|2.
Therefore, the probability that Step 1b of EqAdv

ε (ck1, . . . , ckk) sets j∗ to j (which is
unchanged by the Jordan measurement, since MJor commutes with Threshold and Π0) is

Pr
[
b · pi ≥

ε2

2 and Thresholdε2/2(|vi⟩) outputs 1
]
≥
(
1− 2−λ

)
· Pr

[
b · pi ≥

ε2

2

]
≥
(
1− 2−λ

)
· ε

2

2 ,

by Lemma 38 and Proposition 11.
By the Chernoff bound (Proposition 12), the probability j∗ is left unset in all j ∈ [k]

(causing Eq = EqAdv
ε on input (ck1, . . . , ckk) to abort in Step 2) is at most e−Ω(λ) = negl(λ).

We now move on to the analysis of Eq(b). Set ck = cki∗ , com = comi∗ , A = Ai∗ and
recall that (Πb, I−Πb) is the projective measurement corresponding to the whether Adv wins
the sum binding experiment when the challenge is b (that is, Πb projects onto the subspace
spanned by |ck, b, ω⟩ such that Commit(ck, b, ω) = com). Then, if b = 0, the output of Step 2
of Eq(0) is a correct opening (with probability 1), since the post-measurement state of Step 3
of Eq(ck1, . . . , ckk) is contained in Im(Π0); we thus only need to argue that the measurement
(Π1, I−Π1) in Step 1 of Eq(1) outputs 1 except with probability negl(λ).

For a fixed j ∈ [k], consider the distribution of (binary) outcomes that arises from applying
the measurements Thresholdε2/2, Transformε2/4 and (Π1, I−Π1) in this order to an arbitrary
quantum state in Im(Π0). Note that it suffices to show that the first output is 1 and the last
is 0 with probability negl(λ), as this ensures (by a union bound over j) that the probability
Eq(1) fails to return a valid opening remains negligible.

By commutativity of the Jordan measurement with Threshold and Transform (and Π1;
recall that every Si is invariant under all three), the distribution is identical to that which
arises by applying MJor before Thresholdε2/2. We now analyse two cases: (i) when MJor

outputs i such that pi ≤ ε2/4, and (ii) when pi > ε2/4. (Note that the post-measurement
outcome is |vi⟩ in both cases, as the sequence of measurements is applied to a state in
Im(Π0).)

TQC 2023



2:20 On the Necessity of Collapsing

In case (i), Lemma 38 immediately implies that the outcome of Thresholdε2/2 is 1 with
probability negl(λ). In case (ii), while Lemma 38 does not allow us to analyse the distri-
bution of Thresholdε2/2 (when ε2/4 < pi < ε2/2), it ensures that conditioned on outcome
1 the post-measurement state remains unchanged; then Lemma 39 implies the output
of Transformε2/4(|vi⟩) is |wi⟩ with probability 1 − negl(λ), in which case the (Π1, I − Π1)
measurement always outputs 1.

The probability Thresholdε2/2 outputs 1 and (Π1, I − Π1) outputs 0 is thus negl(λ) in
either case, which concludes the proof. ◀
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3:2 Optimal Algorithms for Learning Quantum Phase States

1 Introduction

Quantum state tomography is the problem of learning an unknown quantum state ρ drawn
from a specified class of states by performing measurements on multiple copies of ρ. The
preeminence of this problem in verification of quantum experiments has motivated an in-depth
study of state tomography protocols and their limitations for various classes of quantum
states [23, 40, 5, 46]. The main figure of merit characterizing a state tomography protocol
is its sample complexity defined as the number of copies of ρ consumed by the protocol in
order to learn ρ. Of particular interest are classes of n-qubit quantum states that can be
learned efficiently, such that the sample complexity grows only polynomially with n. Known
examples of efficiently learnable states include Matrix Product States describing weakly
entangled quantum spin chains [17], output states of Clifford circuits [36], output states of
Clifford circuits with a single layer of T gates [30], and high-temperature Gibbs states of
local Hamiltonians [4, 24]. Apart from their potential use in experiments, efficiently learnable
quantum states are of great importance for quantum algorithm design. For example, a
quantum algorithm for solving the dihedral hidden subgroup problem [7] can be viewed as a
tomography protocol for learning so-called hidden subgroup states (although this protocol is
efficient in term of its sample complexity, its runtime is believed to be super-polynomial [7]).

A natural question to then ask is: What are other classes of n-qubit quantum states
that are ubiquitous in quantum computing, which can be learned efficiently? In this work,
we consider the problem of state tomography for phase states associated with (generalized)
Boolean functions. Phase states are encountered in quantum information theory [26],
quantum algorithm design [7], quantum cryptography [29, 11], and quantum-advantage
experiments [13, 15].

By definition, an n-qubit, degree-d binary phase state has the form

|ψf ⟩ = 2−n/2
∑

x∈{0,1}n

(−1)f(x)|x⟩, (1)

where f : {0, 1}n → {0, 1} is a degree-d polynomial, that is,

f(x) =
∑

J⊆[n], |J|≤d

αJ

∏
j∈J

xj (mod 2), (2)

for some coefficients αJ ∈ {0, 1}. Phase states associated with homogeneous degree-2 polyno-
mials f(x) coincide with graph states that play a prominent role in quantum information
theory [26]. Such states can be alternatively represented as

|ψf ⟩ =
∏

(i,j)∈E

CZi,j |+⟩⊗n,

where n qubits live at vertices of a graph, E is the set of graph edges, CZi,j is the controlled-Z
gate applied to qubits i, j, and |+⟩ = (|0⟩ + |1⟩)/

√
2. It is known that the output state

of any Clifford circuit is locally equivalent to a graph state for a suitable graph [44]. Our
results imply that graph states can be learned efficiently using only single-qubit gates and
measurements. The best previously known protocol for learning graph states [36] requires
entangled measurements across two copies of |ψf ⟩. Other examples of circuits producing
phase states include measurement-based quantum computing [42] and a subclass of IQP
circuits (Instantaneous Quantum Polynomial-time), which correspond to degree-3 phase
states [37]. IQP circuits are prevalent in quantum-advantage experiments [13, 15] and are
believed to be hard to simulate classically.



S. Arunachalam, S. Bravyi, A. Dutt, and T. J. Yoder 3:3

We also consider generalized degree-d phase states

|ψf ⟩ = 2−n/2
∑

x∈{0,1}n

ωf(x)
q |x⟩, ωq = e2πi/q (3)

where q ≥ 2 is an even integer and f : {0, 1}n → Zq is a degree-d polynomial, that is,

f(x) =
∑

J⊆[n], |J|≤d

αJ

∏
j∈J

xj (mod q). (4)

for coefficients αJ ∈ Zq = {0, 1, . . . , q − 1}. It is also known that generalized degree-d
phase states with q = 2d can be prepared from diagonal unitary operators [18] in the
d-th level of the Clifford hierarchy [22]. Additionally, it is known that the output state
of a random n-qubit Clifford circuit is a generalized q = 4, degree-2 phase state with a
constant probability [12, Appendix D]. Binary and generalized phase states have also found
applications in cryptography [29, 11], and complexity theory [28] (we discuss this in the next
section).

In this work, we consider learning phase states through two types of tomography protocols
based on separable and entangled measurements. The former can be realized as a sequence
of M independent measurements, each performed on a separate copy of |ψf ⟩ (furthermore
our learning algorithms only require single qubit measurements). The latter performs a joint
measurement on the state |ψf ⟩⊗M . Our goal is to then derive upper and lower bounds on
the sample complexity M of learning f , as a function of n and d. In the next section, we
state our main results. Interestingly, our protocols based on separable measurements require
only single-qubit gates and single-qubit measurements making them well suited for near-term
demonstrations.

1.1 Summary of contributions and applications
We first introduce some notation before giving an overview of our contributions. For every
n and d ≤ n/2, let P(n, d) be the set of all degree-d polynomials of the form Eq. (2). Let
Pq(n, d) be the set of all degree-d Zq-valued polynomials of the form Eq. (3). By definition,
P2(n, d) ≡ P(n, d). To avoid confusion, we shall refer to states defined in Eq. (1) as binary
phase states and in Eq. (3) as generalized phase states. Our learning protocol takes as input
integers n, d and M copies of a degree-d phase state |ψf ⟩ with unknown f ∈ P(n, d) (or
f ∈ Pq(n, d)). The protocol outputs a classical description of a polynomial g ∈ P(n, d) (or
g ∈ Pq(n, d)) such that f = g with high probability.

The main result in this work are optimal algorithms for learning phase states if the
algorithm is allowed to make separable or entangled measurements. Prior to our work, we
are aware of only two works in this direction (i) algorithms for efficiently learning degree-1
and degree-2 phase states; (ii) Montanaro [35] considered learning multilinear polynomials
f , assuming we have query access to f , which is a stronger learning model than the sample
access model that we assume for our learning algorithm. In this work, we show that if
allowed separable measurements, the sample complexity of learning binary phase states
and generalized phase states is O(nd). If allowed entangled measurements, we obtain a
sample complexity of O(dnd−1) for learning binary phase states. We further consider settings
where the unknown function f we are trying to learn is known to be sparse, has a small
Fourier-degree and the setting when given noisy copies of the quantum phase state. In
Table 1, we summarize all our main results (except the first two rows, which include the
main prior work in this direction).
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3:4 Optimal Algorithms for Learning Quantum Phase States

Table 1 Upper and lower bounds of sample complexity for exact learning of n-qubit phase states
with degree-d. For precise statements of the bounds, we refer the reader to the theorem statements
in this work and in the full version of the paper [6].

Sample complexity Time complexity Measurements

Binary phase state F2-degree-1 [10] Θ(1) O(n3) Separable

Binary phase state F2-degree-2
[36, 43] O(n) O(n3) Entangled

Binary phase state F2-degree-d Θ(nd)
Theorem 7, 10 O(n3d−2) Separable

Binary phase state F2-degree-d Θ(nd−1)
Theorem 9 O(exp(nd log 2)) Entangled

Generalized phase states degree-d Θ(nd)
Theorem 11 O(exp(nd log q)) Separable

Sparse Binary phase state
F2-degree-d, F2-sparsity s

O(2dsn)
[6, Theorem 6] O(23ds3n) Separable

Binary phase state F2-degree-2
with global depolarizing noise ε

n1+O(ε)

[6, Theorem 9] O(2n/log n) Entangled

Binary phase state F2-degree-2
with local depolarizing noise ε

Θ((1 − ε)n)
[6, Theorem 11] O(2n/log n) Entangled

Binary phase state Fourier-degree-d O(22d)
[6, Theorem 7] O(exp(n2)) Entangled

Before we give a proof sketch of these results, we first discuss a couple of motivations for
considering the task of learning phase states and corresponding applications.

Quantum complexity. Recently, there has been a few results in quantum cryptography [29,
3, 11] and complexity theory [28] which used the notion of phase states.

Ji et al. [29] introduced the notion of pseudorandom quantum states as states of the form
|ϕ⟩ = 1√

2n

∑
x∈{0,1}n ω

F (x)
N |x⟩ where F is a pseudorandom function.1 Ji et al. showed that

states of the form |ϕ⟩ are efficiently preparable and statistically indistinguishable from a Haar
random state, which given as input to a polynomial-time quantum algorithm. A subsequent
work of Brakerski [11] showed that it suffices to consider |ϕ′⟩ = 1√

2n

∑
x∈{0,1}n(−1)F (x)|x⟩

(where F again is a pseudorandom function) and such states are also efficiently preparable and
statistically indistinguishable from Haar random states. Subsequently, these states have found
applications in proposing many cryptosystems [3]. Although none of these works discuss
the degree of the phase function F , our result shows implicitly that when F is low-degree,
then |ϕ⟩ is exactly learnable and hence distinguishable from Haar random states, implying
that they cannot be quantum pseudorandom states. In another recent work, Irani et al. [28]
considered the power of quantum witnesses in proof systems. In particular, they showed
that in order to construct the witness to a QMA complete problem, say the ground state

1 We do not discuss the details of pseudorandom functions here, we refer the interested reader to [29].
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|ϕ⟩ to a local-Hamiltonian problem, it suffices to consider a phase state 1√
2n

∑
x(−1)F (x)|x⟩

which has a good overlap to |ϕ⟩. To this end, they show a strong property that, for every
state |τ⟩ and a random Clifford operator U (or, more generally, an element of some unitary
2-design), the state U |τ⟩ has constant overlap with a phase state [28, Lemma A.5]. Our
learning result implicitly shows that, assuming QMA ̸= QCMA, then the phase state that
has constant overlap with the ground space energy of the local Hamiltonian problem, cannot
be of low degree.

Learning quantum circuits. Given access to a quantum circuit U , the goal of this learning
task is to learn a circuit representation of U . The sample complexity for learning a general
n-qubit quantum circuit is known to be 2Θ(n) [16, 34], which is usually impractical.

If we restrict ourselves to particular classes of quantum circuits, there are some known
results for efficient learnability. Low [31] showed that an n-qubit Clifford circuit can be
learned using O(n) samples. However, this result was only an existential proof and requires
access to the conjugate of the circuit. Constructive algorithms were given in Low [31], and
Lai and Cheng [30], both of which showed that Clifford circuits can be learned using O(n2)
samples. Both these algorithms require entangled measurements with the former algorithm
using pretty-good measurement [25], and the latter using Bell sampling. In this work, we
show that Clifford circuits producing degree-2 binary phase states, can be learned in O(n2)
samples, matching their result but only using separable measurements. Moreover, Low [31]
also gave an existential proof of algorithms for learning circuits in the d-th level of the
Clifford hierarchy, using O(nd−1) samples. In this work, we give constructive algorithms for
learning the diagonal elements of the Clifford hierarchy in O(nd) samples using separable
measurements. A direct result of this is that a subset of IQP circuits, which are also
believed to be hard to simulate classically [13, 14], are shown to be efficiently learnable. Our
learning result thus gives an efficient method for verifying IQP circuits that may be part of
quantum-advantage experiments [15, 39].

Learning hypergraph states. We finally observe that degree-3 (and higher-degree) phase
states have appeared in works [42, 45] on measurement-based quantum computing (MBQC),
wherein they refer to these states as hypergraph states. These works show that single-qubit
measurements in the Pauli X or Z basis performed on a suitable degree-3 hypergraph state
are sufficient for universal MBQC. Our learning algorithm gives a procedure for learning these
states in polynomial-time and could potentially be used as a subroutine for verifying MBQC.

1.2 Proof sketch
In this section we briefly sketch the proofs of our main results.

1.2.1 Binary phase states
As we mentioned earlier, Montanaro [36] and Roettler [43] showed how to learn degree-2
phase states using O(n) copies of the state. Crucial to both their learning algorithms was the
following so-called Bell-sampling procedure: given two copies of |ψf ⟩ = 1√

2n

∑
x(−1)f(x)|x⟩

where f(x) = x⊤Ax (where A ∈ Fn×n
2 ), perform n CNOTs from the first copy to the second,

and measure the second copy. One obtains a uniformly random y ∈ Fn
2 and the state

1√
2n

∑
x

(−1)f(x)+f(x+y)|x⟩ = (−1)y⊤Ay

√
2n

∑
x

(−1)x⊤(A+A⊤)·y|x⟩.
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Using Bernstein-Vazirani [10] one can apply n-qubit Hadamard transform to obtain the
bit string (A + A⊤) · y. Repeating this process O(n log n) many times, one can learn n

linearly independent constraints about A, and along with Gaussian elimination, allows to
learn A + A⊤. Diagonal elements of A can be learned with one additional copy of |ψf ⟩.
Applying a controlled-Z gate between all pairs of qubits i > j for which (A + A⊤)ij = 1
results in the state

∑
x(−1)

∑
i

xiAii |x⟩, which can be learned using Bernstein-Vazarani.
Applying this same Bell-sampling procedure to degree-3 phase states does not easily learn

the phase function. In this direction, from two copies of the degree-3 phase state |ψf ⟩ one
obtains a uniformly random y ∈ Fn

2 and the state |ψgy ⟩ = 1√
2n

∑
x(−1)gy(x)|x⟩ for a degree-2

polynomial gy(x) = f(x) + f(x+ y). One might now hope to apply the degree-2 learning
algorithm from above, but since the single copy of |ψgy ⟩ was randomly generated, it takes
Ω(

√
2n) copies of |ψf ⟩ to obtain enough copies of |ψgy

⟩. Our main idea is to circumvent this
Bell-sampling approach and instead propose two techniques that allow us to learn binary
phase states using separable and entangled measurements which we discuss further below.

Separable measurements, upper bound. Our first result is that we are able to learn binary
phase states using separable measurements with sample complexity O(nd). In order to
prove our upper bounds of sample complexity for learning with separable measurements, we
make a simple observation. Given one copy of |ψf ⟩ = 1√

2n

∑
x(−1)f(x)|x⟩, measure qubits

2, 3, . . . , n in the computational basis. Suppose the resulting string is y ∈ {0, 1}n−1. The
post-measurement state of qubit 1 is then given by

|ψf,y⟩ = 1√
2

[
(−1)f(0y)|0⟩ + (−1)f(1y)|1⟩

]
.

By applying a Hadamard transform to |ψf,y⟩ and measuring, the algorithm obtains p1(y) =
f(0y) + f(1y) mod 2, which can be viewed as the derivative of f in the first direction at
point y. Furthermore observe that p1 is a degree ≤ d− 1 polynomial over (n− 1) variables.
Hence, the learning algorithm repeatedly measures the last (n − 1) qubits and obtains
y(1), . . . , y(M) for M = nd−1 and obtains (y(k), p1(y(k))) for all k = 1, 2, . . . ,M using the
procedure above, which suffices to learn p1 completely. Then the algorithm repeats the same
procedure by measuring all the qubits except the second qubit in the computational basis
and learns the derivative of f in the second direction. This is repeated over all the n qubits.
Through this procedure, a learning algorithm learns the partial derivatives of f in the n
directions and a simple argument shows that this is sufficient to learn f completely. This
gives an overall sample complexity of O(nd). The procedure above only uses single qubit
measurements in the {X,Z} basis.

Separable measurements, lower bound. Given the algorithm for learning binary phase
states using separable measurements, a natural question is: Is the upper bound on sample
complexity we presented above tight? Furthermore, suppose the learning algorithm was
allowed to make arbitrary n-qubit measurements on a single copy of |ψf ⟩, instead of single
qubit measurements (which are weaker than single copy measurements), then could we
potentially learn f using fewer than O(nd) copies?

Here we show that if we allowed arbitrary single copy measurements, then a learning
algorithm needs Ω(nd) many copies of |ψf ⟩ to learn f . In order to prove this lower bound,
our main technical idea is the following. Let f be a degree-d polynomial with n variables
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sampled uniformly at random. Suppose a learning algorithm measures the phase state |ψf ⟩
in an arbitrary orthonormal basis {U |x⟩}x. We show that the distribution describing the
measurement outcome x is “fairly” uniform. In particular,

E
f

[H(x|f)] ≥ n−O(1), (5)

where H(x|f) is the Shannon entropy of a distribution P (x|f) = |⟨x|U∗|ψf ⟩|2. Thus, for
a typical f , measuring one copy of the phase state |ψf ⟩ provides at most O(1) bits of
information about f . Since a random uniform degree-d polynomial f with n variables has
entropy Ω(nd), one has to measure Ω(nd) copies of ψf in order to learn f . To prove Eq. (5),
we first lower bound the Shannon entropy by Renyi-two entropy and bound the latter by
deriving an explicit formula for Ef [|ψf ⟩⟨ψf |⊗2].

Entangled measurements. After settling the sample complexity of learning binary phase
states using separable measurements, one final question question remains: Do entangled
measurements help in reducing the sample complexity? For the case of quadratic polynomials,
we know that Bell measurements (which are entangled measurements) can be used to learn
these states in sample complexity O(n). However, as mentioned earlier, it is unclear how to
extend the Bell measurement procedure for learning larger degree polynomials.

Here, we give a learning algorithm based on the so-called pretty-good measurements
(PGM) that learns |ψf ⟩ for a degree-d polynomial f using O(nd−1) copies of |ψf ⟩. In order
to prove this bound, we follow the following three step approach: (a) we first observe that
in order to learn degree-d binary phase states, the optimal measurement is the pretty good
measurement since the ensemble S = {|ψf ⟩}f is geometrically uniform. By geometrically
uniform, we mean that S can be written as S = {Uf |ϕ⟩}f where {Uf }f is an Abelian group.
(b) We next observe a property about the geometrically uniform state identification problem
(which is new as far as we are aware): suppose S is a geometrically uniform ensemble,
then the success probability of the PGM in correctly identifying f , given copies of |ψf ⟩,
is independent of f , i.e., every element of the ensemble has the same probability of being
identified correctly when measured using the PGM. (c) Finally, we need one powerful tool
regarding the the weight distribution of Boolean polynomials: it was shown in [1] that for any
degree-d polynomial f , the following relation on wt(f) or the fraction of strings in {0, 1}n

for which f is one holds:

|{f ∈ P(n, d) : wt(f) ≤ (1 − ε)2−ℓ}|≤ (1/ε)Cℓ4·( n−ℓ
≤d−ℓ),

for every ε ∈ (0, 1/2) and ℓ ∈ {1, . . . , d − 1}. Using this statement, we can comment on
the average inner product of |⟨ψf |ψg⟩| over all ensemble members with f ̸= g ∈ P(n, d).
Combining this with a well-known result of PGMs, we are able to show that, given M =
O(nd−1) copies of |ψf ⟩ for f ∈ S, the PGM identifies f with probability ≥ 0.99. Combining
observations (a) and (b), the PGM also has the same probability of acceptance given an
arbitrary f ∈ S. Hence, we get an overall upper bound of O(nd−1) for sample complexity of
learning binary phase states using entangled measurements.

The lower bound for entangled measurement setting is straightforward: each quantum
sample 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩ provides n bits of information and the goal is to learn f

which contains O(nd) bits of information, hence by Holevo’s bound, we need at least nd−1

quantum samples in order to learn f with high probability.
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1.2.2 Generalized phase states
As far as we are aware, ours is the first work that considers the learnability of generalized
phase states (using either entangled or separable measurements). The sample complexity
upper bounds follow the same high-level idea as that in the binary phase state setting.
However, we need a few more technical tools for this setting which we discuss below.

Separable bounds. At a high-level, the learning procedure for generalized phase states is
similar to the procedure for learning binary phase states with the exception of a couple of
subtleties that we need to handle here. Suppose we perform the same procedure as in binary
phase states by measuring the last (n− 1) qubits in the computational basis. We then obtain
a uniformly random y ∈ Fn−1

2 , and the post-measurement state for a generalized phase state
is given by

|ψf,y⟩ = 1√
2

(ωf(0y)
q |0⟩ + ωf(1y)

q |1⟩).

This state is proportional to (|0⟩ + ωc
q|1⟩)/

√
2, where c = f(1y) − f(0y) (mod q). In the

binary case, q = 2, the states associated with c = 0 and c = 1 are orthogonal, so that the
value of c can be learned with certainty by measuring |ψf,y⟩ in the Pauli X basis. However,
in the generalized case, q > 2, the states (|0⟩ + ωc

q|1⟩)/
√

2 with c ∈ Zq are not pairwise
orthogonal. It is then unclear how to learn c given a single copy of |ψf,y⟩. However, we
observe that it is still possible to obtain a value b ∈ Zq such that b ̸= c with certainty.
To this end, consider a POVM whose elements are given by M = {|ϕb⟩⟨ϕb|}b∈Zq

, where
|ϕb⟩ = 1√

2 (|0⟩ − ωb
q|1⟩). Applying this POVM M onto an unknown state (|0⟩ + ωc

q|1⟩)/
√

2
we observe that c is the outcome with probability 0 and furthermore every other outcome
b ̸= c appears with non-negligible probability Ω(q−3).

Hence with one copy of 1√
2n

∑
x∈{0,1}n ω

f(x)
q |x⟩, we obtain uniformly random y ∈ {0, 1}n−1

and b ∈ Zq such that f(1y) − f(0y) ̸= b. We now repeat this process m = O(nd−1) many
times and obtain (y(k), b(k)) for k = 1, 2, . . . ,M such that f(1y(k)) − f(0y(k)) ̸= b(k) for all
k ∈ [M ]. We next show a variant of the Schwartz-Zippel lemma in the following sense: that
for every f ∈ Pq(n, d) and c ∈ Zq, then either f is a constant function or the fraction of
x ∈ Fn

2 for which f(x) ̸= c is at least 2−d. Using this, we show that after obtaining O(2dnd−1)
samples, we can find a polynomial g ∈ Pq(n− 1, d− 1) for which f(1y) − f(0y) = g(y). We
now repeat this protocol for n different directions (by measuring each of the n qubits in
every iteration) and we learn all the n directional derivatives of f , which suffices to learn f

completely.

Entangled bounds. We do not give a result on learning generalized phase states with
entangled measurements. We expect the proof of the sample complexity upper bound for
learning generalized phase states using entangled measurements should proceed similarly to
our earlier analysis of learning binary phase states using entangled measurements. However,
we need a new technical tool that generalizes the earlier work on the weight distribution [2]
of Boolean functions f : Fn

2 → F2 to those of form f : Fn
2 → Zq with q = 2d.

1.2.3 Learning with further constraints
Learning sparse and low-Fourier degree states. A natural constraint to put on top of
having low F2-degree in the polynomial is the sparsity, i.e., number of monomials in the F2
decomposition of f . Sparse low-degree phase states appear naturally when learning circuits
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with few gates. In particular, suppose we are learning a quantum circuit U with s gates from
{Z,CZ, . . . ,Cd−1Z} (where CmZ is the controlled-Z gate with m controls), then the output
of U |+⟩⊗n is a phase state with sparsity-s and degree-d.

One naive approach to learn sparse F2 polynomials is to directly apply our earlier learning
algorithm for binary phase states but this ignores the F2-sparsity information, and doesn’t
improve the sample complexity. Instead, here we use ideas from compressed sensing [20]
to propose a linear program that allows us to improve the sample complexity to O(2dsn).
Finally we make an observation that, if the function has Fourier -degree d, then one can learn
f , given only O(2d log n) many copies of |ψf ⟩, basically using the fact that there are only
22d many such functions, each having at least a 2−d distance between them.

Learning with depolarizing noise. One motivation for learning stabilizer states was potential
experimental demonstrations of the learning algorithm [41]. Here, we consider a theoretical
framework in order to understand the sample complexity of learning degree-2 phase states
under global and local depolarizing noise. In this direction, we present two results. Under
global depolarizing noise, i.e., when we are given ρf = (1 − ε)|ψf ⟩⟨ψf |+ε · I, then it suffices
to take O(n1+ε) many copies ρf in order to learn f . The crucial observation is that one
can use Bell sampling to reduce learning ρf to learning parities with noise, which we can
accomplish using O(n1+ε) samples and in time 2n/(log log n) [32]. Additionally, however, a
simple argument reveals that under local depolarizing noise, the sample complexity of learning
stabilizer states is exponential in n.

1.3 Organization
In Section 2, we introduce phase states, discuss separable and entangled measurements.
In Section 3, we prove our upper and lower bounds for learning binary phase states with
separable and entangled measurements. We omit our results on learning sparse and low-
Fourier-degree phase states, and binary phase states under depolarizing noise from this
version of the paper (see [6]). In Section 4, we prove our upper bound for learning generalized
phase states using separable and entangled measurements. Our algorithms for learning
quantum phase states can be used to learn the corresponding circuits that produce them.
We explicitly discuss the connection between phase states, and the diagonal unitaries in the
d-th level of the Clifford hierarchy and IQP circuits in [6].

2 Preliminaries

2.1 Notation
Let [n] = {1, . . . , n}. Let ei be an n-dimensional vector with 1 in the ith coordinate and 0s
elsewhere. We denote the finite field with the elements {0, 1} as F2 and the ring of integers
modulo q as Zq = {0, 1, . . . , q − 1} with q usually being a power of 2 in this work. For a
Boolean function f : Fn

2 → F2, the bias of f is defined as

bias(f) = E
x

[(−1)f(x)],

where the expectation is over a uniformly random x ∈ {0, 1}n. For g : Fn
2 → Z2d , the bias of g

in the coordinate j ∈ F⋆
2d is defined as biasj(g) = Ex[(ω2d)j·g(x)]. For a function f : Fn

2 → F2,
y ∈ Fn−1

2 and k ∈ [n], we denote (Dkf)(y) = f(yk=1) + f(yk=0), where yi=1, yi=0 ∈ Fn
2 is

defined as: the ith bit of yi=1 equals 1 and yi=0 equals 0 and otherwise equals y.
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2.2 Boolean Functions
A Boolean function f : Fn

2 → F2 can be uniquely represented by a polynomial over F2 as
follows (which we call its F2 representation):

f(x) =
∑

J⊆[n]

αJ

∏
i∈J

xi (mod 2), (6)

where αJ ∈ {0, 1}. Similar to Eq. (6), we can write Boolean functions f : Fn
2 → Zq as

f(x) =
∑

J⊆[n]

αJ

∏
i∈J

xi (mod q) (7)

for some integer coefficients αJ ∈ {0, 1, . . . , q − 1}. Throughout this paper, unless explicitly
mentioned, we will be concerned with writing Boolean functions as a decomposition over F2
or Zq with q = 2d. The F2 degree of f is defined as

deg(f) = max{|J |: αJ ̸= 0}.

Similarly for polynomials over Z2d , we can define the degree as the size of the largest monomial
whose coefficient αJ is non-negative.

We will call g : Fn
2 → F2 with g =

∏
i∈J xi as monic monomials over n variables of at

most degree-d, characterized by set J ⊆ [n], |J |≤ d. We will denote the set of these monic
monomials by M(n, d). Note that |M(n, d)|=

∑d
j=0

(
n
j

)
= O(nd). We will denote the set of

polynomials over n variables of F2-degree d as P(n, d). Note that these polynomials are just
linear combinations of monomials in M(n, d). We will denote the set of polynomials over n
variables of F2-degree d with sparsity s as P(n, d, s). Similarly, we will denote Pq(n, d) as
the set of all degree-d Boolean polynomials f : Fn

2 → Zq with n variables. In particular, one
can specify any polynomial f ∈ Pq(n, d) by O(dnd) bits and |Pq(n, d)|≤ 2O(dnd).

Consider a fixed d, and any x ∈ Fn
2 . Let the d-evaluation of x, denoted by evald(x), be

a column vector in F|M(n,d)|
2 with its elements being the evaluations of x under different

monomials g ∈ M(n, d). This can be expressed as follows:

evald(x) =

 ∏
i∈J⊆[n],|J|≤d

xi

⊤

(8)

For a set of points x = (x(1), x(2), . . . , x(m)) ∈ (Fn
2 )m, we will call the matrix in F|M(n,d)|×m

2
with its kth column corresponding to d-evaluations of x(k), as the d-evaluation matrix of x,
and denote it by Qx.

2.3 Useful Lemmas
Let ei ∈ Fn

2 denote the vector of all zeros except for a 1 in the ith coordinate.

▶ Fact 1. Let d ∈ [n], s ≤ |M(n, d)|=
∑d

k=1
(

n
k

)
, and f ∈ P(n, d, s). There exists gi ∈

P(n, d− 1, s) such that gi(x) = f(x+ ei) + f(x) (mod 2) for all x ∈ {0, 1}n.

The proof of this fact is straightforward. Without loss of generality, consider i = 1. For every
f(x) =

∑
S αS

∏
i∈S xi, we can express it as

f(x) = x1p1(x2, . . . , xn) + p2(x2, . . . , xn),
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where p1 has degree ≤ d− 1 and p2 has degree ≤ d. Observe that f(x+ e1) − f(x) is either
p1(x2, . . . , xn) or −p1(x2, . . . , xn) which has degree d− 1 and corresponds to the polynomial
g1 in the fact statements. This applies for every coordinate i.

Note that the polynomial gi above is also often called the directional derivative of f in
direction w and is denoted as Dif .

▶ Fact 2. Let N, s ≥ 1 such that γ = s/N ≤ 1/2. Then we have
s∑

ℓ=1

(
N

ℓ

)
≤ 2Hb(γ)N ≤ 22γ log(1/γ).

where we used above that Hb(γ) = γ log 1
γ + (1 − γ) log 1

1−γ ≤ 2γ log 1
γ (for γ ≤ 1/2).

▶ Lemma 1 (The Schwartz-Zippel Lemma). Let p(y1, . . . , yn) be a nonzero polynomial on n

variables with degree d. Let S be a finite subset of R, with at least d elements in it. If we
assign y1, . . . , yn values from S independently and uniformly at random, then

Pr[p(y1, . . . , yn) = 0] ≤ d

|S|
. (9)

▶ Lemma 2 ([38]). Let p(x1, . . . , xn) be a non-zero multilinear polynomial of degree d. Then

Pr
x∈{0,1}n

[p(x) = 0] ≤ 1 − 2−d,

where the probability is over a uniformly random distribution on {0, 1}n.

We will also need the following structural theorem about Reed-Muller codes which
comments on the weight distribution of Boolean functions f : Fn

2 → F2.

▶ Theorem 3 ([2, Theorem 3]). Let n ≥ 1 and d ≤ n/2. Define |f |=
∑

x∈{0,1}n [f(x) = 1]
and wt(f) = |f |/2n. Then, for every ε ∈ (0, 1/2) and ℓ ∈ {1, . . . , d− 1}, we have that

|{f ∈ P (n, d) : wt(f) ≤ (1 − ε)2−ℓ}|≤ (1/ε)Cℓ4·( n−ℓ
≤d−ℓ).

Fix w = (1 − ε)2n−ℓ and we get

|{f ∈ P (n, d) : |f |≤ w}|≤ (1 − w/2n−ℓ)−Cℓ4·( n−ℓ
≤d−ℓ).

▶ Lemma 4 (Fano’s inequality). Let A and B be classical random variables taking values in
X (with |X |= r) and let q = Pr[A ̸= B]. Then,

H(A|B) ≤ Hb(q) + q log(r − 1),

where H(A|B) is the conditional entropy and Hb(q) is the standard binary entropy.

2.4 Measurements
Throughout this paper we will be concerned with learning algorithms that use either separable
or entangled measurements. Given |ψf ⟩⊗k, a learning algorithm for f is said to use separable
measurements if it only measure each copy of |ψf ⟩ separately in order to learn f . Similarly,
a learning algorithm for f is said to use entangled measurements if it makes an entangled
measurement on the k-fold tensor product |ψf ⟩⊗k. In this direction, we will often use two
techniques which we discuss in more detail below: sampling random partial derivatives in
order to learn from separable measurements and Pretty Good Measurements in order to
learn from entangled measurements.
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2.4.1 Separable Measurements
Below we discuss a subroutine that we will use often to learn properties about f : Fn

2 → F2:
given a single copy of |ψf ⟩ = 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩, the subroutine produces a uniformly

random y ∈ Fn−1
2 and f(1y) + f(0y) (mod 2). To this end, suppose we measure qubits

2, 3, . . . , n of |ψf ⟩ in the usual Z basis. We denote the resulting string as y ∈ {0, 1}n−1. The
post-measurement state of qubit 1 is then given by

|ψf,y⟩ = 1√
2

[
(−1)f(0y)|0⟩ + (−1)f(1y)|1⟩

]
. (10)

We note that |ψf,y⟩ is then an X-basis state (|+⟩ or |−⟩) depending on the values of
f(1y) and f(0y). If f(1y) = f(0y), then |ψf,y⟩ = |+⟩ and if f(1y) = f(0y) + 1 (mod 2),
then |ψf,y⟩ = |−⟩. Measuring qubit 1 in the X-basis and qubits 2, 3, . . . , n in the Z-
basis thus produces examples of the form (y, b) where y ∈ {0, 1}n−1 is uniformly random
and b = f(0y) + f(1y) (mod 2). Considering Fact 1 with the basis of e1, we note that
theses examples are of the form (y,D1f(y)), where D1f(y) = f(1y) + f(0y) (mod 2) is the
partial derivative of f along direction e1. Changing the measurement basis chosen above
to ZZ · · ·Xk · · ·Z such that we measure all the qubits in the Z basis except for the kth
qubit which is measured in the X basis, will allow us to obtain random samples of the form
(y,Dkf(y)). Accordingly, we introduce a new subroutine.

▶ Definition 1 (Random Partial Derivative Sampling (RPDS) along ek). For every k ∈ [n],
measuring every qubit of |ψf ⟩ in the Z basis, except the kth qubit which is measured in the
X basis, we obtain a uniformly random y ∈ Fn−1

2 and (Dkf)(y).

2.4.2 Entangled Measurements
In general one could also consider a joint measurement applied to multiple copies of |ψf ⟩,
which we refer to as entangled measurements. In this work, we consider two types of
entangled measurements, Bell sampling and the pretty-good measurement. We omit a
detailed discussion on Bell sampling as we do not include the corresponding results for
learning binary phase states under depolarizing noise (see the full version [6] for more).

Pretty Good Measurements. Consider an ensemble of states, E = {(pi, |ψi⟩)}i∈[m], where
p = {p1, . . . , pm} is a probability distribution. In the quantum state identification problem,
a learning algorithm is given an unknown quantum state |ψi⟩ ∈ E sampled according to the
distribution p and the learning algorithm needs to identity i with probability ≥ 2/3. In this
direction, we are interested in maximizing the average probability of success to identify i.
For a POVM specified by positive semidefinite matrices M = {Mi}i∈[m], the probability of
obtaining outcome j equals ⟨ψi|Mj |ψi⟩ and the average success probability is given by

PM(E) =
m∑

i=1
pi⟨ψi|Mi|ψi⟩.

Let P opt(E) = maxM PM(E) denote the optimal average success probability of E , where the
maximization is over the set of valid m-outcome POVMs. For every ensemble E , the so-called
Pretty Good Measurement (PGM) is a specific POVM (depending on the ensemble E) that
does reasonably well against E . In particular, it is well-known that

P opt(E)2 ≤ PP GM (E) ≤ P opt(E).
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We now define the POVM elements of the pretty-good measurement. Let |ψ′
i⟩ = √

pi|ψi⟩,
and E ′ = {|ψ′

i⟩ : i ∈ [m]} be the set of states in E , renormalized to reflect their probabilities.
Define ρ =

∑
i∈[m]|ψ′

i⟩⟨ψ′
i|. The PGM is defined as the set of measurement operators

{|νi⟩⟨νi|}i∈[m] where |νi⟩ = ρ−1/2|ψ′
i⟩ (the inverse square root of ρ is taken over its non-zero

eigenvalues). We will use the properties of these POVM elements later on and will also need
the following theorems about PGMs.

▶ Theorem 5 ([25]). Let S = {ρ1, . . . , ρm}. Suppose ρ ∈ S is an unknown quantum state
picked from S. Let maxi̸=j∥√

ρi
√
ρj∥1≤ F . Then, given

M = O((log(m/δ))/log(1/F ))

copies of ρ, the Pretty good measurement identifies ρ with probability at least 1 − δ.

The above theorem in fact implies the following stronger statement immediately (also stated
in [8]) that we use here.

▶ Lemma 6. Let S = {ρ1, . . . , ρm}. Suppose ρ ∈ S is an unknown quantum state picked
uniformly from S. Suppose there exists k such that

1
m

∑
i̸=j

∥
√
ρ⊗k

i

√
ρ⊗k

j ∥1≤ δ,

then given k copies of ρ, the Pretty Good Measurement identifies ρ with probability at least
1 − δ.

3 Learning Binary Phase States

In this section, we consider the problem of learning binary phase states as given by Eq. (1),
assuming that f is a Boolean polynomial of F2-degree d.

3.1 Learning algorithm using separable measurements
We now describe our learning algorithm for learning binary phase states |ψf ⟩ when f has
F2-degree d, using separable measurements. We carry out our algorithm in n rounds, which
we index by t. In the t-th round, we perform RPDS along et (Def. 1) in order to obtain
samples of the form (y,Dtf(y)) where y ∈ {0, 1}n−1. For an m ≥ 1 to be fixed later, we
use RPDS on m copies of |ψf ⟩ to obtain {

(
y(k), Dtf(y(k))

)
}k∈[m] where y(k) ∈ {0, 1}n−1 is

uniformly random. We now describe how to learn Dtf using these m samples.
Using Fact 1, we know that Dtf ∈ P(n − 1, d − 1). Thus, there are at most N =

|M(n − 1, d − 1)|=
∑d−1

k=1
(

n
k

)
= nO(d) monomials in the F2 representation of Dtf . Let

At ∈ Fm×N
2 be the transpose of the (d− 1)-evaluation matrix (defined in Eq. (8)), such that

the kth row of At corresponds to the evaluations of y(k) under all monomials in M(n−1, d−1),
i.e., (y(k)

S )|S|≤d−1, where y(k)
S =

∏
j∈S y

(k)
j , and let βt = (αS)|S|≤d−1 be the vector of unknown

coefficients. Obtaining {(y(k), Dtf(y(k)))}k∈[m], allows one to solve Atβt = Dtf(y) for βt

(where y = (y(1), . . . , y(m)) and (Dtf(y))k = Dtf(y(k))) and learn the F2-representation of
Dtf completely. Over n rounds, one then learns D1f,D2f, . . . ,Dnf . The F2-representations
of these partial derivatives can then be used to learn f completely, as show in Fact 3. This
procedure is shown in Algorithm 1.

▶ Fact 3. Let f : Fn
2 → F2 be such that f ∈ P(n, d). Learning D1f, . . . ,Dnf suffices to

learn f .
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Proof. Let the F2-representation of the unknown f be

f(x) =
∑

J⊆[n],|J|≤d

αJ

∏
i∈J

xi. (11)

The F2-representation of Dtf for any t ∈ {1, 2, . . . , n} is then given by

Dtf(x) =
∑

J⊆[n]:
t∈J,|J|≤d

αJ

∏
i∈J\t

xi, (12)

where we notice that Dtf only contains those monomials that correspond to sets J containing
the component xt. Let the F2-representation of Dtf with the coefficient vector βt be given
by

Dtf(x) =
∑

S⊂[n],|S|≤d−1

(βt)S

∏
i∈S

xi. (13)

Suppose an algorithm learns D1f, . . . ,Dnf . In order to learn f , we must retrieve the
coefficients αJ from the learned coefficients {βt}t∈{1,2,...,n}. We accomplish this by noting
that (βt)S = αS∪t or in other words, αJ = {βt}J\t, t ∈ J . However, there may be multiple
values of t that will allow us retrieve αJ . For example, suppose f contains the monomial
term x1x2x3 (i.e., J = {1, 2, 3}) then α{1,2,3} could be retrieved from (β1){2,3}, (β2){1,3}, or
(β3){1,2}. When Dtf (or βt) for all t is learned with zero error, all these values coincide and it
doesn’t matter which learned coefficient is used. When there may be error in learning Dtf (or
βt), we can carry out a majority vote: αJ = Majority({(βt)J\t|t ∈ J}) for all J ⊆ [n], |J |≤ d.
The majority vote is guaranteed to succeed as long as there is no error in at least half of the
contributing βt (which is the case in our learning algorithm). ◀

Algorithm 1 Learning binary phase states through separable measurements.

Input: Given M = O((2n)d) copies of |ψf ⟩ where f ∈ P(n, d)
1: for qubit t = 1, . . . , n do
2: Set m = M/n

3: Perform RPDS along et to obtain {(y(k), Dtf(y(k))}k∈[m] by measuring m copies of
|ψf ⟩.

4: Solve the linear system of equations At · βt = Dtf(y) to learn Dtf explicitly.
5: end for
6: Use Fact 3 to learn f using D1f, . . . ,Dnf (let f̃ be the output).

Output: Output f̃

We now prove the correctness of this algorithm.

▶ Theorem 7. Let n ≥ 2, d ≤ n/2. Algorithm 1 uses M = O(2dnd) copies of an unknown |ψf ⟩
for f ∈ P(n, d) and with high probability identifies f using single qubit X,Z measurements.

Proof. Algorithm 1 learns f by learning D1f, . . . ,Dnf and thereby learns f completely.
Here we prove that each Dtf can be learned with m = O(2dnd−1) copies of |ψf ⟩ and an
exponentially small probability of error. This results in an overall sample complexity of
O(2dnd) for learning f and hence |ψf ⟩. Let us consider round t in Algorithm 1. We generate
m constraints {

(
yk, (Dtf)(y(k)

)
}k∈[m] where y(k) ∈ Fn−1

2 by carrying out RPDS along et on
m copies of |ψf ⟩.
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We learn the F2-representation of Dtf by setting up a linear system of equations using
these m samples: Atβt = Dtf(y), where At is the transposed (d − 1)-evaluation matrix
in round t, evaluated over y = (y(1), y(2), . . . y(m)), and βt ∈ F|M(n−1,d−1)|

2 is the collective
vector of coefficients corresponding to the monomials in M(n− 1, d− 1). By construction,
this system has at least one solution. If there is exactly one solution, then we are done.
Otherwise, the corresponding system has a non-zero solution, that is, there exists a non-zero
degree-(d− 1) polynomial g : Fn−1

2 → F2 such that g(y(j)) = 0 for all j = 1, 2, . . . ,m.
Below we prove that the probability of this bad event can be bounded through the

Schwartz-Zippel lemma. Applying Lemma 2 and by noting that yj ∈ F(n−1)
2 are independent

and uniformly distributed, we have that

Pr[g(y(1)) = g(y(2)) = · · · = g(y(m)) = 0] ≤ (1 − 2−d)m ≤ e−m2−d

(14)

Let Pnnz(n, d) be the set of all degree-d polynomials g : Fn
2 → F2 which are not identically

zero. Define event

BAD(y1, . . . , ym) = [∃g ∈ Pnnz(n− 1, d− 1) : g(y1) = . . . = g(ym) = 0 (mod 2)]. (15)

We note that |Pnnz(n− 1, d− 1)|≤ 2N where N = O(nd−1). By union bound and Eq. (14),
we have

Pr[BAD(y(1), . . . , y(m))] ≤ |Pnnz(n− 1, d− 1)|·(1 − 2−d)m ≤ 2nd−1−m2−d(ln 2). (16)

Thus choosing m = O((2n)d−1) is enough to learn all coefficients {αJ}t∈J (through βt) in
the F2 representation of f with an exponentially small probability of error. We need to
repeat this over all the n qubits in order to learn D1f, . . . ,Dnf and then use Fact 3 to learn
f completely. This gives an overall sample complexity of O((2n)d) for learning binary phase
states. Observe that the only measurements that we needed in this algorithm were single
qubit {X,Z} measurements. ◀

▶ Corollary 8. An n-qubit state |ψf ⟩ with the unknown Boolean function f of given Fourier-
sparsity s can be learned with Algorithm 1 that consumes M copies of |ψf ⟩ with probability
1 − 2−Ω(n) provided that M ≥ O(snlog s).

The proof of this corollary simply follows from the following: for a Boolean function, the
Fourier sparsity s of f is related to the F2-degree d of f [9] as d ≤ log s. Along with Theorem 7
we obtain the corollary.

3.2 Learning using entangled measurements
We now consider the problem of learning binary phase states using entangled measurements.
We have the following result.

▶ Theorem 9. Let n ≥ 2, d ≤ n/2. There exists an algorithm that uses M = O((2n)d−1)
copies of an unknown |ψf ⟩ for f ∈ P(n, d) and identifies f using entangled measurements
with probability ≥ 2/3. There is also a lower bound of Ω(nd−1) for learning these states.

Proof. In order to prove this theorem, we follow the following steps. We first observe that the
optimal measurement for our state distinguishing problem is the pretty good measurement
(PGM). Second we observe that the success probability of the PGM is the same for every
concept in the ensemble. We bound the success probability of the PGM using Corollary 6
we get our upper bound.
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For f ∈ P(n, d), let Uf be the unitary defined as Uf = diag({(−1)f(x)}x), that satisfies
Uf |+⟩n = |ψf ⟩. Observe that the set {Uf }f∈P(n,d) is an Abelian group. The ensemble we are
interested in is S = {Uf |+⟩n}f∈P(n,d) and such an ensemble is called geometrically uniform
if the {Uf } is an Abelian group. A well-known result of Eldar and Forney [21] showed that
the optimal measurement for state distinguishing a geometrically uniform (in particular S)
is the pretty-good measurement. We now show that the success probability of the PGM is
the same for every state in the ensemble. In this direction, for M ≥ 1, let σf = |ψf ⟩⟨ψf |⊗M .
The POVM elements of the pretty good measurement {Ef : f ∈ P(n, d)} is given by the
POVM elements Ef = S−1/2σfS

−1/2 where S =
∑

f∈P(n,d) σf . The probability that the
PGM identifies the unknown σf is given by

Pr(f) = Tr(σfEf ) = ⟨ψ⊗M
f |S−1/2|ψ⊗M

f ⟩2.

Our claim is that Pr(f) is the same for every f ∈ P(n, d). Using the Abelian property of the
unitaries {Uf }f , observe that Uf |ψg⟩ = |ψf⊕g⟩ for every f, g ∈ P(n, d). Thus, we have that
(U⊗M

f )†SU⊗M
f = S, which implies that(U⊗M

f )†S−1/2U⊗M
f = S−1/2. Hence it follows that

Pr(f) = (⟨+|⊗M (U⊗M
f )†S−1/2U⊗M

f |+⟩⊗M )2 = (⟨+|⊗MS−1/2|+⟩⊗M )2 = Pr(0),

for every f ∈ P(n, d). Finally, observe that ⟨ψf |ψg⟩ = Ex [(−1)f(x)+g(x)] = 1 − 2 Prx[f(x) ̸=
g(x)]. Let P∗(n, d) be the set of non-constant polynomials in P(n, d). We now have the
following

1
2( n

≤d)
∑
f ̸=g:

f,g∈P (n,d)

∥
√
ρ⊗k

f

√
ρ⊗k

g ∥1=
∑

g∈P ∗(n,d)

(1 −2 Pr
x

[g(x) = 1])2k =
∑

g∈P ∗(n,d)

(1−2wt(g))2k

which we can further upper bound as follows

d−1∑
ℓ=1

∑
g∈P ∗(n,d)

(1 − 2|g|/2n)2k ·
[
|g|∈ [2n−ℓ−1, 2n−ℓ − 1]

]
=

∑
g∈P ∗(n,d)

(1 − 2|g|/2n)2k ·
[
|g|∈ [2n−2, 2n−1 − 1]

]

+
d−1∑
ℓ=2

∑
g∈P ∗(n,d)

(1 − 2|g|/2n)2k ·
[
|g|∈ [2n−ℓ−1, 2n−ℓ − 1]

]

≤ 2n−12−2k+C( n−1
≤d−1) +

d−1∑
ℓ=2

(1 − 1
2ℓ

)2k
∑

g∈P ∗(n,d)

[
|g|≤ 2n−ℓ

]
,

where the first equality used that the PGM has the same success probability for every
f, g ∈ P(n, d), third equality used that |g|≥ 2n−d for any non-zero polynomial g ∈ P (n, d) [33]
and last inequality used Theorem 3. For k = O(nd−1) (by picking a sufficiently large constant
in O(·)), the first term is at most ≤ 1/100. To bound the second term, using Theorem 3 we
have

d−1∑
ℓ=2

(1 − 1
2ℓ

)2k
∑

g∈P ∗(n,d)

[
|g|≤ 2n−ℓ

]
≤

d−1∑
ℓ=2

2n−ℓ exp(−2k/2ℓ + (n− ℓ)ℓ4
(
n− ℓ

≤ d− ℓ

)
).

Each term is exp(−nd−1) for k = O(nd−1), so the overall sum is ≤ 1/100. Corollary 6 implies
our desired upper bound.
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In order to see the lower bound, observe that each state |ψf ⟩ contains n bits of information
and the goal of the learning algorithm is to learn an unknown f , i.e., obtain O(nd) bits of
information. Hence by Holevo’s theorem [27], one requires Ω(nd−1) copies of the unknown
state for state identification.2 ◀

3.3 Lower bounds
In the last section we saw that Θ(nd−1) many copies of |ψf ⟩ with degree-d are necessary and
sufficient to learn f if we allowed only entangled measurements. Earlier we saw that O(nd)
many copies of |ψf ⟩ sufficed to learn f using separable measurements. A natural question is:
Can we learn f using fewer copies if we are restricted to using only separable measurements?
In the theorem below, we provide a lower bound that complements our upper bound, thereby
showing Θ(nd) copies are necessary and sufficient to learn f using separable measurements.

▶ Theorem 10. Let 2 ≤ d ≤ n/2. Suppose there exists an algorithm that with probability
≥ 1/10, learns an n-variate polynomial f ∈ P(n, d), given M copies of the phase state
|ψf ⟩ = 1√

2n

∑
x∈{0,1}n(−1)f(x)|x⟩, measuring each copy in an arbitrary orthonormal basis,

and performing an arbitrary classical processing. Then M = Ω(log|P(n, d)|) = Ω(nd).

Proof. The proof is given in the full version of this paper [6]. ◀

4 Learning generalized phase states

In this section, we consider the problem of learning generalized phase states |ψf ⟩ as given by
Eq. (3), assuming that f is a degree-d Zq-valued polynomial, f ∈ Pq(n, d). Note that since
our goal is to learn |ψf ⟩ up to an overall phase, we shall identify polynomials which differ
only by a constant shift.

▶ Definition 2. Polynomials f, g ∈ Pq(n, d) are equivalent if f(x) − g(x) is a constant.

To simplify notation, here and below we omit modulo operations keeping in mind that
degree-d polynomials take values in the ring Zq. Thus all equal or not-equal constraints that
involve a polynomial’s value are modulo q.

4.1 Learning using separable measurements
Let q ≥ 2 and d ≥ 1 be integers. For technical reasons, we shall assume that q is even. Let
ωq = e2πi/q. Our main result is as follows.

▶ Theorem 11. Let d ≤ n/2. There exists an algorithm that uses M = O(2dq3nd log q) =
O(nd) copies of a generalized phase state |ψf ⟩ = 1√

2n

∑
x∈{0,1}n ω

f(x)
q |x⟩ with an unknown

polynomial f ∈ Pq(n, d) and outputs a polynomial g ∈ Pq(n, d) such that g is equivalent to
f with the probability at least 1 − 2−Ω(n). The quantum part of the algorithm requires only
single-qubit unitary gates and measurements in the standard basis.

Moreover, suppose there exists an algorithm that with probability ≥ 1/10, learns an n-
variate polynomial f ∈ Pq(n, d), given k copies of |ψf ⟩, measuring each copy in an arbitrary
orthonormal basis, and performing an arbitrary classical processing. Then M = Ω(nd).

2 We refer the reader to Montanaro [35, Proposition 1] for a detailed exposition of this lower bound proof.
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Before stating our learning algorithm and sample complexity, we need the following
lemmas.

▶ Lemma 12. Choose any f ∈ Pq(n, d) and c ∈ Zq. Then either f(x) is a constant function
or the fraction of inputs x ∈ {0, 1}n such that f(x) ̸= c is at least 1/2d.

Proof. We shall use the following simple fact which is proved in [6].

▶ Proposition 1. Consider a function f : {0, 1}n → Zq specified as a polynomial

f(x) =
∑

J⊆[n]

αJ

∏
j∈J

xj (mod q). (17)

Here αJ ∈ Zq are coefficients. The function f is constant if and only if αJ = 0 (mod q) for
all non-empty subsets J ⊆ [n].

We shall prove Lemma 12 by induction in n. The base case of induction is n = d. Clearly,
a non-constant function f : {0, 1}d → Zq takes a value different from c at least one time,
that is, the fraction of inputs x ∈ {0, 1}d such that f(x) ̸= c is at least 1/2d.

Suppose n > d and f ∈ Pq(n, d) is not a constant function. Let d′ be the maximum
degree of non-zero monomials in f . Clearly 1 ≤ d′ ≤ d. Suppose f contains a monomial
αS

∏
j∈S xj where αS ∈ Zq \ {0} and |S|= d′. Since |S|< n, one can choose a variable xi

with i ∈ [n] \ S. Let ga : {0, 1}n−1 → Zq be a function obtained from f by setting the
variable xi to a constant value a ∈ {0, 1}. Clearly, ga ∈ Pq(n − 1, d). The coefficients of
the monomial

∏
j∈S xj in g0 and g1 are αS and αS + αS∪{i} (mod q) respectively. However,

αS∪{i} = 0 (mod q) since otherwise f would contain a monomial xi

∏
j∈S xj of degree larger

than d′. We conclude that both g0 and g1 contain a non-zero monomial αS

∏
j∈S xj . By

Proposition 1, g0 and g1 are not constant functions. Since g0 and g1 are degree-d polynomials
in n− 1 variables, the induction hypothesis gives

Pr
y

[ga(y) ̸= c] ≥ 1
2d
. (18)

Here y ∈ {0, 1}n−1 is picked uniformly at random. Thus

Pr
x

[f(x) ̸= c] = 1
2

[
Pr
y

[g0(y) ̸= c] + Pr
y

[g1(y) ̸= c]
]

≥ 1
2d
. (19)

Here x ∈ {0, 1}n is picked uniformly at random. This proves the induction step. ◀

With this lemma, we are now ready to prove Theorem 11. In the section below we first
describe our learning algorithm and in the next section we prove the theorem by proving the
sample complexity upper bound.

4.1.1 Learning Algorithm in Theorem 11
We are now ready to state our learning algorithm. As in Section 3.1 for learning binary phase
states with separable measurements, we learn generalized phase states through examples
containing information about the derivatives of f(x). The crucial difference between the
binary phase state learning algorithm and the generalized setting is, in the binary case, we
obtained a measurement outcome by that corresponded to by = f(0y) −f(1y), however in the
generalized scenario, we obtain a measurement outcome b′

y that satisfies f(0y) − f(1y) ̸= b′
y.

Nevertheless, we are able to still learn f using such measurement outcomes which we describe
in the rest of the section.
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We now describe the learning algorithm. We carry out the algorithm in n rounds, which
we index by t. For simplicity, we describe the procedure for the first round. Suppose we
measure qubits 2, 3, . . . , n of the state |ψf ⟩ in the Z-basis. Let y ∈ {0, 1}n−1 be the measured
bit string. Note that the probability distribution of y is uniform. The post-measurement
state of qubit 1 is

|ψf,y⟩ = 1√
2

(ωf(0y)
q |0⟩ + ωf(1y)

q |1⟩) (20)

For each b ∈ Zq define a single-qubit state

|ϕb⟩ = 1√
2

(|0⟩ − ωb
q|1⟩) (21)

Using the identity
∑

b∈Zq
ωb

q = 0 one gets

I = 2
q

∑
b∈Zq

|ϕb⟩⟨ϕb| (22)

One can view Eq. (22) as a single-qubit POVM with q elements (2/q)|ϕb⟩⟨ϕb|. Let M be the
single-qubit measurement described by this POVM. Applying M to the state |ψf,y⟩ returns
an outcome b ∈ Zq with the probability

Pr(b|y) := 2
q

|⟨ϕb|ψf,y⟩|2= 1
2q

∣∣∣1 − ωf(1y)−f(0y)−b
q

∣∣∣2
. (23)

Clearly, Pr(b|y) is a normalized probability distribution,
∑

b∈Zq
Pr(b|y) = 1. Furthermore,

f(1y) − f(0y) = b implies Pr(b|y) = 0, (24)

f(1y) − f(0y) ̸= b implies Pr(b|y) ≥ 2
q

sin2 (π/q) = Ω(1/q3). (25)

To conclude, the combined n-qubit measurement consumes one copy of the state |ψf ⟩ and
returns a pair (y, b) ∈ {0, 1}n−1 × Zq such that

f(1y) − f(0y) ̸= b (26)

with certainty and all outcomes b satisfying Eq. (26) appear with a non-negligible probability.
Define a function g : {0, 1}n−1 → Zq such that

g(y) = f(1y) − f(0y). (27)

We claim that g is a degree-(d− 1) polynomial, that is, g ∈ Pq(n− 1, d− 1). Indeed, it is
clear that g(y) is a degree-d polynomial. Moreover, all degree-d monomials in f(x) that
do not contain the variable x1 appear in f(1y) and f(0y) with the same coefficient. Such
monomials do not contribute to g(y). A degree-d monomial in f(x) that contains the variable
x1 contributes a degree-(d− 1) monomial to g(y). Thus g ∈ Pq(n− 1, d− 1), as claimed.

From Eq. (26) one infers a constraint g(y) ̸= bwhenever the combined n-qubit measurement
of |ψf ⟩ returns an outcome (y, b). Suppose we repeat the above process m times obtaining
constraints

g(y(k)) ̸= b(k), k = 1, 2, . . . ,m. (28)

This consumes m copies of |ψf ⟩. We claim that the probability of having more than one
polynomial g ∈ Pq(n− 1, d− 1) satisfying the constraints Eq. (28) is exponentially small if
we choose

m = O(q3 log (q)2dnd−1). (29)
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4.1.2 Sample Complexity bound in Theorem 11
Define a probability distribution π(y⃗, b⃗) where

z⃗ = (y(1), . . . , y(m)) ∈ {0, 1}(n−1)m and b⃗ = (b(1), . . . , b(m)) ∈ (Zq)×m (30)

such that y(j) are picked uniformly at random and b(k) are sampled from the distribution
Pr(b(k)|y(k)) defined in Eq. (23). For each polynomial h ∈ Pq(n− 1, d− 1) define an event

BAD(h) = {(y⃗, b⃗) : h(y(k)) ̸= b(k) for all k ∈ [m]}. (31)

We claim that

Pr[BAD(h)] :=
∑

(y⃗,⃗b)∈BAD(h)

π(y⃗, b⃗) ≤
[
1 − Ω(2−dq−3)

]m (32)

for any h ̸= g. Indeed, consider some fixed k ∈ [m]. The event b(k) ̸= h(y(k)) occurs
automatically if h(y(k)) = g(y(k)). Otherwise, if h(y(k)) ̸= g(y(k)), the event b(k) ̸= h(y(k))
occurs with the probability at most 1 − Ω(1/q3) since b(k) = h(y(k)) with the probability at
least Ω(1/q3) due to Eq. (25). It follows that

Pr
y(k),b(k)

[h(y(k)) ̸= b(k)] ≤ Pr
y(k)

[h(y(k)) = g(y(k))] + Pr
y(k)

[h(y(k)) ̸= g(y(k))]
(
1 − Ω(1/q3)

)
(33)

= 1 − Pr
y(k)

[h(y(k)) ̸= g(y(k))] · Ω(1/q3). (34)

If h and g are equivalent then h(y) = g(y) + c for some constant c ∈ Zq. Note that c ̸= 0
since we assumed h ̸= g. In this case

Pr
y(k)

[h(y(k)) ̸= g(y(k))] = 1. (35)

If h and g are non-equivalent, apply Lemma 12 to a non-constant degree-(d− 1) polynomial
h− g. It gives

Pr
y(k)

[h(y(k)) ̸= g(y(k))] ≥ 1
2d−1 . (36)

In both cases we get

Pr
y(k),b(k)

[h(y(k)) ̸= b(k)] ≤ 1 − Ω(2−dq−3), (37)

which proves Eq. (32) since the pairs (y(k), b(k)) are i.i.d. random variables.
As noted earlier in the preliminaries, observe that |Pq(n − 1, d − 1)|≤ qO(nd−1) =

2O(log (q)nd−1). By the union bound, one can choose m = O(2dq3 log (q)nd−1) such that

Pr

 ⋃
h∈Pq(n−1,d−1)\g

BAD(h)

 ≤ 2O(log (q)nd−1) [
1 − Ω(2−dq−3)

]m ≤ 2−Ω(n). (38)

In other words, the probability that g is the unique element of Pq(n− 1, d− 1) satisfying
all the constraints Eq. (28) is at least 1 − 2−Ω(n). One can identify such polynomial g by
checking the constraints Eq. (28) for every g ∈ Pq(n−1, d−1). If the constraints are satisfied
for more than one polynomial, declare a failure.
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At this point we have learned a polynomial g ∈ Pq(n− 1, d− 1) such that f(1y) −f(0y) =
g(y) for all y ∈ {0, 1}n−1. For simplicity, we ignore the exponentially small failure probability.
Applying the same protocol n times to copies of the quantum state |ψf ⟩ by a cyclic shift of
qubits, one can learn polynomials g0, g1, . . . , gn−1 ∈ Pq(n− 1, d− 1) such that

f(Ci(1y)) − f(Ci(0y)) = gi(y) for all i ∈ [n] and y ∈ {0, 1}n−1, (39)

where C is the cyclic shift of n bits. This consumes M = O(nm) = O(2dq3 log (q)nd) copies
of the state |ψf ⟩. We can assume wlog that f(0n) = 0 since our goal is to learn f(x) modulo
a constant shift. Suppose we have already learned values of f(x) for all bit strings x with
the Hamming weight |x|≤ w (initially w = 0). Any bit string x with |x|= w + 1 can be
represented as x = Ci(1y) for some y ∈ {0, 1}n−1 such that |y|= w. Now Eq. (39) determines
f(x) since |Ci(0y)|= |y|= w so that f(Ci(0y)) is already known and the polynomial gi(y)
has been learned. Proceeding inductively one can learn f(x) for all x.

It remains to note that the POVM Eq. (22) is a probabilistic mixture of projective
single-qubit measurements whenever q is even. Indeed, in this case the states |ϕb⟩ and
|ϕb+q/2⟩ = Z|ϕb⟩ form an orthonormal basis of a qubit, see Eq. (21). Thus the POVM defined
in Eq. (22) can be implemented by picking a random uniform b ∈ Zq and measuring a qubit
in the basis {|ϕb⟩, Z|ϕb⟩}. Thus the learning protocol only requires single-qubit unitary gates
and measurements in the standard basis.

The lower bound in the proof of Theorem 11 follows in a straightforward manner from
the lower bound for binary phase states. Indeed, suppose

f ′(x) =
∑

J∈[n]

αJ

∏
j∈J

xj (mod 2)

is an F2-valued degree-d polynomial, f ′ ∈ P(n, d). Suppose q = 2r for some integer r. Define
a polynomial f(x) = rf ′(x) (mod q). Clearly f ∈ Pq(n, d) and ω

f(x)
q = (−1)f ′(x) for all x,

that is the binary phase state corresponding to f ′ coincides with the generalized phase state
corresponding to f . Using Theorem 10, we obtain a lower bound of M = log|P(n, d)|= Ω(nd)
for learning ψf . This concludes the proof of Theorem 11.

4.2 Learning stabilizer states
We now describe how the algorithm stated in Theorem 11 could be used to learn any n-
qubit stabilizer state (produced by a Clifford circuit applied to |0n⟩ state) using separable
measurements. Note that we can learn a subclass of stabilizer states called graph states
(which are simply binary phase states with d = 2) using Algorithm 1 with the sample
complexity of O(n2) (as shown in Theorem 7).

From a result in [19], we know that a stabilizer state can be represented as follows

|ψ⟩ = 1√
|A|

∑
x∈A

iℓ(x)(−1)q(x)|x⟩, (40)

where A is an affine subspace of Fn
2 , ℓ : Fn

2 → F2 is a linear function and q : Fn
2 → F2 is

quadratic function. Clearly, an alternate form is a generalized phase state with degree-2

|ψf ⟩ = 1√
|A|

∑
x∈A

if(x)|x⟩ (41)

where the summation is over A instead of the entire Fn
2 , and the function f : Fn

2 → Z4 has
its coefficients corresponding to the quadratic monomials take values in {0, 2}. We can now
learn this using separable measurements as stated in the following statement as opposed to
entangled measurements as required by Bell sampling [36].
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▶ Corollary 13. There exists an algorithm that uses M = O(n2) copies of a stabilizer state
|ψf ⟩ = 1√

|A|

∑
x∈A

if(x)|x⟩ with an unknown polynomial f ∈ P4(n, 2) and outputs a polynomial

g ∈ P4(n, 2) such that g is equivalent to f with the probability at least 1 − 2−Ω(n). The
quantum part of the algorithm requires only single-qubit unitary gates and measurements in
the standard basis.

Proof. The subspace A of an unknown stabilizer state can be denoted as a + SA where
a ∈ Fn

2 is a translation vector and SA is a linear subspace of Fn
2 . To learn a and a basis

of the subspace SA, it is enough to measure O(n log n) copies of |ψf ⟩ in the computational
basis. This in turn defines a subset of the n directions {ei} along which we need to search for
non-zero monomials in the partial derivatives of f . We can now use the learning algorithm
in Theorem 11 to learn the unknown stabilizer state using O(n2) copies with the desired
probability. ◀
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4:2 Computational Quantum Secret Sharing

1 Introduction

Classical secret sharing [12, 38] is a fundamental cryptographic primitive which allows one
to share a classical bit-string (the secret) among n parties so that (i) only authorized subsets
of parties can reconstruct the secret, and (ii) unauthorized subsets have essentially no
information about the secret. The associated class of authorized sets, called the access
structure, is defined by a monotone function f : {0, 1}n → {0, 1} with a set P ⊆ [n] being
authorized if and only if f(vP ) = 1, where vP ∈ {0, 1}n is the characteristic vector of P
satisfying vP

i = 1 exactly when i ∈ P . For the sake of convenience, we will often write f(P )
for f(vP ) when the context is clear.

Secret sharing has found several applications in cryptography, see the extensive survey
of Beimel [9] for a discussion of such applications. Motivated by these applications, it is
important to design secret sharing schemes realizing a given monotone function which are as
efficient as possible, be it in terms of requiring polynomial-time sharing and reconstruction
procedures or, more modestly, requiring that the resulting shares be as short as possible.
Blakley [12] and Shamir [38] originally described efficient secret sharing schemes for threshold
monotone functions (where a set P is authorized if and only if |P | ≥ t for a given threshold t).
A long line of research over the past 40 years has significantly extended and complemented
these results.

Of particular importance to us, it is known how to exploit different computational hardness
assumptions to obtain efficient computational secret sharing schemes realizing a broad class
of monotone functions, where by efficient we mean that the scheme enjoys polynomial-time
sharing and reconstruction. In particular, such schemes also have polynomial sized shares.
Early work of Yao [44, 41] described families of efficient computational secret sharing schemes
realizing all functions in monotone P, i.e., all sequences of monotone functions (fn)n∈Z+ with
fn : {0, 1}n → {0, 1} that are computed by a sequence of poly(n)-size monotone circuits,1
based on the existence of one-way functions. A more recent work by Komargodski, Naor,
and Yogev [28] succeeded in designing such efficient computational schemes realizing all
functions in2 mNP assuming witness encryption for NP and one-way functions.3 Following
this, Bartusek and Malavolta [8] designed efficient computational schemes for classical secrets
realizing all monotone functions in QMA assuming witness encryption for this class.

Given the advent of quantum computing, it is natural to consider the construction of
schemes for sharing a quantum state, as opposed to a classical bitstring. This problem was
first considered in [24, 26, 17] for some specific monotone functions. Follow-up works by
Gottesman [21] and Smith [39] showed how to design quantum secret sharing schemes for all
allowable monotone functions.4 Of particular relevance, Smith [39] constructed quantum
secret sharing schemes realizing monotone functions f whose total share size is equal to
the size of the smallest monotone span program computing f , thus generalizing a seminal
classical result of Karchmer and Wigderson [25] to the quantum setting.

Remarkably, the result of Smith [39] still remains the state-of-the-art for quantum secret
sharing realizing broad classes of monotone functions more than 20 years later, and it leaves
significant loose ends. In fact, it is now known that there are functions in monotone P

1 Throughout this paper, we make the parametrization of the sequence of monotone functions in terms of
n implicit when clear from context.

2 We denote by mNP the class of monotone functions in NP.
3 The notion of secret sharing for functions in mNP requires that the reconstructor receive not only an

authorized subset of shares, but also a polynomial-size witness certifying that this subset is authorized.
4 Not all monotone functions allow a quantum secret sharing scheme. We discuss this in more detail later.
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which only have exponentially large associated monotone span programs [37, 35]. This
means that with the current methods the best quantum secret sharing scheme realizing
such monotone functions requires exponential share size. In contrast, as mentioned before,
we have efficient computational classical secret sharing schemes realizing all such functions
under standard hardness assumptions [44, 41]. Moreover, if we are willing to upgrade our
hardness assumptions, then we know such efficient classical schemes for the much broader
class of monotone functions in mNP [28].

1.1 A summary of our contributions

Given the state of affairs above, the following questions arise naturally:

Can we use computational hardness assumptions to significantly expand the class of
monotone functions that can be realized by efficient quantum secret sharing schemes?
Furthermore, can we improve the share size of schemes for an even broader class of
monotone functions?

We make significant progress in this direction via a new and streamlined approach. While
the concept of quantum secret sharing has been around for over twenty years, the work so far
has only considered the notion of information-theoretic privacy for such schemes, in contrast
to the classical setting. In this work, we initiate the study of computationally-secure quantum
secret sharing. By leveraging standard hardness assumptions, we show how a conceptually
simple compiler utilizing the idea of hybrid encoding allows us to obtain schemes which are
far more efficient than those constructed using the current methods. Our simple compiler
allows us to obtain a quantum secret sharing scheme from a classical secret sharing scheme
and a quantum erasure correcting code. Using this compiler, we design quantum secret
sharing schemes with various desirable properties by lifting well-known classical results
to the quantum setting. In particular, we are able to lift the results of Yao [44, 41] and
Komargodski-Naor-Yogev [28] to the quantum setting for a broad class of monotone functions
which we show inherits many relevant properties from general monotone functions. Moreover,
we are also able to use our general approach to lift many other results from classical secret
sharing to the quantum setting, such as computational secret sharing of long messages
with short shares and general perfect secret sharing with share size breaking the circuit
barrier. Finally, we are able to obtain efficient schemes for any function in monotone P, given
sufficiently many (at most n) copies of the secret.

The key difficulty

One major difficulty that separates quantum from classical secret sharing is the no-cloning
theorem [43], which precludes copying unknown quantum states. This means that basic
techniques, such as giving copies of the same component to several parties, cannot be
exploited. In other words, there are no quantum secret sharing schemes realizing the OR
function. Consequently, the approaches behind many fundamental classical results cannot
be directly extended to the quantum setting, and so this lifting requires different ideas. We
proceed to describe our contributions and formal results in more detail. Our results follow
from a simple generic compiler, using the general paradigm of hybrid encoding, from classical
to quantum secret sharing that we design and analyze.
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Heavy monotone functions

Due to the no-cloning theorem, quantum secret sharing schemes are only able to realize
what we call no-cloning monotone functions [17]. These are monotone functions f with
the property that f(P ) = 1 implies f(P ) = 0, i.e., the complement of an authorized set
is unauthorized. As discussed above, we know how to construct quantum secret sharing
schemes realizing all no-cloning monotone functions [21, 39], but the state-of-the-art share
size for all such functions f corresponds to the size of the smallest monotone span program
computing f , which may be extremely large even for “simple” no-cloning monotone functions
f in monotone P.

We first focus on a natural subclass of no-cloning monotone functions which we call heavy
monotone functions.

▶ Definition 1 (Heavy function). A monotone function f : {0, 1}n → {0, 1} is said to be
t-heavy if for any set P ⊆ [n] with f(P ) = 1, we have |P | ≥ t. When t ≥

⌊
n
2
⌋

+ 1, we simply
say that f is heavy.

Equivalently, t-heavy monotone functions correspond exactly to the class of monotone
functions with minimal authorized sets5 of size at least t. Note also that a t-out-of-n
threshold function is a special case of a t-heavy function.

A t-heavy function with t > n/2 satisfies the no-cloning property, and thus can be realized
by a quantum secret sharing scheme. Naturally, one may wonder whether the class of heavy
monotone functions is interesting. For example, it could be the case at first sight that all
heavy monotone functions are computed by polynomial-size monotone span programs, in
which case we would already know efficient quantum secret sharing schemes for all such
functions via Smith’s construction [39]. We show that this is, in fact, not the case: Heavy
monotone functions inherit the complexity of arbitrary monotone functions, as made precise
in the following result (see the full version [14] for the proof).

▶ Proposition 2. Let mSP(f) and mC(f) denote the size of the smallest monotone span
program and monotone circuit computing f , respectively. Then, for every monotone function
f : {0, 1}n → {0, 1} there exists a heavy monotone function f ′ : {0, 1}2n → {0, 1} such that
mSP(f ′) ≥ mSP(f)

2n and mC(f ′) ≤ mC(f) + n. Moreover, if f is in mNP, then so is f ′.

In words, Proposition 2 states that for every monotone function f there is a corresponding
heavy monotone function f ′ with essentially the same complexity in terms of monotone span
programs and monotone circuits. Combining Proposition 2 with recent results from [37, 35]
leads to the following corollary.

▶ Corollary 3. There exist heavy monotone functions in monotone P which require monotone
span programs of size exp

(
nΩ(1)).

This corollary is very relevant in the context of secret sharing. It shows that there are heavy
monotone functions for which we have efficient computational classical secret sharing schemes
via Yao’s construction, but for which the best known method [39] for constructing quantum
secret sharing schemes requires exponential share size.

5 We say that P is a minimal authorized set for f if f(P ) = 1 but f(S) = 0 for all strict subsets S ⊊ P .



A. Çakan, V. Goyal, C.-D. Liu-Zhang, and J. Ribeiro 4:5

Computational quantum secret sharing of long messages with short shares

As our first contribution, we consider the task of sharing secrets consisting of multiple qubits
at once. Naively, this can be accomplished by sharing each qubit in parallel. However, we
would like to do considerably better.

In the classical setting, Krawczyk [29] showed that we can share a sufficiently long
secret bitstring using shares that are much shorter than the secret under standard hardness
assumptions via a basic technique. Moreover, it is easy to see that this is impossible to
achieve in the case of perfect secret sharing [27]. Using our general approach, we obtain a
quantum analogue of Krawczyk’s result, thus showing that we can share a high-dimensional
secret quantum state using quantum shares of much lower dimension than the secret under
standard post-quantum hardness assumptions. As in the classical setting, this is impossible
to achieve with perfect security. Gottesman [21] showed that, in this case, shares of important
parties (i.e., parties whose removal from some authorized set make it unauthorized) must
be at least as large as the secret. Therefore, in particular, the above cannot be achieved
by perfectly secure quantum secret sharing schemes even for the simplest case of threshold
monotone functions. Furthermore, the currently known quantum secret sharing schemes can
only achieve exponential share size per message size ratio for some functions whereas below
we show that we can achieve a share size per message size ratio below 1 for sufficiently long
messages.

We now provide some more details. Suppose we wish to share a secret composed by m

qubits. Then, our quantity of interest is the information ratio of a quantum secret sharing
scheme [9], which is given by maxi∈[n] |Si|

m , where |Si| denotes the number of qubits used to
describe the i-th share of the scheme. Then, our goal is to design efficient quantum secret
sharing schemes whose information ratio is as small as possible as a function of the secret size
m and the number of parties n. As mentioned above, information-theoretic schemes always
have information ratio at least 1 [21], and so we must use computational assumptions to
break this barrier. The following theorem is a notable special case of our general approach.

▶ Theorem 4. If f is a t-heavy monotone function, with t > n/2, computed by monotone
circuits of size O(nd), then there is an efficient computational quantum secret sharing scheme
realizing f with asymptotic information ratio at most 32

2t−n for secrets composed of at least
m = Ω(ncd) qubits for a universal constant c > 0 based on the existence of post-quantum
secure one-way functions.

In particular, observe that when t > ( 1
2 + δ)n for an arbitrary constant δ > 0, Theorem 4

guarantees that the information ratio is not only well below 1 but actually behaves as O(1/n)
when n is large enough. This is optimal up to the constant factor, since the sum of the sizes
of all shares must be at least m ≥ 1.

Efficient computational quantum secret sharing

As our second result, we show that we can leverage computational hardness assumptions
to obtain significantly more efficient quantum secret sharing schemes for heavy monotone
functions, even when sharing a single qubit.

▶ Theorem 5. If f is a heavy monotone function in monotone P, then there is an efficient
computational quantum secret sharing scheme realizing f based on the existence of post-
quantum secure one-way functions.
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▶ Theorem 6. If f is a heavy monotone function in mNP, then there is an efficient
computational quantum secret sharing scheme realizing f based on the existence of post-
quantum secure witness encryption for NP and one-way functions.

Note that, by Corollary 3, it follows that both Theorems 5 and 6 provide an exponential
improvement on the efficiency of known quantum secret sharing schemes for heavy monotone
functions.

Interestingly, computational quantum secret sharing had not been studied until our work.
Furthermore, there is a curious phenomenon with respect to computational privacy in the
quantum setting: Because of the no-cloning theorem, there are monotone functions for
which correctness of the quantum secret sharing scheme gives perfect privacy for free, and
so computational assumptions cannot be used to obtain improved schemes realizing such
monotone functions. More precisely, if f is self-dual, meaning that f(P ) = 1 if and only if
f(P ) = 0, then correcting erasures on P implies (via the no-cloning theorem) that the shares
corresponding to the subset of parties P yield no information about the secret qubit [17].
Therefore, perfect reconstruction implies perfect privacy in this case. On the other hand,
our results above show that computational assumptions can be helpful in obtaining efficient
quantum secret sharing schemes realizing a broader class of monotone functions.

We remark that our results extend beyond the class of heavy monotone functions. We
discuss these extensions in detail later in this section.

Beyond computational secret sharing: Perfect quantum secret sharing with share
size breaking the circuit size barrier

We also extend our approach to obtain new results beyond computational quantum secret
sharing. Until recently, the state-of-the-art classical perfect secret sharing schemes for
arbitrary n-party monotone functions required share size Ω(2n/

√
n) [11] – the so-called

circuit-size barrier. However, a recent groundbreaking line of research [32, 31, 4, 5, 6] has
succeeded in constructing classical perfect secret sharing schemes for arbitrary monotone
functions with share size 1.5n+o(n), well below the circuit size barrier. In this work, we obtain
a quantum analogue of this result.

▶ Theorem 7. If f : {0, 1}n → {0, 1} is a heavy monotone function, then there is a perfect
quantum secret sharing scheme realizing f with a total share size of 1.5n+o(n) classical bits
and O(n log n) qubits.

Observe that Theorem 7 is a significant improvement over the previous known results for
information-theoretic quantum secret sharing [21, 39]. In fact, if all heavy monotone functions
were computed by monotone span programs of size less than 1.5n+o(n), then Proposition 2
implies that the same would hold for all monotone functions – a major improvement over
currently known results. Therefore, the previous constructions from [21, 39] require much
larger total share size for some heavy monotone functions than Theorem 7.

Bypassing the no-cloning theorem: Quantum secret sharing with multiple copies

As we have seen above, not all monotone functions can be realized by standard quantum
secret sharing schemes due to the no-cloning theorem. Therefore, it is natural to wonder
what kind of additional assumptions are necessary to bypass this barrier and design quantum
secret sharing schemes for a wider range of monotone functions. Arguably, one of the most
reasonable directions is to assume we have access to several copies of the quantum state to
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be shared. For example, this makes sense in the setting of multiparty computation, where
each party has a classical description of their quantum input and thus may create as many
copies as it wants. The following question arises naturally from this discussion:

How many copies are required to design quantum secret sharing schemes realizing all
monotone functions in monotone P?

Chien [16] considered this question for the special case of threshold monotone functions. More
precisely, he gave a scheme showing (without proof of security) that max(1, n− 2t+ 2) copies
of the quantum secret are sufficient to obtain a t-out-of-n quantum secret sharing scheme.
Yet, the efficiency of such schemes was not considered. We exploit our approach to show
that the t-out-of-n threshold function is the most demanding among all t-heavy monotone
functions, and then construct efficient quantum secret sharing schemes for threshold functions
given multiple copies, which allows us to settle (a more general version of) the question above
in both the computational and information-theoretic settings.

▶ Theorem 8. A total of max(1, n− 2t+ 2) copies of the quantum secret are sufficient to
obtain efficient computational quantum secret sharing schemes realizing all t-heavy monotone
functions f in monotone P assuming the existence of post-quantum secure one-way functions.

Observe that every monotone function f is t-heavy when t is the minimum size of its
authorized sets. Therefore, given sufficiently many copies, we are able to obtain efficient
computational quantum secret sharing schemes for any function f ∈ monotone P.

▶ Corollary 9. For any monotone function f : {0, 1}n → {0, 1} in monotone P there is an
efficient computational quantum secret sharing scheme using at most n copies of the secret
realizing f based on the existence of post-quantum secure one-way functions.

If we are willing to settle for larger share size, we can obtain an analogous result for all
t-heavy functions, including those that are not in monotone P.

▶ Theorem 10. A total of max(1, n− 2t+ 2) copies of the quantum secret are sufficient to
obtain perfect quantum secret sharing schemes realizing all t-heavy monotone functions f
over n parties.

Beyond heavy monotone functions

Our techniques can be applied to classes of monotone functions greatly generalizing the class
of heavy monotone functions. Naturally, such classes of functions also inherit the hardness
properties of arbitrary monotone functions detailed in Proposition 2. We give two interesting
examples.

Weighted-heavy monotone functions. As a natural generalization of heavy functions, we
consider weighted-heavy functions. Intuitively, in a weighted-heavy monotone function each
party is assigned a weight – the function must evaluate to 0 for a set of parties if the sum of
their weights is below some threshold t, and is otherwise unconstrained. Such functions can
also be seen as natural extensions of weighted threshold functions.

▶ Definition 11 (Weighted heavy function). Let w : [n]→ N be an integer weight function.
A monotone function f : {0, 1}n → {0, 1} is said to be (w, t)-weighted-heavy if for any set
P ⊆ [n] with f(P ) = 1 we have

∑
i∈P w(i) ≥ t. Moreover, we call W =

∑n
i=1 w(i) the total

weight of f . If f is (w, t)-weighted-heavy for some w and t ≥ ⌊W
2 ⌋ + 1, we simply call it

w-weighted-heavy or just weighted-heavy if w is clear from context.
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Note that all (w, t)-weighted heavy monotone functions with t > W/2 satisfy the no-
cloning property, and we may see t-heavy functions as (w, t)-weighted heavy functions with
w(i) = 1 for all i ∈ [n]. One of the reasons why this is interesting is the following proposition,
which is related to Proposition 2 connecting general and heavy monotone functions and shows
that weighted heavy functions strictly generalize heavy and weighted threshold functions
(see the full version [14] for a proof).

▶ Proposition 12. There are families of w-weighted heavy monotone functions with total
weight W = poly(n) which are neither heavy nor weighted threshold functions with poly(n)
weights. Moreover, there exist such functions which are also in monotone P but require
monotone span programs of size exp

(
nΩ(1)).

In general, we show that if the sum of the weights W is polynomial in the number of
parties n and t > W/2, as is the case for the family of functions in Proposition 12, then we
can construct efficient computational quantum secret sharing schemes for weighted-heavy
monotone functions in monotone P, generalizing Theorem 5.

▶ Theorem 13. If f : {0, 1}n → {0, 1} is a (w, t)-weighted-heavy monotone function in
monotone P with total weight W = poly(n) and threshold t > W/2, then there is an efficient
computational quantum secret sharing scheme realizing f based on the existence of post-
quantum secure one-way functions.

Trees of weighted-heavy monotone functions. Our techniques can be further applied
to constant depth trees that are composed of gates computing weighted heavy functions.
Concretely, consider the family F of weighted heavy functions in monotone P with poly(n)
total weight that satisfy the no-cloning property. Then, we design efficient computational
quantum secret sharing schemes realizing any monotone function computed by constant
depth trees consisting of gates in F with fan-in at most n.

▶ Theorem 14. Let F be the family of weighted heavy functions in monotone P with poly(n)
total weight and fan-in at most n. If f : {0, 1}n → {0, 1} is computed by a constant depth
polynomial size tree composed of gates in F , then there is an efficient computational quantum
secret sharing scheme realizing f based on the existence of post-quantum secure one-way
functions.

Making a parallel with Proposition 12, we are able to show that trees of weighted-heavy
monotone functions strictly generalize weighted-heavy monotone functions – in fact, depth
2 is already sufficient for this (see the full version [14] for a proof). Recall that we had
already seen in Proposition 12 that the latter strictly generalize heavy monotone functions
and weighted threshold functions.

▶ Proposition 15. There are families of functions f : {0, 1}n → {0, 1} which satisfy all of
the following at once:

f is not weighted-heavy;
f ∈ monotone P;
f requires monotone span programs of size exp

(
nΩ(1));

f can be represented as a depth-2 polynomial size tree of weighted-heavy monotone
functions where each gate is in monotone P and has polynomially bounded total weight.
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1.2 Technical overview
We now discuss our techniques and approach in more detail.

The general compiler

The starting point in our approach is a simple and versatile compiler which exploits the
fact that we can perfectly encrypt a quantum state using a classical key. This compiler
shares some ideas with Krawczyk’s classical scheme [29], and similar techniques have been
exploited in an orthogonal direction to reduce the number of quantum shares in perfect
quantum secret sharing schemes realizing threshold monotone functions [33, 20]. It combines
a classical secret sharing scheme with the quantum one-time pad (QOTP) [3] and a quantum
erasure-correcting code.

On a high level, our compiler works by perfectly encrypting a state using QOTP. Then,
since the keys are classical, we establish the security according to the desired access structure
by simply secret sharing the keys using an efficient classical scheme. Then, to allow any
authorized set of parties to reconstruct the secret, we distribute the encrypted state using a
quantum erasure correcting code. We note that the “hybrid encoding” approach we undertake
here is prevalent in quantum computing. Other examples of this approach have appeared in
the literature (see Section 1.3 for details).

Quantum erasure-correcting codes (QECCs) are a quantum analogue of classical erasure-
correcting codes. Intuitively, a length-n QECC of dimension k maps an input quantum state
ρ over k qubits into a higher-dimensional quantum state Eρ over n qubits with the property
that even if some qubits at known positions of Eρ are subjected to any error, then it is still
possible to perfectly recover ρ from the corrupted quantum codeword. General constructions
with good parameters have been known since at least the seminal work of Calderbank and
Shor [15] and Steane [40].

More precisely, for a given monotone function f : {0, 1}n → {0, 1}, suppose we have
access to a classical secret sharing scheme SS = (SS.share, (SS.recP )P⊆[n]) realizing f and a
QECC QC = (QC.Enc,QC.Rec) with n components “realizing” some monotone function f ′

satisfying f ′(x) ≥ f(x) for all x ∈ {0, 1}n. That is, QC corrects erasures in the complement
of all sets P such that f ′(P ) = 1. Then, our general compiler proceeds as follows on input
an arbitrary qubit ρ:
1. Sample a classical key k = (k1, k2)← {0, 1}2;
2. Encrypt ρ with QOTP using key k, yielding the perfectly encrypted qubit

Eρ = OTPEnc(ρ, k) = Xk1Zk2ρ(X†)k1(Z†)k2 ,

where X and Z are Pauli gates;
3. Share k using SS.share, yielding classical shares (S1, . . . , Sn);
4. Encode Eρ using QC.Enc, yielding entangled quantum systems (E1, . . . , En);
5. Set (Si, Ei) as the final share of the i-th party.
Note that this compiler can be easily generalized to states of arbitrary dimension. Naturally,
we need to assume f ′ (and hence f) satisfies the no-cloning property (f(P ) = 1 =⇒ f(P ) =
0). This must be so that we can employ an appropriate QECC. Nevertheless, there is no loss
of generality, since, as we have discussed before, quantum secret sharing is impossible when
f does not satisfy this property, due to the no-cloning theorem [17].

We claim that the resulting scheme is a quantum secret sharing scheme realizing f .
Let (SP , Eρ,P ) denote the set of shares of ρ that belong to a subset of parties P . It is
straightforward to show that we can reconstruct ρ from (SP , Eρ,P ) when f(P ) = 1. Intuitively,
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privacy when f(P ) = 0 follows from the fact that SP reveals almost no information about
the key k, and so the tuple (SP , Eρ,P ) also reveals essentially no information about ρ by the
perfect security of the QOTP [3].

The compiler above opens an avenue towards porting results in classical secret sharing to
the realm of quantum secret sharing by combining classical secret sharing schemes satisfying
relevant properties (such as efficient sharing/reconstruction and small share size) with an
appropriate QECC. The apparent bottleneck in this approach is the selection of the QECC,
since designing efficient coding schemes for quantum states is more challenging than for
classical strings. However, remarkably, we may take any code QC realizing any monotone
function f ′ satisfying f ′ ≥ f . This means that even if we do not know efficient QECCs for
f , we may instead hope to use an efficient QECC for some f ′ ≥ f . Moreover, observe that
we do not require any privacy properties from the QECC QC. In fact, the privacy of our
quantum scheme follows directly from the privacy of the classical scheme combined with the
perfect security of the QOTP, and we only need the QECC to distribute the encrypted state
and overcome the no-cloning theorem.

We discuss the compiler in more detail in Section 3.

Heavy monotone functions

After setting up our abstract approach, we would like to instantiate it in concrete settings.
Therefore, we turn our attention to the rich class of heavy monotone functions we discussed in
Section 1.1 (see Definition 1). Taking into account Proposition 2 and the adjacent discussion,
we know that there are heavy monotone functions f computed by poly(n)-size monotone
circuits but which require exponentially large monotone span programs. This means that
known methods [39] for quantum secret sharing schemes realizing f require exponential share
size.

We use our compiler to obtain the first quantum secret sharing schemes with information
ratio below 1 and also the first polynomial-time quantum secret sharing schemes for all heavy
monotone functions. We discuss this in more detail in the remainder of this overview. The
crucial observation behind this is that t-heavy monotone functions f satisfy the following
property: If Tht

n denotes the “t-out-of-n” threshold function such that Tht
n(P ) = 1 if and

only if |P | ≥ t, then Tht
n ≥ f. This is useful because we know simple and highly efficient

QECCs realizing Tht
n. For example, in this case we may take f ′ = Tht

n and the efficient
quantum Shamir threshold secret sharing scheme [17] as our QECC QC in the compiler
described above.

Computational quantum secret sharing of long messages with short shares

We exploit our compiler above to obtain Theorem 4, i.e., efficient computational quantum
secret sharing schemes with constant information ratio from standard hardness assumptions.

Note that when sharing a secret composed of m qubits the QOTP encryption in the
compiler requires a key k of length 2m and outputs an encrypted state composed of m qubits
as well. First, we may instantiate the classical computational secret sharing scheme SS as
follows: Instead of sharing the key k directly, replace it by the output of a post-quantum
secure pseudorandom generator [7] with a much shorter uniformly random seed s, and share
s using an appropriate classical secret sharing scheme realizing f . Then, it remains to
instantiate the QECC appropriately so as to encode the m qubits into shares as short as
possible. To this end, we choose an appropriate Calderbank-Shor-Steane (CSS) code [15, 40]
as the QECC.
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CSS codes provide a general framework for designing QECCs from classical linear codes6.
Such codes enjoy efficient encoding and decoding procedures [34, Section 10.4.2], and they
may be seen as being analogous to packed secret sharing. We obtain our QECC by combining
Reed-Solomon codes with appropriate parameters via this framework. More details can be
found in Section 4.

Efficient computational quantum secret sharing

We now discuss how to obtain efficient computational quantum secret sharing schemes for all
heavy functions in monotone P or in mNP. When f is heavy and is computed by poly(n)-size
monotone circuits, we can set our classical scheme SS to be Yao’s scheme [44, 41], whose
privacy is based on the existence of one-way functions, or the Komargodski-Naor-Yogev
scheme [28], whose privacy is based on the existence of witness encryption for NP and one-way
functions. Note that both schemes are efficient. As our quantum erasure correcting code
QC, we plug in quantum Shamir’s scheme. This leads to Theorems 5 and 6, which state that
there exist efficient computational quantum secret sharing schemes for all heavy functions in
monotone P or mNP, respectively, under the hardness assumptions detailed above.

For more details, see Section 3 and the full version [14].

Perfect quantum secret sharing with share size breaking the circuit size barrier

We can also exploit the compiler to lift state-of-the-art results beyond computational secret
sharing. In particular, we focus on a recent line of work improving general perfect classical
secret sharing, and lift it to the quantum setting. This leads to Theorem 7, which states
that there exist perfect quantum secret sharing schemes with a total share size of 1.5n+o(n)

classical bits and O(n log n) qubits realizing all heavy monotone functions.
To do this, we take any heavy monotone function f and set SS to be the classical secret

sharing scheme realizing f constructed by Applebaum and Nir [6] with total share size at most
1.5n+o(n), and QC to be the quantum Shamir secret sharing scheme for threshold functions
with shares of size O(n log n) qubits [17]. This leads to total share size of 1.5n+o(n) classical
bits and O(n log n) qubits, as desired. The security of the compiler in the information-
theoretic setting immediately yields the desired result.

For more details, see the full version [14].

Quantum secret sharing with multiple copies

We also use our compiler to upper bound the number of copies of the quantum secret required
to design quantum secret sharing schemes realizing all t-heavy monotone functions. More
precisely, we exploit the aforementioned fact that Tht

n ≥ f for any t-heavy monotone function
f . Using this, we instantiate our compiler with an appropriate classical secret sharing scheme
SS realizing f (which is not bound by the no-cloning theorem), and instantiate our QECC QC
with an efficient perfect quantum secret sharing scheme realizing the much simpler threshold
function Tht

n using max(1, n − 2t + 2) copies of the quantum secret. As a result, for any
t-heavy monotone function f , we get a quantum secret sharing scheme realizing it using
max(1, n− 2t+ 2) copies of the secret.

6 We say that C ⊆ Fn
q is a linear code if C is a subspace of Fn

q . For an extensive survey of linear codes,
see [23].
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We show an explicit construction of efficient perfect quantum secret sharing schemes
realizing any Tht

n. Using this, we obtain Theorem 8, stating that we can construct efficient
computational quantum secret sharing schemes realizing all t-heavy monotone functions
f in monotone P from standard hardness assumptions using max(1, n − 2t + 2) copies, by
instantiating SS with Yao’s scheme for f [44, 41] and instantiating QC with the scheme we
constructed for Tht

n. Since every monotone function is 1-heavy, setting t = 1 in the theorem
above yields Corollary 9, which states that every monotone function in monotone P is realized
by an efficient computational quantum secret sharing scheme using at most n copies of the
secret.

To get Theorem 10, which states that we can construct perfect quantum secret sharing
schemes realizing all t-heavy monotone functions f using max(1, n− 2t+ 2) copies, we may,
for example, instantiate SS with the perfect classical secret sharing scheme by Applebaum
and Nir [6]. More details can be found in the full version [14].

Quantum secret sharing beyond heavy monotone functions

Finally, we discuss how we can use our compiler to extend the results on quantum secret
sharing above well beyond heavy monotone functions. More details can be found in the full
version [14].

Weighted heavy monotone functions

As we saw in Section 1.1, the family of weighted-heavy monotone functions (Definition 11)
strictly generalizes the classes of heavy monotone functions and weighted threshold functions,
as made precise in Proposition 12.

It turns out that we can apply our compiler to weighted heavy functions in a similar
fashion to how we proceeded for heavy functions and generalize many of our results. The
key observation that enables this, similarly to the case of heavy functions, is that if f is a
(w, t)-weighted heavy monotone function, it holds that f ≤ f ′ with f ′ a weighted threshold
function with the same weight function w and threshold t. Therefore, we may instantiate our
compiler with an appropriate classical secret sharing scheme SS realizing f and a QECC QC
for the weighted threshold function f ′. If the sum of the weights W =

∑n
i=1 w(i) = poly(n)

and t > W/2, as is already the case in Proposition 2, we can simply take the QECC to be
quantum Shamir secret sharing over W parties [17], and then give w(i) quantum shares to
the i-th party.

In the particularly relevant case where f is computed by polynomial-size monotone
circuits, we can combine the approach above with Yao’s classical scheme realizing f to obtain
Theorem 13: There exist efficient computational quantum secret sharing schemes realizing
all such weighted heavy monotone functions f under standard hardness assumptions. This
generalizes Theorem 5.

Trees of heavy functions

Similarly to the approach undertaken by Yao [44, 41], we can compose our quantum secret
sharing schemes further to realize monotone functions computed by trees composed of gates
computing weighted heavy functions. For the sake of exposition, we focus on the setting
of computational privacy. Suppose that f is computed by a tree T whose gates compute
weighted heavy functions, and we wish to share |ψ⟩ according to f . Following [44], we can
start by placing |ψ⟩ on the output wire. Let g be the weighted heavy function on, say, a input
bits computing the gate to which this output wire corresponds. Then, we share |ψ⟩ using
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a quantum secret sharing scheme realizing g, leading to a quantum shares S1, . . . , Sa. We
place the i-th share Si on the i-th in-wire of the gate computing g, and repeat this process
with each share until we reach the leaves of the tree.

The process above yields an efficient computational quantum secret sharing scheme
realizing f provided that (i) We have efficient quantum secret sharing schemes for each gate
in the tree, and (ii) The dimension of the quantum state to be shared in each step is always
poly(n). Therefore, under standard hardness assumptions, we can consider all constant-depth
trees whose gates are computed by weighted heavy functions in monotone P with poly(n)
total weight satisfying the no-cloning property by applying the efficient computational
quantum secret sharing scheme from Theorem 13 iteratively to each gate. This corresponds
to Theorem 14.

1.3 Related work
As already discussed above, previous works on quantum secret sharing has only considered
perfectly secure schemes. Furthermore, the work on schemes for general no-cloning monotone
functions have mostly focused on the existence of such schemes [21, 39]. The share size of
Gottesman’s scheme [21] for realizing a monotone function f corresponds essentially to the
size of f when written as a monotone formula. Smith [39] constructed schemes realizing f
whose share size corresponds to the size of the smallest monotone span program computing f .
In both cases, as we show here, there are many no-cloning monotone functions which require
exponentially long shares under the schemes above, including some which are computed by
polynomial-size monotone circuits.

Our work is the first to introduce computational privacy for quantum secret sharing
schemes and the first to study notions of efficiency, such as polynomial-time sharing and
reconstruction or small share size, for quantum secret sharing schemes realizing a broad
class of monotone functions. Exploiting standard computational hardness assumptions to
obtain significantly more efficient quantum secret sharing schemes, sometimes beyond what is
possible in the information-theoretic setting, had not been done prior to this work, although
this has been standard in the classical setting since the early work of Yao [44, 41] and
Krawczyk [29].

The study of the share size of classical secret sharing schemes already makes an appearance
in the work of Benaloh and Leichter [11], which shows how to design general secret sharing
schemes among n parties with shares of size O(2n/

√
n). This remained the state-of-the-art

result until a recent line of work [32, 31, 4, 5, 6] managed to reduce the share size over
arbitrary monotone functions to 1.5n+o(n). Remarkably, the existence of a monotone function
requiring shares of size Ω( nm

log n ), where n is the number of parties and m is the length of
the secret, obtained by Csirmaz [19] remains the state of the art lower bound. In contrast,
for the special case of classical linear secret sharing schemes we know that shares must be
exponentially long even if we only wish to share 1 bit [37, 35]. Gottesman [21] proved the
only known lower bound on the share size of quantum secret sharing schemes, which states
that the dimension of each important share (i.e., a share which contributes to reconstruction)
must be at least as large as the dimension of the secret state. However, if one only wishes to
share a classical secret with a quantum secret sharing scheme, then sharing 2n bits requires
quantum shares composed by at least n qubits, and this is tight [21].

Other important variants of secret sharing, such as weak and verifiable secret sharing,
have also been extended to the quantum setting for threshold functions [18, 10]. Such variants
have proved useful in the design of quantum multiparty computation protocols. In particular,
note that [18] uses a similar compiler to ours in a different context and for unrelated goals.
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There has also been prior work on optimizing aspects of quantum secret sharing incomparable
to those considered here. Some works have attempted to minimize the number and size of
the quantum shares at the expense of larger classical components [33, 20], while others have
considered the case where a subset of the parties is restricted to be classical [30]. Finally, we
note that the high level idea of hybrid encoding has also been utilized for different problems,
such as for secure multiparty computation [10] and for fully homomorphic encryption [13].

2 Preliminaries

2.1 Notation
We denote sets by uppercase letters such as S and T , and denote {1, . . . , n} as [n]. For a
vector v and a set S, we write vS to denote (vi)i∈S . For a family of sets {Ai}i∈[n] and a set
S ⊆ [n], we let AS =×j∈S

Aj . For a set R, we write R ← R to indicate that R is uniformly
distributed on R. We use dim(H) to denote the dimension of a Hilbert space H. We denote
the base-2 logarithm by log. With a slight overloading of notation, we will also use ρ ∈ H to
denote a density matrix ρ acting on H. Whether we mean a vector in H (representing a pure
state) or a density matrix acting on H (representing a mixed state) will be clear from context
and variable name (such as |ψ⟩ versus ρ). We use monotone P to denote the set of functions
that have a polynomial size monotone circuit. We use λ to denote a security parameter.

2.2 Quantum information theory
In this section, we give an overview of the quantum information theory concepts we will be
using throughout the paper.

▶ Definition 16 (Total variation distance). The total variation distance between two random
variables X,Y supported on the same set R is defined as

∆(X,Y ) = max
A⊆R

|Pr[X ∈ A]− Pr[Y ∈ A]| = 1
2
∑
a∈R
|Pr[X = a]− Pr[Y = a]| .

The analogue of the total variation distance in the quantum setting is the trace distance.

▶ Definition 17 (Trace distance [34]). The trace distance between two density matrices ρ
and σ with the same dimensions is defined as D(ρ, σ) = 1

2 tr |ρ− σ|.

We also define the computational analogue, advantage pseudometric A, which satisfies
similar properties as the trace distance. We later use it to prove lifting of computational
privacy.

▶ Definition 18 (Advantage pseudometric). For a family F of quantum circuits with single
bit classical output and for any two density matrices ρ, σ of appropriate dimension, the ad-
vantage of F for distinguishing ρ versus σ is defined as AF (ρ, σ) = maxC∈F |Pr[C(ρ) = 1]−
Pr[C(σ) = 1]|.

See Appendix A for an overview of useful properties of trace distance and advantage.

Quantum one-time pad encryption

We recall quantum one-time pad encryption (QOTP) [3], which perfectly hides any quantum
message using a random classical key. While we describe it for qubits, the generalization to
qudits is straightforward.
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The quantum one-time pad encryption scheme is defined by a pair of quantum encryption
and decryption circuits (OTPEnc,OTPDec) with OTPEnc : (C2)⊗n ×{0, 1}2n → (C2)⊗n and
OTPDec : (C2)⊗n × {0, 1}2n → (C2)⊗n defined as

OTPEnc(ρ, k) = (Xk1
1 Zk2

1 ⊗ · · · ⊗X
k2i−1
i Zk2i

i ⊗ · · · ⊗Xk2n−1
n Zk2n

n )(ρ),

OTPDec(ρ, k) = (Zk1
1 Xk2

1 ⊗ · · · ⊗ Z
k2i−1
i Xk2i

i ⊗ · · · ⊗ Zk2n−1
n Xk2n

n )(ρ),

for any message ρ ∈ (C2)⊗n and key k ∈ {0, 1}⊗2n, where Xi, Zi represent the quantum
operation applying the standard Pauli gates X,Z respectively to the i-th qubit.

▶ Lemma 19 ([3]). The quantum one-time pad encryption scheme is correct and perfectly
secure for a randomly chosen key. That is, OTPDec(OTPEnc(ρ, k), k) = ρ

for any key k ∈ {0, 1}2n, and
∑

k∈{0,1}2n
1

22n OTPEnc(ρ, k) =
∑

k∈{0,1}2n
1

22n OTPEnc(σ, k)
for any two quantum states ρ, σ ∈ (C2)⊗n.

2.3 Quantum adversarial model
We now introduce our quantum adversarial model. By a QPT adversary or circuit C, we
mean a non-uniform family of circuits {Cλ}λ∈Z+ with 1-bit classical output where each
circuit has size bounded by poly(λ) and is allowed to only use a fixed basis set of gates (e.g.,
{H, S,CNOT,T}), ancilla qubits each initialized to |0⟩ and measurements only in standard
computational basis. Furthermore, unless we explicitly state otherwise, we will assume that
the adversary has access to quantum advice: that is, Cλ in addition to its input also gets
a poly(λ) size quantum state ρλ that depends only (but non-uniformly) on λ. When we
say that some cryptographic scheme is post-quantum secure, we will mean that it is secure
against QPT adversaries.

Note that models both with and without quantum advice have been considered in the
literature. For example, Watrous [42] and Bartusek, Coladangelo, Khurana, and Ma [7]
consider the quantum advice model, while Adcock and Cleve [2] consider a model without
advice. In the case of decision problems, it is not known if the quantum advice model is
strictly stronger [1].

2.4 Classical secret sharing
We now introduce a definition of classical secret sharing, which allows a party to distribute a
classical secret among n parties so that only certain subsets of parties are allowed to recover
it. The definition takes into account a monotone function f , indicating which sets of parties
are then authorized to recover the secret, and which sets do not obtain information about
the secret.

▶ Definition 20 (Classical secret sharing [9]). Fix a number of parties n ∈ Z+, a randomness
domain R, a secret domain S, and share domains S1, . . . , Sn. A classical secret sharing
scheme with perfect privacy realizing the monotone function f : {0, 1}n → {0, 1} is a tuple
of functions SS = (share, (recP )P⊆[n]) where share : S × R → S[n] and recP : SP → S are
deterministic functions satisfying the following properties for all P ⊆ [n]:

Correctness: If f(P ) = 1, then for all s ∈ S it holds that PrR←R [recP (share(s;R)P ) =
s] = 1.
Perfect privacy: If f(P ) = 0, then for all secrets a, b ∈ S and share vectors v ∈ SP we
have PrR←R [share(a;R)P = v] = PrR←R [share(b;R)P = v].
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When constructing secret sharing schemes, there are several parameters and properties of
interest. First and foremost, we would like to ensure that the sharing and reconstruction
procedures run in time polynomial in the number of parties n. We call schemes with this
property efficient. Another natural and well studied measure of complexity is the size of the
shares in a secret sharing scheme.

▶ Definition 21 (Share size). Given a secret sharing scheme SS over the share domains
S1, . . . , Sn, we define its share size, denoted by size(SS), as size(SS) =

∑n
i=1⌈log |Si|⌉.

We will be interested in secret sharing schemes with several different privacy guarantees. We
can replace the perfect privacy requirement in Definition 20 with weaker, but still natural,
requirements to obtain statistical and computational secret sharing. For the latter, we
introduce a security parameter that we pass to the scheme.

▶ Definition 22 (Statistical privacy for classical secrets). We say that a secret sharing scheme
SS realizing a monotone function f is ε-statistically private if for all P ⊆ [n] such that
f(P ) = 0 and secrets a, b ∈ S it holds that ∆(share(a;R1)P , share(b;R2)P ) ≤ ε, where
R1 ← R and R2 ← R are independent random variables.

▶ Definition 23 (Post-quantum computational privacy for classical secrets). We say that a secret
sharing scheme SS realizing a monotone function f is post-quantum computationally-private,
or simply post-quantum computational, if for all P ⊆ [n] such that f(P ) = 0, all secrets
a, b ∈ S, and for any QPT adversary {Cλ}λ, we have∣∣∣∣ Pr

R←R
[Cλ(share(a; 1λ, R)P ) = 1]− Pr

R←R
[Cλ(share(b; 1λ, R)P ) = 1]

∣∣∣∣ ≤ negl(λ).

For brevity, we will hide the security parameter and the random coins R of the share
functions when we do not need to use them explicitly.

2.5 Quantum erasure-correcting codes
We introduce the definition of a quantum erasure correcting code (QECC) [22], which allows
to encode a quantum state into another quantum state of larger dimension, so that the
original one can be retrieved perfectly even when there are erasures (arbitrary errors at
known positions).

▶ Definition 24 (Quantum erasure correcting code). We say a pair of trace-preserving quantum
operations QC = (QC.Enc,QC.Dec) is a quantum erasure correcting code (QECC) over the
input space Hinp and output space Hout =

⊗
i∈[n]Hi for P ⊆ [n] if for any quantum

operation Λ on Hout that acts as the identity on Hi for all i ∈ P , it holds for all states ρ on
Hinp that (QC.Dec ◦ Λ ◦ QC.Enc)(ρ) = ρ⊗ σ for some state σ.

If (QC.Enc,QC.DecP ) is a QECC for all sets P ⊆ [n] such that f(P ) = 1 for
a monotone function f : {0, 1}n → {0, 1}, then we say that the family of functions
(QC.Enc, (QC.DecP )P⊆[n]) is a QECC realizing f . As a shorthand, we define QC.RecP (τ) =
QC.Dec(τ ⊗ (|0⟩⟨0|)⊗P ). A quantum code that encodes k q-ary qudits into n q-ary qudits and
can correct any d− 1 erasures is said to be an [[n, k, d]]q code.

2.6 Quantum secret sharing
A natural analogue of classical secret sharing is sharing quantum states, introduced by
[24, 17, 26]. We start by formally defining quantum secret sharing with perfect privacy, and
then introduce for the first time the alternative notion of computational privacy for quantum
secret sharing.
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▶ Definition 25 (No-cloning function). A monotone function f : {0, 1}n → {0, 1} is called
no-cloning if we have f(P ) = 0 for any P ⊆ [n] with f(P ) = 1.

▶ Definition 26 (Quantum secret sharing). Fix a number of parties n ∈ Z+, a Hilbert space
S for the secret, and Hilbert spaces H1, . . . ,Hn for the shares. Let f : {0, 1}n → {0, 1} be a
no-cloning monotone function. A quantum secret sharing (QSS) scheme with perfect privacy
realizing f is a tuple of trace-preserving quantum operations QSS = (share, (recP )P⊆[n]) that
satisfy the following properties for all P ⊆ [n]:

Correctness: If f(P ) = 1, then (share, recP ) is a QECC for P .
Perfect Privacy: If f(P ) = 0, then for any |ψ1⟩ , |ψ2⟩ ∈ S it holds that
trP (share(|ψ1⟩⟨ψ1|)) = trP (share(|ψ2⟩⟨ψ2|)).

We call a scheme QSS efficient if QSS.share,QSS.rec are polynomial size circuits. Note
that, in particular, efficient schemes have polynomial size shares. We can define weaker
notions of privacy analogously to classical secret sharing in Section 2.4.

▶ Definition 27 (Statistical privacy for quantum secrets). We say that a quantum secret
sharing scheme QSS realizing f is ε-statistically private if for all P ⊆ [n] such that f(P ) = 0
and any secrets |ψ1⟩ , |ψ2⟩ ∈ S it holds that D(trP (share(|ψ1⟩⟨ψ1|)), trP (share(|ψ2⟩⟨ψ2|))) ≤ ε.

Observe that perfect privacy corresponds to 0-statistical privacy.
As in the classical case, we have two different notions of computational privacy, namely,

against quantum adversaries with no advice and quantum adversaries with quantum advice.

▶ Definition 28 (Computational privacy for quantum secrets). We say that a quantum secret
sharing scheme QSS realizing f is computationally-private, or simply computational, if for
all P ⊆ [n] such that f(P ) = 0, any secrets |ψ1⟩ , |ψ2⟩ ∈ S, and any QPT adversary {Cλ}λ

we have

|Pr
[
Cλ(trP (share(|ψ1⟩⟨ψ1| ; 1λ))) = 1

]
− Pr

[
Cλ(trP (share(|ψ2⟩⟨ψ2| ; 1λ))) = 1

]
| ≤ negl(λ).

Note that requiring privacy (similarly, correctness) for pure states is sufficient, and privacy
(correctness) for mixed states of any polynomial size follows by a simple diagonalization and
triangle inequality argument. Also observe that any quantum secret sharing scheme for f is
also a quantum erasure correcting code realizing f .

3 The compiler

In this section, we present a simple compiler that allows us to obtain several new results
results by lifting a wide range of results on classical secret sharing to the quantum setting.
As discussed in Section 1.2, these include:

Efficient computational quantum secret sharing schemes for heavy functions in monotone P
with information ratio well below 1 (i.e., with shares much shorter than the secret) from
standard hardness assumptions. This is impossible in the information-theoretic setting.
Efficient computationally-private quantum secret sharing for all heavy functions in
monotone P and mNP. In contrast, known schemes [21, 39] require shares of exponential
size for these functions (see Proposition 2 and adjacent discussion). The techniques
can be further applied to classes of monotone functions that generalize heavy functions,
including weighted heavy functions and trees of weighted heavy functions.
Similar techniques can also be applied to obtain perfect quantum secret sharing schemes
for heavy functions with share size 1.5n+o(n), breaking the circuit size barrier.
Polynomial size computational schemes for any function in monotone P given sufficiently
many copies of the secret.
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We now move on to the compiler. Unless otherwise specified, we assume any state space
H is (C2)⊗ℓ for some ℓ ∈ Z+, that is, we are working with qubits. The generalization to
qudits is straightforward. We will also assume ℓ = 1 unless otherwise stated.

Compiler Description

The compiler combines a classical secret sharing scheme SS realizing a no-cloning monotone
function f , and a quantum error correcting code QC realizing an appropriate no-cloning
monotone function f ′ ≥ f , to create a quantum secret sharing scheme QSS realizing f .
In order to secret share a quantum state ρ, the scheme QSS.share first samples a random
classical key k and computes the encryption ρ′ of ρ using the quantum one-time pad. We
then distribute the classical key k using SS and the quantum state ρ′ using QC. Intuitively,
the privacy of the overall scheme follows directly from the privacy of the classical scheme SS
and privacy of the quantum one-time pad.

The reconstruction procedure QSS.rec is straightforward. We simply let the set of parties
P reconstruct the state ρ′ using the decoding procedure for QC and the key k using the
reconstruction procedure of SS. The quantum secret ρ is then reconstructed by decrypting
ρ′ with the obtained key k via the quantum one-time pad.

QSS Share for
textittexorpdfstringf f: QSS.share(ρ)

1. Sample key k← {0, 1}2 log dimS .
2. Compute ρ′ = OTPEnc(ρ, k), the encryption of ρ using QOTP with key k.
3. Let (E1, . . . , En) = QC.Enc(ρ′) be the encoding of ρ′.
4. Let (S1, . . . , Sn) = SS.share(k) be a sharing of k.
5. Set (Si, Ei) as the share for party Pi.

QSS Reconstruct for f : QSS.recP ((Si, Ei)i∈P )

1. Compute ρ′ = QC.RecP ((Ei)i∈P ).
2. Compute k = SS.recP ((Si)i∈P ).
3. Compute ρ = OTPDec(ρ′, k).
4. Output ρ.

We now formally state the main theorem.

▶ Theorem 29 (QSS Compiler). Let f, f ′ : {0, 1}n → {0, 1} be no-cloning monotone functions
such that f ′ ≥ f . Let QC = (QC.Enc, (QSS.RecP )P⊆[n]) be a QECC realizing f ′ and SS =
(SS.share, (SS.recP )P⊆[n]) be a [post-quantum computational, statistical, perfect] classical
secret sharing scheme realizing f . Then, QSS is a [computational, statistical, perfect]
quantum secret sharing scheme for f with total share size

size(QC) + 2 log(dimS) · size(SS).

Moreover, QSS has efficient sharing and reconstruction procedures whenever QC and SS do.
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Proof. Let us denote by ξρ,k = QC.Enc(OTPEnc(ρ, k)) the encoding of the state OTPEnc(ρ, k)
using QC, and τk,r = |SS.share(k, r)⟩⟨SS.share(k, r)| a sharing of the key k when the random
input is r. Then, the scheme QSS can be formally described as

QSS.share(ρ) =
∑

k∈{0,1}2 log dim S

∑
r∈R

1
22 log dimS

1
|R|

(ξρ,k ⊗ τk,r),

QSS.recP (σ) = OTPDec(QC.RecP (trkey(σ))), SS.recP (trstate(σ)),

where trkey, trstate denotes tracing out the subsystem corresponding to the shares of the
key and shares of the quantum secret respectively. For simplicity, we encode the shares of
the classical keys as qubits in basis states, however, they can be kept as classical shares in
practice without any change to the scheme.

Showing correctness is straightforward. Now, we show that if SS is ε-statistically private,
then QSS is 2ε-statistically private. First, observe the following relation between trace
distance and total variation distance. Consider any two keys, k, k′ ∈ {0, 1}2 log dimS . For each
v ∈ V = SP , define pv = Prr←R[share(k; r)P = v] and define p′v analogously for k′. Then,
using the fact that trP

(∑
r∈R

1
|R|τk,r

)
=
∑

v∈V pv |v⟩⟨v| , it is easy to see that

D

(
trP

(∑
r∈R

1
|R|

τk,r

)
, trP

(∑
r∈R

1
|R|

τk′,r

))
= D

(∑
v∈V

pv |v⟩⟨v| ,
∑
v∈V

p′v |v⟩⟨v|

)
≤ ∆(pv, p

′
v). (1)

We now study the privacy of QSS. Consider a set P ⊆ [n] such that f(P ) = 0 and any two
secret states ρ, ρ′. We will use a hybrid argument. First, we will argue that when we replace
the shares of the key with shares of an independent uniformly distributed key, the composite
shares of P for the two secrets ρ, ρ′ will be perfectly indistinguishable due to the perfect
privacy of one-time pad from Lemma 19. That is, we will define the sharing of a random key

κ =
∑

k′∈{0,1}2 log dim S

r∈R

1
22 log dimS |R|

τk′,r

and the hybrids

ζ1 = trP

 ∑
k∈{0,1}2 log dim S

(
1

22 log dimS ξρ,k

)
⊗ κ

 ,

ζ2 = trP

 ∑
k∈{0,1}2 log dim S

(
1

22 log dimS ξρ′,k

)
⊗ κ

 ,

and will show that D(ζ1, ζ2) = 0. Then, we will show that composite shares of P for the
same secret are close in trace distance when again the shares of the key are replaced with
shares of a random key, versus when they are not replaced. That is, we will show that

D(trP (QSS.share(ρ)) , ζ1) ≤ ε and D(ζ2, trP (QSS.share(ρ′))) ≤ ε. (2)

Finally applying the triangle inequality will yield the desired result.
We start with D(ζ1, ζ2) = 0. By distributing the partial trace and using Lemma 33

(Item 5), we get
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D (ζ1, ζ2)

= D

(
tr

P

( ∑
k∈{0,1}2 log dim S

( 1
22 log dim S ξρ,k

))
, tr

P

( ∑
k∈{0,1}2 log dim S

( 1
22 log dim S ξρ′,k

)))
.

Then, since the quantum one-time pad perfectly hides the input when the key is uniform (see
Lemma 19), we get for some state ι that D (ζ1, ζ2) = D(trP (QC.Enc(ι)), trP (QC.Enc(ι))) = 0.

The inequalities in Equation (2) are proven using the privacy of SS and again properties
of trace distance, along with Equation (1). By Lemma 33 (Items 3 and 5), we get

D(ζ1, trP (QSS.share(ρ))) = D

( ∑
k∈{0,1}2 log dim S

1
22 log dimS trP (ξρ,k)⊗ trP (κ) ,

∑
k∈{0,1}2 log dim S

1
22 log dimS trP (ξρ,k)⊗ trP

(∑
r∈R

1
|R|

τk,r

))

≤
∑

k∈{0,1}2 log dim S

1
22 log dimSD

(
trP (κ) , trP

(∑
r∈R

1
|R|

τk,r

))
.

Then, using Lemma 33 (Item 4), we get

D(ζ1, trP (QSS.share(ρ)))

≤
∑

k,k′∈{0,1}2 log dim S

1
42 log dim S D

(
trP

(∑
r∈R

1
|R|τk′,r

)
, trP

(∑
r∈R

1
|R| τk,r

))
.

Observe that this is basically the statistical distance between classical sharings of
keys k, k′. Therefore, invoking the ε-statistical privacy of SS and Equation (1), we
conclude that D(ζ1, trP (QSS.share(ρ))) ≤ ε. The same argument also shows that
D(ζ2, trP (QSS.share(ρ′))) ≤ ε.

Finally, we combine these inequalities with the triangle inequality to obtain

D(trP (QSS.share(ρ)), trP (QSS.share(ρ′)))
≤ D(trP (QSS.share(ρ)), ζ1) +D(ζ1, ζ2) +D(ζ2, trP (QSS.share(ρ′)))
≤ ε+ 0 + ε = 2ε.

Plugging in ε = 0 yields the desired result for perfect privacy, since ∆ and D are both
metrics.

Lastly, we consider the setting of computational privacy. Here, we use the quantum
advantage pseudometric A, which, as shown in Lemma 34, satisfies the same basic properties
that we use above for trace distance. Hence, replacing trace distance with advantage in the
proof above proves the lifting of computational privacy. More specifically, by Lemma 34
(Item 7), we get the following.7

Suppose that SS is computationally-private with respect to QPT adversaries with no
advice, that QC.Enc can be implemented by quantum circuits of size poly(λ), and that
any pure secret in the space of secrets can be approximated by a quantum circuit of size
poly(λ).8 Then, QSS is computationally-private with respect to QPT adversaries with no
advice.
If SS is secure against QPT adversaries with quantum advice and the shares of QC are at
most poly(λ) qubits, then QSS is also secure against the same family of adversaries. ◀

7 Note that we need the extra assumptions below since otherwise one can construct pathological schemes
and secrets so that the adversary obtains non-uniform quantum advice.

8 This is readily true, for example, if log dim(S) = Θ(1).
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4 Computational quantum secret sharing of long messages with short
shares

In this section we consider the problem of sharing a long secret consisting of multiple qubits
and prove Theorem 4, which states that there exist efficient computational quantum secret
sharing schemes for all heavy functions in monotone P with information ratio well below 1.
Note that all previously known quantum secret sharing schemes are information-theoretic
and require a share size that is as large as the secret, as proven by Gottesman [21], even for
the very simple case of threshold monotone functions. We show that we can achieve a scheme
with individual share sizes much shorter than the secret, with the help of computational
hardness assumptions.

Our scheme follows the template of the general compiler presented in Section 3, with the
following sub-protocols: (i) the key used for the one-time pad encryption is generated using
a pseudo-random generator (PRG) and its seed is shared using a computational classical
secret sharing scheme with short shares, and (ii) a CSS quantum erasure-correcting code
with low share size.

We formally describe the share procedure QSS.share below. The reconstruction procedure
QSS.recP is as in Section 3, except that the key is generated by reconstructing the seed and
evaluating the PRG.

QSS Share for f : QSS.share(ρ)

1. Sample a seed x ← {0, 1}ℓ(m).
2. Compute k = PRG(x).
3. Compute σ = OTPEnc(ρ, k), the encryption of ρ using QOTP with key k.
4. Let (E1, . . . , En) = QC.Enc(σ) be the encoding of σ.
5. Let SS.share(x) be a sharing of x.
6. Set (Si, Ei) as the share for party Pi.

QSS Reconstruct for f : QSS.recP ((Si, Ei)i∈P )

1. Compute σ = QC.RecP ((Ei)i∈P ).
2. Compute x = SS.recP ((Si)i∈P ).
3. Compute k = PRG(x).
4. Compute ρ = OTPDec(σ, k).
5. Output ρ.
Correctness of the scheme is straightforward. Computational privacy easily follows from
the privacy of the underlying PRG and the classical secret sharing scheme, by an argument
analogous to the proof of Theorem 29.

Observe that by plugging in a pseudo-random generator PRG with polynomial stretch, it
is possible to get the same ratio as that of the QECC for sufficiently long messages. As a
concrete example, we show below a scheme with asymptotic information ratio 32

2t−n for any
t-heavy monotone function in monotone P. Note that previous schemes [21, 39], or a naive
application of Theorem 29, both yield information ratio above 1 (in fact, exponentially or
polynomially larger, respectively).

Before we prove our main result, we need to construct a suitable QECC. To that end,
we need the following general template for CSS codes (for a definition of linear codes, see
Definition 35).
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▶ Lemma 30 (CSS Codes [22, Theorem 6] and [36]). Let q be a prime power, C1 an
[n, k1, d1]q linear code, and C2 an [n, k2, d2]q linear code with C⊥2 ⊆ C1. Then, there exists
an [[n, k1 + k2 − n,min(d1, d2)]]q quantum code.

With the help of this lemma, we can obtain a QECC with the required parameter
trade-offs to achieve QSS with small share size.

▶ Lemma 31. For any m,n, t with n ≥ t > n
2 , there is a [[N, 2K−N,N−K+1]]2r CSS code

QC where the parameters are defined as follows: Let N∗ be such that N∗ log2(N∗) = 2mn
t−n

2
,

and set c =
⌈

N∗

n

⌉
along with

N = cn, r = ⌈log2(N)⌉ and K =
⌈
nc

2 + 1
2

⌈m
r

⌉⌉
.

Then, for large enough m we have

2K −N ≥
⌈m
r

⌉
and N −K ≥ c(n− t).

Proof. See the full version [14] for the proof. ◀

We are now ready to state the final theorem.

▶ Theorem 32 (Theorem 4, restated). If f is a t-heavy monotone function, with t > n/2,
computed by monotone circuits of size O(nd), then there is an efficient computational quantum
secret sharing scheme realizing f with asymptotic information ratio at most 32

2t−n for secrets
composed of at least m = Ω(ncd) qubits for a universal constant c > 0 based on the existence
of post-quantum secure one-way functions.

Proof. See the full version [14] for the proof. ◀
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A Quantum information theory

In this section, we present useful properties of the distance measures for quantum information
introduced in Section 2.2.

▶ Lemma 33 (Trace distance). For any two density matrices ρ, σ the following holds:
1. For any trace-preserving quantum operation Φ,

D(Φ(ρ),Φ(σ)) ≤ D(ρ, σ)

2. Assuming the states are of a composite system AB,

D(ρA, σA) ≤ D(ρAB , σAB)

3. For any two probability distributions {pi}i∈I , {qi}i∈I , and ensembles of states
{ρi}i∈I , {σi}i∈I ,

D

(∑
i∈I

piρi,
∑
i∈I

qiσi

)
≤ ∆(pi, qi) +

∑
i∈I

piD (ρi, σi)

4. For a probability distribution {pi}i∈I and an ensemble of states {ρi}i∈I

D

(∑
i∈I

piρi, σ

)
≤
∑
i∈I

piD (ρi, σi)

5. For any state τ ,

D(ρ⊗ τ, σ ⊗ τ) = D(ρ, σ)

6. For any states τ, υ,

D(ρ⊗ τ, σ ⊗ υ) ≤ D(ρ, σ) +D(τ, υ)

Proof. See [34, Section 9.2.1] for proofs of (i), (ii) and (iii). Inequality (iv) is a simple
corollary of (iii) when qi is set to pi and σi to σ. Result (v) can be obtained from (i) by
setting Φ(γ) = γ ⊗ τ . Inequality (vi) can be obtained by applying triangle inequality in
combination with (v) to D(ρ⊗ τ, σ ⊗ τ) and D(σ ⊗ τ, σ ⊗ υ). ◀

The advantage satisfies similar properties as the trace distance.

▶ Lemma 34 (Advantage). For any circuit family F and two states ρ, σ, the following holds:
1. AF (ρ, ρ) = 0;
2. AF (ρ, σ) = AF (σ, ρ);
3. For any state τ , AF (ρ, σ) ≤ AF (ρ, τ) +AF (τ, σ);
4. Assuming the states are of a composite system AB,

AF (ρA ⊗ |0⟩⟨0| , σA ⊗ |0⟩⟨0|) ≤ AF (ρAB , σAB);

5. For any two probability distributions {pi}i∈I , {qi}i∈I , and ensembles of states
{ρi}i∈I , {σi}i∈I ,

AF

(∑
i∈I

piρi,
∑
i∈I

qiσi

)
≤ ∆(pi, qi) +

∑
i∈I

piAF (ρi, σi) ;

TQC 2023



4:26 Computational Quantum Secret Sharing

6. For a probability distribution {pi}i∈I and an ensemble of states {ρi}i∈I

AF

(∑
i∈I

piρi, σ

)
≤
∑
i∈I

piAF (ρi, σi) ;

7. For any family F ′ and state τ such that there is C ′ ∈ F ′ satisfying C ′(ρ) = C(ρ⊗ τ) and
C ′(σ) = C(σ ⊗ τ) for any C ∈ F ,

AF (ρ⊗ τ, σ ⊗ τ) ≤ AF ′(ρ, σ).

Proof. See the full version [14] for the proof. ◀

B Coding theory

In this section, we state some basic concepts from coding theory.

▶ Definition 35 (Linear code [23]). An [n, k, d]q code C is a linear subspace of Fn
q of dimension

k with minc∈C\{0} wt(c) ≥ d, where wt(c) = |{i ∈ [n] : ci ̸= 0}| denotes the Hamming weight
of c.

The following lemma is based on Reed-Solomon codes.

▶ Lemma 36 (Reed-Solomon codes [23]). For all integers k ≤ n and every prime power
q ≥ n there exists an [n, k, d = n− k + 1]q linear code with efficient encoding and decoding
procedures.
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Abstract
We present a quantum algorithm for sampling an edge on a path between two nodes s and t in an
undirected graph given as an adjacency matrix, and show that this can be done in query complexity
that is asymptotically the same, up to log factors, as the query complexity of detecting a path
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1 Introduction

Finding and detecting paths between two vertices in a graph are important related problems,
both in and of themselves, and as subroutines in other applications, but there is still much
to understand in this area. While classically these problems seem to be equivalent, an
intriguing question is whether the same holds for quantum algorithms: there are cases
where a quantum algorithm can detect a path between s and t in significantly less time
than any known quantum algorithm takes to find such a path. In particular, path finding
on a glued trees graph is one of Aaronson’s top ten open problems in query complexity
[12, 1], as the best known quantum algorithms that find an st-path in such graphs have
exponentially worse running time than the best quantum algorithms for detecting one, and
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understanding how these problems are related could improve our understanding of why
quantum computers achieve dramatic speedups for certain problems. As an example of more
immediate practical interest: path finding in supersingular isogeny graphs is one approach
to attacking cryptosystems based on supersingular isogenies [11, 16], but currently the best
known attack of this form still takes exponential time [36] (see also [19]).

In this paper, we consider the quantum query complexity of a somewhat intermediate
problem: finding an edge on an st-path in an undirected graph.1 In the classical case, it
seems hard to imagine how one could find an edge on an st-path without first finding an
st-path, but we show that in the quantum case, one can sample an st-path edge with similar
resources to what is needed to detect the existence of an st-path. In some cases, this can be
done with significantly fewer queries than the best previously known path-finding algorithms.
We show this ability to sample an edge on a path has some useful applications, including to
sabotaging networks (finding st-cut sets) and to finding paths in certain graphs faster than
existing path finding algorithms.

Previously, Dürr, Heiligman, Høyer and Mhalla [18] described an algorithm for connectivity
in the adjacency matrix model that uses O(n3/2) queries for an n-vertex graph. Their
algorithm works by keeping track of known connected components, and then uses a quantum
search to look for any edge that connects any two components previously not known to be
connected. While the authors use this algorithm to decide connectivity, we note that after
O(n3/2) queries, the algorithm will produce (with high probability) a list of the connected
components of the graph, as well as a set of edges for each component that is a witness to
that component’s connectivity (a spanning tree). This data can then be used to find a path
from s to t, if s and t are in the same component. This algorithm uses O(log n) qubits and
O(n log n) classical bits, and applies to both directed and undirected graphs.

However, the algorithm of Dürr et al. does not take advantage of any structure in the
graph. This is in contrast to an undirected path detection quantum algorithm of Belovs and
Reichardt [7], further analyzed and refined in [22, 2], which, for example, can detect a path
between vertices s and t with Õ(

√
Ln) adjacency matrix queries when there is an st-path

of length L, and even better in the case of multiple short paths, or in the case of certain
promises when there is no path. In fact, there are even sufficiently structured promises on
the input for which this algorithm performs superpolynomially better than the best possible
classical algorithm [25]. While this path detection algorithm runs faster than O(n3/2) in
many cases, the algorithm does not output any information about the st-path – it simply
determines whether a path exists.

Our contribution is an algorithm that reproduces the query complexity of the Belovs-
Reichardt undirected path detection algorithm, even for structured inputs – for example, our
algorithm uses Õ(

√
Ln) queries when there is a path of length L – but now returns some

information about edges on an st-path: namely, a path edge.2 Specifically, our algorithm
outputs an st-path edge sampled with probability that depends on the optimal st-flow
between s and t. This is how electrons would flow in an electrical network if edges in the
graph were replaced by wires with resistors and a battery were connected between s and t.
For intuition, an edge is more likely to be sampled if it is on more or shorter paths. Thus,

1 In this paper, we use path to refer to a self-avoiding path, meaning a path with no repeated vertices.
2 As we hinted at with our statement of advantages for the Belovs-Reichardt algorithm in the case of

shorter and/or multiple paths, the Belovs-Reichardt algorithm for st-path detection actually has a
complexity that depends on the structure of the graph in a more subtle way, replacing L with an upper
bound on the effective resistance between s and t, which is at most the length of the shortest path
between s and t. This more subtle analysis also applies to our edge finding algorithm.
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in the case of a single path between s and t, our algorithm samples each edge in the path
with equal probability (up to some error in total variation distance). When there are disjoint
paths of different lengths, our algorithm is more likely to sample an edge on a short path than
a long path – the probability of sampling from a particular path of length ℓ is proportional
to 1/ℓ. (This means, unfortunately, that if there are many long paths, we might still be more
likely to sample an edge on some long path than an edge on a short path). We prove that
finding an st-path edge classically requires Ω(n2) queries in the worst case, even if promised
that there is a path of length L, as long as L ≥ 3.

With the ability to quickly find edges on short paths, we can create an improved algorithm
for finding st-paths in undirected graphs with a unique, short st-path. Given an adjacency
matrix for an n-vertex graph, if there is a unique st-path, whose (possibly unknown) length is
L, we can find all of the edges in the path in Õ(L1+o(1)n) expected queries. When L = o(

√
n),

this is an improvement over the Dürr et al. algorithm. In the general case that there is more
than one st-path, we prove that we can find all edges in a single path in Õ(L3/2n) queries
when L is the (possibly unknown) length of the longest path (although our approach in this
case does not use the edge sampling algorithm as a subroutine). When L = o(n1/3), this is
an improvement over the Dürr et al. algorithm.

We additionally use our sampling algorithm to find st-cut sets, in the case that s and t

are each part of a highly connected component, and there are only a few edges connecting
those components. Because these few connecting edges are bottlenecks in the flow, there
will be a lot of flow over those connecting edges, and so a high probability of sampling them,
and hence finding an st-cut set. We describe a particular family of n-vertex graphs were we
can find such a cut set in Õ(n) queries, where any classical algorithm would require Ω(n2)
queries.

Our edge sampling algorithm is a special case of a new span-program-based algorithm
(Section 3) for generating quantum states called span program witness states (or simply
witness states). One of the key elements of the analysis of span program algorithms for
deciding Boolean functions [34] is the positive witness (see Definition 2), which is a vector
that witnesses that the function evaluates a particular input to 1. While in the usual span
program algorithm, the output on input x is f(x), in our case, we output a quantum state
proportional to the positive witness for input x. In the case of the Belovs-Reichardt span
program for st-connectivity [7], a positive witness is a linear combination of edges that are on
paths between s and t, where the amplitudes depend on the optimal st-flow (see Definition 4).
Generating and then measuring such a state allows us to sample st-path edges.

Our results more generally hold for the case where the input x defines a subgraph G(x)
of some arbitrary graph G, that is not necessarily a complete graph. Although we do not
attempt to analyze time complexity in this work, we suspect that our query algorithms on
graphs are also time efficient when there is an efficient way to perform a quantum walk on
the underlying graph G, as in [25]. For example, when G is the n-vertex complete graph (i.e.
the oracle allows you to query elements of the full adjacency matrix for a n-vertex graph, as
we have been assuming throughout this introduction), there is an efficient way to do this
walk, and so in this case the time complexity of our algorithms is likely the same as the
query complexity, up to log factors.

1.1 Future Directions
A natural future direction is to try to use our edge finding technique for path finding in more
general settings than the ones we consider. One surprising aspect of our algorithm is that it
does not necessarily find edges in the order in which they appear in the path, and instead
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often finds edges in the middle of a path with high probability. The form of our algorithm
thus seems to circumvent a recent lower bound on path-finding in glued trees graphs that
applies to algorithms that always maintain a path from the starting node to any vertex in the
algorithm’s state [13]. However, one reason to be pessimistic for this particular application is
that in the glued trees graph, all edges connected to the starting vertex are in some st-path.
Still, we are hopeful that for some graphs, finding an edge in the middle of some st-path
opens up the possibility of new divide-and-conquer approaches for path finding.

We are only able to take advantage of the fact that we sample edges according to the
optimal st-flow for very specific graphs, like those with a single path, or with bottleneck flows,
but we hope that this edge sampling distribution will prove useful in additional applications.
In recent independent work, Apers and Piddock [3] develop a similar edge sampling algorithm
in the adjacency list model, which they use to analyze connections between electric flows and
quantum walks, and they prove that walks that proceed via their edge sampling algorithm
need only logarithmically many rounds before they have a high probability of reaching a
target vertex, on trees. We believe that such edge sampling methods will likely find further
applications.

We have only applied our span program witness state generation algorithm to the span
program for path detection. Span program algorithms exist for a wide range of graph
problems, from bipartiteness [8] and cycle detection [8, 17], to triangle [9] and other subgraph
detection [30], to other combinatorial search problems [6, 4]. Perhaps the span program
witness states for these problems would be useful for certain applications. Beyond span
program algorithms, dual adversary algorithms (which are equivalent to span programs for
decision problems, but generalize to state conversion problems [31]) and multidimensional
quantum walks [27, 23] all have a similar notion of witnesses in their design and analysis.
Similar techniques might yield witness generation algorithms for these more general algorithm
design paradigms.

We suspect our path finding algorithms are not optimal, as for graphs with longest paths
of length Ω(n1/3), our algorithms do not outperform Dürr et al.’s algorithm. We wonder
whether it is possible to find paths using o(n3/2) queries whenever the longest path has
length o(n), or to prove that this is not possible, perhaps by expanding on techniques for
lower bounding path-finding on welded trees [13].

Finally, all of our algorithms apply only to undirected graphs, while the algorithm of [18]
applies equally well to directed or undirected graphs. While there are span program algorithms
for problems on directed graphs (see e.g. [4]), they do not exhibit the same speedups with
short or many paths that the undirected span program algorithms possess. It would be
interesting to better understand whether there are ways to obtain similar improvements in
query complexity for directed graphs.

Organization

In Section 3 we present our main technical result: an algorithm for generating a state
proportional to a span program witness for x. In Section 4, we show how to apply this to
finding a path edge (Section 4.1), and give an example of a particular family of graphs in
which the classical complexity of finding a path edge is quadratically worse than our quantum
algorithm (Theorem 20). In Section 4.2, we show how our edge finding algorithm can be
applied to efficiently find an st-cut set in a particular family of graphs, and in Section 4.3
we show how it can be applied to find an st-path in Õ(nL1+o(1)) queries when there is a
unique st-path of length L (Theorem 25); and also give an algorithm for finding an st-path in
general graphs in Õ(nL3/2) queries when L is the length of the longest st-path (Theorem 26).



S. Jeffery, S. Kimmel, and A. Piedrafita 5:5

2 Preliminaries

We first introduce some basic notation. We let ∥·∥ denote the l2 norm, [m] := {1, 2, 3, . . . ,m},
and let L(H,V ) denote the set of linear operators from the vector space H to the vector
space V.

2.1 Span Programs
Span programs are a linear algebraic model of computation, introduced in [28], that have
proven extremely useful for analyzing query [34, 35], space [24], and time complexity [7, 15, 5]
in quantum algorithms. We follow Ref. [21] closely in our definitions.

▶ Definition 1 (Span Program). For a finite set R, a span program on Rm is a tuple
P = (H,V, |τ⟩, A) where
1. H is a direct sum of finite-dimensional inner product spaces: H = H1 ⊕ H2 · · ·Hm ⊕

Htrue⊕Hfalse, and for j ∈ [m] and a ∈ R, we have Hj,a ⊆ Hj , such that
∑

a∈R Hj,a = Hj ;
2. V is a vector space;
3. |τ⟩ ∈ V is a target vector; and
4. A ∈ L(H,V).
Given a string x ∈ Rm, we use H(x) to denote the subspace H1,x1 ⊕ · · · ⊕Hm,xm

⊕Htrue,
and we denote by ΠH(x) the orthogonal projector onto the space H(x).

An important concept in the analysis of span programs and quantum query complexity is
that of witnesses:

▶ Definition 2 (Positive Witness). Given a span program P = (H,V, |τ⟩, A) on Rm and
x ∈ Rm, |w⟩ ∈ H(x) is a positive witness for x in P if A|w⟩ = |τ⟩. If a positive witness
exists for x, we define the witness size of x in P as

w+(x) = w+(P, x) := min
{
∥|w⟩∥2 : |w⟩ ∈ H(x) and A|w⟩ = |τ⟩

}
. (1)

We say that |w⟩ ∈ H(x) is the optimal positive witness for x if ∥|w⟩∥2 = w+(P, x) and
A|w⟩ = |τ⟩.

Our main algorithm produces a normalized version of this unique optimal positive witness,
|w⟩/∥|w⟩∥. (To see that the optimal positive witness is unique, for contradiction assume
that the optimal positive witness is not unique – then a linear combination of two optimal
positive witnesses produces a witness with smaller witness size than either.)

A span program P encodes a function f : X → {0, 1} in the following way. We say
f(x) = 1 if x has a positive witness, and f(x) = 0 if x does not have a positive witness. We
say such a P decides the function f .

We will also need the concept of an approximate negative witness.

▶ Definition 3 (Negative Error, Approximate Negative Witness). Given a span program
P = (H,V, |τ⟩, A) on Rm and x ∈ Rm, we define the negative error of x in P as

e−(x,P) := min
{
∥⟨ω̃|AΠH(x)∥2 : ⟨ω̃| ∈ L(V,R), ⟨ω̃|τ⟩ = 1

}
. (2)

Note that e−(x,P) = 0 if and only if P decides a function f with f(x) = 0. Any ⟨ω̃| such
that ∥⟨ω̃|AΠH(x)∥2 = e−(x,P) is called an approximate negative witness for x in P . We
define the approximate negative witness size of x as:

w̃−(x,P) := min
{
∥⟨ω̃|A∥2 : ⟨ω̃| ∈ L(V,R), ⟨ω̃|τ⟩ = 1, ∥⟨ω̃|AΠH(x)∥2 = e−(x,P)

}
. (3)

We call an approximate negative witness ⟨ω̃| that also minimizes ∥⟨ω̃|A∥2 an optimal approx-
imate negative witness.
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We use the following notation for maximum positive and approximate negative witness
sizes:

W+(P, f) = W+ := max
x∈f−1(1)

w+(P, x), W̃−(P, f) = W̃− := max
x∈f−1(1)

w̃−(x,P). (4)

Note that we are restricting to 1-inputs of f . That is because our witness generation algorithm
will assume that x is a 1-input, unlike previous span-program-based algorithms that decide f .

2.2 Quantum Query Algorithms

The algorithms we develop are query algorithms, where we can access a unitary oracle Ox for
some x ∈ X ⊆ Rm such that Ox acts on the space Cm ⊗Cq as Ox|i⟩|a⟩ = |i⟩|xi + a mod q⟩.
where q = |R|, xi is the value of the ith element of x and |i⟩ ∈ Cm and |a⟩ ∈ Cq are standard
basis states.

The query complexity of an algorithm is the number of times Ox must be used, in the
worst case over x ∈ X. In our case, we will also consider the expected query complexity
on input x, which is the average number of times Ox must be used when given a particular
input x, where the randomness is due to random events in the course of the algorithm.

2.3 Graph Theory and Connection to Span Programs

Let G = (V,E) be an undirected graph.3 We will particularly consider graphs with specially
labeled vertices s, t ∈ V , such that there is a path from s to t in G. Let −→E = {(u, v) : {u, v} ∈
E}; that is −→E is the set of directed edges corresponding to the edges of G. Given a graph
G = (V,E), for u ∈ V , we denote by G−

u the subgraph of G on the vertices V \ {u}, and
with overloading of notation for S ⊆ E, we denote by G−

S the subgraph of G with edges S
removed. (It will be clear from context whether we are removing edges or vertices from the
graph.)

On a graph G with s and t connected we will consider a unit st-flow, which is a linear
combination of cycles and st-paths, formally defined as a function on −→E with the following
properties.

▶ Definition 4 (Unit st-flow). Let G = (V,E) be an undirected graph with s, t ∈ V (G), and s
and t connected. Then a unit st-flow on G is a function θ : −→E → R such that:
1. For all (u, v) ∈ −→E , θ(u, v) = −θ(v, u);
2.
∑

v:(s,v)∈
−→
E
θ(s, v) =

∑
v:(v,t)∈

−→
E
θ(v, t) = 1; and

3. for all u ∈ V \ {s, t},
∑

v:(u,v)∈
−→
E
θ(u, v) = 0.

▶ Definition 5 (Unit Flow Energy). Given a graph G = (V,E) and a unit st-flow θ on G, the
unit flow energy of θ is J(θ) = 1

2
∑

e∈
−→
E
θ(e)2.

▶ Definition 6 (Effective resistance). Let G = (V,E) be a graph with s, t ∈ V . If s and t are
connected in G, the effective resistance of G between s and t is Rs,t(G) = minθ J(θ), where
θ runs over all unit st-unit flows of G. If s and t are not connected in G, Rs,t(G) =∞.

3 Our results easily extend to multigraphs, see [22], but for simplicity, we will not consider multigraphs
here.
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Interpretation of the optimal flow

The st-flow with minimum energy is unique, and describes the electric current going through
that edge if the graph represents a network of unit resistors and we put a potential difference
between s and t. The minimum energy flow has several other interpretations and connections
to other graph properties. For reference, and for those who would like to build their intuition
for this object, we have collected some of these relationships in the full version of this work
[26, Appendix A].

Graph access

We turn graph problems into oracle problems by letting a string x ∈ {0, 1}m specify a
subgraph G(x) of G. In particular, we associate each edge e ∈ E with a number in [m]. Then,
given a string x ∈ {0, 1}m, let G(x) = (V,E(x)) be the subgraph of G that contains an edge
e ∈ E if e is associated with the integer i ∈ [m] and xi = 1, where xi is the ith bit of x. In
this oracle problem, one is given access to an oracle Ox for x (or classically, given the ability
to query the values of the bits of x one at a time), and a description of the parent graph G

along with the association between bits of x and edges of G, and the goal is to determine
something about the graph G(x) using as few queries as possible. Let Ei ⊂ E be the set
of edges associated with the ith bit of x. When not specified otherwise, one should assume
that m = |E|, and then associate each edge of G uniquely with a bit of the input string. In
this case, when G is the complete graph, Ox is equivalent to query access to the adjacency
matrix of a graph. When we consider subgraphs of the original graph (like G−

u ), we assume
that the edges are associated with the same indices as in the original graph, unless otherwise
specified.

Most of the applications in this paper are related to the problem of detecting a path
between s and t – more commonly called st-connectivity. We define st-connG(x) := 1 if s
and t are connected in G(x), and 0 otherwise. The following span program, which we denote
by PGst

, first introduced in Ref. [28] and used in the quantum setting in Ref. [7], decides
st-connG(x): for a graph G = (V,E), where m = |E|, define the span program PGst as:

∀i ∈ [m], Hi,1 = span{|(u, v)⟩ : {u, v} ∈ Ei}, Hi,0 = ∅
V = span{|v⟩ : v ∈ V (G)}
|τ⟩ = |s⟩ − |t⟩

∀(u, v) ∈ −→E : A|u, v⟩ = |u⟩ − |v⟩. (5)

For PGst
, the negative approximate witness size is bounded by W̃− = O(n2) [21]. If s

and t are connected in G(x), the optimal positive witness of x in PGst
is [7, 22]

|θ∗⟩ = 1
2
∑
e∈

−→
E

θ∗(e)|e⟩, (6)

where θ∗ is the st-unit flow with minimal energy, so by Definitions 2 and 6, w+(PGst , x) =
1
2Rs,t(G(x)).

One of our main applications is to apply our witness state generation algorithm to the
span program PGst

, in which case, we produce a quantum state close to |θ∗⟩/∥|θ∗⟩∥ where θ∗

is the optimal unit st-flow on G(x). If we were to create |θ∗⟩/∥|θ∗⟩∥ exactly, and then measure
in the standard basis, the probability that we obtain the edge e is θ∗(e)2/(2Rs,t(G(x))). Let
qG(x),s,t denote the distribution such that for ∀e ∈ −→E ,

qG(x),s,t(e) = θ∗(e)2/(2Rs,t(G(x))). (7)
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Additionally, this optimal flow θ∗ is a convex combination of (self-avoiding) st-paths, as
we prove in the full version of this work [26, Appendix A]:

▶ Lemma 7. An st-path in G(x) is a sequence of distinct vertices u⃗ = (u0, . . . , uℓ) such
that s = u0, t = uℓ, and for all i ∈ [ℓ], (ui−1, ui) ∈

−→
E (G(x)). From u⃗, we define

|ρu⃗⟩ = 1√
2

ℓ−1∑
i=0

(|ui, ui+1⟩ − |ui+1, ui⟩) (8)

and refer to all such states as st-path states of G(x). Then if |θ∗⟩ is the optimal positive
witness for x in PGs,t

, it is a linear combination of st-path states in G(x).

A final pair of tools we use are a quantum algorithm that decides st-connG(x) with
fewer queries in the case of small effective resistance, without knowing the effective resistance
ahead of time, and a quantum algorithm for estimating the effective resistance:

▶ Lemma 8 ([2]). Fix δ > 0 and a family of n-vertex graphs G with vertices s and t. Then
there is a quantum algorithm PathDetection(Ox, G, s, t, δ) such that,
1. The algorithm returns st-connG(x) with probability 1−O(δ).
2. On input x, the algorithm uses O

(
n
√
Rs,t(G(x)) log

(
n

Rs,t(G(x))δ

))
expected queries if

st-connG(x) = 1, and O
(
n3/2 log 1/δ

)
expected queries if st-connG(x) = 0.

▶ Lemma 9 ([21]). Fix δ > 0 and a family of n-vertex graphs G with vertices s and t. Then
there is a quantum algorithm WitnessSizeEst(Ox, G, s, t, ϵ, δ) that, on input x such that
st-connG(x) = 1, with probability 1− δ, outputs an estimate R̂ for Rs,t(G(x)) such that∣∣∣R̂−Rs,t(G(x))

∣∣∣ ≤ ϵRs,t(G(x)), (9)

using Õ
(√

Rs,t(G(x))n2

ϵ3 log(1/δ)
)

expected queries; and on input x such that st-connG(x) =

0, uses at most Õ
(
(n/ϵ)3/2 log(1/δ)

)
.

Lemma 9 is a special case of [21, Theorem 3.8], which gives an algorithm for estimating the
quantity w+(x) from any span program. If we apply this construction with the span program
PGs,t

, we can estimate its positive witness sizes, which are precisely 1
2Rs,t(G(x)). The

algorithm described in [21, Theorem 3.8] assumes that the input is a 1-input to st-connG(x),
but can easily be modified to always stop after at most Õ

(
(n/ϵ)3/2 log(1/δ)

)
steps, regardless

of the input, since Rs,t(G(x)) ≤ n. The algorithm as stated also only works with bounded
error, but the success probability can be amplified to 1− δ by repeating log(1/δ) times and
taking the median estimate.

3 Witness Generation

Our main technical result, on generating span program witness states is the following:

▶ Theorem 10. Given a span program P that decides a function f , and constants ϵ, δ, there is
an algorithm (Algorithm 1) that, given as input an oracle Ox such that f(x) = 1 with optimal
positive witness |w⟩, outputs a state |ŵ⟩/∥|ŵ⟩∥ such that

∥∥∥|w⟩/√w+(x)− |ŵ⟩/∥|ŵ⟩∥
∥∥∥2
≤ O(ϵ)

with probability 1−O(δ), and uses Õ
(√

w+(x)W̃−
ϵ log

( 1
δ

))
expected queries to Ox.
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For comparison, a span program algorithm can decide f with bounded error in expected

query complexity Õ
(√

w+(x)W̃−

)
, so Theorem 10 gives a matching complexity for gener-

ating a witness state. As we will see in Section 4.1, in the case of the span program PGs,t for
st-connectivity on subgraphs of G, this implies that we can sample an st-path edge in the
same complexity used by the span program algorithm to decide if an st-path exists.

A key subroutine for our witness state generation algorithm will be quantum phase
estimation. In quantum phase estimation one implements a controlled version of a unitary U
acting on a Hilbert space HA on an input state |ψ⟩ ∈ HA. The state |ψ⟩ can be decomposed
into its eigenbasis with respect to U as |ψ⟩ =

∑
i αi|λi⟩, where U |λi⟩ = eiϕiπ and we say

ϕi is the phase of the state |λi⟩. Then when phase estimation is performed with precision
Θ the probability that you measure a phase of 0 after the phase estimation procedure
is approximately given by

∑
i:|ϕi|≤Θ |αi|2, and the non-normalized state that results after

measuring a phase of 0 is approximately
∑

i:|ϕi|≤Θ αi|λi⟩. In other words, phase estimation
can be used to project into the low phase space (with phase less than Θ) with probability that
depends on the amount of amplitude the original state had on low-phase eigenstates. For an
accuracy parameter ϵ, the number of uses of U in phase estimation scales as O

( 1
Θ log 1

ϵ

)
. A

more rigorous description of the guarantees of phase estimation is given below in Lemma 11.
The basic idea of the algorithm that we use to prove Theorem 10 is to apply phase

estimation with a unitary U(P, x, α), (which can be implemented with access to an oracle Ox

and depends on a span program P , and a positive real parameter α), on a state |0̂⟩. We show
that the eigenspectrum of |0̂⟩ relative to U(P, x, α) decomposes into two states, |0̂⟩ ⊕ 1

α |w⟩,
which is a 0-phase eigenstate of U(P, x, α), and |ψx,+⟩, which has small overlap with the
low-phase space of U(P, x, α).

If we do phase estimation with U(P, x, α) on |0̂⟩ with sufficiently small precision, and
then if we measure a phase of 0, as discussed above, we will approximately project into the
state |0̂⟩ ⊕ 1

α |w⟩. From there, if we make the measurement {|0̂⟩⟨0̂|, I − |0̂⟩⟨0̂|}, and obtain
outcome I − |0̂⟩⟨0̂| the state will project into |w⟩, as desired.

Next, there comes a balancing act for our choice of α. When α is too small, |0̂⟩ has small
overlap with the span of |0̂⟩ ⊕ 1

α |w⟩, so we are not very likely to measure a phase of 0 when
we do phase estimation with U(P, x, α) on |0̂⟩. However, when α gets too large, while it
becomes very likely to measure a phase of 0 and thus obtain the state |0̂⟩ ⊕ 1

α |w⟩, we will be
unlikely to subsequently measure outcome I − |0̂⟩⟨0̂|.

The sweet spot is when α ≈
√
w+(x), in which case both measurement outcomes we

require have a reasonable probability of occurring. Since we don’t know w+(x) ahead of time,
we must first estimate an appropriate value of α to use, which we do by iteratively testing
larger and larger values of α.4 Our test involves estimating the probability of measuring
a phase of 0 when phase estimation with U(P, x, α) is performed on |0̂⟩, which we show
provides an estimate of α/

√
w+(x).

3.1 Proof of Theorem 10
Before introducing the algorithm we use to prove Theorem 10, we introduce some key
concepts, lemmas, and theorems that will be used in the analysis.

Let H̃ = H ⊕ span{|0̂⟩}, and H̃(x) = H(x) ⊕ span{|0̂⟩}, where |0̂⟩ is orthogonal to H.
Then we define Ãα ∈ L(H̃,V) as

Ãα = 1
α
|τ⟩⟨0̂| −A. (10)

4 There is a similar algorithm in [21] that estimates w+(x), but it is more precise than we require.
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Let Λα ∈ L(H̃, H̃) be the orthogonal projection onto the kernel of Ãα, and let Πx ∈ L(H̃, H̃)
be the orthogonal projector onto H̃(x). Finally, let U(P, x, α) = (2Πx − I)(2Λα − I). Note
that 2Πx − I can be implemented with two applications of Ox [21, Lemma 3.1], and 2Λα − I
can be implemented without any applications of Ox.

We will use parallelized phase estimation, as described in Ref. [32], which provides
improved error bounds over standard phase estimation. In particular, given a unitary U

acting on a Hilbert Space H, a precision Θ > 0, and an accuracy ϵ > 0, we can create a
circuit D(U) that implements O(log 1

ϵ ) parallel copies of the phase estimation circuit on U ,
each to precision O(Θ), that each estimate the phase of a single copy of a state |ψ⟩. That
is, D(U) acts on the space HA ⊗ ((C2)⊗b)B where b = O

(
log 1

Θ log 1
ϵ

)
, and A labels the

input state register, and B labels the registers that store the results of the parallel phase
estimations.

We use the circuit D(U) to check if an input state has high overlap with the low-valued
eigenphase-space of U [29, 14, 32]. To characterize the low phase space of a unitary U , let
PΘ(U) (or just PΘ when U is clear from context) be the projection onto span{|u⟩ : U |u⟩ =
eiθ|u⟩ with |θ| ≤ Θ} (the eigenspace of U with eigenphases less than Θ). Then the following
lemma provides key properties of parallel phase estimation circuit D(U):

▶ Lemma 11 ([29, 14, 32]). Let U be a unitary on a Hilbert Space HA, and let Θ, ϵ > 0.
We call Θ the precision and ϵ the accuracy. Then there is a circuit D(U) that acts on the
space HA ⊗ ((C2)⊗b)B for b = O

(
log 1

Θ log 1
ϵ

)
, and that uses O

( 1
Θ log 1

ϵ

)
controlled calls to

U . Then for any state |ψ⟩ ∈ HA,
1. D(U)(P0|ψ⟩)A|0⟩B = (P0|ψ⟩)A|0⟩B
2. ∥P0|ψ⟩∥2 ≤ ∥(IA ⊗ |0⟩⟨0|B)D(U)(|ψ⟩A|0⟩B)∥2 ≤ ∥PΘ|ψ⟩∥2 + ϵ.

Iterative Quantum Amplitude Estimation is a robust version of amplitude estimation,
which uses repeated applications of amplitude estimation to achieve improved error bounds:

▶ Lemma 12 (Iterative Quantum Amplitude Estimation [20]). Let δ > 0 and A be a unitary
quantum circuit such that on a state |0⟩, A|ψ⟩ = α0|0⟩|ψ0⟩ + α1|1⟩|ψ1⟩. Then there is an
algorithm that estimates |α0|2 to additive error δ with success probability at least 1− p using
O
(

1
δ log

(
1
p log 1

δ

))
calls to A and A†.

A key mathematical tool in analyzing span program algorithms is the Effective Spectral
Gap Lemma:

▶ Lemma 13 (Effective Spectral Gap Lemma, [31]). Let Π and Λ be projections, and let
U = (2Π − I)(2Λ − I) be the unitary that is the product of their associated reflections. If
Λ|w⟩ = 0, then ∥PΘ(U)Π|w⟩∥ ≤ Θ

2 ∥|w⟩∥.

We will need the following relationship between optimal positive witnesses and optimal
negative approximate witnesses:

▶ Theorem 14. [21, Theorem 2.11] Given a span program P = (H,V, |τ⟩, A) on Rm and
x ∈ Rm, if |w⟩ is the optimal positive witness for x and ⟨ω̃| is an optimal negative approximate
witness for x, then

|w⟩ = w+(x)ΠH(x)(⟨ω̃|A)†. (11)
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As discussed following Theorem 10, we decompose the state |0̂⟩ into a linear combination
of two orthogonal states. They are

|ψx,0⟩ =|0̂⟩+ 1
α
|w⟩,

|ψx,+⟩ =|0̂⟩ − α

w+(x) |w⟩, (12)

so we can write |0̂⟩ as

|0̂⟩ = a0|ψx,0⟩+ a+|ψx,+⟩, where a0 = 1
1 + w+(x)

α2

, a+ = 1
1 + α2

w+(x)
. (13)

We first show that |ψx,0⟩ is a 0-phase eigenvector of U(P, x, α). Note that Ãα|ψx,0⟩ =
1
α (|τ⟩− |τ⟩) = 0 (see Equation (10)), so recalling that Λα is the orthogonal projector onto the
kernel of Ãα, we have Λα|ψx,0⟩ = |ψx,0⟩. Furthermore, since Πx is the orthogonal projector
onto H̃(x) = H(x)⊕ span{|0̂⟩}, it follows that Πx|ψx,0⟩ = |ψx,0⟩, where we use that |w⟩ is a
positive witness, so |w⟩ ∈ H(x). Thus U(P, x, α)|ψx,0⟩ = |ψx,0⟩.

On the other hand |ψx,+⟩ has low overlap with PΘ(U(P, x, α)) for small enough Θ and
α, as the following lemma shows.

▶ Lemma 15. If α2 ≥ 1/W̃−, then ∥PΘ(U(P, x, α))|ψx,+⟩∥ ≤ Θα
√
W̃−.

Proof. Let ⟨ω̃| be an optimal negative approximate witness for x (see Definition 3), and let

|v⟩ = |0̂⟩ − α(⟨ω̃|A)†. (14)

Using Theorem 14 and the fact that Πx|0̂⟩ = |0̂⟩, we have that

Πx|v⟩ = |0̂⟩ − αΠH(x)(⟨ω̃|A)† = |0̂⟩ − α |w⟩
w+(x) = |ψx,+⟩. (15)

Now we will show Λα|v⟩ = 0. Let |k⟩ be in the kernel of Ãα, so Ãα|k⟩ = 0. Using Equation (10)
and rearranging,

A|k⟩ = 1
α
|τ⟩⟨0̂|k⟩. (16)

Then
⟨v|k⟩ = ⟨0̂|k⟩ − α⟨ω̃|A|k⟩

= ⟨0̂|k⟩ − ⟨0̂|k⟩⟨ω̃|τ⟩
= 0 (17)

where we have used Equations (14) and (16) and the properties of optimal negative approx-
imate witnesses. Thus |v⟩ is orthogonal to any element of the kernel of Ãα, so Λα|v⟩ = 0.

Now we can apply Lemma 13 to |v⟩ to get:

∥PΘ(U(P, x, α))|ψx,+⟩∥ = ∥PΘ(U(P, x, α))Πx|v⟩∥

≤ Θ
2 ∥|v⟩∥

= Θ
2
√

1 + α2w̃−(x,P)

≤ Θα
√
W̃−, (18)

where in the first line we have used Equation (15), and in the last, our assumption that
α2W̃− ≥ 1. ◀
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▶ Corollary 16. ∥P0(U(P, x, α))|ψx,+⟩∥ = 0.

Proof. Apply Lemma 15 with Θ set to 0. ◀

To prove Theorem 10, we analyze the following algorithm:

Algorithm 1 WitnessGeneration(P, Ox, δ, ϵ).

Input : Error tolerance δ, accuracy ϵ, span program P that decides a function f ,
oracle Ox

Output : A quantum state |ŵ⟩/∥|ŵ⟩∥ such that for the optimal positive witness |w⟩
for x, ∥|w⟩/

√
w+(x)− |ŵ⟩/∥|ŵ⟩∥∥2 ≤ O(ϵ) with probability 1−O(δ)

1 ϵ′ ← min{ϵ, 1/96}; T ←
⌈

log
√
W+W̃−

⌉
;

p← min
{
δ/ log(W+W̃−), 1/

√
W+W̃−

}
// Probing Stage

2 for i = 0 to T do

3 α← 2i/

√
W̃−

4 â← Iterative Amplitude Estimation (Lemma 12) estimate (with probability of
failure p and additive error 1/48) of the probability of outcome |0⟩B in register
B when D(U(P, x, α)) (see Lemma 11) acts on |0̂⟩A|0⟩B with error ϵ′, precision√

ϵ′

α2W̃−

5 if 15
48 ≤ â ≤

35
48 then Break

// State Generation Stage
6 for j = 1 to log(1/δ) do
7 Apply D(U(P, x, α)) to |0̂⟩A|0⟩B with error ϵ′, precision

√
ϵ′

α2W̃−

8 Make a measurement with outcome M = {(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|B} on the resultant
state

9 if Measure outcome M then
10 Return the resultant state

11 Return “failure”

To analyze Algorithm 1, will need the following lemma and corollary. In Algorithm 1, we
estimate the probability of measuring the outcome |0⟩ in the B register after doing phase
estimation. In the following lemma, we prove this probability is closely related to a0 from
Equation (13).

▶ Lemma 17. Applying D(U(P, x, α))) with error ϵ and precision
√

ϵ

α2W̃−
(see Lemma 11)

to input state |0̂⟩A|0⟩B for α ≥ 1/
√
W̃− results in the outcome |0⟩ in the B register with

probability in the range [a0, a0 + 2ϵ].

Proof. Throughout the proof, let U = U(P, x, α). The probability that we measure |0⟩ in
register B after we apply D(U) with error ϵ and precision Θ to |0̂⟩A|0⟩B is, by Lemma 11
Item 2, at most

∥PΘ(U)|0̂⟩∥2 + ϵ = ∥a0PΘ(U)|ψx,0⟩+ a+PΘ(U)|ψx,+⟩∥2 + ϵ, (19)

by Equation (13). Now PΘ(U)|ψx,0⟩ and PΘ(U)|ψx,+⟩ are orthogonal, since

⟨ψx,0|PΘ(U)PΘ(U)|ψx,+⟩ = ⟨ψx,0|ψx,+⟩ = 0, (20)
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where we’ve used that PΘ(U)|ψx,0⟩ = |ψx,0⟩ and that |ψx,0⟩ and |ψx,+⟩ are orthogonal.
Continuing from Equation (19) and using the orthogonality condition, we have, using
Θ =

√
ϵ

α2W̃−
,

∥PΘ(U)|0̂⟩∥2 + ϵ = a2
0∥PΘ(U)|ψx,0⟩∥2 + a2

+∥PΘ(U)|ψx,+⟩∥2 + ϵ

≤ a2
0∥|ψx,0⟩∥2 + a2

+Θ2α2W̃− + ϵ by Lemma 15, since α2W̃− ≥ 1

≤ a0 + a2
+ϵ+ ϵ

≤ a0 + 2ϵ, (21)

where we have used that ∥|ψx,0⟩∥2 = 1/a0, and a+ ≤ 1 (see Equation (13)) .
By Lemma 11 Item 2, the probability that we measure |0⟩ in register B after applying

D(U(P, x, α)) on |0̂⟩A|0⟩B with error ϵ and any precision is at least

∥P0(U)|0̂⟩∥2 = ∥a0P0(U)|ψx,0⟩+ a+P0(U)|ψx,+⟩∥2 = a2
0∥|ψx,0⟩∥2 = a0, (22)

where we have used Corollary 16. ◀

▶ Corollary 18. In Algorithm 1, if in an iteration of the Probing Stage, Iterative Amplitude
Estimation does not fail at Line 4 and subsequently causes a break at Line 5, then

a0 ∈
[

1
4 ,

3
4

]
,

a2
0w+(x)
α2 ∈

[
3
16 ,

1
4

]
. (23)

Proof. If Iterative Amplitude Estimation does not fail at Line 4 and causes a break at Line
5, then we have an estimate â that is in the range [ 15

48 ,
35
48 ]. Thus, because of the additive

error of 1/48 in Iterative Amplitude Estimation, the probability of measuring outcome |0⟩B
is in the range [ 14

48 ,
36
48 ]. By Lemma 17, this same probability is in the range [a0, a0 + 2ϵ′],

so in particular these two ranges overlap. Thus, since we choose 2ϵ′ to be at most 1/48, we
have that

a0 ∈
[

13
48 ,

36
48

]
⊂
[

1
4 ,

3
4

]
. (24)

Using a0 = (1 + w+(x)
α2 )−1 (see Equation (13)), this implies the stated ranges for a2

0w+(x)
α2 =

a0(1− a0). ◀

Now we prove the main performance guarantees of Algorithm 1, bounding the success
probability and the expected query complexity, thus proving Theorem 10.

Proof of Theorem 10. Letting U = U(P, x, α), we analyze Algorithm 1. We first show
that the algorithm will produce the desired state if both the Probing Stage and the State
Generation stage are successful. Then we will analyze the probability of this occurring, in
order to bound the success probability of the algorithm.

We say the Probing Stage is successful if in some iteration, Iterative Amplitude estimation,
having not failed thus far, does not fail and then triggers a break at Line 6, in which case we
can apply Corollary 18. Under these assumptions, we consider the outcome of a successful
State Generation stage, when we achieve the measurement outcome M = (I−|0̂⟩⟨0̂|)A⊗|0⟩⟨0|B .
The non-normalized state |ŵ⟩ that is produced upon measurement outcome M is
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|ŵ⟩ = (I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|0̂⟩A|0⟩B
= a0(I − |0̂⟩⟨0̂|)AD(U)|ψx,0⟩A|0⟩B + a+(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B
= a0(I − |0̂⟩⟨0̂|)A|ψx,0⟩A|0⟩B + a+(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B

= a0

α
|w⟩A|0⟩B + a+(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B︸ ︷︷ ︸

=:|ξ⟩

, (25)

where in the final equality, we used Lemma 11 Item 1, since P0(U)|ψx,0⟩ = |ψx,0⟩.
We would like to bound ∆, where

∆ :=

∥∥∥∥∥ |ŵ⟩∥|ŵ⟩∥
− |w⟩A|0⟩B√

w+(x)

∥∥∥∥∥ =

∥∥∥∥∥ a0
α |w⟩A|0⟩B + |ξ⟩

∥|ŵ⟩∥
− |w⟩A|0⟩B√

w+(x)

∥∥∥∥∥
≤

∣∣∣∣∣ a0

α ∥|ŵ⟩∥
− 1√

w+(x)

∣∣∣∣∣ ∥|w⟩∥+ ∥|ξ⟩∥
∥|ŵ⟩∥

by triangle ineq.

≤

∣∣∣∣∣a0
√
w+(x)

α ∥|ŵ⟩∥
− 1

∣∣∣∣∣+ ∥|ξ⟩∥
∥|ŵ⟩∥

. (26)

To bound ∥|ξ⟩∥, we have

∥|ξ⟩∥2 = a2
+
∥∥(I − |0̂⟩⟨0̂|)A ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B

∥∥2 ≤∥IA ⊗ |0⟩⟨0|BD(U)|ψx,+⟩A|0⟩B∥2

≤∥PΘ|ψx,+⟩∥2 + ϵ′

≤Θ2α2W̃− + ϵ′ ≤ 2ϵ′,
(27)

where the first inequality is because a projection can only decrease the norm of a vector, and
a+ ≤ 1; the second inequality is from by Lemma 11 Item 2, and the third inequality comes
from Lemma 15 and our choice of Θ.

Next, to bound ∥|ŵ⟩∥, we use the triangle inequality on the final line of Equation (25),
and Equation (27) to get

a0
√
w+(x)
α

−
√

2ϵ′ ≤ ∥|ŵ⟩∥ ≤
a0
√
w+(x)
α

+
√

2ϵ′. (28)

By our choice of ϵ′, we have 2ϵ′ ≤ 1/48, and also applying Corollary 18 to Equation (28), we
have

1
4 <

√
3/16−

√
1/48 ≤ ∥|ŵ⟩∥ ≤

√
1/4 +

√
1/48 < 3

4 . (29)

Rearranging Equation (28) and applying Equation (29), we have∣∣∣∣∣a0
√
w+(x)

α ∥|ŵ⟩∥
− 1

∣∣∣∣∣ ≤
√

2ϵ′
∥|ŵ⟩∥

. (30)

Then plugging Equations (27), (29), and (30) into Equation (26) we have:

∆ ≤ 2
√

2ϵ′
∥|ŵ⟩∥

< 8
√

2ϵ′ = O(ϵ). (31)
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Now we analyze the probability that both the Probing Stage and State Generation Stage
are successful, resulting in the state |ŵ⟩/ ∥|ŵ⟩∥ as in Equation (26). First note that there is
a value of α (if we iterate in the Probing Stage long enough), that will cause us to break out
of the Probing Stage if Iterative Amplitude Estimation does not fail. In particular, when
w+(x)/α2 ∈ [1/2, 2], then from Equation (13) a0 ∈ [1/3, 2/3]. Thus by Lemma 17 and since
2ϵ′ ≤ 1/48, the probability of of outcome |0⟩B is in [16/48, 33/48], which in Line 5 causes
us to leave the Probing Stage if Iterative Amplitude Estimation does not fail. This occurs
for some value of α, as we are doubling α at each iteration of the Probing Stage, causing
w+(x)/α2 to decrease, and initially we have w+(x)/α2 = w+(x)W̃− ≥ 1.5

Thus if no error occurs, the condition of Line 5 will be satisfied after some number
L of rounds such that L ∈ O(log(w+(x)W̃−)) = O(log(W+W̃−)). As the probability of
failing a single Iterative Amplitude Estimation round is p ≤ δ/ log(W+W̃−) (see Line 1), the
probability of leaving the Probing Stage when Line 5 is satisfied (rather than before or after)
is at least

(1− p)L = 1−O(δ). (32)

Assuming that we have successfully left the Probing Stage without failure, we next
calculate the probability of getting a measurement outcome M during the at most log(1/δ)
iterations of the State Generation Stage. The probability of getting outcome M is lower
bounded by (from Equation (29))

∥|ŵ⟩∥2 ≥ 1/16. (33)

Thus the probability of success in the State Generation Stage is

1− (15/16)log(1/δ) = 1−O(δ). (34)

Combining Equations (32) and (34), our probability of successfully producing a state
|ŵ⟩/ ∥|ŵ⟩∥ as in Equation (26) is

(1−O(δ))(1−O(δ)) = 1−O(δ). (35)

To calculate the expected query complexity, we first note that if we terminate in round
t ∈ {0, . . . ,

⌈
log
√
W+

⌉
} of the Probing Stage, we use

t∑
i=0

O

(
2i

√
ϵ

log
(

1
ϵ

)
log
(

1
p

))
+O

(
log
(

1
δ

)
2t

√
ϵ

log
(

1
ϵ

))
=O

(
2t

√
ϵ

log
(

1
ϵ

)
log
(

1
pδ

))
(36)

queries, which comes from the cost of Iterative Amplitude Estimation (Lemma 12) applied
to phase estimation (Lemma 11) in each round of the Probing Stage up to the tth round,
plus the cost of phase estimation in the State Conversion Stage.

The probability that we terminate in any round t when we have an estimate â that is
not in the range [ 15

48 ,
35
48 ] is at most p. Using Equation (36) the the total contribution to the

average query complexity from all such rounds is at most

⌈log
√

W+W̃−⌉∑
t=0

O

(
p

2t

√
ϵ

log
(

1
ϵ

)
log
(

1
pδ

))
= O

p
√
W+W̃−

ϵ
log
(

1
ϵ

)
log
(

1
pδ

) . (37)

5 To see that w+(x)W̃− ≥ 1, let N+ = min{∥|w⟩∥2 : A|w⟩ = |τ⟩}, and N− = min{∥⟨ω|A∥2 : ⟨ω|τ⟩ = 1}.
Then w+(x) ≥ N+, and W̃− ≥ N−, and by [21, Section 2.4], N+N− = 1.
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where in the sum we have actually included all rounds, not just those that satisfy when â is
not in the range [ 15

48 ,
35
48 ], which is acceptable since we are deriving an upper bound on the

expected query complexity.
If we terminate at a round t∗ when â is in the range [ 15

48 ,
35
48 ], which happens when

Iterative Amplitude Estimation does not fail at Line 4 and then causes a break at Line 5,
from Equation (23) we have w+(x)

α2 ∈
[ 1

3 , 4
]
, and 2t∗ = α

√
W̃− so

√
w+(x)W̃−/2 ≤ 2t∗ ≤√

3w+(x)W̃−. Because we double α at each iteration, there are only a constant number
of rounds where we will find â in the appropriate range, and we trivially upper bound the
probability of terminating at any such round by 1. Using Equation (36), these rounds add

O

√w+(x)W̃−

ϵ
log
(

1
ϵ

)
log
(

1
pδ

) (38)

to the total expected query complexity.

Combining Equations (37) and (38), and using that we set p to be O
(

1/
√
W+W̃−)

)
(Line 1), we find the expected query complexity is

O

√w+(x)W̃−

ϵ
log
(

1
ϵ

)
log
(

1
pδ

) = Õ

√w+(x)W̃−

ϵ
log
(

1
δ

) . (39)

4 Graph Applications

4.1 Finding an Edge on a Path
In this section, we consider the problem of finding an edge on an st-path in G(x), which we
denote st-edgeG(x). That is, given query access to a string x that determines a subgraph
G(x) = (V,E(x)) of an n-vertex graph G, as described in Section 2.3 (if G is a complete
graph, x is just the adjacency matrix of G(x)), with s, t ∈ V such that there is at least one
path from s to t in G(x), output an edge e ∈ E(x) that is on a (self-avoiding) path from s

to t.
Classically, it is hard to imagine that this problem is much easier than finding a path,

and indeed, in our classical lower bound in Theorem 20 the set-up forces the algorithm
to learn a complete path before it can find any edge on the path. However, we find that
quantumly, when there are short or multiple paths, this problem is easier than any path
finding algorithms known. This opens up the possibility of improved quantum algorithms for
cases where it is not necessary to know the complete path, like the st-cut set algorithm of
Section 4.2.

▶ Theorem 19. Fix p > 0, and a family of n-vertex simple graphs G with vertices s and t.
There is a quantum algorithm (Algorithm 2) that solves st-edgeG(x) with probability 1−O(p)

and uses Õ
(

n
√

Rs,t(G(x))
p

)
expected queries on input x. More precisely, with probability

1−O(p), the algorithm samples from a distribution q̂ such the total variation distance between
q̂ and qG(x),s,t is O(√p), where qG(x),s,t(u, v) (defined in Equation (7)) is proportional to
θ∗(u, v)2, where θ∗ is the optimal unit st-flow on G(x).
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To obtain this result, we run our witness state generation algorithm (Algorithm 1) using
the span program for st-connectivity, PGst

and an oracle Ox that defines a graph G(x)
with a path between s and t. When successful, the output will be a quantum state that
is approximately proportional to the optimal flow state, Equation (6), which itself is a
superposition of edges on paths by Lemma 7. Then from Equation (7), when we then
measure in the standard basis, the probability of obtaining an edge e should be close to
qG(x),s,t(e), and with high probability, we will measure some edge on a path.

Proof of Theorem 19: We analyze Algorithm 2.

Algorithm 2 EdgeFinder(Ox, p, G, s, t).

Input : Failure tolerance p > 0, oracle Ox for the graph G(x) = (V,E(x)), s, t ∈ V
such that there is a path from s to t.

Output : An output e, or “Failure”, such that with probability 1−O(p), e is an edge
on a path from s to t.

1 ϵ← p2; δ ← p

2 |θ̂⟩ ← WitnessGeneration(PGst
, Ox, ϵ, δ) (Algorithm 1)

3 if |θ̂⟩ ̸= “Failure” then
4 e←result of Measuring |θ̂⟩ in the standard basis
5 Return “Failure”

If WitnessGeneration(PGst , Ox, ϵ, δ) (see Algorithm 1) does not fail, which happens
with probability 1−O(δ) = 1−O(p), then by Theorem 10,

|θ̂⟩ = |θ∗⟩/∥|θ∗⟩∥+ |η⟩ (40)

for some |η⟩ such that ∥|η⟩∥2 = O(ϵ) and from Equation (6), |θ∗⟩ = 1
2
∑

e∈
−→
E
θ∗(e)|e⟩ where

θ∗ is the optimal unit st-flow in G(x), so ∥|θ∗⟩∥ =
√
Rs,t(G(x)).

Let PE(x),s,t be the projection onto the set of edges in −→E (x) that are on (self-avoiding)
paths from s to t. The probability that we measure such an edge when we measure |θ̂⟩ in
the standard basis is the square of∥∥∥PE(x),s,t|θ̂⟩

∥∥∥ ≥ ∥∥PE(x),s,t|θ∗⟩/ ∥|θ∗⟩∥
∥∥− ∥∥PE(x),s,t|η⟩

∥∥ = 1−O(
√
ϵ), (41)

where we have used the triangle inequality, and the fact that PE(x),s,t|θ∗⟩ = |θ∗⟩, by Lemma 7.
Continuing, we have probability∥∥∥PE(x),s,t|θ̂⟩

∥∥∥2
≥
(
1−O(

√
ϵ)
)2 = 1−O(

√
ϵ). (42)

Thus our total probability of success of measuring an edge on a path is (1−O(δ))(1−O(
√
ϵ).

Since we are setting ϵ to p2 and δ to p, our total probability of success is 1−O(p).
Let q̂ be the output distribution of Algorithm 2. By the relationship between total

variation distance and trace norm, we have that d(q̂, qG(x),s,t), the total variation distance
between q̂ and qG(x),s,t, is at most the trace norm of |θ̂⟩ and |θ∗⟩/∥|θ∗⟩∥ (see e.g. [33]) so

d(q̂, qG(x),s,t) ≤
√

1−
∣∣∣⟨θ̂|θ∗⟩/ ∥|θ∗⟩∥

∣∣∣2
=
√

1−
∣∣∣⟨θ̂|θ̂⟩ − ⟨θ̂|η⟩∣∣∣2

≤
√

1− (1− ∥|η⟩∥)2

≤
√

2 ∥|η⟩∥ = O(ϵ1/4) = O(√p). (43)
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By Theorem 10, the expected query complexity of WitnessGeneration, and thus Algorithm 2
is

Õ

√w+(x)W̃−

ϵ
log
(

1
δ

) = Õ

(√
Rs,t(G(x))n

p

)
(44)

where we have used the fact that, for PGst
, w+(x) = Rs,t(G(x)) and W̃− = O(n2) [7, 21];

and set ϵ to p2 and δ to p, as in Algorithm 2. ◀

We can use Theorem 19 to prove the following separation between the quantum and
classical query complexity of finding an edge on a path:

▶ Theorem 20. Let G = (V,E) with s, t ∈ V be an n-vertex complete graph, and suppose we
are promised that G(x) has a path of length L for L ∈ [3, n/4] between s and t (L may depend
on x and need not be known ahead of time). Then st-edgeG(x) can be solved in Õ(n

√
L)

expected quantum queries on input x, while any classical algorithm has query complexity
Ω(n2).

Proof. For the quantum algorithm, we apply Theorem 19 with bounded probability of error
p = Ω(1), and use the fact that Rs,t(G) = O(L).

· · · · · ·

· · · · · ·

...
...

...
...

s t

S
(0)
s S

(0)
t

S
(1)
s S

(1)
t

3 ≤ L ≤ n/4

(L− 3)/2 (L− 3)/2

Figure 1 The solid black lines show the edges that are present in G(x) for any x. In addition,
G(x) contains a single edge between a vertex in S

(b)
s and S

(b)
t , where b = σ∗

1 , as in the dashed red
edge, resulting in a single path of length L.

For the classical lower bound, we reduce the following problem to path edge finding:
Given a string x of N = 2ℓ bits, (xσ)σ∈{0,1}ℓ such that there is a unique σ∗ with xσ∗ = 1,
output σ∗

1 . That is, we would like to output the first bit of the index of the unique 1-valued
bit of x. By an adversary argument similar to a standard OR lower bound, the bounded
error randomized query complexity of this problem is Ω(N). We will show how to solve
this problem with an algorithm for finding a path edge on a graph like the one depicted in
Figure 1.

For x ∈ {0, 1}N , let G(x) be a graph on n = Θ(2ℓ/2) vertices in which there is a unique
st-path of length L, for some odd L, as shown in Figure 1. The vertex s is connected by
a path of length (L − 3)/2 to a vertex that is additionally connected to a set of 2(ℓ−1)/2

vertices, S(0)
s = {u0,σ : σ ∈ {0, 1}(ℓ−1)/2}. In a symmetric manner, s is also connected by

another disjoint path of length (L − 3)/2 to a vertex that is additionally connected to a
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set of 2(ℓ−1)/2 vertices, S(1)
s = {u1,σ : σ ∈ {0, 1}(ℓ−1)/2}. In the same way, t is connected

by a pair of disjoint paths of length (L− 3)/2 to a pair of vertices, additionally connected
to S

(0)
t = {v0,σ : σ ∈ {0, 1}(ℓ−1)/2} and S

(1)
t = {v1,σ : σ ∈ {0, 1}(ℓ−1)/2} respectively. All

edges described so far (the black edges in Figure 1) are always present in G(x) (we simulate
querying the associated input bits by just outputting 1). We now describe edges whose
presence in G(x) is determined by x. For b ∈ {0, 1}, there is a potential edge between every
pair of vertices ub,σ ∈ S(b)

s and vb,σ′ ∈ S(b)
t , with the label xbσσ′ , meaning exactly one of

these is present in G(x) – the one with σ∗ = bσσ′. All remaining possible edges are never
present in G(x) (we simulate querying their associated input bits by just outputting 0).

We can find the first bit of σ∗ by running the edge finding algorithm on G(x). Assuming
the output is correct, there are the following possibilities:
1. If the algorithm outputs an edge from the middle part of the graph, then it must be the

one labelled by xσ∗ , so σ∗ is learned entirely.
2. If the algorithm outputs an edge from the left-hand side of the graph, it is on a path

between s and S
(b)
s for some b ∈ {0, 1}, and we know that σ∗

1 = b.
3. If the algorithm outputs an edge from the right-hand side of the graph, it is on a path

between t and S
(b)
t for some b ∈ {0, 1}, and we know that σ∗

1 = b.
In all cases, we have learned σ∗

1 . This gives a lower bound on path-edge finding of Ω(N) =
Ω(2ℓ) = Ω(n2). ◀

4.2 Finding an st-cut set
Given a graph G(x) containing a path from s to t, an st-cut set is a set of edges in G(x)
such that when those edges are removed from G(x), there is no longer a path from s to t.
The st-cut set problem is that of finding an st-cut set. This problem has applications to
detecting weak points in networks in order to figure out how to strengthen a network, or
conversely, for sabotaging networks.

We first note that for graphs with a single st-path, Theorem 19 can immediately be used
to find an st-cut set, since any edge on the path is an st-cut set. However, we can also
analyze more complex situations, as the following, in which we have an upper bound on
the effective resistance of the graph, and a lower bound on the optimal unit st-flow going
through any edge in the st-cut set:

▶ Theorem 21. For functions R, g : N→ R>0, let G = (V,E) with s, t ∈ V be a family of
n-vertex simple graphs, and suppose we are additionally promised that Rs,t(G(x)) ≤ R(n),
and there exists an st-cut set C ⊆ E(x) such that for each {u, v} ∈ C, θ∗(u, v)2 ≥ g(n) where
θ∗ is the optimal unit st-flow in G(x). Then there is a quantum algorithm that outputs a set
C ′ such that C ⊆ C ′ with bounded error, and has worst-case query complexity Õ

(
R(n)2n
g(n)3/2

)
.

We can assume without loss of generality that the C in Theorem 21 is a minimal st-cut.
While we are not guaranteed that the set C ′ output by the algorithm referred to in Theorem 21
is minimal, it is still an st-cut as long as it contains C, since its removal will disconnect s
and t.

To prove Theorem 21, we will use the following variation of the well-known “coupon
collector” problem.

▶ Lemma 22. Consider repeatedly sampling a random variable Z on a finite set S. Let
C ⊆ S be such that for each e ∈ C, Pr[Z = e] ≥ B. Let T be the number of samples to Z

before we have sampled each element of C at least once. Then E[T ] = O
(

log |C|
B

)
.
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Proof. For i ∈ {1, . . . , |C|}, the probability that Z is a new element of C, after i−1 elements
have already been collected, is pi ≥ (|C| − (i− 1))B. Let Ti be the number of samples to Z
after sampling (i− 1) elements of C, until we sample i elements of C, so Ti is a geometric
random variable with

E[Ti] = 1/pi ≤ ((|C| − (i− 1))B)−1. (45)

From this we can compute

E[T ] =
|C|∑
i=1

E[Ti] ≤
|C|∑
i=1

1
(|C| − (i− 1))B = 1

B

|C|∑
j=1

1
j

= Θ
(

log |C|
B

)
. (46)

◀

Proof of Theorem 21. We use parameters T ′ and ϵ, to be defined shortly, and δ = 1/4. Our
strategy is to repeatedly run WitnessGeneration(PGst

, Ox, ϵ, δ) (Algorithm 1) to produce
an approximate witness state, and then measure the resultant state in the standard basis to
get an edge e, which we add to C ′. We repeat this T ′ times, before outputting C ′.

Let Z be the random variable on E ∪ {Failure} representing the measured output of one
call to Algorithm 1. We set ϵ = Θ

(
g(n)
R(n)

)
small enough so that if the algorithm does not

fail, we produce a state |θ∗⟩/∥|θ∗⟩∥+ |η⟩ where ∥|η⟩∥2 ≤ g(n)/R(n) (see Equation (40) and
following discussion). Then the probability that we sample an edge e′ ∈ C when we measure
in the standard basis is

∥⟨e′| (|θ∗⟩/∥|θ∗⟩∥+ |η⟩)∥2 = ∥2θ∗(e′)/
√
Rs,t(G(x))− ⟨e′|η⟩∥2

≥ ∥2
√
g(n)/R(n)−

√
g(n)/R(n)∥2

= Ω(g(n)/R(n)). (47)

Since the probability of one call to Algorithm 1 not failing is 1− δ = Ω(1), for every e′ ∈ C,
we have Pr[Z = e′] ≥ B for some B = Ω(g(n)/R(n)). Thus, by Lemma 22, the expected
number of calls to Algorithm 1 before C ⊆ C ′ is at most:

E[T ] = O

(
R(n)
g(n) log |C|

)
= O

(
R(n)
g(n) log n

)
. (48)

By Markov’s inequality, if we set T ′ = 100E[T ], the algorithm will succeed with bounded
error.

By Theorem 10, each call to Algorithm 1 has expected query complexity

Õ

(√
Rs,t(G(x))n2

ϵ

)
= Õ

(
n

√
R(n)

g(n)/R(n)

)
= Õ

(
nR(n)√
g(n)

)
, (49)

so the total expected query complexity is

Õ

(
T ′ nR(n)√

g(n)

)
= Õ

(
R(n)
g(n)

nR(n)√
g(n)

)
= Õ

(
nR(n)2

g(n)3/2

)
. (50)

We can get a worst case algorithm by stopping after 100 times the expected number of steps,
if the algorithm is still running, and outputting the current C ′. We have no guarantee on the
correctness of C ′ in that case, but by Markov’s inequality, this only happens with probability
1/100. ◀
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We can use Theorem 21 to prove the following result for finding an st-cut set in a
particular family of graphs with expander subgraphs and a single st-cut edge.

▶ Corollary 23. Let G = (V,E) with s, t ∈ V be a family of n-vertex graphs, and suppose we
are additionally promised that G(x) consists of two disjoint, d-regular (for d ≥ 3), constant
expansion subgraphs, each on n/2 vertices, where s and t are always put in separate subgraphs,
plus a single additional edge connecting the two subgraphs. Then there is a quantum algorithm
that finds the st-cut edge with bounded error in worst-case Õ(n) queries, while any classical
algorithm has query complexity Ω(n2).

Proof. For a classical algorithm, even if the algorithm had complete knowledge of the two
subgraphs, there would be Ω(n2) possible locations for the connecting edge, reducing the
problem to search, requiring Ω(n2) queries.

For the quantum algorithm, note that the maximum effective resistance between any
two points in a d-regular (for d ≥ 3), constant expansion graph on n-vertices is O(1/d) [10].
Thus Rs,t(G(x)) = Ω(1). Additionally, since there is only one edge e′ connecting the two
subgraphs, the optimal unit st-flow on e′, θ∗(e′), must be equal to 1.

Applying Theorem 21 with R(n) = O(1) and g(n) = Ω(1), we get a worst-case bounded
error quantum query complexity Õ(n). ◀

4.3 Path Finding

In this section, we consider the problem of finding an st-path in G(x), which we denote
st-pathG(x). That is, given query access to a string x that determines a subgraph G(x) =
(V,E(x)) of an n-vertex graph G, as described in Section 2.3 (if G is a complete graph, x
is just the adjacency matrix of G(x)), with s, t ∈ V such that there is at least one path
from s to t in G(x), output a path from s to t. A path is a sequence of distinct vertices
u⃗ = (u0, . . . , uℓ) such that s = u0, t = uℓ, and for all i ∈ [ℓ], (ui−1, ui) ∈

−→
E (G(x)).

To solve st-pathG, one might expect that we could simply apply Algorithm 2 multiple
times, storing each edge’s endpoints and identifying vertices of the endpoints of found edges
to reduce the size of the graph, until a path is found. However, such an algorithm could run
into challenges that could produce slow running times. For example, in a graph where there
are many st-paths, the algorithm could spend too much time sampling edges from different
paths, rather than focusing on completing a single path. In the case of a single st-path, such
a strategy would not take advantage of the fact that once one edge on the path is found, the
problem reduces to two connectivity subproblems (from s to the found edge, and from t to
the found edge) that each typically have significantly smaller query complexities than the
original problem.

Thus we develop two algorithms that allow us to prove tighter expected query complexity
bounds than Ref. [18] for the case of short longest st-paths, one in the case of a single st-path,
and one for generic graphs.

Before getting into quantum algorithms for path detection, we note the following corollary
of Theorem 20, via a reduction to path finding from path-edge finding, that characterizes
the classical query complexity of path finding in the case of short longest st-paths:

▶ Corollary 24. Let G = (V,E) with s, t ∈ V be an n-vertex complete graph and suppose
we are promised that G(x) has a path of length L for L ∈ [3, n/4] between s and t. Then
st-pathG(x) has randomized query complexity Ω(n2).
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4.3.1 Graph with a Single Path
When the graph G(x) is known to have a single st-path, we will we use a divide-and-conquer
algorithm to find the path. To show that the divide-and-conquer approach is useful, we first
consider the simpler algorithm (as described above) that uses Theorem 19 to find an edge
{u, v} on the path, and then once that edge is found, the algorithm is run on a new graph
where vertices u and v are identified. This process is continued until the edge {s, t} is found.
Thus if the length of the path is initially L, after an edge is found, the path length will be
L− 1, and then L− 2 in the next iteration, etc. Ignoring error, and assuming the algorithm
finds an edge in each round, by Theorem 19, the query complexity at the ith round will be
Õ(n
√
L− i). Over the course of the L rounds, the total query complexity will be

L−1∑
i=0

Õ(n
√
L− i) = Õ

(
nL3/2

)
. (51)

For L ≥ n2/3, this algorithm does not even outperform the best classical algorithm, and for
L ≥ n1/3 it does not outperform the quantum algorithm of Ref. [18].

We instead consider the following divide-and-conquer approach, described in detail in
Algorithm 3. We use Algorithm 2 to find a set of edges, some of which are very likely to be
on the path. Then we use Lemma 8 to verify which of those edges is actually on the path,
and Lemma 9 to ensure we choose an edge near the center of the path, so we are left with
two subproblems of approximately half the size. Finally two recursive calls find the unique
path from s to the found edge, and the unique path from t to the found edge.

▶ Theorem 25. Let p ≥ 0, and G = (V,E) with s, t ∈ V be a family of n-vertex graphs, and
suppose we are promised that G(x) contains a single st-path of some length L (L may depend
on x and need not be known ahead of time). Then there is a quantum algorithm (Algorithm 3)
that with probability 1− O(p) solves st-pathG(x) and uses Õ(nL1+o(1) log2(1/p)) expected
queries on input x.

Proof. We first analyze the probability of error, then we prove the correctness of Algorithm 3,
assuming that no errors are made, and finally, we analyze the query complexity.

We will stop the algorithm after O(n) recursive calls. Since each recursive call returns
an edge, and any path has length at most n, this termination will not affect the success
probability. We then bound our probability of error by O(p/n4) = O(p), by showing that
the failure probability in each recursive call is O(p/n5).

We say a failure occurs (in some recursive call) if any of the following happens:
1. Any one of the at most 4ℓ PathDetection algorithms errs. This has probability O(ℓδ) =

O(p/n5), by our choice of δ = p/(ℓn5).
2. One of the at most O(ℓ) calls to WitnessSizeEst produces an estimate that is not within

the desired relative error. This has probability O(ℓδ) = O(p/n5).
3. None of the ℓ iterations of EdgeFinder produces an edge that is on the st-path, and

moreover, that is within (ε3 − ε2)L = √ε1L of the middle of the path. The absence of
this type of failure is sufficient to guarantee that the condition on Line 20 will be satisfied,
as long as WitnessSizeEst is also successful.

We analyze the probability of the last event, assuming the first two do not occur. Let
e0, . . . , eL−1 denote the path edges, in order, in the unique st-path in G(x). For one of the ℓ
runs of EdgeFinder, the probability that it does not output “Failure” is ε1. Conditioned on
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Algorithm 3 SinglePathFinder(Ox, p, G, s, t).

Input : Failure tolerance p > 0, oracle Ox for the graph G(x) = (V,E(x)), s, t ∈ V
such that there is a unique path from s to t.

Output : With probability 1−O(p), a set of edges whose vertices form a path from s

to t in G(x).
// Base Cases

1 if s = t then Return ∅
2 if {s, t} ∈ E(x) then Return {s, t}

// Finding Possible Edges on Path
3 ε1 ← 1

log n // Any ε1 = o(1) that is inverse polylog(n) would suffice
4 S ← ∅
5 ℓ← 2 log(n5/p)

ε1
for i = 1 to ℓ do

6 e← EdgeFinder(Ox, ε1, G, s, t) (Algorithm 2)
7 if e ̸= “Failure” and e = (u, v) ∈ −→E (x) then S = S ∪ {(u, v), (v, u)}

// Finding a possible edge that is actually on a path
8 δ ← p/(ℓn5)
9 for (u, v) ∈ S do

10 Initialize PathDetection(Ox, G
−
{u,v}, s, u, δ) (Lemma 8)

11 Initialize PathDetection(Ox, G
−
{u,v}, v, t, δ)

12 flag ← True
13 while flag do
14 Run in parallel each PathDetection algorithm initialized in the prior for loop,

until each algorithm applies Ox once or terminates (or do nothing for those
algorithms that have terminated previously)

15 for (u, v) ∈ S do
16 if PathDetection(Ox, G

−
{u,v}, s, u, δ) and PathDetection(Ox, G

−
{u,v}, v, t, δ)

have both terminated in this iteration of the while loop and both detected
paths then

17 ε2 ←
√
ε1, ε3 ← 2√ε1

18 k̃ ←WitnessSizeEst(Ox, G, s, u, ε2, δ) (Lemma 9) // estimate of
dist. s to u

19

20 if |k̃ − L/2| ≤ ε3L then
21 (u∗, v∗)← (u, v)
22 flag ← False

// Recursive call
23 Return
{(u∗, v∗)}∪ SinglePathFinder(Ox, p,G, s, u

∗)∪ SinglePathFinder(Ox, p,G, v
∗, t)
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the output of EdgeFinder not being “Failure,” by Theorem 19, we sample from a distribution
q̂ that is √ε1-close in total variation distance to the uniform distribution over edges on the
st-path. Thus, the probability that we sample an edge in the set

R = {ek : k ∈ [L/2− (ε3 − ε2)L,L/2 + (ε3 − ε2)L]}, (52)

where ek is the kth path edge, is:

q̂(R) ≥ |R|
L
−
√
ε1 = 2(ε3 − ε2)−

√
ε1 = 2(2

√
ε1 −

√
ε1)−

√
ε1 =

√
ε1. (53)

Thus, using ε1 ≤ 1/2, each of the ℓ samples has probability at least (1− ε1)√ε1 ≥
√
ε1/2 of

being a path edge in the correct range, R. Using Hoeffding’s bound, the probability that
none of them is a path edge in the correct range is thus at most:

e−2ℓ(√
ε1/2)2

= e−ℓε1/2 = e− log(n5/p) = O(n−5p) (54)

by our choice of ℓ = 2 log(n5/p)/ε1. The total probability of failure in one round is thus at
most O(p/n5).

We prove correctness using induction on L, the length of the path, assuming no failure
occurs. For the base case, if L ∈ {0, 1}, we will correctly return the path in Lines 1 and 2.

For the inductive case, let L′ ≥ 1. We assume SinglePathFinder works correctly
for all lengths L such that 0 ≤ L ≤ L′. Now consider a graph with L = L′ + 1. Then
assuming no failure, we will sample at least one edge (u, v) in the set R = {ek : k ∈
[L/2− (ε3− ε2)L,L/2 + (ε3− ε2)L]} (not doing so is a failure of the type specified by Item 3
in the list above). Then if there are no errors in the PathDetection algorithms, Line 16 will
be satisfied when (u, v) corresponds to an edge in the path where u is closer to s and v is
closer to t. This is because we have removed {u, v} from the graph when we are running
PathDetection, and since there is a unique st-path, there will only be a path from s to u
and not from s to v, and likewise for t.

Then for every edge (u, v) that we have correctly found using PathDetection to be on
a path, we apply WitnessSizeEst (see Lemma 9) to estimate Rs,u(G(x)). If (u, v) = ek,
then e0, . . . , ek−1 is the unique su-path in G, and it has length k, and so Rs,u(G(x)) = k,
and thus WitnessSizeEst is actually estimating k. Assuming (u, v) ∈ R, (and we know this
holds for at least one such edge), we have |k − L/2| ≤ (ε3 − ε2)L. Then since we assume
WitnessSizeEst does not fail, it outputs an estimate k̃ of k, such that |k̃ − k| ≤ ε2k ≤ ε2L.
Together, these conditioned imply |k̃−L/2| ≤ ε3L, which will trigger the while loop to halt.
It is possible that we will break out of the loop for an edge not in R, but at the least we
know that if no failure occurs, we will will certainty break out of the while loop with an
edge (u∗, v∗) on the path.

Now that we have the edge (u∗, v∗), to find the rest of the path, we just need to find the
rest of the path from s to u∗ and from v∗ to t. But both of these problems will have path
lengths between 0 and L′, so by inductive assumption, the recursive calls in Line 23 will be
correct, and will return the edges on the paths.

Turning to our analysis of the expected query complexity, we first bound the contribution
to the expected query complexity in the case of a failure. As just discussed, a failure
occurs with probability O(p/n4). Even in case of failure, each of our O(n log(n/p)) =
O(n2 log(1/p)) calls to EdgeFinder, PathDetection, and WitnessSizeEst still has expected
query complexity at most Õ(n1.5(1/ε1 + 1/ε3/2

2 ) log(1/δ)) = O(n2 log(1/p)) (for any x),
for a total query cost of O(n4 log2(1/p)). Thus, the error case contributes an additive
O(p log2(1/p)) = O(1) to the expected query complexity.
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Next, we create a recurrence relation for the expected query complexity, assuming no
failure occurs. Let E[TL] be the expected query complexity of Algorithm 3 on a graph with n
vertices, when there is a single path, and that path has length L. For k ∈ {0, . . . , L− 1}, let
q̃L(k) be the probability that the path edge that we find, (u∗, v∗), is ek. Because we assume
no subroutine call fails, we can assume that k̃ is an estimate of k with relative error ε2, so
|k̃−k| ≤ ε2k ≤ ε2L. From the conditional statement in Line 20, we also have |k̃−L/2| ≤ ε3L.
Taken together, these imply:

|k − L/2| ≤ (ε2 + ε3)L = (
√
ε1 + 2

√
ε1)L = 3

√
ε1L. (55)

Thus with certainty (assuming no failure occurs), we will exit the while loop with (u∗, v∗) =
ek, for k ∈ [(1/2− 3√ε1)L, (1/2 + 3√ε1)L], so:

E[TL] = Õ(ℓn
√
L/ε1) + Õ(ℓn

√
L log(1/δ)) + Õ

(
ℓ
n
√
L

ε
3/2
2

log(1/δ)
)

+
⌊(1/2+3√

ε1)L⌋∑
k=⌈(1/2−3√

ε1)L⌉

q̃L(k) (E[Tk] + E[TL−k−1]) , (56)

where the first three terms come from: (1) running EdgeFinder (Algorithm 2, Theorem 19)
ℓ times; (2) at most O(ℓ) parallel PathDetection (Lemma 8) algorithms; and (3) running
WitnessSizeEst (Lemma 9) O(ℓ) times; and the final term from the two recursive calls.

To get a function that is strictly increasing in L, let T ′
L := maxk≤L E[Tk], so in particular

E[TL] ≤ T ′
L, and T ′

L also satisfies the recursion in Equation (56) (with = replaced by ≤).
Then we have, for any k ∈ [(1/2− 3√ε1)L, (1/2 + 3√ε1)L],

E[Tk] + E[TL−k−1] ≤ 2T ′
(1/2+3√

ε1)L. (57)

Continuing from Equation (56), and using 1/ε1 = log n and 1/ε2 = 1/√ε1 =√
log n, ℓ = 2 log(n5/p)/ε1 = O(log(1/p) log2 n), and log(1/δ) = O(log(ℓn/p)) =

log(1/p)polylog(n, log(1/p)), we get

E[TL] ≤ T ′
L ≤ Õ

(
n
√
L log2(1/p)

)
+ 2T(1/2+3√

ε1)L. (58)

To analyze this recurrence, we add up the queries made in every recursive call. At the
ith level of recursion, there are 2i recursive calls, and each one makes Õ

(
n
√
L/bi log2(1/p)

)
queries itself, where b = (1/2 + 3√ε1)−1, before recursing further. Thus

E[TL] ≤ Õ
(
n
√
L log2(1/p)

)
+

logb L∑
i=1

2i

√
L

bi
· Õ
(
n log2(1/p)

)
≤ Õ

(
n
√
L log2(1/p)

)
+ Õ

(
n
√
L log2(1/p)

)(
2/
√
b
)logb L

. (59)

Letting η := 1
1+ 1

6√
ε1

= O(1/
√

log n) since ε1 = 1/ log n, so that b = 2(1− η), we have:

log
(

2/
√
b
)logb L

=
(

1− 1
2 log b

)
logL
log b =

(
1

log b −
1
2

)
logL

=
(

1
1− log 1

1−η

− 1
2

)
logL =

(
1
2 +

log 1
1−η

1− log 1
1−η

)
logL

so
(

2/
√
b
)logb L

= L
1
2 +o(1), (60)

TQC 2023



5:26 Quantum Algorithm for Path-Edge Sampling

where we used log 1
1−η

1−log 1
1−η

= o(1), since log 1
1−η = o(1), which follows from η = o(1). Thus,

continuing from Equation (59), we have:

E[TL] = Õ
(
n
√
L log2(1/p)

)
L

1
2 +o(1) = Õ

(
nL1+o(1) log2(1/p)

)
. (61)

We note that while our approach in Theorem 25 outperforms the simpler, non-divide-
and-conquer algorithm analyzed in Equation (51), it performs worse than the algorithm of
Ref. [18] for graphs with L = Ω(n1/2−o(1)). Thus, one could run Algorithm 3 until O

(
n3/2)

queries had been made, and then switch to the algorithm of Ref. [18].

4.3.2 Path Finding in Arbitrary Graphs

When G(x) is not known to only have one st-path, while it is possible that an algorithm
similar to Algorithm 3 would solve st-pathG(x), we have not been able to bound the running
time effectively. This is because in the case of a single path, once you find an intermediate
edge on the path, the longest paths from s and t to that edge must be shorter than the
length of the longest path from s to t. This ensures that subproblems take shorter time than
the original problem. With multiple paths, we no longer have that guarantee.

However, we provide an alternative approach that, while not as fast as Algorithm 3, still
provides an improvement over the algorithm of [18] for graphs in which all (self-avoiding)
paths from s to t are short. Our approach does not make use of our path-edge sampling
algorithm as a subroutine, and instead uses the path detection algorithm of Lemma 8 to
decide whether there are paths through various subgraphs, and then uses that information
to find each edge in a path in order from s to t. In this way, we avoid the problem of
subproblems being larger than the original problem, since if the longest path from s to t has
length L, and the first edge we find on the path is (s, u), then longest path from u to t that
doesn’t go through s must have length at most L− 1. However, we lose the advantage of a
divide-and-conquer approach.

To find the first edge on a path, we use a group testing approach. We divide the neighbors
of s in G into two sets, S1 and S2 and run path detection algorithms in parallel on two
subgraphs of G(x), one with edges from s removed, except those to vertices in S1 (that is,
G−

{{s,u}∈E:u∈S1}), and one with edges from s removed, except those to vertices in S2. We
will detect which of these subgraphs contains a path, and we will know there is a path whose
first edge goes from s to a vertex in the corresponding set (S1 or S2). Then we divide that
set into half again, and repeat, until we have narrowed down our set to one vertex u, that
must be the first vertex on a path from s to t.

At this point we have learned the first edge on a path from s to t. We then consider G−
s ,

which is G with vertex s removed, and recursively iterate this procedure to learn the first
edge on a path from u to t. Using this approach, we obtain the following result:

▶ Theorem 26. Let p ≥ 0, and G = (V,E) with s, t ∈ V be a family of n-vertex graphs,
and suppose we are promised that there is a path from s to t in G(x). On input x, if the
longest st-path in G(x) has length L (L need not be known ahead of time), there is a quantum
algorithm that returns the edges on a path with probability 1−O(p) and uses Õ(nL3/2 log(1/p))
expected queries.

A detailed description of the algorithm and the proof of Theorem 26 can be found in the full
version of this work [26, Section 4.3.2].
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Table 1 Main results contrasted with the previous state of the art.

Hamiltonian Our result Previous result

fermionic
k-sparse, strictly q-local fermionic 1/(qk + 1) 1/O(q2k2)[5]

k-sparse, 4, 2-local 1/(4k + 1) 1/O(k2)[5]
k-sparse, q-local 1/O(qk2) N/A

qubit
k-sparse, strictly q-local 1/(qk + 1) 3−q/2/(4qk)[3]

k-sparse, 2-local 1/(2k + 1) 1/(24k)[3]
k-sparse, q-local 1/O(qk2) 3−q/2/(4qk)[3]

1 Introduction

Finding the ground state energy of systems of particles is a fundamental problem of quantum
mechanics. Finding the ground state energies of local Hamiltonians is believed to be difficult
for both classical and quantum computers [7, 8]. Instead, it is often easier to find classical
and quantum approximations to these ground state energies. In this paper, we consider
approximations to the extremal eigenvalues of a local, k-sparse fermionic Hamiltonian:

H =
∑

Γ
HΓcΓ.

Here H is a fermionic Hamiltonian with real coefficients HΓ, where ignoring phase factors,
each term cΓ is a product of q Majorana operators (i.e., H is q-local with q even) and
each Majorana operator appears in at most k non-zero terms (i.e., H is k-sparse). We let
m =

∑
Γ |HΓ|.

Our main technical contribution is a carefully designed graph G, whose vertices correspond
to the terms in H. We are able to construct states that achieve better approximations than
in previous works by finding a suitably large independent set in G. This work is similar to
(but distinct from) recent work by Herasymenko, Stroeks, Helsen, and Terhal [5] in which a
similar graph is used to find diffuse sets of Majorana monomials from which they construct
a state. Herasymenko et al. also work with a graph whose vertices correspond to the terms
in H; however, their edge set is different. Our new edge set also allows us to generalize
our results beyond the q = 4, 2 case handled by Herasymenko et al., and to prove better
approximation ratios.

Table 1 summarizes our main results. We also list the previously known best results.
The table is split into two sections: (1) fermionic Hamiltonians and (2) qubit Hamiltonians.
Although our work does not focus on qubit Hamiltonians, our proof ideas furnish results
that improve upon the previously known best results (see Sections 2 and 6).

2 Contextualizing our results

Bravyi, Gosset, Koenig, and Temme [2] were the first to suggest approximation algorithms for
the largest eigenvalue of fermionic Hamiltonians using fermionic Gaussian states, achieving
a 1/O(n log(n))-approximation ratio for generic 4-local fermionic Hamiltonians. They also
asked whether Gaussian states might provide a constant-factor approximation. Among other
results, Hastings and O’Donnell [4] subsequently demonstrated that Gaussian states offer
at best a 1/Ω(

√
n)-approximation for a class of 4-local fermionic Hamiltonians, known as

the Sachdev-Ye-Kitaev (SYK) model. Hamiltonians in the SYK model are dense 4-local
Hamiltonians, hence the work of Hastings and O’Donnell left open the possibility of a
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constant-factor Gaussian approximation algorithm for models with sparse Hamiltonians.
Sparse Hamiltonians are a natural class of Hamiltonians to study. Examples, such as the
Fermi-Hubbard model, are ubiquitous [6].

Recent work by Herasymenko, Stroeks, Helsen, and Terhal [5] proves the existence of
such constant-factor approximations. They show that λmax(H) ≥ m/Q, where λmax(H)
is the largest eigenvalue of H and Q = q(q − 1)(k − 1)2 + q(k − 1) + 2 for a k-sparse
strictly q-local fermionic Hamiltonian. Herasymenko et al. also prove an improved ratio of
Q = 12(k + 1)2 + 4(k − 1) + 2 when specializing to k-sparse, 4, 2-local fermionic Hamiltonians.
Our work directly improves upon these results (see Table 1). Our work also removes the
conditions on system size present in Herasymenko et al. This leads to immediate improvements
in Herasymenko et al.’s work on the sparse SYK model. All of the above results are obtained
by efficient classical algorithms producing descriptions of Gaussian states. We refer the
reader to [5] for further background, motivation, and applications to the SYK model. Finally,
Herasymenko et al.’s result do not extend to k-sparse, q-local fermionic Hamiltonians (i.e.,
where all terms have locality at most q). To our knowledge, our 1/O(qk2) approximation is
the first of this kind. It remains an open question whether this may be improved to 1/O(qk).

Results of the above flavor were obtained for traceless k-sparse qubit Hamiltonians with
constant locality by Harrow and Montanaro [3], who show that λmax(H) ≥ Ω(m/k) using
product states, where k-sparse and m are defined analogously as above; bounds upon which
our ideas give a constant-factor improvement (see Table 1). They also give an improved bound
with respect to the operator norm instead of the maximum eigenvalue: ∥H∥ ≥ Ω(m/

√
k).

In the fermionic case, we give a 2-local example with λmax(H) = ∥H∥ = Θ(m/k), showing
that such an improvement is not possible (see Section 7) and that our result for the strictly
q-local case is tight. As noted in Table 1, our techniques also apply to the Hamiltonians
considered by Harrow and Montanaro, yielding approximation guarantees with small hidden
constants and improved dependence on q.

3 Preliminaries

In this section, we provide the necessary preliminaries for the rest of the work. We begin
with an overview of fermionic Hamiltonians before providing the necessary background on
Gaussian states. This section draws upon [5, 4, 1].

3.1 Fermionic Hamiltonians
Fermionic Hamiltonians describe systems of fermionic particles, such as electrons. For our
purposes, it is easiest to express a fermionic Hamiltonian in terms of Majorana operators.
Throughout, we use the notation [n] := {1, . . . , n}. We also use the notation E = {Γ ⊆ [n] |
HΓ ̸= 0} to denote the set of non-zero terms in a Hamiltonian.

▶ Definition 1. Given n fermionic modes, a set of 2n traceless and Hermitian operators
{ci}2n

i=1 are Majorana operators if they satisfy cicj + cjci = 2δij for all i, j ∈ [2n].

▶ Definition 2. Let {ci} be a collection of 2n Majorana operators endowed with an ordering
(say the lexicographic ordering). A fermionic Hamiltonian has the form:

H =
∑

Γ⊆[2n]

HΓcΓ, (1)

where Γ ⊆ [2n] has even order, cΓ is the product of Majorana operators appearing in Γ (ordered
lexicographically), and the HΓ ∈ R. Note that cΓ may contain an additional pre-factor of i in
order to satisfy hermiticity (e.g., when |Γ| = 2).

TQC 2023
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▶ Definition 3. If H is a fermionic Hamiltonian defined in terms of 2n Majorana operators,
then H is q-local if there exists q ∈ N such that each non-zero term in H has locality at
most q, that is, for all Γ ⊆ [2n] with HΓ ≠ 0, |Γ| ≤ q. H is strictly q-local if |Γ| = q for all
non-zero summands.

▶ Definition 4. Let H be a fermionic Hamiltonian on 2n Majorana operators. Then H is
k-sparse if each Majorana operator ci appears in at most k non-zero terms, that is, for all
i ∈ [2n], |{Γ ∈ E | i ∈ Γ}| ≤ k.

3.2 Gaussian states
First note that for any real, orthogonal matrix R ∈ O(2n), the transformation

c̃i =
2n∑

j=1
Rijcj , (2)

gives rise to a new set of [2n] Majorana operators {c̃i}.

▶ Definition 5. Let {ci} be a set of [2n] Majorana operators, R ∈ O(2n), and {c̃i} defined
as in 2. For any assignment λ1, . . . , λn ∈ [−1, 1], the following state is a (mixed) fermionic
Gaussian state:

ρ = 1
2n

n∏
j=1

(
I + iλj c̃2j−1c̃2j

)
(3)

The state ρ is pure when λj ∈ {±1} for all j ∈ [n].

Fermionic Gaussian states exhibit several nice properties. Not only are they the ground
states of homogeneous 2-local fermionic Hamiltonians [1], but their higher-order correlates
are efficiently computable from their correlation matrix. If ρ is defined as in Definition 5,
then the correlation matrix M of ρ is the real, antisymmetric 2n × 2n matrix with entries
defined as:

Mij = i

2Tr(ρ[ci, cj ]). (4)

The higher-order correlates of ρ can be computed via Wick’s formalism:

Tr(cΓρ) = Pf(MΓ), (5)

where MΓ is the |Γ| × |Γ| submatrix of M containing only the ordered rows and columns in
Γ and Pf(·) is the matrix Pfaffian. Finally, for any Gaussian state ρ, the set {λj} and M

are connected by the following lemma:

▶ Lemma 6 (Bra05). For any Gaussian state ρ with correlation matrix M , there exists
some R ∈ O(2n) such that the adjoint action of O(2n) on M block-diagonalizes M into the
following form:

M = R
n⊕

j=1

(
0 λj

−λj 0

)
RT , (6)

where the λj are the same as in Definition 5. Thus, every real, anti-symmetric matrix M is
the correlation matrix for some Gaussian state ρ.
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4 Main approximation algorithm

In this section, we demonstrate our main technical ideas by proving an approximation ratio
for k-sparse Hamiltonians with both 4-local and 2-local terms. We chose this specific case as
it highlights all of our technical ideas, while also being the most physically interesting case.
In Section 6 we show how these ideas generalize to the other cases described in Table 1.

▶ Theorem 7. There is a classical polynomial time algorithm that, given as input the weights
{HΓ} of some k-sparse and 4, 2-local fermionic Hamiltonian H, returns a description of a
quantum state ρ achieving energy

Tr(Hρ) ≥ 1
4k + 1

∑
Γ

|HΓ| ≥ 1
4k + 1λmax(H).

Proof. Define a graph G = (V, E) with vertices corresponding to the nonzero terms in the
Hamiltonian (i.e., V = E). The graph G may contain vertices corresponding to 2-local or
4-local terms. We include an edge (vΓ, vΓ′) ∈ E if and only if one of the following conditions
is met:

(i) cΓ and cΓ′ share one or more Majorana operators (i.e., Γ ∩ Γ′ ̸= ∅), or
(ii) Γ and Γ′ are disjoint and Γ ∪ Γ′ ∈ E .

If there are m nonzero terms in the Hamiltonian then the graph G has m vertices, and the
degree of a vertex in the graph is at most 4k. We can see the latter as follows. Fix some
vertex vΓ. By construction,

deg(vΓ) = |{(Γ, Γ′) ∈ E × E | Γ and Γ′ satisfy (i) or (ii)}|. (7)

We consider two cases:
Γ is 4-local. Consider an edge (vΓ, vΓ′). As H contains no 6-local or 8-local terms,
Γ ∩ Γ′ ̸= ∅. As H is k sparse, there are at most 4k Γ′ for which this can occur.
Γ is 2-local. Let a equal the number of 4-local Hamiltonian terms overlapping with Γ,
and let b equal the number of 2-local terms overlapping with Γ. We claim that the degree
of vΓ is at most 2a + b.
There are b 2-local Γ′ satisfying (i) with Γ. Each 2-local Γ′ satisfying (ii) results in a
unique 4-local Γ ∪ Γ′ ∈ E overlapping with Γ, hence there at most a such Γ′. Finally, no
4-local Γ′ may satisfy (ii), and there are a 4-local Γ′ satisfying (i).
Since Γ overlaps with at most 2k Γ′, we have a + b ≤ 2k so that 2a + b ≤ 4k.

By Brooks’ Theorem we can in polynomial time find a coloring of the vertices of G with at
most 4k + 1 colors. This means we can partition the vertices into at most 4k + 1 independent
sets, {S1, ..., St}, with one of these sets having at least a 1/(4k + 1) fraction of the sum of
the absolute values of the weights:∑

Γ
|HΓ| =

∑
Si

∑
Γ∈Si

|HΓ| ≤ (4k + 1) max
i

∑
Γ∈Si

|HΓ|. (8)

It follows from Equation (8) that

max
i

∑
Γ∈Si

|HΓ| ≥ 1
(4k + 1)

∑
Γ

|HΓ|.

Define Sj = arg maxj

∑
Γ∈Sj

|HΓ|, and consider the following state:

ρ = 1
2n

∏
Γ∈Sj

(I + sign(HΓ)cΓ). (9)
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We claim that ρ is a valid quantum state and obtains objective
∑

Γ∈Sj
|HΓ|. By definition,

ρ is proportional to a projector on a stabilizer state with stabilizer generators given by cΓ for
Γ ∈ Sj : Observe that [cΓ, cΓ′ ] = 0 for all Γ, Γ′ ∈ Sj since Sj is an independent set. Hence, ρ

is the product of commuting projectors and must be positive semidefinite.
To see that ρ obtains the desired objective, we first expand the product in Equation (9)

as a sum and consider products of two or more terms, σ =
∏

p cΓp for Γp ∈ Sj . If any of
the Γp are 4-local or p ≥ 3, σ cannot be proportional to a term of H since the Γ ∈ Sj are
disjoint, and no cancellation in products of Majorona operators can occur. The remaining
case is a product of two 2-local operators. For any such Γ, Γ′ ∈ Sj , by (ii) and because Sj is
an independent set, the product cΓcΓ′ cannot be proportional to cΓ′′ for any Γ′′ ∈ E .

Hence we have

Tr(Iρ) = 1,

T r(cΓρ) = sign(HΓ) ∀Γ ∈ Sj , and
Tr(cΓρ) = 0 ∀Γ ∈ E \ Sj .

This yields the desired claim that ρ is a normalized state for which

Tr(Hρ) =
∑

Γ
HΓTr(cΓρ) =

∑
Γ∈Sj

HΓTr(cΓρ) =
∑

Γ∈Sj

|HΓ| ≥ 1
4k + 1

∑
Γ

|HΓ|. ◀

5 Conversion to a Gaussian state

The ρ constructed in Theorem 7 is, in fact, a mixture of Gaussian states. This is proven in
the following lemma. This implies the existence of a Gaussian state with at least the same
objective as ρ.

▶ Lemma 8. The state ρ defined in Equation (9) is a mixture of Gaussian states.

Proof. For each Γ ∈ Sj let MΓ be the perfect matching of the operators in Γ induced by
the lexicographic ordering of Γ, and let M be a perfect matching of the Majorana operators
in {c1, ...c2n} \ {ci | ∃Γ ∈ Sj with i ∈ Γ} induced by the lexicographic ordering. Define the
following Gaussian state:

ρ′(z) = 1
2n

∏
Γ∈Sj

∏
gh∈MΓ

(I + zgh icgch)
∏

rs∈M

(I + zrs icrcs), (10)

where all zgh, zrs ∈ {±1}.
Consider the state ρ′′ = Ez[ρ′(z)] where for each Γ the set {zgh}gh∈MΓ is uniformly

random distributed over {±1}|MΓ| subject to the constraint:

sign

 ∏
gh∈MΓ

zgh icgch

 cΓ

 = sign(HΓ) ∀Γ ∈ Sj , (11)

where sign(±I) is defined as ±1. In other words, {zgh}gh∈MΓ is chosen as the uniform
distribution over strings in {±1}|MΓ| which satisfy Equation (11). We will assume further
that {zgh}gh∈MΓ is independent of all other {zgh}gh∈MΓ′ and that each zrs for rs ∈ M is
uniform and independent of all other random variables.
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We claim that ρ = ρ′′. Begin by using independence to push the expectation past the
first and third products in Equation (10):

ρ′′ = 1
2n

∏
Γ∈Sj

(
Ez

[ ∏
gh∈MΓ

(I + zgh icgch)
]) ∏

rs∈M

(
Ez

[
(I + zrs icrcs)

])
, (12)

We first focus on the final product. Observe that:∏
rs∈M

(
Ez

[
(I + zrs icrcs)

])
= I (13)

This follows from the independence of the {zrs | rs ∈ M} and because Ez[zrs] = 0 for all
rs ∈ M . Hence:

ρ′′ = 1
2n

∏
Γ∈Sj

(
Ez

[ ∏
gh∈MΓ

(I + zgh icgch)
])

. (14)

For fixed Γ ∈ Sj , we claim that:

Ez

[ ∏
gh∈MΓ

(I + zgh icgch)
]

= I + sign(HΓ)cΓ. (15)

Lemma 8 follows immediately from Equation (15). For any strict subset Γ′ ⊊ Γ, define

MΓ′∩Γ := {gh ∈ MΓ : g ∈ Γ′, h ∈ Γ′}.

We may then expand the left-hand side of Equation (15) as:

Ez

[ ∏
gh∈MΓ

(I + zgh icgch)
]

= I +
∑

Γ′⊊Γ
Ez

[ ∏
gh∈MΓ′∩Γ

zgh icgch

]
+ Ez

[ ∏
gh∈MΓ

zgh icgch

]
(16)

= I + sign(HΓ)cΓ (17)

The final expectation in Equation (16) evaluates to sign(HΓ)cΓ due to constraint 11. The
sum of expectations in Equation (16) disappears as the marginal distribution of the z when
restricted to a matching on a strict subset Γ′ ⊊ Γ of size |MΓ′∩Γ| = p is totally uniform over
{±1}p. Therefore Ez[zgh] = 0 for any such matching. ◀

Although ρ′(z) in Lemma 8 is a Gaussian state for any z, the state ρ′′ is a mixture of
Gaussian states by definition. However, we may derandomize the choice of z to obtain a
Gaussian state. We only require pairwise independence of the elements of z, hence using
standard derandomization approaches, we can obtain a Gaussian state ρ′(z) in polynomial
time such that Tr(Hρ′(z)) ≥ Tr(Hρ′′).

6 Extensions

In this section, we demonstrate how our core approach in the proof of Theorem 7 leads to
improved classical approximation algorithms for the ground state energies of various sparse,
local Hamiltonians. Each case is dealt with as its own corollary to Theorem 7.

▶ Corollary 9 (Strictly q-local Hamiltonians.). Let H be a k-sparse, strictly q-local fermionic
Hamiltonian. There exists a classical polynomial time algorithm that, given {HΓ} as input,
outputs a description of a quantum state ρ achieving energy

Tr(Hρ) ≥ 1
qk + 1

∑
Γ

|HΓ| ≥ λmax(H)
qk + 1 . (18)
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Proof. In this case we only need to include edges in G between vΓ and vΓ′ precisely when
condition (i) holds, since (ii) is vacuous. Consequently we may omit the second case below
Equation (7) and simply bound the degree as qk. We then effectively replace “4” with q in
the remaining proof. ◀

▶ Corollary 10 (Hamiltonians with bounded locality.). Let H be a k-sparse, q-local fermionic
Hamiltonian. There exists a classical polynomial time algorithm that, given {HΓ} as input,
outputs a description of a quantum state ρ achieving energy

Tr(Hρ) ≥ 1
Cqk2

∑
Γ

|HΓ| ≥ λmax(H)
Cqk2 , (19)

for some constant C ∈ R.

Proof. In this case we need an appropriate generalization of condition (ii) from Theorem 7.
Let us start by defining G using only the condition (i); the maximum possible degree in
G is qk. The purpose of (ii) in the proof is to ensure that for Γ, Γ′ in the independent set
Sj , cΓcΓ′ cannot be proportional to cΓ′′ for any Γ′′ ∈ E . Note that if this happens, then Γ′′

must contain both Γ and Γ′. Thus it would suffice for our independent set Sj in G to satisfy
the additional property that no vΓ, vΓ′ ∈ Sj could have a common neighbor vΓ′′ ∈ V with
Γ, Γ′ ⊂ Γ′′. We could satisfy this by adding an edge in G between all pairs vΓ and vΓ′ with
such a common neighbor. By k-sparsity, the vertex vΓ has at most k neighbors vΓ′′ in G

with Γ ⊂ Γ′′. Since any such vΓ′′ has degree at most qk, the degree of vΓ increases by at
most k(qk − 1), and maximum degree in the resulting graph G′ is O(qk2). Applying Brooks’
Theorem in G′ produces the desired approximation. ◀

▶ Corollary 11 (Qubit Hamiltonians). Consider a k-sparse, q-local qubit Hamiltonian H

defined analogously to the fermionic Hamiltonian in Definition 2. Given the appropriate
assumptions on the locality of H, there exists a classical polynomial time algorithm that, given
as inputs the weights {HΓ}, outputs a description of a quantum state ρ achieving energy at
least:

Hamiltonian Energy
strictly q-local 1/(qk + 1)

k-sparse, 2-local 1/(2k + 1)
k-sparse, q-local 1/O(qk2)

Proof. For qubit Hamiltonians, condition (i) in Theorem 7 is modified to cover any pair of
local terms which involve the same qubit, while condition (ii) is modified to be “Γ and Γ′ do
not involve the same qubit.” Our results for k-sparse and: (i) strictly q-local, (ii) 2-local, and
(iii) q-local qubit Hamiltonians follow from this modification and considering Corollary 9,
Theorem 7, and Corollary 10 respectively. ◀

7 Optimality of our strictly q-local result

For k-sparse H where all terms are q-local, since ∥H∥ ≥ λmax(H), our results show that

∥H∥ ≥ λmax(H) ≥ m

qk + 1 ,
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where we recall m =
∑

Γ |HΓ| and ∥ · ∥ denotes the operator norm. We give an explicit
family of fermionic 2-local n-sparse Hamiltonians {Hn}∞

n=1 demonstrating this bound is
asymptotically tight (i.e., cannot be improved for all q and k, up to constant factors).

Each Hn is expressed as a sum of monomials in 2n Majorana operators {c1, c2, ..., c2n}
satisfying the usual canonical anti-commutation relations. For each n, partition [2n] evenly
into A = {1, ..., n} and B = {n + 1, ..., 2n}. Then:

Hn :=
∑

a∈A,b∈B

icacb = i

(∑
a∈A

ca

)(∑
b∈B

cb

)
.

The eigenvalues of Hn are easy to determine, define R ∈ O(2n) as some orthogonal matrix
satisfying:

Ra,1 = 1/
√

n ∀a ∈ A and Rb,2 = 1/
√

n ∀b ∈ B.

Note that this is well defined since the first two columns are orthonormal. We can then define
a new set of Majorana operators (also satisfying the canonical anti-commutation relations)
by:

c̃i =
2n∑

i=1
Rj,icj .

In particular, we have

c̃1 = 1√
n

∑
a∈A

ca and c̃2 = 1√
n

∑
b∈B

cb,

so

H = nic̃1c̃2.

Since ic̃1c̃2 is Hermitian and satisfies (ic̃1c̃2)2 = I, it has eigenvalues in {±1}. Thus the
eigenvalues of Hn are {±n}. Note that Hn is n-sparse, m = n2, and ∥Hn∥ = λmax(Hn) so
that

∥Hn∥ = λmax(Hn) = n = Θ
(

n2

2n + 1

)
= Θ

(
m

qk + 1

)
.
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Abstract
We study variable time search, a form of quantum search where queries to different items take
different time. Our first result is a new quantum algorithm that performs variable time search with
complexity O(

√
T log n) where T =

∑n

i=1 t2
i with ti denoting the time to check the ith item. Our

second result is a quantum lower bound of Ω(
√

T log T ). Both the algorithm and the lower bound
improve over previously known results by a factor of

√
log T but the algorithm is also substantially

simpler than the previously known quantum algorithms.
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1 Introduction

We study variable time search [2], a form of quantum search in which the time needed for a
query depends on which object is being queried. Variable time search and its generalization,
variable time amplitude [3] amplification, are commonly used in quantum algorithms. For
example,

Ambainis [3] used variable time amplitude amplification to improve the running time of
HHL quantum algorithm for solving systems of linear equations [12] from Õ(κ2) (where
κ is the condition number of the system) to Õ(κ1+o(1)) in different contexts;
Childs et al. [8] used variable time amplitude amplification to design a quantum algorithm
for solving systems of linear equations with an exponentially improved dependence of the
running time on the required precision;
Le Gall [15] used variable time search to construct the best known quantum algorithm
for triangle finding, with a running time Õ(n5/4) where n is the number of vertices;
De Boer et al. [10] used variable time search to optimize the complexity of quantum
attacks against a post-quantum cryptosystem;
Glos et al. [11] used variable time search to develop a quantum speedup for a classical
dynamic programming algorithm.
Schrottenloher and Stevens [16] used variable time amplitude amplification to transform
a classical nested search into a quantum algorithm, with applications to quantum attacks
on AES.
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In those applications, the oracle for the quantum search is a quantum algorithm whose
running time depends on the item that is being queried. For example, we might have a graph
algorithm that uses quantum search to find a vertex with a certain property and the time tv
to check the property may depend on the degree of the vertex v.

In such situations, using standard quantum search would mean that we run the checking
algorithm for the maximum possible time tmax = maxv tv. If most times tv are substantially
smaller, this results in suboptimal quantum algorithms.

A more efficient strategy is to use the variable time quantum search algorithm [2]. It has
two variants: the “known times” variant when times tv for checking various v are known
in advance and can be used to design the algorithm and the “unknown times” variant in
which tv are only discovered when running the algorithm. In the “known times” case, VTS
(variable time search) has complexity O(

√
T ) where T =

∑
v t

2
v and there is a matching lower

bound [2].
For the “unknown times” case, the complexity of the variable time search increases

to O(
√
T log1.5 T ) and the quantum algorithm becomes substantially more complicated.

Since almost all of the applications of VTS require the “unknown times” setting, it may be
interesting to develop a simpler quantum algorithm.

In more detail, the “unknown times” search works by first running the query algorithm
for a small time T1 and then amplifying v for which the query either returns a positive result
or does not finish in time T1. This is followed by running the query algorithm for longer time
T2, T3, . . . and each time, amplifying v for which the query either returns a positive result or
does not finish in time Ti. To determine the necessary amount of amplification, quantum
amplitude estimation is used. This results in a complex algorithm consisting of interleaved
amplification and estimation steps. This complex structure contributes to the complexity of
the algorithm, via log factors and may also lead to large constants hidden under the big-O.

In this paper, we develop a simple algorithm for variable time search that uses only
amplitude amplification. Our algorithm achieves the complexity of O(

√
T log n) where T is

an upper bound for
∑

v t
2
v provided to the algorithm. (Unlike in the “known times” model,

we do not need to provide t1, . . . , tn but only an estimate for T .) This also improves over
the previous algorithm by a

√
log factor.

To summarize, the key difference from the earlier algorithms [2, 3] is that the earlier
algorithms would use amplitude estimation (once for each amplification step) to determine
the optimal schedule for amplitude amplification for this particular t1, . . . , tn. In contrast,
we use one fixed schedule for amplitude amplification (that depends only on the estimate for
T and not on t1, . . . , tn). While this schedule may be slightly suboptimal, the losses from it
being suboptimal are less than savings from not performing multiple rounds of amplitude
estimations. This also leads to the quantum algorithm being substantially simpler.

Our second result is a lower bound of Ω(
√
T log T ), showing that a complexity of Θ(

√
T )

is not achievable. The lower bound is by creating a query problem which can be solved by
variable time search and using the quantum adversary method to show a lower bound for
this problem. In particular, this proves that “unknown times” search is more difficult than
“known times” search (which has the complexity of Θ(

√
T )).



A. Ambainis, M. Kokainis, and J. Vihrovs 7:3

2 Model, definitions, and previous results

We consider the standard search problem in which the input consists of variables x1, . . . , xn ∈
{0, 1} and the task is to find i : xi = 1 if such i exists.

Our model is a generalization of the usual quantum query model. We model a situation
when the variable xi is computed by a query algorithm Qi which is initialized in the state |0⟩
and, after ti steps, outputs the final state |xi⟩ |ψi⟩ for some unknown |ψi⟩. (For most of the
paper, we restrict ourselves to the case when Qi always outputs the correct xi. The bounded
error case is discussed briefly at the end of this section.) In the first ti − 1 steps, Qi can be
in arbitrary intermediate states.

The goal is to construct an algorithm A that finds i : xi = 1 (if such i exists). The
algorithm A can run the query Qi for a chosen t, with Qi outputting xi if ti ≤ t or * (an
indication that the computation is not complete) if ti > t. The complexity of A is the amount
of time that is spent running the query algorithms Qi. Transformations that does not involve
running Qi do not count towards the complexity.

More formally, we assume that, for any T , there is a circuit CT which, on an input∑n
i=1 |i⟩ ⊗ |0⟩ outputs

n∑
i=1

|i⟩ ⊗ |yi⟩ ⊗ |ψi⟩ ,

where yi = xi if ti ≤ T and yi = ∗ if ti > T . The state |ψi⟩ contains intermediate results of
the computation and can be arbitrary. An algorithm A for variable time search consists of
two types of transformations:

circuits CT for various T ;
transformations Ui that are independent of x1, . . . , xn.

If there is no intermediate measurements, an algorithm A is of the form

UkCTk
Uk−1 . . . U1CT1U0

and its complexity is defined as T1 + T2 + . . .+ Tk. In the general case, an algorithm is a
sequence

U0, CT1 , U1, . . . , CTk
, Uk

with intermediate measurements. Depending on the outcomes of those measurements, the
algorithm may stop and output the result or continue with the next transformations. The
complexity of the algorithm is defined as p1T1 + . . .+ pkTk where pi is the probability that
CTi

is performed. (One could also allow Ui and Ti to vary depending on the results of
previous measurements but this will not be necessary for our algorithm.)

If there exists i : xi = 1, A must output one of such i with probability at least 2/3. If
xi = 0, A must output “no such i” with probability at least 2/3.

Known vs. unknown times. This model can be studied in two variants. In the “known
times” variant, the times ti for each i ∈ [n] are known in advance and can be used to design
the search algorithm. In the “unknown times” variant, the search algorithm should be
independent of the times ti, i ∈ [n].

The complexity of the variable time search is characterized by the parameter T =
∑n

i=1 t
2
i .

We summarize the previously known results below.
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▶ Theorem 2.1 ([2, 3]).
(a) Algorithm – known times: For any t1, . . . , tn, there is a variable time search algorithm

At1,...,tn
with the complexity O(

√
T ).

(b) Algorithm – unknown times: There is a variable time search algorithm A with the
complexity O(

√
T log1.5 T ) for the case when t1, . . . , tn are not known in advance.

(c) Lower bound – known times. For any t1, . . . , tn and any variable time search
algorithm At1,...,tn

, its complexity must be Ω(
√
T ).

Parts (a) and (c) of the theorem are from [2]. Part (b) is from [3], specialized to the case
of search.

In the recent years there have been attempts to reproduce and improve the aforementioned
results by other means. In [9], the authors obtain a variant of Theorem 2.1(a) by converting
the original algorithms into span programs, which then are composed and subsequently
converted back to a quantum algorithm. More recently, [14] gives variable time quantum walk
algorithm (which generalizes variable time quantum search) by employing a recent technique
of multidimensional quantum walks. While the focus of these two papers is on developing
very general frameworks, our focus is on making the variable time search algorithm simpler.

Concurrently and independently of our work, a similar algorithm for variable time
amplitude amplification was presented in [16], which also relies on recursive nesting of
quantum amplitude amplifications.

Variable time search with bounded error inputs. We present our results for the case when
the queries Qi are perfect (have no error) but our algorithm can be extended to the case if
Qi are bounded error algorithms, at the cost of an extra logarithmic factor.

Let k be the maximum number of calls to CT ’s in an algorithm A. Then, it suffices that
each CT outputs a correct answer with a probability 1 − o(1/k2). This can be achieved by
repeating CT O(log k) times and taking the majority of answers.

Possibly, this logarithmic factor can be removed using methods similar to ones for search
with bounded error inputs in the standard (not variable time) setting [13].

3 Algorithm

We proceed in two steps. We first present a simple algorithm for the case when a sufficiently
good bound on the number of solutions m = |i : xi = 1| are known (Section 3.2). We then
present an algorithm for the general case that calls the simple algorithm multiple times, with
different estimates for the parameter ℓ corresponding to m (Section 3.3).

Both algorithms require an estimate T for which
∑n

i=1 t
2
i ≤ T , with the complexity

depending on T .

3.1 Tools and methods
Before presenting our results, we describe the necessary background about quantum amplitude
amplification [6].

Amplitude amplification – basic construction. Assume that we have an algorithm A that
succeeds with a small probability and it can be verified whether A has succeeded. Amplitude
amplification is a procedure for increasing the success probability. Let

A |0⟩ = sinα |ψsucc⟩ + cosα |ψfail⟩ .
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Then, there is an algorithm A(k) that involves k + 1 applications of A and k applications of
A−1 such that

A(k) |0⟩ = sin ((2k + 1)α) |ψsucc⟩ + cos ((2k + 1)α) |ψfail⟩ .

Knowledge of α is not necessary (the way how A(k) is obtained from A is independent of α).

Amplitude amplification – amplifying to success probability 1 − δ. If α is known then
one can choose k = ⌊ π

4α ⌋ to amplify to a success probability close to 1 (since (2k + 1)α will
be close to π

2 ). If the success probability of A is ϵ, then sinα ≈
√
ϵ and k ≈ π

4
√

ϵ
.

For unknown α, amplification to success probability 1 − δ for any δ > 0 can be still
achieved, via a more complex algorithm. Namely, for any ϵ, δ ∈ (0, 1) and any A, one can
construct an algorithm A(ϵ, δ) such that:

A(ϵ, δ) invokes A and A−1 O( 1√
ϵ

log 1
δ ) times;

If A succeeds with probability at least ϵ, A(ϵ, δ) succeeds with probability at least 1 − δ.
To achieve this, we first note that performing A(k) for a randomly chosen k ∈ {1, . . . ,M}
for an appropriate M = O

(
1√
ϵ

)
and measuring the final state gives a success probability

that is close to 1/2 (as observed in the proof of Theorem 3 in [6]). Repeating this procedure
O
(
log 1

δ

)
times achieves the success probability of at least 1 − δ.

3.2 Algorithm with a fixed number of stages
Now we present an informal overview of the algorithm when tight bounds on the number
of solutions m = |i : xi = 1| is known. We will define a sequence of times T1, T2, . . . and
procedures A1, A2, . . .. We choose T1 = 3

√
T/n (this ensures that at most n/9 of indices

i ∈ [n] have ti ≥ T1) and T2 = 3T1, T3 = 3T2, . . . until d for which Td ≥
√
T . The procedure

A1 creates the superposition
∑n

i=1
1√
n

|i⟩ and runs the checking procedure CT1 , obtaining
state of the form

∑n
i=1

1√
n

|i, ai⟩, where ai ∈ {0, 1, ∗}, with ∗ denoting a computation that
did not terminate. The subsequent procedures Aj are defined as Aj = CTjAj−1(1), i.e., we
first amplify the parts of the state with outcomes 1 or ∗ and then run the checking procedure
CTj .

We express the final state of Aj−1 as

sinαj−1 |ψsucc⟩ + cosαj−1 |ψfail⟩ ,

where |ψsucc⟩ consists of those indices i ∈ [n] which are either 1 or are still unresolved ∗
(and thus have the potential to turn out to be ‘1’). Then the amplitude amplification part
triples the angle αj−1, i.e., amplifies both the “good” and “unresolved” states by a factor
of sin(3αj−1)/ sin(αj−1) ≈ 3. We will show that ℓ = ⌈log9

n
m ⌉ stages are sufficient, i.e., the

procedure Aℓ the amplitude at the “good” states (if they exist) is sufficiently large.
We note that the idea of recursive tripling via amplitude amplification has been used

in other contexts. It has been used to build an algorithm for bounded-error search in [13];
more recently, the recursive tripling trick has also been used in, e.g., [7]. Furthermore, the
repeated tripling of the angle α also explains the scaling factor 3 when defining the sequence
T1, T2, T3 . . .

A formal description follows.
We assume an estimate T ≥

∑
i t

2
i to be known and set

T1 = 3
√
T/n, T2 = 3T1, . . . , Td = 3Td−1,

with d ∈ N s.t. Td−1 <
√
T ≤ Td (equivalently, 9d−1 < n ≤ 9d).
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Let M = {i ∈ [n] : xi = 1}, m = |M|. We assume that we know ℓ for which m belongs
to the interval

[
n
9ℓ ,

n
9ℓ−1

)
(so that ℓ = ⌈log9

n
m ⌉).

Under those assumptions, we now describe a variable time search algorithm with para-
meters T, ℓ.

Algorithm 1 VTS algorithm with a fixed number of stages.

Parameters: T , n, ℓ, δ.
1: Run the amplified algorithm A(0.04, δ) where A is the procedure defined below and we

amplify the part of the state for the second register contains ‘1’
2: procedure A
3: Run Aℓ ▷ (defined below)
4: Run CTℓ+1 (or CTd

if ℓ = d)
5: end procedure
6: Measure the state
7: if The second register is ‘1’ then
8: Output i from the first register
9: else

10: Output No solutions.
11: end if
12: procedure Aj ▷ j ∈ [d]
13: if j = 1 then
14: Create the state

∑n
i=1

1√
n

|i⟩
15: Run CT1 , obtaining state of the form

∑n
i=1

1√
n

|i, ai⟩ where ai ∈ {0, 1, ∗}.
16: else
17: Perform the amplified algorithm Aj−1(1), amplifying the basis states with 1 or *

in the second register
18: if j < ℓ then
19: Run CTj

.
20: end if
21: end if
22: end procedure

▶ Lemma 3.1. Algorithm 1 with parameter ℓ = ⌈log9
n
m ⌉ finds an index i ∈ M with probability

at least 1 − δ in time O
(√

T
m log n

m log 1
δ

)
.

Proof. By Sj we denote the sets of those indices whose amplitudes will be amplified after
running Aj , namely, the set of indices for which the query either returns a positive result or
does not finish in time Tj :

Sj = {i ∈ [n] : (Tj < ti) ∨ (ti ≤ Tj ∧ xi = 1)} , j = 0, 1, 2, . . . , d,

where T0 := 0. We note that the sets Sj form a decreasing sequence1, i.e.,

[n] = S0 ⊇ S1 ⊇ S2 ⊇ . . . ⊇ Sd−1 ⊇ Sd = M.

We shall denote the cardinality of Sj by sj ; then

n = s0 ≥ s1 ≥ . . . ≥ sd = m.

1 Since each i s.t. ti ≤ Tj ∧ xi = 1 either satisfies ti ≤ Tj−1 ∧ xi = 1 or ti > Tj−1; in both cases i ∈ Sj−1.
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We express the final state of Aj as

sinαj |ψsucc,j⟩ + cosαj |ψfail,j⟩

where |ψsucc,j⟩ consists of basis states with |i⟩, i ∈ Sj , in the first register and |ψfail,j⟩ consists
of basis states with |i⟩, i /∈ Sj , in the first register.

We begin by describing how the cardinality of Sj is related to the amplitude sinαj (the
proof is deferred to Appendix A).

▶ Lemma 3.2. For all j = 1, 2, . . . , ℓ,

sin2 αj = sj

n

j−1∏
k=1

(
sin(3αk)
sinαk

)2
. (1)

Moreover, for any i ∈ Sj, the amplitude at |i, 1⟩ (or |i, ∗⟩, if ti > Tj) equals sin αj√
sj

.

Equation (1) and the trigonometric identity

sin(3α) = (3 − 4 sin2 α) sinα

allows to obtain (for j = 1, 2, . . . , ℓ)

sin(3αj)
sinαj

= 3 − 4 sin2 αj = 3 − 4sj · 9j−1

n

j−1∏
k=1

(
sin(3αk)
3 sinαk

)2
≥ 3 − 4sj

n
· 9j−1, (2)

where the inequality is justified by the observation
∣∣∣ sin(3α)

3 sin α

∣∣∣ ≤ 1. This allows to estimate

sinαℓ =
√
sℓ

n

ℓ−1∏
j=1

sin(3αj)
sinαj

≥ 3ℓ−1
√
sℓ

n

ℓ−1∏
j=1

(
1 − 4sj

27n · 9j

)
, (3)

as long as each factor on the RHS is positive. We argue that it is indeed the case; moreover,
the whole product is lower-bounded by a constant (the proof is deferred to Appendix A):

▶ Lemma 3.3. The following claims hold:
C-1 Each factor on the RHS of (3) is positive: 9jsj

n ≤ 9
4 , thus(

1 − 4sj

27n · 9j

)
≥ 2

3 , for all j ∈ [ℓ− 1].

C-2 The product
∏ℓ−1

j=1

(
1 − 4sj

27n · 9j
)

is lower bounded by 2/3.
C-3 9ℓsℓ ≥ 9ℓsd ≥ n.

From (3) and Lemma 3.3 it is evident that sinαℓ ≥ 2
9

√
9ℓsℓ

n ≥ 2
9 .

However, after running Aℓ, there still could be some unresolved indices i with ti > Tℓ

and some of these unresolved indices may correspond to xi = 0. Our next argument is
that running CTℓ+1 , i.e., the checking procedure for 3Tℓ steps, resolves sufficiently many
indices in M. This argument, however, is necessary only for ℓ < d; for ℓ = d, one runs CTd

instead of CTℓ+1 and the same estimate (4) of the success probability applies, with 8m/9
replaced by m. Also notice that in Algorithm 1 we skipped running CTℓ

at the end of Aℓ and
immediately proceeded with running CTℓ+1 instead. In the analysis, this detail is omitted
for convenience (since it is equivalent to running CTj at the end of each procedure Aj and
additionally running CTℓ+1 after Aℓ).
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By the choice of ℓ we have
√

T
m ≤ Tℓ =

√
9ℓT

n and Tℓ+1 ≥ 3
√

T
m . Notice that at most

m/9 of the indices i ∈ [n] can satisfy t2i > T 2
ℓ+1 (otherwise, the sum over those indices already

exceeds m
9 · 9T

m = T ). Consequently, after running the checking procedure CTℓ+1 , at least
8m/9 of the indices in M will be resolved to ‘1’. By Lemma 3.2, the amplitude at each of
the respective states |i, 1⟩ is equal to sin αℓ√

sℓ
, therefore the probability to measure ‘1’ in the

second register is at least

8m
9 · sin2 αℓ

sℓ
≥ 8m

9 · 9ℓ

n

1
3

ℓ−1∏
j=1

(
1 − 4sj

27n · 9j

)2

≥ 8
9 ·
(

2
9

)2
> 0.04, (4)

where the first inequality follows from (3) and the second inequality is due to C-2 and C-3.
We conclude that the procedure A finds an index i ∈ M with probability at least 0.04;

its running time is easily seen to be

Tℓ+1 + Tℓ + 3 (Tℓ−1 + 3 (Tℓ−2 + . . .+ 3 (T2 + 3T1))) = (3 + ℓ)Tℓ,

which for our choice of ℓ is of order

O

(
log n

m

√
9ℓ
T

n

)
= O

(
log n

m

√
T

m

)
.

Use O(log 1
δ ) rounds amplitude amplification to amplify the success probability of A to 1 − δ,

concluding the proof. ◀

3.3 Algorithm for the general case
When the cardinality of |M| is not known in advance, we run Algorithm 1 with increasing
values of ℓ (which corresponds to exponentially decreasing guesses of m) until either i : xi = 1
is found or we conclude that no such i exists. Algorithm 1 also suffers the “soufflé problem” [5]
in which iterating too much (choosing ℓ in Algorithm 1 larger than its optimal value) may
“overcook” the state and decrease the success probability. For this reason, before running
Algorithm 1 with the next value of ℓ, we re-run it with all the previous values of ℓ to ensure
that the probability of running Algorithm 1 with too large ℓ is small. This ensures that
the algorithm stops in time O

(√
T
m log n

m

)
with high probability. Formally, we make the

following claim:

▶ Lemma 3.4. If M is nonempty, Algorithm 2 finds an index i ∈ M with probability at least
5/6 with complexity O

(√
T
m log n

m

)
. If M is empty, Algorithm 2 outputs No solutions.

with complexity O
(√

T log n
)

.

Proof of Lemma 3.4. Let δ = 1/6; let us remark that each procedure Bk runs in time
O
(
k3k
√
T/n

)
.

Let us consider the case when m = |M| > 0; denote ℓ := ⌈log9
n
m ⌉. The probability of

Bk, k ̸= ℓ, finding an index i ∈ M is lower-bounded by 0; the probability of Bℓ finding an
index i ∈ M is lower-bounded by 1 − δ.

Hence, the total complexity of the algorithm stages j = 1, 2, . . . , ℓ, is of order√
T

n

ℓ∑
j=1

j∑
k=1

k3k =
√
T

n

ℓ∑
j=1

(ℓ+ 1 − j)j3j ≍ ℓ3ℓ

√
T

n
.

and the last step Bℓ finds i ∈ M with probability at least 1 − δ.
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Algorithm 2 VTS algorithm for arbitrary number of solutions m.

Parameters: T , n.
Let Bk stand for Algorithm 1 with parameters T , n, k and δ = 1/6.

1: for j = 1, 2, . . . , d do
2: for k = 1, 2, . . . , j do
3: Run Bk

4: If Bk returned i ∈ M, output this i and quit
5: end for
6: end for
7: Output No solutions.

With probability at most δ, the last step fails to find i ∈ M, and then Algorithm 2
proceeds with j = ℓ + 1 and runs the sequence B1, B2, . . . , Bℓ, where the last step finds
i ∈ M with (conditional) probability at least 1 − δ (conditioned on the failure to find i ∈ M
in the previous batch). The complexity of this part is of order

δ

√
T

n

 ℓ∑
j=1

j3j

 ≍ δ

√
T

n
ℓ3ℓ,

where the δ factor reflects the fact the respective procedures are invoked with probability δ.
With (total) probability at most δ2, the algorithm still has not found i ∈ M. Then

Algorithm 2 runs the sequence Bℓ+1, B1, B2, . . . , Bℓ (i.e., finishes with j = ℓ + 1 and
continues with j = ℓ+ 2), where the last step finds i ∈ M with (conditional) probability at
least 1 − δ. The complexity of this part is of order

δ2
√
T

n

(
(ℓ+ 1)3ℓ+1 + ℓ3ℓ

)
≍ δ2

√
T

n
(ℓ+ 1)3ℓ+1.

With (total) probability at most δ3, the algorithm still has not found i ∈ M. Then
Algorithm 2 runs the sequence Bℓ+1,Bℓ+2, B1, B2, . . . , Bℓ, where the last step finds i ∈ M
with (conditional) probability at least 1 − δ. The complexity of this part is of order

δ3
√
T

n

(
(ℓ+ 1)3ℓ+1 + (ℓ+ 2)3ℓ+2 + ℓ3ℓ

)
≍ δ3

√
T

n
(ℓ+ 2)3ℓ+2,

and so on.
For j = d, the final batch B1, B2, . . . , Bℓ is invoked with probability at most δd−ℓ; with

conditional probability at most δ we still fail to find i ∈ M and run the remaining sequence
Bℓ+1, . . . , Bd (which can completely fail finding any i ∈ M as it has no non-trivial lower
bounds on the success probability). The complexity of the latter sequence is of order

δd+1−ℓ

√
T

n

(
(ℓ+ 1)3ℓ+1 + (ℓ+ 2)3ℓ+2 + . . .+ d3d

)
≍ δd+1−ℓ

√
T

n
d 3d.

We see that Algorithm 2 fails with probability at most δd+1−ℓ; since ℓ ≤ d, this is
upper-bounded by δ = 1/6. The total complexity of the algorithm is of order
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3ℓ

√
T

n

(
ℓ+ 3δ2(ℓ+ 1) + 9δ3(ℓ+ 2) + . . .+ (3δ)d−ℓ · dδ

)
< 3ℓ

√
T

n

(
ℓ+ ℓ 3δ2

∞∑
i=0

(3δ)i + 3δ2
∞∑

i=1
i(3δ)i−1

)

= 3ℓ

√
T

n

(
ℓ+ ℓ

3δ2

1 − 3δ + 3δ2

(1 − 3δ)2

)
≍ ℓ3ℓ

√
T

n
,

since 3δ = 1/2. Since 3ℓ ≍
√

n
m and ℓ ≍ log n

m , we conclude that the complexity of the

algorithm is O
(√

T
m log n

m

)
, as claimed.

Let us consider the case when M is empty; then with certainty each Bj fails to output
any i, and Algorithm 2 correctly outputs No solutions. In this case, the complexity of the
algorithm is of order√

T

n

d∑
j=1

j∑
k=1

k3k =
√
T

n

d∑
j=1

(d+ 1 − j)j3j ≍ d3d

√
T

n
≍

√
T log n,

since 3d ≍
√
n. ◀

4 Lower bound

For the improved lower bound, we consider a query problem which can be solved with variable
time search. Let g : {0, 1, ⋆}m → {0, 1} be a partial function defined on the strings with
exactly one non-⋆ value, which is the value of the function. The function f we examine
then is the composition of ORn with g. We note that g is also known in the literature as
pSEARCH, which has been used for quantum lower bounds in cryptographic applications [4].

For any i ∈ [n], if the index of the non-⋆ element in the corresponding instance of g is
ji ∈ [m], then we can find this value in O(

√
ji) queries using Grover’s search. This creates

an instance of the variable search problem with unknown times ti =
√
ji. By examining only

inputs with fixed T =
∑n

i=1 t
2
i =

∑n
i=1 ji and the restriction of f on these inputs fT , we

are able to prove a Ω(
√
T log T ) query lower bound using the weighted quantum adversary

bound [1]. Since any quantum algorithm for the variable time search also solves fT , this
gives the required lower bound.

▶ Theorem 4.1. Any algorithm that solves variable time search with unknown times ti
requires time Ω(

√
T log T ), where T =

∑
i∈[n] t

2
i .

We note that the lower bound of Theorem 4.1 contains a factor of
√

log T while the
upper bound of Lemma 3.4 contains a factor of log n. There is no contradiction between
these two results as the lower bound uses inputs with T = Θ(n log n) and for those inputs
log T = (1 + o(1)) log n.

Proof of Theorem 4.1. Consider a partial function f : D → {0, 1}, where D ⊂
{⋆, 0, 1}[n]×[m], defined as follows. An input x ∈ D if for each i ∈ [n] there is a unique
j ∈ [m] such that xi,j ̸= ⋆; denote this j by jx,i. Then f(x) = 1 iff there exists an i such
that xi,jx,i

= 1.
Suppose that x is given by query access to xi,j . For any i, we can check whether xi,jx,i

= 1
in O(

√
jx,i) queries with certainty in the following way. There is a version of Grover’s search

that detects a marked element out of N elements in O(
√
N) queries with certainty, if the
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number of marked elements is either 0 or 1 [6]. By running this algorithm for the first N
elements, where we iterate over N = 1, 2, . . . , 2⌈log2 jx,i⌉, we will detect whether xi,jx,i

= 1 in
O(
√
jx,i) queries with certainty.

Letting ti =
√
jx,i and T =

∑
i∈[n] t

2
i , we get an instance of a variable search problem.

Now fix any value of T and examine only inputs with such T . Denote f restricted on T

by fT . If the quantum query complexity of fT is Q(fT ), then any algorithm that solves
variable time search must require at least Ω(Q(fT )) time. In the following, we will prove
that Q(fT ) = Ω(

√
T log T ).

Adversary bound

We will use the relational version of the quantum adversary bound [1]. Let X ⊆ f−1
T (0)

and Y ⊆ f−1
T (1) and R : X × Y → R≥0 be a weight function. For any input x ∈ X, define

w(x) =
∑

y∈Y R(x, y) and for any i ∈ [n], j ∈ [m], define w(x, i, j) =
∑

y∈Y,xi,j ̸=yi,j
R(x, y).

Similarly define w(y) and w(y, i, j). Then

Q(fT ) = Ω
(

min
x∈x,y∈Y

i∈[n],j∈[m]
R(x,y)>0
xi,j ̸=yi,j

√
w(x)w(y)

w(x, i, j)w(y, i, j)

)
.

Input sets

Here we define the subsets of inputs X and Y . First, let k be the smallest positive integer such
that T ≤ 2kk and k is a multiple of 4. Denote d = 2k, then k = log2 d and T = Θ(d log d).
An input z from either X or Y must then satisfy the following conditions.

for each p ∈
[
0, k

2
]
, there are exactly d

2p indices i such that jz,i ∈ [2p, 2p+1); we will call
the set of such indices the p-th block of z;
moreover, for each p and each ℓ ∈ [0, 2p), there are exactly d

22p indices i such that
jz,i = 2p + ℓ.

Consequently, we examine inputs with n = 2k +2k−1 + . . . 2 k
2 and m = 2 k

2 +1 −1. Additionally,
an input y belongs to Y only if there is a unique i such that yi,jy,i = 1. For this i, we also
require jy,i ≥ 2 k

4 +1: equivalently this means that i belongs to a block with p > k
4 .

We verify the value of T ′ =
∑

i∈[n] t
2
i for these inputs. If i belongs to the p-th block of an

input z, then jz,i = Θ(2p), as jz,i ∈ [2p, 2p+1). Then

T ′ =
∑
i∈[n]

t2i =
∑
i∈[n]

jz,i =
∑

p∈[0, k
2 ]

d

2p
· 2p = d

(
k

2 + 1
)

= Θ(T ).

Note that since Q(fT ′) ≤ Q(fT ), a lower bound on Q(fT ′) in terms of T will also give us a
lower bound on Q(fT ). In the remainder of the proof, we will thus lower bound Q(fT ′).

Relation

For an index i ∈ [n] of an input z that belongs to the p-th block, we define an index weight
Wz,i = 2p. Then we also define values

Bp = d
2p · 2p = d is the total index weight of the p-th block;

Jp = d
22p · 2p = d

2p is the total index weight in the p-th block for any jz,i ∈ [2p, 2p+1).
Note that these values do not depend on the input.

For the relation, we will call the p-th block light if p ∈
[
0, k

4
]

and heavy if p ∈
(

k
4 ,

k
2
]
.

Two inputs x ∈ X and y ∈ Y have R(x, y) > 0 iff:
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there are exactly two indices i0, i1 ∈ [n] such that jx,ib
̸= jy,ib

;
i0 is from some light block p0 and i1 is from some heavy block p1 of y; let j0 = jy,i0 and
j1 = jy,i1 ;
yi0,j0 = 0, yi1,j1 = 1.
xi0,j1 = xi1,j0 = 0.

Then let the weight in the relation be

R(x, y) = Wy,i0Wy,i1 = Wx,i1Wx,i0 = 2p02p1 .

Figure 1 illustrates the structure of the inputs and the relation.

+y

0 0 0 · · · 0 0

0

0 0

0
· · ·

0

0

0

1
· · ·

0

. . .

. . .

⋆

⋆

i0 i1

j0

j1

2k 2k−1
2

k

2

1

2

2
k

2

x

0 0 0 · · · 0 0

0

0 ⋆
0

· · ·

0

0

0

⋆
· · ·

0

. . .

. . .

0

0

i0 i1

j0

j1

2k 2k−1
2

k

2

1

2

2
k

2

Figure 1 An example of two inputs x ∈ X and y ∈ Y in the relation. Inputs x and y differ only
in the 4 highlighted positions. All of the empty cells contain ⋆, not shown for readability. For y, the
non-⋆ symbols of the light blocks are located in the left upper area separated by the dashed lines,
while the non-⋆ symbols of the heavy blocks are located in the lower right area. Note that for x, i0

is in a heavy block and i1 is in a light block.

Lower bound

Now we will calculate the values for the adversary bound. Fix two inputs x ∈ X and y ∈ Y

with R(x, y) > 0. First, since for x the index i1 can be any index from any light block and i0
can be any index from any heavy block,

w(x) =
( ∑

p0∈[0, k
4 ]
Bp0

)
·

( ∑
p1∈( k

4 , k
2 ]
Bp1

)
= Θ(d2k2).
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For w(y), note that p1 is uniquely determined by the position of the unique symbol 1 in y.
However, the choice for i0 is not additionally constrained, hence

w(y) =
( ∑

p0∈[0, k
4 ]
Bp0

)
· 2p1 = Θ(dk2p1).

Therefore, the nominator in the ratio in the adversary bound is

w(x)w(y) = Θ(d3k32p1).

Now note the following important property: if xi,j ̸= yi,j , then one of xi,j and yi,j is ⋆,
and the other is either 0 or 1. There are in total exactly 4 positions (i, j) where x and y

differ. We will examine each case separately.
(a) i = i0, j = j0. In this case xi,j = ⋆ and yi,j = 0.

For x, i1 is not fixed but j0 is known and hence also p0 is known. Therefore, the total
index weight from the light blocks is Jp0 . On the other hand, the positions of i0 and,
therefore, also p1 are fixed. Thus,

w(x, i, j) = Jp0 · 2p1 = d

2p0
· 2p1 .

For y, both i0 and i1 are fixed, hence

w(y, i, j) = 2p0 · 2p1 < d,

since p0 + p1 ≤ k
4 + k

2 < k. Overall,

w(x, i, j)w(y, i, j) < d

2p0
· 2p1 · d = d2 · 2p1

2p0
.

(b) i = i0, j = j1. In this case xi,j = 0 and yi,j = ⋆.
For x, now the position i0 is fixed, but i1 can be chosen without additional constraints.
The index i0 uniquely defines the value of p1. Hence,

w(x, i, j) =
( ∑

p0∈[0, k
4 ]
Bp0

)
· 2p1 = Θ(dk2p1).

For y, similarly as in the previous case, we have i0 and i1 fixed, thus

w(y, i, j) = 2p0 · 2p1 < d.

Then

w(x, i, j)w(y, i, j) = O(dk2p1 · d) = O(d2k2p1).

(c) i = i1, j = j0. In this case xi,j = 0 and yi,j = ⋆.
For x, i1 is fixed, so it uniquely determines p0. The index i0 can be chosen without
additional restrictions. Hence,

w(x, i, j) = 2p0 ·

( ∑
p1∈( k

4 , k
2 ]
Bp1

)
= Θ(2p0 · dk).
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For y, i0 is not fixed but j0 is fixed, which also fixes p0. Therefore, the total index weight
from the light blocks is Jp0 . On the other hand, i1 and p1 are fixed for y by the position
of the symbol 1, thus

w(y, i, j) = Jp0 · 2p1 = d

2p0
· 2p1 .

Their product is

w(x, i, j)w(y, i, j) = Θ
(

2p0 · dk · d

2p0
· 2p1

)
= Θ(d2k2p1).

(d) i = i1, j = j1. In this case xi,j = ⋆ and yi,j = 1.
For x, i1 is fixed, hence p0 is also fixed; i0 is not fixed, but j1 = j and p1 is uniquely
defined. Hence,

w(x, i, j) = 2p0 · Jp1 = 2p0 · d

2p1
.

For y, the position of the symbol 1 must necessarily change, hence

w(y, i, j) = w(y) = Θ(dk2p1).

The product then is

w(x, i, j)w(y, i, j) = Θ
(

2p0 · d

2p1
· dk2p1

)
= Θ(d2k2p0) = O(d2k2p1),

as p0 ≤ k
4 < p1.

We can see that in all cases the denominator in the ratio of the adversary bound is O(d2k2p1).
Therefore,

w(x)w(y)
w(x, i, j)w(y, i, j) = Ω

(
d3k32p1

d2k2p1

)
= Ω(dk2) = Ω(d log2 d)

and since log T = Θ(log(d log d)) = Θ(log d+ log log d) = Θ(log d), we have

Q(fT ) ≥ Q(fT ′) = Ω
(√

d log2 d

)
= Ω

(√
T log T

)
. ◀

5 Conclusion

In this paper, we developed a new quantum algorithm and a new quantum lower bound
for variable time search. Our quantum algorithm has complexity O(

√
T log n), compared to

O(
√
T log1.5 T ) for the best previously known algorithm (quantum variable time amplitude

amplification [3] instantiated to the case of search). It also has the advantage of being simpler
than previous quantum algorithms for variable time search. If the recursive structure is
unrolled, our algorithm consists of checking algorithms CTi for various times Ti interleaved
with Grover diffusion steps. Thus, the structure is the essentially same as for regular search
and the main difference is that CTi

for different i are substituted at different query steps.
We note that our algorithm has a stronger assumption about T : we assume that an upper

bound estimate T ≥
∑n

i=1 t
2
i is provided as an input to the algorithm and the complexity

depends on this estimate T , rather than the actual
∑n

i=1 t
2
i . Possibly, this assumption can

be removed by a doubling strategy that tries values of T that keep increasing by a factor
of 2 but the details remain to be worked out.
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Our quantum lower bound is Ω(
√
T log T ) which improves over the previously known

Ω(
√
T ) lower bound. This shows that variable time search for the “unknown times” case

(when the times t1, . . . , tn are not known in advance and cannot be used to design the
quantum algorithm) is more difficult than for the “known times” case (which can be solved
with complexity Θ(

√
T )).

A gap between the upper and lower bounds remains but is now just a factor of
√

log T .
Possibly, this is due to the lower bound using a set of inputs for which an approximate
distribution of values ti is fixed. In such a case, the problem may be easier than in the
general case, as an approximately fixed distribution of ti can be used for algorithm design.
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A Proofs of Lemmas 3.2 and 3.3

▶ Lemma 3.2. For all j = 1, 2, . . . , ℓ,

sin2 αj = sj

n

j−1∏
k=1

(
sin(3αk)
sinαk

)2
. (1)

Moreover, for any i ∈ Sj, the amplitude at |i, 1⟩ (or |i, ∗⟩, if ti > Tj) equals sin αj√
sj

.

Proof. For each j express the final state of Aj in the canonical basis as
n∑

i=1
βij |i, aij⟩ ,

where aij ∈ {0, 1, ∗} and aij = 0 iff xi = 0 and ti ≤ Tj (i.e., iff i /∈ Sj). Initially, βi0 = n−1/2

for all i. Then

sin2 αj =
∑
i∈Sj

|βij |2 ,

for all j. To see how the amplitude βi(j+1) is related to βij , consider how the state evolves
under Aj+1:

the final state of Aj is∑
i∈[n]\Sj

βij |i, 0⟩ +
∑
i∈Sj

βij |i, aij⟩ ,

by the definition of βij ; moreover, aij ∈ {1, ∗} for all i ∈ Sj .
Amplitude amplification Aj(1) results in the state∑

i∈[n]\Sj

cos(3αj)
cosαj

βij |i, 0⟩ +
∑
i∈Sj

sin(3αj)
sinαj

βij |i, aij⟩ .
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An application of CTj+1 transforms this state to

∑
i∈[n]\Sj

cos(3αj)
cosαj

βij |i, 0⟩ +
∑

i∈Sj\Sj+1

sin(3αj)
sinαj

βij |i, 0⟩ +
∑

i∈Sj+1

sin(3αj)
sinαj

βij

∣∣i, ai(j+1)
〉
.

We conclude that

βi(j+1) =
{
βij

sin(3αj)
sin αj

, i ∈ Sj ,

βij
cos(3αj)

cos αj
, i ∈ [n] \ Sj .

(5)

In particular, for any j ∈ [ℓ] and i ∈ Sj we have

βij = 1√
n

j−1∏
k=1

sin(3αk)
sinαk

,

since each such i is in Sk, k ≤ j − 1, thus, by (5), the respective amplitude gets multiplied
by sin(3αk)

sin αk
at each step. This establishes the second part of the lemma (that the amplitudes

βij are all equal for any i ∈ Sj). For the first part, we arrive at

sin2 αj =
∑
i∈Sj

|βij |2 =
∑
i∈Sj

j−1∏
k=1

(
sin(3αk)
sinαk

)2
= sj

n

j−1∏
k=1

(
sin(3αk)
sinαk

)2
. ◀

▶ Lemma 3.3. The following claims hold:
C-1 Each factor on the RHS of (3) is positive: 9jsj

n ≤ 9
4 , thus(

1 − 4sj

27n · 9j

)
≥ 2

3 , for all j ∈ [ℓ− 1].

C-2 The product
∏ℓ−1

j=1

(
1 − 4sj

27n · 9j
)

is lower bounded by 2/3.
C-3 9ℓsℓ ≥ 9ℓsd ≥ n.

Proof. We will prove the following inequality:

ℓ−1∑
j=1

sj9j <
9n
4 . (6)

Then C-1 will immediately follow, since each term on (6) is nonnegative. Furthermore, also
C-2 follows from (6) via the generalized Bernoulli’s inequality:

ℓ−1∏
j=1

(
1 − 4sj

27n · 9j

)
≥ 1 − 4

27n

ℓ−1∑
j=1

sj9j ≥ 1 − 4
27n · 9n

4 = 2
3 .

First we observe that
d∑

j=1

∑
i∈Sj−1\Sj

t2i =
∑

i∈[n]\M

t2i <
∑
i∈[n]

t2i ≤ T.

Notice that each set difference Sj−1 \ Sj can be characterized as follows:

Sj−1 \ Sj = {i ∈ [n] : (Tj−1 < ti ≤ Tj) ∧ xi = 0} .
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Therefore all t2i s.t. i ∈ Sj−1 \ Sj satisfy the bound

t2i ≥ T 2
j−1 =

{
9j−1T

n , j > 1,
0, j = 1.

Thus we obtain the following inequality:

T

n

d∑
j=2

9j−1 |Sj−1 \ Sj | <
d∑

j=1

∑
i∈Sj−1\Sj

t2i < T

or
d−1∑
k=1

9k (sk − sk+1) < n. (7)

We also expand 9ℓsℓ as follows, taking into account sd = m:

9ℓsℓ = 9ℓ (sℓ − sℓ+1) + 1
9 · 9ℓ+1 (sℓ+1 − sℓ+2) + . . .+ 1

9d−1−ℓ
· 9d−1 (sd−1 − sd) + 9ℓm.

From this equality, taking into account sk − sk+1 ≥ 0, we can upper bound 9ℓsℓ as

9ℓsℓ ≤
d−1∑
k=ℓ

9k (sk − sk+1) + 9ℓm (8)

Rewrite (7) as

s1 + 8
9

ℓ−1∑
k=1

9ksk − 9ℓ−1sℓ +
d−1∑
k=ℓ

9k (sk − sk+1) < n

and apply (8) to obtain

s1 + 8
9

ℓ−1∑
k=1

9ksk +
d−1∑
k=ℓ

9k (sk − sk+1) < n+ 9ℓ−1sℓ ≤ n+ 1
9

d−1∑
k=ℓ

9k (sk − sk+1) + 9ℓ−1m

8
9

ℓ−1∑
k=1

9ksk + 8
9

d−1∑
k=ℓ

9k (sk − sk+1) < n− s1 + 9ℓ−1m

8
ℓ−1∑
k=1

9ksk < 9n− 9s1 + 9ℓm < 9n+ 9ℓm.

By the choice of ℓ we have 9ℓ−1 ≤ n
m , therefore we arrive at

8
ℓ−1∑
k=1

9ksk < 9n+ 9 n
m

·m = 18n,

which is equivalent to (6).
Finally, to show C-3, we recall that sℓ ≥ sd = m. Again by the choice of ℓ, 9ℓ ≥ n

m .
Consequently,

9ℓsℓ ≥ n

m
·m = n,

as claimed. ◀



Fully Device-Independent Quantum Key
Distribution Using Synchronous Correlations
Nishant Rodrigues #

Department of Computer Science, University of Maryland, College Park, MD, USA
Joint Center for Quantum Information and Computer Science, College Park, MD, USA

Brad Lackey #

Microsoft Quantum, Redmond, WA, USA

Abstract
We derive a device-independent quantum key distribution protocol based on synchronous correlations
and their Bell inequalities. This protocol offers several advantages over other device-independent
schemes including symmetry between the two users and no need for pre-shared randomness. We close
a “synchronicity” loophole by showing that an almost synchronous correlation inherits the self-testing
property of the associated synchronous correlation. We also pose a new security assumption that
closes the “locality” (or “causality”) loophole: an unbounded adversary with even a small uncertainty
about the users’ choice of measurement bases cannot produce any almost synchronous correlation
that approximately maximally violates a synchronous Bell inequality.
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1 Introduction

Quantum key distribution (QKD) allows two parties to establish a shared classical secret key
using quantum resources. The two main requirements of QKD are (1) Correctness: the two
parties, Alice and Bob, get the same key; and (2) Security: an adversary Eve gets negligible
information about the key. Device-independent quantum key distribution (DI-QKD) is
entanglement-based, and aims to prove security of QKD based solely on the correctness of
quantum mechanics, separation of devices used by the two parties, and passing of statistical
tests known as Bell violations [23, 16]. These protocols are usually specified by a non-local
game, characterized by a conditional probability distribution or correlation p(yA, yB |xA, xB).
Intuitively, Alice and Bob obtain or generate random inputs xA and xB respectively, and
the correlation describes the likelihood their entangled quantum devices return outputs yA

and yB to each respectively. We will be interested in symmetric correlations and so will
take xA, xB ∈ X and yA, yB ∈ Y where X and Y are finite sets; for our protocol specifically
X = {0, 1, 2} and Y = {0, 1}.

In general, security of a DI-QKD scheme relies on the monogamy of entanglement. The
key result is that maximally entangled quantum states are separable within any larger
quantum system. In cryptographic terms, if Alice and Bob share a maximally entangled
state then the results of measurements they make on this state will be uncorrelated to any
other measurement results an adversary can perform. Hence, presuming the correctness of
quantum mechanics, no adversary can have any information about key bits Alice and Bob
may generate through this process. Generally, a DI-QKD protocol will involve two types of
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rounds: testing rounds where Alice and Bob (publicly) share their inputs and output results
for performing statistics tests, and data rounds where they obtain shared secret bits. The
goal of the testing rounds is to produce a certificate that Alice and Bob are operating on
maximally entangled states.

Most current DI-QKD schemes are based on the CHSH inequality, a linear inequality in
p(yA, yB |xA, xB), which if satisfied characterizes classical statistics within a quantum system.
Hence a violation of this inequality is a certificate of quantum behavior. This inequality
exhibits “rigidity” in that the only quantum state that produces a maximal violation of the
inequality is (up to natural equivalences) a Bell pair. Thus the goal of the testing rounds in
a DI-QKD protocol is to statistically verify that the system produces a maximal violation of
the CHSH inequality.

In a non-local game Alice and Bob may preshare an entangled resource in each round,
but are not allowed any communication between receiving or generating their inputs xA and
xB and measuring the system to obtain their outputs yA and yB. This is typically called
a “nonsignaling” condition, leading to nonsignaling correlations which include all quantum
strategies. If (even classical) communication between Alice and Bob is possible, then it is
simple to classically simulate a correlation that produces a maximal violation of the CHSH
inequality, and hence any certificates of quantumness or entanglement are void [22]. This
locality or causality loophole in the security proof is challenging to avoid; the only known
means to close it is by having Alice and Bob acausally separated during each round: bounds
on the speed of light prevent such communication [11, 9, 21].

A synchronous correlation is one such that p(yA, yB | x, x) = 0 whenever yA ̸= yB and
x ∈ X. That is, whenever Alice and Bob input the same value they are guaranteed to
receive the same outputs, although that value may be nondeterministic. These correlations
have recently become popular owing to their use in the resolution of the Connes Embedding
Conjecture and Tsirl’son’s Problem [12], but have also been used to generalize combinatorial
properties to the quantum setting [14, 17, 13].

We present a fully device-independent QKD protocol based on synchronous correlations.
This protocol is symmetric, in that roles of Alice and Bob are completely interchangeable.
This is an advantage over other DI-QKD protocols based on the CHSH inequality [23] (which
is neither symmetric nor synchronous) as sender versus receiver roles do not need to be
negotiated. Additionally, as Alice and Bob select their inputs independently they do not
need pre-shared secret bits to decide upon testing versus data rounds.

The mathematical framework needed to prove device-independent security of this protocol
was laid out in [20], where four analogues of the Bell/CHSH inequality for synchronous
correlations were given. In this work we focus only on one of these, J3(p) ≥ 0 (see Equation (3)
below). As well, bounds on quantum violations of these were given (J3(p) ≥ − 1

8 ), and rigidity
of correlations that achieve a maximal violation proven. The two critical analyses needed to
complete a proof of security for our DI-QKD protocol are as follows. First, we must prove
that if the system is observed to be close to the maximal violation then it is close to the ideal
system, which measures a Bell pair. Then, we provide an alternative security assumption
that bypasses the causality loophole.

We tackle the first of these through two theorems. For context, Alice and Bob will select
their inputs from X = {0, 1, 2} and each measure a quantum system that produces a bit
output from Y = {0, 1}. The ideal system, that produces J3(p) = − 1

8 , involves measuring a
Bell pair using three specific projection-valued measures {Êx

y }y=0,1 for x = 0, 1, 2 given in
Equation (1) below. Any synchronous quantum correlation that achieves J3(p) = − 1

8 must
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have Ex
y = Êx

y ⊗ 1, and hence the measurements have no influence on the larger system. In
Section 3 we show that if we take a synchronous quantum system that is close to achieving
maximal J3 violation, then it must be close to the ideal system in trace norm.

Unfortunately this introduces a “synchronicity” loophole: rigidity holds among syn-
chronous correlations, but are there asynchronous correlations with J3 = − 1

8 that cannot
certify maximal entanglement? In Section 4, we close this loophole using recent work on
“almost synchronous” correlations [24]. This leads to our complete DI-QKD scheme given as
Algorithm 1 below, where in addition to verifying a Bell violation one also bounds the total
amount of asynchronicity of the correlation, S, as defined in Equation (7).

In Section 5 we use the Entropy Accumulation Theorem (EAT) [8] to bound the the
min-entropy of the outputs given an adversary’s side-information. This allows us to derive
the key rate of Algorithm 1.

Finally, in Section 6, we pose a new security assumption to close the causality or locality
loophole: the adversary Eve may have unlimited communication and computational power,
yet she has imperfect knowledge of Alice and Bob’s inputs. Informally, given nonnegative
values λ ≤ 1

8 and µ ≤ 1 there exists a bound ϵmax such that if Eve’s uncertainty about Alice
and Bob’s inputs is greater than ϵmax then there is no device she can create where Alice
and Bob’s expected Bell violation J3 and asynchronicity S satisfy − 1

8 ≤ J3 ≤ − 1
8 + λ and

0 ≤ S ≤ µ.

2 Preliminaries

We present some definitions that will be used in the protocol later. Like other device-
independent schemes, our protocol is expressed in terms of a nonlocal game, which is
characterized by a conditional probability distribution (or correlation) p(yA, yB |xA, xB)
where xA, xB ∈ X and yA, yB ∈ Y are from finite sets X and Y . By a nonlocal game we
mean the players Alice and Bob will receive inputs xA, xB ∈ X from a referee and will
produce outputs yA, yB ∈ Y . These are then adjudicated by the referee against some criterion,
synchronicity in our case. Alice and Bob are not allowed to communicate once they receive
their inputs, which is characterized by the famous nonsignaling conditions on the correlation
[19, 6].

▶ Definition 1. A correlation is synchronous if p(yA, yB | x, x) = 0 whenever x ∈ X and
yA ̸= yB ∈ Y . A correlation is symmetric if p(yA, yB | xA, xB) = p(yB , yA | xB , xA).

Unlike nonlocal games such as the CHSH or Magic Square games, or their generalizations
[15, 18, 6, 3, 7], it is straightforward for Alice and Bob to create a perfect winning strategy
for synchronicity. Prior to the games they agree on some function f : X → Y , then regardless
of how the referee selects xA, xB ∈ X, they output yA = f(xA) and yB = f(xB). Hence the
“value” of any synchronous game (Alice’s and Bob’s expected success probability) is always 1,
and so value plays no role in the following.

The analysis of nonlocal games relies on understanding the set of local (or “classical” or
“hidden variables”) correlations like the one above within the set of quantum correlations.
While a general quantum correlation has the form p(yA, yB | xA, xB) = tr(ρ(ExA

yA
⊗F xB

yB
)) for

a density operator ρ and sets of positive operator-valued measures {Ex
y }y∈Y and {F x

y }y∈Y on
Hilbert spaces HA and HB , a synchronous quantum correlation is always a convex combination
of so-called “tracial” states [17, 20] of the form p(yA, yB | xA, xB) = 1

d tr(ExA
yA
ExB

yB
) where

d = dimHA.
For input and output X = {0, 1, 2} and Y = {0, 1}, respectively, there are four Bell

inequalities for synchronous hidden variables theories. That is, the synchronous classical
correlations (among general nonsignaling synchronous correlations) are characterized by four
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inequalities J0, J1, J2, J3 ≥ 0 where each Ji = Ji(p) is a linear combination of the correlation
components p(yA, yB | xA, xB). For this work, we will focus only on one of these as given in
Equation (3) below (see also [20]).

Synchronous quantum correlations can violate the inequality J3 ≥ 0. However one can
show an analogue of Tsirl’son bound, in that any synchronous quantum correlation must have
J3 ≥ − 1

8 . This follows from Equation (6) below. Of particular interest are correlations that
maximize this quantum violation. Like CHSH or Magic Square games, one can show a rigidity
result: there is a unique synchronous quantum correlation with J3 = − 1

8 , which involves
a maximally entangled state shared between Alice and Bob. One can then use principal
decompositions, or two projections theory, to convert this into a self-test for certifying a
single EPR pair, the basis for device-independence.

We denote the binary entropy function by h(p) = −p log(p)−(1−p) log(1−p) for p ∈ [0, 1].
The von Neumann entropy of a quantum state ρ is given by H(ρ) = −tr(ρ log(ρ)). Given
two operators ρ1 and ρ2, we say ρ1 ≥ ρ2 if ρ1 − ρ2 ≥ 0.

▶ Definition 2. For a bipartite quantum state ρAB ∈ HA ⊗ HB, the min-entropy of A
conditioned on B is:

Hmin(A |B)ρAB
= max{s ∈ R : ∃σB ∈ D(HB) such that 2−sidA ⊗ σB ≥ ρAB}

where D(HB) is the set of density operators in HB.

The ϵ-smooth version of the conditional min-entropy considers states that are ϵ-close to ρAB .
The notion of closeness that is typically used is the purified distance P (ρ, σ) =

√
1− F (ρ, σ)2,

where F (ρ, σ) is the fidelity between states ρ and σ.

▶ Definition 3. For a bipartite quantum state ρAB ∈ H, the ϵ-smooth min-entropy of A
conditioned on B is defined as:

Hϵ
min(A |B)ρAB

= max
ρ̃AB∈S(H)

P (ρAB ,ρ̃AB)≤ϵ

Hmin(A |B)ρ̃AB

The quantum ϵ-smooth max-entropy is defined as:

Hϵ
max(A |B)ρAB

= log inf
ρ̃AB∈S(H)

P (ρAB ,ρ̃AB)≤ϵ

sup
σB

∣∣∣∣∣∣ρ̃ 1
2
ABσ

− 1
2

B

∣∣∣∣∣∣2
1
.

where S(H) is the set of sub-normalized states in H and ||A||α = tr
((√

A†A
)α) 1

α

.

3 A synchronous DI-QKD protocol

We present a synchronous device-independent quantum key distribution protocol that is
symmetric with respect to Alice and Bob, each party performing the same tasks.

Suppose Alice and Bob share an EPR pair. Each draws xA, xB ∈ X = {0, 1, 2} respectively,
and measures according to {ÊxA

y }y∈Y and {ÊxB
y }y∈Y to get outputs yA, yB ∈ Y = {0, 1},

where the projection-valued measures {Êx
y }y∈{0,1} for x ∈ {0, 1, 2} are:

Ê0
1 = |ϕ0⟩⟨ϕ0|, Ê0

0 = 1− Ê0
1 , where |ϕ0⟩ = |1⟩

Ê1
1 = |ϕ1⟩⟨ϕ1|, Ê1

0 = 1− Ê1
1 , where |ϕ1⟩ =

√
3

2 |0⟩+ 1
2 |1⟩

Ê2
1 = |ϕ2⟩⟨ϕ2|, Ê2

0 = 1− Ê2
1 , where |ϕ2⟩ =

√
3

2 |0⟩ −
1
2 |1⟩

(1)



N. Rodrigues and B. Lackey 8:5

The likelihood of Alice’s and Bob’s results are characterized by the correlation [20]

p(yA, yB | xA, xB) = 1
2tr(ÊxA

yA
ÊxB

yB
).

In particular, this strategy produces a synchronous quantum correlation with correlation
matrix:

[p(yA, yB |xA, xB)] =

1
8

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)


4 1 1 1 4 1 1 1 4 (0, 0)
0 3 3 3 0 3 3 3 0 (0, 1)
0 3 3 3 0 3 3 3 0 (1, 0)
4 1 1 1 4 1 1 1 4 (1, 1)

(2)

One can verify this correlation yields a maximal violation of the Bell inequality, J3 = − 1
8 ,

where

J3 = 1− 1
4
(
p(0, 1 | 0, 1) + p(1, 0 | 0, 1) + p(0, 1 | 1, 0) + p(1, 0 | 1, 0)

+ p(0, 1 | 0, 2) + p(1, 0 | 0, 2) + p(0, 1 | 2, 0) + p(1, 0 | 2, 0)
+ p(0, 1 | 1, 2) + p(1, 0 | 1, 2) + p(0, 1 | 2, 1) + p(1, 0 | 2, 1)

)
.

(3)

This correlation is rigid in that any synchronous quantum correlation that achieves J3 = − 1
8

must have implemented the strategy above. This follows from our Theorem 4 below. In
particular, this maximal violation of J3 is a self-test of the device to detect interference from
adversary: Alice and Bob can certify that their devices hold maximally entangled pairs, and
by monogamy of entanglement can establish that Eve doesn’t have any information about
their inputs.

Our protocol extends the above scenario to n rounds. It is important to note that the
observable for our synchronous Bell inequality (3) only involves correlations where Alice and
Bob use different inputs. Critically, neither Alice nor Bob must pre-select which rounds will
used for testing versus key generation. Upon revealing their choices of bases, testing rounds
are given by those where they selected different bases and key generation rounds where they
selected the same basis. In particular, they need not have any pre-shared randomness.

Of course no physical device adheres to a theoretical model perfectly, so in practice
one still must perform standard information reconciliation and privacy amplification on the
results.

Once the n rounds of the protocol are over, Alice and Bob communicate their basis
selection over an authenticated classical channel. When they chose different bases (i.e.
xA ≠ xB), they exchange their measurement outcomes and use those to compute J3. If the
value of J3 deviates too much from − 1

8 , they abort. The protocol is synchronous, therefore
yA = yB whenever xA = xB and those can be used as the raw key bits for further standard
privacy amplification and information reconciliation.

Our first main result is our technical rigidity statement that synchronous quantum
correlations near J3 = − 1

8 have the desired security. Informally, after splitting off a space L

of small relative dimension, the correlation’s projections are near (in trace norm) the ideal
one, which separates Alice and Bob performing the perfect protocol on C2, and Eve and all
other parties receiving no information having measurement outcomes from 1K.
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8:6 DI-KQD Using Synchronous Correlations

▶ Theorem 4. Let p(yA, yB | xA, xB) = 1
d tr(ExA

yA
ExB

yB
) be a synchronous quantum correlation

with maximally entangled state, where {Ex
y } is a projection-valued measure on a d-dimensional

Hilbert space H. Suppose J3(p) ≤ − 1
8 + λ. Then on H = L ⊕ (C2 ⊗ K) there exists a

projection-value measure {Ẽx
y } where (1) Ẽx

y = Lx
y + Êx

y ⊗ 1K, (2) dim L
dim H ≤ 8λ, and (3)

1
3
∑

x,y
1
d tr
((
Ex

y − Ẽx
y

)2) ≤ 8λ. In particular, the expected statistical difference

1
3
∑
x,y

∣∣∣∣p(y, y | x, x)− 1
2

∣∣∣∣ ≤ 1
3

(√
8
√
λ+ 32λ

)
.

Proof. We begin by defining the ±1-valued observables Mx = Ex
0 − Ex

1 , so M2
x = 1, and

following customary notation write

ax = 1
d

tr(Mx) and cxAxB
= 1
d

tr(MxA
MxB

).

Similarly denote M̃x = Ẽx
0 − Ẽx

1 . Notice Ex
0 = 1

2 (1 +Mx) and Ex
1 = 1

2 (1−Mx) so

1
3
∑
x,y

1
d

tr
((
Ex

y − Ẽx
y

)2) = 1
6
∑

x

1
d

tr
((
Mx − M̃x

)2)
.

Now define ∆ := M0 +M1 +M2, and compute

∆2 = M2
0 +M2

1 +M2
2 +M0M1 +M1M0 +M0M2 +M2M0 +M1M2 +M2M1

= 31 +M0M1 +M1M0 + (M0 +M1)M2 +M2(M0 +M1) (4)
= 1 +M0M1 +M1M0 + (M0 +M1 +M2)M2 +M2(M0 +M1 +M2)
= 1 +M0M1 +M1M0 + ∆M2 +M2∆ (5)

We have ∆2 relates to J3, and hence we obtain the following bound:

1
d

tr(∆2) = 1
d

tr
(
M2

0 +M2
1 +M2

2 + 2M0M1 + 2M0M2 + 2M1M2
)

= 3
d

tr (1) + 2
d

tr (M0M1 +M0M2 +M1M2)

= 3 + 2(c01 + c02 + c12) = 1 + 2(1 + c01 + c02 + c12) = 1 + 8J3

≤ 1 + 8
(
−1

8 + λ

)
= 8λ (6)

Using two projections theory [2, 10, 5], we have a decomposition of the Hilbert space H

H = L00 ⊕ L01 ⊕ L10 ⊕ L11 ⊕
k⊕

j=1
Hj ,

where dim(Lαβ) = lαβ for α, β ∈ {0, 1}, and dim(Hj) = 2, where the projections E0
0 and E1

0
take the form:

E0
0 = 0l00 ⊕ 0l01 ⊕ 1l10 ⊕ 1l11 ⊕

k⊕
j=1

(
1 0
0 0

)

E1
0 = 0l00 ⊕ 1l01 ⊕ 0l10 ⊕ 1l11 ⊕

k⊕
j=1

(
cos2 θj sin θj cos θj

sin θj cos θj sin2 θj

)
.



N. Rodrigues and B. Lackey 8:7

That is, we can express

M0 = −1L00 ⊕−1L01 ⊕ 1L10 ⊕ 1L11 ⊕
k⊕

j=1

(
1 0
0 −1

)
,

M1 = −1L00 ⊕ 1L01 ⊕−1L10 ⊕ 1L11 ⊕
k⊕

j=1

(
cos 2θj sin 2θj

sin 2θj − cos 2θj

)
.

Now let us define M̃0, M̃1, M̃2 as follows. Note that our ideal projections Ê1
0 , Ê

1
1 correspond

to angle θ̂ = 2π
3 , and without loss of generality we can assume1 |θj − θ̂| ≤ π

6 .

M̃0 = M0 = −1L00 ⊕−1L01 ⊕ 1L10 ⊕ 1L11 ⊕
k⊕

j=1

(
1 0
0 −1

)
,

M̃1 = −1L00 ⊕ 1L01 ⊕−1L10 ⊕ 1L11 ⊕
k⊕

j=1

(
cos 2θ̂ sin 2θ̂
sin 2θ̂ − cos 2θ̂

)
,

M̃2 = 1L00 ⊕ 1L01 ⊕−1L10 ⊕−1L11 ⊕
k⊕

j=1

(
−1− cos 2θ̂ − sin 2θ̂
− sin 2θ̂ 1 + cos 2θ̂

)
.

As desired, M̃x = (Lx
0 − Lx

1) + M̂x ⊗ 1Ck , where the {Lx
y} are the projection onto the

summands Lµν .
First we bound the dimension of each Lµν . Consider (4) for ∆2. If |ψ01⟩ ∈ L01, then

⟨ψ01|∆2|ψ01⟩ = ⟨ψ01|(31 +M0M1 +M1M0 + (M0 +M1)M2 +M2(M0 +M1)|ψ01⟩
= 3− 1− 1 + 0 + 0 = 1.

The same equality holds for |ψ10⟩ ∈ L10, namely ⟨ψ10|∆2|ψ10⟩ = 1.
For a vector |ψ00⟩ in L00 we again use (4) to get ⟨ψ00|∆2|ψ00⟩ = 3+1+1−4⟨ψ00|M2|ψ00⟩.
Now from Cauchy-Schwarz, and that M2

2 = 1, we have

|⟨ψ00|M2|ψ00⟩| ≤ |⟨ψ00|ψ00⟩|
1
2 |⟨ψ00|M2

2 |ψ00⟩|
1
2 = 1

and thus ⟨ψ00|∆2|ψ00⟩ ≥ 1. Similarly for |ψ11⟩ in L11 we have

⟨ψ11|∆2|ψ11⟩ = 5 + 4⟨ψ11|M2|ψ11⟩ ≥ 5− 4|⟨ψ11|M2|ψ11⟩| ≥ 1.

Putting everything together, since ⟨ψαβ |∆2|ψαβ⟩ ≥ 1 on each Lαβ , for α, β ∈ {0, 1},
summing over bases of the respective spaces

l

d
= 1
d

(l00 + l01 + l10 + l11) ≤ 1
d

l∑
j=1
⟨ψj |∆2|ψj⟩ ≤

1
d

tr(∆2) ≤ 8λ.

where the second-to-last inequality follows from ∆2 being positive semidefinite.
This immediately provides the claimed bound on the statistical difference from uniform.

We can explicitly bound the quantities |a0| and |a1| as follows:

|a0| =
1
d
|tr(M0)| = 1

d
| − l00 − l01 + l10 + l11| ≤

l

d
≤ 8λ

|a1| =
1
d
|tr(M1)| = 1

d
| − l00 + l01 − l10 + l11| ≤

l

d
≤ 8λ.

1 Direct examination of (1) reveals that any θj is within π
6 of the image of some Ex

y ; the bound we prove
is symmetric in x, y we may reorder the labeling in each Hj so that θj is close to E1

0 with θ̂ = 2π
3 .
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Using Cauchy-Schwarz, we bound |a2|. As

a0 + a1 + a2 = 1
d

tr(∆) ≤
(

1
d

tr(∆2)
) 1

2
(

1
d

tr(12)
) 1

2

≤
√

8λ,

we have a2 ≤
√

8λ− a0 − a1 and therefore |a2| ≤
√

8λ+ |a0|+ |a1| ≤
√

8
√
λ+ 16λ.

Finally we bound each 1
d tr
((
Mx − M̃x

)2). Note M0 − M̃0 = 0 by construction. Then

1
d

tr
((
M1 − M̃1

)2) = 1
d

∑
j

tr

( cos 2θj − cos 2θ̂ sin 2θj − sin 2θ̂
sin 2θj − sin 2θ̂ − cos 2θj + cos 2θ̂

)2


= 1
d

∑
j

(4− 4 cos(2(θj − θ̂))) = 8
d

∑
j

sin2(θj − θ̂)

To bound this, we note that on any Hj :(
1 0
0 −1

)(
cos 2θj sin 2θj

sin 2θj − cos 2θj

)
+
(

cos 2θj sin 2θj

sin 2θj − cos 2θj

)(
1 0
0 −1

)
= 2 cos 2θj ·1Hj .

From this we obtain[(
1 0
0 −1

)
+
(

cos 2θj sin 2θj

sin 2θj − cos 2θj

)]2

= 4 cos2 θj1Hj
.

Hence there exists a basis {|ψ0⟩, |ψ1⟩} of Hj such that

(M0 +M1)|ψ0⟩ = 2 cos θj |ψ0⟩ and (M0 +M1)|ψ1⟩ = −2 cos θj |ψ1⟩.

Therefore again from (4) we have

⟨ψ0|∆2|ψ0⟩ = 3 + 2 cos 2θj + 4 cos θj⟨ψ0|M2|ψ0⟩
⟨ψ1|∆2|ψ1⟩ = 3 + 2 cos 2θj − 4 cos θj⟨ψ1|M2|ψ1⟩.

In particular, ⟨ψ0|∆2|ψ0⟩+ ⟨ψ1|∆2|ψ1⟩ ≥ 6 + 4 cos 2θj − 8| cos θj |. It is straightforward to
show for θ ∈

[ 2π
3 −

π
6 ,

2π
3 + π

6
]

that 6 + 4 cos 2θ − 8| cos θ| ≥ 4 sin2 (θ − 2π
3
)
. And hence we

obtain the bound

1
d

tr(∆2) ≥ 1
d

∑
j

(6 + 4 cos 2θj − 8| cos θj |)

≥ 1
d

∑
j

4 sin2(θj − θ̂) = 1
2d tr

((
M1 − M̃1

)2)
.

In particular, 1
d tr
((
M1 − M̃1

)2) ≤ 16λ.

Finally, note M̃0 + M̃1 + M̃2 = −1L00 ⊕ 1L01 ⊕−1L10 ⊕ 1L11 . By Jensen’s inequality

1
d

tr
((
M2 − M̃2

)2) = 1
d

tr
((

∆− (−1L00 ⊕ 1L01 ⊕−1L10 ⊕ 1L11) + (M̃1 −M1)
)2)

≤ 1
d

tr
(
∆2)+ 1

d
tr (1L) + 1

d
tr
((
M̃1 −M1

)2) ≤ 32λ.

Therefore, 1
3
∑

x,y
1
d tr
((
Ex

y − Ẽx
y

)2) ≤ 8λ as desired.
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It is straightforward to get a bound on the statistical difference to any synchronous
quantum correlation close to J3 = − 1

8 . Every synchronous quantum correlation is a convex
sum of synchronous quantum correlations with maximally entangled states, and so we may
write p =

∑
j cjpj where pj is as in the theorem above. Say J3(pj) ≤ − 1

8 + λj , and so

J3(p) =
∑

j

cjJ3(pj) ≤ −1
8 +

∑
j

cjλj = −1
8 + λ

where we define λ =
∑

j cjλj . With two uses of Jensen’s inequality,

1
3
∑
x,y

∣∣∣∣p(y, y | x, x)− 1
2

∣∣∣∣ ≤ 1
3
∑
j,x,y

cj

∣∣∣∣pj(y, y | x, x)− 1
2

∣∣∣∣
≤
∑

j

cj(C
√
λj + C ′λj) ≤ C

√
λ+ C ′λ. ◀

Unfortunately, this does not yet produce a fully device-independent protocol as we still
suffer from a “synchronicity” loophole. We discuss this loophole and close the loophole in
the next section.

4 Measure of asynchronicity

That J3 = − 1
8 can be achieved by a unique synchronous quantum correlation, which

necessarily can only be realized through a maximally entangled state, provides the device-
independent security of the above QKD scheme. However this opens a “synchronicity”
security loophole: can a (asynchronous) quantum device simulate J3 = − 1

8 without using
maximally entangled states (and hence potentially leak information about the derived shared
keys)? Fortunately a recent work shows that the same results apply to “almost” synchronous
correlations [24]. This allows us to close this synchronicity loophole by also bounding the
asynchronicity of the observed correlation.

▶ Definition 5. The asynchronicity with respect to a basis choice x ∈ X and set of measure-
ment outcomes Y is Sx(p) =

∑
yA ̸=yB

p(yA, yB |x, x). The total (or expected) asynchronicity
is

S(p) = 1
|X|

∑
x∈X

Sx(p) (7)

In [24], this measure is called the “default to synchronicity” and denoted δsync. While the
expected asynchronicity is the average likelihood of an asynchronous result where the inputs
are sampled uniformly at random, all results here and in [24], apply to the case where the
expectation is computed over inputs sampled with respect to some other fixed distribution.
To bound the asynchronicity, we modify the scheme in Section 3 so that for some data rounds
where Alice and Bob have selected the same inputs they still reveal their output, stated as
Algorithm 1 below.

Here we state the main result [24, Theorem 3.1] in the notation used above. Note that
this theorem refers to symmetric (albeit asynchronous) correlations, which is the natural
setting as every synchronous quantum correlation is symmetric. This implies a special form
for the projections in the correlation, involving the transpose with respect to the natural
basis given by the Schmidt-decomposition of the entangled state used in the correlation.
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▶ Theorem 6 (Vidick). There are universal constants c, C > 0 such that the following
holds. Let X and Y be finite sets and p a symmetric quantum correlation with input set
X, measurement results Y , and asynchronicity S = S(p). Write p(yA, yB | xA, xB) =
⟨ψ|ExA

yA
⊗ (ExB

yB
)T |ψ⟩ where {Ex

y }y∈Y is a POVM on a finite-dimensional Hilbert space H and
|ψ⟩ a state on H⊗H. Let |ψ⟩ =

∑r
j=1
√
σj

∑dj

m=1 |ϕA
j,m⟩⊗|ϕB

j,m⟩ be the Schmidt decomposition,
and write |ψj⟩ = 1√

dj

∑dj

m=1 |ϕA
j,m⟩ ⊗ |ϕB

j,m⟩. Then

1. H =
⊕r

j=1 Hj with |ψj⟩ being maximally entangled on Hj ⊗ Hj;
2. there is a projective measurement {Ej,x

y }y∈Y on each Hj so that

pj(yA, yB | xA, xB) = ⟨ψj |Ej,xA
yA
⊗ (Ej,xB

yB
)T |ψj⟩ = 1

dj
tr(Ej,xA

yA
Ej,xB

yB
)

is a synchronous quantum correlation and p ≈
∑r

j=1 djσjpj in that:

1
|X|

∑
x∈X

∑
y∈Y

r∑
j=1

1
dj

dj∑
m=1
⟨ϕA

j,m|
(
Ex

y − Ej,x
y

)2 |ϕA
j,m⟩ ≤ CSc.

As indicated in [24, §4.1], this result can be used to transfer rigidity from synchronous
to almost synchronous correlations. As

∑
j djσj = 1, we also transfer the bound on the

statistical difference from uniform to convex sums in this theorem exactly as in the previous
section. As for the full correlation we rephrase Lemma 2.10 of [24] in the context of Theorem 6
as follows.

▶ Corollary 7. Let p(yA, yB | xA, xB) = ⟨ψ|ExA
yA
⊗ (ExB

yB
)T |ψ⟩ be a quantum correlation with

asynchronocity S as in Theorem 6, and let p̄ =
∑r

j=1 djσjpj with

1
|X|

∑
x∈X

∑
y∈Y

r∑
j=1

1
dj

dj∑
m=1
⟨ϕA

j,m|
(
Ex

y − Ej,x
y

)2 |ϕA
j,m⟩ = γ

as given in Theorem 6. Then
1
|X|2

∑
xA,xB ,yA,yB

|p(yA, yB | xA, xB)− p̄(yA, yB | xA, xB)| ≤ 3S + 4√γ.

Note that this bound on the statistical difference directly bounds J3(p) in terms of the
convex sum of the analogous J3(pj). Note that J3, as seen in (3), is an affine function so
J3(p̄) =

∑r
j=1 σjdjJ3(pj) using the notation of Theorem 6 above. Then immediately from

Corollary 7, |J3(p)− J3(p̄)| ≤ 27
4 S + 9√γ. In turn from Theorem 6 we have γ ≤ CSc, and

so there are different universal constants C ′, c′ so that

|J3(p)− J3(p̄)| ≤ C ′Sc′
. (8)

▶ Corollary 8. Let p(yA, yB | xA, xB) = ⟨ψ|ExA
yA
⊗ (ExB

yB
)T |ψ⟩ be a quantum correlation

as in Theorem 6 and suppose J3(p) = − 1
8 + λ. Then the Hilbert space decomposes as

H =
⊕r

j=1 Hj =
⊕r

j=1(Lj ⊕ (C2 ⊗ Kj)) where dimLj

dimHj
≤ 8λj. On each summand we have

projection-valued measures {Ẽj,x
y } such that Ẽj,x

y = Lj,x
y + Êx

y ⊗ 1Kj
and

1
3
∑
x,y

r∑
j=1

σjdj

 1
dj

dj∑
m=1
⟨ϕA

j,m|(Ex
y − Ẽj,x

y )2|ϕA
j,m⟩

 ≤ C1S
c + C2λ

for universal constants c, C1, C2.
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Proof. Given {Ex
y } as above, we obtain projections {Ej,x

y } defining synchronous correlations
pj from Theorem 6. Write J3(pj) = − 1

8 + λj . From Theorem 4, we obtain the given
decomposition of the Hilbert space and projection-valued measures {Ẽj,x

y } where

1. Ẽj,x
y = Lj,x

y + Êx
y ⊗ 1Kj

,

2. dim Lj

dim Hj
≤ 8λj , and

3. 1
3
∑

x,y
1
dj

∑dj

m=1⟨ϕA
j,m|(Ej,x

y − Ẽj,x
y )2|ϕA

j,m⟩ ≤ C2λj .

Then using the notation and (8) above |J3(p) − J3(p̄)| =
∣∣∣λ−∑r

j=1 σjdjλj

∣∣∣ ≤ C ′Sc′ and
thus

1
3
∑
x,y

r∑
j=1

σjdj

 1
dj

dj∑
m=1
⟨ϕA

j,m|(Ej,x
y − Ẽj,x

y )2|ϕA
j,m⟩

 ≤ C2

r∑
j=1

σjdjλj = C2λ+ C2C
′Sc′

.

On the other hand,

1
3
∑
x,y

r∑
j=1

σjdj

 1
dj

dj∑
m=1
⟨ϕA

j,m|(Ex
y − Ej,x

y )2|ϕA
j,m⟩


≤ 1

3
∑
x,y

r∑
j=1

 1
dj

dj∑
m=1
⟨ϕA

j,m|(Ex
y − Ej,x

y )2|ϕA
j,m⟩

 ≤ C ′′Sc′′

directly from Theorem 6. So by Jensen’s inequality

1
3
∑
x,y

r∑
j=1

σjdj

 1
dj

dj∑
m=1
⟨ϕA

j,m|(Ex
y − Ẽj,x

y )2|ϕA
j,m⟩


≤ 2

3
∑
x,y

r∑
j=1

σjdj

 1
dj

dj∑
m=1
⟨ϕA

j,m|(Ex
y − Ej,x

y )2|ϕA
j,m⟩


+ 2

3
∑
x,y

r∑
j=1

σjdj

 1
dj

dj∑
m=1
⟨ϕA

j,m|(Ej,x
y − Ẽj,x

y )2|ϕA
j,m⟩


≤ 2C1S

c + 2C2λ

for some universal constant C1. ◀

5 Security and key-rate analysis

Our synchronous fully device-independent quantum key distribution protocol is stated in
Algorithm 1. For an honest, but possibly noisy implementation of the protocol, we assume
that Alice and Bob perform measurements Exi

A
yA ⊗ E

xi
B

yB on the state ρAB. We assume a
depolarization channel and take ρAB to be the state (1− ν)|Φ+⟩⟨Φ+|+ ν

41, where ν ∈ [0, 1]
is the depolarization noise and |Φ+⟩ is the EPR pair. Using measurements according to
Equation (1), we get J3 = − 1

8 + 3
8ν, and S = ν

2 . A general framework for analyzing device-
independent protocols was laid out in [4], which we use to show completeness and soundness
of our protocol.
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8:12 DI-KQD Using Synchronous Correlations

Algorithm 1 Synchronous QKD Protocol.

Input:
λ ∈ [0, 1

8 ): Allowed error in J3 violation
µ ∈ [0, µ0]: Allowed error in asynchronicity S with µ0 being a pre-decided threshold

n ∈ N: Total number of rounds
m ∈ N: Parameter for choosing asynchronicity check rounds. κ := 1

m

γ ∈ (0, 1]: Expected fraction of test rounds
δJ3

est ∈ (0, 1): Width of statistical interval for the J3 test
δS

est ∈ (0, 1): Width of statistical interval for the S test
EC: Error Correction protocol
PA: Privacy Amplification protocol

1 For i ∈ [n]:
2 Alice and Bob draw xi

A ← X, xi
B ← X according to Equation (9)

3 They produce outputs yi
A and yi

B using {Exi
A

y } and {Exi
B

y } respectively
4 They share their inputs xi

A and xi
B .

5 Error Correction: Alice and Bob use error correction protocol EC to obtain
outputs ỸA and ỸB . They abort if the error correction protocol aborts.

6 Parameter Estimation:
7 Bob estimates the J3 violation in rounds where xi

A ̸= xi
B , i.e. he sets Ri = 1 if

ỹi
A ̸= yi

B else 0. He aborts if
∑

i Ri <
[
γ
( 3

4 −
2
3λ
)
− δJ3

est

]
· n

8 He also estimates the asynchronicity S in rounds where xi
A = xi

B and i (mod m) = 0,
i.e. he sets Qi = 1 if ỹi

A ̸= yi
B else 0 in those rounds. He aborts if∑

i Qi <
[
κ(1− γ)µ− δS

est

]
· n

9 Privacy Amplification: Alice and Bob use privacy amplification protocol PA to
create final keys KA and KB using ỹi

A and ỹi
B where xi

A = xi
B and i (mod m) ̸= 0.

▶ Lemma 9 (Completeness). Let ϵcEC be the completeness error of the EC protocol, and
ϵEC be the probability that the EC protocol does not abort but Alice and Bob hold dif-
ferent outputs post error correction. Then, Protocol 1 has completeness error ϵcQKD ≤
exp

(
−2n

(
(δS

est)2) + (δJ3
est)2

))
+ ϵcEC + ϵEC .

Proof. The protocol either aborts in the error correction step or the parameter estimation
step. The probability of aborting during the J3 and S tests can be bounded using Hoeffding’s
inequality as follows:

Pr
(∑

j

Rj >

[
γ

(
3
4 −

2
3λ
)
− δJ3

est

]
· n
∧∑

j

Qj >
[
κ(1− γ)µ− δS

est

]
· n

)

≤ exp
(
−2n

(
(δS

est)2) + (δJ3
est)2

))
.

The rest of the proof follows analogously to [4, Lemma 5.2 and Eq. 5.2] ◀

We use the Entropy Accumulation Theorem (EAT) [8], to bound the min-entropy of
Alice and Bob’s outputs with respect to an adversary Eve’s side information. To that effect,
we define Ω as the event that Alice and Bob do not abort the protocol in the parameter
estimation step. The EAT yields a bound on the min-entropy, given we find an appropriate
min-tradeoff function.

We state the min-entropy bound in the following theorem.
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▶ Theorem 10. Let ρYAYBXAXBT E be the joint state of Alice, Bob and Eve’s system along
with the register T for indicating testing versus data rounds, and let Ω be the event that the
protocol does not abort during parameter estimation. We write ρ|Ω for the state of the system
conditioned on Ω. Let ϵEA, ϵs ∈ (0, 1). Then either
1. The protocol aborts with probability greater than 1− ϵEA, or
2. Hϵs

min(YAYB |XAXBTE)ρ|Ω > n · OPT(ϵs, ϵEA), where OPT is defined as follows:

g(p) =

1− h
(

3− 4 p(1)
γ

)
p(1)

γ ∈
[ 2

3 ,
3
4
]

1 p(1)
γ ∈

[ 3
4 , 1
]
,

fJ3
min(p, pt) =

g(p) if p(1) ≤ pt(1)
d

dp(1)g(p)
∣∣∣
pt

· p(1) + g(pt)− d
dp(1)g(p)

∣∣∣
pt

· pt(1) if p(1) > pt(1),

fEAT = nfJ3
min(p, pt)−

2√
n

(
log 9 +

⌈
d

dp(1)g(p)
⌉)√

1− 2 log(ϵs · ϵEA),

OPT(ϵs, ϵEA) = max
2
3 <

pt(1)
γ < 3

4

fEAT (p, pt, ϵs, ϵEA).

Before we state the proof, we develop some key ideas and prove some lemmas that will
be used in the proof. In round i ∈ [n], Alice and Bob draw from a local biased distribution
with p0, p1, p2 ∈ [0, 1]:

xi =


i (mod 3) with probability p0,

i+ 1 (mod 3) with probability p1,

i+ 2 (mod 3) with probability p2.

(9)

Without loss of generality we may assume that the total number of rounds is a multiple
of 3, i.e. n = 3N for some N . There are two cases in which they perform a testing round –
first for testing the violation of the Bell inequality J3, and second to test the asynchronicity of
the protocol. Let γ be the probability of performing a J3 test. Thus we have γ = p(xA ̸= xB).

γ = p(xA ̸= xB) = 1
3

2∑
i=0

p(xi
A ̸= xi

B) = 2(p0p1 + p0p2 + p1p2).

For the J3 test we define a random variable Ri as follows:

Ri =


1 if yi

A ̸= yi
B and xi

A ̸= xi
B ,

0 if yi
A = yi

B and xi
A ̸= xi

B ,

⊥ if xi
A = xi

B .

The probability that Ri = 1 is given by

p(Ri = 1) = p(yi
A ̸= yi

B ∧ xi
A ̸= xi

B) =
3N∑

i

∑
yi

A ̸=yi
B

xi
A ̸=xi

B

p(yi
A, y

i
B | xi

A, x
i
B) · p(xi

A, x
i
B) · 1

3N

= 1
3

2∑
i=0

∑
yi

A ̸=yi
B

xi
A ̸=xi

B

p(yi
A, y

i
B | xi

A, x
i
B) · p(xi

A, x
i
B)

= 1
3(p0p1 + p0p2 + p1p2)

∑
yA ̸=yB

xA ̸=xB

p(yA, yB | xA, xB)

= 1
3(p0p1 + p0p2 + p1p2)(4− 4J3) = γ

(
2
3 −

2
3J3

)
.
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8:14 DI-KQD Using Synchronous Correlations

Similarly, we define a random variable Qi corresponding to the asyncronicity. We reserve
every mth key generation round to perform an asynchronicity check i.e. if i = 0 (mod m)
for i such that xi

A = xi
B . We denote by κ = 1/m the fraction of asynchronicity check rounds.

We have

Qi =


1 if yi

A ̸= yi
B and xi

A = xi
B and i = 0 (mod m),

0 if yi
A = yi

B and xi
A = xi

B ,

⊥ if xi
A ̸= xi

B .

The probability that Qi = 1 is given by

p(Qi = 1) = p(yi
A ̸= yi

B ∧ xi
A = xi

B ∧ i = 0 (mod m))

= 1
m

3N∑
i

∑
xi

A
=xi

B

∑
yi

A ̸=yi
B

p(yi
A, y

i
B | xi

A, x
i
B) · p(xi

A, x
i
B) · 1

3N

= κ

3

2∑
i=0

∑
yi

A ̸=yi
B

xi
A=xi

B

p(yi
A, y

i
B | xi

A, x
i
B) · p(xi

A, x
i
B)

= κ

3 (p2
0 + p2

1 + p2
2)

∑
yA ̸=yB
xA=xB

p(yA, yB | xA, xB) = κ

3 (1− γ) · 3S = κ(1− γ)S.

Thus if p(xA ̸= xB) = γ, then the probability that we are in a testing round (J3 or S),
i.e. Ti = 1 is given by γ + κ(1 − γ). We can tune γ arbitrarily by choosing p0, p1 and p2
appropriately.

Before proving Theorem 10, we first show a bound on the mutual information between
Alice’s output and Eve’s system. Following the outline in [1], we assume that Eve provides
Alice and Bob a Bell diagonal state with eigenvalues λΦ+ , λΦ− , λΨ+ , λΨ− corresponding to
the Bell states

|Φ+⟩ = 1√
2

(|00⟩+ |11⟩), |Φ−⟩ = 1√
2

(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2

(|01⟩+ |10⟩), |Ψ−⟩ = 1√
2

(|01⟩ − |10⟩).

We may write the Bell diagonal state as

ρλ =


λΦ+

λΨ−

λΦ−

λΨ−

 (10)

The following lemma provides a bound on the mutual information between Alice’s output
and Eve’s system. This bound is then used in the proof of the theorem in bounding the
min-entropy of Alice and Bob’s outputs in the protocol conditioned on Eve’s side information.

▶ Lemma 11. Let Y i
A be Alice’s output in round i ∈ [n], and E be Eve’s register. If Eve

provides Alice and Bob the Bell diagonal state ρλ in Equation (10), with eigenvalues ordered
as λΦ+ ≥ λΨ− and λΦ− ≥ λΨ+ , we have

χ(Y i
A : E) ≤ h(λΦ−).
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Proof. For Alice and Bob’s measurement operators ExA
yA

and F xB
yB

, the probability of
getting outputs (yA, yB) given inputs (xA, xB) and state ρ is given by the Born rule,
p(yA, yB |xA, xB) = tr

((
ExA

yA
⊗ F xB

yB

)
ρ
)
. For the Bell diagonal state ρλ, this probability may

be expanded as follows:

p(yA, yB | xA, xB) = tr
(
(ExA

yA
⊗ F xB

yB
)ρλ

)
= λΦ+tr

(
(ExA

yA
⊗ F xB

yB
)|Φ+⟩⟨Φ+|

)
+ λΦ−tr

(
(ExA

yA
⊗ F xB

yB
)|Φ−⟩⟨Φ−|

)
+ λΨ+tr

(
(ExA

yA
⊗ F xB

yB
)|Ψ+⟩⟨Ψ+|

)
+ λΨ−tr

(
(ExA

yA
⊗ F xB

yB
)|Ψ−⟩⟨Ψ−|

)
= λΦ+tr

(
(ExA

yA
⊗ F xB

yB
)|Φ+⟩⟨Φ+|

)
+ λΦ−tr

(
(ExA

yA
⊗ ZF xB

yB
Z)|Φ+⟩⟨Φ+|

)
+ λΨ+tr

(
(ExA

yA
⊗XF xB

yB
X)|Φ+⟩⟨Φ+|

)
+ λΨ−tr

(
(ExA

yA
⊗ Y F xB

yB
Y )|Φ+⟩⟨Φ+|

)
= λΦ+

2 tr
(
ExA

yA
F xA

yA

)
+ λΦ−

2 tr
(
ExA

yA
ZF xA

yA Z
)

+ λΨ+

2 tr
(
ExA

yA
XF xA

yA X
)

+ λΨ−

2 tr
(
ExA

yA
Y F xA

yA Y
)

Using this probability, we can compute the values of J3 and S. One can show that choosing
ExA

yA
= F xB

yB is the optimal choice for minimizing J3 and S simultaneously, but we skip the
proof here. We define projection operators using variables θ1, θ2, γ1 and γ2 which we later
optimize:

E0
0 = |ϕ0⟩⟨ϕ0| with |ϕ0⟩ = |0⟩

E1
0 = |ϕ1⟩⟨ϕ1| with |ϕ1⟩ = cos θ1|0⟩+ eiγ1 sin θ1|1⟩

E2
0 = |ϕ2⟩⟨ϕ2| with |ϕ2⟩ = cos θ2|0⟩+ eiγ2 sin θ2|1⟩

and where the corresponding Ex
1 = 1− Ex

0 for x ∈ {0, 1, 2}. Computing the asynchronicity
S directly according to Equation (7) we get

S = λΦ−

3
[
sin2(2θ1) + sin2(2θ2)

]
+ λΨ+

3
[
3− (sin2(2θ1) + sin2(2θ2)

]
+ λΨ−

The λΨ− term doesn’t depend on θ1 and θ2, so we may take λΨ− = 0 since we want to
minimize S. Further, since sin2(2θ1) + sin2(2θ2) ≥ 0 and λΦ− ≥ λΨ+ , we may take λΨ+ = 0.
Next we define δ1 and δ2 to be the deviation in angles from the angles in the optimal strategy
defined in Equation (1) (the optimal angles are given by θ1 = π

3 and θ2 = −π
3 ). Thus the

equations we obtain for J3 and S using θ1 = π
3 + δ1 and θ2 = −π

3 + δ2 are:

J3 = −(2λΦ− − 1) cos
(π

3 + δ1

)
cos
(
−π3 + δ2

)
sin
(π

3 + δ1

)
sin
(
−π3 + δ2

)
+ cos2

(π
3 + δ1

)
cos2

(
−π3 + δ2

)
Since we want to minimize J3, we minimize the term independent of the factor λΦ− . We call
this term cJ3 and find that this term is

cJ3 = cos
(π

3 + δ1

)
cos
(
−π3 + δ2

)
sin
(π

3 + δ1

)
sin
(
−π3 + δ2

)
+ cos2

(π
3 + δ1

)
cos2

(
−π3 + δ2

)
= cos

(
2π
3 + δ1 − δ2

)
cos
(π

3 + δ1

)
cos
(π

3 − δ2

)
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Minimizing cJ3 for δ1 and δ2 we find that δ1 = δ2
2 , and δ2 ∈ {0, 2π

3 ,
4π
3 }. The solutions

δ2 = 2π
3 and δ2 = 4π

3 are equivalent to δ2 = 0, so we only consider the latter solution. This
suggests that in order for Eve to minimize J3, her strategy must match the ideal strategy
developed in Equation (1). Using δ1 = δ2 = 0, we get

J3 = −1
8 + 3

8λΦ−

S = 1
2λΦ−

(11)

From [1, Lemma 5], we have

χ(Y i
A : E) ≤ H([λΦ+ , λΦ− , λΨ+ , λΨ− ])− h(λΦ+ + λΦ−)

= h(λΦ−) =
{
h( 1

3 + 8
3J3)

h(2S)

Where the second to last equality follows because λΨ+ = λΨ− = 0, thus H([λΦ+ , λΦ− ]) =
h(λΦ−), and h(λΦ+ + λΦ−) = h(1) = 0 ◀

Proof of Theorem 10. In similar fashion to [4, Theorem 4.1], we need to find a min-tradeoff
function in order to apply the EAT. From Lemma 11, we have χ(Y i

A : E|Xi
A = 0) ≤

h
( 1

3 + 8
3J3
)
. Thus

H(Y i
A|Xi

AX
i
BE) ≥ 1− h

(
1
3 + 8

3J3

)
(12)

Inserting this back into Equation (12), we get

H(Y i
A|Xi

AX
i
BE) ≥ 1− h

(
1
3 + 8

3

(
1− 3

2
p(Ri = 1)

γ

))
= 1− h

(
3− 4p(Ri = 1)

γ

)
For p(1)

γ ∈
[ 2

3 , 1
]
, let

g(p) =

1− h
(

3− 4 p(1)
γ

)
p(1)

γ ∈
[ 2

3 ,
3
4
]

1 p(1)
γ ∈

[ 3
4 , 1
]

We note that we only define g(p) in the regime p(1)
γ ∈

[ 2
3 , 1
]

since that range is operationally
relevant. The function can be extended to values of p(1)

γ ∈
[
0, 2

3
]

for completeness but is
not necessary for the purposes of the proof. The function g(p) has unbounded gradient at
p(1)

γ = 3
4 , and therefore needs to be modified using the “cutting-and-gluing” trick of [4] in

order to define a min-tradeoff function that can be used in the EAT. To that effect, we define
two functions l1 and l2 over a point pt that can be later optimized:

l1(pt) =
⌈

d

dp(1)g(p)
∣∣∣∣
pt

⌉
, l2(pt) = g(pt)− l1(pt) · pt(1)

and define fJ3
min as follows:

fJ3
min(p, pt) =

{
g(p) if p(1) ≤ pt(1)
l1(pt) · p(1) + l2(pt) if p(1) > pt(1)

Applying the EAT with min-tradeoff function fJ3
min(p, pt) for any pt such that 2

3 <
pt(1)

γ < 3
4 ,

and plugging in p(1)
γ = p(Ri=1)

γ = 2
3 −

2
3J3, we get the bound on the smooth min-entropy

Hϵs
min(YAYB |XAXBE)ρ|Ω ◀
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The soundness proof for the protocol follows identically to [4, Lemmas 5.3 and 5.4]. The
key length l generated at the end of Protocol 1 is derived analogously to [4, Theorem 5.1
and Eq 5.4] which for completeness we state here:

l = n · OPT(ϵs/4, ϵEA + ϵEC)− leakEC − 3 log
(

1−
√

1− (ϵs/4)2)
)

− γ · n−
√
n2 log 7

√
1− 2 log(ϵs/4 · (ϵEA + ϵEC)))− 2 log(1/ϵP A) (13)

where leakEC is discussed in detail in [4, §5.5.1 and Eq 5.9].
Based on Theorem 10 and [4, Theorem 5.1], we plot the key rate, defined as r = l

n . In
Figure 1, we plot the key rate against the asynchronicity (referred to as the bit-error rate
in [4]), and in Figure 2 we plot the key-rate against the total number of rounds while keeping
asynchronicity constant. For large n, we are able to tolerate asynchronicity of up to 4.6%
before the key-rate goes to 0. We use the values ϵEC = 10−10, ϵEA = ϵsQKD = 10−5, ϵcQKD =
10−2, p0 = 0.97, p1 = p2 = 0.015 and δJ3

est = 10−3 to plot the key rate curves in Figures 1
and 2.

6 Causality Loophole

In this section we describe what is called the causality or locality loophole common to device
independent quantum key distribution protocols that use non-local games, and propose a
solution to the loophole using a new security assumption.

As seen in Section 4, the bound for the Bell inequality J3 ≥ − 1
8 is sharp and rigid

only among synchronous quantum correlations. There exist more powerful synchronous
nonsignaling strategies that violate those bounds. Furthermore, if classical communication is
allowed between the parties in the protocol, even greater violations can be achieved. This is
the causality loophole: unless Alice and Bob are acausally separated, then the statistics for
the synchronous Bell inequalities can simply be simulated using classical communication.

In order to resolve the causality loophole in our protocol we pose a new security assumption:
instead of limiting Eve’s computational power or limiting the communication she can perform,
we assume that she has imperfect knowledge of the basis Alice and Bob use in the protocol.
We state this more formally:

TQC 2023
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Let ϵ be Eve’s uncertainty about Alice and Bob’s inputs. Without loss of generality, we
assume that this is symmetric across all basis selections. For x′, x ∈ {0, 1, 2} we have

Pr{Eve guesses basis x′ |Alice (or Bob) selects basis x} =


1− ϵ when x′ = x

ϵ
2 when x′ ̸= x.

(14)

In greater generality, we model the basis selection that Alice and Bob use for their inputs as a
classical-quantum state on C3 ⊗C3 ⊗HE , corresponding to Alice, Bob, and Eve respectively.
Alice and Bob’s states are classical while Eve can have quantum side information which
she may use to produce a correlation for a cheating strategy. We denote this state by
ρABE . For inputs xA, xB ∈ {0, 1, 2} for Alice and Bob respectively, we have ρABE =
|xA⟩⟨xA| ⊗ |xB⟩⟨xB | ⊗ ρxA,xB

E , where ρxA,xB

E quantifies Eve’s side information. Based on (14)
above we further decompose

ρxA,xB

E =
(

(1− ϵ)2σxA,xB
+ (1− ϵ) ϵ2(σxA,xB⊕1 + σxA,xB⊕2 + σxA⊕1,xB

+ σxA⊕2,xB
)

+ ϵ2

4 (σxA⊕1,xB⊕1 + σxA⊕1,xB⊕2 + σxA⊕2,xB⊕1 + σxA⊕2,xB⊕2)
)
,

where we denote xA ⊕ i := xA + i (mod 3), and similarly for xB. Writing Eve’s guess for
Alice’s input by zA and for Bob’s input by zB , the σzA,zB

for zA, zB ∈ {0, 1, 2} are densities
containing Eve’s side information depending on her guess for xA and xB respectively. With
these, we also allow Eve to have unlimited computational power and communication to
produce outputs (yA, yB). We denote the resulting conditional probability distribution as
Pr{(yA, yB | zA, zB)}σzA,zB

. As this is also a correlation, Eve has her own Bell term which
we denote by J̃3 and her own asynchronicity term which we denote by S̃.

Eve’s goal is to program Alice and Bob’s devices such that the device outputs pass
statistical tests for estimating Bell violation and asynchronicity. The following theorem shows
that Eve’s uncertainty ϵ is upper-bounded by a function of the allowed errors in Alice and
Bob’s Bell and asynchronicity terms. If Eve’s uncertainty exceeds a certain threshold then
there does not exist a distribution Pr{(yA, yB | zA, zB)}σzA,zB

she can use to provide outputs
to Alice and Bob that still pass their Bell and asynchronicity checks. We state the theorem
formally as follows.

▶ Theorem 12. Let 0 ≤ λ < 1
8 be the allowed error in Alice and Bob’s J3 term, and 0 ≤ µ

be their asynchronicity bound. On Eve’s side, let J̃3 and S̃ be analogous Bell inequality and
asynchronicity terms for her correlation. Let ϵ be Eve’s uncertainty about Alice and Bob’s
inputs as given in Equation (14), and δ be such that 0 ≤ δ. If ϵ > ϵδmax, where

ϵδmax = 2
3 −

2
3

(√
144(δ − 1)λ+ 64λ2 + 6(36δ + 8λ− 9)µ− 72µ2 − 162δ + 81

6µ− 18δ − 8λ+ 9

)
,

then Eve’s asynchronicity S̃ < δ.

Proof. For inputs xA, xB ∈ {0, 1, 2}, the correlation that Alice and Bob use to compute key
bits and self-test their devices is then given by:

p(yA, yB | xA, xB) = (15)

∑
zA,zB

Pr{yA, yB | zA, zB}σzA,zB
·


1− ϵ for zA = xA

ϵ
2 otherwise

 ·


1− ϵ for zB = xB

ϵ
2 otherwise
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We begin by deriving expressions for the expected values of J3 and S.

⟨1− J3⟩ = 1
4
(
p(0, 1 | 0, 1) + p(1, 0 | 0, 1) + p(0, 1 | 1, 0) + p(1, 0 | 1, 0)

+ p(0, 1 | 0, 2) + p(1, 0 | 0, 2) + p(0, 1 | 2, 0) + p(1, 0 | 2, 0)
+ p(0, 1 | 1, 2) + p(1, 0 | 1, 2) + p(0, 1 | 2, 1) + p(1, 0 | 2, 1)

)
=
(
1− ϵ+ 3

4ϵ
2) (1− J̃3) +

( 3
2ϵ−

9
8ϵ

2) S̃ (16)

A similar computation for S gives us:

⟨S⟩ = 1
3
(
p(0, 1 | 0, 0) + p(1, 0 | 0, 0) + p(0, 1 | 1, 1)

+ p(1, 0 | 1, 1) + p(0, 1 | 2, 2) + p(1, 0 | 2, 2)
)

=
(
1− 2ϵ+ 3

2ϵ
2) S̃ +

( 4
3ϵ− ϵ

2) (1− J̃3) (17)

Using Equations (16) and (17), we can solve for J̃3 and S̃ as:

[
1− J̃3
S̃

]
=
[

1− ϵ+ 3
4ϵ

2 3
2ϵ−

9
8ϵ

2

4
3ϵ− ϵ

2 1− 2ϵ+ 3
2ϵ

2

]−1 [ 9
8 − λ
µ

]
We get solutions:

J̃3 = (3ϵ2 − 4ϵ)(3− 6µ+ 8λ) + 16λ− 2
4 (3ϵ− 2)2 S̃ = (3ϵ2 − 4ϵ)(6µ− 8λ+ 9) + 24µ

6 (3ϵ− 2)2 . (18)

Plugging S̃ = δ in Equation (18), and solving for ϵ gives us:

ϵδmax = 2
3 −

2
3

(√
144(δ − 1)λ+ 64λ2 + 6(36δ + 8λ− 9)µ− 72µ2 − 162δ + 81

6µ− 18δ − 8λ+ 9

)
(19)

◀

▶ Corollary 13. For ϵ > ϵ0max, there is no correlation Eve can use to produce a cheating
strategy against Alice and Bob.

Proof. Plugging in δ = 0 in Equation (19),

ϵmax := ϵ0max = 2
3 −

2
3

(√
64λ2 + 6(8λ− 9)µ− 72µ2 − 144λ+ 81

6µ− 8λ+ 9

)
.

If Eve’s uncertainty ϵ > ϵmax, then S̃ < 0, and since no correlation can have negative
asynchronicity, no such Pr{(yA, yB | zA, zB)}σzA,zB

exists. ◀

By the corollary above, we conclude that Eve’s uncertainty cannot grow too much before
her asynchronicity becomes negative, therefore resulting in an infeasible strategy. Fixing a
reasonable threshold for the error allowed in the Bell term, say λ = 0.05, we plot values of
ϵmax against varying values of Alice and Bob’s allowed asynchronicity µ in Figure 3. The
plot shows that even for allowed asynchronicity µ = 5%, Eve must have close to perfect
certainty ≈ 97% about Alice and Bob’s inputs. Thus even with unlimited computational and
communication power, when ϵ > ϵmax, no correlation exists to perfectly simulate statistics
that pass Alice and Bob’s Bell and asynchronicity checks.
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We further examine the regime where Eve’s uncertainty ϵ > ϵmax. In this case the best
Eve can do in order to provide Alice and Bob an expected asynchronicity value ⟨S⟩ close to
µ, is to use a synchronous correlation herself, i.e. S̃ = 0. Fixing S̃ = 0, we plot ⟨J3⟩ as Eve’s
uncertainty exceeds ϵmax. Let γϵ := ϵ− ϵmax denote how much Eve’s uncertainty is above
the maximum. Figure 4 shows that even with a lot of uncertainty, Eve can make ⟨J3⟩ as
close to − 1

8 as she likes. Since Eve is not restricted to quantum strategies, she can in fact
violate the − 1

8 bound. However, providing a ⟨J3⟩ value smaller than − 1
8 is not in her best

interest since Alice and Bob check if their estimated J3 is in [− 1
8 ,−

1
8 + λ].

As a result, detecting Eve’s interference depends only on the asynchronicity check. Since
Eve’s S̃ = 0, she has to provide a value for Alice and Bob’s ⟨S⟩ = µ̃ that is strictly larger
than their decided error threshold µ. We use Equation (17) to plot the effect of increasing ϵ
past ϵmax on ⟨S⟩ = µ̃ for a fixed λ and µ. Figure 5 shows the comparison between γϵ and µ̃

for µ = 0.05 and λ = 0.05. In our analysis the choice of 0.05 for both λ and µ is arbitrary,
and is made to demonstrate the effect of increasing Eve’s uncertainty ϵ on the expected value
⟨S⟩. Alice and Bob may pick any reasonable error values for their J3 and S terms without
affecting the following calculations. From Figure 5, we see that µ̃ increases sharply as γϵ

increases, which in turn implies that Alice and Bob’s asynchronicity test always fails except
with negligible probability. We show this using a straightforward Chernoff argument and
bounding the probability that Alice and Bob’s output is asynchronous in fewer than a µ

fraction of the asynchronicity check rounds. Formally, let’s assume Alice and Bob have m
asynchronicity check rounds. Let Ai be a {0, 1} random variable denoting whether their
output is asynchronous in round i ∈ [m]. Since Eve provides an asynchronous output with
probability µ̃, we have

Ai =
{

1 with probability µ̃,
0 otherwise.

Let AS =
∑

i Ai. Therefore ⟨AS⟩ =
∑

i ⟨Ai⟩ = mµ̃. Using a Chernoff bound we get

Pr(AS ≤ mµ) ≤ exp
(
− (µ̃− µ)2k

2µ̃

)
.

Alice and Bob can thus make this probability arbitrarily small by picking an appropriate
value m for the number of asynchronicity check rounds they perform.
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1 Introduction

1.1 Background and Our Contribution
It is believed that universal quantum computers outperform their classical counterparts.
There are two approaches to strengthening this belief. The first is to introduce tasks that
seem intractable for classical computers but can be efficiently solved with quantum computers.
For example, no known efficient classical algorithm can solve the integer factorization, but
Shor’s quantum algorithm [33] can do it efficiently. The second approach is to consider what
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happens if classical computers can efficiently simulate the behaviors of quantum computers.
So far, sampling tasks have often been considered in this approach [22]. It has been shown
that if any probability distribution obtained from some classes of quantum circuits (e.g.,
instantaneous quantum polynomial time (IQP) circuits [12]) can be efficiently simulated
with classical computers, then PH collapses to its second [17, 27] or third level [12, 3, 26,
24, 13, 34, 35, 18, 20, 25, 10, 21, 11], or BQP is in the second level of PH [28]. Since the
collapse of PH and the inclusion of BQP in PH are considered to be unlikely, these results
imply quantum advantages.

In this paper, we take the second approach. If efficient classical simulation of quantum
measurements is possible, then the measurements become invertible because classical compu-
tation is reversible. From the analogy of the rewinding technique used in zero-knowledge (see
e.g., [37, 7, 36]), we call such measurements rewindable measurements. They make quantum
computation genuinely reversible and incredibly powerful. More formally, the following
rewinding operator R becomes possible. R receives a post-measurement n-qubit quantum
state (|z⟩⟨z| ⊗ I⊗n−1)|ψ⟩ with z ∈ {0, 1} and a classical description D of a pre-measurement
quantum state |ψ⟩ and outputs the quantum state |ψ⟩:

R
((

|z⟩⟨z| ⊗ I⊗n−1) |ψ⟩ ⊗ |D⟩
)

= |ψ⟩, (1)

where I ≡ |0⟩⟨0| + |1⟩⟨1| is the two-dimensional identity operator. As an important point,
R requires the classical description D as an input. If it requires only (|z⟩⟨z| ⊗ I⊗n−1)|ψ⟩
as an input, the output state cannot be uniquely determined. For example, in the case of
both |ψ⟩ = |0⟩|+⟩ and (|0⟩|+⟩ + |1⟩|−⟩)/

√
2, the post-measurement state is |0⟩|+⟩ for z = 0,

where |±⟩ ≡ (|0⟩ ± |1⟩)/
√

2. To circumvent this problem, we require the classical description
D as information about |ψ⟩. As a concrete example, the classical descriptions of |0⟩|+⟩ and
(|0⟩|+⟩ + |1⟩|−⟩)/

√
2 are I ⊗ H and CZ(H ⊗ H), respectively. Here, H ≡ |+⟩⟨0| + |−⟩⟨1|

is the Hadamard gate, CZ ≡ |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z is the controlled-Z (CZ) gate, and
Z ≡ |0⟩⟨0| − |1⟩⟨1| is the Pauli-Z operator. These descriptions are proper because |0⟩|+⟩
and (|0⟩|+⟩ + |1⟩|−⟩)/

√
2 can be prepared by applying I ⊗H and CZ(H ⊗H) on the fixed

initial state |00⟩, respectively. Furthermore, we define rewinding operators for only pure
states, that is their functionality is arbitrary for mixed states. Due to this restriction, we
can avoid contradictions with an ordinary interpretation of mixed states (see Sec. 3) and the
no-signaling principle (see the full paper [23]).

It is strongly believed that the rewinding of measurements cannot be performed in
ordinary quantum mechanics, i.e., the superposition is destroyed by measurements, and it
cannot be recovered after measurements. One may think that if the rewinding were possible
against this belief, it could add extra computation power to universal quantum computers.
We show that this expectation is indeed correct. More formally, we define RwBQP (BQP
with rewinding) as a set of decision problems solvable by polynomial-size quantum circuits
with a polynomial number of rewinding operators and show BQP ⊆ BPPPP ⊆ RwBQP.

The rewinding operator can be considered a probabilistic postselection. By just repeating
measurements and rewinding operations until the target outcome is obtained, we can
efficiently simulate the postselection with high probability if the output probability of the
target outcome is at least the inverse of some polynomial. However, the original postselection
enables us to deterministically obtain a target outcome even if the probability is exponentially
small [2]. In this case, the above simple repeat-until-success approach requires an exponential
number of rewinding operations on average. Surprisingly, we show that it is possible to
exponentially mitigate probabilities of nontarget outcomes with a polynomial number of
rewinding operators. By using this mitigation protocol, we can obtain the target outcome
with high probability even if the output probability of the target outcome is exponentially
small. In this sense, the rewinding and postselection are equivalent. More formally, we show
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that RwBQP is equivalent to the class AdPostBQP (BQP with adaptive postselection) of
decision problems solvable by polynomial-size quantum circuits with a polynomial number of
adaptive postselections. Here, an adaptive postselection is a projector |b⟩⟨b| such that the
value of b ∈ {0, 1} depends on previous measurement outcomes. From this equivalence, we
also obtain RwBQP ⊆ PSPACE.

The rewinding is also related to cloning. By strengthening our rewinding operator in
Eq. (1), we define the cloning operator C as follows:

C|D⟩ = |ψ⟩. (2)

Unlike Eq. (1), this operator does not require the post-measurement state (|z⟩⟨z|⊗I⊗n−1)|ψ⟩.
Since it is easy to duplicate the classical description D, we can efficiently duplicate |ψ⟩, i.e.,
generate |ψ⟩⊗2 by simply applying C ⊗C on |D⟩⊗2. Although the ordinary cloning operator
C̃ is defined such that C̃(|ψ⟩|0m⟩) = |ψ⟩⊗2 for some m ∈ N [38], we define C as an operator
whose input is the classical description D of |ψ⟩ rather than |ψ⟩ itself. This makes sense
because we can always obtain a classical description of |ψ⟩ in our setting1. Note that it
could be difficult to realize C in quantum polynomial time because |ψ⟩ might be prepared by
using measurements. More precisely, it may be defined as a quantum state prepared when
the measurement outcome is 0, e.g., |ψ⟩ = U2(I ⊗ |0⟩⟨0| ⊗ I⊗n−2)U1|0n⟩ for some unitary
operators U1 and U2. We show that RwBQP is also equivalent to the class CBQP (BQP with
cloning) of decision problems solvable by polynomial-size quantum circuits with a polynomial
number of cloning operators. That is, the difference between Eqs. (1) and (2) does not matter
to the computation power. The following theorem summarizes our main results explained
above:

▶ Result 1 (Theorem 16). BPPPP ⊆ RwBQP = CBQP = AdPostBQP ⊆ PSPACE.

The computation power of the cloning has been addressed in [4] as an open problem. Result 1
gives lower and upper bounds on our class CBQP, and it seems to be a reasonable approach
to capturing the power of cloning.

All the above results assume that rewinding operators can be utilized a polynomial
number of times. Under the strongly believed assumption that the shortest independent
vectors problem (SIVP) [30] cannot be efficiently solved with universal quantum computers,
we show that a single rewinding operator is sufficient to achieve a task that is intractable for
universal quantum computation:

▶ Result 2 (Informal Version of Theorem 22). Assume that there is no polynomial-time
quantum algorithm that solves the SIVP. Then, there exists a problem such that it can be
efficiently solved with a constant probability if a single rewinding operator is allowed for
quantum computation, but the probability is super-polynomially small if it is not allowed.

We also show a superiority of a single rewinding operator under a different assumption:

▶ Result 3 (Informal Version of Corollary 24). Let RwBQP(1) be RwBQP with a single
rewinding operator. Then, RwBQP(1) ⊃ BQP unless BQP ⊇ SZK.

It is strongly believed that BQP does not include SZK. At least, we can say that it is hard
to show BQP ⊇ SZK because there exists an oracle A such that BQPA ⊉ SZKA [1]. For
example, by assuming that the decision version of SIVP, gapSIVP, is hard for universal
quantum computation, Result 3 implies that a single rewinding operator is sufficient to

1 Since we are interested in complexity classes, we consider only quantum states generated from quantum
circuits in uniform families.
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achieve a task that is intractable for universal quantum computation. This is because the
gapSIVP (with an appropriate parameter) is in SZK [29]. As a difference from Result 2,
Result 3 shows the superiority of a single rewinding operator for promise problems.

As simple observations, we also consider the effect of rewinding operators for restricted
classes of quantum circuits. It has been shown that polynomial-size Clifford circuits are
classically simulatable [19]. We show that such circuits with rewinding operators are still
classically simulatable (for details, see the full paper [23]). It is also known that IQP
circuits are neither universal nor classically simulatable under plausible complexity-theoretic
assumptions [13]. We show that IQP circuits with rewinding operators can efficiently solve
any problem in RwBQP (for details, see the full paper [23]).

Our mitigation protocol used to show AdPostBQP ⊆ RwBQP also has an application
for PostBQP [2], which is a class of decision problems solvable by polynomial-size quantum
circuits with non-adaptive postselections. By slightly modifying our mitigation protocol and
replacing rewinding operators with postselections, we obtain the following corollary:

▶ Result 4 (Corollary 20). For any polynomial function p(|x|) in the size |x| of an instance x,
PP = PostBQP holds even if only non-adaptive postselections of outputs whose probabilities
are at least 1 − Ω(1/p(|x|)) are allowed.

The equality PP = PostBQP was originally shown in [2] by using postselections of outputs
whose probabilities may be exponentially small. Result 4 shows that such postselections can be
replaced with those of outputs whose probabilities are polynomially close to one. This result
is optimal in the sense that polynomially many repetitions of non-adaptive postselections of
outputs whose probabilities are 1 − 1/f(|x|) with a super-polynomial function f(|x|) can be
simulated in quantum polynomial time. It is worth mentioning that when the probabilities
are at least some constant, the above replacement is obvious in PostBPP (or BPPpath). This
is because any behavior of a probabilistic Turing machine can be represented as a binary
tree such that each path is chosen with probability 1/2. However, in its quantum analogue
PostBQP, it was open as to whether such replacement is possible even if the probabilities are
at least some constant.

Other related works and open problems are introduced in the full paper [23].

1.2 Overview of Techniques
To obtain Result 1, we show (i) RwBQP ⊆ CBQP; (ii) CBQP ⊆ AdPostBQP; (iii)
AdPostBQP ⊆ RwBQP; (iv) BQPPP ⊆ RwBQP, which immediately means BPPPP ⊆ RwBQP
because BPPPP ⊆ BQPPP; and (v) AdPostBQP ⊆ PSPACE. The first inclusion (i) is obvious
from the definitions of the rewinding operator R and cloning operator C (see Eqs. (1) and (2)).
The fifth inclusion (v) can also be easily shown by using the Feynman path integral that
is used to show BQP ⊆ PSPACE [9]. In BQP, measurements are only performed at the
end of quantum circuits. On the other hand, in AdPostBQP, intermediate ordinary and
postselection measurements are also allowed. However, this difference does not matter in
showing the inclusion in PSPACE.

The second inclusion (ii) is a natural consequence from the simple observation that
postselections can simulate the cloning operator C. On the other hand, the third inclusion (iii)
is nontrivial because we have to efficiently simulate postselection by using only a polynomial
number of rewinding operators. To this end, we give an efficient protocol to exponentially
mitigate the amplitude of a nontarget state by using a polynomial number of rewinding
operators. Let |ψ⟩ =

√
2−p(n)|ψt⟩ +

√
1 − 2−p(n)|ψ⊥

t ⟩, where p(n) is some polynomial in
the size n of a given AdPostBQP problem, |ψt⟩ is a target state that we would like to
postselect, and ⟨ψt|ψ⊥

t ⟩ = 0. By using our mitigation protocol, from |ψ⟩, we can obtain
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√
2−p(n)|ψt⟩ +

√
2−p(n)(1 − 2−p(n))|ψ⊥

t ⟩ up to a normalization factor. Since 2−p(n) is larger
than 2−p(n)(1 − 2−p(n)), we now obtain |ψt⟩ with probability of at least 1/2. By repeating
these procedures, we can simulate the postselection of |ψt⟩ with high probability.

Our mitigation protocol is also useful in showing the fourth inclusion (iv). First, from
PP = PostBQP [2], we obtain PP ⊆ RwBQP by using our mitigation protocol. Then, we show
that the completeness-soundness gap in RwBQP can be amplified to a constant exponentially
close to 1, and RwBQP is closed under composition. By combining these results, we obtain
BQPPP ⊆ RwBQPRwBQP = RwBQP. Note that BQPPP ⊆ RwBQPPP is obvious from the
definition of RwBQP (see Def. 9).

We show Result 2 as follows. Cojocaru et al. have shown that under the hardness of SIVP,
there exists a family F ≡ {fK}K∈K of functions that is collision resistant against quantum
computers, i.e., no polynomial-time quantum algorithm can output a collision pair (x, x′)
such that x ̸= x′ and fK(x) = fK(x′) [15]. Here, K is a finite set of parameters uniquely
specifying each function (see Sec. 2.2 for details). We show that a collision pair can be output
with a constant probability if only one rewinding operator is given. From the construction of
F , the last bits of collision pairs are different, i.e., there exist x0 and x1 such that x = (x0, 0)
and x′ = (x1, 1). Using the idea in [14], we can efficiently prepare

|x0⟩|0⟩ + |x1⟩|1⟩√
2

(3)

for some output value y = fK(x) = fK(x′). Note that since the preparation of Eq. (3)
includes a measurement, if we perform it again, we will obtain a quantum state in Eq. (3) for
a different output value y′, and hence it is difficult to simultaneously obtain x and x′ for the
same y. When we can use a rewinding operator, the situation changes. By measuring the
state in Eq. (3), we can obtain x0 or x1. For simplicity, suppose that we obtain x0. Then,
by performing the rewinding operator R on |x0⟩|0⟩ and a classical description of Eq. (3), we
can prepare the quantum state in Eq. (3) for the same y. From this state, we can obtain x1
with probability 1/2. As an important point, since the last bits of x and x′ differ, a single
rewinding operator (i.e., the rewinding of a single qubit) is sufficient to find a collision pair
with a constant probability.

Finally, we show Result 3. To this end, we show that a SZK-complete problem is in
RwBQP(1) by using a technique inspired by [5].

2 Preliminaries

In this section, we review some preliminaries that are necessary to understand our results. In
Sec. 2.1, we introduce a complexity class PostBQP and explain the postselection. In Sec. 2.2,
we introduce the SIVP and a collision-resistant and δ − 2 regular family of functions.

2.1 Quantum complexity class
In this subsection, we review PostBQP and explain the postselection. Then, we clarify a
difference between PostBQP and our class AdPostBQP (see Def. 11). Note that we assume
that readers are familiar with classical complexity classes [8]. PostBQP is defined as follows:

▶ Definition 5 (PostBQP [2]). A promise problem L = (Lyes, Lno) ⊆ {0, 1}∗ is in PostBQP
if and only if there exist polynomials n and q and a uniform family {Ux}x of polynomial-size
quantum circuits, such that

Pr[p = 1] ≥ 1/2q

when x ∈ Lyes, Pr[o = 1 | p = 1] ≥ 2/3
when x ∈ Lno, Pr[o = 1 | p = 1] ≤ 1/3,
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9:6 RwBQP and Its Equivalence to CBQP and AdPostBQP

where o and p are called output and postselection registers, respectively. Here, for any
z1 ∈ {0, 1} and z2 ∈ {0, 1},

Pr[p = z2] ≡ ⟨0n|U †
x

(
I ⊗ |z2⟩⟨z2| ⊗ I⊗n−2)Ux|0n⟩ (4)

Pr[o = z1 | p = z2] ≡
⟨0n|U†

x

(
|z1z2⟩⟨z1z2| ⊗ I⊗n−2)Ux|0n⟩

Pr[p = z2] . (5)

In this definition, “polynomial” means the one in the length |x| of the instance x.

From Def. 5, we notice that the postselection is to apply a projector. In PostBQP, it is
allowed to apply the projector |1⟩⟨1| to the qubit in the postselection register at the end of a
quantum circuit. Therefore, PostBQP is a set of promise problems solvable by polynomial-size
quantum circuits (in uniform families) with a single non-adaptive postselection2. On the
other hand, in AdPostBQP, we allow the application of a polynomial number of intermediate
measurements and projectors. This means that the value b ∈ {0, 1} of a projector |b⟩⟨b|
can depend on previous measurement outcomes, while it is determined before executing a
quantum circuit in PostBQP.

2.2 SIVP
The SIVP with approximation factor γ (SIVPγ) is defined as follows:

▶ Definition 6 (SIVPγ). Let n be any natural number and γ (≥ 1) be any real number.
Given an n bases of a lattice L, output a set of n linearly independent lattice vectors of length
at most γ · λn(L). Here, γ can depend on n, and λn(L) is the nth successive minimum of L
(i.e., the smallest r such that L has n linearly independent vectors of norm at most r).

Since there is no known polynomial-time quantum algorithm to solve SIVPγ for polynomial
approximation factor, it is used as a basis of the security of lattice-based cryptography [30].

The hardness of the SIVP is also used to construct families of collision-resistant functions
against universal quantum computers. From [15], we can immediately obtain the following
theorem:

▶ Theorem 7 (adapted from [15]). Let n be any natural number, q = 25⌈log n⌉+21, m =
23n+ 5n⌈log n⌉, µ = 2mn

√
23 + 5 log n, and µ′ = µ/m, where ⌈·⌉ is the ceiling function. Let

K ≡ (A,As0 + e0) ∈ K with K being the multiset {(A,As0 + e0)}A∈Zn×m
q ,s0∈Zn

q ,e0∈χ′m , where
Zn×m

q be the set of n×m matrices each of whose entry is chosen from Zq ≡ {0, 1, . . . , q− 1},
and χ′ is the set of integers bounded in absolute value by µ′. Assume that there is no
polynomial-time quantum algorithm that solves SIVPp(n) for some polynomial p(n) in n.
Then, the family F ≡ {fK : Zn

q × χm × {0, 1} → Zm
q }K∈K of functions

fK(s, e, c) ≡ As+ e+ c · (As0 + e0) (mod q), (6)

where χ is the set of integers bounded in absolute value by µ, is collision resistant3 and δ-2
regular4 for a constant δ.

2 Note that a polynomial number of postselections are allowed if they can be unified as a single non-adaptive
postselection.

3 Let F ≡ {fK : D → R}K∈K be a function family. We say that F is collision resistant if for any
polynomial-time quantum algorithm A, which receives K and outputs two bit strings x, x′ ∈ D, the
probability PrK [A(K) = (x, x′) such that x ̸= x′ and fK(x) = fK(x′)] is super-polynomially small. Note
that K is chosen from K uniformly at random, and the probability is also taken over the randomness
in A.

4 Let F ≡ {fK : D → R}K∈K be a function family. For a fixed K, we say that y ∈ R has two
preimages if there exist exactly two different inputs x, x′ ∈ D such that f(x) = f(x′) = y. Let Y(2)

K
be the set of y having two preimages for K. The function family F is said to be δ-2 regular when
PrK,x[fK(x) ∈ Y(2)

K ] ≥ δ, where K and x are chosen from K and D, respectively, uniformly at random.
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From Eq. (6), the function fK has a collision pair5 (s, e, 1) and (s + s0, e + e0, 0), and
Theorem 7 shows that it is difficult to find them simultaneously. This function family will
be used to show that a single rewinding operator is sufficient to achieve a task that seems
difficult for universal quantum computers.

Note that in [15], the matrix A is constructed so that it has a trapdoor to efficiently
invert As+ e, and its distribution is statistically close to uniform over Zn×m

q . In Theorem 7,
we consider a simplified variant of the function family of [15] in which the matrix A is chosen
uniformly at random.

3 Computational Complexity of Rewinding

In this section, we show Results 1 and 4. To this end, first, we define the rewinding operator
R and cloning operator C as follows:

▶ Definition 8 (Rewinding and Cloning Operators). Let n be any natural number, Q be any
n-qubit linear operator composed of unitary operators and the Z-basis projective operators
{|0⟩⟨0|, |1⟩⟨1|}, D be a classical description of the linear operator Q, and I be the single-qubit
identity operator. The rewinding and cloning operators R and C are maps from a quantum
state to a quantum state such that for any s ∈ {0, 1}, when

(
|s⟩⟨s| ⊗ I⊗n−1)Q|0n⟩ ̸= 0,

R

( (
|s⟩⟨s| ⊗ I⊗n−1)Q|0n⟩√

⟨0n|Q† (|s⟩⟨s| ⊗ I⊗n−1)Q|0n⟩
⊗ |D⟩

)
= Q|0n⟩√

⟨0n|Q†Q|0n⟩
(7)

C|D⟩ = Q|0n⟩√
⟨0n|Q†Q|0n⟩

. (8)

For other input states, the functionality of R and C is undefined, that is outputs are arbitrary
n-qubit states. Particularly when it depends on a value of classical bits whether R and C are
applied, we call them classically controlled rewinding and cloning operators, respectively.

Note that since the linear operator Q may include projective operators (e.g., Q = U2(I ⊗
|0⟩⟨0|⊗I⊗n−2)U1 for some n-qubit unitary operators U1 and U2), in general, Q†Q ≠ I⊗n. An
example of classically controlled rewinding operators is an operator such that if a measurement
outcome is 0, the identity operator is applied to the post-measurement state, but if the
outcome is 1, the rewinding operator R is applied to it. Classically controlled rewinding and
cloning operators play an important role in giving our main result.

Simply speaking, the rewinding operator R rewinds the state projected onto |s⟩ to the state
before the measurement. As an important point, Def. 8 implies that the rewinding operator
R only works for pure states. The following contradiction for an ordinary interpretation
of mixed states occurs without the restriction to pure states. Suppose that we measure a
maximally mixed state I/2 in the computational basis6, and then obtain the measurement
outcome 0. In this case, it is natural that even if we rewind this measurement and perform
the same measurement again, the outcome is always 0. However, if we define the rewinding
operator R so that it also works for mixed states, then we can obtain I/2 from |0⟩ with
the rewinding operator, and the measurement on it may output 1. In other words, if the
rewinding operator works for a mixed state ρ, we can measure ρ again and again, and thus

5 Since q is larger than µ, the second element e + e0 of the second input may not be in the set χm.
Therefore, the probability of fK having a collision pair is not 1.

6 We sometimes call the Z basis the computational basis.
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we obtain its information as much as we want without changing ρ. This situation contradicts
with the natural interpretation that mixed states arise due to the lack of knowledge about
them. Furthermore, the restriction to pure states would be useful in circumventing the
contradiction with the no-signaling principle as explained in the full paper [23]. From Def. 8,
it is easily observed that the cloning operator C can efficiently simulate the rewinding
operator R.

By using the rewinding and cloning operators and postselections, we define three com-
plexity classes – RwBQP (BQP with rewinding), CBQP (BQP with cloning), and AdPostBQP
(BQP with adaptive postselection) – as follows:

▶ Definition 9 (RwBQP and CBQP). Let n and k be any natural number, ℓ be a polynomial
in n, and 0 ≤ s < c ≤ 1. A promise problem L = (Lyes, Lno) ⊆ {0, 1}∗ is in RwBQP(c, s)(k)
if and only if there exists a polynomial-time deterministic Turing machine that receives 1n

as an input and generates a ℓ-bit description D̃ of an operator Qn such that it consists of a
polynomial number of elementary gates in a universal gate set, single-qubit measurements
in the computational basis, and k (classically controlled) rewinding operators R defined in
Def. 8 and satisfies, for the instance x ∈ {0, 1}n and a polynomial m, that

if x ∈ Lyes,
∣∣∣∣(|1⟩⟨1| ⊗ I⊗n+m+ℓ−1)Qn

(
|x⟩|0m⟩|D̃⟩

)∣∣∣∣2 ≥ c

if x ∈ Lno,
∣∣∣∣(|1⟩⟨1| ⊗ I⊗n+m+ℓ−1)Qn

(
|x⟩|0m⟩|D̃⟩

)∣∣∣∣2 ≤ s.
Here, |||v⟩|| ≡

√
⟨v|v⟩ for any vector |v⟩, and “polynomial” is the abbreviation of “poly-

nomial in n.” Particularly, for the set poly(n) of all polynomial functions, we denote⋃
k∈poly(n) RwBQP(2/3, 1/3)(k) as RwBQP.

By replacing R with the cloning operator C defined in Def. 8, CBQP(c, s)(k) and CBQP
are defined in a similar way.

To perform a rewinding operator R to recover an intermediate state |ψ⟩, a classical description
D of |ψ⟩ is neccessary. It can always be generated from D̃ and measurement outcomes
obtained before preparing |ψ⟩. As in the case of BQP, computations performed to solve
RwBQP problems can be written as uniform families of quantum circuits. A concrete circuit
diagram of a RwBQP computation is given in Appendix A.

From Def. 9, we immediately obtain the following lemma:

▶ Lemma 10. RwBQP ⊆ CBQP.

Proof. The only difference between RwBQP and CBQP is whether the rewinding or cloning
operator is allowed. Since the cloning operator C can exactly simulate the rewinding operator
R, this lemma holds. ◀

▶ Definition 11 (AdPostBQP). Let n be any natural number, ℓ be a polynomial in n, and
0 ≤ s < c ≤ 1. A promise problem L = (Lyes, Lno) ⊆ {0, 1}∗ is in AdPostBQP(c, s) if
and only if there exists a polynomial-time deterministic Turing machine that receives 1n as
an input and generates a ℓ-bit description D̃ of an operator Qn such that it consists of a
polynomial number of elementary gates in a universal gate set, single-qubit measurements
in the computational basis, and single-qubit projectors |1⟩⟨1| and satisfies, for the instance
x ∈ {0, 1}n and a polynomial m, that

if x ∈ Lyes,
∣∣∣∣(|1⟩⟨1| ⊗ I⊗n+m+ℓ−1)N [Qn

(
|x⟩|0m⟩|D̃⟩

)
]
∣∣∣∣2 ≥ c

if x ∈ Lno,
∣∣∣∣(|1⟩⟨1| ⊗ I⊗n+m+ℓ−1)N [Qn

(
|x⟩|0m⟩|D̃⟩

)
]
∣∣∣∣2 ≤ s,
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where N [·] denotes the normalization of the vector in the square brackets. Here, “polynomial”
is the abbreviation of “polynomial in n.” Note that for 1 ≤ i ≤ n, a projector |1⟩⟨1|i on the
ith qubit can be applied only when a quantum state |ψ⟩ to be applied satisfies

||(|1⟩⟨1|i) |ψ⟩||2 ≥ 2−p(n) (9)

for a polynomial p(n) in n. Particularly, we denote AdPostBQP(2/3, 1/3) as AdPostBQP.

Note that Qn can include adaptive postselections because depending on previous measurement
outcomes, we can decide whether X is applied before and after applying |1⟩⟨1|. Here,
X ≡ |1⟩⟨0| + |0⟩⟨1| is the Pauli-X operator. It is worth mentioning that it is unknown
whether the adaptive postselection can be efficiently done in PostBQP as discussed in [2].
Indeed, if it is possible, SZK ⊆ PP should be immediately obtained from the argument in
[4, 5], while it is a long-standing problem. Eq. (9) can be automatically satisfied by using
standard gate sets whose elementary gates involve only square roots of rational numbers.
From Defs. 9 and 11, we notice that the main difference between RwBQP, CBQP, and
AdPostBQP is whether the rewinding or cloning operators or projectors are allowed.

From Def. 11, we immediately obtain the following lemma:

▶ Lemma 12. AdPostBQP ⊆ PSPACE.

Proof. The proof is essentially the same as that of BQP ⊆ PSPACE [9]. The details are given
in Appendix B. ◀

The following three corollaries also hold:

▶ Corollary 13. RwBQP, CBQP, and AdPostBQP are closed under complement.

▶ Corollary 14. RwBQP = RwBQP(1 − 2−p(n), 2−p(n)), CBQP = CBQP(1 − 2−p(n), 2−p(n)),
and AdPostBQP = AdPostBQP(1 − 2−p(n), 2−p(n)) for any polynomial function p(n) in the
size n of a given instance x.

▶ Corollary 15. RwBQP, CBQP, and AdPostBQP are closed under composition.

Since they are obvious from Defs. 9 and 11 and can be shown by using standard techniques,
proofs are given in Appendix C.

In the rest of this section, we consider a relation between the rewinding, cloning, and
postselection (i.e., RwBQP, CBQP, and AdPostBQP), and also obtain lower and upper bounds
on them. More formally, we show the following theorem:

▶ Theorem 16. BPPPP ⊆ RwBQP = CBQP = AdPostBQP ⊆ PSPACE.

Proof. This theorem can be obtained by showing (i) RwBQP ⊆ CBQP; (ii) CBQP ⊆
AdPostBQP; (iii) AdPostBQP ⊆ RwBQP; (iv) BQPPP ⊆ RwBQP, which immediately means
BPPPP ⊆ RwBQP because BPPPP ⊆ BQPPP; and (v) AdPostBQP ⊆ PSPACE. The inclusions
(i) and (v) are already shown in Lemmas 10 and 12, respectively. The remaining inclusions
(ii), (iii), and (iv) will be shown in Lemma 17 and Corollary 19. ◀

To simplify our argument in proofs of Lemma 17 and Theorem 18, we particularly consider
the universal gate set {X,CH,CCZ}∪{Hk | k ∈ Z,−p(|x|) ≤ k ≤ p(|x|)} with a polynomial
p(|x|) in the instance size |x| of a given problem. Here, CH ≡ |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗H is the
controlled-Hadamard gate, CCZ ≡ |0⟩⟨0| ⊗ I⊗2 + |1⟩⟨1| ⊗ CZ is the controlled-controlled-Z
(CCZ) gate, andHk is the generalized Hadamard gate such that Hk|0⟩ = (|0⟩+2k|1⟩)/

√
1 + 4k

and Hk|1⟩ = (2k|0⟩ − |1⟩)/
√

1 + 4k. Therefore, H0 is the ordinary Hadamard gate H, and
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hence, from [32], our gate set is universal. By using our universal gate set, we can make
output probabilities of any Pauli-Z measurement in any polynomial-size quantum circuit 0
or at least 2−q(|x|) for some polynomial q(|x|). Due to this property, we can postselect any
outcome for any polynomial-size quantum circuit [see Eq. (9)], which simplifies a proof of
Lemma 17. Furthermore, by using this gate set, we can perform all quantum operations
required in a proof of Theorem 18 without any approximation. Note that our argument can
also be applied to other universal gate sets such as {H,T,CZ} with T ≡ |0⟩⟨0| + eiπ/4|1⟩⟨1|
by using the Solovay-Kitaev algorithm [16].

We show the second inclusion (ii) (for the proof, see Appendix D):

▶ Lemma 17. CBQP ⊆ AdPostBQP.

As the first step to obtain inclusions (iii) and (iv), we show the following theorem:

▶ Theorem 18. RwBQP ⊇ PP.

The proof is given in Appendix E.
From Theorem 18, we obtain the following corollary (for the proof, see Appendix H):

▶ Corollary 19. BQPPP ⊆ AdPostBQP ⊆ RwBQP.

As the most important difference between the proof of Theorem 18 and that of PostBQP ⊇
PP in [2], we have not used postselections of outputs whose probabilities are exponentially
small by proposing the mitigation protocol (see Appendix E). To state the difference more
explicitly on the technical level, we show the following corollary (for the proof, see Appendix I):

▶ Corollary 20. For any polynomial function p(|x|) in the size |x| of an instance x, PP =
PostBQP holds even if only non-adaptive postselections of outputs whose probabilities are at
least 1 − Ω(1/p(|x|)) are allowed.

4 Restricted Rewindable Quantum Computation

In Sec. 3, a polynomial number of rewinding operators was available. If the number is
restricted to a constant, the question is: how is the rewinding useful for universal quantum
computation? We show that a single rewinding operator is sufficient to solve the following
problem with a constant probability, which seems hard for universal quantum computation:

▶ Definition 21 (Collision-finding Problem). Given the function family F ≡ {fK}K∈K in
Theorem 7 and a parameter K for F , output a pair (x, x′) with x, x′ ∈ Zn

q ×χm × {0, 1} such
that (i) x ̸= x′ and (ii) fK(x) = fK(x′).

▶ Theorem 22. Assume that a rewinding operator can be applied in one step, and there is no
polynomial-time quantum algorithm solving SIVPp(n) for some polynomial p(n) in n. Then,
the problem in Def. 21 can be solved with probability of at least δ/2(1 − o(1)) by uniformly
generated polynomial-size quantum circuits with a single rewinding operator, but it cannot
be achieved without rewinding operators. Here, the probability is taken over the uniform
distribution on K and the randomness used in a quantum circuit to solve the problem.

The proof is given in Appendix J.
We also show a superiority of a single rewinding operator under a different assumption.

To this end, we use the statistical difference (SD) problem, which is SZK-complete [31], and
show the following theorem:
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▶ Theorem 23. The SD problem defined in Def. 25 is in RwBQP(1/2−2−O(nc), 2·2−O(nc))(1),
where n and c are the problem size and some positive constant as defined in Def. 25.

The proof is given in Appendix K. From Theorem 23, we obtain the following corollary:

▶ Corollary 24. Let RwBQP(1) ≡
⋃

1/(c−s)∈poly(|x|) RwBQP(c, s)(1) for the set poly(|x|) of
all polynomial functions in the size |x| of an instance x. Then, RwBQP(1) ⊃ BQP unless
BQP ⊇ SZK.

Proof. From Theorem 23, if RwBQP(1) ⊆ BQP, then SZK ⊆ BQP. ◀

The implication of Theorem 22 and Corollary 24 is given in Appendix L. As simple
observations, in the full paper [23], we consider the computational capability of rewinding
operators for two restricted classes of quantum circuits: Clifford and IQP circuits.
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U R
R

|0〉

|0〉
s1 s2

|ψ〉s3

|D〉

|D〉

Figure 1 Concrete example of RwBQP computation. D, U , R, and |ψ⟩ are a classical description
of U |00⟩, a two-qubit unitary operator, the rewinding operator, and the output state, respectively.
More precisely, when U =

∏
i
ui for elementary quantum gates ui in a universal gate set, D is a bit

string representing
∏

i
ui. Note that since |ψ⟩ is prepared by using only the unitary operator U , its

classical description D does not include projectors and can be generated from only D̃. Meter symbols
represent the Pauli-Z measurements, and si ∈ {0, 1} is the ith measurement outcome for 1 ≤ i ≤ 3.
We represent |si⟩ as a classical bit si to emphasize that it can be copied. When the first measurement
outcome s1 is 1, the first rewinding operator R is applied. On the other hand, when s1 = 0, we do
not apply R, because the target state is obtained. Since the second and third measurements and
the second rewinding operator are applied only when s1 = 1, they are also conditioned on s1. In a
similar way, since it is not necessary to apply the second rewinding operator if s2 = 0, the second
rewinding operator and the third measurement are also conditioned on s2. Finally, |ψ⟩ becomes the
target state when s1 = 0, (s1, s2) = (1, 0), or (s1, s2, s3) = (1, 1, 0).

A Example of RwBQP Computation

Due to the addition of rewinding operators, it may be difficult to imagine quantum circuits
used in RwBQP. To clarify them, as an example, we give a concrete circuit diagram for the
following RwBQP computation. Suppose that we would like to prepare a two qubit state
(|0⟩⟨0| ⊗ I)U |00⟩ (up to normalization) for a two-qubit unitary operator U . To this end, we
use at most two classically controlled rewinding operators. More precisely, the rewinding
operator R is applied if and only if the measurement outcome is 1. This computation can be
depicted as a fixed quantum circuit in Fig. 1.

B Proof of Lemma 12

We give a proof of Lemma 12.

Proof. To show this lemma, it is sufficient to show that the acceptance probability

pacc =
∣∣∣∣(|1⟩⟨1| ⊗ I⊗n+m+ℓ−1)N [Qn

(
|x⟩|0m⟩|D̃⟩

)
]
∣∣∣∣2 (10)

can be computed in polynomial space. To this end, we use the Feynman path integral. Let k
be some polynomial in n. By using qi that is an elementary gate in a universal gate set, a
single-qubit measurement in the computational basis, or a single-qubit postselection onto
|1⟩⟨1| for 1 ≤ i ≤ k, we can decompose N [Qn(·)] as N [Qn(·)] =

∏k
i=1 qi(·). Let N ≡ n+m+ℓ.
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Therefore,(
|1⟩⟨1| ⊗ I⊗N−1)N [Qn

(
|x⟩|0m⟩|D̃⟩

)
]

=

|1⟩⟨1| ⊗

 ∑
d∈{0,1}N−1

|d⟩⟨d|

 qk

k−1∏
i=1

 ∑
s(i)∈{0,1}N

|s(i)⟩⟨s(i)|

 qi

 |x⟩|0m⟩|D̃⟩.

(11)

Let s be a shorthand notation of a (k − 1)N -bit string s(1)s(2) . . . s(k−1). By defining

g(s, d) ≡ ⟨1|⟨d|

[
qk

(
k−1∏
i=1

|s(i)⟩⟨s(i)|qi

)]
|x⟩|0m⟩|D̃⟩, (12)

pacc can be written as∑
s,s̃∈{0,1}(k−1)N ,d∈{0,1}N−1

g(s, d)g∗(s̃, d). (13)

Sine qi is just a constant-size matrix, each term g(s, d)g∗(s̃, d) can be computed in polynomial
space7. Therefore, Eq. (13) can also be computed in polynomial space. ◀

C Proofs of Corollaries 13, 14, and 15

The proof of Corollary 13 is as follows:

Proof. Since proofs are essentially the same for all three classes, we only write a concrete
proof for RwBQP. Let L be the complement of L. From Def. 9, when x ∈ Lyes (i.e., x ∈ Lno),∣∣∣∣(|1⟩⟨1| ⊗ I⊗n+m+ℓ−1) (X ⊗ I⊗n+m+ℓ−1)Qn

(
|x⟩|0m⟩|D̃⟩

)∣∣∣∣2 ≥ 2/3. (14)

On the other hand, when x ∈ Lno (i.e., x ∈ Lyes),∣∣∣∣(|1⟩⟨1| ⊗ I⊗n+m+ℓ−1) (X ⊗ I⊗n+m+ℓ−1)Qn

(
|x⟩|0m⟩|D̃⟩

)∣∣∣∣2 ≤ 1/3. (15)

Therefore, coRwBQP ⊆ RwBQP. By using the same argument, we can also show coRwBQP ⊇
RwBQP and thus RwBQP = coRwBQP. ◀

The proof of Corollary 14 is as follows:

Proof. Since proofs are essentially the same for all three classes, we only write a concrete
proof for RwBQP. By repeating the same RwBQP computation m times and taking the
majority vote on the outcomes, due to the Chernoff bound [8], the error probability is
improved from 1/3 to 2−q(m) for a positive polynomial function q(m) in m. Therefore, by
setting m so that q(m) ≥ p(n), we obtain this corollary. ◀

The proof of Corollary 15 is as follows:

Proof. Since proofs are essentially the same for all three classes, we only write a concrete proof
for RwBQP. From Def. 9, when a polynomial-time algorithm calls another polynomial-time
algorithm as a subroutine, the resultant algorithm can still be realized in polynomial time.
Since the RwBQP computation has some error probability, a remaining concern is that errors
may accumulate every time polynomial-time algorithms are called. However, the accumulation
of errors is negligible from Corollary 14. As a result, we obtain RwBQPRwBQP = RwBQP. ◀

7 It may not be able to be computed in polynomial time, because qi may be a measurement.



R. Hiromasa, A. Mizutani, Y. Takeuchi, and S. Tani 9:15

|φ〉
n− 1

|b〉

|b〉〈b|

a

|φ〉
n− 1

|b〉 |b〉〈b|

a

Figure 2 Replacement of a classically controlled projector with the classically controlled SWAP
gate. |ϕ⟩ is a quantum state immediately before applying P (i) = |b⟩⟨b|, where b ∈ {0, 1}. The SWAP
gate is depicted as a vertical line enclosed by a dotted red rectangle. The projector |b⟩⟨b| and the
SWAP gate is applied only when a ∈ {0, 1} is 1.

D Proof of Lemma 17

We give a proof of Lemma 17.

Proof. To obtain Lemma 17, it is sufficient to show that for any polynomial-size linear
operator Q and its classical description D, the cloning operator C can be simulated in
quantum polynomial time by using the postselection. That is, our purpose is to perform
the cloning operator C on the input state |D⟩. Let m be the number of Z-basis projective
operators included in Q. By using n-qubit unitary operators {U (i)}m+1

i=1 and Z-basis projective
operators {P (i)}m

i=1, Q = U (m+1)∏m
i=1(P (i)U (i)). We can obtain the classical description D

of Q by measuring the state |D⟩ in the Pauli-Z basis. The description D informs us about
whether P (i) is |0⟩⟨0| or |1⟩⟨1| and how to construct U (i) from {X,Hk, CH,CCZ} for all
i. Therefore, by using the postselection, we can prepare Q|0n⟩ (up to normalization) in
quantum polynomial time. When we would like to apply U (i), we just apply it. On the other
hand, when we apply P (i), we use the postselection. Since we assume the universal gate
set {X,Hk, CH,CCZ}, the postselection is possible in any case. These efficient procedures
simulate the non classically-controlled cloning operator C.

We next show that the above procedures can also be applied to simulate a classically
controlled cloning operator. To this end, a classically controlled postselection is necessary.
Suppose that when a ∈ {0, 1} is 1, we would like to apply the cloning operator C. On the
other hand, when a = 0, we do not apply C. Note that without loss of generality, we can
assume that C is controlled by a single bit a because C is applied or not. Only when a = 1, we
must apply P (i) to simulate the classically controlled cloning operator. Let P (i) = |b⟩⟨b| for
b ∈ {0, 1}. Such classically controlled P (i) can be simulated by adding an ancillary qubit |b⟩
and applying the classically controlled SWAP gate as shown in Fig. 2. Classically controlled
quantum gates are allowed in AdPostBQP computation because any classically controlled
quantum gate can be realized by combining elementary quantum gates in a universal gate
set. In conclusion, we obtain CBQP ⊆ AdPostBQP. ◀

E Proof of Theorem 18

We give a proof of Theorem 18.

Proof. We show Theorem 18 by replacing the postselection used in the proof of PP ⊆ PostBQP
in [2] with a polynomial number of rewinding operators. To this end, we consider the following
PP-complete problem [2]: let f : {0, 1}n → {0, 1} be a Boolean function computable in
classical polynomial time, and s ≡

∑
x∈{0,1}n f(x). Decide 0 < s < 2n−1 or s ≥ 2n−1. Note

that it is promised that one of them is definitely satisfied.
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To solve this problem with an exponentially small error probability using rewinding
operators, first, we prepare

√
p|ψ⊥

t ⟩ +
√

1 − p|ψt⟩, (16)

where

p ≡ 2α2(2n − s)2 + β24n

2[(2n − s)2 + s2] (17)

|ψ⊥
t ⟩ ≡

√
2α(2n − s)|0⟩ + β2n|1⟩√

2α2(2n − s)2 + β24n
⊗ |0⟩ (18)

|ψt⟩ ≡
√

2αs|0⟩ + β(2n − 2s)|1⟩√
2α2s2 + β2(2n − 2s)2

⊗ |1⟩ (19)

for positive real numbers α and β such that α2 + β2 = 1 and β/α = 2k, where k is an integer
whose absolute value is upper bounded by n. As shown in Appendix F, this preparation can
be done in quantum polynomial time with probability of at least 1 − 1/2n.

If the second qubit in Eq. (16) is projected onto |1⟩, we can obtain

|ϕβ/α⟩ ≡
√

2αs|0⟩ + β(2n − 2s)|1⟩√
2α2s2 + β2(2n − 2s)2

. (20)

Aaronson has shown that if n copies of |ϕβ/α⟩ can be prepared for all −n ≤ k ≤ n, then we
can decide whether 0 < s < 2n−1 or s ≥ 2n−1 with an exponentially small error probability
perr in quantum polynomial time [2].

However, since p may be exponentially close to 1, the efficient preparation of Eq. (20) is
difficult without postselection. We resolve this problem by using rewinding operators. Our
idea is to amplify the probability of |1⟩ being observed by mitigating the probability of |0⟩
being observed. We propose the following mitigation protocol:
1. Set i = 0 and c = 0.
2. By using the state in Eq. (16), prepare√

pi|ψ⊥
t ⟩|+⟩ +

√
1 − pi|ψt⟩|0⟩, (21)

where p0 = p, and measure the last register in the Pauli-Z basis. Let z be the measurement
outcome. Furthermore, replace c with c+ 1.

3. Depending on the values of z, i, and c, perform one of following steps:
a. When z = 0, replace i with i+ 1, reset c to 0, and obtain√

pi+1|ψ⊥
t ⟩ +

√
1 − pi+1|ψt⟩, (22)

where
pi+1 = pi

2 − pi
. (23)

If i + 1 < 2n + 3, do step 2 by using the state in Eq. (22). On the other hand, if
i+ 1 = 2n+ 3, output the state in Eq. (22) and halt the mitigation protocol.

b. When z = 1 and c < 3n, apply the rewinding operator R and do step 2 again for the
same i.

c. When z = 1 and c = 3n, answer 0 < s < 2n−1 or s ≥ 2n−1 uniformly at random, and
halt the mitigation protocol.

In this protocol, i and c count how many times the mitigation succeeds and how many times
the mitigation fails for a single i, respectively. From Eq. (23),

1 − pi+1

pi+1
= 21 − pi

pi
, (24)

and hence we succeed in mitigating the amplitude of the nontarget state |ψ⊥
t ⟩.



R. Hiromasa, A. Mizutani, Y. Takeuchi, and S. Tani 9:17

From Appendix G,
√
p2n+3|ψ⊥

t ⟩ +
√

1 − p2n+3|ψt⟩ (25)

is output with probability of at least 1−5n/8n. Since (1−p2n+3)/p2n+3 = 22n+3(1−p)/p ≥ 1
as shown in Appendix G, we can obtain the outcome 1 with probability of at least 1/2 by
measuring the second qubit in Eq. (25). If we obtain 0, we do the same measurement again
by using the rewinding operator. Therefore, by repeating this procedure n times, we obtain
the outcome 1 with probability of at least 1 − 1/2n. In total, with probability of at least

psuc ≡

[(
1 − 1

2n

)2(
1 − 5n

8n

)]n(2n+1)

, (26)

we obtain n copies of |ϕβ/α⟩ for all −n ≤ k ≤ n. As a result, we can correctly decide whether
0 < s < 2n−1 or s ≥ 2n−1 in polynomial time with probability of at least psuc(1 − perr) that
is exponentially close to 1. ◀

F Preparation of State in Eq. (16)

Although the procedure in this appendix has been proposed in [2], we explain it for the
completeness of our paper. First, we prepare

1√
2n

∑
x∈{0,1}n

(H⊗n|x⟩)|f(x)⟩ (27)

in quantum polynomial time. Then, we measure all n qubits in the first register in the
Pauli-Z basis. We repeat these procedures until we obtain the outcome 0n or the repetition
number reaches n. Since the probability8 of 0n being output in each repetition is at least 1/2,
we can obtain at least one 0n with probability of at least 1 − 1/2n. When the measurement
outcome is 0n, we obtain

|ψ⟩ ≡
(2n − s)|0⟩ + s|1⟩√

(2n − s)2 + s2
. (28)

From this state, for any positive real numbers α and β such that α2 + β2 = 1 and β/α = 2k,
where k is an integer whose absolute value is upper bounded by n, we can prepare

CH[(α|0⟩ + β|1⟩)|ψ⟩] = α|0⟩|ψ⟩ + β|1⟩H|ψ⟩ = √
p|ψ⊥

t ⟩ +
√

1 − p|ψt⟩ (29)

in quantum polynomial time.

G Success Probability of Our Mitigation Protocol

We show that the probability that the state in Eq. (25) is output in our mitigation protocol is
at least 1 − 5n/8n and that (1 − p2n+3)/p2n+3 ≥ 1. For clarity, we show a schematic diagram
of our mitigation protocol in Fig. 3.

8 In previous calculations [2, 6], this probability is lower bounded by 1/4. However, by calculating it more
precisely, we tighten the lower bound.
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 |+〉

z = 1

z = 0

√
pi|ψ

⊥

t
〉+

√

1− pi|ψt〉
CH √

pi|ψ
⊥

t
〉|+〉+

√

1− pi|ψt〉|0〉

√
pi+1|ψ

⊥

t
〉+

√

1− pi+1|ψt〉



i → i+ 1i+ 1 < 2n+ 3

i+ 1 = 2n+ 3

c

c < 3n

c = 3n



Figure 3 Schematic diagram of our mitigation protocol. Failure and Success indicate step (c)
and the case that the state in Eq. (25) is output, respectively.

When the outcome 0 is obtained by measuring the last register of Eq. (21) in the Z
basis, the amplitude of the nontarget state |ψ⊥

t ⟩ is mitigated with the factor 1/
√

2 (up to
normalization) because(

I⊗2 ⊗ ⟨0|
) (√

pi|ψ⊥
t ⟩|+⟩ +

√
1 − pi|ψt⟩|0⟩

)
=
√
pi

2 |ψ⊥
t ⟩ +

√
1 − pi|ψt⟩. (30)

Therefore, for any i, the probability qi that the outcome 0 is obtained by measuring the last
register of Eq. (21) in the Z basis is

qi = p2−(i+1) + (1 − p)
1 − (1 − 2−i)p , (31)

where we have used p0 = p. Therefore, for any i, the probability that we obtain 0 by
measuring the last register of Eq. (21) in the Z basis before or at c = 3n is

1 − (1 − qi)3n ≥ 1 − (1 − q0)3n = 1 −
(p

2

)3n

. (32)

Our purpose is to sufficiently mitigate the amplitude of |ψ⊥
t ⟩ so that we obtain the

outcome 1 by measuring the second register of Eq. (22) in the Z basis with probability of at
least 1/2. To this end, it is sufficient to run our mitigation protocol until i = N such that

1 − pN

pN
≥ 1. (33)

From Eq. (24), this condition can be satisfied by setting

N =
⌈

log
(

p

1 − p

)⌉
. (34)

By combining Eqs. (32) and (34), the probability that the state in Eq. (25) is output in
our mitigation protocol (i.e., the probability of our mitigation protocol reaching to Success
in Fig. 3) is at least[

1 −
(p

2

)3n
]N

≥ 1 −
[
log
(

p

1 − p

)
+ 1
](p

2

)3n

(35)

≥ 1 −
[
log
(

p

1 − p

)
+ 1
](

1
2

)3n

. (36)
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Since log [p/(1 − p)] is a monotonically increasing function of p in the range of 0 < p < 1,
the remaining task is to upper bound p. (Recall that our goal in this appendix is to show
that Eq.(36) is lower bounded by 1 − 5n/8n and N ≤ 2n+ 3.)

From the simple observation that 2[(2n − s)2 + s2], which is the denominator of p in
Eq. (17), is a symmetric convex downward function that becomes minimum at s = 2n−1,
and that (2n − s)2 in the numerator of p is a monotonically decreasing function in the
range of 0 < s ≤ 2n, the value of s maximizing p (for any α, β, and n) is between 1 and
2n−1. To upper bound p, we separately consider three cases: (i) 1 ≤ s ≤ (1 − 1/

√
2)2n, (ii)

(1 − 1/
√

2)2n < s ≤ 2n−1 − 1, and (iii) s = 2n−1.
(i) When 1 ≤ s ≤ (1 − 1/

√
2)2n, the inequality 2(2n − s)2 ≥ 4n holds. Therefore, from

Eq. (17),

p ≤ (2n − s)2

(2n − s)2 + s2 (37)

≤ (2n − 1)2

(2n − 1)2 + 1 (38)

= 1 − 1
(2n − 1)2 + 1 . (39)

(ii) When (1 − 1/
√

2)2n < s ≤ 2n−1 − 1, the inequality 2(2n − s)2 < 4n holds, and hence

p ≤ 4n

2[(2n − s)2 + s2] (40)

≤ 4n

2[(2n−1 + 1)2 + (2n−1 − 1)2] (41)

= 1 − 1
4n−1 + 1 . (42)

(iii) When s = 2n−1,

p = α2

2 + β2 (43)

≤ 1 − 1
2(4n + 1) , (44)

where we have used 2−n ≤ β/α ≤ 2n and α2 + β2 = 1.

From Eqs. (39), (42), and (44), p ≤ 1 − 1/[2(4n + 1)] ≡ pmax, and hence

N ≤ log p

1 − p
+ 1 ≤ log pmax

1 − pmax
+ 1 ≤ 2n+ 3. (45)

This implies that Eq.(36) is lower bounded by

1 −
[
log
(

pmax

1 − pmax

)
+ 1
](

1
2

)3n

≥ 1 − 2n+ 3
23n

≥ 1 − 5n
8n
. (46)

H Proof of Corollary 19

We give a proof of Corollary 19.

Proof. From Lemmas 10 and 17, it is sufficient to show BQPPP ⊆ RwBQP and AdPostBQP ⊆
RwBQP to obtain Corollary 19. First, we show the former inclusion. From Def. 9, it is
obvious that any process in BQP can be simulated by a process in RwBQP in polynomial
time. Furthermore, from Corollary 14 and Theorem 18, the PP oracle can be replaced with
the RwBQP oracle. Therefore, from Corollary 15, BQPPP ⊆ RwBQPRwBQP = RwBQP.

TQC 2023
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To obtain the latter inclusion, we show that each postselection can be simulated by
rewinding operators. From Def. 11, each postselection (i.e., each projector) acts on a single
qubit. Therefore, we can write a quantum state immediately before a postselection as
α|0⟩p|ψ0⟩ + β|1⟩p|ψ1⟩ for some quantum states |ψ0⟩ and |ψ1⟩ and complex numbers α and β
such that |α|2 + |β|2 = 1. Here, the subscript p denotes the postselection register. Although
|β|2 may be exponentially small, the postselection onto |1⟩ can be simulated by using our
mitigation protocol. ◀

I Proof of Corollary 20

We give a proof of Corollary 20.

Proof. We can obtain Corollary 20 by slightly modifying our mitigation protocol and showing
that it can be realized with non-adaptive postselections of outputs whose probabilities are at
least q ≡ 1 − Ω(1/p(|x|)). For some natural number m, we prepare

√
p|ψ⊥

t ⟩
(√

q|0⟩ +
√

1 − q|1⟩
)⊗m

+
√

1 − p|ψt⟩|0⟩⊗m (47)

instead of the state in Eq. (21). By postselecting m qubits in the second register onto |0⟩
one by one, we obtain

√
pqm|ψ⊥

t ⟩ +
√

1 − p|ψt⟩√
1 − p+ pqm

. (48)

These m postselections are non-adaptive ones of outputs whose probabilities are at least
q. If the amplitude of |ψt⟩ in Eq. (48) is at least

√
1/2, we can obtain |ψt⟩ with at least a

constant probability, and hence we can solve the PP-complete problem. Such the amplitude
is realized by setting m ≥ log [p/(1 − p)]/ log (1/q). Since log [p/(1 − p)]/ log (1/q) ≤ 2(n+
1)/ log (1/q) ≤ 2(n+ 1)O(p(|x|)) from Appendix G, where n is at most a polynomial function
in |x|, a polynomial number of postselections are sufficient in the above argument. ◀

J Proof of Theorem 22

The proof of Theorem 22 is as follows:

Proof. To solve the problem in Def. 21 with a constant probability, we use the idea used
in [14]. We prepare the state∑

s∈Zn
q ,e∈χm,d∈{0,1} |s, e, d⟩|fK(s, e, d)⟩√

2qn(2µ+ 1)m
, (49)

where 1/
√

2qn(2µ+ 1)m is the normalization factor (see Theorem 7). When there exists a
natural number N satisfying 2N = 2qn(2µ + 1)m, this preparation is trivially possible in
quantum polynomial time with unit probability. If this is not the case, we prepare∑

(s,e,d)∈Zn
q ×χm×{0,1} |s, e, d⟩|fK(s, e, d)⟩|1⟩ +

∑
(s,e,d)/∈Zn

q ×χm×{0,1} |s, e, d⟩|0m log q⟩|0⟩√
2Ñ

(50)

with unit probability, where Ñ is the smallest natural number satisfying 2Ñ ≥ 2qn(2µ+ 1)m.
If we obtain the outcome 1 by measuring the third register in the computational basis, we
can prepare the state in Eq. (49). From 2qn(2µ+ 1)m > 2Ñ−1, the probability of 1 being
observed is larger than 1/2. Therefore, by repeating these procedures, we can obtain the
outcome 1 at least once with probability of at least 1 − o(1).
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By measuring the second register in Eq. (49), we obtain a value of fK(s, e, d). From the
δ-2 regularity of F , the obtained output fK(s, e, d) has exactly two different preimages with
probability of at least δ. When fK(s, e, d) has exactly two different preimages, the state of
the first register becomes

|s, e, 1⟩ + |s+ s0, e+ e0, 0⟩√
2

, (51)

where fK(s, e, 1) = fK(s+ s0, e+ e0, 0). Then, we measure the state in Eq. (51) and obtain
the values of (s, e, 1) or (s+ s0, e+ e0, 0).

To obtain the other one with probability 1/2, we would like to obtain the state in Eq. (51)
again. It is possible by applying the rewinding operator R on |s, e, 1⟩ or |s+ s0, e+ e0, 0⟩
and a classical description9 of the state in Eq. (51). As an important point, since the state
in Eq. (51) becomes |s, e, 1⟩ or |s+ s0, e+ e0, 0⟩ by measuring only the last single qubit in
the Z basis, a single rewinding operator is sufficient to rewind it.

On the other hand, if rewinding operator is not allowed, the probability of the problem
being solved is super polynomially small from the collision resistance of the function family F .

◀

K Proof of Theorem 23

In this proof, we use the statistical difference (SD) problem:

▶ Definition 25 (Statistical Difference Problem [31]). Given classical descriptions of two
Boolean circuits C0, C1 : {0, 1}n → {0, 1}m with natural numbers n and m, let P0 and P1
be distributions of C0(x) and C1(x) with uniformly random inputs x ∈ {0, 1}n, respectively.
Decide whether DTV(P0, P1) < 2−O(nc) or DTV(P0, P1) > 1 − 2−O(nc) for some positive
constant c, where DTV(·, ·) is the total variation distance.

We show that the RwBQP(1) machine can solve the SD problem with probabilities at least
1/2−2−O(nc) and 1−2·2−O(nc) when DTV(P0, P1) < 2−O(nc) and DTV(P0, P1) > 1−2−O(nc),
respectively. To this end, we use an argument inspired by [5]10. First, the RwBQP(1) machine
prepares

1√
2n+1

∑
b∈{0,1},x∈{0,1}n

|b⟩|x⟩|Cb(x)⟩. (52)

By measuring the last register in the computational basis, it obtains the outcome y ∈ {0, 1}m

and

|0⟩
(∑

x:C0(x)=y |x⟩
)

+ |1⟩
(∑

x:C1(x)=y |x⟩
)

√
2n(P0(y) + P1(y))

, (53)

where for b ∈ {0, 1}, Pb(y) = |{x ∈ {0, 1}n : Cb(x) = y}|/2n is the probability of Cb

outputting y for uniformly random inputs x ∈ {0, 1}n. This event occurs with probability
(P0(y) + P1(y))/2. Then, it measures the first register in Eq. (53) in the computational basis

9 More precisely, the classical description means a transcript of how to prepare the state in Eq. (51)
from a tensor product of |0⟩’s. Let V be a unitary that prepares the state in Eq. (49) from |0⟩’s and
ℓ be the number of qubits required in the first register in Eq. (49). Then, the classical description
is (I⊗ℓ ⊗ |fK(s, e, d)⟩⟨fK(s, e, d)|)V . Note that V can be decomposed into a polynomial number of
elementary gates in a universal gate set.

10 As a difference between their argument in [5] and ours, we replace their non-collapsing measurement with
a single rewinding operator and an ordinary (i.e., a collapsing) measurement. Furthermore, although
they use three non-collapsing measurements, we can perform the rewinding operator only once.
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and obtain the outcome b1 ∈ {0, 1}. By using a single rewinding operator, it can perform
the same measurement again and obtain another outcome b2 ∈ {0, 1}. Finally, it outputs 1 if
b1 ̸= b2. Otherwise, it outputs 0.

We now calculate error probabilities, i.e., probabilities of the machine outputting 0 and 1
when DTV(P0, P1) < 2−O(nc) and DTV(P0, P1) > 1−2−O(nc), respectively. First, we consider
the case of DTV(P0, P1) < 2−O(nc). The probability perr of the machine outputting 0, i.e.,
that of b1 = b2 is

perr =
∑

y∈{0,1}m

P0(y) + P1(y)
2

P0(y)2 + P1(y)2

(P0(y) + P1(y))2 . (54)

Let δ(y) ≡ max{P0(y) − P1(y), P1(y) − P0(y)} and Pmin(y) ≡ min{P0(y), P1(y)}. From
Eq. (54),

perr = 1
2

1 +
∑

y∈{0,1}m

δ(y) Pmin(y) + δ(y)
2Pmin(y) + δ(y)

 ≤ 1
2

1 +
∑

y∈{0,1}m

δ(y)

 <
1
2 + 2−O(nc), (55)

where we have used
∑

y∈{0,1}m δ(y) = 2DTV(P0, P1) in the last inequality.
Then, we consider the case of DTV(P0, P1) > 1 − 2−O(nc). The probability p′

err of the
machine outputting 1, i.e., that of b1 ̸= b2 is

p′
err =

∑
y∈{0,1}m

P0(y) + P1(y)
2

2P0(y)P1(y)
(P0(y) + P1(y))2 . (56)

Since DTV(P0, P1) > 1 − 2−O(nc), there exists a set S such that
∑

y∈S P0(y) ≥ 1 − 2−O(nc)

and
∑

y∈S P1(y) ≤ 2−O(nc). Let S̄ be a complement of S. From Eq. (56),

p′
err =

∑
y∈S

P0(y)P1(y)
P0(y) + P1(y) +

∑
y∈S̄

P0(y)P1(y)
P0(y) + P1(y) ≤

∑
y∈S

P1(y) +
∑
y∈S̄

P0(y) ≤ 2 · 2−O(nc), (57)

where we have used
∑

y∈S∪S̄ P0(y) = 1 in the last inequality.

L Implication of Theorem 22 and Corollary 24

We first explain the implication of Theorem 22. In Sec. 3, we have shown the equivalence
between the postselection and rewinding. In contrast, Theorem 22 may represent their
difference. A possible approach to solving the problem in Def. 21 is to generate two copies of
the state in Eq. (3) (more precisely, Eq. (51) in Appendix J) by using the postselection. As
a straightforward way, this can be achieved by postselecting the second register in the state∑

x |x⟩|fK(x)⟩ (more precisely, Eq. (49) in Appendix J) onto the same fK(x). However, it
requires the postselection of a polynomial number of qubits (or the postselection of states
whose amplitudes are exponentially small), while a single qubit is sufficient for the rewinding.
Furthermore, since we do not know which fK(x) has exactly two different preimages, the
postselection applied to the second copy of

∑
x |x⟩|fK(x)⟩ needs to be adaptive, i.e., it

depends on fK(x) obtained from the first copy. On the other hand, a non-adaptive (i.e.,
non classically-controlled) rewinding operator is sufficient for solving the problem (with a
constant probability). Although there may be other ways to solve the problem by using
a non-adaptive postselection of a single qubit, the above discussion may imply that the
rewinding is superior to the postselection in some situations where the number of qubits to be
rewound or postselected is restricted, and copies (i.e., (

∑
x |x⟩|fK(x)⟩)⊗2) are not processed

collectively.
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We next explain a difference between Theorem 22 and Corollary 24. For example,
by assuming that the decision version of SIVP, gapSIVP, is hard for universal quantum
computation, Corollary 24 implies that a single rewinding operator is sufficient to achieve a
task that is intractable for universal quantum computation. This is because the gapSIVP
(with an appropriate parameter) is in SZK [29]. Therefore, Corollary 24 shows the superiority
of a single rewinding operator for promise problems, while Theorem 22 shows it for the search
problem.
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1 Introduction

If a computational task requires c resources, then common sense dictates that repeating
the same task r times should require roughly c · r resources. In many settings, including
query complexity [11] and communication complexity [12, 4], this intuition can be made
rigorous: such results are known as direct sum theorems. Closely related are direct product
theorems, which show that, with a fixed computational budget, the probability of successfully
performing r independent tasks decays in r. We recommend [7, Chapter 1] for a good
overview of the topic.

Nevertheless, direct sum and direct product theorems are not universal. Some computa-
tional settings exhibit a “mass production” phenomenon, in which the cost of performing the
same task many times in parallel does not scale linearly with the number of repetitions. A
well-known example [13, 7] is based on the circuit complexity of matrix-vector multiplication.
For a matrix M ∈ {0, 1}n×n, define fM : {0, 1}n → {0, 1}n by fM (v) = Mv, where addition
and multiplication are taken mod 2. Then a simple counting argument implies that for most
M , the complexity of implementing fM via a Boolean circuit is at least Ω(n2/ log n), as
measured by the number of 2-bit AND, OR, and NOT gates. Yet, by observing that fn

M

(i.e. fM repeated n times) is simply a matrix-matrix multiplication, we find that the cost of
implementing fn

M is only O(nω), where ω < 2.38 is the exponent of matrix multiplication
[3, 8] – substantially less than the naive bound of O(n3).

One might be left with the impression that such mass production phenomena can only
occur for extremely special functions, like matrix multiplication, that have a particular
algebraic or combinatorial structure. Remarkably, this intuition fails dramatically in the
setting of Boolean circuit complexity. A theorem of Uhlig [17, 18, 19] shows that for any
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Boolean function f : {0, 1}n → {0, 1} and for any r = 2o(n/ log n), there exists a Boolean
circuit implementing fr with at most O

( 2n

n

)
gates. Asymptotically, this equals the number

of gates needed to evaluate a worst-case f on a single input, by the well-known counting
argument of Shannon [15]. In fact, Uhlig even showed that the leading constant in the big-O
does not increase with r, and hence arbitrary Boolean functions can be mass produced with
essentially no overhead.

1.1 This Work
In this work, we consider the natural question of whether a similar mass production phe-
nomenon holds for quantum circuit complexity. Our question is well-motivated by recent
works demonstrating that for certain learning tasks, algorithms with access to many copies of
a quantum state on a quantum memory can be exponentially more powerful than algorithms
that have access only to single copies of the state at a time [6, 10, 5]. Indeed, these results
suggest that optimizing the complexity of mass producing quantum states and processes
could have valuable applications. We also view our question as interesting from a purely
theoretical perspective, especially considering that Uhlig’s theorem for classical functions has
recently found complexity-theoretic applications in characterizing the minimum circuit size
problem [14, 9].

For simplicity, we consider quantum circuit complexity in the setting of qubit quantum
circuits, using the universal gate set of arbitrary single-qubit gates plus CNOT gates with
all-to-all connectivity. We also allow ancilla qubits initialized to |0⟩, so long as they are reset
to |0⟩ at the end of the computation. We measure circuit complexity in terms of the CNOT
count. This measure is justified by the fact that multiple-qubit gates are more error-prone
and expensive to implement than single-qubit gates, and also by the observation that the
number of single-qubit gates is related to the CNOT count by at most a factor of 4 in any
irredundant circuit.

In analogy with Uhlig’s theorem [17, 18, 19], our main result establishes mass production
theorems for both quantum states and unitary transformations.

▶ Theorem 1. Let |ψ⟩ be an n-qubit quantum state, and let r = 2o(n/ log n). Then there exists
a quantum circuit with at most (1 + o(1))2n CNOT gates to prepare |ψ⟩⊗r.

▶ Theorem 2. Let U be an n-qubit unitary transformation, and let r = 2o(n/ log n). Then
there exists a quantum circuit with at most (5/2 + o(1))4n CNOT gates to implement U⊗r.

Note that the factor 2n (respectively, 4n), in Theorem 1 (respectively, Theorem 2) is
optimal, because it asymptotically equals the number of CNOT gates needed to prepare a
single copy of an arbitrary n-qubit state (respectively, to implement an arbitrary n-qubit
unitary once), up to a small multiplicative constant [16]. Above, we made the leading
constants explicit only to illustrate that they are not too large, and thus to demonstrate that
these theorems have some hope of becoming practical. We leave a full optimization of these
constants and the factors hidden in the o(1) to future work.

1.2 Proof Overview
Our results build heavily on the simple proof of Uhlig’s theorem given in [19], which
we now briefly summarize. The proof proceeds by first showing that for an arbitrary
f : {0, 1}n → {0, 1}, one can compute 2 copies of f using roughly 2n

n gates – the same cost
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as is needed to compute a single copy of a worst-case f . Then, Uhlig shows that we can
generalize to a larger number of repetitions r by a straightforward recursive argument. So,
we focus on the r = 2 case.

Fix a parameter k do be chosen later, and define for each 0 ≤ i ≤ 2k − 1 the function
fi : {0, 1}n−k → {0, 1} to be the restriction of f obtained by fixing the first k bits to be the
binary representation of i. So, for example,

f(0, 0, . . . , 0︸ ︷︷ ︸
k times

, xk+1, . . . , xn) = f0(xk+1, . . . , xn).

Next, we define a set of functions gℓ : {0, 1}n−k → {0, 1} for each 0 ≤ ℓ ≤ 2k by:
g0 = f0.
gℓ = fℓ−1 ⊕ fℓ if 1 ≤ ℓ ≤ 2k − 1.
g2k = f2k−1.

Observe that

fi =
i⊕

ℓ=0
gℓ =

2k⊕
ℓ=i+1

gℓ. (1)

Now, suppose that we have a pair of inputs x, y ∈ {0, 1}n to f , and our goal is to evaluate f(x)
and f(y) simultaneously. Let i and j denote the integers whose binary representations are the
first k bits of x and y, respectively. Assume without loss of generality that i ≤ j. Uhlig’s idea
is to evaluate f(x) using the decomposition fi =

⊕i
ℓ=0 gℓ and f(y) using fj =

⊕2k

ℓ=j+1 gℓ.
The key observation is that in doing so, we only need to evaluate each gℓ at most once. The
cost of computing f(x) and f(y) this way is dominated by computing the gℓs. So, the total
size of the circuit is roughly

(
2k + 1

) (
2n−k

n− k

)
,

because there are 2k + 1 different gℓs, and each gℓ is a function on n− k bits. For reasonable
choices of k, this is asymptotically (1 + o(1)) 2n

n , as desired.
Our main insight is that the same general approach generalizes straightforwardly from

mass producing Boolean functions to mass producing diagonal unitary matrices, which we
establish in Theorem 4. In one sense, the only conceptual change between our proof and
Uhlig’s is that we work with the group of complex units under multiplication, rather than the
group {0, 1} under XOR. Nevertheless, our proof requires some care, as we do not deal with
diagonal matrices directly. Rather, we mass produce the direct sum of a diagonal unitary
with its inverse. In other words, for an n-qubit diagonal unitary U , we find it more convenient
to work with the diagonal unitary on n+ 1 qubits that applies U when the last qubit is |0⟩,
and U† when the last qubit is |1⟩. The intuitive reason why we require this change is that the
XOR function is its own inverse, whereas multiplication by a complex unit is generally not.

Finally, once we have established Theorem 4 for diagonal unitary transformations, we
obtain the mass production theorems for quantum states and general unitary transformations
by using well-known decompositions of states and unitaries into diagonal gates [16].

TQC 2023
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2 Preliminaries

2.1 Basic Notation

We denote by 1{p} the function that evaluates to 1 if proposition p is true, and 0 otherwise.
If α is a complex number, we let α∗ denote its complex conjugate. We denote by T :=
{a+ bi : |a|2 + |b|2 = 1} the set of complex units. For a function f : {0, 1}n → T, denote by
f̄ : {0, 1}n+1 → T the function defined by f̄(x, c) = f(x)1−2c, so that f̄ evaluates to f when
c = 0 and evaluates to f∗ when c = 1. We freely identify a function f : {0, 1}n → T with
the corresponding diagonal unitary transformation U that acts as U |x⟩ = f(x) |x⟩ on basis
states x ∈ {0, 1}n.

We use standard notation for quantum circuits, including CNOT, Toffoli, and Fredkin
gates. We also borrow a large amount of notation and terminology from [16], as we detail
further below. We define the x-, y-, and z-axis rotations by:

Rx(θ) =
(

cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
,

Ry(θ) =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
,

Rz(θ) =
(
e−iθ/2 0

0 eiθ/2

)
.

2.2 Multiplexors

A multiplexor with s select qubits and d data qubits is a block-diagonal (s+ d)-qubit unitary
transformation that preserves every computational basis state |x⟩ on the select qubits. For
brevity, we call such a unitary an (s, d)-multiplexor. An (s, 1)-multiplexor in which all of
the diagonal blocks are Rz on the data qubit may alternatively be called a multiplexed Rz

(analogously for Rx and Ry). Collectively, multiplexed Rx, Ry, and Rz are called multiplexed
rotations. Observe that an (s, 1)-multiplexed Rz is equivalent to a unitary implementing f̄
for some f : {0, 1}s → T.

We require the following basic fact about implementing multiplexed rotations:

▶ Proposition 3 ([16, Theorem 8]). Let U be an (n, 1)-multiplexed rotation. Then there exists
a quantum circuit with at most 2n CNOT gates to implement U .

2.3 Generic Gates

As in [16], we use circuit diagrams containing generic gates. An equivalence of two circuit
diagrams containing generic gates means that for any assignment of parameters to the generic
gates on one side, there exists an assignment of parameters to the gates on the other side
that makes the two circuits compute the same operator. We use the following notation for
generic gates:
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/ A generic unitary gate.

/ ∆ A generic diagonal unitary gate.

Rz An Rz gate for some unspecified θ. Conventions for Rx and Ry are analogous.

/

/

A generic multiplexor, with select qubits on the upper register and data qubits
on the lower register

/

Rz

A multiplexed Rz. Conventions for Rx and Ry are analogous.

3 Diagonal Unitaries and Multiplexors

We begin by generalizing the proof of Uhlig’s theorem [19] to diagonal unitary matrices (or,
more precisely, multiplexed Rz gates).

▶ Theorem 4. Let f : {0, 1}n → T and let r = 2o(n/ log n). Then there exists a quantum
circuit with at most (1 + o(1))2n CNOT gates to implement f̄⊗r.

Proof. Without loss of generality, let r = 2t for some t = o(n/ log n). Our proof proceeds
by induction on t: for fixed k (chosen later) and for every n > k · t, we construct for each
f : {0, 1}n → T a circuit Cf,n,k,t computing f̄⊗2t . We proceed in order: first we construct
Cf,n,k,1 for every n and f , then Cf,n,k,2 for every n and f , then Cf,n,k,3 for every n and f ,
and so on. Ultimately, we show that there exists a universal constant d such that the number
of CNOT gates in Cf,n,k,t, denoted sn,k,t, satisfies the bound:

sn,k,t ≤
(
2k + 1

)t (
2n−tk + 2tdn

)
. (2)

We begin by describing the construction of Cf,n,k,1. For each 0 ≤ i ≤ 2k − 1, let
fi : {0, 1}n−k → T denote the restriction of f obtained by fixing the first k bits to the binary
representation of i. For each 0 ≤ i ≤ 2k, define gi : {0, 1}n−k → T by:

g0 = f0.

gℓ = f∗
ℓ−1fℓ if 1 ≤ ℓ ≤ 2k − 1.

g2k = f∗
2k−1.

Observe that

fi =
i∏

ℓ=0
gℓ =

2k∏
ℓ=i+1

g∗
ℓ . (3)

The key idea in the remainder of the proof is to evaluate f̄ on a pair of inputs (x, y) using the
two decompositions in (3), one each for x and y. Indeed, the following algorithm accomplishes
this.
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Algorithm 1 Evaluate f̄⊗2.

Input: x, y ∈ {0, 1}n, cx, cy ∈ {0, 1}
Output: f̄(x, cx) · f̄(y, cy)

1 α := 1
2 if x ≤ y then /* viewing x, y as integers w/ highest order bits x1, y1 */
3 m := x; cm := cx /* set m = min{x, y}, M = max{x, y} */
4 M := y; cM := cy

5 else
6 m := y; cm := cy

7 M := x; cM := cx

8 for 0 ≤ ℓ ≤ 2k do
9 if ℓ ≤ m[1:k] then /* x[i:j] denotes bits i through j of x */

10 Multiply α by ḡℓ(m[k+1:n], cm)
11 else if ℓ > M[1:k] then
12 Multiply α by ḡℓ(M[k+1:n], 1 − cM ) /* note negation on cM */
13 else
14 Multiply α by 1
15 return α

Here, the ℓ ≤ m[1:k] clause corresponds to the multiplication
∏m[1:k]

ℓ=0 gℓ, while the ℓ >
M[1:k] clause corresponds to

∏2n

ℓ=M[1:k]
g∗

ℓ . An equivalent reformulation of Algorithm 1 is
given below.

Algorithm 2 Evaluate f̄⊗2

Input: x, y ∈ {0, 1}n, cx, cy ∈ {0, 1}
Output: f̄(x, cx) · f̄(y, cy)

1 α := 1
2 if x ≤ y then
3 m := x; cm := cx

4 M := y; cM := cy

5 else
6 m := y; cm := cy

7 M := x; cM := cx

8 for 0 ≤ ℓ ≤ 2k do
9 a := 1{ℓ ≤ m[1:k]} /* at most one of a, b is nonzero */

10 b := 1{ℓ > M[1:k]}
11 z := a ·m[k+1:n] ⊕ b ·M[k+1:n]
12 c := a · cm ⊕ b · (1 − cM )
13 Multiply α by ḡℓ(z, c)
14 Multiply α by g∗

ℓ (0n−k)(1−a)·(1−b) /* undo added phase in case a = b = 0
*/

15 return α

Algorithm 2 readily extends to a quantum circuit implementation. Define a pair of
classical reversible circuits An and Bn,k,ℓ whose input and output behavior are given in
Figure 1. Using An and Bn,k,ℓ, via the same strategy as Algorithm 2, we obtain the quantum
circuit Cf,n,k,1 defined in Figure 2 that implements f̄⊗2.
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x ∈ {0, 1}n /

An

x

y ∈ {0, 1}n / y

0 1{x > y}
(a) The circuit An.

0

Bn,k,ℓ

1{ℓ ≤ m[1:k]}

0 1{ℓ > M[1:k]}
m ∈ {0, 1}n / m

M ∈ {0, 1}n / M

(b) The circuit Bn,k,ℓ.

Figure 1 Inputs and outputs of reversible circuits An and Bn,k,ℓ.

|0n−k⟩ /
z

ḡℓ

|0⟩
c

|0⟩

Bn,k,ℓ

a
• •

∗
• •

B†
n,k,ℓ

|0⟩
b

• • • •

x /

An

×
m

• • ×

A†
n

y / ×
M

• • ×

|0⟩
x>y

• • • •

cx ×
cm

• • ×

cy ×
cM

×

Repeat for each 0 ≤ ℓ ≤ 2k

Figure 2 Circuit diagram of Cf,n,k,1. The Toffoli gates with controls acting on the x and y

registers are understood to be arrays of n − k Toffoli gates between the corresponding qubits of the
control and target registers. The gate marked ∗ adds a phase of g∗

ℓ (0n−k) if both qubits are |0⟩ and
otherwise does nothing. For convenience, several of the wires are labeled with the values they take
on corresponding to variables in Algorithm 2.

By Proposition 3, for every ℓ, ḡℓ can be implemented using at most 2n−k CNOT gates,
because ḡℓ is equivalent to an (n− k, 1)-multiplexed Rz. Moreover, it is easy to see that An

and Bn,k,ℓ can be implemented using at most O(n) CNOT gates each, because comparison
of two n-bit integers can be performed by a classical circuit of at most O(n) gates. As a
consequence, we conclude that there exists a constant d such that:

sn,k,1 ≤
(
2k + 1

) (
2n−k + dn

)
. (4)

This is certainly less than the bound in (2), so this establishes the base case of the induction
proof.

Now we proceed to the induction step on t. Suppose that for every n > k · (t− 1), we
have a circuit Cf,n,k,t−1 computing f̄⊗2t−1 with CNOT count bounded by

sn,k,t−1 ≤
(
2k + 1

)t−1 (
2n−(t−1)k + 2t−1dn

)
. (5)

To construct Cf,n,k,t, we start by first taking 2t−1 copies of Cf,n,k,1. Then, for each 0 ≤ ℓ ≤ 2k,
we replace each of the 2t−1 sub-circuits that compute ḡℓ with Cgℓ,n−k,k,t−1. Then, the number
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of gates in Cf,n,k,t is bounded by:

sn,k,t ≤
(
2k + 1

) (
sn−k,k,t−1 + 2t−1dn

)
≤

(
2k + 1

) ((
2k + 1

)t−1 (
2n−k−(t−1)k + 2t−1d(n− k)

)
+ 2t−1dn

)
≤

(
2k + 1

)t (
2n−tk + 2t−1dn

)
+

(
2k + 1

)
2t−1dn

≤
(
2k + 1

)t (
2n−tk + 2tdn

)
,

where the first line substitutes (5) for the cost of the ḡℓ’s and otherwise uses the same bound
as (4) for the non-ḡℓ gates, and the second line applies the induction hypothesis (5). This
establishes the induction step, and thus (2) holds for every n > k · t.

Choose k = ⌈log n⌉. Then:

sn,k,t ≤
(
2k + 1

)t (
2n−tk + 2tdn

)
= 2kt

(
1 + 1

2k

)t (
2n−tk + 2tdn

)
≤ 2ktet/2k (

2n−tk + 2tdn
)

≤ 2kt(1 + o(1))
(
2n−tk + 2tdn

)
≤ 2kt(1 + o(1))

(
2n−tk + o

(
2n−tk

))
≤ (1 + o(1))2n,

where we applied the exponential inequality in the third line, and used the assumption
t ≤ o(n/ log n) in the fourth and fifth lines. This proves the theorem. ◀

Theorem 4 straightforwardly generalizes to arbitrary multiplexed rotations and multi-
plexors with a single data qubit, as below.

▶ Corollary 5. Let U be an (n, 1)-multiplexed rotation, and let r = 2o(n/ log n). Then there
exists a quantum circuit with at most (1 + o(1))2n CNOT gates to implement U⊗r.

Proof. The Rz case follows by observing that f̄ is exactly an (n, 1)-multiplexed Rz in
Theorem 4. This also extends to multiplexed Rx and Ry, because multiplexed Rx, Ry, and
Rz are equivalent up to conjugation by single-qubit unitaries on the data qubit. That is,
there exist single-qubit unitaries U and V such that:

/ ∼=
/ ∼=

/

Rz U Rx U† V Ry V †

Hence, the CNOT count is identical for multiplexed Rx and Ry as well. ◀

▶ Corollary 6. Let U be an (n, 1)-multiplexor, and let r = 2o(n/ log n). Then there exists a
quantum circuit with at most (4 + o(1))2n CNOT gates to implement U⊗r.

Proof. By [16, Theorem 6], an arbitrary (n, 1)-multiplexor may be implemented via a product
of 4 (n, 1)-multiplexed rotations, as below.

|0⟩

∼=

|0⟩

∼=

|0⟩ Rz

/ / ∆ /

Rz Ry Rz Rz Ry Rz

Applying Corollary 5 to each of the multiplexed rotations on the right side above completes
the proof. ◀
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4 States and General Unitaries

We now prove the main results of this work that generalize the mass production theorems
above to state preparation and unitary compilation. The proofs proceed via the techniques
of [16], by decomposing operators into multiplexors.

▶ Theorem 1. Let |ψ⟩ be an n-qubit quantum state, and let r = 2o(n/ log n). Then there exists
a quantum circuit with at most (1 + o(1))2n CNOT gates to prepare |ψ⟩⊗r.

Proof. By [16, Theorem 9], for any n-qubit quantum state |ψ⟩, there exists an (n− 1)-qubit
state |φ⟩ such that |ψ⟩ has the following decomposition.

/ |φ⟩

Rz Ry |0⟩

|ψ⟩

Applying this decomposition recursively, we conclude that |ψ⟩ can be prepared by a circuit
consisting of a pair of (ℓ, 1)-multiplexed rotations for each 1 ≤ ℓ ≤ n − 1, and a pair of
single-qubit gates.

Apply Corollary 5 to the (ℓ, 1)-multiplexed rotations for each ⌈n/2⌉ ≤ ℓ ≤ n − 1, and
otherwise apply Proposition 3 r times for each 1 ≤ ℓ ≤ ⌈n/2⌉ − 1. Then the total number of
CNOT gates to prepare |ψ⟩⊗r is upper bounded by

r ·
⌈n/2⌉−1∑

ℓ=1
2ℓ +

n−1∑
ℓ=⌈n/2⌉

(1 + o(1))2ℓ ≤ r2⌈n/2⌉ + (1 + o(1))2n

≤ 2⌈n/2⌉+o(n/ log n) + (1 + o(1))2n

≤ (1 + o(1))2n ◀

▶ Theorem 2. Let U be an n-qubit unitary transformation, and let r = 2o(n/ log n). Then
there exists a quantum circuit with at most (5/2 + o(1))4n CNOT gates to implement U⊗r.

Proof. By [16, Theorem 11], an arbitrary multiplexor can be expressed as below.

/

∼=

/

Ry

/ /

This decomposition is also valid when the multiplexor on the left side of the equivalence
has 0 select bits. A recursive application of this decomposition implies that an arbitrary
n-qubit unitary may be expressed as a product of 2n − 1 different (n− 1, 1)-multiplexors, of
which 2n−1 − 1 are multiplexed Ry gates, and the remaining 2n−1 are arbitrary multiplexors.
Applying Corollary 5 and Corollary 6 to these multiplexors gives the desired bound. ◀

5 Conclusion and Outlook

We have demonstrated that mass production phenomena are not unique to classical compu-
tation, and that they extend to quantum circuit complexity as well. As the message of this
work is primarily conceptual in nature, we have not attempted to optimize every aspect of
our results. Indeed, our mass production theorems could be extended further in a variety of
ways; we outline a few such possibilities below.
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If our results have any hope of being used in practice, then still more work needs to be
done to optimize various constants. We suspect that the leading constant in Theorem 2
could be brought down from 5/2 to 1 with a more clever decomposition into multiplexors.
The factors hidden in the o(1) could probably be optimized further as well, especially those
related to the constant factor d that appears in Theorem 4. Indeed, we believe that much of
the redundancy in computing and uncomputing Bn,k,ℓ for each 0 ≤ ℓ ≤ 2k could be reduced
by more careful accounting.

It is also worth attempting to optimize other parameters of practical relevance, such as
constraints on the gate set, locality, depth, and ancilla qubit count. In principle, our proof
should allow for some tradeoff between depth and ancilla count, because the ḡℓs in Figure 2
can either be evaluated sequentially or in parallel. Another particularly interesting question
is whether ancilla qubits are necessary at all to achieve quantum mass production.

We leave open the circuit complexity of quantum mass production in other parameter
regimes. As Theorem 1 and Theorem 2 only apply when r = 2o(n/ log n), it is natural to ask
what happens when r is much larger. For Boolean functions, it is known that for any n-bit f ,
the “asymptotic complexity” of mass production limr→∞

C(fr)
r is bounded by poly(n) [13, 2],

where C(fr) denotes the Boolean circuit complexity of implementing r copies of f . However,
it is unclear whether the same approach would generalize to quantum circuits.

Lastly, we ask: are there any restricted examples of quantum circuits that exhibit a
mass production phenomenon? What about Clifford circuits? We observe if one allows
implementation by non-Clifford gates, then n copies of an arbitrary Clifford operation can
be implemented by a circuit with at most O(nω) gates, where ω is the exponent of matrix
multiplication. By the “canonical form theorem” of Aaronson and Gottesman [1], every
Clifford circuit can be expressed in the form H-C-P-C-P-C-H-P-C-P-C, where each letter
corresponds to a layer of Hadamard, CNOT, or phase gates. The Hadamard and phase layers
contain at most O(n) gates total, so it suffices to show how to implement n copies of a CNOT
circuit using O(nω) gates. For any M ∈ Fn×n

2 , define UM as the unitary transformation that
acts as UM |x⟩ |y⟩ = |x⟩ |y ⊕Mx⟩ on computational basis states. As every CNOT circuit
implements an invertible linear transformation |x⟩ → |Mx⟩ for some M ∈ Fn×n

2 , a CNOT
circuit can be implemented using UM and UM−1 and O(n) additional gates via:

|x⟩ |0n⟩ UM−−→ |x⟩ |Mx⟩
UM−1−−−−→ |0n⟩ |Mx⟩ SWAP−−−−→ |Mx⟩ |0n⟩ .

Then, as in Section 1, we can mass produce UM and UM−1 using fast matrix multiplication.
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Abstract
We study how the choices made when designing an oracle affect the complexity of quantum property
testing problems defined relative to this oracle. We encode a regular graph of even degree as an
invertible function f , and present f in different oracle models. We first give a one-query QMA
protocol to test if a graph encoded in f has a small disconnected subset. We then use representation
theory to show that no classical witness can help a quantum verifier efficiently decide this problem
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1 Introduction

Computational complexity is the study of the innate amount of resources required to complete
some task. We assign complexity classes to sets of tasks that require similar amounts of
resources; from here, the goal is to understand the relationship between complexity classes.
There has been some success proving that two complexity classes are equal, for example
IP = PSPACE [25], the PCP theorem [7], and MIP∗ = RE [17]; however, proving that two
complexity classes are unequal has been much more elusive. For example, we cannot prove
P ̸= PSPACE, let alone P ̸= NP.
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One response to this difficulty is to equip a computational model with an oracle, which
computes a fixed (but arbitrarily powerful) quantity in a single timestep. It is often easier to
prove that a statement (e.g. P ≠ NP) is true relative to an oracle; furthermore, this restricts
the kinds of proof techniques that can show the statement is false without an oracle. In
addition to separating complexity classes, oracles and query complexity naturally arise in
cryptography (e.g. [19]) and learning theory (e.g. [20]).

Even with respect to an oracle, proving that some complexity classes are unequal can be
surprisingly difficult. Notably, Aharonov and Naveh define QCMA, a subset of QMA where
the witness is a classical bitstring [3], and ask if QCMA ⊊ QMA. Aaronson and Kuperberg
conjecture that an oracle separates these classes, but only prove a “quantum oracle” where
this occurs [2]. Subsequent works [11, 22] remove the “quantumness” from the oracle model,
but still use models with internal randomness or other nonstandard aspects.

We consider quantum property testing problems defined relative to oracles from various
oracle models: encoding the edges of a graph in an invertible function f , we present f as
either a standard oracle or in-place oracle, with or without internal randomness. With mild
restrictions on the workspace of quantum verifiers, we find:
1. In several oracle models presenting f , a quantum witness can help a quantum verifier

efficiently decide if the graph encoded in f has a small disconnected subset.
2. Where f is presented as a randomized in-place oracle, no classical witness can help a

quantum verifier efficiently decide this problem.
3. Where f is presented as a randomized phase oracle, no witness of any type or size can

help a quantum verifier efficiently decide this problem.
Our results highlight that the quantum complexity of a task defined relative to an oracle is
influenced by the choice of oracle model.

1.1 Our techniques
We use a well-known fact of Petersen to encode the edges of any even-degree regular graph in
an invertible function f . We then consider natural ways to install f within an oracle; we say
that f is presented as a particular kind of oracle. For example, a standard oracle presents
f through the map |c, x⟩ 7→ |c⊕ f(x), x⟩, while an in-place oracle presents f through the
map |x⟩ 7→ |f(x)⟩. In general, we consider oracles that give access both to f and f−1. An
oracle may also have internal randomness: on every query to a randomized oracle, f is chosen
uniformly at random from a fixed set of functions F .

Consider the Laplacian Lf of a graph encoded in f . We first provide a test such that
for any input state |ψ⟩, the test succeeds with probability expressible in terms of ⟨ψ|Lf |ψ⟩,
independently of how an oracle presents f . We use this test to construct a QMA protocol
verifying that the graph is not an expander graph. This problem is primarily motivated
by the preimage-testing problem of Fefferman and Kimmel [11], which separates QMA and
QCMA relative to a nonstandard oracle. They encode an invertible function π in an oracle
without efficient access to π−1, and test a property of π−1; by design, this property can be
verified but not easily computed. Crucially, we view a permutation and its inverse as the
edges of an undirected graph; properties of undirected graphs are not sensitive to the ordering
of (x, π(x)). We use multiple permutations to study graphs of higher degree, and notice that
detecting if a graph has a non-expanding region is hard without traversing most of the graph.
Some of these ideas are related to the component mixer concept of Lutomirski [21], and are
simultaneously and independently explored by Natarajan and Nirkhe [22].

A randomized oracle presenting a set of functions F can be seen as a quantum channel,
so small changes to F cause statistically indistinguishable changes to the oracle. We use this
flexibility to modify non-expansion testing to a simple permutation problem: do the functions
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f ∈ F stabilize a small set V ⊆ [N ], or is F the set of all permutations on [N ]? Notice that
F is a group in both cases. When an oracle presenting F preserves the group structure of F ,
we can use representation theory. For this problem, this is satisfied by an in-place oracle;
the oracle is then an orthogonal projector onto one of two symmetric subspaces of matrices.
After finding an orthogonal basis for each subspace, we construct a hybrid argument to
prove that only witnesses with knowledge of V can help a quantum verifier efficiently decide
this problem. We also use representation theory to give a QCMA protocol for an analogous
permutation problem in randomized standard oracles.

We finally study the permutation problem in a randomized phase oracle. We directly
analyze the effect of the oracle on any input density matrix; with high probability, the oracle
decreases the magnitude of every off-diagonal term by a 1

2poly(n) factor. We then construct a
hybrid argument, bounding our measure of progress using an inequality relating the sizes
of Schatten p-norms. When the state space is not too large, we prove that an exponential
number of queries are required to distinguish most YES instances from the NO instance,
regardless of input state. As a result, no witness can help a verifier distinguish YES from NO.

Note that our quantum verifiers are not fully general. Our lower bound techniques restrict
the number of extra workspace qubits in the verifier; however, our upper bounds also work in
this setting. In Section 3.2, we explain these restrictions in more detail and discuss prospects
for generalizing our results.

1.2 Related work
Quantum oracle models

A fundamental constraint of quantum oracle models is that they must be unitary. We
describe several nonstandard oracle models used in quantum computing:

A quantum oracle is any unitary operation U in the full Hilbert space. Although the
operation is unitary, the verifier doesn’t necessarily have access to U−1. Oracles like these
are not typically classical because the unitary’s action is not efficiently and classically
representable.
An in-place oracle maps |x⟩ → |π(x)⟩ for some classical invertible function π. Again, this
computation is not efficiently reversible since the verifier may not have access to π−1.
When a standard oracle gives access to π−1, an in-place oracle query can be simulated in
two queries; otherwise, an exponential number of queries are required to construct one
from the other [18].
A phase oracle puts the output of a classical function f in the phase of a basis state.
We consider the map |x⟩ → ef(x)·2πi/N |x⟩. To contrast, note that the map |c, x⟩ →
ecf(x)·2πi/N |c, x⟩ is unitarily equivalent to the standard oracle.

All of these oracles can optionally have internal randomness, as considered by Harrow and
Rosenbaum [16]; we call these randomized oracles. On every query to a randomized oracle, a
unitary is chosen at random from a fixed set. This can be very powerful; for example, [16]
gives examples of randomized oracles where problems impossible to decide with classical
queries can be decided with a single quantum query.

QMA and QCMA

The Merlin-Arthur style of complexity classes considers a decision problem and two players.
The magician (Merlin) has claimed the answer to the decision problem is YES, and gives the
verifier a token (the proof or witness) to convince them. The verifier (Arthur) must then
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11:4 On the Power of Nonstandard Quantum Oracles

ensure the answer is actually YES. Given a problem with size n, the verifier must accept
a correct witness (i.e. when the answer is YES) with probability 1/q higher than a “lying”
witness (i.e. when the answer is NO) for some q = poly(n). The set of problems that can be
decided this way in a classical setting is known as Merlin Arthur (MA). If the verifier is a
quantum computer, this is QCMA; if the witness can be any quantum state, this is QMA.

Table 1 Complexity classes in the style of Merlin-Arthur. QCMA is a subset of QMA where the witness
can be efficiently written as a classical bitstring.

verifier is classical verifier is quantum

witness is classical MA QCMA

witness is quantum - QMA

Since any classical bitstring can be efficiently written as a quantum state, QCMA ⊆ QMA.
But is the reverse true? Even the oracle version of this problem is open: at the top of a
recent list of open problems, Aaronson asks for a standard oracle that separates the two
classes [1]. All previous progress [2, 11, 22] relies on specifically chosen nonstandardness in
the oracle.

Natarajan and Nirkhe [22] make progress on a standard oracle separation of QMA and
QCMA by constructing an oracle with randomness. They simultaneously and independently
provide a QMA protocol for testing non-expansion of a graph in an oracle. To prove their
lower bound, they combine the adversary method, the polynomial method, and a reduction
to a problem of Ambainis, Childs, and Liu [5]. However, their notion of randomness is
different from ours and other works [16, 11, 6], and acts as follows: when an oracle is first
queried, it chooses a function f from a distribution, but on subsequent queries, it uses the
same function f . By contrast, our notion of randomness is memoryless: an oracle chooses f
from a uniform distribution on F for every query. This allows one to make small changes
to F without affecting the success of the QMA protocol; we use this flexibility to study a
simpler permutation problem.

2 Our setup

Consider a d-regular graph on N := 2n vertices for any n and even d. We show that an
invertible function can list the edges adjacent to each vertex in G.

▶ Definition 2.1 (Graph-coded function). Consider a d-regular graph G (for even d) on N

vertices. A G-coded function is a function f : [N ] × [d/2] → [N ], such that fi(x) := f(x, i) is
a bijection for each i ∈ [d/2], and each edge is uniquely represented by a tuple (x, fi(x)).

▶ Remark 2.2 (Even-degree regular graphs have graph-coded functions). Every regular graph
G of even degree has a G-coded function.

Proof. A d-regular graph G of even degree always has a 2-factorization [23]. This means that
the edges of G can be partitioned into d/2 edge-disjoint subgraphs [E1, . . . , Ed/2] where in
each Ei, all vertices have degree two (i.e. a collection of cycles). Thus, we can represent each
Ei with a permutation πi, where the edge (x, y) ∈ Ei if and only if πi(x) = y or πi(y) = x.
Then f(x, i) := πi(x) is a G-coded function. ◀

Graph-coded functions f are bijective, and therefore invertible. We now present f in
various oracle models. Note that we define all oracles with access both to f and f−1.
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▶ Definition 2.3 (An oracle model presents a function f). For each oracle model below (e.g.
standard oracle), we say that this oracle model presents the function f .

▶ Remark 2.4. For notational convenience, we refer to a qubit z that controls the inversion
of a function f as taking on values in {±1}, so that fz is either f1 = f or f−1.

▶ Definition 2.5 (Standard oracle). For any f : [N ] → [N ], define Uf : C2N2 → C2N2 as

Uf

∑
c,x∈[N ],z∈{±1}

αc,x,z |c, x, z⟩ :=
∑

c,x∈[N ],z∈{±1}

αc,x,z |c⊕ fz(x), x, z⟩ . (1)

▶ Definition 2.6 (In-place oracle [18]). For any permutation π : [N ] → [N ], define Ũπ :
C2N → C2N as

Ũπ

∑
x∈[N ],z∈{±1}

βx,z |x, z⟩ :=
∑

x∈[N ],z∈{±1}

βx,z |πz(x), z⟩ . (2)

▶ Remark 2.7 ([18]). A standard oracle Uf (with access to f−1) can simulate an in-place
oracle Ũf in two queries:

(I ⊗X) ◦ Uf ◦ (SWAPn,n ⊗X) ◦ Uf |0⟩⊗n |x, z⟩ = |0⟩⊗n |fz(x), z⟩ . (3)

▶ Definition 2.8 (N th root of unity). Define the N th root of unity as ωN := e2πi/N .

▶ Definition 2.9 (Phase oracle). For any function f : [N ] → [N ], define Uf : C2N → C2N as

Uf

∑
x∈[N ],z∈{±1}

αx,z |x, z⟩ :=
∑

x∈[N ],z∈{±1}

αx,zω
fz(x)
N |x, z⟩ . (4)

We describe how an oracle in our setup exhibits internal randomness. On each query, a
randomized oracle chooses a function uniformly from a set F . We say that a randomized
oracle presents F .

▶ Remark 2.10. Given a unitary U , we use the notation U to denote an operator on density
matrices; that is,

U [ρ] := UρU † . (5)

▶ Definition 2.11 (Randomized oracle (e.g. [16, 11])). For any set F of functions f : [N ] →
[N ] corresponding to oracles {Uf | f ∈ F}, define the linear operator OF as

OF := 1
|F |

∑
f∈F

Uf . (6)

We match the notation of randomized oracle OF with oracle Uf ; e.g. ÕF is a randomized
in-place oracle.

2.1 Problem statements
The problems below are not fully specified without the choice of oracle model. We prepend
the names below with the choice of oracle model; for example, we denote Problem 2.12 in a
standard oracle as STANDARD NON-EXPANSION(d, α, ε).
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11:6 On the Power of Nonstandard Quantum Oracles

▶ Problem 2.12 (NON-EXPANSION(d, α, ε)). Consider an oracle Uf presenting a G-coded
function f .
1. In a YES instance, we are promised that G is a union of two disconnected d-regular

graphs, and that the smaller graph has Nα vertices.
2. In a NO instance, we are promised that G is d-regular and has spectral gap at least ε (for

example, an expander graph).
The problem is to decide whether Uf is a YES instance or NO instance.

We also consider a version of this problem with randomized oracles, where each randomized
YES instance is specified by the set of vertices V of the smaller graph. On each query, an
oracle chooses an graph-coded function f uniformly at random that corresponds to a graph
where V and [N ]/V are disconnected.

▶ Problem 2.13 (RANDOMIZED NON-EXPANSION(d, α, ε)). Consider a randomized oracle
OF presenting a set of graph-coded functions F .
1. Each subset V ⊆ [N ] of size |V | = Nα specifies a YES instance OFV

. Let FV be the set
of all G-coded functions of d-regular graphs G with no edges between V and [N ]/V .

2. There is a single NO instance OF∅ . Let F∅ be the set of all G-coded functions of d-regular
graphs G with spectral gap at least ε.

The problem is to decide whether O is a YES instance or a NO instance.

In the configuration model of a random graph, FV contains all functions f(x, i) such that
fi(x) := f(x, i) is the union of a permutation on [N ]/V and a permutation on V . In fact, we
can use the oracle’s internal randomness to adjust the underlying set F , and even consider
graphs that are not typically expander graphs.

▶ Definition 2.14 (Subset indicator). For a set V ⊆ [N ], define the function iV : [N ] →
{V, [N ]/V } as

iV (x) =
{
V x ∈ V

[N ]/V x /∈ V .
(7)

▶ Definition 2.15 (Permutations that stabilize a subset). For a set V ⊆ [N ], define the set of
permutations

TV := {π : [N ] → [N ] : iV (x) = iV (π(x)) ∀x ∈ [N ]} . (8)

We say that TV stabilizes the subset V .

▶ Problem 2.16 (RANDOMIZED HIDDEN SUBSET(α)). Consider a randomized oracle OF

presenting a set of functions F .
1. Each subset V ⊆ [N ] of size |V | = Nα specifies a YES instance OTV

.
2. There is a single NO instance OT∅ , where T∅ is the set of all permutations of [N ].

The problem is to decide whether O is a YES instance or a NO instance.

Notice that RANDOMIZED HIDDEN SUBSET(α) is exactly RANDOMIZED NON-
EXPANSION(2, α, 0).

Notice that TV is a group under function composition. One can generalize this algebraic
structure to a problem distinguishing oracles presenting subgroups of T∅ from an oracle
presenting T∅:

▶ Problem 2.17 (RANDOMIZED HIDDEN SUBGROUP(×, {Hi})). Consider the set T∅ of
all permutations on [N ] as a group with operation ×, such that each Hi ⊊ T∅ is also a group.
Suppose a randomized oracle O presents either T∅ or any Hi.
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1. Each subgroup Hi specifies a YES instance OHi
.

2. There is a single NO instance OT∅ , where T∅ is the set of all permutations of [N ].
The problem is to decide whether O is a YES instance or a NO instance.

For example, RANDOMIZED HIDDEN SUBSET(α) is a special case of RANDOMIZED HIDDEN
SUBGROUP(×, {Hi}) using the group operation of function composition.

3 Our results

3.1 Non-expansion and quantum witness
Our first result shows that there is a one-query QMA protocol for NON-EXPANSION(d, α, ε)
in many oracle models presenting a graph-coded function.

▶ Theorem 3.1. There is a QMA protocol for STANDARD NON-EXPANSION(d, α, ε) and
IN-PLACE NON-EXPANSION(d, α, ε) at every even d ≥ 4, all 0 < α < 1

2 , and all constant
ε > 0.

Graphs with good expansion are well-connected despite their sparsity. For any graph G,
let AG be the adjacency matrix of G, and LG = dI −AG be the graph Laplacian of G. The
smallest eigenvalue of LG is λ1(LG) = 0, and the next-smallest eigenvalue λ2(LG) measures
the expansion of G. In this framework, NON-EXPANSION(d, α, ε) asks if an oracle presenting
a G-coded function has λ2(LG) = 0 (YES), or if λ2(LG) ≥ ε (NO).

At the heart of our protocol is the spectral test, which takes an input state |ψ⟩ and
fails with probability proportional to ⟨ψ|LG |ψ⟩. We describe the spectral test for both
standard oracles and in-place oracles in Appendix A.1. A state that passes the spectral test
is essentially supported on a subspace according to λ(LG) = o( 1

poly(n) ); in a NO instance,
this is one-dimensional, and in a YES instance, this is at least two-dimensional. In fact, the
uniform superposition over all inputs, |+⟩⊗n, is always in this subspace. As a result, our
protocol (Theorem 3.1) either runs the spectral test, or checks if the input state is close to
|+⟩⊗n.

Consider the randomized variant of NON-EXPANSION(d, α, ε). The graph of any graph-
coded function presented in a YES instance is guaranteed to have a small set V (i.e. |V | = Nα)
disconnected from the rest of the graph. As a result, there is a state, defined only by the
vertices of V , that is all-but-negligibly supported in the λ(LG) = 0 subspace. This state is
the subset state |V ⟩:

▶ Definition 3.2 (Subset state). For any non-empty subset S ⊆ [N ], define the subset state
of S as

|S⟩ := 1√
|S|

∑
x∈S

|x⟩ . (9)

Since |V ⟩ is a good witness for every graph encoded in a YES instance, the QMA protocol
works just as well in the randomized setting (Theorem A.4).

Randomized oracles that present a set F of graph-coded functions are stable to small
changes in the set F . In fact, an oracle presenting F encoding all d-regular expander graphs
is indistinguishable from an oracle presenting F encoding all d-regular graphs. The latter
oracle can be simulated with d/2 queries to the NO instance of RANDOMIZED HIDDEN
SUBSET(α); we show in Theorem A.5 that the same QMA protocol can also decide this
problem.
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3.2 Randomized in-place oracles and classical witness
Our second result shows that a general class of verifiers cannot decide IN-PLACE RANDOM-
IZED HIDDEN SUBSET(α).

▶ Theorem 3.3 (informal). No quantum verifier with O(log(n)) additional workspace qubits
can efficiently decide IN PLACE RANDOMIZED HIDDEN SUBSET(α) given a polynomial
sized classical witness.

Recall that in this problem, a verifier has access to a quantum channel and a polynomial-sized
classical witness, and must distinguish whether the oracle presents a uniformly random
permutation or a permutation that stabilizes a hidden subset V . Let Y be the set of all YES
instances; note that each instance is uniquely defined by a subset V .

Suppose there exists a QCMA algorithm for this problem. Since there are at most
O(2poly(n)) different classical witnesses, there exists a set of YES instances Y ′ that share the
same witness, such that |Y ′| / |Y| = Ω(2−poly(n)). We can refute the existence of such an
algorithm by proving that the same verification “strategy” cannot distinguish all instances
of Y ′ from the NO case with non-negligible probability. A “strategy” is exactly a quantum
algorithm: a series of unitaries and oracle queries, followed by a POVM. Without loss of
generality, a T -query algorithm alternates between unitaries and oracle queries on HO ⊗ HW

followed by a measurement1, where HO is the Hilbert space of the “oracle” qubits and HW

is the extra workspace:

EO[ρ0] = (O ⊗ I) ◦ UT ◦ . . . ◦ U2 ◦ (O ⊗ I) ◦ U1[ρ0] . (10)

One may try to use the hybrid argument of Bennett, Bernstein, Brassard, and Vazirani [8] and

Ambainis [4] to prove that the diamond norm
∣∣∣∣EÕTV

− EÕT∅

∣∣∣∣
⋄

is small in expectation over

the choice of ÕTV
∈ Y ′. This would imply that the verifier cannot distinguish all instances of

Y ′ with the same strategy. We can consider the optimal distinguishing probability in terms

of
∣∣∣∣EÕTV

[ρ0] − EÕT∅
[ρ0]

∣∣∣∣
1

for some fixed ρ0 ∈ HO ⊗ HW .

However, this statistical argument does not hold for some choices of Y ′. Consider the
following simple example: Y ′ contains all V such that 1 ∈ V . First, Y ′ satisfies the size
implied by the pigeonhole principle. Second, for ρ0 = |1⟩⟨1| ⊗ I,

∣∣∣ÕTV
[ρ0] − ÕT∅ [ρ0]

∣∣∣
1

is large
for all instances in Y ′, since |1⟩ ⟨1| mixes only within a small subset. Note that this only
implies the existence of an instance-specific POVM distinguishing each YES instance in Y ′

from the NO instance. By contrast, a verification strategy has a fixed POVM {E, I − E}.
This allows us to prove that the following value is small on average over the choice of V :∣∣∣∣Tr

[
EEÕTV

[ρ0]
]

− Tr
[
EEÕT∅

[ρ0]
]∣∣∣∣ (11)

We must bound this value for arbitrary choices of E, ρ0 and Ui fixed in the algorithm.
In order to do this, we leverage tools from representation theory; this allows us to see
randomized oracles in our problem as orthogonal projectors into a subspace of matrices with
low dimension, and prove that the density matrix of good distinguishers is characterized

1 Note that the last operation does not have to be a unitary – one can simply replace a unitary followed
by a POVM with another equivalent POVM.
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by the hidden subset. One caveat of our technique is that the verifier is only allowed to
have O(log(n)) extra workspace qubits. This restriction is necessary to reduce the subspace
dimension to regimes we can handle.

Representation theory has been previously used to study symmetric operators on variables
(in probability) or qubits (in quantum computing) using the language of de Finetti theo-
rems (e.g. [15]); these operators project into subspaces of permutation-invariant sequences
or quantum states. By contrast, we notice that some randomized oracles are symmetric
operators on density matrices. This allows us to explicitly find an orthogonal basis for the
associated symmetric subspaces. We match oracle models with problems with the same
group structure: RANDOMIZED HIDDEN SUBSET(α) for in-place oracles in Appendix B.1,
and an analogous special case of RANDOMIZED HIDDEN SUBGROUP(×, {Hi}) for standard
oracles in Appendix B.2.

3.3 Randomized phase oracles: no witness can help
Our third result shows that deciding RANDOMIZED HIDDEN SUBSET(α) in a phase oracle
is much harder than other oracle models we consider. A random phase has zero expectation.
We use this fact to show that queries to most YES instances and the NO instance reduce the
magnitude of each off-diagonal of the density matrix by an exponential factor, regardless of
the input state. We bound the Frobenius norm of the difference of query outputs to show
that these instances are statistically indistinguishable when the state space is not too large.
As a result, no untrustworthy witness can help decide this problem.

▶ Theorem 3.4 (informal). No quantum verifier with o(n) additional workspace qubits can
efficiently decide PHASE RANDOMIZED HIDDEN SUBSET(α) given any unbounded witness.
Moreover, these verifiers require an exponential number of queries to statistically distinguish
a YES instance from the NO instance, for each of asymptotically all YES instances.

We defer the formal proof to Appendix C. Note that the query lower bound here is
statistical. In the NO instance, a witness is designed to fool the verifier; in order to overcome
this, the verifier must use the witness in tandem with the oracle. But this cannot be
done efficiently: distinguishing the NO instance from nearly any YES instance requires an
exponential number of queries, regardless of input state.

In fact, Theorem 3.4 holds for any oracle that sends |c, x, z⟩ → ω
c·fz(x)
N |c, x, z⟩, where the

c register has k = o(n) qubits, while at k = n qubits, the oracle is unitarily equivalent to a
standard oracle, and thus has a QMA protocol for RANDOMIZED HIDDEN SUBSET(α) by
Theorem 3.1.
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A Verifying non-expansion with a quantum witness

A.1 The spectral test
We give a test that takes an input state |ψ⟩ =

∑
x∈[N ] ax |x⟩ on n qubits, and fails with

probability proportional to ⟨ψ|LG |ψ⟩. This relies on a curious fact:

▶ Lemma A.1. Consider a d-regular graph G (for even d) on 2n vertices and a G-coded
function f . Suppose we have a normalized quantum state |ψ⟩ =

∑
x∈[N ] ax |x⟩ on n qubits.

Then∑
i∈[d/2]

∑
x∈[N ]

∥ax ± af(x,i)∥2 = d± ⟨ψ|AG |ψ⟩ . (12)

Proof.∑
i∈[d/2]

∑
x∈[N ]

∥ax ± af(x,i)∥2 =
∑

i∈[d/2]

∑
x∈[N ]

∥ax∥2 + ∥af(x,i)∥2 ± (axa
∗
f(x,i) + a∗

xaf(x,i)) (13)

= d±
∑

i∈[d/2]

∑
x∈[N ]

(axa
∗
f(x,i) + a∗

xaf(x,i)) (14)

= d± ⟨ψ|AG |ψ⟩ . (15)

◀

We construct the spectral test with one query either to a standard oracle or in-place oracle
presenting a graph-coded function f . The former (Procedure A.2) is a SWAP test but with
an oracle query in the middle. The latter (Procedure A.3) relies on controlled access to the
in-place oracle.

▶ Procedure A.2 (Spectral test with a standard oracle). Consider a d-regular graph G on
N = 2n vertices where d is even, and normalized state |ψ⟩ =

∑
x∈[N ] ax |x⟩ ∈ CN . We

assume access to a standard oracle Uf : Ck×k for k = N22⌈log2 d⌉, which acts on a basis
vector as

Uf |c, x, i, z⟩ = |c⊕ fz(x, i), x, i, z⟩ , (16)

for c, x ∈ [N ], i ∈ 2⌈log2 d⌉−1, and z ∈ {±1}.
1. Pick i ∈ [d/2] uniformly at random, and prepare the state |i⟩ ∈ C2⌈log2 d⌉−1 .
2. Prepare a qubit in the state |+⟩ = |1⟩+|−1⟩√

2 ∈ C2. (Recall that we label the values of this
register in {±1}.)

3. Combine n registers |0⟩⊗n, the input state |ψ⟩, and |i⟩ and |+⟩ to create |0⟩⊗n |ψ⟩ |i⟩ |+⟩.
4. Apply the oracle Uf , which creates the state

1√
2

∑
x∈[N ]

ax

(
|f(x, i)⟩ |x⟩ |i⟩ |1⟩ +

∣∣f−1(x, i)
〉

|x⟩ |i⟩ |−1⟩
)
. (17)

5. Swap the first two sets of n qubits, controlled by the last qubit. This creates the state

1√
2

∑
x∈[N ]

ax

(
|f(x, i)⟩ |x⟩ |i⟩ |1⟩ + |x⟩

∣∣f−1(x, i)
〉

|i⟩ |−1⟩
)

(18)

= 1√
2

∑
x∈[N ]

ax |f(x, i)⟩ |x⟩ |i⟩ |1⟩ + 1√
2

∑
x∈[N ]

af(x,i) |f(x, i)⟩ |x⟩ |i⟩ |−1⟩ . (19)

TQC 2023



11:12 On the Power of Nonstandard Quantum Oracles

6. Apply a Hadamard on the last qubit, which creates the state

1
2

∑
x∈[N ]

(ax + af(x,i)) |f(x, i)⟩ |x⟩ |i⟩ |1⟩ + 1
2

∑
x∈[N ]

(ax − af(x,i)) |f(x, i)⟩ |x⟩ |i⟩ |−1⟩ .

(20)

7. Measure the last qubit and accept if it is 1.
Moreover, by Lemma A.1, this procedure fails with probability

1
d/2

∑
i∈[d/2]

∑
x∈[N ]

∥ax − af(x,i)∥2

4 = ⟨ψ|LG |ψ⟩
2d . (21)

▶ Procedure A.3 (Spectral test with an in-place oracle). Consider a d-regular graph G on
N = 2n vertices where d is even, and normalized state |ψ⟩ =

∑
x∈[N ] ax |x⟩ ∈ CN . We

assume controlled access to an in-place oracle Ũf : Ck×k for k = N2⌈log2 d⌉+1, which acts on
a basis vector as

Ũf |a, x, i, z⟩ = |a, fa·z(x, i), i, z⟩ . (22)

for control qubit a ∈ {0, 1}, x ∈ [N ], i ∈ 2⌈log2 d⌉−1, and z ∈ {±1}.2

1. Pick i ∈ [d/2] uniformly at random, and prepare the state |i⟩ ∈ C2⌈log2 d⌉−1 .
2. Prepare a qubit in the state |+⟩ = |0⟩+|1⟩√

2 ∈ C2.
3. Combine |+⟩, the input state |ψ⟩, |i⟩, and a register |1⟩ to create |+⟩ |ψ⟩ |i⟩ |1⟩.
4. Apply the oracle Ũf , which creates the state

1√
2

∑
x∈[N ]

ax (|0⟩ |x⟩ + |1⟩ |f(x, i)⟩) |i⟩ |1⟩ (23)

= 1√
2

∑
x∈[N ]

(ax |0⟩ + af−1(x,i) |1⟩) |x⟩ |i⟩ |1⟩ . (24)

5. Apply a Hadamard on the first qubit, which creates the state

1
2

∑
x∈[N ]

(
(ax + af−1(x,i)) |0⟩ + (ax − af−1(x,i)) |1⟩

)
|x⟩ |i⟩ |1⟩ . (25)

6. Measure the first qubit and accept if it is 0.
Moreover, by Lemma A.1, this procedure fails with probability

1
d/2

∑
i∈[d/2]

∑
x∈[N ]

∥ax − af−1(x,i)∥2

4 = ⟨ψ|LG |ψ⟩
2d . (26)

A.2 A one-query protocol
▶ Theorem 3.1. There is a QMA protocol for STANDARD NON-EXPANSION(d, α, ε) and
IN-PLACE NON-EXPANSION(d, α, ε) at every even d ≥ 4, all 0 < α < 1

2 , and all constant
ε > 0.

2 Note that this procedure does not actually need access to the inverse of f to conduct the spectral test.
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Proof. Suppose the oracle presents a G-coded function. Let λ1 ≤ λ2 ≤ · · · ≤ λN be the
eigenvalues of the graph Laplacian LG. Note that the smallest eigenvalue of a regular graph
G is λ1 = 0. We always choose the eigenvector associated with λ1 as a uniform superposition
over vertices of the graph (i.e. |λ1⟩ := |[N ]⟩ = |+⟩⊗n).

Suppose Arthur receives a state |ψ⟩ =
∑

i∈[N ] αi |λi⟩ from Merlin. Consider the following
strategy:

With probability 1
2 , measure |ψ⟩ in the Hadamard basis. Fail if it is in the basis state

according to |+⟩⊗n, and pass otherwise.

With probability 1
2 , use the spectral test (Procedure A.2 or Procedure A.3, respectively).

The probability of failure FAIL is

FAIL = 1
2∥ ⟨ψ| |+⟩⊗n ∥2 + 1

2
⟨ψ|LG |ψ⟩

2d (27)

= 1
2

(
∥α1∥2 + 1

2d

N∑
i=1

λi∥αi∥2
)
. (28)

In a NO instance, λk = Ω(1) for all k > 1. So the probability of failure is always a positive
constant:

FAILNO = 1
2∥α1∥2 + 1

2d

N∑
i=2

Ω(∥αi∥2) = Ω(
N∑

i=1
∥αi∥2) = Ω(1) . (29)

In a YES instance, the spectrum of LG is the combined spectrum of the two disconnected
graphs. This means λ1 = λ2 = 0, and the associated eigenvectors are linear combinations of
|V ⟩ and |[N ]/V ⟩. Recall that |λ1⟩ := |+⟩⊗n. We find the orthogonal eigenvector |λ2⟩ in this
subspace by inspection:

|λ2⟩ =
√
N − |V |
N

|V ⟩ +
√

|V |
N

|[N ]/V ⟩ . (30)

Note that any vector with ∥α2∥2 = 1 − o( 1
poly(n) ) has negligible probability of failure:

FAILYES = 1
2∥α1∥2 + 1

2d

N∑
i=1

λi∥αi∥2 = O(∥α1∥2 +
N∑

i=3
∥αi∥2) = O(1 − ∥α2∥2) . (31)

Suppose Merlin sends the subset state |V ⟩. Since ∥ ⟨V |λ2⟩ ∥2 = 1 − |V |
N = 1 −O( 1

2poly(n) ), the
strategy has probability of failure O( 1

2poly(n) ). ◀

In general, the spectral test can be used in a QMA protocol to test the magnitude of the
second-smallest or largest eigenvalue of a graph Laplacian to inverse polynomial precision.
The former is a measure of the quality of a graph’s expansion, and the latter is related to a
measure of a graph’s bipartiteness named the bipartiteness ratio [26].

Because this QMA protocol requires only one query of either a standard oracle or an
in-place oracle, it works even when these oracles are randomized.

▶ Theorem A.4. There is a QMA protocol for STANDARD RANDOMIZED NON-
EXPANSION(d, α, ε) and IN-PLACE RANDOMIZED NON-EXPANSION(d, α, ε) at every even
d ≥ 4, all 0 < α < 1

2 , and all constant ε > 0.

TQC 2023



11:14 On the Power of Nonstandard Quantum Oracles

Proof. The strategy in Theorem 3.1 also works here. Consider any G-coded function
presented in a YES instance; the same vertices V are exactly the vertices of the smaller
component of G. So the witness |V ⟩ is close to the second eigenvector |λ2⟩, and the failure
probability is negligible. Now consider any G-coded function presented in a NO instance. By
definition, G is an expander graph, so the failure probability is always a positive constant. ◀

Because a randomized oracle chooses a function uniformly from a set F , it is statistically
indistinguishable from an oracle with exponentially small changes to F . We use this
fact to simplify the NO instance in RANDOMIZED NON-EXPANSION(d, α, ε). Suppose
the NO instance instead presents graph-coded functions of all d-regular graphs. Since
1 − O( 1

poly(N) ) = 1 − O( 1
2poly(n) ) graphs have a constant spectral gap [12] when d > 2, the

failure probability in the QMA protocol changes by at most O( 1
2poly(n) ).

Notice that with this modification, the oracles are exactly d/2 copies of the oracles in
RANDOMIZED HIDDEN SUBSET(α). One way to interpret this is that the randomization
offers a substitute for expander graphs. An expander graph is sparse but well-mixing; a
randomized oracle query instantaneously mixes across a graph’s connected component. As a
result, we can distinguish degree-2 graphs with this QMA protocol, even though they are not
typically expander graphs:

▶ Theorem A.5. There is a QMA protocol for STANDARD RANDOMIZED HIDDEN
SUBSET(α) and IN-PLACE RANDOMIZED HIDDEN SUBSET(α) for all 0 < α < 1

2 .

Proof. Perhaps surprisingly, the strategy in Theorem 3.1 also works here:
Consider the graph G of any G-coded function presented in a YES instance. By definition,
the vertices V are disconnected from all vertices in [N ]/V . So the witness |V ⟩ is close to
the second eigenvector |λ2⟩, and the failure probability is negligible.
Consider the NO instance. Then f is chosen uniformly from the set T∅ of all permutations
of [N ]. Then the spectral test fails with probability

E
π∈T∅

[
d− ⟨ψ|Aπ |ψ⟩

2d

] ∣∣∣∣∣
d=2

= 1
2 − 1

4 E
π∈T∅

[⟨ψ|Aπ |ψ⟩] (32)

= 1
2 − 1

4

 1
N !

∑
π∈T∅

⟨ψ|Aπ |ψ⟩

 (33)

= 1
2 − 1

8

 1
(N !)2

∑
π1,π2∈T∅

⟨ψ| (Aπ1 +Aπ2) |ψ⟩

 . (34)

The matrix Aπ1 +Aπ2 determines the adjacency matrix of a random 4-regular graph in
the configuration model; as a result,

E
π∈T∅

[
d− ⟨ψ|Aπ |ψ⟩

2d

] ∣∣∣∣∣
d=2

= E
π1,π2∈T∅

[
d− ⟨ψ|Aπ1,π2 |ψ⟩

2d

] ∣∣∣∣∣
d=4

. (35)

Since a random 4-regular graph has constant spectral gap with probability 1−O( 1
poly(N) ) =

1 − O( 1
2poly(n) ) [12], the failure probability is at least FAILYES from Theorem 3.1, less

O( 1
2poly(n) ). So the failure probability is Ω(1), just as before. ◀



R. Bassirian, B. Fefferman, and K. Marwaha 11:15

B Randomized oracles and symmetric subspaces

We first formalize how randomized oracles are orthogonal projectors. We include the proofs
in the arXiv version.

▶ Definition B.1 (Representation of a group). Consider a group G and a vector space V. A
representation of G is a map R that sends each g ∈ G to a linear operator R(g) : V → V
such that R(g1g2) = R(g1) ◦R(g2) for all g1, g2 ∈ G.

▶ Theorem B.2 (Projecting onto the symmetric subspace [15, Proposition 2]). Consider a
finite group G, a vector space V, and a representation R : G → L(V). Then the operator

ΠR := 1
|G|

∑
g∈G

R(g) (36)

is an orthogonal projector onto VG ⊆ V, where

VG := {v ∈ V : R(g)[v] = v ∀g ∈ G} . (37)

▶ Theorem B.3 (Oracles on density matrices form a representation). Consider a group G of
functions f : [N ] → [N ] with bitwise ⊕ as the group operation. Then the map f 7→ Uf is a
representation over the vector space of 2N2 × 2N2 complex matrices.

Similarly, consider a group G̃ of permutations π : [N ] → [N ] with composition as the
group operation. Then the map π 7→ Ũπ is a representation over the vector space of 2N × 2N
complex matrices.

▶ Theorem B.4 (Some randomized oracles are orthogonal projectors). Consider a group G of
functions f : [N ] → [N ] with bitwise ⊕ as the group operation. Then OG is an orthogonal
projector, under the Frobenius inner product (x|y) = Tr

[
x†y

]
for x, y ∈ C2N2×2N2 , onto

VG := {ρ ∈ C2N2×2N2
: Uf [ρ] = ρ ∀f ∈ G} . (38)

Similarly, consider a group G̃ of permutations π : [N ] → [N ] with composition as the
group operation. Then Õ

G̃
is an orthogonal projector, under the Frobenius inner product

(x|y) = Tr
[
x†y

]
for x, y ∈ C2N×2N , onto

Ṽ
G̃

:= {ρ ∈ C2N×2N : Ũπ[ρ] = ρ ∀π ∈ G̃} . (39)

In IN-PLACE RANDOMIZED HIDDEN SUBSET(α), a quantum verifier is either given
ÕT∅ (NO) or ÕTV

for some V ⊆ [N ] where |V | = Nα (YES). Since TV ⊆ T∅, the symmetric
subspace according to T∅ is a subspace of that according to TV , i.e. ṼT∅ ⊆ ṼTV

. So we can
exactly find the basis of the symmetric subspaces ṼT∅ and ṼTV

(see the arXiv version for
details). This key property is used throughout Appendix B.1.

B.1 In-place oracles: when classical witnesses are not enough
We interpret IN-PLACE RANDOMIZED HIDDEN SUBSET(α) as distinguishing the set of all
permutations from a subgroup that stabilizes a small subset V ⊆ [N ]. In Theorem 3.3, we
prove that classical witnesses designed for the verifier to choose YES cannot help a quantum
verifier efficiently decide this problem. This requires three main lemmas. First, we show
in Lemma B.6 that input states distinguishing a YES instance or NO instance must have
knowledge of the hidden subset V (either as a subset state |V ⟩ or a mixed state IV ). However,

TQC 2023
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no density matrix can be close to too many subset states |V ⟩ (Lemma B.7), and no POVM
can choose the right answer for too many mixed states IV (Lemma B.8). We combine these
facts in a hybrid argument; note that we must fix an algorithm by its unitaries and its
POVM. We formally state the lemmas (proofs are in the arXiv version), and then prove
Theorem 3.3.

We use the following measure of “progress” for the hybrid argument:

▶ Definition B.5 (Difference of oracle queries). For any ρ, let dV,ρ be the difference of the
two oracle queries

dV,ρ := ÕTV
[ρ] − ÕT∅ [ρ] . (40)

If the nuclear norm of dV,ρ is non-negligible, we say that ρ is a good distinguisher of ÕTV

and ÕT∅ . We show that every good distinguisher ρ has a certain form; we include the proof
in the arXiv version.

▶ Lemma B.6 (Good distinguishers have a certain form). Consider a density matrix ρ and
up to O(log(n)) extra workspace qubits. Suppose ∥dV,ρ∥1 = Ω( 1

poly(n) ). Then among the
quantities

⟨V, z| ρ |V, z⟩ , (41)

Tr
[
ρ

(
IV,z − |V |

N
I[N ],z

)]
, (42)

for any z ∈ {±1}, at least one has magnitude Ω( 1
poly(n) ).

We now state two lemmas about subsets and subset states. These help us prove that
no quantum state can be a good distinguisher of too many YES instances. We include the
proofs in the arXiv version.

▶ Lemma B.7 (Can’t approximate too many subset states). Consider a Hermitian N ×N

matrix ρ that is positive semidefinite and has trace at most 1. Consider the set of all subsets
V ⊆ [N ], where |V | = Nα for a fixed 0 < α < 1

2 . Then the fraction of subsets V such that
⟨V | ρ |V ⟩ = Ω( 1

poly(n) ) decreases faster than any exponential in poly(n).

▶ Lemma B.8 (Not too many subsets can have elevated mean). Consider any N ×N POVM
{E, I −E}, and the set of all subsets V ⊆ [N ], where |V | = Nα for a fixed 0 < α < 1

2 . Then
the fraction of subsets V where

|f(V )| :=
∣∣∣∣ 1
|V |

Tr[IV E] − 1
N

Tr[E]
∣∣∣∣ = Ω( 1

poly(n) ) , (43)

decreases faster than any exponential in poly(n).

Intuitively, Lemma B.7 and Lemma B.8 hold because subset states can approximate any
quantum state well. Grilo, Kerenidis, and Sikora [14] show that for any n-qubit quantum
state |ψ⟩, there exists a subset state |S⟩ such that | ⟨S|ψ⟩ | ≥ 1

8
√

n+3 .
We now prove the main statement:

▶ Theorem 3.3 (formal). No quantum verifier that entangles oracle queries with at
most O(log(n)) additional qubits can efficiently decide IN PLACE RANDOMIZED HIDDEN
SUBSET(α) for any 0 < α < 1

2 , even with a polynomial-length classical witness designed for
the verifier to choose YES.

https://arxiv.org/pdf/2212.00098.pdf
https://arxiv.org/pdf/2212.00098.pdf
https://arxiv.org/pdf/2212.00098.pdf
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Proof. Let the set of YES instances be Y ; note that each YES instance corresponds to a set
V ⊆ [N ] where |V | = Nα, for some fixed 0 < α < 1

2 .
Suppose for contradiction that there is a protocol for this problem at some α < 1

2 . Then
the verifier can distinguish ÕT∅ from any ÕTV

in a polynomial number of queries using
a classical witness of size O(poly(n)). By the pigeonhole principle, there must exist a set
of YES instances Y ′ such that |Y ′|/|Y| = Ω( 1

2poly(n) ), where the verifier can use the same
algorithm to distinguish ÕT∅ from every YES instance in Y ′.

We then construct a hybrid argument in the style of Bennett, Bernstein, Brassard, and
Vazirani [8] and Ambainis [4], which interpolates from queries of one oracle to queries of
another oracle. For simplicity we write the proof without extra workspace qubits; however, we
can have up to O(log(n)) extra workspace qubits to satisfy Lemma B.6. Any polynomial query
algorithm can be written as a set of unitaries A = {U (1), . . . , U (k)} for some k = O(poly(n))
(alternating between unitary evolutions and oracle queries), and a POVM {E, I−E}. Consider
the following “hybrid” algorithms:

▶ Definition B.9. Given any set of k unitaries A = {U (1), . . . , U (k)}, define the hybrid
algorithm

AV,ℓ [ρ0] = Õ(k)
TV

◦ U (k) ◦ · · · ◦ Õ(ℓ+1)
TV

◦ U (ℓ) ◦ Õ(ℓ)
T∅

◦ U (ℓ) ◦ . . . Õ(1)
T∅

◦ U (1) [ρ0] , (44)

which evolves ρ0 under the oracle OT∅ for ℓ steps and under OTV
for the other k − ℓ steps.

Then the following is true for each ÕTV
∈ Y ′:

Ω( 1
poly(n) ) = |Tr[EAV,k[ρ0]] − Tr[EAV,0[ρ0]]| ≤

k−1∑
i=0

|Tr[EAV,i+1[ρ0]] − Tr[EAV,i[ρ0]]| ,

(45)

which implies

Ω( 1
poly(n) ) =

k−1∑
i=0

∣∣∣Tr
[
E

(
Õ(k)

TV
◦ . . . U (i) ◦

(
Õ(i)

TV
− Õ(i)

T∅

)
[ρ(i)]

)]∣∣∣ =
k−1∑
i=0

∣∣Tr
[
EV,(i)dV,ρ(i)

]∣∣ ,

(46)

for the operator EV,(i) constructed by

EV,(i) = U†(i) ◦ Õ(i)
TV

◦ · · · ◦ U†(k) ◦ Õ(k)
TV

[E] . (47)

By Fact D.8, the operators EV,(i) and I−EV,(i) are also Hermitian and positive semidefinite,
so {EV,(i), I − EV,(i)} is a POVM.

Using the pigeonhole principle, there must be a step ℓ in the summation with magnitude
Ω( 1

poly(n) ). Each ÕTV
∈ Y ′ has such a step. Again by the pigeonhole principle, there is a ℓ∗

and set Y∗ ⊆ Y ′ where∣∣∣Tr
[
EV,(ℓ∗)dV,ρ(ℓ∗)

]∣∣∣ = Ω( 1
poly(n) ) , (48)

and |Y∗|/|Y ′| ≥ 1
k = Ω( 1

poly(n) ). Notice that this implies |Y∗|/|Y| = Ω( 1
2poly(n) ).

Since the trace of M with a POVM operator is at most ∥M∥1 (Fact D.5), we have for all
ÕTV

∈ Y∗,

Ω( 1
poly(n) ) =

∣∣∣Tr
[
EV,(ℓ∗)dV,ρ(ℓ∗)

]∣∣∣ ≤
∥∥dV,ρ(ℓ∗)

∥∥
1 . (49)
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When queries are entangled with at most O(log(n)) additional qubits, the premise of
Lemma B.6 holds; then one of the quantities in the theorem statement must be large.
However, Lemma B.7 says that a given ρ can only satisfy either of the first two quantities
for a smaller-than-exponential fraction of Y. So for most choices of ÕTV

∈ Y∗,

Tr
[
ρ(ℓ∗)

(
IV,z − |V |

N
I[N ],z

)]
= Ω( 1

poly(n) ) . (50)

for at least one of z ∈ {±1}.
Inspecting the proof of Lemma B.6, this implies dV,ρ(ℓ∗) can only have Ω( 1

poly(n) ) weight
on C4,z for some z ∈ {±1} across all matrices in C. In fact, for most choices of ÕTV

∈ Y∗,
we show that this is also true for

dV,ℓ∗,j := Õ(ℓ∗+j)
TV

◦ U (ℓ∗+j) ◦ · · · ◦ Õ(ℓ∗+1)
TV

◦ U (ℓ∗+1) ◦ dV,ρ(ℓ∗) , (51)

for all 0 ≤ j ≤ k − ℓ∗. We show this by induction. Note that by Fact D.5 and the fact that
dV,ℓ∗,k−ℓ∗ is the difference of two objects with nuclear norm 1, ∥dV,ℓ∗,k−ℓ∗∥1 = Ω( 1

poly(n) ) =
O(1).

Consider dV,ℓ∗,i for some 1 ≤ i ≤ k − ℓ∗, which can be represented with the basis C. By
Fact D.9, it has Frobenius norm at most ∥dV,ρ(ℓ∗)∥F r = O( 1√

|V |
). So it must have o( 1

poly(n) )

weight on pure states. Inspecting the basis C, this means dV,ρ(ℓ∗) can only have Ω( 1
poly(n) )

weight on C4,z or 1
N I[N ],z for z ∈ {±1}. By Fact D.9, dV,ρ(ℓ∗) has nuclear norm at least

∥dV,ℓ∗,k−ℓ∗∥1 = Ω( 1
poly(n) ), so it must have Ω( 1

poly(n) ) weight on at least one such matrix.
Suppose for contradiction that the matrix is 1

N I[N ],z for z ∈ {±1}. Then

Ω( 1
poly(n) ) = Tr

[
I[N ],zÕTV

[
U (ℓ∗+i) [dV,ℓ∗,i−1]

]]
= Tr

[(
U (ℓ∗+i)† ◦ Õ†

TV
[I[N ],z]

)
dV,ℓ∗,i−1

]
.

(52)

By the inductive hypothesis, dV,ℓ∗,i−1 only has Ω( 1
poly(n) ) weight on some C4,z for z ∈ {±1}.

Then for some z′ ∈ {±1},

Ω( 1
poly(n) ) = Tr

[(
U (ℓ∗+i)† ◦ Õ†

TV
[I[N ],z]

) (
1

|V |
IV,z′ − 1

N
I[N ],z′

)]
. (53)

Notice that for any unitary U , the object {U (ℓ∗+i)† ◦Õ†
TV

[I[N ],z=+1],U (ℓ∗+i)† ◦Õ†
TV

[I[N ],z=−1]}
forms a POVM. By Lemma B.8, this can only be satisfied at either z ∈ {±1} for a smaller-
than-exponential fraction of choices of V . So for most choices of ÕTV

∈ Y∗ (i.e. a Ω( 1
2poly(n) )

fraction of choices of V ), dV,ℓ∗,i has Ω( 1
poly(n) ) weight on C4,z for at least one of z ∈ {±1},

and for no other matrices in C.
Since Ω( 1

poly(n) ) = |Tr[EdV,ℓ∗,k−ℓ∗ ]|, our supposition then implies that for one of z ∈ {±1},

Ω( 1
poly(n) ) = |Tr[EC4,z]| =

∣∣∣∣Tr
[
E

(
1

|V |
IV,z − 1

N
I[N ],z

)]
±O( 1

2poly(n) )
∣∣∣∣ . (54)

But by Lemma B.8, this can only be satisfied at either z ∈ {±1} for a smaller-than-
exponential fraction of Y. This is a contradiction. So there can be no efficient protocol for
this problem. ◀
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B.2 Standard oracles: when classical witnesses are enough
As shown in Theorem B.3, randomized standard oracles can also form a representation.
But the preserved group structure is much different than for randomized in-place oracles.
Consider the set T∅ of permutations on [N ]. For any f1, f2 ∈ T∅, the element f1f2 in this
group structure acts for all x ∈ [N ] and z ∈ {±1} as

(f1f2)z(x) = fz
1 (x) ⊕ fz

2 (x) . (55)

Note that this operation is abelian; that is, (f1f2) = (f2f1). Any finite abelian group can
always be represented as the direct sum of cyclic groups. In fact, under this group operation,
T∅ can be decomposed by the input x ∈ [N ] and function inverter z ∈ {±1}:

T∅ =
⊕

x∈[2n],z∈{±1}

Z2n . (56)

With this group operation, the only possible subgroups of T∅ have the form⊕
x∈[2n],z∈{±1}

Z2kx,z , (57)

for 0 ≤ kx,z ≤ n. As a result, there is a QCMA protocol to distinguish any strict subgroup of
T∅ from T∅.

▶ Theorem B.10. There is a one-query QCMA protocol for STANDARD RANDOMIZED
HIDDEN SUBGROUP(×, {Hi}) when the group operation × is bitwise XOR, for any valid
{Hi}.

Proof. Suppose the classical witness is a bitstring of length at least n+ 1. The verifier can
then:
1. Use the first n bits to construct x and the next bit to construct z.
2. Prepare the state |0⟩⊗n |x, z⟩.
3. Apply OH , creating the state |fz(x)⟩ |x, z⟩ for some f ∈ H.
4. Measure the first n qubits, and accept if the result is even.3
Consider a YES instance associated with a subgroup H ⊊ T∅. Then H will have some
x ∈ [N ], z ∈ {±1} such that kx,z < n. A witness can store x and z; since kx,z < n, fz(x)
will be even with probability 1.

In the NO instance, H = T∅. Then fz(x) is even with probability 0.5 for every x ∈
[N ], z ∈ {±1}. ◀

Note that Theorem B.10 holds even if the randomized standard oracle OF does not have
access to the function inverse.

C No witness is enough for phase oracles

▶ Theorem 3.4 (formal). No quantum verifier that entangles oracle queries with at most
o(n) additional qubits can efficiently decide PHASE RANDOMIZED HIDDEN SUBSET(α) for
any 0 < α < 1

2 , even with any witness designed for the verifier to choose YES. Moreover,
these verifiers require an exponential number of queries to statistically distinguish a YES
instance from the NO instance, for each of asymptotically all YES instances.

3 Depending on the encoding, one can simply measure the nth qubit, and accept if the result is 0.

TQC 2023



11:20 On the Power of Nonstandard Quantum Oracles

Proof. We now prove the query lower bound. Let k be the number of queries required to
distinguish OTV

from OT∅ . Consider any algorithm that distinguishes the two instances,
defined by a starting state ρ0, k unitaries, k oracle queries, and a POVM {E, I − E}. In the
framework of hybrid algorithms (Definition B.9),

Ω( 1
poly(n) ) = |Tr[EAV,k[ρ0]] − Tr[EAV,0[ρ0]]| (58)

≤ ∥AV,k[ρ0] −AV,0[ρ0]∥1 (59)
≤ k max

i∈{0,...,k−1}
∥AV,i+1[ρ0] −AV,i[ρ0]∥1 (60)

≤ k max
i∈{0,...,k−1}

∥∥∥OTV
[ρ(i)] − OT∅ [ρ(i)]

∥∥∥
1
, (61)

where the last line follows because randomized oracles do not increase the nuclear norm
(Fact D.9).

We now bound
∥∥OTV

[ρ] − OT∅ [ρ]
∥∥

1 for any ρ. Recall that a phase oracle OF acts as

OF [|x1, z1⟩ ⟨x2, z2|] = 1
|F |

∑
f∈F

ω
fz1 (x1)−fz2 (x2)
N |x1, z1⟩ ⟨x2, z2| , (62)

for any x1, x2 ∈ [N ] and z1, z2 ∈ {±1}. So every basis vector |x1, z1⟩ ⟨x2, z2| acquires a
coefficient cx1,z1,x2,z2 .

We start with OT∅ (the NO instance). When (x1, z1) = (x2, z2), the coefficient is 1.
When x1 ̸= x2, fz(x1) and f−z(x2) are uniformly likely to be any value, so the coefficient is

1
N2

∑
a∈[N ],b∈[N ]

ωa−b
N = 1

N2

∥∥∥∥∥∥
∑

a∈[N ]

ωa
N

∥∥∥∥∥∥
2

= 0 . (63)

Similarly, when x1 ̸= x2, fz(x1) and fz(x2) are uniformly likely to be any unequal values;
the coefficient is

1
N(N − 1)

∑
a∈[N ],b∈[N ],a ̸=b

ωa−b
N = 1

N(N − 1)
[ ∑

a∈[N ],b∈[N ]

ωa−b
N −

∑
a∈[N ]

ωa−a
N

]
= − 1

N − 1 .

(64)

We now consider OTV
(a YES instance). When (x1, z1) = (x2, z2), the coefficient is again

1. When x1 ̸= x2, the values of fz(x1) and f−z(x2) are uniformly likely to be any value in
iV (x1) and iV (x2), respectively, so the coefficient is

1
|iV (x1)| × |iV (x2)|

∑
a∈iV (x1),b∈iV (x2)

ωa−b
N . (65)

Similarly, when x1 ̸= x2, fz(x1) and fz(x2) are uniformly likely to be any unequal values in
iV (x1) and iV (x2), respectively, so the coefficient is

1
|iV (x1)| × |iV (x2)|

∑
a∈iV (x1),b∈iV (x2),a ̸=b

ωa−b
N =

(∑
a∈iV (x1),b∈iV (x2) ω

a−b
N

)
− δ|iV (x1)|

|iV (x1)| × |iV (x2) − δ|
,

(66)

where δ is 1 if iV (x1) = iV (x2) and 0 otherwise.
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Consider the object OTV
[ρ] − OT∅ [ρ] as the sum of two matrices AV + BV . Let AV

contain the (V, z) × (V, z) submatrix for both z ∈ {±1}, and BV contain the rest of the
entries. When the oracle query is entangled with o(n) additional qubits, AV has rank O(|V |),
and BV has rank O(N).

Since the roots of unity sum to zero,
∑

a∈V ω
a
N = −

∑
a∈[N ]/V ω

a
N for any V ⊆ [N ].

Because of this,∥∥∥∥∥∥
∑

a,b∈iV (x)

ωa−b
N

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑

a∈iV (x)

ωa
N

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∑
a∈V

ωa
N

∥∥∥∥∥
2

= O(|V |2) . (67)

As a result, all coefficients in BV are O( 1
N1−α ).

In Lemma C.1, we show that for asymptotically all choices of V , all coefficients in AV are
O( 1

N3α/4 ). This argument uses a Chernoff bound and a central limit argument on samples
without replacement.

We bound the nuclear norm of OTV
[ρ] − OT∅ [ρ] with the rank and Frobenius norm of

AV and BV (Fact D.3):∥∥OTV
[ρ] − OT∅ [ρ]

∥∥
1 ≤ ∥AV ∥1 + ∥BV ∥1 (68)

= O(
√
V )∥AV ∥F r +O(

√
N)∥BV ∥F r (69)

≤
(
O(

√
V )O(N−3α/4) +O(

√
N)O(Nα−1)

)
∥ρ∥F r (70)

= O(N−α/4 +Nα−1/2) . (71)

Thus, for most choices of V , distinguishing OTV
and OT∅ requires k = Ω(min(Nα/4, N1/2−α))

queries. ◀

We now prove the Chernoff bound:

▶ Lemma C.1. Fix any 0 < α < 1
2 , and consider all subsets V ⊆ [N ] such that |V | = Nα.

Then for all but a doubly exponentially small fraction of choices of V ,∥∥∥∥∥∥ 1
N2α

∑
a,b∈V

ωa−b
N

∥∥∥∥∥∥ = O( 1
N3α/4 ) . (72)

Proof. Consider the distribution X = {ωk
N } where k is chosen uniformly from N . Both

Re(X) and Im(X) have mean zero and variance at most 1.
Take a size-Nα sample from the distribution X, without replacement. Denote Y as

the distribution of the sample mean. Both Re(Y ) and Im(Y ) have expectation Re(X) =
Im(X) = 0, and variance

σ2
X

Nα
(1 − Nα − 1

N − 1 ) ≤ 1
Nα

. (73)

Even when sampling without replacement, Y is asymptotically normally distributed [10]. So
its moment generating function is

MGFY [t] = etµY +σ2
Y t2/2 ≤ et2/Nα

. (74)

We use a Chernoff bound to estimate when Y has magnitude at least N−3α/8. Notice that

Pr[Y ≥ a] = Pr
[
etY ≥ eta

]
≤ e−atMGFY [t] ≤ et2/Nα

e−at , (75)
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so

Pr
[
Y ≥ 0.5

N3α/8

]
≤ inf

t≥0
exp

(
t2

Nα
− 0.5t

N3α/8

)
≤

t=2Nα/2
exp

(
4 − Nα/8)

= O( 1
exp(exp(n)) ) . (76)

This implies that Y has magnitude at most N−3α/8 (and Y 2 at most N−3α/4) except in a
doubly exponentially small fraction of choices of V . ◀

▶ Remark C.2. Consider an oracle that sends |c, x, z⟩ → ω
c·fz(x)
N |c, x, z⟩, where the c register

has k qubits. Note that Theorem 3.4 applies whenever k = o(n). However, there must be a
phase transition, since at k = n, this oracle is unitarily equivalent to a standard oracle, and
thus has a QMA protocol for RANDOMIZED HIDDEN SUBSET(α) in Appendix A.

D Norms and inner products

Note that we work with arbitrary matrices, not just positive semidefinite ones.

▶ Definition D.1 (Nuclear norm of a matrix). The nuclear norm of a matrix M is the sum of
its singular values; that is,

∥M∥1 =
∑

i

σi(M) = Tr
[√

M†M
]
. (77)

▶ Definition D.2 (Frobenius norm and inner product of a matrix). The Frobenius inner product
of N ×N matrices A,B is

(A|B) = Tr
[
A†B

]
(78)

This induces a norm, which is the square root of the sum of squares of the singular values:

∥A∥F r =
√∑

i

σi(A)2 =
√ ∑

ij∈[N ]

|Aij |2 . (79)

▶ Fact D.3. The nuclear norm of a matrix is at most the product of its Frobenius norm and
the square root of its rank.

Proof. See Rennie [24] for a proof with explanation. ◀

▶ Fact D.4 (Nuclear norm of a positive semidefinite matrix). The nuclear norm of a positive
semidefinite Hermitian matrix is simply its trace; that is, if ρ is Hermitian and positive
semidefinite, then

∥ρ∥1 = Tr[ρ] . (80)

Proof. For a Hermitian and positive semidefinite matrix, the eigenvalues are all real and
nonnegative, so the singular values are exactly the eigenvalues. Alternatively, notice that
ρ =

√
ρ†ρ and use Definition D.1. ◀

▶ Fact D.5 (POVM trace is at most the nuclear norm). Consider any Hermitian matrix M
and a POVM {E, I − E}. Then

Tr[EM ] ≤ ∥M∥1 . (81)
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Proof. Consider the singular value decomposition of a Hermitian M = UDU †. Then

Tr[EM ] = Tr
[
(U†EU)D

]
= Tr[E′D] (82)

for some matrix E′. Note that {E′, I − E′} make a POVM; they have the same eigenvalues
of {E, I − E}, respectively, and so are both positive semidefinite. Recall that the diagonal
elements of a POVM are all nonnegative and at most 1. Then

Tr[EM ] = Tr[E′D] =
∑

i

E′
iiDi ≤

∑
i

|Di| = ∥D∥1 = ∥M∥1 . (83)

◀

▶ Fact D.6 (Trace of outer product is inner product). Consider vectors |x⟩ , |y⟩ ∈ Cm and a
matrix A ∈ Cm×m. Then the inner product of |y⟩ ⟨x| and A is

Tr
[
(|y⟩ ⟨x|)†A

]
= Tr[A |x⟩ ⟨y|] = ⟨y|A |x⟩ . (84)

Proof.

Tr[A |x⟩ ⟨y|] = Tr

 ∑
i,k∈[m]

 ∑
j∈[m]

Aijxj


i

y†
k

 =
∑

k,j∈[m]

Akjxjy
†
k = ⟨y|A |x⟩ . (85)

◀

▶ Remark D.7 (Orthogonal basis for an input density matrix). We can decompose ρ into a basis
M that is orthogonal under the Frobenius inner product (a|b) = Tr

[
a†b

]
:

ρ =
∑

M∈M
cMM . (86)

Because the basis is orthogonal, for any M ∈ M,

Tr
[
M†ρ

]
=

∑
M ′∈M

cM ′ Tr
[
M†M ′] = cM ∥M∥2

F r . (87)

Moreover, by Cauchy-Schwarz, the inner product of M and ρ is at most the product of the
norm of each, so

∥cMM∥F r =
∣∣Tr

[
M†ρ

]∣∣
∥M∥F r

≤ ∥ρ∥F r . (88)

We also state two properties that hold for any randomized oracle:

▶ Fact D.8 (Randomized oracles preserve trace, Hermiticity, and positive semidefiniteness).
Consider any randomized oracle OF corresponding to a set of functions f ∈ F . Then OF

preserves the trace of its input. Moreover, if the input M is Hermitian, so is OF [M ]; if M
is also positive semidefinite, so is OF [M ].

Proof. Consider any input matrix M . Then

Tr[OF [M ]] = Tr

 1
|F |

∑
f∈F

Uf [M ]

 = 1
|F |

∑
f∈F

Tr
[
UfMU†

f

]
= 1

|F |
∑
f∈F

Tr[M ] = Tr[M ] .

(89)
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Now suppose M is Hermitian; that is, M† = M . Then

OF [M ]† =
( 1

|F |
∑
f∈F

Uf [M ]
)† = 1

|F |
∑
f∈F

(
UfMU †

f )† = 1
|F |

∑
f∈F

UfM
†Uf = OF [M ] . (90)

Furthermore, suppose M is positive semidefinite; that is, there is a matrix B such that
M = B†B. Then

OF [M ] = 1
|F |

∑
f∈F

Uf [M ] = 1
|F |

∑
f∈F

UfB
†BU †

f =
∑
f∈F

(BUf )† (BUf ) , (91)

which is a sum of positive semidefinite matrices. Thus, OF [M ] is positive semidefinite. ◀

▶ Fact D.9 (Randomized oracles do not increase nuclear norm or Frobenius norm). Consider
any randomized oracle OF corresponding to a set of functions f ∈ F . Then OF does not
increase the nuclear norm nor the Frobenius norm of its input.

Proof. Recall that both the nuclear norm and Frobenius norm are unitarily invariant. Now
consider any input matrix M . Then the nuclear norm of OF [M ] is

∥OF [M ]∥1 =

∥∥∥∥∥∥ 1
|F |

∑
f∈F

UfMU †
f

∥∥∥∥∥∥
1

≤ 1
|F |

∑
f∈F

∥∥∥UfMU †
f

∥∥∥
1

= 1
|F |

∑
f∈F

∥M∥1 = ∥M∥1 . (92)

The Frobenius norm of OF [M ] follows in exactly the same way. ◀

We use one additional property of density matrices in the proof of Lemma B.6:

▶ Fact D.10. Consider any N × N density matrix ρ and normalized states |v⟩ , |w⟩. If
| ⟨v| ρ |w⟩ | = Ω( 1

poly(n) ), then both ⟨v| ρ |v⟩ and ⟨w| ρ |w⟩ are Ω( 1
poly(n) ).

Proof. Recall that a density matrix is Hermitian and positive semidefinite, so it is diagonal-
izable and has real and nonnegative eigenvalues. As a result, it has a decomposition

ρ = S†ΛS = S†
√

Λ
√

ΛS = (
√

ΛS)†(
√

ΛS) = A†A , (93)

for some diagonal Λ and A :=
√

ΛS. Then by Cauchy-Schwarz,

| ⟨v| ρ |w⟩ |2 =
∣∣(A |v⟩)†(A |w⟩)

∣∣2 ≤
∣∣(A |v⟩)†(A |v⟩)

∣∣ ·
∣∣(A |w⟩)†(A |w⟩)

∣∣ = ⟨v| ρ |v⟩ · ⟨w| ρ |w⟩ .

(94)

Since Tr[ρ] = 1, ⟨ψ| ρ |ψ⟩ ≤ 1 for all normalized states |ψ⟩. Thus, both ⟨v| ρ |v⟩ and ⟨w| ρ |w⟩
are at least | ⟨v| ρ |w⟩ |2 = Ω( 1

poly(n) ). ◀
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E Our setup contrasted with a discrete-time quantum walk

The way one stores a graph in an oracle drastically changes the difficulty of some problems.
Consider a discrete-time quantum walk [27], which allows a vertex access to a superposition
of its neighbors.4 Given a d-regular graph G(V,E), the operator W : CN2×N2 acts as

W =

 ∑
(j,k)∈E

|j, k⟩ ⟨k, j|

C (95)

C =
∑
j∈V

|j⟩ ⟨j| ⊗ (2 |∂j⟩ ⟨∂j | − I) (96)

|∂j⟩ = 1√
d

∑
(j,k)∈E

|k⟩ . (97)

Using a discrete-time quantum walk, we can learn about the mixing properties of the
associated graph; these are fundamentally related to the graph’s spectral gap [13].

By contrast, we query each neighbor of a vertex v ∈ G with the value of the registers
encoding i ∈ [d/2] (defined by a G-coded function). For example, [5] uses a similar oracle to
show that deciding whether a graph is a single expander graph or two equal-sized disconnected
expander graphs is outside of BQP. Intuitively, a lack of superposition access to neighbors of
a vertex makes it harder for a quantum computer to “traverse” the graph.

4 [9, Chapter 17] has a good introduction to this topic.
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1 Introduction

There are two types of particles in the universe: bosons and fermions. Bosons include force
carriers, such as photons and gluons, and fermions include matter particles like quarks and
electrons. Each particle can be in a certain mode (e.g., a position or state). For a system of
n particles, a configuration of the system is described by specifying how many particles are
in each of m modes. Bosons are particles where multiple occupancy of a mode is allowed,
whereas fermions are particles where multiple occupancy is forbidden; that is, two or more
fermions cannot occupy the same mode at once (this is the Pauli exclusion principle). It
follows that a system of n fermions and m modes has

(
m
n

)
possible configurations; we denote

the set of possible configurations by Λm,n.

© Scott Aaronson and Sabee Grewal;
licensed under Creative Commons License CC-BY 4.0

18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023).
Editors: Omar Fawzi and Michael Walter; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aaronson@cs.utexas.edu
http://www.scottaaronson.com
mailto:sabee@cs.utexas.edu
https://sabeegrewal.com
https://orcid.org/0000-0002-8241-560X
https://doi.org/10.4230/LIPIcs.TQC.2023.12
https://arxiv.org/abs/2102.10458
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Efficient Tomography of Non-Interacting-Fermion States

Our main result is an efficient algorithm (both in copy complexity and time complexity)
for learning a non-interacting-fermion state (also called a free-fermion state or a Gaussian
fermion state), which is a superposition over configurations in Λm,n. Even though a non-
interacting-fermion state lives in an exponentially large Hilbert space, we show how to exploit
its structure to output a succinct description of the state efficiently. A non-interacting-
fermion state can be completely specified by an m × n column-orthonormal matrix A. Our
algorithm measures copies of the input state in O(m) different measurement bases, and uses
the measurement data to reconstruct an m × n matrix Â in polynomial time. We prove that
a polynomial number of copies of the input state is enough for the output state to be ϵ-close
to the original state in trace distance.

▶ Theorem 1 (Main result). Let |Ψ⟩ be a state of n non-interacting fermions and m modes.
There exists an algorithm that uses O(m3n2 log(1/δ)/ϵ4) copies of |Ψ⟩, O(m4n2 log(1/δ)/ϵ4)
classical time, and O(m) measurement bases, and outputs a succinct description of a non-
interacting-fermion state |Ψ̂⟩ that is ϵ-close in trace distance distance to |Ψ⟩ with probability
at least 1 − δ.

Our algorithm can also be adapted to conventional quantum state tomography, which we
explain in Section 5.

1.1 Main Ideas
Here and throughout, let U ∈ Cm×m be the unitary that prepares the unknown non-
interacting-fermion state |Ψ⟩ from the standard initial state |1n⟩ (the state where the first n

modes are occupied and the remaining are unoccupied), and let A ∈ Cm×n be the column-
orthonormal matrix corresponding to the first n columns of U . Define K = (kij) := AA† ∈
Cm×m. We refer to K as the kernel matrix due to the connection between determinantal
point processes and non-interacting fermions (which we discuss further in Section 1.2.1). In
the physics literature, the kernel matrix is also called the one-body reduced density matrix
(1-RDM) or the correlation matrix.

The elements of Λm,n are the possible configurations of a system of n non-interacting
fermions and m modes. Formally, Λm,n is the set of all lists S = (s1, . . . , sm) such that
si ∈ {0, 1} and

∑
i∈[m] si = n. The set {|S⟩S∈Λm,n

} is a basis for n-fermion and m-mode
systems, which we refer to as the standard basis. The m × n column-orthonormal matrix A

describes the state

|Ψ⟩ =
∑

S∈Λm,n

det(AS) |S⟩ ,

where, for S = (s1, . . . , sm) ∈ Λm,n, AS is the n × n submatrix obtained by removing row i

of A if si = 0. Therefore, upon measurement, we observe the configuration S ∈ Λm,n with
probability

|⟨S|Ψ⟩|2 = |det(AS)|2 = det(KS),

where, for S = (s1, . . . , sm), KS is the n × n submatrix obtained by removing row and
column i of K if si = 0. In other words, upon measurement, we observe a configuration
S ∈ Λm,n with probability equal to the corresponding principal minor of the kernel matrix K.
The probability that any subset of k modes is occupied corresponds to a principal minor of
order k, obtained as above (remove the rows and columns of K corresponding to unoccupied
modes and compute the determinant of the resulting submatrix). For example, the diagonal
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entries kii correspond to the one-mode correlations (i.e., kii is the probability that mode i

is occupied). Passing |Ψ⟩ through a unitary transformation V ∈ Cm×m maps K to V KV †.
Given copies of the unknown state |Ψ⟩, our goal is to output a column-orthonormal matrix
Â such that |Ψ̂⟩ =

∑
S det(ÂS) |S⟩ is ϵ-close to |Ψ⟩ in trace distance.

At a high level, our algorithm constructs K̂ (an approximation of the kernel matrix),
computes a decomposition K̂ = ÂÂ†, and then outputs Â. Our algorithm begins by measuring
O(log(1/δ)/γ2) copies of the input state in the standard basis to empirically estimate the
one-mode correlations of the state to accuracy ±γ. The estimates are obtained simply by
computing the average number of times each mode was occupied and are the diagonal entries
of K̂. One can then estimate the (i, j) entry of K as follows. Apply the beamsplitter

1√
2

(
1 1
1 −1

)
on modes i and j, which maps the diagonal entry kii to 1

2 (kii + kjj + 2Re(kij)), and measure
the resulting state in the standard basis. Repeat this O(log(1/δ)/γ2) times. As we did before,
average the number of times mode i is occupied to obtain an estimate for 1

2 (kii+kjj +2Re(kij))
to accuracy ±γ. Finally, using the previously obtained estimates for kii and kjj , solve for
Re(kij) (up to accuracy ±γ). Repeat this process with the beamsplitter

1√
2

(
1 i

1 −i

)
to estimate the imaginary part of kij to accuracy ±γ.

Our algorithm proceeds as follows. Simultaneously execute the process above on the
pairs of modes (1, 2), (3, 4), . . . , (m − 1, m), then (1, 3), (2, 4), . . . , (m − 2, m), and so on,
until all the off-diagonal entries are recovered. It is easy to check that O(m) measurement
bases are needed to recover all off-diagonal entries of K. Then, we compute QΛQ†, an
eigendecomposition of K̂. Finally, we set Â to be the m × n matrix corresponding to the
first n columns of Q, and return Â. Overall, the algorithm requires O(m/γ2) copies of the
input state and O(m2/γ2) time.

The technical part is to understand how far |Ψ̂⟩ is from |Ψ⟩ in trace distance, given that
our algorithm begins by learning the entries of K to within γ in magnitude. To do this, we
give a new proof that learning the kernel matrix is enough to learn the state, despite the
kernel matrix only consisting of one- and two-mode correlations.

▶ Theorem 2 (Informal version of Theorem 5). Let |Ψ⟩ and |Ψ̂⟩ be n-fermion and m-mode
non-interacting-fermion states with kernel matrices K and K̂, respectively. Then

dtr

(
|Ψ̂⟩ , |Ψ⟩

)
≤
√

n∥K̂ − K∥2,

where dtr(·, ·) is the trace distance and ∥·∥2 is the spectral norm.

While this may seem surprising, this has been known to physicists since the 1960s
and is (in some sense) the content of the Hohenberg-Kohn theorems [13] and Kohn-Sham
equations [17], which form the theoretical foundations of density functional theory. These
results paved the way for computational methods in quantum chemistry, earning Walter
Kohn and John Pople the 1998 Nobel Prize in Chemistry. Additionally, it is well-known
that Wick’s theorem [33] can be used to write higher-order correlations in terms of one- and
two-mode correlations.
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12:4 Efficient Tomography of Non-Interacting-Fermion States

Although this topic has received intense study for decades, we claim that our error
analysis offers two improvements. First, this is the first “physics-free” proof that kernel
matrices suffice to learn the state: we make no mention of creation/annihilation operators,
energy potentials, Hamiltonians, or the like. We believe our proof can be understood by any
mathematician or theoretical computer scientist without a physics background and perhaps
even undergraduates with a linear algebra background. Second, our theorem quantitatively
relates the distance between the states and the distance between the kernel matrices, which
(to our knowledge) has never been done.

In Section 4 we use this theorem to show that the trace distance between ˆ|Ψ⟩ and |Ψ⟩ is
at most

√
2nmγ. Therefore, the trace distance will be ϵ-close if we set γ to ϵ2/2nm.

1.2 Related Work
Previous work showed how to simulate non-interacting fermions efficiently. In 2002, Vali-
ant [30] introduced a class of quantum circuits called matchgate circuits and showed that
they can be simulated classically in polynomial time. Soon after, Terhal and DiVincenzo [28]
(see also Knill [16]) showed that evolutions of non-interacting fermions give rise to unitary
matchgate circuits. (See also [4][Appendix 13] for a simpler and faster simulation algorithm.)
Thus, the contribution of this paper is to complement these classical simulation results with
an efficient learnability result.

More broadly, quantum state tomography is the task of constructing a classical description
of a d-dimensional quantum mixed state, given copies of the state. With entangled measure-
ments, the optimal number of copies for quantum state tomography is known to be Θ(d2)
due to Haah et al. [12] and O’Donnell and Wright [22]. With unentangled measurements,
the optimal number of copies is Θ(d3) [18, 12, 11].

Quantum state tomography can be computationally efficient in restricted settings.
Montanaro [21] showed that stabilizer states are efficiently learnable using measurements in
the Bell basis. Cramer et al. [9] showed that states approximated by matrix product states
are efficiently learnable. Arunachalam et al. [6] showed that some classes of phase states are
efficiently learnable. With this work, non-interacting-fermion states is an additional class of
quantum states for which we know computationally efficient learning algorithms.

Different models for learning properties of mixed states ρ have been studied. For example,
Aaronson [1] showed that such states are learnable under the Probably Approximately
Correct (PAC) model, using training sequences of length only logarithmic in the Hilbert
space dimension. Since our goal is simply to reconstruct a distribution, we have no need for
the PAC framework. Aaronson also introduced shadow tomography [2, 7], where, given a list
of known two-outcome observables and copies of an unknown state, the goal is to estimate the
expectation value of each observable with respect to the unknown state to additive accuracy.
Although computationally inefficient, Aaronson showed that the number of copies of the
input state scales polylogarithmically with both the number of observables and the Hilbert
space dimension. Soon after, Huang, Kueng, and Preskill [15] introduced classical shadows, a
shadow tomography algorithm that is computationally efficient for certain problem instances.
For example, with random Clifford measurements, the classical time cost in classical shadows
is dominated by computing quantities of the form ⟨s|O|s⟩, where O is an observable and |s⟩
is some stabilizer state, which is computationally efficient for certain observables.

Recently, there have been several results that extend the classical shadows protocol to
fermionic states and circuits [34, 31, 19, 23]. In particular, after the original version of
this paper appeared but before the current version, O’Gorman [23] gave an algorithm for
learning non-interacting-fermion states, which is based on classical shadows. His learning
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algorithm uses O(m7n2 log(m/δ)/ϵ4) samples and O(m9n2 log(m/δ)/ϵ4) time to learn a non-
interacting-fermion state to trace distance at most ϵ with probability at least 1 − δ. Our
work has substantially better sample and time complexities, and makes no use of randomized
measurements.

Finally, [25, Appendix C] proposes an algorithm for reconstructing a kernel matrix that
involves iterating over O(m) perfect matchings, just as our algorithm does, which we were un-
aware of until the final stages of our work. However, we note that their circuits/measurements
differ from ours, and they do not provide an error analysis for their algorithm.

1.2.1 Determinantal Point Processes

For reasons having nothing to do with non-interacting fermions, problems extremely close to
ours have already been studied in classical machine learning, in the field of Determinantal
Point Processes (DPPs). A DPP is a model specified by an m × m matrix K (typically
symmetric or Hermitian), such that the probabilities of various events are given by various
principal minors of K, exactly as for non-interacting fermions. The connection between
DPPs and fermions has been known for decades [20].

Two results in particular are directly relevant to us: Rising et al. [27] and Urschel et
al. [29]. Rising et al. give an efficient algorithm for the symmetric principal minor assignment
problem: given a list of all 2m principal minors of an unknown m × m symmetric matrix
K, reconstruct K. Their algorithm is based on constructing an m-vertex graph with an
edge from i to j whenever Kij ̸= 0, and then analyzing the minimum spanning trees and
chordless cycles in that graph. Rising et al., however, do not do an error analysis (they
assume exact knowledge of the principal minors), and they solve the problem for real and
complex symmetric matrices, whereas in our problem, the matrix is complex and Hermitian.
This difference turns out to be surprisingly important, as the determinants of Hermitian
matrices are always real, so much of the phase information vanishes – making the Hermitian
case much harder.

Urschel et al. [29] further exploit connections between DPPs and graph theory to give
an algorithm that recovers the entries of K, given samples from an unknown DPP. Their
focus is on parameter learning (i.e., approximately recovering the entries of K), rather than
learning the distribution induced by K in, say, total variation distance. They again assume
that the DPP is described by a real symmetric matrix.

Our work provides insight on the Hermitian versions of these problems. Since there are
many non-interacting-fermion states with the same distribution over the standard basis, there
must be many kernel matrices that are consistent with the same list of principal minors. The
goal for the Hermitian principal minor assignment problem is to output any such matrix.

It is also clear that the Hermitian version of Urschel et al.’s problem is impossible. Samples
from an unknown DPP correspond to standard basis measurement outcomes, and learning
the entries of a DPP corresponds to learning the kernel matrix. However, in Theorem 5, we
show that learning the kernel matrix suffices to learn the entire state, which is impossible
when restricted to standard basis measurements. (Even distinguishing |+⟩ from |−⟩ is
information-theoretically impossible when given only standard basis measurements.) What
one could hope for, and which we leave open, is to learn some kernel matrix that gives rise
to a distribution close in variation distance to the observed one.

TQC 2023
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1.2.2 Errors in Previous Version
A previous version of this manuscript [5] – where we claimed to recover a non-interacting
fermion distribution using only standard basis measurements – had serious errors, which we
explain below.1

In the previous manuscript, we sought to recover the rows v1, . . . , vm ∈ Cn of the m × n

column-orthonormal matrix A up to isometry (see Section 1.1 for the definition of A). By
estimating the two-mode correlations (i.e., the probability of finding a fermion in both mode
i and mode j), one can deduce the approximate value of |⟨vi, vj⟩|, i.e., the absolute value of
the inner product, for any i ̸= j. From that information, our goal was to recover v1, . . . , vm

(or, more precisely, their relative configuration in n-dimensional space up to isometry).
The approach was as follows: if we knew ⟨vi, vj⟩ for all i ̸= j, then we would get linear

equations that iteratively constrained each vi in terms of ⟨vi, vj⟩ for j < i, so all that would
be required would be to solve those linear systems, and then show that the solution is
robust with respect to small errors in our estimates of each ⟨vi, vj⟩. While it is true that
the measurements only reveal |⟨vi, vj⟩| rather than ⟨vi, vj⟩ itself, the “phase information” in
⟨vi, vj⟩ seemed manifestly irrelevant, since it in any case depended on the irrelevant global
phases of vi and vj themselves.

Alas, it turns out that the phase information does matter. As an example, suppose we
only knew the following about three unit vectors u, v, w ∈ R3:

|⟨u, v⟩| = |⟨u, w⟩| = |⟨w, v⟩| = 1
2 .

This is not enough to determine these vectors up to isometry! In one class of solution, all
three vectors belong to the same plane, like so:

u = (1, 0, 0) , v =
(

1
2 ,

√
3

2 , 0
)

, w =
(

−1
2 ,

√
3

2 , 0
)

.

In a completely different class of solution, the three vectors do not belong to the same plane,
and instead look like three edges of a tetrahedron meeting at a vertex:

u = (1, 0, 0) , v =
(

1
2 ,

√
3

2 , 0
)

, w =
(

1
2 ,

√
3

6 ,

√
2
3

)
.

Both classes of solutions are shown in Figure 1. These solutions correspond to different sign
choices for |⟨u, v⟩|, |⟨u, w⟩|, and |⟨w, v⟩| – choices that collectively matter, even though each
one is individually irrelevant.

It follows that, even in the special case where the vectors are all real, the two-mode
correlations are not enough to determine the vectors’ relative positions. And alas, the
situation is even worse when, as for us, the vectors can be complex. Indeed, even for systems
of 2 fermions and 4 modes, it is possible to exhibit distributions that require complex vectors.
For example, let

A =


1
2 0
1

2
√

2

√
2
5

1
2

√
2

√
2
5 i

1√
2 − 1√

10 − 1√
10 i

 .

1 These errors were previously explained in https://scottaaronson.blog/?p=5706.

https://scottaaronson.blog/?p=5706
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x

y

z

u v

w

w′

Figure 1 The vectors u, v, and w belong to the same plane, while v, w, and w′ are edges of a
tetrahedron that meet at a vertex. Both sets of vectors satisfy the same inner product constraints
up to phase information, yet belong to two distinct classes of solutions.

Denote the one-mode correlations by pi and the two-mode correlations by pij . Then by
explicit calculation (e.g., compute K, then compute the appropriate principal minors of K),
one can verify that

p1 = 1
4 , p2 = p3 = 21

40 , p12 = p13 = p23 = 1
10 .2

Hence, to represent the corresponding distribution with real vectors only, one must find
three vectors in R2 with squared lengths 1

4 , 21
40 , and 21

40 , respectively, such that the squared
area of the parallelogram created by any pair of vectors is 1

10 . One can verify that this is not
possible.

We conclude that any possible algorithm for learning fermionic distributions from standard-
basis measurements will have to solve a system of nonlinear equations (albeit, a massively
overconstrained system that is guaranteed to have a solution); it will have to use three-
mode correlations (i.e., statistics of triples of fermions), and indeed (one can show) in some
exceptional cases four-mode correlations and above; it will sometimes have to output complex
solutions even when all the input data is real (which rules out a purely linear-algebraic
approach); and it will have to learn the phase information relevant to the distribution (rather
than the entire state).

Finally, separate from the issues above, we are grateful to Andrew Zhao for identifying an
error in the most recent version of this manuscript (v3 on the arXiv). In our error analysis,
we assumed that the m × m matrix output by our algorithm is rank-n, when, in fact, it is
full-rank. In short, we handle this issue by computing an eigendecomposition of said matrix
and discarding the smallest m − n eigenvalues and eigenvectors.

2 Preliminaries

Throughout this work, we use the following notation. [n] := {1, . . . , n}. Let X ∈ Cn×n

and v ∈ Cn. Then ∥v∥p := (
∑

i∈[n]|vi|p)1/p is the ℓp-norm, and ∥X∥2 := sup∥v∥2=1∥Xv∥2
is the spectral norm. Let ρ and σ be two quantum mixed states. Then dtr(ρ, σ) :=
1
2 tr
(√

(ρ − σ)2
)

= 1
2
∑

i|λi| is the trace distance, where the λi’s are eigenvalues of the error
matrix ρ − σ.

2 We do not need to look at the fourth mode to show that complex numbers are necessary.
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2.1 Non-Interacting Fermions
We briefly review non-interacting fermions. For more detail, see e.g. [3, Chapters 7-10].

As mentioned above, Λm,n is the set of all lists S = (s1, . . . , sm) such that si ∈ {0, 1} and∑
i∈[m] si = n. One can easily verify that the total number of configurations |Λm,n| =

(
m
n

)
.

Define M :=
(

m
n

)
. The set {|S⟩}S∈Λm,n

is a basis for systems of n non-interacting fermions
in m modes, which we refer to as the standard basis (also called the Fock basis or occupation
number basis). Hence, a non-interacting-fermion state is a unit vector in an M -dimensional
complex Hilbert space with the form

|Ψ⟩ =
∑

S∈Λm,n

αS |S⟩ , where
∑

S∈Λm,n

|αS |2 = 1,

and, upon measurement, we observe an element S ∈ Λm,n with probability

Pr[S] = |⟨Ψ|S⟩|2 = |αS |2.

The transformations on non-interacting-fermion states can be described by m × m

unitary matrices, which can always be constructed with O(m2) elementary operations called
beamsplitters and phaseshifters (see [26] for a proof of this statement). A beamsplitter acts
on two modes and has the form

1
. . .

cos θ − sin θ

sin θ cos θ
. . .

1


,

while a phaseshifter applies a complex phase to a single mode and has the form

1
. . .

eiθ

. . .
1

 .

An m × m unitary U describes how a single fermion would be scattered from one mode
to the others. This induces an M × M unitary transformation φ(U) on the Hilbert space of
n-fermion states, where φ is the homomorphism that lifts m × m unitary transformations to
n-fermion unitary transformations. For an m × m unitary matrix U , one way to define φ is

⟨S| φ(U) |T ⟩ = det(US,T ), (1)

for all S = (s1, . . . , sm), T = (t1, . . . , tm) ∈ Λm,n, where US,T is the n×n submatrix obtained
by removing row i of U if si = 0 and removing column j of U if tj = 0. One can also
view φ(U) as a unitary transformation on m-qubit states. In this case, φ(U) is a Hamming-
weight-preserving matchgate unitary [30]. This follows directly from Terhal and DiVincenzo’s
work [28], which shows the equivalence between evolutions of non-interacting fermions and
matchgate circuits.
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Intuitively, the reason the determinant arises in Equation (1) is that ⟨S| φ(U) |T ⟩ is the
sum over the n! permutations that take n fermions in configuration S to configuration T ,
each permutation contributing to the overall amplitude. When a permutation from S to T

is odd, its contribution to the overall amplitude has a phase factor of −1, while when the
permutation is even the phase factor is 1. This is the antisymmetry property of fermions:
swapping two fermions picks up a −1 phase in the amplitude.3

2.2 Problem Setup
We use the following notation: |1n⟩ := |1, . . . , 1, 0, . . . , 0⟩ is the standard initial state (where
n fermions occupy the first n modes), U ∈ Cm×m is the unitary that prepares the unknown
non-interacting-fermion state (i.e., |Ψ⟩ = φ(U) |1n⟩), and A ∈ Cm×n is the m × n column-
orthonormal matrix corresponding to the first n columns of U . Define K := AA†.

For each element S = (s1, . . . , sm) ∈ Λm,n, let AS be the n × n submatrix obtained by
removing row i of A if si = 0, and let KS be the n × n submatrix obtained by removing row
and column i of K if si = 0. Then from Equation (1), it follows that

|Ψ⟩ =
∑

S∈Λm,n

det(AS) |S⟩ ,

and DK , the probability distribution over S ∈ Λm,n obtained by measuring the state
|Ψ⟩ = φ(U) |1n⟩ in the standard basis, is given by

|⟨1n| φ(U) |S⟩|2 = |det(AS)|2 = det(KS),

where the last equality uses the fact that, for any square matrices X and Y , det(X)∗ = det(X†)
and det(X) det(Y ) = det(XY ). Further, for any list S = (s1, . . . , sm) where

∑
i si = k < n,

the marginal probability that those k modes are occupied is det(KS).
It is easy to verify that K is Hermitian, positive semi-definite, and a projector (K2 = K);

and that tr(K) = n. Additionally, observe that the (i, j) entry is the inner product between
the ith and jth rows of A (i.e., K is a Gram matrix). Finally, note that A is a highly
non-unique description of |Ψ⟩ and K. Let R be any n × n unitary matrix. Then A and AR

describe the same state:

|Ψ⟩ =
∑

S∈Λm,n

det(ASR) |S⟩ =
∑

S∈Λm,n

det(AS) det(R) |S⟩ =
∑

S∈Λm,n

det(AS) |S⟩ ,

where, in the last equality, we use the fact that the determinant of a unitary matrix is a
complex unit, which only adds an irrelevant global phase. Meanwhile, the kernel matrix of
|Ψ⟩ is unchanged: K = (AR)(AR)† = AA†.

Applying a unitary V maps |Ψ⟩ = φ(U) |1n⟩ to φ(V U) |1n⟩. It is easy to check that the
probability that we observe S upon measuring φ(V U) |1n⟩ in the standard basis is

|⟨1n| φ(V U) |S⟩|2 = det((V KV †)S),

and in general, applying V has the following effect on the matrix K: K 7→ V KV †.
Given copies of |Ψ⟩ and the ability to apply beamsplitter networks before measurement,

our goal is to output a matrix Â ∈ Cm×n such that |Ψ̂⟩ =
∑

S det(ÂS) is ϵ-close to |Ψ⟩ in
trace distance.

3 Meanwhile, bosons are symmetric under transpositions, so no minus signs show up. This is precisely
why permanents arise when computing amplitudes for non-interacting bosons, while determinants show
up for non-interacting fermions.
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3 Learning Algorithm

In this section, we present our learning algorithm, which is given copies of an unknown
non-interacting-fermion state, and outputs an m × n matrix Â such that the corresponding
state |Ψ̂⟩ =

∑
S det(ÂS) |S⟩ is close to the original in trace distance. The algorithm has

three phases: first, we learn the diagonal entries of the kernel matrix K with standard basis
measurements, then we learn the off-diagonal entries by measuring the unknown state in
O(m) different bases. Finally, we decompose the reconstructed kernel matrix into the m × n

output matrix Â.

Algorithm 1 Efficient tomography of non-interacting-fermion states.

Input: Black-box access to copies of |Ψ⟩ (the input state), γ ∈ (0, 1) (accuracy parameter),
and δ ∈ (0, 1) (confidence parameter).

Output: an m × n matrix Â ∈ Cm×n.

1: Measure O(log(1/δ)/γ2) copies of |Ψ⟩ in the standard basis and estimate the one-mode
correlations for all m modes. Set k̂ii to the empirical estimate that mode i is occupied.

2: Choose O(m) different perfect matchings among the m modes, which together cover all
possible (i, j) pairs.

3: for each perfect matching do
4: Apply the beamsplitter

1√
2

(
1 1
1 −1

)
to each pair of modes in the perfect matching and measure in the standard basis. Repeat
this O(log(1/δ)/γ2) times, and use the measurement data to estimate the one-mode
correlations.

5: Repeat the previous step with the beamsplitter

1√
2

(
1 i

1 −i

)
.

6: For each pair (i, j) in the perfect matching, the beamsplitter network in step 4 maps
the one-mode correlation kii to k′

ii := 1
2 (kii + kjj + 2Re(kij)). Denote the ith estimate

obtained in step 4 by k̂′
ii. Let Re(k̂ij) be the estimate of Re(kij) obtained by solving the

following equation:

k̂′
ii = 1

2(k̂ii + k̂jj + 2Re(k̂ij)),

where k̂ii and k̂jj are the estimates from step 1.
7: Repeat the previous step with the estimates from step 5 to obtain estimate Im(k̂ij)

for each pair (i, j). (Note that the beamsplitter network in step 5 maps kii to 1
2 (kii +

kjj + 2Im(kij)), for each pair (i, j) in the perfect matching.)
8: For each pair (i, j) in the perfect matching, set k̂ij = Re(k̂ij) + iIm(k̂ij) and k̂ji = k̂∗

ij .
9: Let K̂ = (k̂ij) ∈ Cm×m, and let QΛQ† be an eigendecomposition of K̂. Set Â to be the

m × n matrix corresponding to the first n columns of Q.
10: return Â.
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For each measurement basis, we estimate O(m) entries of K to within γ in magnitude,
which can be accomplished with O(log(1/δ)/γ2) copies [8, Theorem 9] and O(m log(1/δ)/γ2)
time. To estimate the off-diagonal entries to the target accuracy, an additional constant factor
appears in the sample complexity, which is absorbed into the O(log(1/δ)/γ2). We use O(m)
measurement bases in total, so the overall copy and time complexities are O(m log(1/δ)/γ2)
and O(m2 log(1/δ)/γ2) respectively. Our algorithm then computes an eigendecomposition of
an m × m matrix, which requires O(m3) time, but computing this decomposition is not the
bottleneck in our algorithm.

We note that K̂ is clearly Hermitian by construction, so the eigendecomposition of K̂

exists. Following convention, it is assumed that the eigenvalues are ordered from largest to
smallest (i.e., the first column of Q corresponds to the largest eigenvalue of K̂, and so on). The
output of our algorithm Â is column-orthonormal because the columns of the unitary Q are
orthonormal. Therefore, Â describes a non-interacting-fermion state |Ψ̂⟩ =

∑
S det(ÂS) |S⟩.

In the next section, we show that if γ = ϵ2

2nm , then the trace distance between |Ψ⟩ and |Ψ̂⟩
is at most ϵ. Hence, for the two states to be ϵ-close in trace distance, O(m3n2 log(1/δ)/ϵ4)
copies and O(m4n2 log(1/δ)/ϵ4) time suffice.

4 Error Analysis

In this section, we show that the trace distance between |Ψ⟩ and |Ψ̂⟩ is at most
√

2nmγ.
Therefore, if γ = ϵ2

2nm , then the trace distance between |Ψ⟩ and |Ψ̂⟩ is at most ϵ.
The error analysis is presented in two parts. First, we show that the trace distance

between any two non-interacting-fermion states is bounded above the spectral distance
between their kernel matrices. Then we show that the output of our algorithm is close to the
original state in trace distance.

4.1 The Kernel Matrix Suffices
We prove that the trace distance between two non-interacting-fermion states is upper bounded
by the spectral difference between their kernel matrices. To show this, we need the following
two lemmas.

▶ Lemma 3. Let a1, a2, . . . , an ∈ [0, 1]. Then

1 −
∏

i

ai ≤ n max
i

1 − ai.

Proof. For any x, y ∈ [0, 1],

1 − xy = 1 − x + x − xy = (1 − x) + x(1 − y) ≤ (1 − x) + (1 − y).

We can inductively apply this to get

1 −
∏

i

ai ≤
∑

i

1 − ai ≤ n max
i

1 − ai. ◀

▶ Lemma 4. Let A, Â ∈ Cm×n (m ≥ n) be m×n matrices, and let A be column-orthonormal.
Define K := AA† and K̂ := ÂÂ†. Let Σ = diag(σ1, . . . , σn) where σi are the singular values
of Â†A. Then

∥I − Σ2∥2 ≤ ∥K̂ − K∥2.
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Proof. Since A is column-orthonormal, A†A = I (I is the identity matrix). Let QΣV † be a
singular value decomposition of Â†A. First, note that

V Σ2V † = (QΣV †)†QΣV † = (Â†A)†Â†A = A†ÂÂ†A.

Therefore,

∥I − Σ2∥2 = ∥I − A†ÂÂ†A∥2 = ∥A†A − A†ÂÂ†A∥2 = ∥A†(A − ÂÂ†A)∥2 ≤ ∥A − ÂÂ†A∥2,

where the first step uses the fact that the spectral norm is unitarily invariant and the final
step follows from the submultiplicativity of matrix norms and that ∥A†∥2 = ∥A∥2 = 1 since
A is column-orthonormal. Finally,

∥A − ÂÂ†A∥2 = ∥AA†A − ÂÂ†A∥2 ≤ ∥AA† − ÂÂ†∥2 = ∥K − K̂∥2. ◀

We are now ready to show that if two kernel matrices are close, then the corresponding
states will also be close.

▶ Theorem 5. Let |Ψ⟩ and |Ψ̂⟩ be non-interacting-fermion states of n fermions and m modes
described by the m × n column-orthonormal matrices A, Â ∈ Cm×n, respectively. Define
K := AA† and K̂ := ÂÂ†. Then

dtr

(
|Ψ̂⟩ , |Ψ⟩

)
≤
√

n∥K̂ − K∥2.

Proof. Recall that |Ψ⟩ and |Ψ̂⟩ can be written as

|Ψ⟩ =
∑

S∈Λm,n

det(AS) |S⟩ and |Ψ̂⟩ =
∑

S∈Λm,n

det(ÂS) |S⟩

for the column-orthonormal matrices A, Â ∈ Cm×n. Then

dtr

(
|Ψ̂⟩ , |Ψ⟩

)
=
√

1 − |⟨Ψ̂|Ψ⟩|2

=

√√√√1 −
∣∣∣ ∑
S∈Λm,n

det(ÂS)∗ det(AS)
∣∣∣2

=

√√√√1 −
∣∣∣ ∑
S∈Λm,n

det(Â†
S) det(AS)

∣∣∣2
=
√

1 − |det(Â†A)|2,

where the second-to-last step follows because, for any square matrix X, det(XT ) = det(X)
and det(X)∗ = det(X∗); and the final step follows from the Cauchy-Binet formula.

Let QΣV † be a singular value decomposition of Â†A, where σ1, . . . , σn are the singular
values on the diagonal of Σ. Then

|det(Â†A)|2 = |det(QΣV †)|2 = |det(Q) det(Σ) det(V †)|2 = det(Σ)2 =
∏

i

σ2
i .
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Note that, for all i ∈ [n], σi ≤ σi(Â†)∥A∥2 = 1 [14, Chapter 3], where σi(Â†) is the ith
singular value of Â†. Plugging this into our bound on the trace distance, we get

dtr

(
|Ψ̂⟩ , |Ψ⟩

)
=
√

1 − |det(Â†A)|2

=
√

1 −
∏

i

σ2
i

≤
√

n
(

max
i

1 − σ2
i

)
(By Lemma 3).

=
√

n∥I − Σ2∥2

≤
√

n∥K̂ − K∥2 (By Lemma 4). ◀

4.2 Completing the Analysis
We prove that the fermionic state output by Section 3 is close to the input state in trace
distance. To do so, we make use of Weyl’s inequality, which implies that the spectrum of a
Hermitian matrix is stable under small perturbations.

▶ Theorem 6 (A Consequence of Weyl’s Inequality [32]). Let M, N, R ∈ Cn×n be n × n

Hermitian matrices such that M = N + R. Let λ1, . . . , λn be the eigenvalues of M , and let
µ1, . . . , µn be the eigenvalues of N . Then, for all i ∈ [n],

|λi − µi| ≤ ∥R∥2.

We are now ready to prove that Section 3 successfully learns a non-interacting-fermion
state.

▶ Theorem 7. Let Â be the output of Section 3 when given |Ψ⟩ as input, and let |Ψ̂⟩ be the
non-interacting-fermion state described by Â. Then

dtr

(
|Ψ̂⟩ , |Ψ⟩

)
≤
√

2nmγ.

Proof. It is convenient to recall the last steps of Section 3:
In our algorithm, once the quantum measurements are complete, we have a matrix K̂

whose entries are within γ in magnitude of K. We then compute the eigendecomposition
QΛQ† of K̂, where the first column of Q is the eigenvector corresponding to the largest
eigenvalue of K̂ and so on. Finally, we set Â to be the m × n matrix corresponding to the
first n columns of Q, and output Â. Therefore, the kernel matrix of |Ψ̂⟩ is ÂÂ†, and, by
Theorem 5, the trace distance between |Ψ⟩ and |Ψ̂⟩ is bounded above by

√
n∥ÂÂ† − K∥2,

where K = AA† is the kernel matrix corresponding to the input state |Ψ⟩. To complete the
proof, we must bound ∥ÂÂ† − K∥2. To that end, by the triangle inequality,

∥ÂÂ† − K∥2 ≤ ∥ÂÂ† − K̂∥2 + ∥K̂ − K∥2. (2)

Observe that K̂ = K + E, where E is a perturbation of K whose entries have magnitude
at most γ. Therefore, ∥K̂ − K∥2 = ∥K + E − K∥2 = ∥E∥2. The error matrix E is
Hermitian because K and K̂ are Hermitian, and Hermitian matrices are closed under
addition/subtraction. Therefore, since K̂, K, and E are all Hermitian, we can use Theorem 6
to upper bound the absolute difference between the eigenvalues of K and K̂. In particular,
the absolute difference between the ith eigenvalues of K and K̂ is at most ∥E∥2, for all
i ∈ [m].
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Let 1n = diag(1, . . . , 1, 0, . . . , 0) ∈ Rm×m be the diagonal matrix whose first n diagonal
entries are 1 and the rest 0. Observe that ÂÂ† = Q1nQ†, since Â is the first n columns of
Q, and recall that K̂ = QΛQ†. Therefore,

∥ÂÂ† − K̂∥2 = ∥Q1nQ† − QΛQ†∥2 = ∥1n − Λ∥2,

where, in the last equality, we use the fact that the spectral norm is unitarily invariant. Note
that Λ contains the eigenvalues of K̂, and 1n contains the eigenvalues of K (since K is a
trace-n, rank-n projector). Therefore, ∥1n − Λ∥2 is the maximum absolute difference between
the eigenvalues of K and K̂, which is at most ∥E∥2, as we argued in the previous paragraph.

The trivial bound on the spectral norm of E is the Frobenius norm of E, which is
maximum when all entries of E have magnitude γ. Specifically, ∥E∥2 ≤ ∥E∥F ≤ mγ. Note
∥E∥2 = ∥E∥F when the entries of E are all γ, so we cannot hope for a tighter bound on
∥E∥2.

Plugging this into Equation (2),

∥ÂÂ† − K∥2 ≤ ∥ÂÂ† − K̂∥2 + ∥K̂ − K∥2

≤ ∥E∥2 + ∥E∥2

≤ 2mγ. ◀

5 Connections to Quantum State Tomography

Although physically different, our problem is closely related to the quantum state tomography
problem. In quantum state tomography, we want to recover an unknown Hermitian matrix,
namely a d-dimensional mixed state ρ ∈ Cd×d, and applying a quantum circuit V to ρ maps
ρ to V ρV †. In our problem, applying a unitary V to |Ψ⟩ maps K to V KV †, where K is an
unknown Hermitian matrix, and our algorithm is able to recover the entries of K to within γ

in magnitude. Therefore, our algorithm can also be viewed as a state tomography algorithm:
measure copies of ρ in the O(d) measurement bases obtained by choosing perfect matchings
that cover all (i, j) pairs and output the resulting matrix ρ̂ (skipping the last few steps of the
algorithm that involve computing an eigendecomposition). As before, the algorithm requires
O(d log(1/δ)/γ2) copies and O(d2 log(1/δ)/γ2) time.

The error analysis is slightly different than for learning a fermionic state. For the state
tomography problem, we want the output matrix ρ̂ to be close to ρ in trace distance, which
is proportional to ∥ρ̂ − ρ∥1, whereas, for fermionic tomography, our trace distance upper
bound is proportional to ∥K̂ − K∥2 (see Theorem 5). Hence, to analyze the performance of
our algorithm for state tomography, we must upper bound ∥ρ̂ − ρ∥1.

Recall that the error matrix E = ρ̂ − ρ is Hermitian and has entries with magnitude at
most γ. For i ∈ [m], let λi denote the eigenvalues of E. Then

dtr(ρ̂, ρ) = 1
2∥ρ̂ − ρ∥1 = 1

2∥E∥1 = 1
2
∑

i

|λi| ≤
√

d

2

√∑
i

|λi|2 ≤ 1
2d3/2γ.

The first inequality follows from the fact that the arithmetic mean is bounded above by the
quadratic mean, and the second inequality follows from the fact that

√∑
i|λi|2 = ∥E∥F ≤ dγ.

For dtr(ρ̂, ρ) ≤ ϵ, we must set γ = 2d−3/2ϵ. The resulting copy complexity is O(d4 log(1/δ)/ϵ2)
and time complexity is O(d5 log(1/δ)/ϵ2). Note that the optimal copy complexity for quantum
state tomography with unentangled measurements is Θ(d3/ϵ2) [18, 12, 11], compared to
Θ(d2/ϵ2) with entangled measurements [22, 12].
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Finally, we show that our upper bound on ∥ρ̂ − ρ∥1 is tight. Let F be the d × d Fourier
transform whose (i, j) entry is exp(2πij/d)/

√
d. Then F scaled by a factor of

√
dγ is a valid

error matrix whose 1-norm is equal to d3/2γ. Indeed, any d × d unitary matrix scaled by a
factor of γ

√
d will match our upper bound.

6 Open Problems

Perhaps the most interesting open problem is to give an algorithm to learn fermionic
distributions using only standard basis measurements. Specifically, the following problems
remain open:

1. Learn real DPPs in variation distance. Given sample access to a distribution
induced by an m × m symmetric matrix K ∈ Rm×m, output an m × m matrix K̂ such
that the induced distribution is close in variation distance. (See Section 1.2.1 for detail
on DPPs.)

2. Hermitian principal minor assignment problem. Given a list of all 2m principal
minors of an unknown Hermitian matrix K ∈ Cm×m, reconstruct any Hermitian matrix
that is consistent with that list.

3. Learn non-interacting fermion distributions with standard basis measurements.
Given sample access to a non-interacting fermion distribution, efficiently learn the
distribution in total variation distance.

The third problem is in some sense a combination of the first and second. To solve the
first problem, we believe that the connections between DPPs and graph theory used in Rising
et al. [27] and Urschel et al. [29] should be enough to develop an efficient algorithm. As
discussed in Section 1.2.1, our work shows that there are many kernel matrices that have the
same principal minors (indeed, any set non-interacting states that have the same distribution
over the standard basis will give rise to a set of kernel matrices that are consistent with the
same list of principal minors). The goal for the second and third problems is to output any
one of the valid matrices.

For the second problem, however, the following example shows that some combinatorial
information about the kernel matrix K, above and beyond the obvious complex conjugation
ambiguities, is not determined even in principle by K’s principal minors. Consider the
following 4 × 4 Hermitian matrix:

K =


1 1 1 1
1 1 a b∗

1 a∗ 1 c

1 b c∗ 1

 .

Suppose we have learned, by looking at the 2 × 2 and 3 × 3 principal minors, that

a = eix, b = eiy, and c = eiz,

where |x| = |y| = |z| = w for some w that is known. That is, we have determined a, b, and c

up to complex conjugation, and up to complex conjugation they are all equal. By looking at
the bottom-most 3 × 3 principal minor, we can learn Re(abc) and hence |x + y + z|. Suppose
that this is also w. From the 4 × 4 minor, combined with the 2 × 2 and 3 × 3 minors, we get
one additional piece of information, namely:

Re(ab) + Re(ac) + Re(bc).
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Suppose that, as expected, this is 2 + cos(2w). Then even though we have extracted all
information from the principal minors, there are still three essentially different solutions
possible. Namely,

(1) x = y = w and z = −w, (2) x = z = w and y = −w, (3) y = z = w and x = −w.

Of course, for fermionic distributions, the matrix K must be Hermitian, positive semi-
definite, and a projector, and rank(K) = n. The example above is neither positive semi-
definite nor a projector. However, we conjecture that this example can be embedded into a
larger matrix that does satisfy these constraints.

Other directions for future work include improving the copy and time complexities of our
algorithm, or giving conditional or unconditional lower bounds. Currently, the best lower
bound we know is that Ω(m/ log m) measurements are needed, just from an information-
theoretic argument (each measurement gives at most n log m bits of information and the
state is characterized by 2nm real parameters). Similarly, Ω(mn) time is needed just to write
down the output.

Since rank(K) = n, it should be possible to reduce the number of measurement bases
from O(m) to O(n) (perhaps with the low-rank matrix recovery techniques used in [18]).
Doing so would yield an immediate improvement in the copy and time complexities of our
algorithm.

Also, just as our algorithm can be adapted to quantum state tomography, it is possible
that the converse holds. Can quantum state tomography algorithms (in the entangled or
unentangled measurement setting) be adapted to non-interacting-fermion state tomography?
Also, do quantum state tomography lower bounds imply lower bounds for learning non-
interacting-fermion state? In analogy with quantum state tomography, perhaps Θ(mn)
copies are optimal to learn non-interacting-fermion states with entangled measurements and
Θ(mn2) copies are optimal with unentangled measurements.

It would be interesting to generalize our algorithm – for example, to superpositions over
different numbers of fermions, or fermionic circuits that take inputs – and to find other
classes of quantum states that admit efficient learning algorithms (for example, perhaps low-
entanglement states or the outputs of small-depth circuits or low-stabilizer-complexity states
[10]). We remark that [24] gives evidence that generalizing our algorithm to superpositions
over different numbers of fermions may not be possible unless one limits the number of terms
in the superposition. On the other hand, [24, Theorem 8] might be useful in developing
learning algorithms for matchgate circuits.

Finally, what can be said about learning non-interacting boson states? The goal would
be to reconstruct an m × n column-orthonormal matrix A given copies of a non-interacting
boson state. However, the boson case is even trickier than the fermion case. In particular,
boson statistics no longer depend only on the inner products between the rows of A, the
way fermion statistics do. Indeed, even if we collected enough information to reconstruct a
bosonic state, it seems that any algorithm would have to solve a quite complicated set of
nonlinear equations.
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Abstract
Understanding the power and limitations of quantum access to data in machine learning tasks is
primordial to assess the potential of quantum computing in artificial intelligence. Previous works have
already shown that speed-ups in learning are possible when given quantum access to reinforcement
learning environments. Yet, the applicability of quantum algorithms in this setting remains very
limited, notably in environments with large state and action spaces. In this work, we design
quantum algorithms to train state-of-the-art reinforcement learning policies by exploiting quantum
interactions with an environment. However, these algorithms only offer full quadratic speed-ups
in sample complexity over their classical analogs when the trained policies satisfy some regularity
conditions. Interestingly, we find that reinforcement learning policies derived from parametrized
quantum circuits are well-behaved with respect to these conditions, which showcases the benefit of a
fully-quantum reinforcement learning framework.
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1 Introduction
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can speed up learning. In the context of supervised learning, this led to the development of
algorithms based on quantum RAMs, which can achieve high-degree polynomial improvements
over their classical analogs [7]. In reinforcement learning, where we consider learning agents
interacting with task environments, the question becomes: can quantum interactions with an
environment, and in particular the ability to explore several trajectories in superposition,
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question from a variety of angles [13, 28]: based on Grover’s algorithm [16], some works
have for instance shown that searching for an optimal sequence of actions in an environment
can be done using quadratically fewer interactions given the appropriate oracular access
to the environment [12, 33, 18]. Other works have considered the more general problem
of finding the optimal policy in a Markov Decision Process (MDP), and have found that
up to quadratic speed-ups in the number of interactions are also possible, again given the
proper oracular access [42, 41, 32, 6, 43]. Finally, tailored MDP environments (based, e.g., on
Simon’s problem) have also been introduced, which allow for exponential quantum speed-ups
in learning times compared to the best classical agents [11].

Yet, all the quantum algorithms that have been proposed in this quantum-accessible
setting remain inefficient in the most well-publicised use cases of reinforcement learning,
such as Go [37], city navigation [29], and computer games [30]: environments with large
state-action spaces. Indeed, aside from the task-specific algorithms of Ref. [11], the proposed
algorithms scale at best as the square root of the size of the state-action space, which is
intractable in most modern-day applications that deal for instance with image-based inputs.
In the classical literature, modern approaches to reinforcement learning in large spaces
commonly replace the explicit storage of a policy (and/or a value function) in a table of
values by a parametrized model (e.g., a deep neural network), whose parameters θ have a
much smaller size than the state-action space. One of the earliest approaches based on such
parametrized models is that of policy gradient algorithms [44, 40]. This approach frames
reinforcement learning as a direct optimization problem, where the expected rewards (or
value function) Vπθ

(s0) of a given policy πθ starting its interactions in a state s0 is optimized
via gradient ascent on the policy parameters θ. Therefore, the core task in this approach
is to estimate the gradient ∇θVπθ

(s0) to a certain error ε in the ℓ∞-norm. For this task,
two approaches are common: numerical gradient estimation [24], where the value function
is evaluated at different parameter settings θ′ centered around θ, that are combined to
estimate the gradient at θ (using, e.g., a central difference method), and analytical gradient
estimation [40], using a formulation of this gradient as a function of the rewards and the
gradients of the policy πθ, averaged over trajectories generated by πθ (i.e., a Monte Carlo
method).

Concurrently in the last few years, several works have introduced quantum parametrized
models, known most commonly as parametrized or variational quantum circuits, that could
take the place of deep neural networks in both policy-based [21, 35, 4, 27] and value-based
[5, 25, 45, 38] reinforcement learning. While evaluated on a quantum computer, these models
are however trained via classical interaction with the environment using, e.g., a classical
policy gradient method.

In this work, we present quantum algorithms that speed up both the numerical and
analytical gradient estimation approaches to policy gradient methods. These algorithms
exploit an appropriately defined oracular access to the environment that allows to explore
several trajectories in superposition, combined with subroutines for numerical gradient
estimation [14, 8] and multivariate Monte Carlo estimation [10, 9]. Both these subroutines
are however known to offer full quadratic speed-ups only in certain regimes, that depend
in our setting on the smoothness of the value function Vπθ

(s0) and on the ℓp-norm of its
gradient ∇θVπθ

(s0), respectively. Conveniently, we also identify families of parametrized
quantum policies πθ previously studied in the literature [21] that satisfy the conditions
of these regimes. We therefore end up with quantum policy gradient algorithms to train
quantum policies, i.e., a fully quantum approach to reinforcement learning in large spaces.
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2 Preliminaries

In this section, we present the main tools and concepts that we need to design our quantum
policy gradient algorithms. We start by introducing policy gradient methods in Sec. 2.1. We
then define the general oracle types that we consider in this work in Sec. 2.2, which allows
us to properly define the notion of quantum access to a reinforcement learning environment
in Sec. 2.3. We define the parametrized quantum policies that we apply our quantum policy
gradient algorithms to in Sec. 2.4. And finally, we present the core subroutines used in our
quantum algorithms in Sec. 2.5.

2.1 Policy gradient methods
At the core of policy gradient methods are two ingredients: a parametrized policy πθ, that
governs an agent’s actions in an environment, and its associated value function Vπθ

, which
evaluates the long-term performance of this policy in the environment. The policy πθ(·|s)
is a conditional probability distribution over actions given a state s, parametrized by a
vector of parameters θ ∈ Rd. When acting with a given policy in the environment, the
agent experiences sampled trajectories (or episodes) τ = (s0, a0, r0, s1, . . .) composed of
states, actions and rewards that depend both on the policy of the agent and the environment
dynamics (see Sec. 2.3 for more details). The standard figure of merit used to assess the
performance of a policy πθ is called the value function Vπθ

(s0) and is given by the expected
sum of rewards (or return) R(τ) collected in a trajectory:

Vπθ
(s0) = Eπθ,PE

[
T −1∑
t=0

γtrt

]
= Eπθ,PE

[R(τ)] (1)

where s0 is the initial state of the agent’s interaction τ with the environment and PE a
description of the environment dynamics (e.g., in the form of an MDP, see Def. 4). Each
episode of interaction has a horizon (or length) T ∈ N ∪ {∞} and the returns R(τ) involve a
discount factor γ ∈ [0, 1] that allows, when γ < 1, to avoid diverging value functions for an
infinite horizon, i.e., T = ∞.

Policy gradient methods take a direct optimization approach to RL: starting from an
initial policy πθ, its parameters are iteratively updated such as to maximize its associated
value function Vπθ

(s0), via gradient ascent. For this method to be applicable, one needs to
evaluate the gradient of the value function ∇θVπθ

, up to some error ε in ℓ∞-norm to be
specified.

2.1.1 Numerical gradient estimation
The most straightforward approach to estimate the value function of a policy is via a Monte
Carlo approach: by collecting N episodes τi = (s(i)

0 , a
(i)
0 , r

(i)
0 , s

(i)
1 . . .) governed by πθ, one

can compute for each of these the discounted return R(τ) appearing in Eq. (1) and average
the results. The resulting value

Ṽπθ
(s) = 1

N

N∑
i=1

T −1∑
t=0

γtr
(i)
t (2)

is a Monte Carlo estimate of the value function.
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With the capacity to estimate the value function, we can also estimate its gradient using
numerical methods. In its simplest form, a finite-difference method simply evaluates Ṽπθ

(s0)
and Ṽπθ+δei

(s0) for δ > 0 and ei = (0, . . . , 0, 1i, 0 . . . , 0) a unit vector with support on the
i-th parameter in θ, and returns the estimate:

∂iVπθ
(s0) ≈

Ṽπθ+δei
(s0) − Ṽπθ

(s0)
δ

. (3)

Even though more elaborate finite difference methods exist (that we will use in Sec. 3),
they inherently have a sample complexity (in terms of the number of interactions with the
environment) that scales linearly in the dimension of θ.

2.1.2 Analytical gradient estimation
Perhaps one of the most appealing aspects of policy gradient methods is that the gradients of
value functions also have an analytical formulation whose evaluation has a sample complexity
only logarithmic in the dimension of θ [23]. This analytical formulation is known as the
policy gradient theorem:

▶ Theorem 1 (Policy gradient theorem [40]). Given a policy πθ that generates trajectories
τ = (s0, a0, r0, s1, . . .) in a reinforcement learning environment with time horizon T ∈ N∪{∞},
the gradient of the value function Vπθ

with respect to θ is given by

∇θVπθ
(s0) = Eτ

[
T −1∑
t=0

∇θ log πθ(at|st)
T −1∑
t′=0

γt′
rt′

]
. (4)

A simple derivation of this Theorem can be found in Appendix A. Essentially, due to the
so-called “log-likelihood trick” [36], the differentiation with respect to the policy parameters
can be made to act solely on the random variables “inside” the expected value, while leaving
the probability distribution behind this expected value unchanged. This means that the
gradient of the value function can, similarly to the value function itself, be estimated via
Monte Carlo sampling of trajectories governed by a fixed πθ and environment-independent
computations (i.e., the evaluation of ∇θ log πθ(at|st)).

2.2 Input models
To design our quantum algorithms, we need to define access models to the environment as
well as the policy πθ to be trained. We do this in terms of oracles that can be queried in
superposition. Throughout this manuscript, we will be dealing with several types of such
oracles, all defined in this section.

▶ Definition 2 (Oracle types). Let X be a finite set whose elements x ∈ X can be encoded as
mutually orthogonal states |x⟩, and let f : X 7→ [0, B] be a function acting on this set, whose
output is bounded by some B ∈ R. We define different types of oracle access to f :
1. Binary oracle: f(x) is encoded in an additional register using a binary representation

of a desired precision:

Bf : |x⟩ |0⟩ 7→ |x⟩ |f(x)⟩ , (5)

2. Phase oracle: f(x) is encoded in the phase of the input register:

Of : |x⟩ 7→ ei
f(x)

B |x⟩ , (6)
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3. Probability oracle: f(x) is encoded in the amplitude of an additional qubit (possibly
entangled to arbitrary states |ψ0(x)⟩ and |ψ1(x)⟩ of an additional register):

Õf : |x⟩ |0⟩ |0⟩ 7→ |x⟩

(√
f(x)
B

|0⟩ |ψ0(x)⟩ +
√

1 − f(x)
B

|1⟩ |ψ1(x)⟩
)
. (7)

Clearly, having access to a binary oracle Bf , we can easily convert it into a phase or
probability oracle Of or Õf , using one call to Bf first, then a single-qubit rotation or a phase
gate controlled on |f(x)⟩, and finally a call to B†

f to uncompute |f(x)⟩.
We will also need a subroutine to convert probability oracles into phase oracles:

▶ Lemma 3 (Probability to phase oracle (Corollary 4.1 in [14])). Suppose that we are given a
probability oracle Õf for f : X → [0, B]. We can implement a phase oracle Of up to operator
norm error ε, with query complexity O(log(1/ε)), i.e., this many calls to Õf and its inverse.

2.3 Quantum-accessible environments
Inspired by previous work that considered the quantum-accessible reinforcement learning
setting [11, 42, 41, 32, 6], we define oracular access to a specific type of reinforcement learning
environments called Markov Decision Processes (MDPs) [39], defined as follows:

▶ Definition 4 (Markov Decision Process (MDP)). A Markov Decision Process is defined
by a tuple (S,A, P,R, |R|max, T, γ), where S is a finite state space, A is a finite action
space, P : S × A × S → [0, 1] is a transition probability matrix with entries P (s′|s, a) that
govern the transition to a state s′ ∈ S after performing action a ∈ A in state s ∈ S,
R : S × A → [−|R|max, |R|max] is a reward function bounded by |R|max ∈ R+ that assigns a
reward R(s, a) to every state-action pair, T ∈ N ∪ {∞} is a (possibly infinite) time horizon
for each episode of interaction, and γ ∈ [0, 1] is a discount factor, with the restriction that
γ < 1 for T = ∞.

Our oracular access to the environment takes the form of two oracles that coherently
implement the MDP dynamics:

▶ Definition 5 (Quantum access to an MDP). Let M = (S,A, P,R, |R|max, T, γ) be an MDP
as defined in Def. 4. We say that we have quantum access to the MDP if we can call the
following oracles:
1. An oracle P that coherently samples a column of the transition probability matrix P :

P : |s, a⟩ |0⟩ 7→ |s, a⟩
∑
s′∈S

√
P (s′|s, a) |s′⟩ . (8)

2. An oracle R that returns a binary representation of the output of the reward function R:

R : |s, a⟩ |0⟩ 7→ |s, a⟩ |R(s, a)⟩ . (9)

We also assume the ability to construct a unitary Π that coherently implements a policy πθ:

▶ Definition 6 (Quantum evaluation of a policy). Let πθ : S × A → [0, 1] be a reinforcement
learning policy acting in a state-action space S ×A and parametrized by a vector θ ∈ Rd (that
can be encoded with finite precision as |θ⟩). We say that the policy is quantum-evaluatable if
we can construct a unitary satisfying:

Π : |θ⟩ |s⟩ |0⟩ 7→ |θ⟩ |s⟩
∑
a∈A

√
πθ(a|s) |a⟩ . (10)

TQC 2023
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Such a construction would be very natural for some quantum policies (such as the raw-PQC
defined in the next subsection). But any policy that can be computed classically could
also be turned into such a unitary via quantum simulation of the classical computation of
(πθ(a|s) : a ∈ A) and known subroutines to encode this probability vector into the amplitudes
of a quantum state [15].

Equipped with the proper quantum access to the environment and the policy, we can
construct simple subroutines that create superpositions of trajectories in the environment
and evaluate the returns of these trajectories.

▶ Lemma 7 (Superposition of trajectories). Let M be a quantum-accessible MDP with oracles
P,R as defined in Def. 5, and let πθ be a quantum-evaluatable policy with its unitary
implementation Π as defined in Def. 6. A unitary that prepares a coherent superposition of
all trajectories τ = (s0, a0, . . . , sT −1, aT −1) of length T (without their rewards), i.e.,

UP (τ) : |θ⟩ |s0⟩ |0⟩ 7→ |θ⟩
∑

τ

√
Pθ(τ) |s0, a0, . . . , sT −1, aT −1⟩ (11)

for Pθ(τ) =
∏T −1

t=0 πθ(at|st)P (st+1|st, at), can be implemented using O(T ) calls to P and Π.

Proof. We apply sequentially Π and P on the registers indexed {0, 2i + 1, 2i + 2} and
{2i + 1, 2i + 2, 2i + 3} respectively, for i = 0, . . . , T − 1. This amounts to T calls to each
oracle. ◀

▶ Lemma 8 (Return). Let M be a quantum-accessible MDP with oracles P,R as defined
in Def. 5, and let τ = (s0, a0, . . . , sT −1, aT −1) be a trajectory of length T in this MDP
(without its rewards). A unitary that computes the return R(τ) =

∑T −1
t=0 γtrt associated to

this trajectory, i.e.,

UR(τ) : |τ⟩ |0⟩ 7→ |τ⟩ |R(τ)⟩ (12)

can be implemented using O(T ) calls to R.

Proof. Using T calls to R, we simply collect all the rewards of the trajectory in an additional
register. Then we simulate a classical circuit that computes the discounted sum of these
rewards R(τ) (then uncompute the rewards using T calls to R on the same register). ◀

2.4 Quantum policies
The efficiency of our quantum policy gradient algorithms depends on regularity conditions
on the policies πθ to be trained. Particularly well-behaved policies are policies defined out
of parametrized quantum circuits (PQC) [2] that have been previously studied in classical
reinforcement learning environments [21]. For each of our numerical and analytical gradient
estimation algorithms, we will be interested more specifically in a certain type of PQC-policies,
depicted in Fig. 1, and defined below.

▶ Definition 9 (raw-PQC). Given a PQC acting on n qubits, taking as input a state s ∈ S
and parameters ϕ ∈ Rd, such that its corresponding unitary U(s,ϕ) produces the quantum
state |ψs,ϕ⟩ = U(s,ϕ) |0⊗n⟩, we define its associated raw-PQC policy as:

πθ(a|s) = ⟨Pa⟩s,θ (13)

where ⟨Pa⟩s,θ = ⟨ψs,ϕ|Pa|ψs,ϕ⟩ is the expectation value of a projection Pa associated to
action a, such that

∑
a Pa = I and PaPa′ = δa,a′Pa. θ = ϕ constitutes all of its trainable

parameters.
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Figure 1 The parametrized quantum policies considered in this work. A parametrized
quantum circuit (PQC) taking as input the agent’s state s and parameters ϕ produces a quantum
state which has probability ⟨Pi⟩s,ϕ of being projected onto the (computational) basis state |i⟩. The
raw-PQC policy simply assigns a subset of these basis states to each action a ∈ A, and its parameters
are θ = ϕ. The softmax1-PQC policy uses instead a fixed assignment of ϕ, and computes the
weighted expectation values ⟨Oa⟩s,θ =

∑
i
wa,i ⟨Pi⟩s.1 The softmax of these expectation values gives

the policy πθ, whose parameters are θ = w.

▶ Definition 10 (softmax-PQC). Given a PQC acting on n qubits, taking as input a state
s ∈ S and parameters ϕ ∈ Rd′ , such that its corresponding unitary U(s,ϕ) produces the
quantum state |ψs,ϕ⟩ = U(s,ϕ) |0⊗n⟩, we define its associated softmax-PQC policy as:

πθ(a|s) = e⟨Oa⟩s,θ∑
a′ e

⟨Oa′ ⟩s,θ

(14)

where ⟨Oa⟩s,θ = ⟨ψs,ϕ|
∑

i wa,iHa,i|ψs,ϕ⟩ is the expectation value of the weighted Hermitian
operators Ha,i associated to action a with weights wa,i ∈ R. θ = (ϕ,w) constitutes all of its
trainable parameters.

More specifically, we are interested in a restricted family of softmax-PQC policies:

▶ Definition 11 (softmax1-PQC). We define a softmax1-PQC policy as a softmax-
PQC where ϕ = ∅ and, for all a ∈ A, Ha,i = Pa,i is a projection on a subspace indexed by
i, such that

∑
i Pa,i = I and Pa,iPa,i′ = δi,i′Pa,i.2

We call the resulting policy a softmax1-PQC, as its log-policy gradient is always bounded
in ℓ1-norm, i.e., ∥∇θ log πθ(a|s)∥1 ≤ 2, ∀s, a, θ (see Lemma 20).

2.5 Core subroutines

The core methods behind numerical and analytical policy gradient algorithms both have their
quantum analogs, that offer up to quadratic speed-ups in certain regimes. In this section,
we present these quantum subroutines and explain the conditions that govern the speed-up
regimes.

1 Note that the choice of basis for the measurement, i.e., the Pi’s, could also depend on a.
2 This constraint includes the degenerate case where Pa,i = Pa′,i = Pi, for all a, a′, illustrated in Fig. 1.
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2.5.1 Quantum gradient estimation
Quantum algorithms for gradient estimation have been studied since early works in quantum
computing. Notably, Jordan’s algorithm [22] manages to estimate gradients ∇θf(θ) with a
query complexity that is independent of their dimension d = |θ|. However, this algorithm
assumes a very powerful binary oracle access to the input function f (see Def. 2). And for
functions that cannot be evaluated to arbitrary precision ε with a negligible cost in ε−1 (e.g.,
O(1) or O(log

(
ε−1))), which is the case of value functions, the construction of this oracle

introduces non-negligible costs [14]. More precisely, these costs depend on the dimension d,
but also on the smoothness of the derivatives of f , as smoother functions are more amenable
to efficient evaluation of their gradient. Notably, a measure of smoothness that has been
studied for quantum gradient estimation is the Gevrey condition [14, 8]:

▶ Definition 12 (Gevrey functions). Let d ∈ N, σ ∈ [0, 1], M > 0, c > 0, Ω ⊆ Rd an open
subset and f : Rd → R. We say that f is a Gevrey function on Ω with parameters M , c
and σ, and denote f ∈ Gd,M,c,σ,Ω when all (higher order) partial derivatives of f exist, and
the following upper bound on its partial derivatives is satisfied for all x ∈ Ω, k ∈ N0 and
α ∈ [d]k:

|∂αf(x)| ≤ M

2 ck(k!)σ. (15)

The query complexity of the quantum gradient estimation algorithm is summarized in the
following theorem:

▶ Theorem 13 (Numerical gradient estimation (Theorem 3.8 in [8])). Given phase oracle
access Of to a function f ∈ Gd,M,c,σ,Ω, an ε ∈ (0, c), and an x ∈ Ω (such that a hypercube
of edge length O(log(cdσ/ε)/ε) centered around x is still in Ω), there exists an algorithm
that returns an ε-precise estimate of ∇f(x) in ℓ∞-norm with success probability at least 2/3
using

Õ
(
Mcdmax{σ,1/2}

ε

)
(16)

queries to Of .

Notably, in this case the dependence on the dimension of the gradient can only be reduced
to

√
d when the Gevrey condition of f satisfies σ ≤ 1/2.

2.5.2 Quantum multivariate Monte Carlo
Quantum algorithms for estimating the mean E[X] of a univariate random variable X taking
values in R [31] have been studied since early works by Grover [17], and culminated to a
near-optimal algorithm that outperforms any classical estimator [19]. However, the case of
multivariate random variables X taking values in Rd has been studied only more recently
[10, 9, 20], and exhibits a dependence on the dimension d that can be up to exponentially
worse than for classical estimators (which is O(log(d)), see Lemma 25). Before presenting
explicitly this dependence on d, we first define the input model we consider for this problem:

▶ Definition 14 (Quantum samples). Consider a finite random variable X : Ω → E on a
probability space (Ω, 2Ω, P ). Let HΩ and HE be two Hilbert spaces with basis states {|ω⟩}ω∈Ω
and {|x⟩}x∈E respectively. We say that we have quantum-sample access to X when we can
call the two following oracles:
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1. A unitary UP acting on HΩ as:

UP : |0⟩ 7→
∑
ω∈Ω

√
P (ω) |ω⟩ (17)

and its inverse U−1
P .

2. A binary oracle BX acting on HΩ ⊗ HE such that:

BX : |ω⟩ |0⟩ 7→ |ω⟩ |X(ω)⟩ . (18)

▶ Theorem 15 (Multivariate Monte Carlo estimation (Theorem 3.3 in [9])). Let X be a
d-dimensional bounded random variable such that ∥X∥p ≤ B for some p ≥ 1. Given
quantum-sample access to X, for any ε, δ > 0, there exists a quantum multivariate mean
estimator that returns an ε-precise estimate of E[X] in ℓ∞-norm with success probability at
least 1 − δ using

Õ
(
Bdξ(p)

ε

)
(19)

queries to X, where ξ(p) = max{0, 1
2 − 1

p }.

In contrast to the exposition of Theorem 3.3 in [9], we have used Hölder’s inequality
∥X∥2 ≤ dξ(p)∥X∥p to make use of a bound on X in any ℓp-norm, renormalized X by dξ(p)B

(a factor which reappears linearly in the number of oracle calls needed, as it impacts linearly
the precision needed), and trivially upper bounded E[∥X∥2] by L2 = 1.

3 Numerical gradient estimation

We obtain our numerical policy gradient algorithm from the quantum gradient estimation
subroutine introduced in Sec. 2.5.1. For this, we need to construct a phase oracle to the
value function Vπθ

(s0), which can easily be obtained from the unitaries UP (τ) and UR(τ)
constructed in Lemma 7 and 8 (see below). But we also need to show that the value function
satisfies a Gevrey condition σ ≤ 1/2 in order to get a full quadratic speed-up in sample
complexity. For this, we identify the quantity:

D = max
k∈N∗

(Dk)1/k (20)

where N∗ = N\{0} ∪ {∞} and

Dk = max
s∈S,α∈[d]k

∑
a∈A

|∂απθ(a|s)|. (21)

which we show governs the Gevrey condition of the value function. More precisely, we find
in Lemma 26 that it satisfies σ = 0,M = 4|R|max

1−γ and c = DT 2 in Def. 12. This allows us to
show the following Theorem:

▶ Theorem 16 (Numerical policy gradient algorithm). Let πθ be a policy parametrized
by a vector θ ∈ Rd, that can be used to interact with a quantum-accessible MDP M =
(S,A, P,R, |R|max, T, γ) with γT ≥ 2, and such that πθ has a bounded smoothness parameter
D, defined in Eq. (20). The gradient of the value function corresponding to this policy,
∇θVπθ

(s0), can be evaluated to error ε in ℓ∞-norm, using
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Õ
(√

d
DT 2|R|max
ε(1 − γ)

)
(22)

length-T episodes of interaction with the environment using a quantum numerical gradient
estimator, while a classical numerical gradient estimator needs

Õ

(
d

(
DT 2|R|max
ε(1 − γ)

)2)
(23)

length-T episodes of interaction with the environment.

Proof. We apply Theorem 13 for f = Vπθ
(s0) as a function of θ. To construct the phase

oracle Of , we first construct a probability oracle Õf to f . For this we apply on the state
|s0⟩ |0⟩ the unitaries UP (τ) and UR(τ) from Lemmas 7 and 8 respectively, to get

|θ⟩ |s0⟩ |0⟩ |0⟩ 7→ |θ⟩
∑

τ

√
Pθ(τ) |τ⟩ |R(τ)⟩ |0⟩ . (24)

Then we rotate the last qubit proportionally to the return R(τ), such that the probability of
this qubit being |0⟩ encodes the value function:

7→ |θ⟩
∑

τ

√
Pθ(τ) |τ⟩ |R(τ)⟩

(√
R̃(τ) |0⟩ +

√
1 − R̃(τ) |1⟩

)
(25)

= |θ⟩
√
Ṽπθ

(s0) |ψ0⟩ |0⟩ +
√

1 − Ṽπθ
(s0) |ψ1⟩ |1⟩ (26)

where R̃(τ) = R(τ)(1−γ)
|R|max

and Ṽπθ
(s0) = Vπθ

(s0)(1−γ)
|R|max

. This probability oracle Õf can be
converted into a phase oracle Of using Lemma 3, which only comes with a logarithmic
overhead in the query complexity.
From Lemma 26, we know that the value function satisfies the Gevrey conditions for
σ = 0,M = 4|R|max

1−γ and c = DT 2, in Theorem 13, resulting in the stated quantum query
complexity.

The classical query complexity is proven in Lemma 30. ◀

Note that the total query complexity of the quantum and classical numerical gradi-
ent estimators, in terms of the number of calls to P and R, is Õ

(√
d

DT 3|R|max
ε(1−γ)

)
and

Õ
(
d

D2T 5|R|2
max

ε2(1−γ)2

)
, respectively.

The raw-PQC policies are then a perfect fit for these algorithms as we can show that:

▶ Lemma 17. Any raw-PQC policy as defined in Def. 9 satisfies D ≤ 1.

See Appendix D for a proof.

▶ Corollary 18. Any raw-PQC policy as defined in Def. 9 can benefit from a full quadratic
speed-up from quantum numerical gradient estimation.
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4 Analytical gradient estimation

We obtain our analytical policy gradient algorithm by applying the quantum multivariate
Monte Carlo algorithm of Sec. 2.5.2 to the formulation of the gradient given by the policy
gradient theorem (see Sec. 2.1.2). The random variable in this formulation

X(τ) =
T −1∑
t=0

∇θ log πθ(at|st)R(τ) (27)

can easily be bounded in ℓp-norm given an upper bound on the return R(τ) and the ℓp-norm
of the gradient of the log-policy:

Bp = max
s∈S,a∈A

∥∇θ log πθ(a|s)∥p. (28)

With this notation we can show the following Theorem:

▶ Theorem 19 (Analytical policy gradient algorithm). Let πθ be a policy parametrized
by a vector θ ∈ Rd, that can be used to interact with a quantum-accessible MDP M =
(S,A, P,R, |R|max, T, γ), and such that πθ has a bounded smoothness parameter Bp for some
p ≥ 1, defined in Eq. (28). Call ξ(p) = max{0, 1

2 − 1
p }. The gradient of the value function

corresponding to this policy, ∇θVπθ
(s0), can be evaluated to error ε in ℓ∞-norm, using

Õ
(
dξ(p)BpT |R|max

ε(1 − γ)

)
(29)

length-T episodes of interaction with the environment using a quantum analytical gradient
estimator, while a classical analytical gradient estimator needs

Õ

((
BpT |R|max
ε(1 − γ)

)2
)

(30)

length-T episodes of interaction with the environment.3 Notably, for p ∈ [1, 2], we get a full
quadratic speed-up in the quantum setting.

Proof. We apply Theorem 15 for the random variable X(τ) =∑T −1
t=0 ∇θ log πθ(at|st)

∑T −1
t′=0 γ

t′
rt′ distributed according to Pθ(τ) =∏T −1

t=0 πθ(at|st)P (st+1|st, at).
To construct the appropriate quantum access to X(τ) (see Def. 14), we use the unitary

UP (τ) defined in Lemma 7 to implement UP , and implement the binary oracle BX using the
unitary UR(τ) defined in Lemma 8 along with a simulated classical circuit that multiplies the
returns R(τ) =

∑T −1
t′=0 γ

t′
rt′ with

∑T −1
t=0 ∇θ log πθ(at|st).

From Lemma 23, we get the bound ∥X(τ)∥p ≤ T Bp|R|max
1−γ , which we use as the bound B

in Theorem 15, resulting in the stated quantum query complexity.
The classical complexity derives directly from Lemma 25 by noting that ∥X(τ)∥∞ ≤

∥X(τ)∥p for any p ≥ 1, and that sampling a trajectory τ (to compute a sample of X(τ))
requires 1 episode of interaction with the environment. ◀

3 Note that the classical estimator still has a logarithmic dependence in d, hidden in the Õ notation.
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Note that the total query complexity of the quantum and classical analytical gradi-
ent estimators, in terms of the number of calls to P and R, is Õ

(
dξ(p) BpT 2|R|max

ε(1−γ)

)
and

Õ
(

B2
pT 3|R|2

max
ε2(1−γ)2

)
, respectively.

The softmax1-PQC policies are then a perfect fit for these algorithms as we can show that:

▶ Lemma 20. Any softmax1-PQC policy as defined in Def. 11 satisfies B1 ≤ 2.

See Appendix E for a proof.

▶ Corollary 21. Any softmax1-PQC policy as defined in Def. 11 can benefit from a full
quadratic speed-up from quantum analytical gradient estimation.

5 Discussion

In this work, we design quantum algorithms to train parametrized policies in quantum-
accessible environments. These algorithms can provide up to quadratic speed-ups in the
number of interactions needed to evaluate the parameter updates of these policies, provided
the environments allow for the appropriate quantum access. Their sample complexity is
mostly governed by the number of parameters d of the policy, as well as the smoothness
parameters D and Bp, depending on whether the numerical or analytical gradient estimation
is used. These two smoothness parameters are hard to relate to each other in general, making
the performances of these two algorithms hard to compare. Nonetheless, we show that
quantum policies previously studied in the literature are smooth with respect to each of these
parameters (i.e., with D or B1 in O(1)), which allows them to benefit from a full quadratic
speed-up in sample complexity.

We note that in our results we only obtain quadratic speed-ups over specific classical
algorithms that exploit the same smoothness conditions as our quantum algorithms. In order
to strengthen these results, one would ideally prove matching lower bounds for the classical
complexity of this task. We leave as an open question whether known classical lower bounds
[1, 26] can be adapted to policy gradient evaluation.

In the analysis of the smoothness of the value function in Appendix F (specifically around
Eq. (68)), we end up bounding its derivatives ∂αV

(t)
πθ (s) using a loose upper bound, especially

in the regime where the order k = |α| of the derivation is small. The reason for this loose
bound is that we need to cast it as a Gevrey condition in order to apply the numerical gradient
algorithms of Refs. [14, 8]. We conjecture that a modification of the construction in [14, 8]
may be possible such as to gain an improvement by a factor of T in the sample complexity
of our numerical gradient algorithm, and such that the resulting scaling in T would match
that of our analytical gradient estimation algorithm. Side-stepping the Gevrey-formulation
of the bound would also remove the need for the condition γT ≥ 2 that we enforce in the
MDP (which is in any case not a very limiting condition, as MDPs of interest usually have a
large horizon T and a discount factor γ close to 1 – typically T ≈ 10 000 and γ ≈ 0.99 for
Atari games [30]).
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A Simple derivation of the policy gradient theorem

▶ Theorem 22 (Policy gradient theorem [40]). Given a policy πθ that generates trajectories
τ = (s0, a0, r0, s1, . . .) in a reinforcement learning environment with time horizon T ∈ N∪{∞},
the gradient of the value function Vπθ

with respect to θ is given by

∇θVπθ
(s0) = Eτ

[
T −1∑
t=0

∇θ log πθ(at|st)
T −1∑
t′=0

γt′
rt′

]
. (31)

Proof. Call R(τ) =
∑T −1

t=0 γtrt the return of a trajectory τ , and Pθ(τ) =∏T −1
t=0 πθ(at|st)PE(st+1|st, at) the probability of this trajectory, where PE describes the

unknown dynamics of the environment.
Then, we can write the value function as

Vπθ
(s0) =

∑
τ

Pθ(τ)R(τ) (32)

and its gradient as

∇θVπθ
(s0) =

∑
τ

∇θPθ(τ)R(τ) (33)

=
∑

τ

Pθ(τ)∇θPθ(τ)
Pθ(τ) R(τ) (34)

=
∑

τ

Pθ(τ)∇θ log(Pθ(τ))R(τ) (35)

=
∑

τ

Pθ(τ)
T −1∑
t=0

∇θ log(πθ(at|st))R(τ) (36)

= Eτ

[
T −1∑
t=0

∇θ log(πθ(at|st))R(τ)
]

(37)

where we have artificially divided and multiplied each term by Pθ(τ) in the second line,
and used the independence on θ of the environment dynamics PE(st+1|st, at) in the fourth
line. ◀

B Lemmas concerning properties of MDPs

B.1 An upper bound on the value function
▶ Lemma 23. Consider an MDP M = (S,A, P,R, |R|max, T, γ) as defined in Def. 4. The
value function Vπθ

(s0) = E
[∑T −1

t=0 γtrt

]
of any policy πθ, evaluated on any initial state

s0 ∈ S is upper bounded by

|Vπθ
(s0)| ≤ min

{
T,

1
1 − γ

}
|R|max. (38)
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Proof. We have, by definition of the MDP, rt ≤ |R|max, which implies:∣∣∣∣∣
T −1∑
t=0

γtrt

∣∣∣∣∣ ≤
T −1∑
t=0

γt|rt| ≤
T −1∑
t=0

γt|R|max ≤

{ |R|max
1−γ if γ < 1
T |R|max always

(39)

which also holds in expectation value over all trajectories of length T . ◀

B.2 The effective time horizon of an MDP
▶ Lemma 24. Consider an MDP M = (S,A, P,R, |R|max, T, γ) as defined in Def. 4, with
an infinite horizon T = ∞, γ < 1 and a value function Vπθ

. The finite-horizon MDP
M′ = (S,A, P,R, |R|max, T

∗, γ), where

T ∗ =


log
(

ε(1−γ)
|R|max

)
log(γ)

 = Õ
(

1
1 − γ

)
(40)

has a value function V ′
πθ

that satisfies∣∣Vπθ
(s0) − V ′

πθ
(s0)

∣∣ ≤ ε (41)

for any initial state s0 ∈ S and any policy πθ.

Proof.

∣∣Vπθ
(s0) − V ′

πθ
(s0)

∣∣ =

∣∣∣∣∣E
[ ∞∑

t=0
γtrt

]
− E

[
T ∗−1∑
t=0

γtrt

]∣∣∣∣∣ (42)

=

∣∣∣∣∣E
[ ∞∑

t=T ∗

γtrt

]∣∣∣∣∣ (43)

≤ γT ∗ |R|max
1 − γ

(44)

≤ ε(1 − γ)
|R|max

|R|max
1 − γ

= ε. (45)

◀

Because of this lemma, we always assume the time horizon T of an MDP to be in
Õ
(

1
1−γ

)
.

C Complexity of a classical MVMC algorithm

▶ Lemma 25 (Classical multivariate Monte Carlo estimation). Let X be a d-dimensional
bounded random variable such that ∥X∥∞ ≤ B. Given sampling access to X, ε, δ > 0, there
exists a classical multivariate mean estimator that returns an ε-precise estimate of E[X] in
ℓ∞-norm with success probability at least 1 − δ using

Õ

((
B

ε

)2
)

(46)

samples of X.
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Proof. Consider the following algorithm:
1. Collect N =

⌈
2B2

ε2 log
( 2d

δ

)⌉
samples of X:

{
x(i) = (x(i)

1 , . . . , x
(i)
d )
}

1≤i≤N
.

2. Compute the d coordinate-wise averages x̂j = 1
N

∑N
i=1 x

(i)
j and use x̂ = (x̂1, . . . , x̂d) as

an estimate.
Now consider the probability of failure of this algorithm, i.e., that at least one of the estimates
is more than ε away from its expected value:

P

∨
j∈[d]

|x̂j − E[xj ]| ≥ ε

 ≤
d∑

j=1

P (|x̂j − E[xj ]| ≥ ε) # union bound

≤ d × max
j∈[d]

P (|x̂j − E[xj ]| ≥ ε)

≤ 2d exp
(

−2N2ε2

4NB2

)
# Hoeffding’s bound and bound on xj

≤ δ. # definition of N

Hence, for arbitrary ε and δ, the d expectations can be estimated to error ε in the ℓ∞-norm
with success probability 1 − δ using N = O

(
B2

ε2 log
(

d
δ

))
samples of X. ◀

D Proof of Lemma 17

▶ Lemma 17. Any raw-PQC policy as defined in Def. 9 satisfies D ≤ 1.

Proof. Given a raw-PQC policy πθ as defined in Def. 9, we seek to bound the following
quantity:

D = max
k∈N∗

(Dk)1/k (47)

where

Dk = max
s∈S,α∈[d]k

∑
a∈A

|∂απθ(a|s)|. (48)

Gradients of this PQC policy can be evaluated using the parameter-shift rule [34]:

∂iπθ(a|s) = ∂i ⟨Pa⟩s,θ =
⟨Pa⟩s,θ+ π

2 ei
− ⟨Pa⟩s,θ− π

2 ei

2 (49)

which can easily be generalized to higher-order derivatives [3]:

∂απθ(a|s) = 1
2k

∑
ω

cω ⟨Pa⟩s,θ+ω (50)

for α ∈ [d]k,ω ∈ {0,± π
2 ,±π,±

3π
2 }d, and cω ∈ Z such that

∑
ω |cω| = 2k.

Now, by combining Eq. (48) and (50), we get:

Dk = max
s∈S,α∈[d]k

∑
a∈A

∣∣∣∣∣ 1
2k

∑
ω

cω ⟨Pa⟩s,θ+ω

∣∣∣∣∣ (51)

≤ max
s∈S,α∈[d]k

1
2k

∑
a∈A

∑
ω

|cω|
∣∣∣⟨Pa⟩s,θ+ω

∣∣∣ (52)

= max
s∈S,α∈[d]k

1
2k

∑
ω

|cω|
∑
a∈A

∣∣∣⟨Pa⟩s,θ+ω

∣∣∣ = 1. (53)

where in the last line we used
∑

a Pa = I in the definition of the raw-PQC policy and∑
ω |cω| = 2k.

Since this bound is valid for all k ∈ N∗, then also D ≤ 1. ◀
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E Proof of Lemma 20

▶ Lemma 20. Any softmax1-PQC policy as defined in Def. 11 satisfies B1 ≤ 2.

Proof. Given a softmax1-PQC policy πθ as defined in Def. 11, we seek to bound the
following quantity:

B1 = max
s∈S,a∈A

∥∇θ log πθ(a|s)∥1. (54)

From the definition of this policy, we have:

⟨Oa⟩s,θ = ⟨ψs|
∑

i

wa,iPa,i|ψs⟩ (55)

such that
∑

i Pa,i = I and Pa,iPa,i′ = δi,i′Pa,i, ∀a ∈ A. This implies that

∂wa′,i
⟨Oa⟩s,θ = δa,a′ ⟨ψs|Pa′,i|ψs⟩ = δa,a′ ⟨Pa′,i⟩s . (56)

Since this is a softmax-PQC, it follows from Lemma 1 in [21] that:

∂wa′,i
log πθ(a|s) = ∂wa′,i

⟨Oa⟩s,θ −
∑

a′′∈A
πθ(a′′|s)∂wa′,i

⟨Oa′′⟩s,θ (57)

= δa,a′ ⟨Pa′,i⟩s − πθ(a′|s) ⟨Pa′,i⟩s . (58)

Therefore,

∥∇θ log πθ(a|s)∥1 =
∑
a′,i

∣∣∣∂wa′,i
log πθ(a|s)

∣∣∣ (59)

≤
∑
a′,i

[∣∣δa,a′ ⟨Pa′,i⟩s

∣∣+
∣∣πθ(a′|s) ⟨Pa′,i⟩s

∣∣] (60)

≤
∑

i

⟨Pa,i⟩s +
∑
a′,i

πθ(a′|s) ⟨Pa′,i⟩s (61)

≤ 1 + max
a′

∑
i

⟨Pa′,i⟩s (62)

≤ 2 (63)

where we made use of the triangle inequality in the first inequality, the positivity of ⟨Pa,i⟩s

and πθ(a′|s) in the second inequality, and the normalization constraint of {Pa,i}i in the third
and fourth inequalities. ◀

F Gevrey condition of value functions

In this section, we investigate the smoothness of the value function, in terms of the smoothness
of the policy. More precisely, we prove the following lemma:

▶ Lemma 26. Let πθ be a parametrized policy with a bounded smoothness parameter D,
defined in Eq. (20). Let M = (S,A, P,R, |R|max, T, γ) be an MDP as defined in Def. 4 with
Tγ ≥ 2. Then the value function Vπθ

(s0) associated to the policy πθ in M, as a function of
the policy parameters θ, satisfies the Gevrey conditions of Def. 12 for σ = 0,M = 4|R|max

1−γ

and c = DT 2.
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As a first step, we observe that we can use the Markovian nature of an MDP to describe the
value function as the limit of a sequence of improving approximations, by iteratively increasing
the time horizon at which we evaluate the MDP. More precisely, we define inductively, for all
states s ∈ S and time horizons t ≥ 0,

V (t+1)
πθ

(s) =
∑
a∈A

πθ(a|s)
[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (t)
πθ

(s′)
]
,

where for the induction basis, we use V (0)
πθ (s) = 0, for all states s ∈ S. We easily check that

the value function at time horizon T ∈ N∪{∞} of an MDP, Vπθ
(s), is indeed given by letting

t go to T in the above definition.
This recursive definition of approximations to the value function provides us with a

convenient handle on its derivatives. In particular, for all integers k, t > 0 and sequences
α ∈ [d]k, where d is the number of parameters of θ, i.e., θ ∈ Rd, we obtain that

∂α

[
V (t+1)

πθ
(s) − V (t)

πθ
(s)
]

= γ∂α

[∑
a∈A

πθ(a|s)
∑
s′∈S

P (s′|s, a)(V (t)
πθ

(s′) − V (t−1)
πθ

(s′))
]
. (64)

Since the value function with time horizon t = 0 vanishes, we can express the partial
derivatives at any given time horizon t as the telescoping sum

∂αV
(t)

πθ
(s) =

t−1∑
t′=0

∂α

[
V (t′+1)

πθ
(s) − V (t′)

πθ
(s)
]
.

The main idea of this section is to expand the expression on the right-hand side in the above
equation, using the recursive characterization provided in Eq. (64).

We start by defining some shorthand notation:

▶ Definition 27. Let M = (S,A, P,R, |R|max, T, γ) be an MDP, and πθ be a policy para-
metrized by θ ∈ Rd. Let V (t)

πθ be its value function with horizon t > 0, and for all k, t > 0,
let

g(k, t) = max
s∈S,α∈[d]k

∣∣∣∂α

[
V (t+1)

πθ
(s) − V (t)

πθ
(s)
]∣∣∣ , and U(k, t) =

t−1∑
t′=0

g(k, t′).

We observe that

|∂αV
(t)

πθ
(s)| ≤

t−1∑
t′=0

∣∣∣∂α

[
V (t′+1)

πθ
(s) − ∂αV

(t′)
πθ

(s)
]∣∣∣ ≤

t−1∑
t′=0

g(k, t′) = U(k, t), (65)

and hence to bound the smoothness of (the approximations to) the value function, it suffices
to find a good upper bound on U(k, t). The previous definition already foreshadows that
the resulting expression explicitly depends on the smoothness of the policy through the
parameter D.

In order to upper bound U(k, t), we first find an expression that upper bounds g(k, t),
which is the objective of the following lemma.

▶ Lemma 28. Let M = (S,A, P,R, |R|max, T, γ) be an MDP, and πθ be a policy parametrized
by θ ∈ Rd. Let V (t)

πθ be its value function with horizon t > 0. For all k ∈ N, let Λk be the
set of all partitions of k, where every partition λ ∈ Λk is a multiset of positive integers that
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sums to k. By {λ}, we denote the set of elements in λ, i.e., without repetition. We let #ℓ(λ)
be the number of occurrences of ℓ in the multiset λ, and let #λ = {#ℓ(λ) : ℓ ∈ {λ}} be the
multiset of occurrences in λ. For all non-negative integers k, t, we have

g(k, t) ≤ γt|R|max ·
∑

λ∈Λk

(
k

λ

)(
|λ|
#λ

)(
t+ 1
|λ|

)∏
ℓ∈λ

Dℓ.

Proof. We give a combinatorial argument. To that end, let k, t ≥ 0 be integers, and let
α ∈ [d]k be a finite sequence of indices with respect to which we want to compute the partial
derivative of V (t)

πθ . The main idea is to apply the product rule to the expression on the
right-hand side of Eq. (64).

In particular, by repeatedly substituting the right-hand side of Eq. (64) into itself, we
obtain that there are t+ 1 probabilities πθ(a|s) to which we can associate any given index of
α. Thus, we count the number of occurrences where the distribution of indices in α across
the t+ 1 different factors forms the partition λ ∈ Λk. We call this number cλ, and we indeed
observe that all these terms are upper bounded by

∏
ℓ∈λ Dℓ, which means that it remains to

prove that

cλ =
(
k

λ

)(
|λ|
#λ

)(
t+ 1
|λ|

)
.

Observe that we must first choose which factors to assign any derivative to at all, which
can be done in

(
t+1
|λ|
)

ways. Then, we must decide how many derivatives we are going to
assign to each of the selected factors, which can be done in

( |λ|
#λ

)
ways. Finally, we must

distribute the k derivatives among the groups, which can be done in
(

k
λ

)
ways. This completes

the proof. ◀

Now that we have found an expression that upper bounds g(k, t), we can use it to upper
bound U(k, t) as well. This is the objective of the following lemma.

▶ Lemma 29. Let M = (S,A, P,R, |R|max, T, γ) be an MDP, and πθ be a policy parametrized
by θ ∈ Rd. Let V (t)

πθ be its value function with horizon t > 0. For all non-negative integers
k, t such that γ ≥ 2/t, we have

U(k, t) ≤ 2|R|max

1 − γ
· (γDt2)k.

Proof. By plugging in the bound derived in Lemma 28, we obtain directly that

U(k, t) =
t−1∑
t′=0

g(k, t) ≤
t−1∑
t′=0

γt′
|R|max

∑
λ∈Λk

(
k

λ

)(
|λ|
#λ

)(
t′ + 1

|λ|

)∏
ℓ∈λ

Dℓ. (66)

First, for all λ ∈ Λk, we observe that the final product can be upper bounded as∏
ℓ∈λ

Dℓ =
∏
ℓ∈λ

(D1/ℓ
ℓ )ℓ ≤

∏
ℓ∈λ

Dℓ = Dk.

Next, we can swap the summations in Eq. (66), and after rewriting we obtain

U(k, t) ≤ |R|maxD
k ·

k∑
r=1

∑
k1,...,kr∈N

k1+···+kr=k

(
k

k1, . . . , kr

)
r! ·

t−1∑
t′=0

γt′
(
t′ + 1
r

)
. (67)
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We now focus on the final summation in the above expression. First, we observe that if t < r,
then all the binomial coefficients evaluate to 0, and therefore the summation as a whole
vanishes as well. Thus, the only terms in the above expression that are non-zero are those
where r ≤ t, which means that we can change the upper limit of summation in the outermost
summation to min(k, t). We can take at least r factors of γ out, and as such obtain

t−1∑
t′=0

γt′
(
t′ + 1
r

)
= γr

t−r−1∑
t′=0

γt′
(
t′ + r + 1

r

)
≤ γr

(
t

r

) t−r−1∑
t′=0

γt′
≤ γrtr

(1 − γ)r! .

Plugging this expression back into Eq. (67) yields

U(k, t) ≤ |R|maxD
k

1 − γ
·
min(k,t)∑

r=1
(γt)r

∑
k1,...,kr∈N

k1+···+kr=k

(
k

k1, . . . , kr

)
= |R|maxD

k

1 − γ
·
min(k,t)∑

r=1
(γt)rrk. (68)

In the summation on the right-hand side, the last term is by far the biggest. We can show
this crudely by observing that for all a ≥ 2,

1
nkan

n∑
r=1

rkar =
n∑

r=1

( r
n

)k

ar−n ≤
n∑

r=1

(
1
a

)n−r

≤
n−1∑
r=0

(
1
2

)r

≤ 2.

Thus, by setting n = min(k, t), and a = γt, we obtain that

U(k, t) ≤ 2|R|max

1 − γ
· (γDt2)k.

This completes the proof. ◀

Lemma 26 then follows immediately from this lemma and Eq. (65) for t = T .

G Classical complexity of numerical gradient estimation

In this Appendix, we analyze the complexity of a classical numerical gradient estimation
algorithm that relies on the same smoothness conditions of the value function as the quantum
algorithm. More precisely, we show the following lemma:

▶ Lemma 30. Let πθ be a parametrized policy that can be used to interact with an MDP, and
that has a bounded smoothness parameter D, defined in Eq. (20). The gradient of the value
function corresponding to this policy ∇θVπθ

(s0) can be evaluated to error ε in the ℓ∞-norm,
using

Õ

(
d

(
DT 2|R|max
ε(1 − γ)

)2)
(69)

length-T episodes of interaction with the environment using a classical numerical gradient
estimator.

To prove this lemma, we consider a central-difference method that, compared to a simple
finite-difference method, can exploit more evaluations of a function f and bounds on its
higher-order derivatives to evaluate f ′(x) with higher precision. We perform an error analysis
of this method and calculate its query complexity for functions f that cannot be evaluated
exactly but only through Monte Carlo estimation (such as value functions).
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G.1 Central difference numerical differentiation
Suppose that we can evaluate a function f : R → R that is k times differentiable at some
point x ∈ R, with f (k−1) continuous on some interval around x. For δ ∈ R such that x+ δ is
in this interval, Taylor’s theorem (with the Lagrange formulation of the remainder) gives us:

f (x+ δ) = f(x) + f ′(x)δ + f ′′(x)
2! δ2 + . . .+ f (k−1)(x)

(k − 1)! δ
k−1 + f (k)(ξ)

k! δk (70)

for a ξ ∈ [x, x+ δ].
For k = 2 specifically, this expression becomes:{

f (x+ δ) = f(x) + f ′(x)δ + f ′′(ξ+)
2! δ2,

f (x− δ) = f(x) − f ′(x)δ + f ′′(ξ−)
2! δ2,

(71)

for some ξ+, ξ− ∈ [x, x+ δ].
The central difference method for numerical differentiation uses the following formula,

derived from the expressions above:

f ′(x) = f (x+ δ) − f (x− δ)
2δ + f ′′(ξ+) − f ′′(ξ−)

4 δ. (72)

When a bound C2 for f ′′ is known on the interval [x− δ, x+ δ], the remainder term can be
bounded by∣∣∣∣f ′′(ξ+) − f ′′(ξ−)

4 δ

∣∣∣∣ ≤ C2

2 δ. (73)

The method can be generalized to use higher order derivatives (up to some k ∈ N), such that
f ′(x) is now of the form

f ′(x) =
m∑

l=−m

a
(2m)
l f(x+ lδ)

δ︸ ︷︷ ︸
fl

+
m∑

l=−m

a
(2m)
l

f (k)(ξl)
k! lkδk−1

︸ ︷︷ ︸
Rk

(74)

for m = ⌊ k−1
2 ⌋ and where

a
(2m)
l =

{
1 if l = 0,
(−1)l+1(m!)2

l(m+l)!(m−l)! otherwise.
(75)

G.2 Bounding the errors
When a bound Ck for f (k) is known on the interval [x−mδ, x+mδ], the remainder term Rk

can be bounded by

|Rk| ≤

∣∣∣∣∣
m∑

l=−m

a
(2m)
l lk

∣∣∣∣∣Ck

k! δ
k−1 ≤ 2mkCk

k! δ
k−1 (76)

where the last inequality comes from Theorem 3.4 in [8].
In order for |Rk| ≤ ε

2 , we then need

δ ≤ k−1

√
k!ε

4mkCk
. (77)
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We take

δ = 2
e

(
ε

4Ck

)1/k

(78)

≤ (2πk) 1
2k

k

me

(
ε

4Ck

)1/k

(79)

≤

(√
2πk(k/e)kε

4mkCk

)1/k

(80)

≤ k

√
k!ε

4mkCk
(81)

≤ k−1

√
k!ε

4mkCk
. (82)

Moreover, we are interested in the case where f cannot be evaluated exactly, but rather
when we have access to random samples whose expectation value is f(x) (and are bounded
by C0). If we want to estimate each fl, l = −m, . . . ,m, to precision ε

2k (such that we get
their sum to precision ε

2 ), it is sufficient to estimate each f(x+ lδ) to precision εδ

a
(2m)
l

2k
. From

Lemma 25, we have that this requires a total number of queries (or samples) that scales as

Õ

 m∑
l=−m

(
C0ka

(2m)
l

εδ

)2
 ≤ Õ

((
C0k

εδ

)2 m∑
l=−m

∣∣∣a(2m)
l

∣∣∣) (83)

≤ Õ

((
C0k

εδ

)2
(

1 + 2
m∑

l=1

1
l

))
(84)

≤ Õ

((
C0k

εδ

)2
(3 + 2 log(m))

)
(85)

≤ Õ

((
C0k

εδ

)2
)

(86)

where the first two inequalities follow from a
(2m)
0 = 1 (Eq. (75)) and

∣∣∣a(2m)
l

∣∣∣ ≤ 1
|l| , l ∈

{−m, . . . ,m}\{0} (Theorem 3.4 in [8]), and the third inequality follows from a simple upper
bound on harmonic numbers.

Combining Eqs. (78) and (86), we find that a total of

Õ

(C0k

ε

(
Ck

ε

)1/k
)2
 (87)

queries are sufficient to estimate f ′(x) to precision ε.
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G.3 Application to value functions
In the case of value functions, we have Ck = 2|R|max

1−γ

(
DT 2)k ∀k ∈ N (see Lemma 26).

Therefore, we can choose

k = log
(

2|R|max
ε(1 − γ)

)
(88)

and use the identity x1/ log(x) = elog(x)/ log(x) = e, such that, from Eq. (87):

Õ

(
d

(
DT 2|R|max
ε(1 − γ)

)2)
(89)

queries are sufficient to estimate the gradient ∇θVπθ
to ε precision in the ℓ∞-norm. The

multiplicative factor d comes from the fact that we need to estimate each of the d coordinates
of the gradient independently.
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1 Introduction

Local Hamiltonians are ubiquitous in quantum physics and quantum computation. From
the physical perspective, Hamiltonians describe the dynamics and energy spectra of closed
quantum systems, with “local” Hamiltonians corresponding to models where only a small
number of particles can directly interact with each other. From the computational perspective,
local Hamiltonians naturally generalize well-studied constraint satisfaction problems through
the “local Hamiltonian problem”, which asks about the complexity of approximating the
ground-state energy of local Hamiltonians.
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14:2 Local Hamiltonians with No Low-Energy Stabilizer States

▶ Definition (LH-δ(n)). A k-local Hamiltonian, H = 1
m

∑m
i=1 Hi, is a sum of m = poly(n)

Hermitian matrices, Hi ∈ C2n×2n , where each Hi acts non-trivially on at most k = O(1)
qubits1 and has bounded spectral norm, ∥Hi∥ ≤ 1.

Given a local Hamiltonian, H, and two real numbers a < b with b− a > δ(n), the local
Hamiltonian problem with promise gap δ(n) is to decide if (1) there is a state with
energy ⟨ψ0| H |ψ0⟩ ≤ a or (2) all states have energy ⟨ψ| H |ψ⟩ ≥ b, given that one of these
cases is true.2 The value δ(n) is called the promise gap of the problem.

LH is a natural quantum analogue of the NP-complete constraint satisfaction problem
(CSP):3 the local terms serve as quantum constraints on an n-qubit state, and the energy of a
local term corresponds to how well the state satisfies that local constraint. The lowest energy
state – or ground-state – of H is the state that optimally satisfies all of the local constraints.

It is straightforward to show that CSP is NP-complete for a promise gap δ(n) = 1/poly(n),
and the celebrated classical PCP Theorem [7, 8] shows that [surprisingly] CSP is still NP-
complete when δ(n) = Ω(1), a constant. Since LH is the quantum generalization of a CSP
we can similarly ask whether it is complete for the class QMA, the quantum version of NP.
Kitaev showed that LH is QMA-complete for δ(n) = 1/poly(n) when he originally defined
the class of QMA problems [19]. Perhaps the most important open question in quantum
complexity theory is whether or not a quantum version of the PCP theorem holds. The
“quantum PCP conjecture” [3, 1] states that LH with a constant promise gap is QMA-hard;
the conjecture has thus far eluded proof.

As a possible step towards proving quantum PCP, Freedman and Hastings suggested
the No Low-energy Trivial States (NLTS) conjecture which is implied by the quantum PCP
conjecture (assuming NP ̸= QMA). A local Hamiltonian has the NLTS property if there
is a constant strictly larger than the ground-state energy which lower bounds the energy
of any state preparable in constant-depth (“trivial states”). The NLTS conjecture posits
the existence of an NLTS Hamiltonian. This seemingly simpler problem remained open for
nearly a decade until Anshu and Breuckmann solved the combinatorial version [5], followed
shortly after by a complete proof by Anshu, Breuckmann, and Nirkhe [4]. They explicitly
constructed an NLTS Hamiltonian using recently developed asymptotically-good quantum
LDPC codes [20].

While the NLTS Theorem makes significant progress, there are still many other properties
that a candidate Hamiltonian must satisfy in order to be QMA-hard with a constant promise
gap. For instance, Gharibian and Le Gall defined the No Low-energy Sampleable States
(NLSS) conjecture [16]. A state, |ψ⟩ is “sampleable” if a classical computer can efficiently
draw an x ∈ {0, 1}n from the distribution defined by p(x) = |⟨x|ψ⟩|2 and can calculate
all of the amplitudes, ⟨x|ψ⟩.4 A local Hamiltonian has the NLSS property if there is a
constant which lower-bounds the energy of every sampleable state. The NLSS conjecture
posits the existence of an NLSS Hamiltonian, and Gharibian and Le Gall showed that unless
MA = QMA the quantum PCP conjecture implies the NLSS conjecture.

1 Hi = hi ⊗ I2n−k where hi is a 2k × 2k Hermitian matrix and I2n−k is the 2n−k × 2n−k identity matrix
2 This is equivalent to deciding if H has an eigenvalue less than a or if all of the eigenvalues of H are

larger than b, which is the more typical formulation of the problem.
3 Technically LH is a generalization of the decision problem MAX-k-CSP.
4 The more proper terminology, as in [16], would be that |ψ⟩ has a succinct representation allowing

perfect sampling access. We will not be directly addressing the NLSS conjecture, so we will use the
term “sampleable” for brevity.
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In this paper we examine a simplified version of the NLSS conjecture, where instead of
sampleable states we consider stabilizer states. A stabilizer state is the unique state stabilized
by a commuting subgroup of the Pauli group with size 2n. Equivalently, stabilizer states
are those states that can be prepared using only Clifford gates, i.e. Hadamard, Phase, and
CNOT gates. We say that a local Hamiltonian has the No Low-energy Stabilizer States
(NLCS)5 property if there is a constant which lower-bounds the energy of any stabilizer
state.6 The Gottesman-Knill Theorem [18] shows that any stabilizer state can be efficiently
sampled, so any NLSS Hamiltonian must also be an NLCS Hamiltonian. We show that a
generic construction can be used to produce many NLCS Hamiltonians.

To prove the NLCS property for a particular local Hamiltonian one must show an explicit
lower bound on the energy of all stabilizer states. Let H = 1

m

∑
Hi be a local Hamiltonian

and let |ψ⟩ be an n-qubit state. The energy of any particular Hamiltonian term can be
expressed as ⟨ψ| Hi |ψ⟩ = Tr

[
ψAi

hi

]
, where Ai is the set of qubits where Hi acts non-trivially,

ψAi
is the reduced state of |ψ⟩ on Ai, and hi is the non-trivial part of Hi. Suppose for

simplicity that |Ai| = k for all i. One particularly strong way to lower-bound the energy of
|ψ⟩ would be to “locally” bound each energy term. That is, prove that each Tr

[
ψAi

hi

]
is

lower-bounded by a constant. In general this is not an easy task. However, stabilizer states
have a rather convenient property: we show in Claim 3 that if |ψ⟩ is a stabilizer state, then
every ψAi is a convex combination of stabilizer states on k qubits. Thus, to lower-bound
Tr

[
ψAi

hi

]
for every n-qubit stabilizer state, |ψ⟩, it is sufficient to lower-bound the quantity

⟨ζ|hi |ζ⟩ for every k-qubit stabilizer state |ζ⟩.
This observation leads to a rather simple NLCS Hamiltonian. First, consider the Hamil-

tonian H0 = 1
n

∑
|1⟩⟨1|i where |1⟩⟨1|i is the projector to |1⟩ on the i-th qubit and identity

elsewhere. All of the local terms are the single-qubit projector |1⟩⟨1|. Clearly, we cannot
lower-bound the energy of stabilizer states since |0⟩ has energy 0. We can fix this, however,
by instead considering a “conjugated” version of H0:

H̃0 ≡ 1
n

n∑
i=1

(
ei π

8 Y |1⟩⟨1| e−i π
8 Y

)
|i,

which can alternatively be expressed as H̃0 = (ei π
8 Y )⊗nH0(e−i π

8 Y )⊗n. Each local term is
the single-qubit projector ei π

8 Y |1⟩⟨1| e−i π
8 Y , and it is straightforward to calculate that every

single-qubit stabilizer state has high energy under this local term. We give a self-contained
proof that H̃0 is NLCS in Appendix B.

The quantum PCP conjecture not only implies the existence of NLTS/NLCS/NLSS
Hamiltonians, but also the existence of simultaneous NLTS/NLCS/NLSS Hamiltonians. The
process of conjugating a local Hamiltonian by a low-depth circuit conveniently preserves the
NLTS property. That is, if H is NLTS and C is a constant-depth circuit, then C†HC is also
NLTS (see Lemma 4).

We note that since |1⟩⟨1| = 1
2 (I−Z) the Hamiltonian H0 is an example of a CSS

Hamiltonian, i.e. the local Hamiltonian terms are of the form 1
2 (I−Pi) where the Pi’s are

commuting X and Z type Pauli operators. As the Hamiltonian H̃0 is simply H0 conjugated

5 The “C” in NLCS stands for Clifford, since states prepared by Clifford circuits and stabilizer states are
equivalent.

6 The existence of NLCS Hamiltonians has been suggested before as a direct consequence of the quantum
PCP conjecture, for instance in [6]. We discuss the relationship of NLCS and more to the quantum
PCP conjecture in Section 1.1.
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by a depth-1 circuit (e−i π
8 Y )⊗n it may be natural to ask whether the same procedure can

be done to the NLTS Hamiltonians from [4] as they are also CSS Hamiltonians. The main
result of our paper is the following:

▶ Theorem 1 (Informal version of Theorem 12). Let HNLT S be the NLTS local Hamiltonian
from [4]. The local Hamiltonian given by H̃NLT S ≡ (ei π

8 Y )⊗nHNLT S(e−i π
8 Y )⊗n satisfies

both NLTS and NLCS.

We prove Theorem 12 by exhibiting local lower bounds on the individual Hamiltonian
terms. In particular, we show that if h = 1

2 (I−P⊗k) is a k-local term where P ∈ {X,Z},
then

⟨ζ| (ei π
8 Y )⊗kh(e−i π

8 Y )⊗k |ζ⟩ ≥ sin2(π/8)

for every k-qubit stabilizer state |ζ⟩, as long as k is odd. Combining this lower bound with
the fact that the reduced state of a stabilizer state is a convex combination of stabilizer states,
we have that conjugating a CSS Hamiltonian by (e−i π

8 Y )⊗n results in an NLCS Hamiltonian,
at least in the case that many of the Hamiltonian terms act on an odd number of qubits.

The condition of odd weight is unfortunately a necessary condition of our local techniques:
if k is even then there is always a k-qubit stabilizer state with ⟨ζ0| (ei π

8 Y )⊗kh(e−i π
8 Y )⊗k |ζ0⟩ =

0. Nonetheless, we prove in Section 4 of the Full Version that there is an explicit NLTS
Hamiltonian from [4] where every local term acts on an odd number of qubits. Since
conjugating by a constant-depth circuit preserves NLTS, we ultimately have that H̃NLT S

satisfies both NLTS and NLCS.

1.1 Implications of the quantum PCP conjecture
We turn now to the question of what Hamiltonians are guaranteed to exist by the quantum
PCP conjecture. The quantum PCP conjecture has two main formulations; we focus here on
the gap amplification version. See [2] for a great survey on the conjecture.

▶ Conjecture (Conjecture 1.3 of [2]). Let ϵ > 0 be a constant. LH-ϵ is QMA-hard under
quantum polynomial-time reductions.

In other words, the conjecture says there is a worst-case local Hamiltonian whose ground state
energy is QMA-hard to approximate within a constant. Approximating ground-state energies
and finding ground states of local-Hamiltonians are of central importance to condensed
matter theory and quantum simulation algorithms. If true, the quantum PCP conjecture
says that there are some Hamiltonians whose ground-state energies we could never hope to
approximate, let alone find their ground states.7

The key insight of [14] when they defined the NLTS conjecture was that some states have
properties which allow their ground state energies to be calculated in a smaller complexity class
than QMA. For a constant, k, we say that an n-qubit state, ρ, is k-locally-approximable
if it has a polynomial-sized classical description from which every k-local reduced state,
ρA ≡ Tr−A[ρ] where |A| ≤ k, can be approximated to inverse-polynomial precision in
polynomial-time. Consider the following simple result:

▶ Fact 2. Suppose H = 1
m

∑m
i=1 Hi is a k-local Hamiltonian and ρ is a k-locally approximable

state. The energy of ρ under H can be approximated to inverse-polynomial precision in NP.

7 Unless, of course, one believes QMA ⊆ P or some other weakening of QMA.
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Proof. Each Hi acts non-trivially on at most k qubits, Ai ⊂ [n], so the energy of ρ for Hi is
Tr[ρHi] = Tr

[
ρAi

hi

]
, where hi ≡ Tr−Ai

[Hi] is the non-trivial part of Hi. Since hi ∈ C2k×2k

and by assumption we can efficiently compute ρAi
to inverse-polynomial precision from

the classical description of ρ, each Tr[ρHi] can be brute-force approximated in polynomial-
time. ◀

Trivial states are locally approximable. If |ψ⟩ is a trivial state then there is a constant-
depth circuit such that |ψ⟩ = C |0⟩⊗n. For a set of k qubits, A, the only gates that contribute
to ψA are those in the reverse-lightcone8 of A. As the reverse-lightcone has size at most k2d,
a constant, only a constant number of gates from C are needed to brute-force approximate
ψA. Thus, we can approximate local reduced states of |ψ⟩⟨ψ| from the classical description
of C.

The assumption of being able to compute local reduced states also holds for stabilizer
states. Suppose |ψ⟩ is an n-qubit stabilizer state. Since |ψ⟩ is a stabilizer state there are
n independent and commuting Pauli operators {P1, . . . , Pn} that stabilize |ψ⟩. The list of
these Pauli operators will serve as the classical description of |ψ⟩⟨ψ| from which local reduced
states can be computed. The reduced state ψA can be written as

ψA = 1
2k

∑
P ∈GA

P, (1)

where GA is the subgroup of the stabilizers of |ψ⟩ which act non-trivially only on qubits
in A. There are 4k such Pauli group elements (ignoring phases) which we denote by PA.
For P ∈ PA, one of ±P is in the stabilizer group of |ψ⟩ if and only if P commutes with
every stabilizer generator. So, we can determine the elements of GA by brute-force checking
which elements of PA commute with every generator.9 This computation can be done in
polynomial-time since there are only a constant number of Pauli operators to check, so using
Equation (1) we can compute ψA efficiently.

Thus, in addition to being an implication of NLSS, NLCS Hamiltonians are also implied
by the quantum PCP conjecture assuming NP ̸= QMA: if every local Hamiltonian has a
low-energy stabilizer state then the ground state energy could be computed in NP via Fact 2.

2 Preliminaries

For a natural number, n, we denote [n] ≡ {1, . . . , n}. For a subset, A ⊆ [n], we denote the
set complement by −A ≡ [n] \ A and the partial trace over the qubits in A by TrA. In
particular, Tr−A[|ψ⟩⟨ψ|] denotes the local density matrix of |ψ⟩ on the qubits in A.

2.1 States
Let C = {Cn} be a countable family of quantum circuits consisting of one and two-qubits
gates where each Cn acts on n qubits. If the depth of Cn is upper bounded by a function
d(n) for all n, then we say C is a depth-d(n) family of quantum circuits. If d(n) = O(1)
then we say C is a depth-O(1) (or constant-depth) family of quantum circuits. Similarly, if
d(n) = poly(n) then we say C is a depth-poly(n) (or polynomial-sized) family of quantum
circuits.

8 See Figure 1(a).
9 It remains to determine whether +P or −P is in the stabilizer group. Although slightly more complicated,

this can be done in polynomial-time independent of the weight of P .
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14:6 Local Hamiltonians with No Low-Energy Stabilizer States

The single-qubit Pauli group is the set P1 ≡ {iℓP | P ∈ {I, X, Y, Z}, ℓ ∈ {0, 1, 2, 3}},
and the n-qubit Pauli group is its n-fold tensor-power, Pn =

⊗
i∈[n] P1. For an element

S = P1 ⊗ · · · ⊗ Pn ∈ Pn, the weight of S is defined to be the number of qubits where Pi is
not identity, i.e. wt(S) =

∣∣{Pi | Pi ̸= iℓ I}
∣∣. We denote the set of these qubits where S acts

non-trivially by N(S) ⊆ [n].
The n-qubit Clifford group, Cn, is the set of unitary operators which stabilize the

Pauli group.It is well-known that Cn is generated by the set {H,P,CNOT}, where H is the
single-qubit Hadamard gate, P is the single-qubit phase gate, and CNOT is the two-qubit
controlled-NOT gate. A Clifford circuit is defined to be any element of the Clifford group.

Let ψ be a [possibly mixed] state on n qubits and let N ≥ n. If there is a quantum circuit,
C, acting on N qubits such that ψ = TrN [C

∣∣0N
〉〈

0N
∣∣C†] then we say that C prepares ψ.

ψ is said to be: a trivial state if there is a constant-depth quantum circuit preparing it, an
[efficiently] preparable state if there is a polynomial-sized circuit preparing it, a Clifford
state if there is a polynomial-sized Clifford circuit preparing it, and an almost Clifford
state if there is a polynomial-sized quantum circuit containing Clifford + O(log(n)) T-gates
preparing it. A pure state, |ψ⟩ is said to be a sampleable state if (1) there is a classical
algorithm exactly computing ⟨x|ψ⟩ for every x ∈ {0, 1}n and (2) there is a classical algorithm
that exactly samples x ∈ {0, 1}n from the distribution p(x) = |⟨x|ψ⟩|2.

A stabilizer group is an abelian subgroup, G, of Pn not containing − I. As a finite
group, we can always find a list of mutually independent and commuting generators, S =
{S1, . . . , Sk}, of G. We will refer simply to the subgroup ⟨S⟩ = G when this generating set is
clear. Note that given a stabilizer group, there is a well-defined stabilizer code [17, 12, 13],
CS , which is the common +1 eigenspace of the operators in ⟨S⟩.

If a given stabilizer group has a generating set, S, consisting of tensor products of only
Pauli X and I or only Pauli Z and I, then we say CS is a CSS code and that S generates a
CSS code.

The stabilizer group of a pure state, |ψ⟩, is the subgroup of the Pauli group defined
by Stab(|ψ⟩) ≡ {P ∈ Pn | P |ψ⟩ = |ψ⟩}. We say that a P ∈ Stab(|ψ⟩) stabilizes |ψ⟩. Note
that Stab(|ψ⟩) is an abelian subgroup of the Pauli group not containing − I, and so it is a
valid stabilizer group as before.

A pure state, |ψ⟩, is said to be a stabilizer state if |Stab(|ψ⟩)| = 2n, or equivalently, if
there are n independent Pauli operators that stabilize |ψ⟩. We note that |ψ⟩⟨ψ| = 1

2n

∑
g∈G g

where G = Stab(|ψ⟩).
A mixed state, ψ, is said to be a stabilizer state if ψ is a convex combination of pure

stabilizer states, i.e. ψ =
∑

j pj |φj⟩⟨φj | where each |φj⟩ is a pure stabilizer state on n qubits,∑
j pj = 1, and pj ≥ 0.
All of the states defined here are related to one another via the following:

trivial Clifford/Stabilizer

almost Clifford

preparable sampleable

some T gates

increase depth

arbitrary T gates
[11]

(2)

By definition of the Clifford group, stabilizer states and Clifford states are equivalent
for pure states. We will interchangeably use the terms “stabilizer state” and “Clifford state”
even for mixed states, which is motivated by the following result:

▷ Claim 3. If ψ is a Clifford state, then it is also a stabilizer state.
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A proof can be found in Appendix A.1. Claim 3 says that the reduced state of a pure
stabilizer state is a convex combination of pure stabilizer states on the subsystem. This is
essential in our energy lower bound arguments: To lower-bound the energy of all n-qubit
stabilizer states for a k-local term of the Hamiltonian, Hi, it is sufficient to lower-bound the
energy of all k-qubit stabilizer states for the non-trivial part of Hi.

2.2 Hamiltonians

A k-local Hamiltonian, H(n), is a Hermitian operator on the space of n qubits, (C2)⊗n,
which can be written as a sum H(n) = 1

m

∑m
i=1 Hi, where each Hi is a Hermitian matrix

acting non-trivially on only k qubits and with spectral norm ∥Hi∥ ≤ 1. A family of k-local
Hamiltonians, {H(n)}, is a countable set of k-local Hamiltonians indexed by system size, n,
where k = O(1) and m = poly(n). We will often use the term “local Hamiltonian” to mean a
family of k-local Hamiltonians.

The ground-state energy of H is E0 ≡ minρ Tr[ρH], where the minimization is taken
over all n-qubit mixed states. H is said to be frustration-free if E0 = 0. A state, ψ, is
said to be a ground state of H if Tr[ψH] = E0. A state, ψ, is said to be an ϵ-low-energy
state of H if Tr[ψH] < E0 + ϵ. If ψ = |ψ⟩⟨ψ| is a pure state, this condition simplifies to
⟨ψ| H |ψ⟩ < λmin(H) + ϵ, where λmin(H) is the smallest eigenvalue of H. For frustration-free
Hamiltonians this is equivalent to ⟨ψ| H |ψ⟩ < ϵ. All of the Hamiltonians we consider will be
frustration-free.

For S ∈ Pn, we denote the orthogonal projector to the +1 eigenspace of S by ΠS , i.e.
ΠS ≡ I −S

2 . Since ΠS acts non-trivially on only wt(S) qubits, we can write ΠS = ΠS |N(S)
⊗ I[n]\N(S).

Given a stabilizer group, ⟨S⟩, with generating set S, the stabilizer Hamiltonian
associated to S is HS ≡ 1

|S|
∑

S∈S ΠS . If each qubit is acted on non-trivially by at most
wt(S) elements of S, then HS is a wt(S)-local Hamiltonian. If C is the Stabilizer code
associated with S, then every |ψ⟩ ∈ C is a zero-energy state of HS . In particular, HS is
frustration-free with ground-state space C. If S generates a CSS code then we say HS is a
CSS Hamiltonian.

If {⟨Sn⟩ | ⟨Sn⟩ ≤ Pn} is a countable family of stabilizer groups then the family of
stabilizer (or CSS) Hamiltonians associated with {Sn} is {HSn

}. This will be a family of
local Hamiltonians when: (1) each qubit is acted on non-trivially by at most wt(Sn) elements
of Sn, (2) wt(Sn) = O(1), and (3) |Sn| = Θ(n). Such families, {⟨Sn⟩}, of stabilizer groups
correspond to quantum LDPC code families.

For each of the states in the previous section we can consider an analogue of NLTS.

▶ Definition. A family of k-local Hamiltonians, {H(n)}, is said to have the ϵ-NLXS
property if for all sufficiently large n, H(n) has no ϵ-low-energy states of type X. The family,
{H(n)}, is said to have the NLXS property if it is ϵ-NLXS for some constant ϵ.

The following implications between the NLXS theorems/conjectures and quantum PCP
conjecture hold. A complexity inequality next to an arrow denotes an implication that holds
if the separation is true, e.g. if the quantum PCP conjecture is true and MA ̸= QMA, then
NLSS is true.
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14:8 Local Hamiltonians with No Low-Energy Stabilizer States

qPCP conjecture

NLPS NLSS

NLACS

NLTS NLCS

QCMA ̸=QMA MA̸=QMA[16]

NP ̸=QMA

(3)

The relationships between each of the NLXS results are implicitly given by Diagram 2. Trivial
states, stabilizer states, and almost Clifford states are all examples of locally-approximable
states, so they following from the quantum PCP conjecture via Fact 2. The implication of
NLSS was given by Gharibian and Le Gall when they originally defined NLSS [16]. The
implication of NLPS is well-known: if every local Hamiltonian has a low-energy preparable
state, C |0⟩⊗n, then given the classical description of C a quantum prover could simply prepare
the state and measure its energy. This would put LH-ϵ ∈ QCMA, implying QMA = QCMA if
the quantum PCP conjecture is true.

For a family of k-local Hamiltonians, {H(n)}, and a family, C = {Cn}, of depth-O(1)
quantum circuits, we define the C-rotated version of {H(n)} as {H(n)}C ≡ {Cn

†H(n)Cn}.
This is still a family of local Hamiltonians, albeit with a possibly different k than the
original Hamiltonian. This is because the only qubits that interact non-trivially with a single
Hamiltonian term, C†HiC, are those qubits in the reverse-lightcone of the qubits acted on
by Hi. The number of qubits in the reverse-lightcone of a single qubit grows exponentially
in the depth of a circuit, which is still constant since C is constant-depth. See Figure 1 for
an example of this. When C = V ⊗n is the tensor-product of a single-qubit gate, V , we will
use the term “V -rotated” as opposed to “V ⊗n-rotated”.

The utility of considering a C-rotated Hamiltonian is that in addition to preserving
locality, the NLTS property is also preserved.

▶ Lemma 4. If {H(n)} is a family of ϵ0-NLTS local Hamiltonians and C = {Cn} is a family
of constant-depth circuits, then {H(n)}C is also ϵ0-NLTS.

Proof. Suppose that {H(n)}C is not NLTS. By definition, for every ϵ > 0 there is an n and
constant-depth circuit Uϵ,n such that Uϵ,n |0⟩⊗n is an ϵ-low-energy state of C†

nH(n)Cn, i.e.

⟨0|⊗n
U†

ϵ,nC
†
nH(n)CnUϵ,n |0⟩⊗n

< λmin(C†
nH(n)Cn) + ϵ.

Since Cn is a unitary operator the minimum eigenvalues of H(n) and C†
nH(n)Cn are equal.

Defining |ψϵ0,n⟩ ≡ CnUϵ0,n |0⟩⊗n we have

⟨ψϵ0,n| H(n) |ψϵ0,n⟩ < λmin(H(n)) + ϵ0,

i.e. |ψϵ0,n⟩ is an ϵ0-low-energy state of H(n). Since CnUϵ0,n is a constant-depth circuit this
implies that H(n) has a low-energy trivial state, contradicting the assumption of ϵ0-NLTS. ◀
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Figure 1 (a) Consider a constant-depth circuit, C. The [blue] highlighted gates on the right of
the figure represent the “lightcone” of qubit q, i.e. the set of gates that can be traced back to q.
The [orange] highlighted gates on the left of the figure represent the gates in the “reverse-lightcone”
of qubit p, i.e. the gates that will ultimately affect p.
(b) Consider a single k-local Hamiltonian term, Hi, that acts only on qubits p, q, and r. When
conjugating Hi with C, any gate not in the reverse-lightcone of one of p, q, or r will cancel with its
inverse. The number of qubits in the reverse-lightcone of any one qubit is ≤ 2d where d is the depth
of C, so C†HiC will be at most k2d-local. Note that we have only drawn a 2D geometrically-local
circuit here, whereas this upper bound holds for a constant-depth circuit with arbitrary connectivity.

3 NLCS from CSS codes

We will show that rotating by the tensor product of a single-qubit gate is sufficient to turn
most CSS Hamiltonians into NLCS Hamiltonians, including the quantum Tanner codes
used in [4]. In particular, we consider the single-qubit gate D ≡ e−i π

8 Y and rotate a CSS
Hamiltonian by D⊗n. For a local Hamiltonian, H(n), we will denote its D-rotated version
by H̃(n) ≡ D†⊗nH(n)D⊗n. We denote the D-rotated projector associated with a Pauli
element S ∈ Pn by Π̃S ≡ D⊗nΠSD

†⊗n. By definition, we have Π̃S = Π̃S |N(S) ⊗ I[n]\N(S),
where Π̃S |N(S)= D⊗ wt(S)ΠS |N(S) D

†⊗wt(S). Note that we have not explicitly included D in
the above notations since D will refer exclusively to e−i π

8 Y , throughout.
We have the following result:

▶ Theorem 5. Let {HSn
} be a family of CSS Hamiltonians associated with a family of

quantum (CSS) LDPC codes, {⟨Sn⟩}. Suppose for every n a constant fraction, α > 0, of the
generators S ∈ Sn have odd weight. Then {H̃Sn} is a family of NLCS Hamiltonians.

We prove this by giving local lower bounds on the energies of D-rotated projectors
associated with CSS generators. As a technical requirement, these lower bounds only hold
when the weight of a generator is odd.

Recall that, up to a permutation of the qubits, the generators of a CSS code can be
written as either X̄⊗ I or Z̄⊗ I, where X̄ ≡ X⊗k and Z̄ ≡ Z⊗k. First consider what happens
to the projectors ΠX̄ and ΠZ̄ when rotating by D:

▷ Claim 6.

Π̃X̄ = I− H⊗k

2 , Π̃Z̄ = I−(−X HX)⊗k

2 .
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These identities are derived in Appendix A.2. The local lower bounds will be a result of
the following:

▶ Lemma 7. If k is odd, then for every k-qubit stabilizer state, |η⟩, we have
∣∣∣⟨η| H⊗k |η⟩

∣∣∣ ≤
1√
2 . On the other hand, if k is even then there exists a k-qubit stabilizer state, |η0⟩, with

⟨η0| H⊗k |η0⟩ = 1.

The proof will use the following result on the geometry of stabilizer states:

▶ Fact 8 (Corollary 3 of [15]). Let |ζ⟩ , |ξ⟩ be two stabilizer states. If |⟨ζ|ξ⟩| ̸= 1, then
|⟨ζ|ξ⟩| ≤ 1√

2 .

Proof of Lemma 7. Since H is a Clifford gate, H⊗k |η⟩ is a stabilizer state. We will show
that

∣∣∣⟨η| H⊗k |η⟩
∣∣∣ ̸= 1 in the case of odd k, which by Fact 8 will imply the bound.

Recall that |η⟩⟨η| = 1
|G|

∑
g∈G g, where G ≡ Stab(|η⟩). We have two cases:

(1) (Every S ∈ G contains an I or a Y in some position) In this case, we calculate

⟨η| H⊗k |η⟩ = Tr
[
|η⟩⟨η| H⊗k

]
,

= 1
|G|

∑
g∈G

Tr
[
gH⊗k

]
,

= 1
|G|

∑
g∈G

∏
i∈[k]

Tr[gi H],

= 0,

where the last line follows since gj ∈ {I, Y } for some j, and Tr[H] = Tr[Y H] = 0.
(2) (There is an S ∈ G which consists of only X’s and Z’s) Consider the case when k is odd.

Since wt(S) = k, S contains either (1) an odd number of X’s and an even number of
Z’s or (2) an even number of X’s and an odd number of Z’s. We focus on the former
situation; the latter is similar.
Note that

∣∣∣⟨η| H⊗k |η⟩
∣∣∣ = 1 if and only if H⊗k |η⟩ and |η⟩ have the same stabilizer group.

Since S stabilizes |η⟩, H⊗k SH⊗k stabilizes H⊗k |η⟩. We know how H conjugates Pauli
operators: X 7→ Z, Z 7→ X, and Y 7→ −Y . By assumption, S has an odd number of
X’s and an even number of Z’s, so H⊗k SH⊗k will have an even number of X’s and an
odd number of Z’s. Therefore, we have that S · (H⊗k SH⊗k) = −(H⊗k SH⊗k) · S, which
implies S and H⊗k SH⊗k cannot both be elements of the same stabilizer group. Hence,
Stab(|η⟩) ̸= Stab(H⊗k |η⟩) and

∣∣∣⟨η| H⊗k |η⟩
∣∣∣ ̸= 1.

Since in both cases
∣∣∣⟨η| H⊗k |η⟩

∣∣∣ ̸= 1, by Fact 8 we must have that
∣∣∣⟨η| H⊗k |η⟩

∣∣∣ ≤ 1√
2 when

k is odd. We note that the above proof will not work for even k, since it can be the case
that all stabilizers have an even number of X’s and Z’s (or both odd). In this case H⊗k will
be in the normalizer of G, and the two stabilizer groups may be equal.

We can easily find an example with even k where no non-trivial upper bound can be
found. Note that |Φ+⟩ ≡ 1√

2 (|00⟩ + |11⟩) is a +1 eigenstate of H⊗2, so for even k define
|η0⟩ ≡ |Φ+⟩⊗k/2. ◀

We can now prove the local lower bound on odd-weight CSS generators.

▶ Lemma 9. For every k-qubit stabilizer state, |η⟩, ⟨η| Π̃X̄ |η⟩ ≥ ck and ⟨η| Π̃Z̄ |η⟩ ≥ ck,
where ck = 0 if k is even and ck = sin2( π

8 ) if k is odd.
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Proof. Let |η⟩ be a k-qubit stabilizer state. We first consider ⟨η| Π̃X̄ |η⟩:

⟨η| Π̃X̄ |η⟩ ≡ ⟨η|D†⊗k

(
I−X̄

2

)
D⊗k |η⟩ , (4)

(By Claim 6) = ⟨η| I− H⊗k

2 |η⟩ (5)

= 1
2

(
1 − ⟨η| H⊗k |η⟩

)
. (6)

The bound follows from Lemma 7, since sin2( π
8 ) = 1

2 (1 − 1√
2 ).

For ⟨η| Π̃Z̄ |η⟩, we have:

⟨η| Π̃Z̄ |η⟩ ≡ ⟨η|D†⊗k

(
I−Z̄

2

)
D⊗k |η⟩ , (7)

(By Claim 6) = ⟨η| I−(−X HX)⊗k

2 |η⟩ (8)

= 1
2

(
1 − ⟨η| (−X HX)⊗k |η⟩

)
, (9)

= 1
2

(
1 − (−1)k ⟨ζ| H⊗k |ζ⟩

)
(10)

where |ζ⟩ ≡ X⊗k |η⟩ is another stabilizer state since X = X† is in the Clifford group. The
bound follows again from Lemma 7. ◀

Lemma 9 implies the following lower bound for n-qubit stabilizer states.

▶ Lemma 10. Let S ∈ Pn be a tensor product of only Pauli X and I or only Pauli Z and I.
Denote k = wt(S). For every n-qubit stabilizer state, |η⟩, ⟨η| Π̃S |η⟩ ≥ ck.

Proof. Recall that Π̃S = Π̃S |N(S) ⊗ I[n]\N(S), so

⟨η| Π̃S |η⟩ = Tr
[
ηN(S)Π̃S |N(S)

]
, (11)

where ηN(S) ≡ Tr−N(S)[|η⟩⟨η|] is the reduced state of |η⟩ on N(S) ⊂ [n]. Since ηN(S) is the
reduced state of a Clifford state, by Claim 3 there are pure stabilizer states on k qubits,
{|ηj⟩} such that ηN(S) =

∑
j pj |ηj⟩⟨ηj |. The lower bound follows by applying Lemma 9 to

each ⟨ηj | Π̃S |N(S) |ηj⟩. ◀

We can now prove Theorem 5.

▶ Theorem 5. Let {HSn} be a family of CSS Hamiltonians associated with a family of
quantum (CSS) LDPC codes, {⟨Sn⟩}. Suppose for every n a constant fraction, α > 0, of the
generators S ∈ Sn have odd weight. Then {H̃Sn

} is a family of NLCS Hamiltonians.

Proof. By definition, H̃Sn
= 1

|Sn|
∑

S∈Sn
Π̃S where Π̃S is the D-rotated projector associated

with S ∈ Sn. Let ψ be a stabilizer state on n qubits. We will directly lower-bound the energy
of ψ.

By definition, ψ =
∑

j pj |φj⟩⟨φj |, where each |φj⟩ is a pure stabilizer state on n qubits.
We have:
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Tr
[
ψH̃Sn

]
=

∑
j

pj ⟨φj | H̃Sn |φj⟩ , (12)

= 1
|Sn|

∑
S∈Sn

∑
j

pj ⟨φj | Π̃S |φj⟩ , (13)

(By Lemma 10) ≥ 1
|Sn|

∑
S∈Sn

cwt(S)
∑

j

pj , (14)

(Definition of ck) = 1
|Sn|

∑
S∈Sn:wt(S), odd

sin2
(π

8

)
, (15)

= α sin2
(π

8

)
, (16)

where the last line follows by assumption α|Sn| terms of Sn have odd weight. Since this holds
for all stabilizer states, ψ, we have that {H̃Sn

} is ϵ-NLCS with ϵ = α sin2( π
8 ) = Ω(1). ◀

We now turn to our main result, the existence of a simultaneous NLTS and NLCS family
of local Hamiltonians. Recall the NLTS result of [4]:

▶ Theorem (Theorem 5 of [4], simplified). There exists a constant ϵ0 > 0 and an explicit
family of CSS Hamiltonians associated with a family of quantum LDPC codes, {⟨Sn⟩}, which
is ϵ0-NLTS.

In order to use our Theorem 5, we require that a constant fraction of the stabilizer generators
in Sn have an odd weight. It is not immediately clear that this would be true for the quantum
Tanner codes from [20]. However, we have the following result:

▷ Claim 11. There exists an explicit family of CSS codes satisfying the conditions of
Theorem 5 of [4] such that every stabilizer-generator has odd weight.

Section 4 of the Full Version is dedicated to proving Claim 11. The proof is rather
straightforward and relies on the random choice of local codes in the construction of quantum
Tanner codes. Essentially, we show that the local codes of the two component classical
Tanner codes of a quantum Tanner code can be chosen such that all of the parity-checks of
the global codes have odd weight. This implies that all of the stabilizer-generators of the
quantum Tanner code also have odd weight.

With Claim 11, we are now prepared to prove the main result of our paper.

▶ Theorem 12. Let {H(n)} be the family of CSS Hamiltonians from Claim 11. The D-rotated
version, {H̃(n)}, is a family of simultaneous NLTS and NLCS local Hamiltonians.

Proof. Since {H(n)} satisfies the conditions of Theorem 5 of [4] it is a valid local Hamiltonian,
and it is ϵ0-NLTS for some constant ϵ0 > 0. Since D⊗n is a depth-O(1) circuit by Lemma 4
the D-rotated family {H̃(n)} is also ϵ0-NLTS.

By Claim 11, all of the stabilizer terms of H(n) have odd weight for every n. Thus,
by Theorem 5 {H̃(n)} is ϵ1-NLCS for ϵ1 ≡ sin2( π

8 ). Letting ϵ′ ≡ min{ϵ0, ϵ1}, we have that
{H̃(n)} is both ϵ′-NLTS and ϵ′-NLCS. ◀
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4 Future work

(1) The most immediate problem raised by this work is to show that rotating arbitrary
CSS Hamiltonians by (e−i π

8 Y )⊗n yields NLCS Hamiltonians. We have shown this when
a constant fraction of the stabilizer generators have odd weight, which is a technical
requirement of our proof technique. Nonetheless, we believe all e−i π

8 Y -rotated CSS
Hamiltonians are NLCS. A first step would be to show this for H ≡ 1

n

∑
|11⟩⟨11|i,i+1 =

1
n

∑ 1
2 (I−ZiZi+1), which has only even weight stabilizer generators.

(2) NLACS Hamiltonians are an implication of either NLSS or the quantum PCP conjecture
together with NP ̸= QMA (see Diagram 3), so we believe they exist. In Appendix
B we give a self-contained proof that the simple D-rotated zero Hamiltonian, H̃0 =
1
n

∑
(ei π

8 Y |1⟩⟨1| e−i π
8 Y )i, is NLCS, and in Appendix B.1, we give a sharp lower-bound

on the energy of states produced by Clifford + 1 T gate under H̃0. We also conjecture a
sharp lower-bound on the energy for states prepared by Clifford + t T gates, for any
t ≤ n.

(3) We hope that our techniques may lead to local Hamiltonians which satisfy NLSS. Consider
the zero Hamiltonian, H0 = 1

n

∑
|1⟩⟨1|i, and a family of Haar-random low-depth circuits,

C = {Cn}. The unique ground-state of the local Hamiltonian CH0C
† is exactly C |0n⟩,10

which is not sampleable (as defined in Section 2) unless P = #P [9, 21]. We hope that
the same is true for states of low-enough constant energy, but new techniques would be
necessary to show this. If true, CH0C

† would be an NLSS Hamiltonian unless P = #P.
Analogously to our result for simultaneous NLTS and NLCS, one may hope that rotating
arbitrary CSS Hamiltonians by random low-depth circuits could also yield simultaneous
NLTS and NLSS. However, there are many unresolved prerequisites needed to show this.
For example, for a CSS Hamiltonian, H, every ground-state of CHC† has the form C |ψ⟩
for a codestate |ψ⟩. It is not a fortiori true that applying a random low-depth circuit to
codestates of a CSS code will result in a state that is not sampleable, so it is not clear
that even the ground-space of such a Hamiltonian is not sampleable.

(4) It is important to note that the technique of rotating Hamiltonians by a constant-depth
circuit, while potentially useful for establishing NLSS, seemingly cannot provide certain
other prerequisites of the quantum PCP conjecture. For example, Fact 2 says that the
energies of locally-approximable states can be computed in NP, and so the quantum
PCP conjecture implies the following (assuming NP ̸= QMA):

▶ Conjecture 13 (No Low-energy Locally-approximable States (NLLS)). There exists a
family of local Hamiltonians, H(n), and a constant ϵ > 0 such that all ϵ-low-energy states
of H(n) are not locally-approximable.

A closely-related conjecture (“no low-lying classically-evaluatable states” conjecture) was
very recently stated in [22].11 Rotating by a constant-depth circuit preserves the NLLS
property in the same way that it preserves the NLTS property, thus ruling out the use of
rotating Hamiltonians in solving the NLLS conjecture.

10 Note that we typically denote rotating by C as C†HC, not CHC†. We have swapped the order here so
that the ground state is C |0n⟩, as opposed to C† |0n⟩.

11 Note that these conjectures would not imply LH-ϵ /∈ NP as it would not rule out Hamiltonians whose
ground-state energies have indirect NP-witnesses. [10] constructs such witnesses for certain commuting
Hamiltonians.
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Furthermore, for any CSS Hamiltonian rotated by a constant-depth circuit, which includes
every construction considered in this paper, the local Hamiltonian problem is contained
in NP. To see this, note that every C-rotated CSS Hamiltonian has a ground state of
the form C† |φ⟩ for some stabilizer state |φ⟩. Such states are locally-approximable since
the local density matrices can be efficiently calculated by using a combination of the
local density matrix calculation for trivial states and stabilizer states.
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A Omitted proofs

A.1 Mixed Clifford states
▶ Definition 14. Let G be a stabilizer group, P = P1 ⊗ · · · ⊗ Pn ∈ Pn be any Pauli operator,
and A ⊆ [n] be any subset of n qubits. We define the set GA,P to be

GA,P ≡
{
gA

∣∣∣ g ∈ G, gj = Pj for all j /∈ A
}
,

where gA denote the restriction of g to A (note that gA acts on |A| qubits, not n qubits).

GA,P can be thought of as all of the elements of G which are equal to P outside of the
subset A, though we consider the restriction of these elements to A only (including overall
phases). By abuse of notation we will denote Gi,P ≡ G{i},P and G−A,P ≡ G[n]\A,P for
i ∈ [n]. We denote the special case of GA,I by GA. GA ≡ {gA | g ∈ G and N(g) ⊆ A} ∪ {IA}
is the set of all elements in G which act non-trivially only on qubits in A.

Claim 3 is immediate from the following two well-known facts.

▶ Fact 15. Let G ≤ Pn be a stabilizer group and C the associated codespace. 1
|G|

∑
g∈G g is

the projector onto C. If |G| = 2n, then 1
2n

∑
g∈G g = |ψ⟩⟨ψ|, where |ψ⟩ is the stabilizer state

associated with G. Otherwise, |G| = 2n−r for r > 0 and there are 2r logical basis states of C.
Let {|x̄⟩} denote the logical computational basis states for C. Then

1
2n−r

∑
g∈G

g =
∑
x∈Fr

2

|x̄⟩⟨x̄| .

▶ Fact 16. Suppose |ψ⟩ is a stabilizer state on N qubits with stabilizer group G and let A
be a subset of the qubits of size n. By Fact 15 we can write |ψ⟩⟨ψ| = 1

2N

∑
g∈G g. The local

state on A, ψ ≡ Tr−A[|ψ⟩⟨ψ|], is equal to

ψ = 1
2n

∑
ĝ∈GA

ĝ.
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▷ Claim 3. If ψ is a Clifford state, then it is also a stabilizer state.

Proof. By definition, there is a pure Clifford state |ψ⟩ on N ≥ n qubits and a subset A of
n qubits such that ψ = Tr−A[|ψ⟩⟨ψ|]. Let G ≡ Stab(|ψ⟩), and let GA be defined as in Fact
16. By definition, GA is an abelian subgroup of Pn not containing − I, and so it is a valid
stabilizer group. Let |GA| = 2n−r. We have

(By Fact 16) ψ = 1
2r2n−r

∑
ĝ∈GA

ĝ, (17)

(By Fact 15) = 1
2r

∑
x∈Fr

2

|x̄⟩⟨x̄| . (18)

Since each |x̄⟩⟨x̄| is a stabilizer state on n qubits and
∑

x∈Fr
2

1
2r = 1, the statement is proven.

◁

A.2 Rotated projectors

Return to Claim 6.

▷ Claim 6.

Π̃X̄ = I− H⊗k

2 , Π̃Z̄ = I−(−X HX)⊗k

2 .

Proof. We will show that D†XD = H and D†ZD = −X HX. As ΠX̄ ≡ ( 1
2 )(I−X) and

ΠZ̄ ≡ ( 1
2 )(I−Z), the result follows.

D†XD =
(

cos
(π

8

)
I+ sin

(π
8

)
ZX

)
X

(
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

=
(

cos
(π

8

)
X + sin

(π
8

)
Z

) (
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

= cos2
(π

8

)
X + sin

(π
8

)
cos

(π
8

)
Z + sin

(π
8

)
cos

(π
8

)
Z − sin2

(π
8

)
X,

= cos
(π

4

)
Z + sin

(π
4

)
X,

= 1√
2

(Z +X),

= H .

D†ZD =
(

cos
(π

8

)
I+ sin

(π
8

)
ZX

)
Z

(
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

=
(

cos
(π

8

)
Z − sin

(π
8

)
X

) (
cos

(π
8

)
I+ sin

(π
8

)
XZ

)
,

= cos2
(π

8

)
Z − sin

(π
8

)
cos

(π
8

)
X − sin

(π
8

)
cos

(π
8

)
X − sin2

(π
8

)
Z,

= cos
(π

4

)
Z − sin

(π
4

)
X,

= 1√
2

(Z −X),

= −X HX. ◁
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B A simple NLCS Hamiltonian

The goal of this section is to demonstrate the existence of a simple family of NLCS Hamilto-
nians.

▶ Definition 17. The zero Hamiltonian, H(n)
0 is defined as

H(n)
0 ≡ 1

n

n∑
i=1

|1⟩⟨1|i ⊗ I[n]\{i} .

Note that H(n)
0 |x⟩ = |x|

n |x⟩ for all x ∈ Fn
2 . In particular, the unique ground state of H(n)

0 is
|0⟩⊗n with energy 0. For n = 1 we have H(1)

0 = |1⟩⟨1|, so we can write the zero Hamiltonian
on n qubits as

H(n)
0 ≡ 1

n

n∑
i=1

H(1)
0 ⊗ I[n]\{i} .

▶ Remark. Define a set of stabilizer generators, Sn ≡ {Z1, . . . , Zn} where Zi is a Pauli Z on
qubit i and identity elsewhere. The zero Hamiltonian is the CSS Hamiltonian associated
with ⟨Sn⟩, since |1⟩⟨1| = I −Z

2 . The results of this section are a direct corollary of the results
in Section 3. ⌟

Let D ≡ e−i π
8 Y . We define the D-rotated zero Hamiltonian as

H̃(n)
0 ≡ 1

n

n∑
i=1

H̃(1)
0 ⊗ I[n]\{i},

where H̃(1)
0 = D† |1⟩⟨1|D. We will prove the D-rotated zero Hamiltonian is NLCS by

demonstrating a simple lower bound on the energy of stabilizer states for each local term.
Since the reduced state of every stabilizer state is a convex combination of stabilizer states
by Claim 3, these “local” lower bounds imply a global lower bound for all stabilizer states.
We have the following local energy bound. Note that

▶ Lemma 18. If |η⟩ is a single-qubit stabilizer state, then ⟨η| H̃(1)
0 |η⟩ ≥ sin2( π

8 ).

Proof. By definition H̃
(1)
0 = D† |1⟩⟨1|D, so ⟨η| H̃(1)

0 |η⟩ = |⟨1|D |η⟩|2. As

D = cos
(π

8

)
I−i sin

(π
8

)
Y = cos

(π
8

)
I+ sin

(π
8

)
XZ,

we have

D =
[
cos

(
π
8

)
− sin

(
π
8

)
sin

(
π
8

)
cos

(
π
8

) ]
.

There are only six single-qubit stabilizer states and it is easy to verify that the minimum
value of |⟨1|D |η⟩|2 is sin2( π

8 ). ◀

▶ Corollary 19. If η is a single-qubit mixed stabilizer state, then Tr
[
ηH̃(1)

0

]
≥ sin2( π

8 ).

Proof. By definition, η =
∑

j pj |φj⟩⟨φj |, where each |φj⟩ is a pure stabilizer state on a single
qubit. The lower bound follows by applying Lemma 18 to each |φj⟩. ◀

We now have the following global lower bound.
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▶ Lemma 20. If |η⟩ is an n-qubit stabilizer state, then ⟨η| H̃(n)
0 |η⟩ ≥ sin2( π

8 ).

Proof. By definition, H̃(n)
0 = 1

n

∑n
i=1 H̃(1)

0 |i ⊗ I[n]\{i}, so

⟨η| H̃(n)
0 |η⟩ = 1

n

n∑
i=1

Tr
[
ηiH̃(1)

0

]
,

where ηi ≡ Tr−i[|η⟩⟨η|] is the reduced state of |η⟩ on qubit i. Since ηi is the reduced density
matrix of a Clifford state, by Claim 3 it is also a stabilizer state. The bound follows by
applying Corollary 19 to each term in the summation. ◀

▶ Proposition 21. {H̃(n)
0 } is a family of NLCS Hamiltonians.

Proof. By definition, ψ =
∑

j pj |φj⟩⟨φj |, where each |φj⟩ is a pure stabilizer state on n

qubits. The lower bound follows by applying Lemma 20 to each |φj⟩. Thus, every n-qubit
stabilizer state has energy at least sin2( π

8 ) with respect to H̃(n)
0 , which implies H̃(n)

0 is ϵ-NLCS
with ϵ = sin2( π

8 ). ◀

B.1 Towards NLACS
There are several notions of how “non-Clifford” a state is, the number of T gates being a
common one. The notion we consider here is the number of arbitrary Pauli-rotation gates,
eiθP for θ ∈ [0, 2π) and P ∈ Pn, as it encapsulates the T gate count.12

▶ Lemma 22. Let C be a quantum circuit on n-qubits containing polynomially many Clifford
gates and at most t arbitrary Pauli-rotation gates, eiθjP ′

j . There exist t Pauli operators,
{Pj} ⊂ Pn and a stabilizer state |φ⟩ such that

C |0⟩⊗n =
∏
j∈[t]

[
eiθjPj

]
|φ⟩ , (19)

where by convention C |0⟩⊗n = |φ⟩ if t = 0.

Proof. By definition we can decompose C as

C = Cte
iθtP ′

tCt−1 . . . e
iθ2P ′

2C1e
iθ1P ′

1C0, (20)

where each Cℓ is a Clifford circuit.
For every j ∈ [t] we have eiθjP ′

j = cos(θj) I+i sin(θj)P ′
j . Since Clifford gates normalize

the Pauli group, for every Clifford circuit, C ′, and every Pauli operator, P ′ ∈ Pn, there is
another Pauli operator, P ′′ ∈ Pn, such that C ′(cos θ I+i sin θP ′) = (cos θ I+i sin θP ′′)C ′.
Thus, we can move each Clifford circuit, Cℓ, past all of the Pauli-rotation gates by changing
only the individual Pauli operators via the conjugation relations of Cℓ.

Ultimately, we can rewrite C as

C = eiθtPt . . . eiθ2P2eiθ1P1Ct . . . C1C0, (21)

for t Pauli operators, {Pt}, as desired. ◀

12 The T gate is equal to T = cos
(

π
8

)
I+i sin

(
π
8

)
Z = ei π

8 Z .
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Proposition 21 shows that the D-rotated zero Hamiltonian, H̃0 = 1
n

∑ (
D† |1⟩⟨1|D

)
i
, is

sin2 (
π
8

)
-NLCS. It is natural to question if H̃0 is also ϵ-NLACS for some appropriate constant

ϵ. In this section we will prove an explicit lower-bound on all states prepared by Clifford
gates + at most 1 Pauli-rotation gate:

⟨ψ| H̃(n)
0 |ψ⟩ ≥

(
1 − 1

n

)
sin2

(π
8

)
. (22)

In fact, there is numerical evidence suggesting the following lower bound for an arbitrary
number of Pauli-rotation gates, though we have been unable to prove it analytically:

▶ Conjecture 23. Let |ψ⟩ be an n-qubit state prepared by a Clifford circuit plus at most
t Pauli-rotation gates. For the D-rotated zero-Hamiltonian, H̃(n)

0 , the energy of |ψ⟩ is
lower-bounded as

⟨ψ| H̃(n)
0 |ψ⟩ ≥

(
1 − t

n

)
sin2

(π
8

)
. (23)

In particular, if there is a constant β ∈ [0, 1) such that t ≤ βn for all sufficiently large n,
then the energy of |ψ⟩ is lower-bounded by (1 − β) sin2 (

π
8

)
> 0, a constant.

By Lemma 22, the most general such state is a stabilizer state with t Pauli-rotation gates
applied to it and no intermediate circuits between them. The intuition behind Conjecture 23
is that the only way to reduce the energy of a stabilizer state is to “undo” one of the D gates
conjugating the Hamiltonian. For instance, to produce a state with sub-constant energy one
could apply n− o(n) D gates to |0⟩⊗n.

We note also that is in unclear what, if any, similar lower bound could be shown for
an arbitrary D-rotated CSS Hamiltonian (as considered in Theorem 5). We leave this as
an open problem, as well. For now, we consider the case of t = 1 for the D-rotated zero
Hamiltonian.

First, recall the following definition.

▶ Definition 14. Let G be a stabilizer group, P = P1 ⊗ · · · ⊗ Pn ∈ Pn be any Pauli operator,
and A ⊆ [n] be any subset of n qubits. We define the set GA,P to be

GA,P ≡
{
gA

∣∣∣ g ∈ G, gj = Pj for all j /∈ A
}
,

where gA denote the restriction of g to A (note that gA acts on |A| qubits, not n qubits).

The following lemma gives an explicit description of the local density matrices of states
with at most 1 Pauli-rotation gate.

▶ Lemma 24. Let |ψ⟩ = eiθP |φ⟩ for P ∈ Pn, θ ∈ [0, 2π), and let |φ⟩ be a stabilizer state
with G ≡ Stab(|φ⟩). For A ⊂ [n] we can write ψA ≡ Tr−A[|ψ⟩⟨ψ|] as

ψA = 1
2|A|

∑
ĝ∈GA

(
cos2(θ)ĝ + sin2(θ)PAĝPA

)
+ 1

2|A|

∑
g′∈GA,P

i sin(θ) cos(θ)[PA, g
′]. (24)

The left part of this expression can be thought of as the stabilizer part of ψA, as it is the
convex combination of two stabilizer states, and the right hand part can be thought of as the
non-stabilizer part, as it equals zero if P ∈ G or if PA = I.
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Proof. Since |φ⟩ is a stabilizer state there is a stabilizer group G with |G| = 2n such that
|φ⟩⟨φ| = 1

2n

∑
g∈G g. Using the exponential of Pauli matrices we have

ψ = 1
2n

∑
g∈G

(cos(θ) I+i sin(θ)P )g(cos(θ) I−i sin(θ)P ), (25)

= 1
2n

∑
g∈G

cos2(θ)g + sin2(θ)PgP + i sin(θ) cos(θ)Pg − i sin(θ) cos(θ)gP, (26)

= 1
2n

∑
g∈G

(
cos2(θ)g + sin2(θ)PgP

)
+ 1

2n

∑
g∈G

(
i sin(θ) cos(θ)(Pg − gP )

)
. (27)

Consider tracing out all qubits outside of the set A. The only Pauli group element with
nonzero trace is I, which has trace 2. For the left term in Equation (27), we have

1
2n

∑
g∈G

(
cos2(θ) Tr−A[g] + sin2(θ) Tr−A[PgP ]

)
(28)

= 1
2n

∑
g∈G

(
cos2(θ)gA

∏
j∈[n]\A

Tr[gj ] + sin2(θ)PAgAPA

∏
j∈[n]\A

Tr[PjgjPj ]
)
, (29)

= 1
2n

∑
g∈G

(
cos2(θ)gA + sin2(θ)PAgAPA

)( ∏
j∈[n]\A

Tr[gj ]
)
, (30)

= 1
2|A|

∑
ĝ∈GA

(
cos2(θ)ĝ + sin2(θ)PAĝPA

)
, (31)

where the last line follows since only those g ∈ G which are identity outside of A will have
nonzero trace, and the product of the individual traces when non-zero is 2n−|A|.

Similarly, for the right term in Equation (27) we have

1
2n

∑
g∈G

(
i sin(θ) cos(θ) Tr−A[Pg − gP ]

)
, (32)

= 1
2n

∑
g∈G

(
i sin(θ) cos(θ)[PA, gA]

)( ∏
j∈[n]\A

Tr[Pjgj ]
)
, (33)

= 1
2|A|

∑
g′∈GA,P

i sin(θ) cos(θ)[PA, g
′], (34)

where the last line follows again since the trace will be non-zero only if gj = Pj for all
j /∈ A. ◀

▶ Lemma 25.

⟨ψ| H̃(n)
0 |ψ⟩ ≥

(
1 − 1

n

)
sin2

(π
8

)
. (35)

Proof. By Lemma 22 there is a Pauli operator, P , and an n-qubit Clifford state |φ⟩ such
that |ψ⟩ = eiθP |φ⟩. Let G ≡ Stab(|φ⟩).

Recall that by definition H̃(n)
0 = 1

n

∑n
i=1 H̃(1)

0 |i ⊗ I[n]\{i}, so

⟨ψ| H̃(n)
0 |ψ⟩ = 1

n

n∑
i=1

Tr
[
ψiH̃(1)

0

]
, (36)
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where ψi ≡ Tr−i[|ψ⟩⟨ψ|] is the reduced state of |ψ⟩ on qubit i. We will show that at most
one of the terms in this summation can be 0, and that the remainder of the terms are
lower-bounded by sin2 (

π
8

)
.

By Lemma 24 we can write the reduced state as

ψi = 1
2

∑
ĝ∈Gi

(
cos2(θ)ĝ + sin2(θ)PiĝPi

)
+ 1

2
∑

g′∈Gi,P

i sin(θ) cos(θ)[Pi, g
′]. (37)

We proceed in cases:
(1) If P ∈ G, Pi = I, Gi,P = ∅, or Gi,P = {I} then ψi is a stabilizer state, so Tr

[
ψiH̃(1)

0

]
≥

sin2 (
π
8

)
.

(2) Suppose the four conditions from Case I. do not hold. It must be that Gi,P = {I, P ⋆}
for some P ⋆ ∈ P1 \ {I, Pi}; P ⋆ cannot be Pi as this would imply P ∈ G. Note that Gi,P

cannot be any larger as this would contradict the fact G is a stabilizer group. We now
consider cases for Gi.
(a) If Gi = {I}, then ψi can be written as

ψi = 1
2 I+1

2 i sin(θ) cos(θ)[Pi, P
⋆], (38)

= 1
2 I+1

4 sin(2θ)σ, (39)

since Pi ̸= P ⋆ and 2i[Pi, P
⋆] = σ for some non-identity Pauli. The desired bound

holds by direct computation over σ ∈ P \ {± I}.
(b) If Gi is non-trivial then Gi = {I, P ⋆} since it must commute with the g ∈ G which

satisfies gi = P ⋆ and g−i = P−i (which exists since we are in Case II.) Since
P ⋆ /∈ {I, Pi} we can write ψi as

ψi = 1
2 I+1

2
(

cos2(θ) − sin2(θ)
)
P ⋆ + 1

2 i sin(θ) cos(θ)[Pi, P
⋆], (40)

= 1
2 I+1

2 cos(2θ)P ⋆ + 1
4 sin(2θ)i[Pi, P

⋆]. (41)

By direct computation we have the following:
(i) If Pi ̸= Y then Tr

[
ψiH̃(1)

0

]
≥ sin2 (

π
8

)
regardless of θ.

(ii) If Pi = Y and P ⋆ ̸= Z then Tr
[
ψiH̃(1)

0

]
≥ sin2 (

π
8

)
regardless of θ.

(iii) If Pi = Y and P ⋆ = Z then Tr
[
ψiH̃(1)

0

]
≥ 0 with possible equality.

To recap the cases, ψi can have energy less than sin2 (
π
8

)
only if (1) Pi = Y , (2) Zi ∈ G,

and (3) there is a g ∈ G such that gi = Z and g−i = P−i, i.e. g and P agree on every qubit
except i.

We must show that at most one qubit can satisfy all three of these condition for a given
P ∈ Pn and stabilizer group G. Suppose there are two such qubits, i and j, which satisfy (1)
Pi = Pj = Y , (2) Zi, Zj ∈ G, and (3) there exist g, h ∈ G such that gi = hj = Z, g−i = P−i,
and h−j = P−j . By condition (3) gi = Z and gj = Y and by condition (2) Zj ∈ G, but this
implies that gZj = −Zjg, which contradicts the fact that G is abelian. Thus, at most a
single qubit can satisfy the conditions required for the reduced state ψi to have energy less
than sin2 (

π
8

)
, which implies the desired lower bound. ◀
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