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Abstract
In the model of Perfectly Secure Message Transmission (PSMT), a sender Alice is connected to a
receiver Bob via n parallel two-way channels, and Alice holds an ℓ symbol secret that she wishes
to communicate to Bob. There is an unbounded adversary Eve that controls t of the channels,
where n = 2t + 1. Eve is able to corrupt any symbol sent through the channels she controls, and
furthermore may attempt to infer Alice’s secret by observing the symbols sent through the channels
she controls. The transmission is required to be (a) reliable, i.e., Bob must always be able to recover
Alice’s secret, regardless of Eve’s corruptions; and (b) private, i.e., Eve may not learn anything
about Alice’s secret. We focus on the two-round model, where Bob is permitted to first transmit to
Alice, and then Alice responds to Bob.

In this work we provide upper and lower bounds for the PSMT model when the length of the
communicated secret ℓ is asymptotically large. Specifically, we first construct a protocol that allows
Alice to communicate an ℓ symbol secret to Bob by transmitting at most 2(1 + oℓ→∞(1))nℓ symbols.
Under a reasonable assumption (which is satisfied by all known efficient two-round PSMT protocols),
we complement this with a lower bound showing that 2nℓ symbols are necessary for Alice to privately
and reliably communicate her secret. This provides strong evidence that our construction is optimal
(even up to the leading constant).
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1 Introduction

Perfectly secure message transmission (PSMT) was first introduced by Dolev et al. in [2].
This problem involves two parties, the sender Alice and the receiver Bob. Alice wishes to
communicate a secret to Bob over n parallel channels in the presence of a computationally
unbounded adversary Eve. Eve is able to take control of up to t channels in such a way that
she can listen to and/or overwrite the message passing through these t corrupted channels.
Here, we assume Eve is static, i.e., she chooses up to t channels to corrupt before the protocol
and will not change corrupted channels during the protocol. The goal of PSMT is to devise a
procedure permitting Alice and Bob to communicate the secret reliably and privately. More
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1:2 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

precisely, it is guaranteed that Bob always completely recovers the secret (reliability) and
Eve learns absolutely nothing about the secret (privacy).1 PSMT can be done in multiple
communication rounds. During each round, one party acts as the sender and the other acts
as the receiver. They are not permitted to change their roles in one round.

It is clear that for t > n/2, PSMT is not possible, regardless of how many rounds the
protocol uses. One can treat all the message transmitted over these n channels as a codeword
of length n. Assume c1 represents the secret 1 and c0 represents the secret 0 that Alice
wants to communicate to Bob. Since the distance of these two codewords is at most n and
the number of errors t is more than the half the distance between c1 and c0, unique decoding
is not possible.

The original paper in [2] showed that one-round PSMT is possible if n ≥ 3t + 1. The
same paper also showed that PSMT is possible when n ≥ 2t + 1 if two or more rounds are
performed. There have since been a number of efforts to devise improved PSMT protocols in
various settings. The most challenging case is two-round PSMT with n = 2t + 1 channels. To
measure the performance of a PSMT protocol in this case, we use the metric of transmission
rate, which is the total number of bits transmitted divided by the length (in bits) of the
secret communicated.

Prior Work. In what follows, we focus on the case that n = 2t + 1. Sayeed and Abu-
Amara [5] first presented a two-round PSMT achieving transmission rate O(n3). Agarwal et
al. [1] further improved it to O(n) which is asymptotically optimal as a lower bound of n was
proved in [7]. However, implementing this protocol requires an inefficient exponential-time
algorithm. A breakthrough was achieved by Kurosawa and Suzuki [4] whose protocol achieves
transmission rate 6n, and can be run in polynomial time. Inspired by this protocol, Spini
and Zémor [6] further reduced the transmission rate to 5n, and moreover their protocol is
arguably simpler than those that preceded it. Our protocol builds off of their ideas, as we
discuss at the end of this introduction. Their work also answers in the affirmative an open
problem posed in [4] of whether it is possible to achieve O(n) transmission rate for a secret
of size at most O(n2 log n).

Hence, in reviewing the literature on PSMT, we note that the only known lower bound on
the transmission rate for two-round PSMT is n, while the current state-of-the-art construction
in [6] achieves transmission rate 5n. While both bounds are Θ(n), there is still a gap of 4n

between the lower bound and the upper bound.

Our Results. Our results are two-fold. Our first contribution is a two-round PSMT protocol
communicating a length ℓ secret with transmission rate 2(1 + oℓ→∞(1))n.2 This protocol
improves over the state-of-the-art protocol in [6] by 3n. Furthermore, our protocol reaches
this transmission rate when Alice and Bob merely communicate an ω(n log n)-bit secret, and
moreover achieves transmission rate O(n) when they communicate an Ω(n log n)-bit secret
as in [6].

Our second contribution is a lower bound on two-round PSMT protocols. Specifically,
under a reasonable assumption, we show that Alice and Bob have to transmit at least 2nℓ bits
so as to securely communicate an ℓ-bit secret. Our assumption comes from the observation

1 One can also consider the model of secure message transmission where privacy and/or reliability is only
guaranteed to hold with high probability [3]. However, in this work, we focus exclusively on the case of
perfect privacy and reliability.

2 Here and throughout, oℓ→∞(1) denotes a quantity which tends to 0 as ℓ → ∞, holding n fixed.
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that all known efficient constructions such as [1, 4, 6] allow the adversary to learn the whole
transmission in the second round of communication. This means the adversary can recover
the transmission of all n channels by only listening to t of them. The reason is that in the
second round, Alice encodes the message via an error correcting code which ensures the
correctness of the transmission but sacrifices privacy. Therefore, in the security analysis of
their protocols, they assume that the adversary could learn the whole transmission in the
second round. Under this assumption, our two-round PSMT protocol actually achieves the
optimal transmission rate. In this sense, our lower bound argument reveals an inherent limit
for optimizing two-round PSMT: to beat our protocol, one must design a two-round PSMT
protocol bypassing this assumption.

Our Techniques. As mentioned above, we obtain tight upper and lower bounds for commu-
nicating an ℓ-bit secret in the model of two-round PSMT. We start by outlining the upper
bound proof.

Upper Bound. For the upper bound, we construct a two-round PSMT protocol achieving
transmission rate ∼ 2n. Instead of presenting our optimal protocol immediately, we first
present a simplified protocol which allows for communicating a log n bit secret securely,
which we view as a symbol m ∈ Fq with q ≥ n.

Bob first sends t+1 codewords c1, . . . , ct+1 which are picked independently and uniformly
at random from a [n, t + 1, n− t]q Reed-Solomon code3 over Fq. Alice receives the corrupted
codewords c̃i = ci + ei. She uses the parity check matrix of this Reed-Solomon code to
calculate the syndrome vectors Hc̃i = si. Since Eve can corrupt at most t channels, there
exist coefficients λ1, . . . , λt+1 ∈ Fq, not all zero, such that

∑t+1
i=1 λisi = 0. From this one can

show
∑t+1

i=1 λiei = 0 and thus
∑t+1

i=1 λici =
∑t+1

i=1 λic̃i. To simplify the following expressions,
denote c̄ :=

∑t+1
i=1 λici =

∑t+1
i=1 λic̃i.

Let h ∈ Fn
q be a vector of weight n that is not orthogonal to the [n, t + 1, n− t] Reed-

Solomon code. Alice broadcasts4 λ1, . . . , λt+1 together with ⟨h, c̄⟩+ m to Bob where m is
the secret; ⟨h, c̄⟩ is a mask for the secret. Bob first uses λ1, . . . , λt+1 to recover c̄ and then
obtains m by removing the mask ⟨h, c̄⟩ from the last broadcasted message.

The privacy analysis is quite straightforward. First, Eve can calculate λ1, . . . , λt+1 by
herself since each si = Hei is available to her. This means we can reduce the privacy argument
to the last message ⟨h, c̄⟩ + m which is an immediate consequence of the [n, t + 1, n − t]
Reed-Solomon code we use. This protocol allows Alice and Bob to securely communicate the
secret m ∈ Fq at the cost of n2 log n communication complexity (measured in bits).

Observe that if the syndrome space spanned by s1, . . . , st+1 has dimension r, Alice only
needs to send r + 1 coefficients instead of t + 1 so as to share a common codeword with Bob.
This observation leads to our most efficient two-round PSMT.

We now present the general protocol. Assume Alice and Bob want to communicate an
ℓ log n-bit secret securely. We first split it into ℓ secrets m1, . . . , mℓ, each of size log n, which
we think of as lying in Fq with q ≥ n. Bob first sends t + ℓ codewords c1, . . . , ct+ℓ which are
picked independently and uniformly at random from a [n, t + 1, n− t] Reed-Solomon code
over Fq. Alice receives the corrupted codewords c̃i = ci + ei for i ∈ [t + ℓ]. She uses the
parity-check matrix of this Reed-Solomon code to calculate the syndrome vectors Hc̃i = si.

3 A [n, k, d]q Reed-Solomon code has block-length n, dimension k and distance d = n − k + 1.
4 To broadcast λ ∈ Fq, Alice sends λ through every channel; note that Bob can easily recover λ by

choosing the majority symbol.
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1:4 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

Assume that the space spanned by s1, . . . , st+ℓ has dimension r. Let S ⊂ [t + ℓ] be the
index set of si that form the basis of this syndrome space. Without loss of generality, let us
assume S = {t+ ℓ−r +1, t+ ℓ−r +2, . . . , t+ ℓ}, the last r elements of [t+ ℓ]. For each i ∈ [ℓ],
there exist not all zero coefficients λij for j ∈ S such that si =

∑
j∈S λijsj . In analogy to

what we did in the simpler protocol, we let c̄i := ci −
∑

j∈S λijcj = c̃i −
∑

j∈S λij c̃j .
Before entering into the second round, we do the same thing as [6] so as to reduce the

communication complexity: we spot a corrupted codeword with error weight at least r by
applying linear operations to the c̃j ’s.5 We take a different approach which simplifies the
argument; for details, please see Algorithm 4. Let’s suppose Alice has managed to spot a
corrupted codeword c̃ =

∑
j∈S λj c̃j with error weight at least r. Alice first broadcasts the

index set S together with λj for j ∈ S and c̃ to Bob. Then, Alice uses an [n, r + 1, n− r]
Reed-Solomon code to encode the message data λij , j ∈ S and ⟨h, c̄i⟩+ mi for i ∈ [ℓ].

Once Bob receives the messages, he can correctly recover the index set S and λj for
j ∈ S and c̃ as these messages are broadcasted. By applying the same linear operation on
the codewords in S, Bob will obtain c =

∑
j∈S λjcj which is at least distance r away from

c̃. Bob then ignores the r channels that cause the inconsistency between c and c̃. Bob can
decode the rest of Alice’s messages correctly which were encoded by the [n, r + 1, n − r]
Reed-Solomon code since Eve can only cause r erasures and t− r errors now. The recovery
procedure is exactly the same as in the first protocol. The privacy argument is also quite
straightforward. First of all, the coefficients λij can be computed by Eve on her own. Then,
the privacy of the secret mi can be reduced to the privacy of ci for i ∈ [r] which is guaranteed
by the [n, t + 1, n− t] Reed-Solomon code.

It remains to bound the communication complexity. The first-round communication
complexity is (ℓ + t)n log n. The second-round communication complexity is nr log(t + ℓ) +
(r + n)n log n + n

r+1 (r + 1)ℓ log n. Thus, the transmission rate is 2n + O( n2

ℓ ) which becomes
2(1 + oℓ→∞(1))n if Alice communicates to Bob an ℓ log n = ω(n log n)-bit secret.

Lower Bound. Let us first formalize PSMT by defining Alice and Bob’s moves. Assume
that Alice wants to communicate an ℓ-bit secret s securely to Bob via a two-round PSMT. In
the first round, Bob sends a vector a = (a1, . . . , an) to Alice, and Alice receives a corrupted
vector ã. Based on ã and the secret s ∈ [2ℓ], Alice sends back a vector b = (b1, . . . , bn) to
Bob. On receiving the corrupted vector b̃, Bob tries to decode the correct secret s with the
help of a.

Next, we justify our assumption that Eve learn the whole transmission in the second
round of communication. We design an adversary Eve to force Alice and Bob to transmit at
least 2ℓn bits so as to securely send the ℓ-bit secret. In the first round, Eve does nothing.
That means Alice will receive a correct vector a. Moreover, she has no idea which channels
are corrupted. She must therefore assume that any subset of t channels are equally likely to
be corrupted in the second round. Given a, Alice has to use a code of distance n = 2t + 1 to
encode the secret s ∈ [2ℓ] so as to achieve reliability. This gives a lower bound ℓn on the
second round communication complexity. In the meanwhile, if the code of distance n = 2t + 1
used by Alice and Bob in the second round is known to Eve, Eve will learn a. In fact, all

5 Note that Eve has to corrupt at least r channels so as to make the syndrome space have dimension
r. To simplify our discussion here, we assume r ≤ t

3 ; otherwise the protocol will be little more
complicated. Specifically, Alice first broadcasts a corrupted codeword with error weight t

3 and then
sends all corrupted codewords in S to Bob via a [n, t

3 , n − t
3 + 1] Reed-Solomon code. This extra cost

will not affect transmission rate as we can amortize it out by communicating ℓ log n = ω(n log n)-bit
secret. The interested reader can find the details in our proof.
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known efficient constructions use the same code book in this situation. Their protocol only
protects the correctness of the transmission in the second round not the privacy.6 In the
following argument, we assume that Eve knows b if there is no corruption in the first round.
Therefore, to achieve perfect security, Alice and Bob must share a private key of size ℓ in the
first round. We also notice that the message sent by Bob in the first round is independent
of Eve’s strategy, which means that the lower bound on the communication complexity of
the first round can be applied to the case Eve does nothing in the first round. We construct
a secret sharing scheme by treating a = (a1, . . . , an) as n shares and this private key as a
secret. Since Eve can listen to t channels, this means any t shares should learn nothing of
this secret. This implies that such a secret sharing scheme has t-privacy. We next show that
such secret sharing scheme must have t + 1-reconstruction.

Let a1 be any share vector of secret s1 and a2 be any share vector of secret s2. If a1 and
a2 are within distance t, Eve may inject t errors to change a1 to a2. Then, Alice can not
detect any corruption and take the move as if no corruption happens. However, this will
lead to the situation that Alice and Bob share a wrong key and thus Alice fails to recover
the correct secret. This implies the share vectors associated with different secrets must have
distance t + 1 and thus any n− (t + 1) + 1 = t + 1 shares can reconstruct the secret. As we
have t-privacy and t + 1-reconstruction, our secret sharing scheme is threshold, which implies
that the number of bits communicated in the first round is also at least ℓn. Putting it all
together, we obtain the desired 2ℓn lower bound on the communication of the two-round
PSMT. Although we do not pin down the actual value of optimal two-round PSMT, our
lower bound shows that any two-round PSMT beating our lower bound must bypass this
assumption. We leave this as a future direction.

Comparison to Previous Version. Our previous version does not include this assumption
and prove the same lower bound. However, one of the conference referees points out that
Eve may not learn the whole transmission in the second round if the code used by Alice and
Bob are not fixed in this situation. We thank for his valuable comment which helps us to fix
this bug. We also emphasize that in all known efficient PSMT protocols, Eve can predict the
code used by Alice and Bob. This means our new assumption holds for these constructions.
To beat our construction, one has to design a PSMT protocol bypassing this assumption.

Technical Comparison to Previous Works. Our protocol achieving transmission rate 2n

utilizes ideas from prior works, and we would like to take a moment here to properly
acknowledge them. The idea of leveraging the syndrome space and pseudobasis to correct
errors was first introduced by Kurosawa and Suzuki in [4]. They also proposed the idea of
generalized broadcast to decrease the communication cost of the second round. Spini and
Zémor [6] further developed this idea by showing how to spot a codeword with large error.
They also abandon the dependency on the codeword communicated in the first round in [4]
which greatly simplified the technique. These ideas also appear in our protocol; in particular,
the first round of our protocol matches that of [6].

To obtain a more efficient PSMT protocol, we observe that the protocol in [6] divided
the size of the global support of the errors into two cases: the small and the big one. In the
second round, Alice transmits information for both of the potential cases. Thus, in some

6 It might be possible that Alice and Bob use different codes with same minimum distance n = 2t + 1 in
the second round. In this case, Bob and Alice must share the code information which is kept secret from
Eve. We are not aware of any construction with this property and can not be sure that such strategy
will gain them any advantage.
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1:6 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

sense, half of her communication is wasted. Dealing with both cases simultaneously required
a more careful analysis of the syndrome space to generate the required masks: we exploit
linear dependencies amongst the syndromes, unlike [6] that used a decoding algorithm, which
itself was already a key improvement over the protocol in [4]. Furthermore, the approach
in [6] sends back syndrome vectors whose lengths are always t + 1. In our protocol, we exploit
the codewords in the pseudobasis S to correct the error, allowing us to only send back |S|
symbols to identify the vector. The bigger |S| is, the more errors can be detected, permitting
the use of more efficient generalized broadcast.

On the other hand, the lower bound argument is new, except that the need for broadcast
in the second round is also mentioned in the O(n) lower bound argument [7].

2 Preliminaries

Notations. For an integer n ≥ 1, we denote [n] := {1, 2, . . . , n}. By default, log denotes
the base-2 logarithm.

Throughout, Fq denotes the finite field with q elements, for q a prime power. We let n

denote the number of channels through which Alice and Bob may communicate and t the
number of channels Eve may corrupt; we focus exclusively on the n = 2t + 1 case. The
complexity measure of a protocol that concerns us is its transmission rate, defined as the
total number of symbols communicated divided by the number of symbols of the transmitted
secret. The length of the transmitted secret is denoted by ℓ. By oℓ→∞(1) we refer to a
quantity which tends to 0 as ℓ→∞ (fixing all other parameters, including n), and we write
f(ℓ) ∼ g(ℓ) if limℓ→∞

f(ℓ)
g(ℓ) = 1 (again, fixing all other parameters).

▶ Remark 1. As usual, a bit refers to an element of {0, 1}, while in this work, a symbol refers
to an element from the field Fq, and we will need q ≥ n. While it is most natural to measure
the total communication in bits, as our protocols will involve transmitting elements of Fq it is
more convenient for us to talk about the number of symbols transmitted. Note that when we
compute the transmission rate and we assume the length of the secret is a growing parameter,
whether we measure the communication in bits or symbols does not matter. However, when
we present our lower bound proof in Section 4 it will be most convenient for us to talk about
bits.

Codes. As in previous works, our protocols rely crucially on linear codes with desirable
properties. For two vectors x and y in Fn

q , the (Hamming) distance between them is
d(x, y) := |{i ∈ [n] : xi ̸= yi}|. Given a vector x and a subset Y ⊆ Fn

q we denote
d(x,Y) := min{d(x, y) : y ∈ Y}. The (Hamming) weight of a vector is wt(x) := d(x, 0).
The support of x is supp(x) := {i ∈ [n] : xi ̸= 0}. Note that wt(x) = |supp(x)| and
d(x, y) = |supp(x− y)|. For a vector x ∈ Fn

q and a subset S ⊆ [n], x|S := (xi)i∈S denotes
the length |S| vector obtained by projecting on the coordinates indexed by S. By a (linear)
code, we refer to a linear subspace C ≤ Fn

q ; n is the block-length, k = dim(C) is the dimension
and d = min{wt(c) : c ∈ C \ {0}} is the (minimum) distance. We refer to such a code as an
[n, k, d]q code.

A code is called maximum distance separable (MDS) if d = n− k + 1. Such codes exist
whenever q ≥ n and are furnished by the well-known Reed-Solomon (RS) codes defined via
the evaluations of degree ≤ k − 1 polynomials. However, in this work, we will not directly
use the specific structure of RS codes,7 so we will state our results for arbitrary linear MDS
codes.

7 Although in order to implement the protocol efficiently we will use the existence of efficient encoding
and decoding algorithms for RS codes.
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Any linear code C may be described as the kernel of a matrix, i.e., C = {x ∈ Fn
q : Hx = 0}.

Such a matrix H ∈ F(n−k)×n
q is called a parity-check matrix.

Given two vectors x, y ∈ Fn
q we define their inner product via ⟨x, y⟩ =

∑n
i=1 xiyi. We

will need the following lemma from [6]. It states that there exists an MDS code C ≤ Fn
q of

dimension t for n = 2t + 1 for which one can find a vector h ∈ Fn
q such that, even once t

coordinates are revealed from a codeword c ∈ C, the inner-product ⟨h, c⟩ ∈ Fq is completely
unconstrained.

▶ Lemma 2 (Lemma 1 from [6]). For any n and any t < n there exists a linear MDS code
C of parameters [n, t + 1, n − t] and a vector h ∈ Fn

q such that given a uniformly random
codeword c ∈ C, the scalar product ⟨h, c⟩ is a uniformly random element of Fq, even when
conditioned on any t symbols of c. Moreover, h can be found efficiently.

Formally, for any 1 ≤ i1 < i2 < · · · < it ≤ n and α1, α2, . . . , αt, β ∈ Fq, we have

Pr[⟨h, c⟩ = β|ci1 = α1, ci2 = α2, . . . , cit
= αt] = 1

q
,

where the randomness is over the uniformly random c ∈ C.

▶ Remark 3. We note that any such vector h must not lie in the dual of C, and moreover
that it must have weight at least t + 1.

Broadcast. Next, observe that since Eve controls at most t < n/2 of the channels, if Alice
transmits the same symbol through all n channels, then Bob can always recover Alice’s
intended symbol by choosing the majority symbol. Of course, such a procedure does not
guarantee any privacy, i.e., Eve will always learn the symbol Alice transmits to Bob.

Pseudobases
An important technical tool in our protocols are pseudobases, as introduced in the work
of Kurosawa and Suzuki [4]. Before providing the definition, we explain their utility. (A
similar discussion of the utility of pseudobases is available in Section 3.2 of [6].) Consider
the scenario where Bob has sent a codeword c ∈ C to Alice by sending the i-th coordinate ci

through the i-th channel. In order to guarantee privacy, as Eve can observe t of the channels,
it must be that dim C ≥ t + 1. However, by the Singleton bound, that forces the distance of
C to be at most n− (t + 1) + 1 = n− t = t + 1, which means that Bob can uniquely decode
Alice’s transmission only if Eve introduces ≤ t/2 errors. However, as Eve can introduce up
to t errors, it appears that we do not have an effective means of enforcing reliability.

However, consider the following scenario: instead of sending a single codeword through
the channel in this way, Bob sends many codewords c1, . . . , cr. Privacy is preserved so long
as the transmissions are not correlated in any way (say, each one is sampled independently
and uniformly at random). However, Alice now has an advantage in decoding: all of the
corruptions introduced by Eve are confined to the same set of t coordinates. The idea is to
exploit this fact to allow Alice and Bob to agree on some codeword c̄ of which Eve knows
at most t coordinates (which in turn means that ⟨h, c̄⟩ can effectively mask the secret m).
Using the concept of pseudobases, it turns out that this is possible (so long as the distance
of C is at least t + 1, as is the case when C is MDS).

We now provide the formal definition of a pseudobasis.

▶ Definition 4 (Pseudobasis [4]). Let y1, . . . , ys ∈ Fn
q be vectors. A pseudobasis for y1, . . . , ys

is a subcollection yi1 , . . . , yir with 1 ≤ i1 < · · · < ir ≤ s such that Hyi1 , . . . , Hyir ∈ Fn−k
q is

a basis for the linear space span{Hy1, . . . , Hys}.

ITC 2023



1:8 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

In other words, one computes a basis for the space spanned by Hy1, . . . , Hys ∈ Fn−k
q , and

then the preimage of the basis vectors in Fn
q provides a pseudobasis. Observe that, given

access to H, such a pseudobasis can be found in time polynomial in n, and furthermore that
it consists of at most n− k vectors.

▶ Remark 5. Note that if we have a code C ≤ Fn
q with parity-check matrix H and we write

yi = ci + ei for each i ∈ [s] with ci ∈ C, then as

Hyi = H(ci + ei) = Hci + Hei = Hei ,

we conclude that yi1 , . . . , yir forms a pseudobasis for y1, . . . , ys if and only if ei1 , . . . , eir

forms a pseudobasis for e1, . . . , es.
This observation will be crucial for us in our privacy analysis. We will be in the scenario

that Alice has received potentially corrupted codewords from Bob, which we write as
c̃i = ci + ei, where ei denotes the errors introduced by Eve. Alice will then broadcast some
information about a pseudobasis for her received vectors to Bob. This does not leak any
information to Eve, as she could have computed the same pseudobasis from the error vectors
ei that she knows.

3 The Protocol

In this section, we present our protocol which allows Alice to privately and reliably transmit
an ℓ symbol secret (m1, . . . , mℓ) ∈ Fℓ

q to Bob. In order to ease readability, we present two
simplifications of our full protocol first before presenting the full construction. The first
construction, presented in Section 3.1, allows Alice to transmit a one symbol secret m ∈ Fq.
Despite being fairly simple, it already introduces a crucial idea, which is a method for Alice
and Bob to agree on a random codeword that is not completely revealed to Eve. As we
elaborate upon further in Remark 8, this means of extracting this secret codewords represents
our core improvement over [6].

Next, in Section 3.2, we show how to generalize the protocol to the case of ℓ ≥ 1, and
achieve communication rate (4 + oℓ→∞(1))n. Intuitively, this requires Alice and Bob to agree
on ℓ random codewords that are not completely known to Eve. In order to guarantee small
transmission rate, we need a few more tricks. As in [6], one useful technique we employ
is a method for Alice to find a vector which indicates many of the channels that Eve is
corrupting, allowing Bob to safely ignore those channels.8 Informally, this transforms symbol
corruptions into erasures, and erasures are easier to recover from. In particular, Alice can
encode her data with a code of higher rate and Bob will still be able to uniquely-decode. To
get our final protocol achieving transmission rate (2 + oℓ→∞(1))n, we note that we only need
to do something different if Eve invests many corruptions in the first round.9 In order to
handle this, we ask Alice to send a bit more information to Bob to indicate a larger number
of corrupted channels, which transforms more of the symbol corruptions into erasures in the
subsequent transmissions, and hence allows Alice to use an error-correcting code of higher
rate. We describe the necessary modifications in Section 3.3.

8 There is a procedure with the same guarantee in [6]; however, we believe our procedure is simpler, and
moreover does not use the specific structure of RS codes.

9 More precisely, if the dimension of the syndrome space exceeds t/3.
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Notations for this section. Throughout, C ≤ Fn
q denotes an MDS code of dimension t + 1

and h ∈ Fn
q a vector satisfying the conclusion of Lemma 2. Also, H ∈ Ft×n

q denotes a
parity-check matrix for C. The datum (C, h, H) is public, fixed prior to the execution of the
protocol and available to Alice, Bob and Eve throughout the execution. Lastly, we denote by
E ⊆ [n] the set of t channels that Eve controls. Of course, this set is unknown to Alice and
Bob; we introduce this notation exclusively for the analysis.

3.1 A Simple Protocol for ℓ = 1

We begin by providing a simple protocol which allows Alice to transmit one secret symbol
m ∈ Fq to Bob. While this does not achieve our main goal, we find that it clarifies our
means of extracting a codeword known to both Alice and Bob but secret from Eve, which we
call c̄ and c′. As we discuss further in Remark 8, this idea is the core of what allows us to
go beyond the protocol of [6] and eventually compress Alice’s communication to just ∼ nℓ

symbols. The details of the protocol are provided in Algorithm 1.
We now sketch why the protocol indeed yields a PSMT.

Reliability. First, we argue that Lines 8 and 9 from Algorithm 1 are justified, i.e., that
Alice can indeed find p ∈ [t + 1] and λj ∈ Fq for j ∈ [t + 1] \ {p} such that sp =

∑
j ̸=p sj . As

s1, . . . , st+1 ∈ Ft
q are t + 1 vectors in a t-dimensional space, they must satisfy a nontrivial

linear dependence
∑t+1

j=1 λ′
jsj = 0. Alice can thus pick any p ∈ [t + 1] for which λ′

p ≠ 0, and
then set λj = −λ′

j/λ′
p for j ∈ [t + 1] \ {p}.

Now, the important observation is that since the code C has distance t + 1, we have c′ = c̄.
Indeed, first note that c̄ ∈ C, as

Hc̄ = H

c̃p −
∑
j ̸=p

λj c̃j

 = Hc̃p −
∑
j ̸=p

λjHc̃j = sp −
∑
j ̸=p

λjsj = 0 .

Now, recalling that E ⊆ [n] denotes the channels that the adversary controls, the coordinates
on which each cj can disagree with c̃j are confined to the set E. Thus, the support of(

cp −
∑

j ̸=p λjcj

)
−
(

c̃p −
∑

j ̸=p λj c̃j

)
is also contained in the set E. As |E| ≤ t, we

conclude that the codewords c′ = cp −
∑

j ̸=p λjcj and c̃ = c̃p −
∑

j ̸=p λj c̃j are distance at
most t from one another; as C has distance t + 1, they must be the same vector.

Thus, in particular, ⟨h, c′⟩ = ⟨h, c̄⟩, so m′ − ⟨h, c′⟩ = m + ⟨h, c̄⟩ − ⟨h, c′⟩ = m, i.e., Bob
returns Alice’s intended secret m.

Privacy. In the first round of the protocol, Eve can only see |E| ≤ t symbols from each
transmitted codeword. As the code C has dimension t + 1 and is MDS, Eve learns only learns
these |E| symbols from c1, . . . , ct+1.

In the second round, Eve sees (p, λj : j ̸= p). However, she already knows e1, . . . , et+1 and
H and, using the fact that sj = Hc̃j = Hej for j ∈ [t + 1], (p, λj : j ≠ p) can be computed
from e1, . . . , et+1 and H. Thus, she does not learn anything from the second transmission.

We conclude that after the protocol, Eve has only learned the symbols indexed by
the corrupted channels E from c1, . . . , ct+1. In particular, Eve only knows t symbols of
c′ = c̄ = c̃p −

∑
j ̸=p λj c̃j which is a codeword distributed uniformly at random in C, and

so Lemma 2 guarantees that Eve has no information on ⟨h, c̄⟩. Thus, even after observing
m + ⟨h, c̄⟩, she has no information on m, as desired.

ITC 2023
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Communication Cost. In the first round, Bob transmits (t + 1)n ∼ n2/2 symbols. In the
second round, Alice transmits logq(t + 1) + tn + n ∼ n2/2 symbols. Hence, to communicate
a single symbol, the total communication requirement of Algorithm 1 is ∼ n2. In terms of
bits, as we require q ≥ n, we conclude that Alice and Bob must transmit ∼ n2 log n bits.

3.2 A Protocol with (4 + oℓ→∞(1))n Transmission Rate
In this subsection, we provide a protocol that will allow Alice to transmit an ℓ symbol secret
to Bob requiring only ∼ 4nℓ symbols to be communicated. We begin by outlining some of
the new ingredients we need.

Generalized Broadcast. One technique that we will use in our protocol is generalized
broadcast, as introduced in previous works [4, 6]. The situation that motivates the idea of
generalized broadcast is the following: imagine that in some way, Bob has become aware that
Eve is controlling some set R ⊆ [n] of the channels. Then, when decoding a transmission
from Alice, he can replace the symbols he receives through the channels in R by an erasure
symbol. Thus, instead of decoding from t symbol corruptions, he only has to perform the
easier task of decoding from t− r symbol corruptions and r erasures, where r = |R|.

In particular, to uniquely decode from t errors where n = 2t + 1, if Alice wants to
guarantee that the codeword she transmits can be uniquely-decoded by Bob, then she must
use a code with distance 2t + 1 = n: by the Singleton bound, she must use an MDS code of
dimension 1, i.e., she can only send a single symbol. A natural example of a dimension 1
MDS code is the repetition code: this precisely recovers broadcast as introduced earlier.

However, if Bob knows a subset R as above, then he can uniquely decode so long as the
code has distance at least 2(t − r) + r + 1 = n − r. Thus, if Alice uses an MDS code of
dimension r + 1, Bob can recover her intended transmission. We refer to this as r-generalized
broadcast, which we now formally define.

▶ Definition 6 (Generalized Broadcast). For an integer r ≥ 0, r-generalized broadcast refers
to the procedure where Alice uses an [n, r + 1, n − r]q code Cr to transmit r + 1 symbols
(x1, . . . , xr+1) ∈ Fr+1

q by encoding the message (x1, . . . , xr+1) into a codeword c ∈ Cr, and
sending the i-th symbol of c through the i-th channel for each i ∈ [n].

For succinctness, we write Alice r-broadcasts (x1, . . . , xr+1) to indicate that Alice uses
the r-generalized broadcast to transmit the data (x1, . . . , xr+1) to Bob.

▶ Remark 7. Assuming Alice and Bob communicate with a dimension r + 1 Reed-Solomon
code, then both encoding the message and decoding from r erasures and t − r symbol
corruptions can be done in polynomial time [8].

Thus, r-generalized broadcast allows Alice to reliably transmit r+1 times more information
to Bob than standard (i.e., 0-)broadcast, which can greatly improve the transmission rate of
the protocol if r is sufficiently large.

Finding a Set of Corrupted Channels. In light of the above discussion, we would like
to allow Bob to find a large set of corrupted channels. For general ℓ, we will have Bob
transmit t+ℓ uniformly random codewords in the first round, and Alice receives the corrupted
codewords c̃j = cj + ej , where the support of each ej is contained in the t channels Eve
controls, E.
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Now, if Alice were aware that ej has large weight for some j, then she could just broadcast
c̃j and the index j to Bob. Bob could then compute the set supp(c̃j − cj) and subsequently
ignore the transmissions sent through those channels. However, one problem is that there
might not be an ej that has sufficiently large weight. More concerningly, Alice does not
actually know e1, . . . , et+ℓ!

Dealing with the first issue, note that it actually suffices to find multipliers λj such that∑
j λjej has large weight: then Alice can broadcast the λj ’s and y :=

∑
j λj c̃j , and then

Bob can compute supp
(

y−
∑

j λjcj

)
and ignore the subsequent transmissions sent through

those channels.
Actually, in order to ensure a good transmission rate it will be important that the linear

dependency is chosen to be relatively short; in particular, it should be independent of ℓ. It
will turn out that we can find such a vector y which is a linear combination of a pseudobasis
for the vectors c̃1, . . . , c̃t+ℓ. Recalling that the dimension of the syndrome space is at most t,
this guarantees that we don’t need to transmit too many multipliers λj .

However, we still haven’t addressed the issue that Alice does not have direct access to
the ej ’s. But it turns out that this is not an problem: given a set of vectors with linearly
independent syndromes, we will be able to find a linear combination

∑
j λj c̃j that is far from

every codeword. So, in particular, it will be far from
∑

j λjcj , as required.
Specifically, if r ≤ t/3 and y1, . . . , yr ∈ Fr

q are vectors such that the syndromes
Hy1, . . . , Hyr ∈ Ft

q are linearly independent, then Algorithm 4 finds a vector y in the
span of y1, . . . , yr that satisfies d(y, C) ≥ r. This procedure and its analysis are presented in
Appendix D.

▶ Remark 8. There is a procedure in [6] with the same guarantee; however, we believe our
algorithm is a bit simpler, so we have chosen to present it. In particular, we do not need to
apply a unique-decoding algorithm as is required by the procedure in [6]; we just use simple
linear-algebraic operations.

A more significant difference between our protocols concerns the communication of the
masked secrets. For each of the message symbols m1, . . . , mℓ, the most efficient protocol
of [6] requires Alice to broadcast two symbols z

(i)
1 , z

(i)
2 ∈ Fq which each mask the message

symbol mi in a different way. The symbol z
(i)
1 uses the mask ⟨h, ypi

⟩; z
(i)
2 uses the mask

⟨h, c̃pi
⟩ where c̃pi

is the decoding of ypi
, or z

(i)
2 is just set to 0 if the decoding failed. Bob

then chooses which mask to open, depending on the size of the pseudobasis. The authors
comment they could use generalized broadcast for these symbols (as we do) to somewhat
decrease the communication cost; however, even this change would not bring the second
round communication down to ∼ nℓ. Thus, a key difference between our protocols can be
observed: by more carefully exploiting the structure of the pseudobasis, our extraction of the
codewords c̄pi

= c′
pi

to yield the masks ⟨h, c̄i⟩ prevents us from needing to use two different
masks to guarantee that Bob can reliably recover the message symbols.

The Protocol. We are now in position to give our PSMT for transmitting an ℓ symbol
secret: the details are in Algorithm 2.

▶ Theorem 9. Algorithm 2 is a PSMT with transmission rate (4 + oℓ→∞(1))n.

Proof. We first verify that the protocol is reliable. After, we show that it is private. Lastly,
we compute its transmission rate. Throughout the proof, we let E ⊆ [n] denote the set of t

channels that Eve is corrupting.

ITC 2023



1:12 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

Reliability. We first make a few observations to justify the algorithm. First, we note that
the definition of T on Appendix B is valid: indeed, r = |S| ≤ t since a pseudobasis has size at
most t, so there are at least ℓ elements in [t + ℓ] \ S. Also, we note that z =

∑
j∈S λjcj ∈ C,

so since y is at distance at least r′ from C, we have |supp(z− y)| = d(z, y) ≥ r′, as stated in
Appendix B. Furthermore, as y =

∑
j∈S λj c̃j , if E ⊆ [n] denotes the set of channels that

Eve controls, then supp(y− z) ⊆ E. Hence, for each i ∈ [ℓ], the transmission from Alice to
Bob of (λij : j ∈ S) and ⟨h, c̄pi

⟩+ mi via r′-generalized broadcast is reliable.
As in the analysis in Section 3.1, the reliability of Algorithm 2 follows from the fact that

for i = 1, . . . , ℓ, we have c̄pi = c′
pi

. And once again, the argument proceeds by demonstrating
that both c̄pi

and c′
pi

are elements of C. This is clear for c′
pi

; for c̄pi
, we use the parity-check

matrix H:

Hc̄pi
= H

c̃pi
−
∑
j∈S

λij c̃j

 = spi
−
∑
j∈S

λijsj = 0 .

Now, since supp(cj − c̃j) ⊆ E for each j ∈ [t + ℓ], we also have

supp(c′
pi
− c̄pi

) = supp

cpi
−
∑
j∈S

λijcj

−
c̃pi

−
∑
j∈S

λij c̃j

 ⊆ E ,

which implies d(c′
pi

, c̄pi
) ≤ |E| ≤ t. As C has distance t + 1, it follows that c′

pi
= c̄pi

. In
particular, we have ⟨h, c′

pi
⟩ = ⟨h, c̄pi

⟩.
Hence, for each i ∈ [ℓ], m′

i − ⟨h, c′
pi
⟩ = mi + ⟨h, c̄pi⟩ − ⟨h, c′

pi
⟩ = mi, demonstrating

reliability.

Privacy. First, we describe Eve’s view of the protocol. In the first round, she observes
(c1)|E , . . . , (ct+ℓ)|E . In the second round, she first observes (S, (λj : j ∈ S), y). Then, for
each i ∈ [ℓ], she observes (λij : j ∈ S) and m′

i = ⟨h, c̄pi⟩+ mi.
We wish to establish that Eve learns nothing about the symbols mi for each i ∈ [ℓ]. To

establish this, it suffices to show that, conditioned on Eve’s view, ⟨h, c̄pi
⟩ is a uniformly

random element of Fq. And to do this, according to Lemma 2, it suffices to show that from
Eve’s perspective, c̄pi

is a uniformly random codeword from which Eve has observed only t

coordinates.
First of all, as c1, . . . , ct+ℓ are sampled independently and uniformly from C and C has

dimension t + 1 and is MDS, after the first round Eve only learns (cj)|E for each j ∈ [t + ℓ].
Next, we consider the second round. We begin by noting that Eve can compute S from

H and e1, . . . , et+ℓ, which she knows. Indeed, as sj = Hc̃j = Hej , Eve can also compute the
pseudobasis S. So she learns nothing from this transmission. Once she has computed S Eve
can then compute the set T and subsequently (λij : j ∈ S) for each i ∈ [ℓ], as the λij ’s are a
function of the sets S and T and the syndromes s1, . . . , st+ℓ, to which she has access.

Next, consider revealing to Eve the codewords (cj : j ∈ S). Then, she can compute the
corrupted codeword c̃j = cj + ej for j ∈ S, so she can then compute the vector y and the
multipliers (λj : j ∈ S). Hence, what Eve sees in the second round is at most as informative
as (cj : j ∈ S).

Hence, at the termination of the protocol, what Eve can infer from her view about the
masks ⟨h, c̄pi

⟩ for i ∈ [ℓ] is no more than what she can infer about them from the following
data:

The codewords (cj : j ∈ S);
The coordinates of all the codewords indexed by E, i.e., (cj)|E for j ∈ [t + ℓ].
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Recall that, for each i ∈ [ℓ], c̄pi = c′
pi

= cpi −
∑

j∈S λijcj . On the one hand, from the two
pieces of data above, we have shown that Eve can compute exactly

∑
j∈S λijcj . On the other

hand, as the cj ’s are sampled independently, the above data reveals nothing about cpi
other

than the coordinates indexed by E. Thus, from Eve’s perspective, c̄pi = cpi −
∑

j∈S λijcj is
a uniformly random codeword from which she has only observed the coordinates indexed
by E. Therefore the messages m′

i = mi + ⟨h, c̄pi⟩ reveal nothing about the secret vector
(m1, . . . , mℓ). This concludes the proof of the assertion that the protocol is private.

Transmission Rate. In the first round, Bob sends (t + ℓ)n symbols. In the second round,
Alice first broadcasts r log(t+ℓ)

log q +r +n symbols and then r′-broadcasts ℓ(r +1) symbols, where
we recall that r denotes the size of the pseudobasis and r′ = min{r, ⌊t/e⌋}. This requires her
to send

nr log(t + ℓ)
log q

+ (r + n)n + (r + 1)ℓ n

r′ + 1

elements from Fq. Thus, if N is the total number of symbols transmitted, then N
ℓ is

tn

ℓ
+ n + nr log(t + ℓ)

ℓ log q
+ n2 + rn

ℓ
+ (r + 1)n

r′ + 1 ≤ 4n + O

(
n2

ℓ
+ n2 log(n + ℓ)

ℓ log n

)
, (1)

where the inequality uses q ≥ n, r ≤ t ≤ n and r+1
r′+1 ≤ 3. Hence, assuming ℓ = ω(n) we have

N
ℓ ∼ 4n, as promised. ◀

▶ Remark 10. Note that if we had been in the case that r = r′, i.e., r ≤ t
3 , then the

transmission rate of Algorithm 2 would have been ∼ 2n. Hence, in order to get our desired
transmission rate of 2n, we will only have to amend the protocol in the case that r > t

3 . This
is what we do in the following subsection.

3.3 Protocol with (2 + oℓ→∞(1))n Transmission Rate
In order to decrease the transmission rate to ∼ 2n, we look more carefully at the transmission
rate as computed in (1). We have a factor of ∼ n from the first round when Bob communicates
to Alice, and then a factor of ∼ 3n when Alice replies to Bob in the second round. In our
lower bound argument, we will show that both parties will have to communicate nℓ symbols
in each round; hence, our only hope of getting a ∼ 2n transmission rate will be to decrease
the communication of Alice in the second round.

Now, we note that the dominant term in Alice’s communication is the (r+1)n
r′+1 ℓ term which

comes from the ℓ r′-generalized broadcasts from Appendix B; as r′ ≤ t
3 and r can be as large

as t, this term could be as large as 3nℓ. If Alice used r-generalized broadcast for each of these
transmissions, then this communication would cost only ∼ nℓ symbols, and we would get the
∼ 2n transmission rate we desire. However, as y only informs Bob of r′ corrupted channels,
if r > r′ = min{r, ⌊t/3⌋} then Alice will have to communicate some more information for
Bob to learn of r corrupted channels, which will guarantee the reliability of the transmission.

The solution for this is rather simple. We assume from now on that r > r′, which is the
same as saying r > t

3 . First, Alice broadcasts (y, S, λj : j ∈ S) as before (see Appendix B);
thus, t/3-generalized broadcast is now reliable. Next, we have Alice t/3-generalized broadcast
the entire pseudobasis to Bob, i.e., all the vectors c̃j for j ∈ S. We claim that this implies
that r-generalized broadcast will now be reliable. Indeed, this follows from the following
simple lemma.
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▶ Lemma 11. Let c̃j = cj + ej for j ∈ S with cj ∈ C and put sj = Hc̃j = Hej. Assume
that dim (span{sj : j ∈ S}) = r. Then

∣∣∣⋃j∈S supp(ej)
∣∣∣ ≥ r.

Proof. Let di ∈ Fn
q denote the vector whose i-th coordinate is 1 and the remaining coordinates

are 0. Let R =
⋃

j∈S supp(ej); then clearly span{di : i ∈ R} ⊇ span{ej : j ∈ S}, so also

span{Hdi : i ∈ R} ⊇ span{Hej : j ∈ S} = span{sj : j ∈ S}.

As dim (span{Hdi : i ∈ R}) ≤ |R|, we conclude |R| ≥ dim (span{sj : j ∈ S}) = r, as desired.
◀

Thus, suppose Alice reliably transmits to Bob the vectors c̃j for j ∈ S. From this, Bob
can compute the set

⋃
j∈S supp(cj − c̃j) =

⋃
j∈S supp(ej); this set has cardinality at least r,

and moreover it is contained in E (where, as usual, E denotes the set of channels Eve
controls). Hence, there are now r channels that Bob can safely ignore, so Alice may reliably
r-broadcast the ℓ transmissions (λij : j ∈ S) and ⟨h, c̄pi

⟩+ mi, as in Appendix B.
It is reasonable now to wonder if this will negatively impact the privacy of the protocol,

as more information is revealed to Eve. However, by observing the proof of Theorem 9,
one can see that even if Eve learns of c̃j for j ∈ S, the inner-product ⟨h, c̄pi⟩ is still wholly
unknown to her, implying that they yield an effective mask for the secrets mi.

Instead of completely rewriting the protocol, we just indicate in Algorithm 3 the changes
that need to be made to Algorithm 2 to obtain the ∼ 2n transmission rate.

▶ Theorem 12. Algorithm 3 is a PSMT with transmission rate (2 + oℓ→∞(1))n.

Proof. The proof is omitted due to page limit. ◀

4 Lower Bound

In this section, we prove a lower bound on the transmission rate of any two-round PSMT
under an assumption about the protocol which we now formally introduce.

Our starting point is the observation that in our two-round PSMTs from Section 3, we
always have Alice broadcast her desired transmission to Bob which completely sacrifices the
privacy of her transmission. That is, the adversary completely learns the transmission from
the second round. And this is not unique to our protocols: all of the efficient two-round
PSMT protocols from the literature [1, 4, 6] sacrifice the privacy of Alice’s transmission.

Therefore, we make the assumption that the adversary learns the entire transmission of
the second round and prove a 2n lower bound on the transmission rate under this assumption.
This argument shows that among all two-round PSMTs satisfying this assumption, the one
guaranteed by Theorem 12 is actually optimal. In other words, if one want to design a more
efficient PSMT, the second round of this protocol must somehow bypass this assumption
and keep something hidden from Eve. In this sense, we prove an inherent limitation for the
line of optimizing two-round PSMT protocols [1, 4, 6].

▶ Assumption 1. The adversary learns the whole transmission of the second round. More
precisely, there is a function mapping the symbols Alice transmits through t of the channels
to the symbols she sends through the other channels.

▶ Theorem 13. Under Assumption 1, any two-round perfectly secure message transmission
of an ℓ-bit secret requires communicating 2nℓ bits.
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Proof. First of all, we formalize the behaviours of the sender Alice and the receiver Bob in a
two-round PSMT.
1. In the first round, Bob runs a randomized algorithm A(ℓ) to generate a message a =

(a1, . . . , an) ∈ A1 × · · · ×An where the randomness is only available to Bob. Bob sends a
to Alice such that ai is sent through the i-th channel.

2. Alice receives the corrupted vector ã and runs the algorithm B(ã, s) to generate the
message b = (b1, . . . , bn) ∈ B1 × · · · × Bn where s ∈ [2ℓ] is the secret. Then Alice sends b
to Bob such that bi is sent through the i-th channel.

3. Bob receives the corrupted vector b̃ and runs the algorithm C(b̃, a) to recover the secret.
The protocol succeeds if C outputs s and Eve learns nothing about the secret.

Note that if B(a, s) = b then we must have C(b, a) = s, i.e., the protocol must succeed if
the adversary Eve injects no errors. We defer the formal proof to the full version. ◀
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A Algorithm 1

Algorithm 1 A first protocol for transmitting a one symbol secret m ∈ Fq.
1: procedure Round 1: Bob Transmits
2: Bob samples c1, . . . , ct+1 ∈ C independently and uniformly at random.
3: For j = 1, . . . , t + 1, Bob transmits the i-th coordinate of cj through the i-th channel.
4: end procedure
5: procedure Round 2: Alice Transmits
6: For j = 1, . . . , t + 1, Alice receives the vectors c̃j where d(cj , c̃j) ≤ t.
7: For j = 1, . . . , t + 1, Alice computes sj = Hc̃j ∈ Ft

q.
8: Alice finds a coordinate p ∈ [t + 1] such that sp ∈ span{sj : j ̸= p}.
9: Alice finds λj ∈ Fq for j ∈ [t + 1] \ {p} such that sp =

∑
j ̸=p λjsj .

10: c̄← c̃p −
∑

j ̸=p λj c̃j

11: Alice broadcasts p, (λj : j ̸= p) and the symbol m′ ← m + ⟨h, c̄⟩.
12: end procedure
13: procedure Output Phase
14: Bob receives p, (λj : j ̸= p) and the symbol m′.
15: c′ ← cp −

∑
j ̸=p λjcj

16: return m′ − ⟨h, c′⟩.
17: end procedure
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B Algorithm 2

Algorithm 2 A protocol for transmitting an ℓ-symbol secret (m1, . . . , mℓ) ∈ Fℓ
q, which achieves

transmission rate (4 + oℓ→∞(1))n.
1: procedure Round 1: Bob Transmits
2: Bob samples c1, . . . , ct+ℓ ∈ C independently and uniformly at random.
3: For j = 1, . . . , t + ℓ, Bob transmits the i-th symbol of cj through the i-th channel.
4: end procedure
5: procedure Round 2: Alice Transmits
6: For j = 1, . . . , t + ℓ, Alice receives the vectors c̃j where d(cj , c̃j) ≤ t.
7: For j = 1, . . . , t + ℓ, Alice computes sj = Hc̃j ∈ Ft

q.
8: Alice computes a pseudobasis for c̃1, . . . , c̃t+ℓ. Let S ⊆ [t + ℓ] index the elements of

the pseudobasis.
9: r ← |S| and r′ ← min{r, ⌊t/3⌋}.

10: Let S′ ⊆ S denote a subset of size r′.
11: Let y← (c̃j : j ∈ S′); write y =

∑
j∈S λj c̃j . ▷ Of course, for j ∈ S \ S′, we may put

λj = 0.
12: Let T ← {p1, . . . , pℓ} denote the ℓ smallest elements of [t + ℓ] \ S.
13: For i ∈ [ℓ], choose coefficients λij ∈ Fq such that spi =

∑
j∈S λijsj , and define

c̄pi
← c̃pi

−
∑

j∈S λij c̃j .
14: Alice broadcasts the information (S, (λj : j ∈ S), y).
15: For each i ∈ [ℓ], Alice r′-broadcasts the data (λij : j ∈ S) and m′

i ← mi + ⟨h, c̄pi
⟩.

16: end procedure
17: procedure Output Phase
18: Bob recovers (S, (λj : j ∈ S), y) and defines z ←

∑
j∈S λjcj . He also lets T =

{p1, . . . , pℓ} denote the ℓ smallest elements of [t + ℓ] \ S.
19: Bob ignores the channels in the set supp(y− z), a set of cardinality at least r′.
20: For each i ∈ [ℓ], Bob recovers the information (λij : j ∈ S) and m′

i, defines c′
pi
←

cpi
−
∑

j∈S λijcj , and then defines mi ← m′
i − ⟨h, c′

pi
⟩.

21: return (m1, . . . , mℓ).
22: end procedure
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C Algorithm 3

Algorithm 3 Our final protocol for transmitting an ℓ-symbol secret (m1, . . . , mℓ) ∈ Fℓ
q, which

achieves transmission rate (2 + oℓ→∞(1))n. We just indicate what needs to be changed from
Algorithm 2 when r > r′ = min{r, ⌊t/3⌋}.

procedure Round 1: Bob Transmits
Bob performs lines 2-3 from Algorithm 2.

end procedure
procedure Round 2: Alice Transmits

Alice performs lines 6-14 from Algorithm 2.
if r = r′ then

Alice performs Appendix B from Algorithm 2.
else

Alice r′-broadcasts c̃j for each j ∈ S.
For each i ∈ [ℓ], Alice r-broadcasts the data (λij : j ∈ S) and ⟨h, c̄pi⟩+ mi.

end if
end procedure
procedure Output Phase

Bob performs lines 18-19 from Algorithm 2.
Let r ← |S|.
if r ≤ t/3 then Bob performs line 20
else

Bob recovers c̃j for each j ∈ S.
Bob ignores the channels in the set

⋃
j∈S supp(c̃j − cj), which has cardinality at

least r.
For each i ∈ [ℓ], Bob recovers the information (λij : j ∈ S) and m′

i, defines
c′

pi
← cpi −

∑
j∈S λijcj , and then defines mi ← m′

i − ⟨h, c′
pi
⟩.

end if
return (m1, . . . , mℓ).

end procedure

D Procedure for Finding a Vector Far from Code

In this section, we present our algorithm for finding a vector that is far from the code.

▶ Lemma 14. Let y1, . . . , yr have linearly independent syndromes and assume r ≤ t
3 . Then

the vector y returned by Algorithm 4 has distance at least r from C.

Proof. By assumption, we have that the syndromes si = Hyi ∈ Ft
q for i = 1, . . . , r are

linearly independent. We claim that the vectors e1, . . . , er ∈ Fn
q are linearly independent.

Suppose λ1, . . . , λr ∈ Fq are such that
∑r

i=1 λiei = 0. Then

0 =
r∑

i=1
λiHei =

r∑
i=1

λiH(yi − xi) =
r∑

i=1
λisi .

As s1, . . . , sr are linearly independent, this implies λ1 = · · · = λr = 0, as desired.
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Algorithm 4 A procedure for Alice to find a vector whose distance from C is at least r for r ≤ t
3 .

1: procedure Many-Errors(y1, . . . , yr)
2: For i = 1, . . . , r, let xi ∈ C denote the codeword agreeing with yi on the last t + 1

coordinates. ▷ This is possible, as every subset of t + 1 coordinates forms an information
set for C.

3: For i = 1, . . . , r, ei ← yi − xi.
4: Let M denote the matrix in Fr×n

q whose rows are e1, . . . , er.
5: Using Gaussian elimination, put M in reduced row echelon form; let e∗

1, . . . , e∗
r denote

the rows.
6: if ∃i ∈ [r] s.t. wt(e∗

i ) ≥ r then e← e∗
i

7: else
8: for j = 2, 3, . . . , r do
9: if wt

(∑j
i=1 e∗

i

)
≥ r then e←

∑j
i=1 e∗

i

10: end if
11: end for
12: end if
13: Choose λ1, . . . , λr ∈ Fq such that e =

∑r
i=1 λiei.

14: y←
∑r

i=1 λiyi

15: return y
16: end procedure

Now, we note that if e =
∑r

i=1 λiei is found such that d(e, C) ≥ r, then it also follows
that y =

∑r
i=1 λiyi satisfies d(y, C) ≥ r. Indeed,

d(y, C) = d

(
e +

r∑
i=1

λixi, C

)
= d

(
e, C +

r∑
i=1

λixi

)
= d(e, C) ≥ r

as
∑r

i=1 λixi ∈ C.
Now, for e ∈ span{e1, . . . , er}, to ensure d(e, C) ≥ r, note that it is sufficient to show

that r ≤ wt(e) ≤ t− r + 1. Indeed, as we have d(0, e) = wt(e) ≥ r, it suffices to verify that
for all nonzero codewords c ∈ C \ {0} we have d(e, c) ≥ r. And indeed, this follows as

t + 1 ≤ d(0, c) ≤ d(0, e) + d(e, c) ≤ t− r + 1 + d(e, c) ,

and so d(e, c) ≥ r.
Hence, we now show how the algorithm finds a vector e ∈ span{e1, . . . , er} which satisfies

r ≤ wt(e) ≤ t− r + 1. Consider the matrix

M =


e1
e2
...

er

 ∈ Fr×n
q

whose rows are given by vectors e1, . . . , er.
Consider putting the matrix M into reduced row echelon form; denote the resulting rows

e∗
1, . . . , e∗

r . By the definition of row operations, span{e1, . . . , er} = span{e∗
1, . . . , e∗

r}, so it
suffices to find a vector e∗ ∈ span{e∗

1, . . . , e∗
r} satisfying r ≤ wt(e∗) ≤ t− r + 1.

As the vectors e1, . . . , er are linearly independent, there is a set R ⊆ [n] of r pivot points:
that is, we have indices 1 ≤ j1 < j2 < · · · < jr ≤ n such that for each i, p ∈ [r]:
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(ei)jp
=
{

1 if i = p

0 otherwise
.

Therefore, for each i ∈ [r] we have supp(e∗
i ) ⊆ ([t] \R)∪ {ji}, so wt(e∗

i ) ≤ t− r + 1. Thus, if
we are in the case that for some i ∈ [r] we have r ≤ wt(e∗

i ), we can just return the vector e∗
i .

Assume now that for each i we have wt(e∗
i ) < r. Consider the sequence of vectors

∑j
i=1 e∗

i

for j = 2, . . . , r. Note that supp (
∑r

i=1 e∗
i ) ⊇ R, so wt (

∑r
i=1 e∗

i ) ≥ |R| = r. Hence, there
exists 2 ≤ j ≤ r such that:

wt
(∑j

i=1 e∗
i

)
≥ r;

for all 1 ≤ j′ ≤ j, wt
(∑j′

i=1 e∗
i

)
< r.

We claim that e∗ :=
∑j

i=1 e∗
i satisfies r ≤ wt(e∗) ≤ t + 1− r. The lower bound is obvious by

the definition of j. For the upper bound, we note that

wt
(

j∑
i=1

e∗
i

)
≤ wt

(
j−1∑
i=1

e∗
i

)
+ wt(e∗

j ) < r + r ≤ t + 1− r ,

where the upper bound on the weight of
∑j−1

i=1 e∗
i is again by the definition of j and the

upper bound on wt(e∗
j ) follows from our earlier assumption. That 2r ≤ t + 1− r follows from

r ≤ t/3. ◀
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