
Distributed Shuffling in Adversarial Environments
Kasper Green Larsen #

Aarhus University, Denmark

Maciej Obremski #

National University of Singapore, Singapore

Mark Simkin #

Ethereum Foundation, Aarhus, Denmark

Abstract
We study mix-nets in the context of cryptocurrencies. Here we have many computationally weak
shufflers that speak one after another and want to joinlty shuffle a list of ciphertexts (c1, . . . , cn).
Each shuffler can only permute k << n ciphertexts at a time. An adversary A can track some of
the ciphertexts and adaptively corrupt some of the shufflers.

We present a simple protocol for shuffling the list of ciphertexts efficiently. The main technical
contribution of this work is to prove that our simple shuffling strategy does indeed provide good
anonymity guarantees and at the same time terminates quickly.

Our shuffling algorithm provides a strict improvement over the current shuffling strategy in
Ethereum’s block proposer elections. Our algorithm is secure against a stronger adversary, provides
provable security guarantees, and is comparably in efficiency to the current approach.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Computing, Shuffling

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.10

Related Version Full Version: https://eprint.iacr.org/2022/560

Funding Kasper Green Larsen: Supported by Independent Research Fund Denmark (DFF) Sapere
Aude Research Leader grant No 9064-00068B.
Maciej Obremski: Funded by MOE2019-T2-1-145 Foundations of quantum-safe cryptography.

1 Introduction

Shuffling the elements of a long vector efficiently is a problem that appears in various shapes
and forms throughout many different domains of cryptography. In most applications, the
vector entries are either commitments or ciphertexts and each position in the vector is
associated with a corresponding identity. The process of shuffling the vector produces a new
vector that contains the same multi-set of committed or encrypted values, but hides which
value is associated to which identity. In anonymous communication systems [11, 26, 20], for
instance, a set of senders would each like to communicate one message to a set of receivers
without revealing who is talking to who. In electronic voting [26, 20, 23], we have a long list
of votes and we would like to determine the election outcome without revealing who voted
for who. In the domain of cryptocurrencies [21, 6], we have multiple payers, who would like
to transfer money to multiple payees without revealing who is paying who.

A popular approach for achieving anonymity in the above applications are mix-nets [11].
Here, we assume the existence of one or more shufflers that shuffle the input vector one
after another. If only one shuffler was honest, then even an adversary that corrupts all other
shufflers cannot tell which entry in the input vector belongs to which entry in the output
vector. From a security perspective this approach is great, but unfortunately such strong

© Kasper Green Larsen, Maciej Obremski, and Mark Simkin;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:larsen@cs.au.dk
https://orcid.org/0000-0001-8841-5929
mailto:obremski.math@gmail.com
https://orcid.org/0000-0003-4174-0438
mailto:mark.simkin@ethereum.org
https://orcid.org/0000-0002-7325-5261
https://doi.org/10.4230/LIPIcs.ITC.2023.10
https://eprint.iacr.org/2022/560
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Distributed Shuffling in Adversarial Environments

anonymity guarantees do not come for free. The required memory and the computational
overhead of each shuffler grows linearly in the length of the vector that should be shuffled. In
applications like electronic voting, the length of a vector of votes could easily be in the millions,
which places a significant memory burden on each shuffler. In addition, shufflers often need
to provide computationally expensive zero-knowledge proofs attesting the correctness of their
performed shuffle [26, 15, 23, 2] to show that no values in the vector have been changed by
them. These high costs make mix-nets unsuitable for applications, where shuffling needs to
terminate in a timely fashion and where the shufflers are restricted in terms of memory or
computational power.

1.1 Our Contribution
In this work, we study mix-nets in the context of cryptocurrencies. Here we have many
shufflers, but all of them are computationally weak, in the sense that they can only read and
shuffle k entries in a vector of length n, where k is potentially much smaller than n. Initially,
a vector of ciphertexts (c1, . . . , cn) is written on a public bulletin board, accessible to all.
The shufflers speak one after another and each shuffler chooses k entries, re-randomizes,
and permutes them. We assume that shuffling takes place in the presence of an adversary
A. At the start of the protocol, A is allowed to corrupt a subset of indices I ⊂ {1, . . . , n}
with |I| ≤ α and can track all ciphertexts ci for i ∈ I throughout the shuffling process.
Additionally, the adversary can adaptively corrupt up to β shufflers throughout the execution.
The goal of the shuffling protocol is to hide the output location of the uncorrupted entries in
the input vector from the adversary. In terms of efficiency, we would like to minimize the
number of shuffles of size k that need to be performed.

We present a very simple shuffling mechanism, where each shuffler picks k uniformly
random entries and permutes them. The main technical contribution of this work is a upper
bound that shows that this shuffling process terminates quickly and provides good anonymity
guarantees. The following informal theorem is a corollary of our main theorem.

▶ Theorem 1 (Informal). Let (c1, . . . , cn) be a vector of ciphertexts. Let A be a PPT
adversary that tracks α = C · n ciphertexts, where C is a constant, and adaptively corrupts β

shufflers adaptively. If each shuffler randomly permutes k ∈ Ω(ln2(n)) random ciphertexts,
then shuffling terminates in O(n/k · ln(n) + β) steps with a constant success probability.

To underline the practicality of our distributed shuffling protocol, we implemented our
solution and we provide benchmarks, which show that shuffling is not only asymptotically,
but also practically efficient.

1.2 Applications
1.2.1 Single Secret Leader Elections
In the single secret leader election (SSLE) problem, introduced by Boneh et al. [4], we have
a public bulletin board and n parties that would like to elect exactly one leader among them.
The leader should be fairly chosen, in the sense that each party should have a roughly equal
probability of becoming the leader. Additionally, the leader should remain hidden until they
decide to reveal themselves.

Boneh et al. present three solutions to this problem. The first two solutions are
based on indistinguishability obfuscation [16] and threshold fully homomorphic encryption [5]
respectively. Both of these solutions are theoretically interesting, but concretely too inefficient
to be useful in a practical setting.

K. G. Larsen, M. Obremski, and M. Simkin 10:3

The third presented solution is based on a distributed shuffling protocol. In their protocol,
each of the n participants publishes a commitment ci only they can open on the bulletin
board. Then, each participant’s commitment is assigned a bucket of size

√
n, which is

shuffled once. The protocol guarantees that each entry in the output vector could come from√
n possible locations in the input vector. The authors mention that stronger anonymity

guarantees may be achieved using Håstad’s square shuffle [17, 18], but leave the analysis of
such an approach as an explicit open question. Håstad’s square shuffle is an algorithm that
shuffles a vector of length n using shuffles of size k =

√
n in a benign setting. The algorithm

itself does not provide any security guarantees in a setting, where an adversary may track
some of the commitments or where the adversary can adaptively prevent some of the shuffles
from happening. Even worse, it is straightforward to design an adaptive adversary with a
relatively small budget of allowed corruptions that can prevent certain commitments from
being shuffled at all.

Using our distributed shuffling protocol, which works for various choices of k beyond just
k =
√

n, we obtain a new SSLE protocol that is secure against adaptive adversaries, where
the elected leader is hidden not only among

√
n other participants, but instead among close

to all n of them.

Ethereum Block Proposer Elections

A variant of the SSLE problem has recently been considered in the context of the Ethereum
blockchain, where we are not only interested in electing one, but rather a ordered list of γ

leaders. Two real-world efficiency constraints are important to point out here. Every shufflers
needs to speak in a timely manner, yet at the same time they need to provide zero-knowledge
proofs attesting the correctness of their performed shuffle. These two constraints mean that
no shuffler has enough time to permute the full vector at once.

The currently proposed protocol [14] for potential deployment in Ethereum is effectively a
direct implementation of Håstad’s square shuffle along with some other minor steps that are
not relevant for the discussion here. The protocol is heuristically claimed to be secure against
non-adaptive corruptions. However, the protocol is only discussed in an informal model and
no security proofs are provided. Similarly to the plain square shuffle of Håstad, the proposed
construction is not secure against an adaptive adversary that may adaptively target specific
shufflers during the protocol execution. Especially in the context of a blockchain, where
shufflers are known entities, and an adversary that may have the ability to target some of
them adaptively, we believe that a stronger adaptive security notion and provable security
guarantees are of crucial importance.

Our distributed shuffling protocol, which provides provable security guarantees against
a stronger adversary, can be used as a direct replacement of the current proposal. Our
experimental results show that the efficiency of our protocol is comparable to the current
proposal of Ethereum. We discuss this application in more depth in Section 5.

1.3 Related Works
Multiple research domains are related to our work here.

1.3.1 Benign Shuffling
A series of existing works [27, 12, 1, 17, 18, 25, 22] has studied the question of how long it
takes to shuffle the elements of a vector via either smaller or restricted shuffling operations.
There, the problem is studied in a benign setting and it is unclear what security can be
achieved in the presence of an adversarial entity.

ITC 2023

10:4 Distributed Shuffling in Adversarial Environments

Conceptually, the work of Diaconis and Shahshahani [12], which considers shuffling a
deck of cards by repeatedly picking two random cards and switching them, is closest to our
algorithm. In their work, the authors are interested in determining the required number of
rounds until the resulting permutation looks close to uniformly random to a distinguisher
that does not see which cards were swapped. In contrast to their work, we want to determine
the required number of shuffles of size k until any uncorrupted card is at an unpredictable
location, even if the adversary gets to see all subsets of k elements that were shuffled in the
protocol.

1.3.2 Single Secret Leader Elections
After the first three initial approaches for solving the SSLE problem by Boneh et al. [4],
an alternative solution based on functional encryption was proposed by Catalano, Fiore,
and Giunta [9]. Their solution has many attractive properties, but requires an expensive
initial setup to be performed between the parties participating in the elections. In situations
where elections are performed periodically and many participants may join or leave between
elections, the setup needs to be repeatedly renewed. Shuffling based solutions on the other
hand, gracefully deal with joining and leaving participants, since no setup is required.

In a recent independent work by Catalano, Fiore, and Giunta [10], the authors also
study SSLE in the presence of an adaptive adversary. Their work focuses on providing a
full formalization of the SSLE problem in the universal composability framework [8]. The
authors provide a solution based on shuffling that requires each shuffler to speak multiple
times and to permute the full vector. In contrast to their work, we focus on distributed
shuffling protocols, where shufflers have bounded memory and only speak once. We believe
that our model is closer to how shufflers would actually operate in a real blockchain like
Ethereum.

2 Preliminaries

2.1 Notation
We write [n] to denote the set {1, . . . , n}. We denote the computational security parameter
by λ. For a set X, we write x← X to denote the process of sampling a uniformly random
element x from X. For a randomized algorithm A we write A(x; r) to explicitly specify the
random tape r when A is executed on some input x. Otherwise, we write A(x) and simply
assume that r is implicitly chosen uniformly at random. We write ⊥ ← A(x) to denote that
an algorithm A failed to produce an output. We write AO(·) to denote algorithm A with
oracle access to algorithm O.

2.2 Encryption Schemes
We define the minimal security properties that are sufficient for proving our shuffling
algorithm secure in our model. For the remainder of this work, we focus on shuffling a vector
of ciphertexts, but all of our results easily carry over to commitments.

▶ Definition 2. A public-key encryption scheme E = (Gen, Enc, Dec) is a comprised of the
following algorithms:
(ek, dk)← Gen(1λ): The key generation algorithm takes the security parameter 1λ as input

and outputs a public encryption key ek and a secret decryption key dk.

K. G. Larsen, M. Obremski, and M. Simkin 10:5

c← Enc(ek, m): The encryption algorithm takes the key ek and a message m as input and
outputs a ciphertext c.

m← Dec(dk, c): The decryption algorithm takes key dk and ciphertext c as input and
outputs message m.

▶ Definition 3 (Semantic Security). We say E = (Gen, Enc, Dec) is semantically secure, if for
any PPT adversary A, it holds that

Pr


(ek, dk)← Gen(1λ)
(m0, m1)← A(ek)

b← {0, 1}
b∗ ← A(Enc(ek, mb))

: b = b∗

 ≤ 1
2 + negl(λ),

where the probability is taken over the uniform random coins of the adversary, the key
generation, and the encryption algorithm.

The input to our distributed shuffling algorithm will be a vector of ciphertexts, where
each one is encrypted under a different public key. To be able to meaningfully shuffle this
vector, we require that ciphertexts under different keys are indistinguishable from each other.
This notion of key privacy was first considered by Bellare et al. [3]. We use slightly weaker
formalization of key privacy that is sufficient for our purposes.

▶ Definition 4 (Key Privacy). We say a semantically secure encryption scheme E =
(Gen, Enc, Dec) is key private, if for any PPT adversary A, it holds that

Pr



(ek0, dk0)← Gen(1λ)
(ek1, dk1)← Gen(1λ)

m← A(ek0, ek1)
b← {0, 1}

b∗ ← A(Enc(ekb, m))

: b = b∗

 ≤
1
2 + negl(λ),

where the probability is taken over the uniform random coins of the adversary, the key
generation, and the encryption algorithms.

One possible instantiation of an encryption scheme with the desired properties is the
ElGamal cryptosystem [13].

2.3 Local Shuffling Algorithms
The focus of our work lies in answering how to shuffle the elements of a vector of length n

through the use of shuffle operations that permute k many elements at a time. To abstract
away the concrete shuffling procedure that is used by any shuffler locally, we define an
idealized function Shuffle that takes k ciphertexts as input and produces a fresh list of k

ciphertexts that commit to the same multi-set of messages. In practice, the local shuffling
procedure would be realized by combining a re-randomizable encryption or commitment
scheme with an appropriate non-interactive zero-knowledge proof that attests the correctness
of the performed shuffle. If the list were to contain ElGamal ciphertexts, then efficient
shuffling arguments of Bayer and Groth [2] or Bünz et al. [7] could be used. If the list were
to contain pedersen commitments [24], then efficient shuffling arguments of Bünz et al. [7] or
Hoffmann et al. [19] could be used.

ITC 2023

10:6 Distributed Shuffling in Adversarial Environments

3 Model

In this section, we define the formal model within which we will present and analyze our
distributed shuffling protocol. In our setting, we have a public bulletin board, where parties
can post authenticated messages that are visible to all other parties. The messages are
authenticated in the sense that each message on the bulletin board can be traced to its sender.
In the beginning, the only thing written on the message board are ciphertxts c1, . . . , cn,
where ci ← Enc(eki, mi) for some mi for i ∈ [n]. The parties P1, . . . , PT , also known as the
shufflers, speak one after another by posting messages on the bulletin board. To compute
their messages, each shuffler reads at most k ciphertexts, locally shuffles them using the
Shuffle procedure, and writes the permuted vector of k ciphertexts (along with possibly
auxiliary information) back on the bulletin board. At the end of the protocol execution,
after all T shufflers have spoken, ciphertexts c̃1, . . . , c̃n, which encrypt the same multiset
as the input vector, should be written on the bulletin board. We call such a protocol Π a
(T, n, k)-shuffle.

3.1 Corruptions
The shuffling protocol runs in the presence of adversarial behavior. The PPT adversary A
can see who posts which messages on the bulletin board and in addition can perform two
types of corruptions. At the beginning of a protocol execution, the adversary is corrupting α

ciphertexts. For each corrupted ciphertext, the adversary learns the corresponding decryption
key and can thus “track their positions” throughout the shuffling procedure. Additionally,
the adversary is allowed to corrupt β shufflers in a fully adaptive manner, meaning that at
the start of every round i ∈ [T], the adversary is allowed to decide whether or not to corrupt
shuffler Pi on the fly, as long as the total number of corrupted shufflers is at most β.

A corrupt shuffler can perform an arbitrary chosen, but valid permutation on an arbitrary
choice of at most k ciphertexts. In principle, we do not need to assume that the adversary
honestly permutes k ciphertexts or that she would even honestly report, which ciphertexts she
touched. Both of these issues are easily resolved via standard non-interactive zero-knowledge
arguments attesting the correctness of the shuffle. To avoid explicitly talking about such
arguments, we simply restrict the adversary in her behaviour.

3.2 Definitions
For a shuffling protocol Π with input vector c⃗ and an adversary A, we write (z, π) ←
⟨Π(c⃗; r),A(c⃗; r̃)⟩ to denote the execution Π with random coins r in the presence of A with
random coins r̃, where z is the adversary’s output and π is the permutation on domain [n], i.e.
between the input and output ciphertexts’ values. If at the end of a protocol execution the
values inside the output ciphertexts are not a permutation of the input ciphertexts’ values,
then we write π = ⊥.

▶ Definition 5 (Correctness). We say that an (T, n, k)-shuffle Π is correct in the presence of
an adversary A, if

Pr


(eki, dki)← Gen(1λ) ∀i ∈ [n]

ci ← Enc(eki, i) ∀i ∈ [n]
c⃗ := (c1, . . . , cn)

(z, π)← ⟨Π(c⃗; r),A(c⃗; r̃)⟩

: π ̸= ⊥

 = 1,

where the probability is taken over the random coins r and r̃.

K. G. Larsen, M. Obremski, and M. Simkin 10:7

Π(c1, . . . , cn)
for t ∈ [T] :

St picks random {i1, . . . , ik} ⊂ [n]
St computes (c̃i1 , . . . , c̃ik)← Shuffle(ci1 , . . . , cik)
St publishes (c̃i1 , . . . , c̃ik)

Figure 1 Distributed shuffling protocol.

▶ Definition 6 (Security). Let A be a PPT adversary that corrupts at most β shufflers. We
say that an (T, n, k)-shuffle Π is (ϵ, δ)-secure in the presence of an (α, β)-adversary A, if for
all I ⊂ [n] with |I| ≤ α, it holds that with probability at least 1− δ we have

Pr



(eki, dki)← Gen(1λ) ∀i ∈ [n]
ci ← Enc(eki, i) ∀i ∈ [n]

c⃗ := (c1, . . . , cn)

d⃗k := {dki | i ∈ I}

((i, j), π)← ⟨Π(c⃗; r),A(c⃗, d⃗k; r̃)⟩

: π(i) = j ∧ i ̸∈ I


≤ ϵ,

where the randomness is taken over the random coins r and r̃.

In the definition above, there exists a naive attacking strategy. The adversary could just
guess a random pair (i, j) of indices with i, j ̸∈ I, which means that the best security we
can hope for is ϵ = 1/(n− |I|). If on the other hand, we achieve ϵ ≤ C/(n− |I|) for some
constant C, then this translates into the intuitive guarantee that any element in the output
vector comes from at least (n− |I|)/C possible locations in the input vector.

4 Construction

Our distributed shuffling protocol is conceptually very simple. Each round, a shuffler picks
a random subset of k ciphertexts and permutes those. The main technical challenge is to
prove that after a not too large number of rounds, this procedure will shuffle the input vector
sufficiently well.

We note that all shufflers in our protocol act independently and do not coordinate who
will shuffle which entries in the vector. For this reason, even a powerful adaptive adversary
cannot do anything better than corrupting an arbitrary subset of β shufflers. Thus, the
question of how big the number of rounds T has to be set to tolerate an adversary that
corrupts β shufflers, effectively reduces to the question of how well the input vector is shuffled
in T − β rounds in the presence of an adversary that can corrupt no shufflers at all.

The formal protocol description is given in Figure 1 and we prove the following theorem.

▶ Theorem 7. Let A be a PPT adversary that corrupts at most β shufflers. Let E =
(Gen, Enc, Dec) be a semantically secure and key private encryption scheme. For any 0 <

δ < 1/3, if T ≥ 20(n/k) ln(n/δ) + β and k ≥ 256 ln2(n/δ)(1 − α/n)−2, then the protocol
in Figure 1 is a (ϵ, δ)-secure (T, n, k)-shuffle in the presence of a (α, β)-adversary, where
ϵ = 2/(n− α) + negl(λ).

ITC 2023

10:8 Distributed Shuffling in Adversarial Environments

Proof. Let I ⊂ [n] with |I| = α be an arbitrary, but fixed subset of indices belonging to
ciphertexts that are corrupted by the adversary. Let H := [n]\I be the indices of uncorrupted
ciphertexts. Let hybrid hybrid0 be the security game as stated in Definition 6. We consider
hybrid hybrid1, which is identical to hybrid0 with the exception that (eki, dki) := (ek1, dk1)
for all i ∈ H. Indistinguishability of hybrid0 and hybrid1 follows from the key privacy
of the underlying encryption scheme. In hybrid2 we set ci ← Enc(eki, 1) for all i ∈ H.
Indistinguishability of hybrid1 and hybrid2 follows from the semantic security of the underlying
encryption scheme. At this point, we observe that in each invocation of Shuffle by an honest
shuffler the adversary learns nothing about how the honest ciphertexts were permuted. To
see this, we note that each honest ciphertext returned by Shuffle is identically distributed,
encrypted under the same key, encrypting the same message.

Next, we observe that an adaptive adversary can not do anything better than corrupting
an arbitrary set of β shufflers. To see this, observe that each shuffler chooses its subset of k

ciphertexts independently, thus the distribution of permutations between input and output
vector that is produced by our protocol is independent of which shufflers are corrupted by A.
For the remainder of the proof we determine the number TH of honest shuffles that need to
be performed, such that every ciphertext’s location is hidden sufficiently well. Our protocol
can then be run for T ≥ TH + β rounds to be secure against β corrupt shufflers.

We now view the ciphertexts as a set of n cups, denoted c1, . . . , cn. Of these n cups, the
last α are idle and the first n− α are active. The cups may contain a non-negative amount
of water.

Let k ≥ 2. A TH step k-way mixing consists of repeatedly selecting k cups uniformly at
random (without replacement). If B denotes the set of selected cups, we then gather all
water in active cups ci ∈ B. The collected water is then distributed evenly among the active
cups. This process is repeated for TH steps. We call one such step a mixing step.

We say that a TH step k-way mixing is successful if, for any ci among the active cups,
if we had placed 1 unit of water in ci and 0 in all remaining cups, then at the end of the
mixing, no cup contains more than 2/(n− α) water. That is, regardless of which active cup
we choose put 1 unit of water in, at the end of shuffling, no cup contains more than a factor
2 more water than if we had distributed all water uniformly among active cups.

▶ Lemma 8. For any 0 < δ < 1/3, if TH ≥ 20(n/k) ln(n/δ) and k ≥ 256 ln2(n/δ)(1−α/n)−2,
then a TH step k-way mixing with α idle cups is successful with probability at least 1− δ.

Observe first that if a TH step k-way mixing is successful, then if we perform another
mixing step, the mixing remains successful. This is because the maximum amount of water in
a cup cannot increase in a mixing step. Hence we prove the lemma for TH = 20(n/k) ln(n/δ)
and note that it also implies the result for larger TH .

In our proof, we first show that if c1 has 1 unit of water and the remaining have 0, then
with probability at least 1− δ/n, it holds that after T steps that there is no cup with more
than 2/(n− α) units of water. A union bound over all n− α active cups that may contain
the initial 1 unit of water completes the proof.

So consider the setup where c1 has 1 unit of water and the remaining have 0. We define
two undesirable events, such that if none of these events occur, the mixing is successful. To
define the first of these events, let Bt be the indices of the cups selected for mixing in the
t’th step.

Consider an execution of a TH step k-way mixing. A back-tracking from cup ci is a
sequence of indices i1, . . . , ir ∈ [k], possibly with repetitions, such that the following holds:
Initialize b = i, j = 0 and t = TH . Repeat until t = 0: If cup cb was selected for mixing in

K. G. Larsen, M. Obremski, and M. Simkin 10:9

step t, increment j and set b to be the index of the ij ’th cup in Bt (for some arbitrary but
fixed ordering on cups). Decrement t and repeat (regardless of whether cup cb was selected
for mixing in step t).

A back-tracking thus specifies a “path” that starts with ci and as we go backwards
through the TH mixing steps, whenever the current cup cb is selected for mixing, the path
proceeds to trace the next cup in the list. When j reaches r in the back-tracking, it must be
the case that the currently traced cup cb is not selected in any further mixing steps while
decrementing t. The first undesirable event says that there is a short back-tracking:

Event E1: There is a back-tracking i1, . . . , ir with r ≤ 4 lgk n.

To define the second event, let wt
i denote the amount of water in cup ci after t steps

of mixing. We have w0
1 = 1 and w0

i = 0 for i ̸= 1. Also, let At ⊆ Bt denote the indices of
the active cups among Bt. Finally, let Wt =

∑
i∈At

wt−1
i /|At| denote average amount of

water in the cups selected in step t. By definition, we have wt
i = Wt for every i ∈ At. With

these definitions in place, the second undesirable events says that we in some step perform a
mixing that results in much water on average, yet none of the involved cups had significantly
more water than the average:

Event E2: There is a step t where Wt ≥ 2/(n− α) but maxi∈At wt−1
i ≤ k1/4Wt.

Success when none of E1 and E2 occur. We first show that a TH step mixing is successful
when none of the events E1 and E2 occur. For this, consider an unsuccessful mixing where E2
did not occur. We claim that this implies that E1 occurred. We thus need to show that an
unsuccessful mix together with the fact that E2 does not occur implies a short back-tracking.
For this, let ci∗ be a cup such that wT

i∗ > 2/(n − α). Such a cup exists since the mixing
is unsuccessful. We will now back-track from that cup. So let i = i∗, b = i and initialize
t = TH . Also, let ωt denote the amount of water in the cup cb traced in step t. We thus have
ωTH = wTH

i∗ > 2/(n − α). We will guarantee that the values ωt are non-decreasing when
we decrement t from TH towards 0. For t = TH down to 0, if cup cb is selected for mixing
in step t, we know that Wt = ωt ≥ ωTH > 2/(n − α). Since E2 did not occur, it must be
the case that maxh∈At wt−1

h > k1/4Wt. Let h∗ be the index into Bt of the h obtaining this
maximum water in step t− 1. We append h∗ to the constructed list of indices i1, . . . , ir in
the back-tracking as well as append the step t to the list of steps t1, . . . , tr. We then update
b to h, set ωt−1 to wt−1

h ≥ k1/4ωt and decrement t. If cb was not selected for mixing, we
simply decrement t.

Since ω increases by a factor at least k1/4 each time the traced cup cb is selected for mixing,
it must be the case that ω0 ≥ 2kr/4/(n−α) if the produced back-tracking has length r. Since
no cup ever contains more than 1 unit of water, this implies 2kr/4/(n−α) ≤ 1⇒ r < 4 lgk n.
This implies that the event E1 occurs.

Probability of success. In the following two paragraphs, we will show that Pr[E1] ≤ 2δ10/n

and Pr[E2] ≤ δ2/n. A union bound and the fact that δ < 1/3 implies that a TH step
k-way mixing is successful with probability at least 1 − δ/n when c1 has 1 unit of water.
As mentioned earier, a union bound over all n− α choices of the cup with 1 unit of water
completes the proof. What remains is thus to bound the probability of E1 and E2.

There is a short back-tracking (Event E1). To rule out the existence of a short back-
tracking, consider a fixed value of r ≤ 4 lgk n. For any such r, there are no more than
kr ≤ n4 choices for i1, . . . , ir and n choices for i. For any such choice, there are no more
than

(
TH

r

)
≤ T r

H choices for the steps t1, . . . , tr where j is decremented (the traced cup

ITC 2023

10:10 Distributed Shuffling in Adversarial Environments

is selected for mixing). Fix any such r, i1, . . . , ir and t1, . . . , tr. For this to be a valid
back-tracking, it must hold for all steps t /∈ {t1, . . . , tr} that the cup cb traced in that
step is not selected for mixing. Since the mixing steps are independent, this happens with
probability precisely (1− k/n) independently of the random choices in steps t + 1, . . . , TH .
For all steps t ∈ {t1, . . . , tr}, it must be the case that the cup cb traced in that step is
selected for mixing. Again by independence, this happens with probability precisely k/n

independently of the random choices in steps t + 1, . . . , TH . For the fixed choice of i, r,
i1, . . . , ir and t1, . . . , tr, the probability that these form a valid back-tracking is thus no more
than (1− k/n)TH −r(k/n)r ≤ exp(−(TH − r)k/n)(k/n)r. We have TH = 20(n/k) ln(n/δ) and
k ≤ n, thus r = 4 lgk n ≤ TH/2 and the probability is no more than exp(−THk/(2n))(k/n)r =
exp(−10 ln(n/δ))(k/n)r = (k/n)r(δ/n)10. A union bound over all possible back-trackings of
length r ≤ 4 lgk n shows that

Pr[E1] ≤
4 lgk n∑

r=0
n5T r

H(k/n)r(δ/n)10

=
4 lgk n∑

r=0
n5(20(n/k) ln(n/δ))r(k/n)r(δ/n)10

=
4 lgk n∑

r=0
n5(20 ln(n/δ))r(δ/n)10.

For k ≥ 40 ln(n/δ), this is no more than

4 lgk n∑
r=0

n5(20 ln(n/δ))r(δ/n)10 ≤

4 lgk n∑
r=0

n5(k/2)r(δ/n)10 ≤

4 lgk n∑
r=0

2−rn5k4 lgk n(δ/n)10 =

2δ10/n.

A mix with much water, but no full cup (Event E2). Let us first consider a fixed step
t and condition on a fixed cardinality a of At and an arbitrary execution of the first t− 1
steps. If we let E′

2,t denote the event that maxi∈At wt−1
i ≤ k1/4Wt and E′′

2,t the event that
Wt ≥ 2/(n− α). We now wish to bound Pr[E′

2,t ∩ E′′
2,t | |At| = a]. For this, we further split

E′
2,t and E′′

2,t into smaller events. Let E′
2,t,ξ denote the event that maxi∈At wt−1

i ≤ 2k1/4ξ

and E′′
2,t,ξ the event Wt ≥ ξ and consider values of ξ = 2i/(n− α) for i = 1, . . . , lg2 n. We

claim that

Pr[E′
2,t ∩ E′′

2,t | |At| = a] ≤ Pr
[
∪lg2 n

i=1 (E′
2,t,2i/(n−α) ∩ E′′

2,t,2i/(n−α)) | |At| = a
]

.

To see this, note that when E′′
2,t occurs, there is a maximal 1 ≤ i < lg2 n for which

2i/(n−α) ≤Wt ≤ 2i+1/(n−α). When E′
2,t also occurs, this further implies maxi∈At

wt−1
i ≤

2i+1k1/4/(n − α). That is, both of the events E′
2,t,2i/(n−α) and E′′

2,t,2i/(n−α) occur. By a
union bound, we thus have

K. G. Larsen, M. Obremski, and M. Simkin 10:11

Pr[E′
2,t ∩ E′′

2,t, |At| = a] ≤
log2 n∑
i=1

Pr[E′′
2,t,2i/(n−α) ∩ E′

2,t,2i/(n−α) | |At| = a] ≤

log2 n∑
i=1

Pr[E′′
2,t,2i/(n−α) | E

′
2,t,2i/(n−α), |At| = a]

Next, we recall that each shuffler picks a uniformly random subset of cups to mix. If
we condition this choice on E′

2,t,ξ and |At| = a, then At is distributed as a uniform sample
of a elements without replacement from the set of active cups ci where wt−1

i ≤ 2k1/4ξ.
Furthermore, recall that we started with one cup containing one unit of water and all
other cups being empty. If we were to sample a cup uniformly at random among all active
cups, then the expected amount of water in a sampled cup would be precisely 1/(n − α).
Conditioning on E′

2,t,ξ removes the most full cups and hence the expected amount of water in
each sampled cup may only decrease when conditioning on E′

2,t,ξ. It follows from Hoeffding’s
inequality for sampling without replacement that for any ξ ≥ 2/(n− α), we have

Pr[E′′
2,t,ξ | E′

2,t,ξ, |At| = a] =
Pr[|Wt| ≥ ξ | E′

2,t,ξ, |At| = a] ≤
Pr[|Wt − E[Wt]| ≥ ξ − 1/(n− α) | E′

2,t,ξ, |At| = a] ≤
Pr[|Wt − E[Wt]| ≥ ξ/2 | E′

2,t,ξ, |At| = a] ≤

2 exp
(
− 2(aξ2/2)2

a(2k1/4ξ)2

)
=

2 exp
(
−a/(8

√
k)

)
.

Thus

Pr[E′
2,t ∩ E′′

2,t | |At| = a] ≤ 2 lg2(n) exp(−a/(8
√

k)).

Using this inequality, we then observe that

Pr
[
E′

2,t ∩ E′′
2,t

]
=

k∑
a=0

Pr
[
E′

2,t ∩ E′′
2,t | |At| = a

]
Pr [|At| = a]

=

k(1−α/n)−2
2∑

a=0
Pr

[
E′

2,t ∩ E′′
2,t | |At| = a

]
Pr [|At| = a]

+
k∑

a= k(1−α/n)
2

Pr
[
E′

2,t ∩ E′′
2,t | |At| = a

]
Pr [|At| = a]

≤

k(1−α/n)−2
2∑

a=0
Pr [|At| = a]

+
k∑

a= k(1−α/n)
2

2 lg2(n) exp
(
−(k(1− α/n)/2)/(8

√
k)

)
Pr [|At| = a]

≤Pr
[
|At| ≤

k(1− α/n)
2

]
+ 2 lg2(n) exp

(
−(k(1− α/n)/2)/(8

√
k)

)

ITC 2023

10:12 Distributed Shuffling in Adversarial Environments

To conclude the proof, we would now like to argue that both of the terms in the last
inequality above are small. We observe that Bt is a uniform sample without replacement
from the n cups and thus we have that E[|At|] = k(1− α/n). Using the Chernoff bound for
sampling without replacement and assuming k ≥ 16 ln(n/δ)(1− α/n)−1, we get

Pr[|At| ≤ (1/2)k(1− α/n)] ≤ exp(−k(1− α/n)/8) ≤ (δ/n)2.

Similarly, for k ≥ 256 ln2(δ/n)(1− α/n)−2, we have that

2 lg2(n) exp(−(1/2)k(1− α/n)/(8
√

k))

=2 lg2(n) exp(−
√

k(1− α/n)/16)
≤2 lg2(n)(δ/n)2

Thus for k ≥ 256 ln2(δ/n)(1− α/n)−2, we have

Pr[E′
2,t ∩ E′′

2,t] ≤ 3 lg2(n)(δ/n)2.

A union bound over all TH then implies

Pr[E2] ≤ 3TH lg2(n)(δ/n)2.

There are TH = 20(n/k) ln(n/δ) choices for t and for k ≥ 256 ln2(n/δ), we have that

Pr[E2] ≤ δ2/n,

which concludes the proof. ◀

5 Ethereum’s Block Proposer Elections

One particular real-world application that can benefit from our shuffling protocol, is Eth-
ereum’s block proposer election. In the following, we provide a high-level idea of this election
process and we refer the interested reader to the current proposal [14] for more details. In
this setting, we have commitments1 (c1, . . . , cn), where n = 214 and where ci belongs to some
identity i, who is the only entity that can open the commitment. These identities need to be
arranged in a random secret order. Once this is done, the first γ owners of the commitments
reveal themselves in order of the output list and perform some consensus related action that
is not relevant for us. That is, the first identity in the output list is the first block proposer,
the second identity the second proposer and so on. From a security perspective, one would
like to ensure that an adversary that corrupts α identities, β of the shufflers, and gets to see
some of the proposers that already revealed themselves, cannot guess the identity of the next
honest block proposer.

In order to obtain the random secret ordering, in the current proposal, a sequence
of shufflers are effectively executing Håstad’s square shuffle [17, 18], i.e. there k =

√
n,

interspersed with some additional public permutation steps. The current proposal is purely
heuristic, is only described in an informal model, and does not have a security proof. It is
not secure against an adversary that can corrupt shufflers adaptively.

1 We note again that all of our results work equally well for vectors of commitments.

K. G. Larsen, M. Obremski, and M. Simkin 10:13

Our approach can be used to obtain a secret random ordering of the block proposers with
stronger security guarantees and, in particular, with provable security guarantees. We note,
however, that in our model we do not consider parts of the performed permutation to be
revealed once the shuffling protocol is finished. Luckily our analysis can easily be amended
to account for this.

In the proof of Theorem 7, we assumed that a fixed number of cups, denoted α, were
idle. We will now generalize the results to the following setup: Before the random shuffling
process begins, we have two phases. In the first phase, we have a fixed set of α marked cups.
In the second phase, we choose a uniform random subset of γ of the cups and mark them. If
a cup was marked either during the first or second phase, it becomes idle and otherwise it is
active. Notice that this corresponds to first corrupting α ciphertexts and then revealing γ

random ciphertexts at the end. Let η be the number of idle cups.
Once the idle and active cups have been chosen, we run the water mixing process as in

the proof of Theorem 7. We now bound the probability of seeing an active cup with more
than 2/(n − η) units of water after T steps of mixing. We first bound the probability of
seeing many idle cups. For this, notice that the first phase marks precisely α cups. For
the second phase, the number of newly marked cups can be bounded by observing that the
γ samples without replacement each picks a cup already marked in the first phase with
probability precisely α/n (when looking at the marginal distribution of the cup). It follows
by a Hoeffding bound for sampling without replacement that the number of newly marked
cups in the second phase, denoted ζ, satisfies:

Pr[ζ − (1− α/n)γ > ℓ] < exp(−2ℓ2/γ).

Setting ℓ =
√

γ ln(n/δ) bounds the above by δ2/n2. Thus with probability at least 1− δ2/n2,
we have

η ≤ α + ζ ≤ α + ℓ + (1− α/n)γ

=α + γ − αγ/n +
√

γ ln(n/δ).

A union bound together with Lemma 8 invoked with δ′ = δ/(2n) gives us that with probability
at least 1 − δ2/n2 − δ/n, there is no index i with wT

i ≥ 2/(n − η). Note that the above
analysis above is for a fixed number γ of revealed output locations. Doing a union bound
over all γ′ ≤ γ shows that the probability that throughout the revealing any of γ additional
locations, that there is ever an input cup z whose output destination can be predicted with
probability greater than 2/(n− η) is at most n · (δ/(2n) + δ2/n2) ≤ δ.

6 Experiments

In this section, we perform numerical experiments to precisely determine the practical
constants in our distributed shuffling protocol. We consider different sets of parameters.
Since adversarially corrupt shufflers in our protocol are as bad as just no shuffle being
performed, we simply measure the number of required honest shuffles, until the desired
security guarantees are achieved. More precisely, if TH honest shuffles are sufficient, then
running our protocol for T rounds is secure against β = T − TH many corrupted shufflers.

In each experiment, we run the water mixing process from the proof of Lemma 8 with
varying values for n, k, and α. For each fixed set of parameters the benchmark is repeated 100
times. In every round of an experimental run, we check whether any cup has too much water.
If it does, then this run of the experiment for this round is considered to be failing. The

ITC 2023

10:14 Distributed Shuffling in Adversarial Environments

Table 1 Results of our numerical experiments for determining the number T −β of honest shuffles
that is needed for successfully shuffling with different sets of parameters.

n k α/n

1 214 128 1/4 δ 0.8 0.6 0.4 0.2 0
T − β 713 839 927 988 1804

2 214 256 1/4 δ 0.8 0.6 0.4 0.2 0
T − β 337 398 452 502 627

3 214 512 1/4 δ 0.8 0.6 0.4 0.2 0
T − β 199 229 254 278 438

4 214 128 1/2 δ 0.8 0.6 0.4 0.2 0
T − β 874 955 1080 1204 1853

fraction of failing simulations in a given round, denoted by δ, is an unbiased estimate of the
true probability that the adversary can determine the position of a uncorrupted ciphertext
with probability greater than 2/(n− α) in that round.

The result of our benchmarks are summarized in Figure 1. Even in a highly adversarial
setting, where 1/2 of all elements in the vector are corrupted and the local shuffle size is as
small as k = 128, our protocol successfully distributes the water after less than 2000 rounds
for a vector of length n = 214. In the context of Ethereum’s block proposer elections, we
have T = 213 time slots for one election and thus one can tolerate a fraction of around 3/4
of corrupted shufflers.

References

1 Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. The Annals of Applied
Probability, pages 294–313, 1992.

2 Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a
shuffle. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 263–280. Springer, 2012.

3 Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy
in public-key encryption. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 566–582. Springer, 2001.

4 Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages
12–24, 2020.

5 Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter MR Rasmussen,
and Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. In
Annual International Cryptology Conference, pages 565–596. Springer, 2018.

6 Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A Kroll, and
Edward W Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In International
Conference on Financial Cryptography and Data Security, pages 486–504. Springer, 2014.

7 Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 315–334. IEEE, 2018.

8 Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145.
IEEE, 2001.

K. G. Larsen, M. Obremski, and M. Simkin 10:15

9 Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally composable
single secret leader election from pairings. Cryptology ePrint Archive, Paper 2021/344, 2021.
URL: https://eprint.iacr.org/2021/344.

10 Dario Catalano, Dario Fiore, and Emanuele Giunta. Adaptively secure single secret leader
election from ddh. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, 2022.

11 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

12 Persi Diaconis and Mehrdad Shahshahani. Generating a random permutation with random
transpositions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(2):159–179,
1981.

13 Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE transactions on information theory, 31(4):469–472, 1985.

14 Ethereum. Whisk: A practical shuffle-based ssle protocol for ethereum. Accessed 09/09/2022,
2022.

15 Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In Annual Interna-
tional Cryptology Conference, pages 368–387. Springer, 2001.

16 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 40–49, 2013.

17 Johan Håstad. The square lattice shuffle. Random Structures and Algorithms, 29(4):466–474,
2006.

18 Johan Håstad. The square lattice shuffle, correction. Random Structures and Algorithms,
48(1):213, 2016.

19 Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge arguments in
the discrete log setting, revisited. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 2093–2110, 2019.

20 Markus Jakobsson, Ari Juels, and Ronald L Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In 11th USENIX Security Symposium (USENIX
Security 02), 2002.

21 Gregory Maxwell. Coinjoin: Bitcoin privacy for the real world. Accessed 09/09/2022, 2013.
22 Ben Morris and Phillip Rogaway. Sometimes-recurse shuffle. In Annual International Conference

on the Theory and Applications of Cryptographic Techniques, pages 311–326. Springer, 2014.
23 C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Proceedings of

the 8th ACM conference on Computer and Communications Security, pages 116–125, 2001.
24 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Annual international cryptology conference, pages 129–140. Springer, 1991.
25 Thomas Ristenpart and Scott Yilek. The mix-and-cut shuffle: small-domain encryption secure

against n queries. In Annual Cryptology Conference, pages 392–409. Springer, 2013.
26 Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In International Conference

on the Theory and Applications of Cryptographic Techniques, pages 393–403. Springer, 1995.
27 Edward O Thorp. Nonrandom shuffling with applications to the game of faro. Journal of the

American Statistical Association, 68(344):842–847, 1973.

ITC 2023

https://eprint.iacr.org/2021/344

	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.2.1 Single Secret Leader Elections

	1.3 Related Works
	1.3.1 Benign Shuffling
	1.3.2 Single Secret Leader Elections

	2 Preliminaries
	2.1 Notation
	2.2 Encryption Schemes
	2.3 Local Shuffling Algorithms

	3 Model
	3.1 Corruptions
	3.2 Definitions

	4 Construction
	5 Ethereum's Block Proposer Elections
	6 Experiments

