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Abstract
It is well-known that randomness is essential for secure cryptography. The randomness used in
cryptographic primitives is not necessarily recoverable even by the party who can, e.g., decrypt or
recover the underlying secret/message. Several cryptographic primitives that support randomness
recovery have turned out useful in various applications. In this paper, we study randomness
recoverable secret sharing schemes (RR-SSS), in both information-theoretic and computational
settings and provide two results. First, we show that while every access structure admits a perfect
RR-SSS, there are very simple access structures (e.g., in monotone AC0) that do not admit efficient
perfect (or even statistical) RR-SSS. Second, we show that the existence of efficient computational
RR-SSS for certain access structures in monotone AC0 implies the existence of one-way functions.
This stands in sharp contrast to (non-RR) SSS schemes for which no such results are known.

RR-SSS plays a key role in making advanced attributed-based encryption schemes randomness
recoverable, which in turn have applications in the context of designated-verifier non-interactive
zero knowledge.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques; Security
and privacy → Mathematical foundations of cryptography

Keywords and phrases Secret sharing, Randomness recovery

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.12

Acknowledgements We would like to thank Sorush Bahariyan for bringing Fact 1 to our attention
and Motahareh Gharahi for fruitful discussions on the proof of Theorem 20.

1 Introduction

Without randomness, secure cryptography is unachievable. The randomness used in crypto-
graphic primitives is not necessarily, efficiently and even sometimes information-theoretically,
recoverable. For example, the randomness used for an ElGamal ciphertext is not efficiently
recoverable even by a party holding the secret key. On the other hand, several well-known
constructions for PKE, such as the OAEP [5] and its variants[35, 8, 32] are randomness
recoverable (RR). Another notable RR-PKE construction is Yao’s construction [37] based on
injective trapdoor functions (TDF).

RR-PKE schemes have found applications in constructing optimistic fair exchange pro-
tocols [30], signcryption schemes [28], proofs of correct decryptions in electronic-voting
applications in [24] (to avoid heavy zero-knowledge proofs) and recently in CCA-secure PKE
in [14].

In addition to PKE, RR variants of symmetric encryption schemes (SKE), attribute-based
encryption (ABE) and garbled circuits (GC) have been studied in the literature [25, 13].
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12:2 Randomness Recoverable Secret Sharing Schemes

1.1 RR secret sharing and motivations
In this paper, we initiate the study of secret sharing schemes (SSS) [34, 7] from a randomness
recovery point of view. In addition to being an interesting notion on its own, it has
applications in settings such as designated-verifier non-interactive zero-knowledge (DV-NIZK)
for NP [29, 13], as we will discuss later.

Main results. We take the first steps toward delineating the notion of RR-SSS from both
information-theoretic and computational perspectives. First, we show that while every access
structure admits a perfect RR-SSS, there are very simple access structures (e.g., in AC0) that
do not admit efficient perfect RR-SSS. Our result also applies to the weaker security notions
including statistical security. Second, we show that the existence of efficient computational
RR-SSS for certain access structures in AC0 implies one-way functions (OWF). Our second
result provides strong evidence that realizing RR-SSS for AC0 from assumptions not currently
known to imply OWFs (e.g., worst-case complexity-type assumptions) may be impossible.

Applications of RR-SSS and motivations. Assuming the existence of RR-PKE, RR-SSS
for access structures in NC1 seems to be an important step towards single-key RR-ABE for
circuits in P (see Section 1.5). Single-key RR-ABE for P, in turn, is sufficient for DV-NIZK
for all NP[29, 13]1. Currently, it is known how to base RR-ABE and DV-NIZK on CDH and
LWE [29, 13] but it is still open whether they can be achieved using weaker primitives such
as TDFs (which by [13] is implied by RR-PKE and hinting PRG [27]).

Moreover, RR-SSS can be useful in applications in which proofs of well-formedness are
needed for recovered shares. This motivates the study of RR-SSS as an independent primitive.

1.2 A perfect RR-SSS for every access structure
Let us first recall what an SSS is. In an SSS, a secret is shared among a set of participants by
giving a share to each one. The shares are computed by applying a public rule on the secret
and randomness. Only certain pre-specified subsets of participants are qualified to recover
the secret and the secret must remain hidden from every other subset of participants. These
requirements are called correctness and privacy, respectively, and can be defined either in
the computational or information-theoretic setting. The set of all qualified subsets is called
the access structure [18].

In an RR-SSS, we additionally require that every qualified set, in addition to the secret,
is also able to recover the randomness.

The most well-known SSS, Shamir’s threshold scheme, is RR. In Shamir’s scheme, a
secret s ∈ F is shared among a set of n participants as follows (F is a finite field with at
least n + 1 elements). The randomness (r1, . . . , rt−1) ∈ Ft−1 is chosen (1 ≤ t ≤ n), the
polynomial f(x) = s + r1x + r2x2 + . . . + rt−1xt−1 is constructed, and the share si = f(xi)
is given to participant i ∈ {1, . . . , n}, where x1, · · · , xn are some distinct public elements of
F. It is easy to verify that only a subset A of size at least t is qualified to recover the secret
using the shares {si}i∈A. The corresponding access structure is called the (n, t)-threshold
access structure. It is also easy to see that in Shamir’s scheme, a qualified set recovers the
polynomial f(x), and hence, the randomness.

1 Lombardi et al. [29] showed how to generically construct DV-NIZK from single-key weak function-hiding
ABE. These sorts of ABE can be constructed from single-key RR-ABE [13].
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r1, r2 r3 r2 + r3 + sr1 + s

(a) A non-RR-SSS.
r1 + s r1, r2 r2 + s

(b) A RR-SSS.

Figure 1 Access structure 1a contains a minimal set of size 2 and a minimal set of size 3.
Access structure 1b contains two minimal sets of size 2. The secret is a single bit s and ris are the
randomness. The value written under each party, indicates that party’s share.

Not every SSS is RR. For example, consider the well-known Ito-Saito-Nishizeki construc-
tion in [18] for a general access structure, which we refer to as the ISN1. The secret is a
single bit s ∈ F2 and the randomness is

R = {rA,i | A is a minimal qualified set and i ∈ A},

where a qualified set is called minimal if none of its proper subsets are qualified. The rA,i’s
are randomly chosen bits subject to

∑
i∈A rA,i = s. The share of a participant i is

si = {rA,i | there exists a minimal qualified set A such that i ∈ A} .

It is easy to verify that the construction is information-theoretically both correct and private.
However, as shown in Figure 1, the ISN1 construction is not RR in general.

A perfect RR-SSS construction. A natural question to ask is whether every access structure
admits a perfect (i.e., information-theoretically secure) RR-SSS. The answer to this question
is not entirely trivial, but in the following, we show that another general construction, also
introduced by Ito-Saito-Nishizeki in [17] which we refer to as the ISN2, is RR.

The secret is again a single bit s ∈ F2 and the randomness is

R = {rB | B is a maximal unqualified set},

where an unqualified set is called maximal if every proper superset of it is qualified. The
rB ’s are randomly chosen bits. The share of a participant i is

si =
(

s +
∑

B

rB , {rB | B is a maximal unqualified set and i /∈ B}
)

.

It is easy to verify that the construction is both perfectly correct and perfectly private. Also,
a minimal qualified set recovers the whole randomness.

▶ Fact 1. The ISN2 construction [17] is RR.

1.3 Results on perfect RR-SSS
We study the RR variant of some questions that have been extensively studied for (standard)
perfect SSSs.

On Beimel’s conjecture for RR-SSSs. The information ratio, defined to be the ratio
between the largest share size and the secret size, is an important parameter that measures
the efficiency of a SSS. Both ISN1 and ISN2 constructions have exponential information ratios
in the number of participants. A long-standing open problem in the theory of secret sharing
is to answer whether exponential upper bound is inevitable. Beimel [3] has conjectured that
this is the case.

ITC 2023



12:4 Randomness Recoverable Secret Sharing Schemes

▶ Conjecture 2 (Beimel). There exists an ε > 0 such that, for every integer n, there is an
access structure with n participants such that every perfect SSS that realizes it has information
ratio 2Ω(nε).

Surprisingly, the best-known lower bound, due to Csirmaz [10], is Ω(n/ log n). We prove
that an exponential lower bound holds for perfect RR-SSSs.

▶ Theorem 3 (Exponential lower bound for perfect RR-SSS). For every integer n, there is
an access structure with n participants such that every perfect RR-SSS that realizes it has
information ratio 2Ω(n).

We prove the theorem for an access structure on n participants, which is the union of
n/3 disjoint (3, 3)-threshold access structures (see Figure 2); but the result holds in general,
i.e., for the union of n/k disjoint (k, k)-thresholds for every k ≥ 2. Similarly to Csirmaz, we
use the so-called Shannon-type information inequalities to prove an exponential lower bound
on the information ratio of this access structure for perfect RR-SSSs.

On weaker security notions. Several non-perfect security notions for secret sharing have
been proposed in the literature. It is well-known [20, Theorem 36] that any lower bound
derived using information inequalities applies not only to perfect security but also to standard
relaxations such as quasi-perfect [20, Chapter 5], almost-perfect [21, 11], and statistical
security. The exponential lower bound of Theorem 3 is also valid for these relaxations
because we only use (Shannon-type) information inequalities in the proof.

Ruling out the existence of efficient perfect RR-SSS for mAC0. Access structures are
in 1-1 correspondence with monotone circuits. The mAC0 class consists of all monotone
circuits of depth O(1) and polynomial size, with AND/OR gates with unbounded fan-in.
Unfortunately, the above result shows that we cannot have efficient perfect RR-SSS for access
structures even in mAC0.

On contrary, the class of access structures admitting efficient perfect (standard) SSSs is
much richer. In particular, it contains mNC1, the class of monotone circuits of depth O(log n)
and polynomial size with AND/OR gates with a maximum fan-in of 2, which is known to
strictly contain mAC0. We refer to [4] for further discussion on the class of efficient perfect
SSSs. It is open whether every access structure in mP, the class of monotone circuits of
polynomial size with AND/OR gates with unbounded fan-in, admits an efficient perfect SSS.

1.4 Results on computational RR-SSS
In a computational SSS [33], we require that the sharing and reconstruction algorithms be
polynomial-time in the security parameter and the number of participants. Furthermore,
we require that a polynomial-time adversary cannot distinguish between the shares of an
unqualified set for every pair of secrets.

An unpublished result by Yao shows that assuming the existence of one-way functions,
every access structure in mP admits an efficient computational SSS. The construction is a
generalization of the results of Benaloh and Leichter [6] that constructs a perfect SSS for
polynomial-size monotone formulae. We refer to [36] for details of the construction. It is
open whether (efficient) computational SSS for any class of access structures implies OWFs.
Assuming the existence of OWFs, an unpublished result of Rudich shows that computational
SSS for mNP implies oblivious transfer; see [3, 26].
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OWFs from RR-SSS for AC0. As we mentioned above, it is still open whether computational
(standard) SSS for any class of access structures implies OWFs. One main obstacle to proving
this possibly true statement is that the existence of efficient perfect SSS for every access
structure has not yet been (unconditionally) ruled out, even though it is generally believed
not to be the case, as it has been manifested in Beimel’s conjecture (Conjecture 2). However,
by our result on the exponential lower bound for RR-SSS (Theorem 3), the situation for
RR-SSS is different. We use the method developed by Impagliazzo and Luby in [16], together
with a variant of Csirmaz’s framework [10] for lower bounding the information ratio of perfect
SSSs adapted for the computational setting, to prove that existence of computational RR-SSS
for certain access structures in AC0 implies the existence of OWFs.

Construction of computational RR-SSS. A perfect linear SSS can be converted into a
computational RR-SSS using a one-time KDM-secure SKE naturally and straightforwardly.
For the sake of completeness, in Section 5, we state this formally. In that section, we introduce
a type of PRG with a KDM-like security which turns out convenient in constructing a simple
computational RR-SSS from a perfect linear SSS with the same access structure.

1.5 Applications of RR-ABE
The notion of RR-SSS was implicitly used as a key tool to obtain randomness recoverable
single-key attribute-based public-key encryption schemes [29, 13], which in turn imply DV-
NIZK for all NP [29]. Let us recall the definition of ABE. We have a master public key mpk

and a master secret key msk. For any attribute string x, we have an attribute secret key
skx, obtained as KGen(msk, x), where KGen is the key generation algorithm of the ABE. We
encrypt a message m under mpk and a given circuit C to get a ciphertext ct. Now someone
who has skx can decrypt ct to get m iff C(x) = 1.

We say that the ABE is RR if when C(x) = 1, then skx not only recovers m, but also all
the randomness used by the encryption algorithm.

In the single-key security notion, an adversary can ask for only one attribute secret key
skx, and has to win in an indistinguishability sense against a challenger who encrypts with
respect to some circuit C where C(x) = 0.

A standard way to build single-key RR-ABE is as follows: if |x| = n, then the master
secret key has n PKE secret keys (sk1, ..., skn) and mpk contains the corresponding public
keys (pk1, ..., pkn). An attribute secret key for x contains those ski where xi = 1. To encrypt
m under mpk and C, we share m according to C to get the shares. We then encrypt each
share under pki, and return all the ciphertexts. The notion of RR-SSS is a key tool in
realizing randomness recoverability for the above single-key ABE scheme, as it allows us to
recover the randomness used by sharing process, a major source of the overall randomness.

2 Preliminaries

In this section, we present the necessary background.

2.1 Random variables
We denote random variables (RV) by boldface characters and use supp(X) to denote the
support of RV X. We use the terms RV and distribution interchangeably throughout the
paper. The Shannon entropy of X is denoted by H(X). The entropy of X conditioned on
RV Y is denoted and defined by H(X|Y ) := H(X, Y ) − H(Y ). The mutual information
between X, Y is defined and denoted by I(X : Y ) := H(X)−H(X|Y ).

ITC 2023



12:6 Randomness Recoverable Secret Sharing Schemes

Let us also recall the functional representation lemma [12, page 626], a well-known lemma
in information theory, that will be used in this paper. We use the notation X ≡ Y for
identically distributed RVs.

▶ Lemma 4 (Functional representation lemma [12]). For every pair of jointly distributed
RVs (X, Y ), there exists a RV R, independent of X, and a mapping µ such that (X, Y ) ≡(
X, µ(X, R)

)
▶ Remark 5. Throughout the paper, we will consider a non-uniform model of computation,
however, our results hold true for the uniform model.

We call the family X = {Xλ}λ∈N of RVs efficiently sampleable if there exists a family of
polynomial-time algorithms Sample = {Sampleλ}λ∈N such that Sampleλ(1λ) ≡Xλ. We call
λ the security parameter and refer to X as a family of RVs, or simply an RV, indexed by the
security parameter. We recall that a function ε : N → R≥0 is called negligible if for every
d > 0 there exists some λ0 such that for every λ > λ0 it holds that ε(λ) < 1

λd .

▶ Definition 6 (Computational indistinguishablity). Let X and Y be efficiently sampleable
distributions indexed by the security parameter λ. We say that X and Y are computationally
indistinguishable and write Xλ

c≡Y λ if for every family of polynomial-time size circuits
D = {Dλ}λ∈N (i.e., Dλ has polynomially many gates in the security parameter), there exists
a negligible function ε such that

|Pr[Dλ(Xλ) = 1]− Pr[Dλ(Y λ) = 1]| ≤ ε(λ) .

We usually drop the security parameter and write X
c≡Y for Xλ

c≡Y λ, and D(Xλ) or
D(X) instead of Dλ(Xλ).

We will also face functions of the form ε(n, λ), indexed by two parameters, which we
require them to be polynomial in n and negligible in λ (e.g., to be of the form poly(n)negl(λ)),
where n will be the number of participants in secret sharing schemes. To remove any
confusion, we make the definition precise.

2.2 One-way function

▶ Definition 7 (OWF). A function f : {0, 1}⋆ → {0, 1}⋆ is called a one-way function (OWF)
if the following two conditions hold:
1. There is a polynomial-time algorithm that on input x outputs f(x).
2. For every polynomial-size circuit family {Cλ}λ, the following probability is negligible:

Pr[f(Cλ(f(Uλ))) = f(Uλ)].

The following lemma is due to Impagliazzo, Levin, and Luby [15]. It was used by
Impagliazzo and Luby in [16] to prove that short-key SKE implies OWF. In Section 4, we
use this lemma, in a similar manner, to prove that computational RR-SSS for AC0 implies
the existence of OWF.

▶ Lemma 8 ([15]). If there is a polynomial-time computable function f : {0, 1}λ → {0, 1}l(λ),
a polynomial-time samplable distribution D = {Dλ}λ and a constant d > 0 such that
f(Uλ) c≡Dλ and for large enough λ, H(Dλ) ≥ H(f(Uλ)) + 1/λd, then there is a OWF.
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2.3 Access structure
In the secret sharing context, there is set of participants, which we denote by P , and a
distinguished participant called the dealer, which we denote by 0 /∈ P .

▶ Definition 9 (Access structure). A non-empty subset Γ ⊆ 2P , with ∅ /∈ Γ, is called an
access structure on P if it is monotone; that is, A ⊆ B ⊆ P and A ∈ Γ imply that that
B ∈ Γ. A subset A ⊆ P is called qualified if A ∈ Γ; otherwise, it is called unqualified. A
qualified subset is called minimal if none of its proper subsets is qualified. An unqualified
subset is called maximal if every proper superset of it is qualified.

There is a natural one-to-one correspondence between access structures with n participants
and monotone Boolean functions with n variables.

2.4 Secret sharing
A secret sharing scheme (SSS) can be defined in the following two equivalent ways. The first
definition is more useful for working in the information-theoretic setting, while the second
one is more useful in the computational setting.

▶ Definition 10 (SSS in terms of jointly distributed RVs). A tuple
(
Si

)
i∈P ∪{0} of jointly

distributed RVs is called a SSS on the set of participants P when |supp(S0)| ≥ 2. The RV S0
is called the secret RV and its support is called the secret space. The RV Si is called the
share RV of the participant i ∈ P and its support is called his share space.

▶ Definition 11 (SSS in terms of sharing map). Let µ : S0 ×R →
(
Si

)
i∈P

be a mapping and
R be a distribution on R, called the randomness RV. We refer to Π = (R, µ) as a SSS if
|S0| ≥ 2. We call µ the sharing map and R the randomness space. Also, S0 is called the
secret space and Si is called the share space of participant i.

The equivalence between these two definitions follows by the functional representation
lemma (Lemma 4).

The following notation will be used throughout the paper.

▶ Notation 12. For a SSS Π =
(
Si

)
i∈P ∪{0} and a subset A ⊆ P , we use the notation SA

for the projection of Π on the components in A; i.e., SA :=
(
Si

)
i∈A

. Also, for a sharing
map µ : S0 ×R →

(
Si

)
i∈P

, µA stands for the projection of µ on the components in A. That
is, if (si)i∈P = µ(s, r), then µA(s, r) := (si)i∈A.

Linear SSS. We call a SSS with sharing map µ : S0 ×R →
(
Si

)
i∈P

and randomness R

linear when R and all Si’s, i ∈ P ∪ {0}, are vector spaces over a common finite field, µ is a
linear map and R is uniformly distributed over R. Throughout the paper, for simplicity, we
assume that he underline finite field is the binary field.

2.5 Security definitions for SSSs
The security of a SSS can be defined both in information-theoretic and computational
settings.

▶ Definition 13 (Perfect security). We say that Π =
(
Si

)
i∈P ∪{0} is a perfect SSS for an

access structure Γ, if the following two conditions hold:
Perfect correctness: H(S0|SA) = 0 for every qualified set A ∈ Γ.
Perfect privacy: I(S0 : SB) = 0 for every unqualified set B /∈ Γ.

ITC 2023



12:8 Randomness Recoverable Secret Sharing Schemes

If Π is a perfect SSS for Γ, we also say that Π realizes Γ perfectly or Γ admits Π perfectly.
Computational secret sharing is defined to realize a family Γ = {Γn}n∈N of access

structures, where Γn is an access structure with n participants with participants set Pn. A
computational SSS for Γ is a tuple Π =

(
R, µ) with

R = {Rλ,n}n,λ∈N ,

µ = {µλ,n : S0,λ,n ×Rλ,n →
(
Si,λ,n

)
i∈Pn
}λ,n∈N ,

where for every λ, n ∈ N, the tuple
(
Rλ,n, µλ,n) is a secret sharing scheme with participant

set Pn.

▶ Definition 14 (Computational security). Let Γ = {Γn}n∈N be a collection of access structures
and Π =

(
R, µ) with R = {Rλ,n}λ,n and µ = {µλ,n : S0,λ,n×Rλ,n →

(
Si,λ,n

)
i∈Pn
}λ,n∈N be a

family of SSSs indexed by the security parameter λ and n. We say that Π is a computational
SSS for Γ if the following conditions hold:

Efficient randomness sampling: The RV R is polynomial-time sampleable in λ and n.
Polynomial secret length: log |S0,λ,n| is polynomial in λ and n.
Efficient sharing: The sharing map µλ,n is polynomial-time computable in λ and n.
Efficient secret reconstruction: There exists a polynomial-time algorithm Recon in
λ and n such that for every polynomial n = n(λ) there exists a negligible function negl
such that for every sequence of qualified sets {Aλ ∈ Γn(λ)}λ and every sequence of secrets
{sλ ∈ S0,λ,n(λ)}λ one has

Pr[Recon(µAλ
(sλ, Rλ,n(λ))) ̸= sλ] ≤ negl(λ). (1)

Computational privacy: For every polynomial n = n(λ), every sequence of unqualified
sets {Bλ /∈ Γn(λ)}λ and every pair of secret sequences {sλ ∈ S0,λ,n(λ)}λ and {s′

λ ∈
S0,λ,n(λ)}λ, one has

µBλ
(sλ, Rλ,n(λ))

c≡µBλ
(s′

λ, Rλ,n(λ)). (2)

If Π is a computational SSS for Γ we say that Π realizes Γ computationally or Γ admits Π
computationally.

▶ Remark 15. In the rest of the paper, in the computational setting, we implicitly take
the access structure, qualified sets and unqualified sets to be parameterized by n, and
take the secret space, share space, randomness space, and RVs over these spaces to be
parameterized by n and λ. In particular, we drop the indices in (1) and (2) and simply write:
Pr[Recon(µA(s, R)) ̸= s] is negligible and µB(s, R) c≡µB(s′, R). This simplifies the notation
and allows us to state some of the properties of the computational and perfect SSS in a
unified manner. Additionally, in the rest of paper, when we consider aysmptotic properties
of the scheme, we implicitly assume that n is a polynomial in λ.

The following lemma will be used later in the paper. We refer to Appendix A for the
proof.

▶ Lemma 16. Let Π = (µ, R) be a computational SSS for Γ with t-bit secrets and let S be
an RV independent of R over the secret space. Then, for every B /∈ Γ,

(S, µB(S, R)) c≡(S, µB(0t, R)).
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2.6 Information ratio

The efficiency of SSSs is usually measured using a parameter called information ratio. The
information ratio of an SSS with participants set P , secret space S0 and share space Si for
participant i ∈ P , is defined to be maxi∈P

log |Si|
log |S0| .

The perfect information ratio, or simply information ratio, of an access structure is defined
to be the infimum of all information ratios of all SSSs that perfectly realize it.

Beimel [3] has conjectured that there are families of access structures with exponential
information ratio in the number of participants; see Conjecture 2.

▶ Remark 17. Beimel has also stated the conjecture in terms of share size instead of
information ratio in [3]; this corresponds to the case where the secret is a single bit. There
are access structures whose information ratio for exponentially-long secrets (in the number
of participants) may be significantly better than the information ratio achievable for short
secrets [2]. Nevertheless, it is widely believed that the stronger conjecture (i.e., for information
ratio) holds true.

Csirmaz framework for lower bounding information ratio. Following [23, 9], Csirmaz
proposed a framework in [10] to prove lower bounds on the information ratio of perfect SSSs.
His framework is captured in the following lemma which is based on the properties of the
entropy function as well as the correctness and privacy properties of perfect SSSs.

▶ Lemma 18 (Csirmaz/Perfect). Let Π = (Si)i∈P ∪{0} be a perfect SSS for an access structure
Γ. For every subset A ⊆ P ∪ {0}, let f(A) = H(SA)

H(S0) . Then, the following holds:
1. Non-negativity. f(A) ≥ 0 for every A ⊆ P ∪ {0}.
2. Monotonicity. f(A) ≥ f(B) for every B ⊆ A ⊆ P ∪ {0}.
3. Submodularity. f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for every A, B ⊆ P ∪ {0, }.
4. Strong monotonicity. f(A) ≥ f(B) + 1 for every A ∈ Γ and B ⊆ A such that B /∈ Γ.
5. Strong submodularity. f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) + 1 for every A, B ∈ Γ

such that A ∩B /∈ Γ.

If, using the inequalities (1)–(5), one can prove that for some participant i ∈ P , it holds
that f({i}) ≥ σ, then σ will be a lower bound on the information ratio of the underlying
access structure.

2.7 Randomness recoverable SSS

We call a SSS Π = (R, µ) randomness recoverable (RR) if qualified sets, in addition to the
secret, can also recover the randomness; that is, there exists a function RNDrecover such that
for every qualified set A, Pr[RNDrecover(µA(R, s)) = R] = 1 for every secret s. When Π is
a computational SSS, we require that RNDrecover be a polynomial-time algorithm, in the
security parameter and n, the number of participants; we also allow a negligible amount of
error; i.e., when n is a polynomial in λ, then Pr[RNDrecover(µA(s, R)) ̸= R] is negligible in
the security parameter.

The following claim will be used in Section 3 and Section 4.

▷ Claim 19. If Π = (Si)i∈P ∪{0} is an RR-SSS with perfect correctness (i.e., zero reconstruc-
tion error probability), then for every pair of qualified sets A, B, we have H(SA) = H(SB),
or equivalently f(A) = f(B), using the notation of Lemma 18.
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a1

b1
c1

a2

b2
c2

. . .
an/3

bn/3 cn/3

Figure 2 The Moon-Moser access structure.

Proof. Denote the support of Si by Si, for i ∈ P ∪{0}. Let (R, µ), with µ : S0×R →
(
Si

)
i∈P

,
be the equivalent SSS in terms of Definition 11, which exists by the functional representation
lemma (Lemma 4); that is,

(
S0, (Si)i∈P

)
≡
(
S0, µ(S0, R)

)
. For simplicity, let us assume that

(Si)i∈P = µ(S0, R). Since SP is a function of the secret and randomness and every qualified
set can recover both of them, it follows that H(SP |SA) = 0, or equivalently H(SA) = H(SP ),
for every qualified set A. The claim then follows. ◁

3 Exponential lower bound for perfect RR-SSS

In this section, we show that the Moon-Moser access structure, to be defined below, has
an exponential information ratio for every perfect RR-SSS that realizes it. The result also
applies to weaker security notions such as statistical security as will be discussed at the end
of this section.

The Moon-Moser access structure. Due to an old result by Moon and Moser [31], any
graph with n vertices has at most 3n/3 maximal independent sets. A graph with exactly 3n/3

maximal independent sets is easy to construct: simply take the disjoint union of n/3 triangle
graphs. Motivated by this example, we consider the access structure in Figure 2, which is
the union of n/3 (3, 3)-threshold access structures, and refer to it as the Moon-Moser access
structure. Clearly, this access structure lies in AC0.

▶ Theorem 20. For every n, there is an access structure in AC0 such that every perfect
RR-SSS that realizes it has information ratio 2Ω(n).

We first present a notation and a claim and then prove the theorem.

Notation. Denote the set of participants of the Moon-Moser access structure, with n

participants, by P = {a1, b1, c1, . . . , an/3, bn/3, cn/3} and let {ai, bi, ci} be a minimal qualified
set for every i = 1, . . . , n/3 (see Figure 2). Let Π = (Si)i∈P ∪{0} be a perfect RR-SSS for this
access structure and f be as in Lemma 18. For a participant pi ∈ {ai, bi, ci}, we define p′

i and
p′′

i to be the cyclic rotations of pi by one and two positions, respectively; i.e., a′′
i = b′

i = ci,
b′′

i = c′
i = ai and c′′

i = a′
i = bi. Also, we denote a set {pi1 , . . . , pik

} simply by pi1 · · · pik
.
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▷ Claim 21. For every qualified set A, every k = 0, 1, . . . , n/3, and all choices for p1, . . . , pk

with pi ∈ {ai, bi, ci}, the following inequality holds:

f(A) ≥ f(p1p′
1 . . . pkp′

k) + 3n/3−k . (3)

Proof of Claim 21. First, let us show that the following inequality is implied by Inequality (3):

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1pk) + 2× 3n/3−k . (4)

By Inequality (3) we have:

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + 3n/3−k ,

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1p′′
kpk) + 3n/3−k .

Also by the monotonicity property, we have

f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + f(p1p′

1 . . . pk−1p′
k−1p′′

kpk) ≥
f(p1p′

1 . . . pk−1p′
k−1pkp′

kp′′
k)+ f(p1p′

1 . . . pk−1p′
k−1pk) .

Notice that p1p′
1 . . . pk−1p′

k−1pkp′
kp′′

k is qualified and, hence, by Claim 19 we have

f(A) = f(p1p′
1 . . . pk−1p′

k−1pkp′
kp′′

k).

Therefore, Inequality (4) follows by adding the above three inequalities.
Now, we prove Inequality (3) by backward induction on k.

Base. Denote m = n/3. For k = m, by strong submodularity property, we have:

f(p′′
1p1p′

1 . . . pmp′
m) + f(p′′

2p1p′
1 . . . pmp′

m) ≥
f(p′′

1p′′
2p1p′

1 . . . pmp′
m)+ f(p1p′

1 . . . pmp′
m) + 1 .

Since the sets p′′
1p1p′

1 . . . pmp′
m, p′′

2p1p′
1 . . . pmp′

m and p′′
1p′′

2p1p′
1 . . . pmp′

m are all qualified, for
every qualified set A, by Claim 19, we have:

f(A) = f(p′′
1p1p′

1 . . . pmp′
m) = f(p′′

2p1p′
1 . . . pmp′

m) = f(p′′
1p′′

2p1p′
1 . . . pmp′

m) .

Therefore,

f(A) ≥ f(p1p′
1 . . . pmp′

m) + 1 ;

that is, Inequality (3) holds for k = n/3.

Induction. Now suppose that by the induction hypothesis

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + 3n/3−k .

By Inequality (4), we also have:

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1p′′
k) + 2× 3n/3−k .

By the monotonicity property, we have

f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + f(p1p′

1 . . . pk−1p′
k−1p′′

k) ≥
f(p1p′

1 . . . pk−1p′
k−1pkp′

kp′′
k)+ f(p1p′

1 . . . pk−1p′
k−1) .

By adding the above three inequalities, noticing that p1p′
1 . . . pk−1p′

k−1pkp′
kp′′

k is qualified,
and using Claim 19, we get:

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1) + 3n/3−(k−1) ;

that is, Inequality (3) holds for k − 1. This completes the proof of Claim 21. ◁
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Proof of Theorem 20. Let pi ∈ {a1, b1, c1, . . . , an/3, bn/3, cn/3}. By letting k = 0 and A =
{pi, p′

i, p′′
i } in Inequality (3), we have:

f(pip
′
ip

′′
i ) ≥ 3n/3 .

Also, f(pi) + f(p′
i) + f(p′′

i ) ≥ f(pip
′
ip

′′
i ). Therefore, for every i ∈ {1, . . . , n/3}, for at least

one p ∈ {ai, bi, ci}, we have

f(p) ≥ 3n/3−1 . ◀

▶ Remark 22. The above proof can be converted, in a straightforward manner, to a proof
for the case of an access structure that is the union of n/k disjoint (k, k)-thresholds. Stated
explicitly, every perfect RR-SSS that realizes the access structure that has

{a1,1, a1,2, · · · , a1,k}, {a2,1, a2,2, · · · , a2,k}, · · · , {an/k,1, an/k,2, · · · , an/k,k}

as its minimal qualified sets has information-ratio 2Ω(n log k/k). The best exponent is achieved
for k = 3, which justifies our choice for the Moon-Moser access structure in this section.

Exponential lower bound for non-perfect RR-SSSs. Besides perfect and computational
security, several non-perfect security notions for secret sharing have appeared in the literature,
including almost-perfect, quasi-perfect, and statistical. We refer to [19] for a comprehensive
study of these security notions. Kaced [20, Theorem 36] has shown that any lower bound
derived on the information ratio of (standard) SSSs using information inequalities applies
not only to perfect security but also to quasi-perfect security (which can be shown to apply
to almost-perfect and statistical security too). His result can also be extended to the case
of RR-SSSs. Since, we only used (Shannon-type) information inequalities to derive our
exponential lower bound on perfect RR-SSS, it also holds for all mentioned non-perfect
security notions.

4 Computational RR-SSS for AC0 implies OWF

In this section, we show that the existence of computational RR-SSS for some access structures
in AC0 implies the existence of OWFs. Our method is similar to Impagliazzo and Levin’s
method for proving that short-key SKE implies OWFs [16]. The idea is as follows: if
Π = (µ, R) is a SSS for an access structure where B is unqualified, then S||µB(S, R) and
S′||µB(S, R) are computationally indistinguishable, where S and S′ are independent uniform
RVs over the secret space. Indeed, when the SSS is perfect, µB(S, R) reveals no information
about S and so the two distributions are information-theoretically indistinguishable. But
when the SSS is computational, µB(S, R) reveals some information about S. If this amount
is not negligible, then we have two distributions that are computationally indistinguishable
but statistically distinguishable and we can apply Lemma 8 to deduce the existence of OWF.

In Section 3, it was shown that there are access structures in AC0 that do not admit
efficient perfect RR-SSSs. In other words, an RR-SSS for such an access structure, that
perfectly hides the secret from unqualified sets, has to have shares with exponential length.
Hence intuitively, in a computational RR-SSS for such an access structure (because shares
are of polynomial length), there are unqualified sets that obtain a considerable amount of
information about the secret. This intuition is exactly phrased and proved in this section.

For simplicity, we first study the simpler case where in the definition of computational
SSS (Definition 14), we require the reconstruction error probability to be equal to zero.
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· · ·
a1

b1

a2

b2

an/2

bn/2

Figure 3 Union of (2, 2)-threshholds.

4.1 Zero reconstruction error
In this subsection, we present a lemma, a claim, and a corollary for computational SSSs
with zero reconstruction errors. These results are modified in Subsection 4.2 to consider
non-zero reconstruction error and will be used in Subsection 4.3 to prove the main result of
this section.

A variant of Csirmaz’s framework (see lemma 18) adapted to the computational setting
with perfect correctness (i.e., zero reconstruction error) is needed. The following lemma
states this variant.

▶ Lemma 23 (Csirmaz/Computational/Perfect correctness). Let Π = (Si)i∈P ∪{0} be a compu-
tational SSS with perfect correctness for an access structure Γ. For A, B ⊆ P ∪ {0}, denote
H(SA) with H(A) and H(SA|SB) with H(A|B), respectively. Then, the non-negativity,
monotonicity, and submodularity properties hold as in Lemma 18 and, one has the following
modified formulation of strong monotonicity and strong submodularity:
1. Strong monotonicity. H(A) ≥ H(B) + H(0|B) for every A ∈ Γ and B ⊂ A such that

B /∈ Γ.
2. Strong submodularity. H(A) + H(B) ≥ H(A∪B) + H(A∩B) + H(0|A∩B) for every

A, B ∈ Γ such that A ∩B /∈ Γ.

Proof. Inequality (1) holds because A is qualified and due to the monotonicity property:

H(A) = H({0} ∪A) ≥ H({0} ∪B) = H(B) + H(0|B).

Inequality (2) follows from the following relations:

H(A) + H(B) = H({0} ∪A) + H({0} ∪B)
≥ H({0} ∪A ∪B) + H({0} ∪ (A ∩B))
≥ H(A ∪B) + H(A ∩B) + H(0|A ∩B).

In the first equality, we have used the fact that A and B are qualified. The first and second
inequalities follow by the submodularity and monotonicity properties, respectively. ◀

Notation. In what follows, let P = {a1, b1, a2, b2, · · · , an/2, bn/2} and Γ be an access
structure with minimal qualified sets {a1, b1}, · · · , {an/2, bn/2} (see Figure 3). Note that this
access structure lies in AC0. According to Remark 22, Γ’s information ratio is 2Ω(n). For
pi ∈ {ai, bi}, let p′

i be the other element of {ai, bi}; i.e., if pi = ai then p′
i = bi and if pi = bi

then p′
i = ai. Also denote {p1, p2, · · · , pk} with p1p2 · · · pk and use the notation in Lemma

23 for entropies.
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▷ Claim 24. Let Π be a computational RR-SSS with perfect correctness for Γ and A be a
qualified set in Γ with H(A) ≤ c. Then for all k = 0, 1, · · · , n/2,

H(p1p2 · · ·pk) + c

2k
≥ H(A),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. We prove the claim by induction on k.

Base. The base (k = 0) holds by the assumption.

Induction. Suppose that by the induction hypothesis we have:

H(p1p2 · · ·pk) + c

2k
≥ H(A), (5)

where k < n/2. By the submodularity property

H(p1p2 · · ·pkak+1)+H(p1p2 · · ·pkbk+1) ≥
H(p1p2 · · ·pkak+1bk+1) + H(p1p2 · · ·pk). (6)

Since {p1, p2, · · · , pk, ak+1, bk+1} is qualified, then according to Claim 19, we have:

H(p1p2 · · ·pkak+1bk+1) = H(A). (7)

Summing up relations (5),(6) and (7), we get:

H(p1p2 · · ·pkak+1) + H(p1p2 · · ·pkbk+1) + c

2k
≥ 2H(A).

So:

H(p1p2 · · ·pkpk+1) + c

2k+1 = 1
2
(
H(p1p2 · · ·pkak+1)

+ H(p1p2 · · ·pkbk+1)
)

+ c

2k+1 ≥ H(A) . ◁

The following corollary could be considered as a quantitative contrapositive for The-
orem 20.

▶ Corollary 25. Let Π be a computational RR-SSS for Γ with perfect correctness and m-bit
secrets and let n be a polynomial in λ. Then for large enough λ:

m

2 ≥ H(0|p1p2 · · ·pn/2),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. Sharing algorithm’s running time and m are polynomials, so for large enough λ we
have 2 n

2 −1m ≥ H(A), where A is an arbitrary qualified set. Applying Claim 24 to this
inequality, if follows that

H(p1p2 · · ·pn/2) + m

2 ≥ H(A). (8)

On the other hand, {p′
1, p1, p2, · · · , pn/2} and {p′

2, p1, p2, · · · , pn/2} are qualified sets, while
{p1, p2, · · · , pn/2} is not. So, according to the (computational) strong submodularity prop-
erty,

H(p′
1p1p2 · · ·pn/2) + H(p′

2p1p2 · · ·pn/2) ≥

H(p′
1p′

2p1p2 · · ·pn/2) + H(p1p2 · · ·pn/2) + H(0|p1p2 · · ·pn/2).
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Applying Claim 19, we get

H(A) ≥ H(p1p2 · · ·pn/2) + H(0|p1p2 · · ·pn/2).

Summing up the above inequality and Inequality (8), one gets the desired result. ◀

4.2 Non-zero reconstruction error
In this subsection, we provide variants of Lemma 23, Claim 24, and Corollary 25 that do not
assume zero reconstruction error.

When the reconstruction error is zero, the entropy of the secret conditioned on the share
of a qualified set is zero, because in this case, the secret is determined by the qualified set’s
share. When we allow the reconstruction algorithm to fail with some bounded probability,
this property no longer holds. The following is a variant of Fano’s inequality that we will
use to prove that in this case, conditioned on the share of a qualified set, the entropy of the
secret is o(1).

▶ Lemma 26. Let X and Y be families of RVs such that Y has polynomial length and f be
a function such that Pr[Y ̸= f(X)] is negligible. Then H(Y |X) is o(1).

Proof. Define the indicator RV Z as follows:

Z =
{

1 if Y = f(X)
0 if Y ̸= f(X)

.

Since H(Z|X, Y ) = 0, we have:

H(Y |X) = H(Y |X) + H(Z|X, Y )
= H(Y , Z|X)
= H(Z|X) + H(Y |X, Z)

≤ H(Z) +
∑

x∈Supp(X)

(
Pr[X = x, Z = 0]H(Y |X = x, Z = 0)

+ Pr[X = x, Z = 1]H(Y |X = x, Z = 1)
)

= o(1) +
∑

x∈Supp(X)

Pr[X = x, Z = 0]H(Y |X = x, Z = 0) (9)

≤ o(1) +
( ∑

x∈Supp(X)

Pr[X = x, Z = 0]
)

log(|Supp(Y )|) (10)

= o(1) + Pr[Z = 0] log(|Supp(Y )|)
= o(1). (11)

Equation (9) holds for two reasons: First, Z is a Bernouli RV with Pr[Z = 0] = o(1) (indeed,
this probability is negligable), so H(Z) = o(1); Second, when Z = 1, Y is determined by X;
therefore, H(Y |X = x, Z = 1) = 0. Inequality (10) holds because H(Y ) ≤ log(|Supp(Y )|).
Equality (11) holds because Pr[Z = 0] is negligable and Y has polynomial length. ◀

▶ Lemma 27. Let Π = (µ, R) be a computational SSS and S0 be an RV over the secret
space. Then for every qualified set A, H(S0|µA(S0, R)) = o(1).

Proof. Let Recon be the reconstruction algorithm. Then Pr[Recon(µA(S0, R)) ̸= S0] is
negligible in the security parameter. Also, the length of S0 is polynomial in the security
parameter. Therefore, according to Lemma 26, H(S0|µA(S0, R)) = o(1). ◀
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The following is a variant of Claim 19 that does not assume zero reconstruction error.

▷ Claim 28. Let Π = (µ, R) be a computational RR-SSS, n be a polynomial in λ and S0
be an RV over the secret space. Then for any two qualified sets A and B, |H(µA(S0, R))−
H(µB(S0, R))| = o(1).

Proof. By Lemma 27, H(S0|µA(S0, R)) = o(1). Because Π is RR, it can be proved that
similarly

H(R|µA(S0, R)) = o(1).

Therefore, H(S0, R|µA(S0, R)) = o(1) and, hence, H(S0, R) ≤ H(µA(S0, R)) + o(1). On
the other hand, µA(S0, R) is determined by S0 and R; thus H(µA(S0, R)) ≤ H(S0, R).
Similar bounds hold for µB(S0, R). The claim follows from these bounds. ◁

The following is a variant of Csirmaz’s computational framework (23) stated for the case
of the non-zero reconstruction error.

▶ Lemma 29 (Csirmaz/Computational). Let Π = (Si)i∈P ∪{0} be a computational SSS for an
access structure Γ. Then, the non-negativity, monotonicity, and submodularity properties
hold as in Lemma 18 and, one has the following modified formulation of strong monotonicity
and strong submodularity:
1. Strong monotonicity. H(A) + o(1) ≥ H(B) + H(0|B) for every A ∈ Γ and B ⊂ A

such that B /∈ Γ.
2. Strong submodularity. H(A) + H(B) + o(1) ≥ H(A ∪B) + H(A ∩B) + H(0|A ∩B)

for every A, B ∈ Γ such that A ∩B /∈ Γ.

Proof. Inequality (1) follows from the following relations:

H(A) + o(1) = H({0} ∪A) ≥ H({0} ∪B) = H(B) + H(0|B).

The left-hand side equality follows from Lemma 28. The rest is as in the proof of Lemma 23.
Inequality (2) follows from the following relations:

H(A) + H(B) + o(1) = H({0} ∪A) + H({0} ∪B)
≥ H({0} ∪A ∪B) + H({0} ∪ (A ∩B))
≥ H(A ∪B) + H(A ∩B) + H(0|A ∩B).

The equality follows from Lemma 28. The rest is as in the proof of Lemma 23. ◀

Below is a modification of Claim 24 stated for the case of the non-zero reconstruction
error.

▷ Claim 30. Let Π be a computational RR-SSS for Γ and A be a qualified set such that
H(A) ≤ c. Then for k = 0, 1, · · · , n/2 one has:

H(p1p2 · · ·pk) + c

2k
+ o(1) ≥ H(A),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. Proof of this claim is achieved by applying appropriate and straightforward modi-
fications to the proof of Claim 24. Explicitly, Claim 19 is used there to deduce
H(p1p2 · · ·pkak+1bk+1) = H(A). Instead, we apply Claim 28 to deduce

H(p1p2 · · ·pkak+1bk+1) + o(1) ≥ H(A).

Also, the induction hypothesis should be modified to include the term o(1). ◁
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Finally, we state a variant of Corollary 25 that does not assume zero reconstruction error.

▶ Corollary 31. Let Π be a computational RR-SSS for Γ with m-bit secrets. Then
m

2 + o(1) ≥ H(0|p1p2 · · ·pn/2),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. The proof is the same as the proof of Corollary 25 with the following exceptions:
Usages of Claim 24 and Claim 19 are replaced with those of Claim 30 and Claim 28,
respectively. Indeed, these replacements substitute each claim with a corresponding variant
that is adapted to the case of the non-zero reconstruction error. Also, the variant of strong
submodularity that is stated in Lemma 29 should be used. ◀

4.3 Main result
▶ Theorem 32. Let Γ be the union of n/2 disjoint (2, 2)-thresholds (see Figure 3). If Γ has
a computational RR-SSS, then there exists an OWF.

Proof. As in the previous subsections, assume that {ai, bi}, 1 ≤ i ≤ n/2, are the minimal
qualified sets. Let Π = (µ, R) be a computational RR-SSS for Γ with m-bit secrets and
n = poly(λ). For 0 ≤ i ≤ n/2, take pi to be a uniform RV over {ai, bi} and set B =
{p1, p2, · · · , pn/2}.
According to Corollary 31 we have,

m

2 + o(1) ≥ H(0|p1p2 · · ·pn/2).

So if we let S0 be a uniform RV over the secret space, then
m

2 + o(1) + H(µB(S0, R)) ≥ H(S0||µB(S0, R)).

Let S′
0 be a uniform secret independent of S0 and R. Then

H(S′
0||µB(S0, R)) = m + H(µB(S0, R)).

These together imply that

H(S′
0||µB(S0, R)) + o(1) ≥ H(S0||µB(S0, R)) + m

2 . (12)

On the other hand,

S′
0||µB(S0, R) c≡S0||µB(S0, R). (13)

Applying Lemma 8 to (12) and (13) (with Dλ = S′
0||µB(S0, R) and f(S0||R||B) =

S0||µB(S0, R)), we get the desired result. ◀

5 Construction of computational RR-SSS

In this section, we observe that computational RR-SSS for NC1 can be based on simple
minicrypt primitives that have some kind of one-time KDM-like security. In particular, we
first observe that an efficient linear SSS (and generally, an efficient SSS with a property
that we call randomness simulatability) can be converted into a computational RR-SSS
assuming the existence of one-time KDM-secure RR-SKE. Next we introduce the notion of
linear-resistant PRG. Then, we see how an efficient perfect linear SSS can be converted into
an efficient computational RR-SSS, using a linear-resistant PRG.
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5.1 RR-SKE and KDM security
First, we recall the definition of (RR-)SKE and (one-time) KDM-security.

▶ Definition 33 (SKE/RR-SKE). Let M = {Mλ}λ∈N be a family of message spaces and
Σ = (Gen, Enc, Dec) be a tuple of probabilistic polynomial-time algorithms where

Gen, called key-generation algorithm, on input 1λ returns a key k,
Enc, called encryption algorithm, gets a message m and a key k as input and returns a
ciphertext ct,
Dec, called decryption algorithm, gets a ciphertext ct and a key k as input and returns a
message m or ⊥.

Σ is called a symmetric-key encryption (SKE) for M if for every m ∈Mλ:

Pr[k ← Gen(1λ); ct← Enck(m) : Deck(ct) = m] = 1 .

We call Σ randomness recoverable SKE (RR-SKE) if additionally there exists a polynomial-
time algorithm Recover such that:

Pr[k ← Gen(1λ); ct← Enck(m; R) : Recoverk(ct) = R] = 1 ,

where R is the randomness used in the encryption algorithm.

▶ Definition 34. Let Π = (Gen, Enc, Dec) be an SKE with key-space K and message-space
M. We say that Π is one-time KDM-secure, if for each efficiently computable function
f : K →M,

{k ← Gen(1λ) : Enck(f(k)))} c≡{k ← Gen(1λ) : Enck(0|f(k)|)}.

▶ Lemma 35. Assume that Π = (Gen, Enc, Dec) is a one-time KDM-secure SKE and
g : {0, 1}l1+l2+l3 → {0, 1}l is an effieciently computable function. Then one has

(x, Enck(g(k, x, y))) c≡(x, Enck(0l))

where k is Π’s key and has length l1 and (x, y) are jointy distributed RVs over {0, 1}l2×{0, 1}l3

and independent of k.

We refer to Appendix B for the proof.

5.2 RR-SSS from randomness simulatable SSS and one-time
KDM-secure RR-SKE

Consider this simple construction for a computational RR-SSS using a general (i.e., not
necessarily perfect or linear) efficient standard SSS (which is known to exist for access
structures in mP, assuming OWF) and an RR-SKE with one-time KDM-security. The
construction is as follows. First, use the SSS to share s||k with randomness r to compute the
shares for the secret s, where k is the key of the SKE. Then, encrypt r under the secret key
k using the SKE and append the ciphertext to the shares. The correctness and randomness
recoverability requirements are trivial. Privacy follows from the KDM-security of the SKE.
However, in order for the proof to go through, we require a property of the original SSS
that we refer to as the randomness simulatability. Every linear SSS has this property but it
remains open whether every access structure in mP admits a randomness simulatable SSS.

In the following, we first define the notion of randomness simulatable SSS. Then, we
present a theorem that formalizes the above construction.
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▶ Definition 36 (Randomness simulatable SSS). Let Π = (R, µ) be a perfect or computational
SSS for an access structure. We say that SSS Π is randomness simulatable, if for each RV
S over the secret space and each unqualified set B there exists an efficiently computable
function g and an efficiently sampleable RV R̂ independent of (S, R) such that

(S, µB , R) c≡(S, µB , g(S, µB , R̂)) ,

where µB = µB(S, R) denotes the share of the unqualified set B.

Notice that, ignoring the efficient computability of g and efficient sampleability of R̂, the
existence of g and R̂ is always guaranteed by the functional representation lemma (Lemma 4).
Also, in particular, linear SSSs are randomness simulatable. It is unclear to us whether
every access structure in mP – which is known to admit an efficient computational SSS [37] –
admits a randomness simulatable scheme.

▶ Theorem 37. Let Π be a one-time KDM-secure RR-SKE with ℓ-bit keys. Let µi be the
sharing map of the i’th participant in a perfect/computational randomness simulatable SSS
for an access structure with t-bit secret, t > l, and ρ-bit randomness (i.e., the share of
participant i is µi(s, r), where s is the secret and r is the randomness). Then, the SSS defined
below is a computational RR-SSS for the same access structure.

Given a secret s ∈ {0, 1}t−ℓ and a randomness r ∈ {0, 1}ρ:
generate a key k ← Gen(1λ),
let ct← Enck(r),
let µi(s||k, r)||ct be the share of i’th participant.

Proof. Correctness and randomness recoverability trivially hold. We prove privacy. Let
s ∈ {0, 1}t−ℓ be an arbitrary secret and let B be an unqualified set in the access structure.
Let R be SSS’s randomness, k denote Gen(1λ) and µB denote µB(s||k, R). For ease of
notation, we simply denote the share of B for the secret s by µB ||Enck(R) (i.e., we ignore
the repetitions of Enck(R)). Based on the randomness simulatability of the SSS, there exists
an efficiently computable function g and an efficiently sampleable RV R̂ independent of
(k, R) such that

(s||k, µB , R) c≡(s||k, µB , g(s||k, µB , R̂))

Therefore, one has the following indistinguishability:

µB ||Enck(R) c≡µB ||Enck(g(s||k, µB , R̂)) (14)

According to Lemma 16, one has

(k, µB(s||k, R)) c≡(k, µB(0t, R)) .

In other words, (k, µB) c≡(k, µ′
B), where µ′

B = µB(0t, R). Because g is efficiently computable
and R̂ is efficiently sampleable and independent of (k, R), we have

µB ||Enck(g(s||k, µB , R̂)) c≡µ′
B ||Enck(g(s||k, µ′

B , R̂)). (15)

On the other hand, because (µ′
B , R̂) is independent of k, by Lemma 35, we have:

µ′
B ||Enck(g(s||k, µ′

B , R̂)) c≡µ′
B ||Enck(0ρ). (16)

Equations (14), (15) and (16) then imply that

µB ||Enck(R) c≡µ′
B ||Enck(0ρ) .

Because µ′
B ||Enck(0ρ) hides the secret s, privacy follows. ◀
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5.3 Linear-resistant PRG

In this section, we present a variant of pseudo-random generators (PRG), with a KDM-like
security for the class of linear functions.

Recall that a polynomial-time deterministic algorithm, G : {0, 1}⋆ → {0, 1}⋆ that maps
λ-bit strings to ℓ(λ)-bit strings is said to be PRG if ℓ(λ) > λ and G(Uλ) c≡U ℓ(λ).

In the following definition, {0, 1} is identified with F2, the finitie field with two elements,
and + stands for the addition in the field or bitwise-XOR; that is, for x = x1, . . . , xℓ and
y = y1, . . . , yℓ, x + y = (x1 ⊕ y1)|| · · · ||(xℓ ⊕ yℓ).

▶ Definition 38. Let G : {0, 1}λ → {0, 1}ℓ be a polynomial-time deterministic algorithm
with ℓ := ℓ(λ) > λ. We call G a linear-resistant PRG if for every F2-linear function
L : {0, 1}λ → {0, 1}ℓ, G(Uλ) + L(Uλ) c≡U ℓ.

Clearly, every linear-resistant PRG is also a PRG. However, the converse is not necessarily
correct. For example, if G : {0, 1}λ−1 → {0, 1}ℓ−1 is a PRG, then so is G′ : {0, 1}λ → {0, 1}ℓ

defined as G′(s1 · · · sλ) = s1||G(s2 · · · sλ). It is clear that G′ is not linear-resistant.
It is easy to see that linear-resistant PRG implies one-time KDM-secure SKE against the

class of all affine functions: simply consider the standard one-time-pad encryption scheme
Enck(m) = G(k) + m. More precisely, if the input and output lengths of the linear-resistant
PRG G are λ and ℓ, the key and message spaces of the constructed scheme are K = Fλ

2 and
M = Fℓ

2, respectively, and it has KDM-security against all affine functions from Fλ
2 to Fℓ

2.
In particular, since this scheme is deterministic, the resulting SKE is RR. Another variant

of PRG that has a KDM-like property is the hinting PRG which can be used to achieve
one-time KDM-secure SKE against any class of functions that can be computed in fixed
polynomial time [25, Appendix B]. Also, note that both of these primitives can be instantiated
using a random oracle. Despite the similarity between linear-resistant PRG and hinting
PRG, the relationship between these primitives remains open, as is the (im)possibility of
constructing linear-resistant PRG from OWF. In contrast, black-box separation between
hinting PRG and PKE is known [1].

5.4 RR-SSS from linear perfect SSS and linear-resistant PRG

Consider the following simple construction for a computational RR-SSS using an efficient
(standard) linear perfect SSS and a linear-resistant PRG G. To share a secret s, use the linear
SSS to share s||r with randomness G(r) to compute the shares, where r is the randomness.
It is clear that every qualified set can recover not only s but also r. Privacy follows from
the linear-resistance security of the PRG. Notice that the class of access structures that
admit efficient linear SSS is equivalent to the class of monotone boolean functions that
admit efficient MSP (monotone-span programs [22]) which includes NC1 (e.g., using the
Benaloh-Leichter [6] construction).

We state the above construction in a theorem:

▶ Theorem 39. Let µ be the sharing map of a perfect linear SSS for an access structure with
kλ-bit secrets, k > 1, and ℓ-bit randomness (i.e., the shares of participants are the outputs
of µ(s, r), where s is the secret and r is the randomness). Let G : {0, 1}λ → {0, 1}ℓ be a
linear-resistant PRG. Then, the SSS defined by the sharing map µ′(s, r) = µ(s||r, G(r)) is a
computational RR-SSS for the same access structure, where s ∈ {0, 1}(k−1)λ is the secret and
r ∈ {0, 1}λ is the randomness with uniform distribution.
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Proof. Correctness and randomness recoverability trivially hold. We prove privacy. Let B

be an unqualified set and let µB(s1||s2, r) = L1(s1) + L2(s2) + L3(r) be the share of B for
the secret s1||s2 and randomness r ∈ {0, 1}ℓ in the perfect linear scheme, where Li’s are
linear functions, s1 ∈ {0, 1}(k−1)λ and s2 ∈ {0, 1}λ.

By perfect privacy of the linear scheme, for any s ∈ {0, 1}(k−1)λ, the RVs L2(s)+L3(r) and
L3(r) have the same distributions, where r is a uniform RVs on ℓ-bit strings (they correspond
to the shares of the secrets s||0λ and 0kλ, respectively). Therefore supp(L2(s) + L3(r)) =
supp(L3(r)) which implies that L2(s)+ range(L3) = range(L3). As a result L2(s) ∈ range(L3)
and because s is arbitrary, we have range(L2) ⊆ range(L3). If f and g are linear functions
from V to W such that range of g is a subspace of the range of f , then for a suitable linear
function h over V one has g = f ◦ h. By this fact, there is a linear function L such that
L2 = L3 ◦ L.

Let s, s′ ∈ {0, 1}(k−1)λ be two arbitrary secrets and r be as before. Again, by perfect
privacy of the linear scheme, L1(s) + L3(r) and L1(s′) + L3(r) have the same distributions
(they correspond to the shares of the secrets s||0λ and s′||0λ, respectively). Since G is linear-
resistant, by a standard reduction argument, L1(s)+L3(G(r)+L(r)) and L1(s′)+L3(G(r)+
L(r)) are computationally indistinguishable where r is a uniform RV on λ-bit strings.
Therefore, µ′

B(s, r) = L1(s) + L2(r) + L3(G(r)) and µ′
B(s′, r) = L1(s′) + L2(r) + L3(G(r))

are computationally indistinguishable, which is the desired result. ◀

We conclude this section with the following remark that relates the observations of this
section and the previous ones.

▶ Remark 40. Notice that in the proof of Theorem 37, we do not require that the SKE be
KDM-secure against the whole class of efficiently computable functions. Indeed, security
against all the functions g for all unqualified sets is sufficient. Since the class of linear SSSs
is randomness simulatable with linear g’s, and one-time secure RR-SKE against the class of
linear functions is implied by linear-resistant PRG, Theorem 39 follows by Theorem 37, via
a simpler construction though.

6 Conclusion

We initiated the study of SSS from the viewpoint of randomness recovery. By proving an
exponential lower bound for the information ratio of an RR-SSS that realizes some very
simple access structure in monotone AC0, we showed that the situation is very different for
RR-SSS, compared to the standard SSS, for which the best-known lower bound is sub-linear.
We also managed to shed some light on the complexity of the computational RR-SSS, by
proving that computational RR-SSS for certain access structures in monotone AC0 implies
OWF. This computational result is essentially a consequence of our information-theoretic
lower bound; This can be justified by the very general idea that an algorithm that hides the
secret from a bounded adversary but is unable to do so against an unbounded adversary
implies OWF.

In the final section, we observed that an efficient perfect linear SSS can be converted into
a computational RR-SSS for the same access structure using a type of PRG that we called
linear-resistant PRG. We also noted that using a one-time KDM-secure RR-SKE, one can
convert an efficient perfect/computational SSS into an RR-SSS, assuming that the SSS has
the extra property of randomness simulatability.
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A Proof of Lemma 16

Assume that Π is a computational SSS. Let Γ = {Γn}n, R = {Rλ,n}λ,n, S = {Sλ,n}λ,n,
t = t(λ, n), B = {Bn}n and n = n(λ) be a polynomial. We should prove that

(Sλ,n(λ), µBn(λ)(Sλ,n(λ), Rλ,n(λ)))
c≡(Sλ,n(λ), µBn(λ)(0

t(λ,n(λ)), Rλ,n(λ))).

For contradiction, let poly be a polynomial and D = {Dλ}λ be a family of polynomial-size
distinguishers such that for infinitely many λ,

|Pr[Dλ(Sλ,n(λ),µBn(λ)(Sλ,n(λ), Rλ,n(λ))) = 1]

−Pr[Dλ(Sλ,n(λ), µBn(λ)(0
t(λ,n(λ)), Rλ,n(λ))) = 1]| ≥ 1

poly(λ) .

Therefore, according to the independence of S and R, for each such λ, there is sλ ∈
supp(Sλ,n(λ)) such that

|Pr[Dλ(sλ, µBn(λ)(sλ, Rλ,n(λ))) = 1]−Pr[Dλ(sλ, µBn(λ)(0
t(λ,n(λ)), Rλ,n(λ))) = 1]| ≥ 1

poly(λ) .

Therefore, for Cλ(·) = Dλ(sλ, ·) one has

|Pr[Cλ(µBn(λ)(sλ, Rλ,n(λ))) = 1]− Pr[Cλ(µBn(λ)(0
t(λ,n(λ)), Rλ,n(λ))) = 1]| ≥ 1

poly(λ) ,

which contradicts the computational privacy of the SSS.
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B Proof of Lemma 35

Let k = {kλ}λ where kλ = Gen(1λ), x = {xλ}λ, y = {yλ}λ and g = {gλ}λ. Assume that
the assertion is false and there is a polynomial poly and a polynomial-size distinguisher
D = {Dλ}λ and infinitely many λ for which:

|Pr[Dλ(xλ, Enckλ
(gλ(kλ, xλ, yλ))) = 1]− Pr[Dλ(xλ, Enckλ

(0l(λ))) = 1]| ≥ 1
poly(λ) .

Because k is independent of x and y, for each such λ, there is (xλ, yλ) ∈ supp(xλ)× supp(yλ)
such that:

|Pr[Dλ(xλ, Enckλ
(gλ(kλ, xλ, yλ))) = 1]− Pr[Dλ(xλ, Enckλ

(0l(λ))) = 1]| ≥ 1
poly(λ) .

Letting Cλ(·) = Dλ(xλ, ·) and fλ(·) = gλ(·, xλ, yλ), we have

|Pr[Cλ(Enckλ
(fλ(kλ))) = 1]− Pr[Cλ(Enckλ

(0l(λ))) = 1]| ≥ 1
poly(λ) ,

which contradicts the KDM-security of Π.
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