
Secure Communication in Dynamic Incomplete
Networks
Ivan Damgård #

Aarhus University, Denmark

Divya Ravi #

Aarhus University, Denmark

Daniel Tschudi #

Concordium, Zürich, Switzerland

Sophia Yakoubov #

Aarhus University, Denmark

Abstract
In this paper, we explore the feasibility of reliable and private communication in dynamic networks,
where in each round the adversary can choose which direct peer-to-peer links are available in the
network graph, under the sole condition that the graph is k-connected at each round (for some k).

We show that reliable communication is possible in such a dynamic network if and only if k > 2t.
We also show that if k = cn > 2t for a constant c, we can achieve reliable communication with
polynomial round and communication complexity.

For unconditionally private communication, we show that for a passive adversary, k > t is
sufficient (and clearly necessary). For an active adversary, we show that k > 2t is sufficient for
statistical security (and clearly necessary), while k > 3t is sufficient for perfect security. We
conjecture that, in contrast to the static case, k > 2t is not enough for perfect security, and we give
evidence that the conjecture is true.

Once we have reliable and private communication between each pair of parties, we can emulate a
complete network with secure channels, and we can use known protocols to do secure computation.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Secure Communication, Dynamic Incomplete Network, Information-theoretic

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.13

Related Version Full Version: https://eprint.iacr.org/2023/529

Funding Ivan Damgård: The SecureDNA project, The Villum Foundation.
Divya Ravi: The European Research Council (ERC) under the European Unions’s Horizon 2020
research and innovation programme under grant agreement No 803096 (SPEC).
Sophia Yakoubov: The Danish Independent Research Council under Grant-ID DFF-2064-00016B
(YOSO).

1 Introduction

In this paper, we study the feasibility of unconditionally secure communication (and hence
multiparty computation) when parties communicate over an incomplete and dynamic network.
More precisely, we assume a synchronous network with secure point-to-point channels where,
in each round, only some of the point-to-point connections work, so the network is incomplete.
Furthermore, the adversary can decide to change the set of active connections from one round
to the next. We call this a dynamic incomplete network, in contrast to a static incomplete
network, where the graph describing the active connections stays the same throughout the
protocol.

© Ivan Damgård, Divya Ravi, Daniel Tschudi, and Sophia Yakoubov;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ivan@cs.au.dk
mailto:divya@cs.au.dk
https://orcid.org/0000-0001-6423-8331
mailto:dt@concordium.com
https://orcid.org/0000-0001-6188-1049
mailto:sophia.yakoubov@cs.au.dk
https://doi.org/10.4230/LIPIcs.ITC.2023.13
https://eprint.iacr.org/2023/529
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Secure Communication in Dynamic Incomplete Networks

The study of reliable communication on an incomplete network starts with the work of
Dolev [2], who showed that, for a static incomplete network where t of the n parties are
malicious, one can do secure broadcast if and only if the network is at least 2t + 1-connected,
and 3t < n. (A network is k-connected if it remains connected when one removes any set of
less than k vertices. By Menger’s theorem, this is equivalent to requiring that any pair of
distinct nodes are connected by at least k disjoint paths.)

Later, Dolev et al. [3] showed that any two parties in a static incomplete network can
communicate with perfect security (privacy and reliability) if and only if the network is
2t + 1-connected. Using the protocols from that work, one can emulate a complete network
with secure point-to-point channels, so combining this with well-known feasibility results
for MPC, one can conclude that, in a static network, 2t + 1-connectivity is necessary and
sufficient for unconditionally secure MPC to be possible.

However, as mentioned, we are interested in what happens if the network is dynamic. To
the best of our knowledge, very little work has been done in this direction. The problem was
first considered in Mauer et al. [5], who define a notion called Dynamic Min-Cut for two nodes
a, b, denoted by DynMinCut(a, b). They show that reliable (non-private) communication in
a dynamic network from a to b is possible if and only if DynMinCut(a, b) > 2t. Intuitively,
this condition makes a statement on how the network evolves over time, and says that it
does so in a way that is “kind enough” to allow a message to travel from p to q on at least
2t + 1 disjoint paths. It is not surprising that this is the condition for reliable communication,
given what was known about static networks. However, dynamic min-cut makes a rather
complicated statement about the entire sequence of network graphs. It is natural to ask if
there is a simple property we can require for each individual network graph that would then
imply the DynMinCut-condition. This is a natural question from a theory point of view,
but also a question one would ask in order to decide if secure communication is feasible in a
given application scenario. Finally, the work of Mauer et al. did not consider unconditionally
private communication.

1.1 Our Contribution
In this paper, we aim to fill the gaps pointed out above. We introduce a model where an
adversary chooses, in each round, a network graph to be used, under the sole condition
that it is k-connected, for some k. This is a natural generalization of the static case and
also a model that might be relevant in practice – consider, for instance, a mobile network
where connections come and go, but where each possible connection is active with some
probability p. Known results on random graphs indicate that if p is large enough, then the
resulting graph is highly connected.

For a static network, it seems reasonable to assume that the parties know the topology
of the network, while this is quite unrealistic for a dynamic network, where the absence on
connections may be caused by movement of mobile devices, or equipment crashing. These
are events that a party cannot predict locally. We therefore assume that honest parties do
not know the network topology. In one version of the model, parties know their immediate
neighbourhood, but our protocols work in the worst case where parties do not know which
connections they have.

We show that reliable communication is possible in a dynamic network if and only if
k > 2t (note that we inherit impossibility results from the static case since the adversary could
choose to keep the network graph constant). For unconditionally private communication, we
show that for a passive adversary, k > t is sufficient (and clearly necessary). For an active
adversary, we show that k > 2t is sufficient for statistical security (and clearly necessary),



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:3

while k > 3t is sufficient for perfect security. We conjecture that, in contrast to the static
case, k > 2t is not enough for perfect security, and we give evidence that the conjecture is
true. As mentioned above, once we can emulate a complete network with secure channels,
we can use known protocols to do secure computation.

Even though we can provide secure communication on dynamic networks, it is natural to
expect that there is a performance penalty in going from static to dynamic networks: in the
static case we can use a fixed set of paths for communication, while this clearly will not work
in the dynamic case, as the adversary could block these paths. Intuition clearly suggests that
one needs to try a large number of paths from sender to receiver to make sure something
gets through.

We study a class of protocols where the main step is that the sender S tries to send data
along a set of paths Paths, and where the protocol will be successful if the receiver R receives
something on at least k disjoint paths. All the protocols we construct are in this class. We
will say that Paths is k-connected with respect to a family of graphs G if, for each graph
G ∈ G, for any pair (S, R), there exist k disjoint paths between S and R, such that these paths
are contained in both G and in Paths. Here, one should think of G as a sequence of network
graphs chosen by the adversary under the constraints in our model, so we assume throughout
that all graphs in G are k-connected. As short hand, we say that Paths is k-connected if it is
k-connected with respect to all graph families (within our model). Paths being k-connected
can be thought of as a condition saying that Paths is large enough, in comparison to the set
of connections that adversary allows at any one time.

We show that if Paths is k-connected (with respect to the family of graphs chosen by the
adversary), then our protocols terminate correctly in at most L|Paths| rounds, where L is
the maximal length of paths in Paths and |Paths| is the cardinality of Paths. We can make
sure that Paths is always k-connected by simply choosing Paths to be the set of all possible
paths, which unfortunately is exponentially large in n.

However, if k is Ω(n), we can do much better: we show that in this case, among the k

disjoint paths that exist in every round, there must be a large number of short (constant
length) paths. More precisely, if k = dn for a constant d, and we let Pathsc the set of paths
of length c for some constant c, then Pathsc is k′ = d′n-connected for d′ < d, and by choosing
c large enough, we can make d′ be arbitrarily close to d. Moreover, |Pathsc| is polynomial in
n for any constant c, so if we run our protocols with Pathsc as the target set of paths, their
complexity will be polynomial in n.

This efficient version is almost as robust against corruptions as is possible: from the
discussion above, it follows that the maximum number of corruptions that can be tolerated
with connectivity k is roughly (k− 1)/2. So if k is a constant times n, it is also the case that
t = αn for a constant α. Since we can get connectivity almost k with constant length paths,
our efficient version can be designed to tolerate βn corruptions, for any β < α.

Note that if we want to do MPC, one usually wants to tolerate Ω(n) corruptions, which
implies that k must also be Ω(n), even for a static network.

1.2 Technical overview
The case of sending a public message reliably from S to R is relatively straightforward: S
can send the same message on all paths in the pathset used. Here, as in all of our protocols,
each copy of the message will be accompanied by metadata that specifies on which path
the message travelled. Once R has received something on sufficiently many disjoint paths,
she can determine what the correct message is. This is basically the same protocol that
was considered in [7] for a static and asynchronous network. However, the proof that it
terminates correctly is completely different in our case.

ITC 2023



13:4 Secure Communication in Dynamic Incomplete Networks

Table 1 Reliable Communication Protocols for a message m, over k-connected path set Paths of
cardinality M and with maximal path length L. The communication complexity is given per party
per round. Paths′ denotes a k-connected path set having paths of length at most c, where c is a
constant.

Corruption Graph Complexity

Scheme Type Threshold Connectivity Rounds Communication

Protocol 1 passive t < n 1 n O(n|m|)

Protocol 2 active t < n
2 k > 2t LM O(n22n|m|)

Protocol 2 with
constant-length
paths

active t < n
2 k = cn > 2t c|Paths′| = poly(n) poly(n)|m|

Table 2 Private Communication Protocols: The communication complexity is given per party
per round.

Corruption Graph Complexity

Scheme Security Type Threshold Connectivity Rounds Communication

Protocol 3 perfect passive t < n k > t LM + 2n O(Mn2(log M + |m|))

Protocol 5 perfect active t < n
3 k > 3t 3LM O(Mnn(log M + |m|))

Protocol 5
communication
efficient variant

perfect active t < n
3 k > 3t poly(LM) Per attempt same as

Protocol 4. In the worst
case overall same as
Protocol 5.

Protocol 6 perfect active t < n
4 k > 4t 3LM O(Mn32n(log M + |m|))

Protocol 4 statistical active t < n
2 k > 2t 3LM O(n32n(|m| + log M) +

M(|m| + λ · M))

Sending unconditionally private messages comes with new and bigger challenges. For
the static case, Dolev et al. [3] designated a fixed set of k disjoint paths to be used for
communicating between S and R. After this, they could abstract away the network and
simply assume that S and R are connected by k channels where t of these are controlled by
the adversary. This is the problem of secure message transmission that has been studied in
many subsequent works. However, this abstraction cannot be used for a dynamic network:
we cannot predict on which paths R will receive something. Moreover, corrupt parties may
claim that they heard something on a path, even if the adversary’s choice of network graphs
actually did not allow transmission via that path. R has no obvious way to tell that such a
claim is false – after all, with a different scheduling of network graphs, the claim might have
been true.

We therefore need a new approach to sending private messages. For simplicity, we first
sketch the idea for a passive adversary: we let S send independent randomness on sufficiently
many different paths, and once R has received something on k disjoint paths, she can report
to S the identity of these paths (but not the randomness she received). The reporting can
be done using the protocol we already have for reliable public communication. If t < k, at
least one random value that made it to R is unknown to the adversary, so S can derive a key
(by XORing together all of the random values that made it), use that key to one-time pad
encrypt the message, and send the resulting ciphertext in public.



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:5

This will not work for an active adversary, as we need to make sure the correct message is
received. Our high-level strategy to solve this is as follows: if S sends data on a k-connected
pathset, R will eventually receive data on k − t disjoint paths (but not necessarily more, as t

paths can be blocked by corrupt players). However, due to misreporting by corrupt players,
R may have data delivered that claim to come from a large set of paths, containing many
sets of k− t disjoints paths. The idea is now to use reliable public communication to identify
a sufficiently large set C of disjoint paths where R received correct data on all paths in C.
We call such a set a good set. It turns out that if k ≥ 3t + 1 we can identify a good path set
of size 2t + 1 with zero error probability by exploiting the fact that any set of at least 2t + 1
disjoint paths must contain a majority of paths with only honest players. This requires a lot
of work, but if k ≥ 4t + 1, it can be done much more efficiently using error correction. If
k ≥ 2t + 1 we can identify a good set of size t + 1, except with negligible error probability,
by using unconditionally secure authentication1. Now, from the data received via paths in C

we can extract a value that can be used to one-time pad encrypt the secret message, as in
the passively secure solution. We therefore get statistical security for k ≥ 2t + 1 and perfect
security for k ≥ 3t + 1.

However, if the goal is perfect security and we only assume k ≥ 2t + 1, there are serious
problems, and we conjecture that in fact perfect security cannot be achieved in this case. We
give evidence for the conjecture: For connectivity 2t + 1, we construct an example scenario
where the set of paths delivered to R contains several maximal sets of disjoint paths of size
k − t = t + 1. One of these sets contains only honest paths, but the others have the same
number of honest and corrupt paths and may contain incorrect data. We show that R cannot
perfectly decide which one is the all-honest set: for each choice there exists an adversarial
strategy that would be consistent with that choice2. Now, consider any protocol which (as
we do) would select one of these path sets and try to use the data received there and public
communication to get a message across with perfect security. Any such protocol will fail with
non-zero probability: if the wrong set is selected, we may have a situation where half the
received values are known and/or manipulated by the adversary. Intuitively, if the receiver’s
output depends on only half the values (and the public communication) this may be the half
the adversary knows and the output is not secret. If it depends on more than half the values,
it must depend on values the adversary may have changed, and the output is not correct.
We therefore conjecture that, in contrast to the static network case, k > 3t is needed for
perfect security.

1.3 Related Work
Maurer et al. [5] consider the setting closest to our own. They identify the minimal and
necessary condition for authenticated peer-to-peer communication; that is, there should exist
2t+1 (or t+1, assuming digital signatures) disjoint paths from the sender to the receiver over
time. We would like to point that if the conditions required in our model are satisfied, this
would imply the conditions are also satisfied over time. Conversely, there could be settings
where conditions from Maurer et al. [5] are satisfied, while ours are not. For instance, the
condition of Maurer et al. [5] could be satisfied even if the graphs at every point in time

1 It may seem that authentication cannot be used here, as S needs to send a key to R, and this key must
be sent privately and correctly, just like the message. We solve this apparent circularity by observing
that S could send many keys on different paths and it is sufficient that one key makes it to R unseen by
the adversary. See more details within.

2 note that unconditionally secure authentication does not give perfect security and so does not help.

ITC 2023



13:6 Secure Communication in Dynamic Incomplete Networks

Table 3 Related Work.

Construction Assumptions Corruption Guarantees on Graph

auth. P2P [5] - t < n
2 dynamic, dynamic min cut > 2t

auth. P2P [5] signatures t < n
2 dynamic, dynamic min cut > t

auth. P2P [7] - t < n
3 static, connectivity k > 2t

broadcast [7] - t < n
3 static, connectivity k > 2t

are not even connected. However for this to happen, the network graphs would have to be
“engineered” in a way that allows the message to progress one step at a time; which seems
quite unrealistic.

Wang and Wattenhofer [7] consider static incomplete networks (and additionally consider
asynchrony, where messages can take arbitrarily long to traverse a link in the graph). We
build on one of their protocols, adapting it to our dynamic, synchronous setting.

1.4 Future Directions
Our work leaves open the question of proving / disproving our conjecture regarding whether
perfect security is possible to achieve when 3t > k > 2t. Another interesting open question
is whether the upper bound on the round complexity of our constructions can be improved.

2 Preliminaries

2.1 Model
We consider a set P = {P1, . . . , Pn} of n parties.

Corruption. A central adversary corrupts at most t parties. The corruption is static, i.e.,
the adversary is required to select the set of corrupted parties before the protocol execution.
We distinguish between passive corruption where the adversary can access the internal state
of corrupted parties and active corruption where the adversary has full control over the
behavior of corrupted parties.

Communication network. Parties communicate over a dynamic incomplete network of
secure (private and authentic) synchronous channels. In each round r (a.k.a. time-step),
parties can communicate over the network graph Gr that has been selected by the adversary
from a publicly-known family of graphs G. The graph family G models the guarantees for
honest parties, e.g., with respect to graph connectivity. There are three possibilities for
modelling the network adversary:

A static adversary is required to decide / commit to the set of graphs beforehand i.e.
before the protocol begins.
An (non-rushing) adaptive adversary can choose the graph for round r + 1 at the end of
round r.
A rushing adaptive adversary can first wait to see through what network edges the
messages were attempted to be sent during round r, before determining the graph for
round r.

In this paper, we consider a rushing adaptive network adversary.



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:7

We assume that honest parties are oblivious on the communication graph of a given
round. That is, they only know the overall family G, but not the actual Gr. So, in a protocol
they may attempt to use any channel in their neighborhood of Ḡ =

⋃
G∈G G whereas only

channels in the unknown Gr will actually transmit. Honest parties do not learn which of
their outgoing transmissions were successful.

Communication Complexity. In the setting with oblivious honest parties, every attempted
use of a communication channel will count towards the communication complexity even if
the actual transmission fails. For example, if an honest party tries to send a bit to every
other party, this will count as n bits of communication irrespective of outcome.

Future Work: Other Models. For static or adaptive adversaries we could also consider
aware honest parties, who are given Gr at the beginning of the round. We therefore assume
that they will only use channels within Gr which are guaranteed to work. Aware honest
parties will not attempt to send messages on channels which are not available, leading to
better communication complextiy.

In the rushing adaptive setting, we could also consider looking at retroactive awareness,
where honest parties are notified about successful transmissions.

2.2 Building Blocks
In this section we define the building blocks necessary for our protocols.

2.2.1 Threshold Secret Sharing Scheme
A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares that can be
distributed among different parties. To reconstruct the original secret x at least t + 1 shares
need to be used.

▶ Definition 1 (Secret Sharing). A t-out-of-n secret sharing scheme is a tuple of efficient
algorithms (share, reconstruct) defined as follows.

The randomized algorithm share takes as input a secret x ∈ F and outputs a set of n

share, i.e.,

(s1, . . . , sn) ∈ Fn $←− share(x).

The reconstruct algorithm reconstruct takes as input a vector of at least t + 1 shares
and outputs either the secret x, or outputs ⊥, i.e.,

{x,⊥} ← reconstruct
(
{si}i∈S⊆[n],|S|>t

)
.

We require the following properties of a t-out-of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the shares of a secret
x should always reconstruct to x. More formally, a secret sharing scheme is perfectly
correct if for any secret x, for any subset S ⊆ [n], |S| > t,

P
[

x = x′ : (s1, . . . , sn) $←− share(x),
x′ ← reconstruct({si}i∈S)

]
= 1,

where the probability is taken over the random coins of share. Moreover, if a negligible
error probability is allowed, we simply say that the scheme is correct.

ITC 2023



13:8 Secure Communication in Dynamic Incomplete Networks

Protocol 1: Flood(G, S, R, m)

Let Ḡ =
⋃

G∈G G. The sender S has message m as input. The protocol runs for n rounds:

In each round the sender S sends m to all neighbors in Ḡ.
Once a party P ∈ P \ {S} receives the first message m′ from any neighbor, it will
send m′ to all neighbors in Ḡ in all subsequent rounds.
The receiver will output the first received message m′ at the end of the protocol.

Figure 1 Simple flooding protocol, secure against t < n passive corruptions in a connected
network.

Privacy: The privacy property requires that any combination of up to t shares should leak no
information about the secret x. More formally, we say that a secret sharing scheme is
private if for any x, and for any set A ⊆ {1, . . . , n}, |A| ≤ t the distribution of the set
{si}i∈A is statistically independent of x.

2.2.2 Instantiation
In our constructions, we use the Shamir’s threshold secret sharing scheme [6]. We give a
brief description of this scheme below. Informally, the shares output by the algorithm share
correspond to the set of evaluations on n different points of a t-degree polynomial (whose
coefficients are chosen at random from a finite field F) with constant term as its secret. The
algorithm reconstruct uses Lagrange interpolation to identify the t-degree polynomial that
is consistent with the set of shares in order to return the constant term as the secret (⊥ is
returned if no such polynomial exists).

3 Reliable Communication

In this section we describe protocols for reliable communication in our model, which we
summarize in Table 1.

3.1 Passive Corruptions
In the case of passive corruption and a family G of connected graphs, a simple flooding
protocol where parties echo the first received message can be used.

▶ Lemma 2. Given a family G of connected graphs, Protocol 1 allows S to reliably send
a message m to R in the presence of a rushing adaptive network adversary that passively
corrupts t < n parties. The protocol runs for n rounds and in each round a party sends
O(n|m|) bits.

Proof.
Correctness. Corruption is passive, so all parties which received a message actually get the
sender’s message m. Let H denote the set of nodes who have already heard the message,
and D denote the set that have not. Since the actual communication graph chosen by the
adversary is connected, there must be at least one edge between H and D. As any party in



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:9

Protocol 2: AuthenticatedP2P(Paths, S, R, m)

The set of possible paths Paths from S to R is public knowledge. The sender S has
message m as input.
The protocol runs for LM rounds:

In each round S sends (m, {S}) to each neighbor that is on a path in Paths.
Upon receiving (m′, π) from a neighbor Pj , party Pi ∈ P \ {S, R} does the following:

1. If i ∈ π or j ̸∈ π, Pi ignores the message.
2. Otherwise the party will in all subsequent rounds send (m′, π∪{i}) to all neighbors

that are next nodes on paths in Paths for which π ∪ {i} forms a prefix.

Upon receiving (m′, π) from a neighbor Pj , R stores (m′, π) unless R ∈ π or j ̸∈ π.

At the protocol end, if party R has more than t stored values (m′, π) with disjoint paths
in Paths, R outputs m′.

Figure 2 The modified authenticated P2P protocol of Wang and Wattenhofer [7].

H will try to send it to all potential neighbors in every round, at least one party in D will
learn the message in each round. By induction the message must reach the receiver after at
most n rounds.

Complexity. In each round a party sends at most one message of size |m| to at most n.
The round complexity follows from the protocol description. ◀

3.2 Active Corruptions
For the active corruption setting, we assume that the honest parties’ knowledge about G
comes in the form of a set Paths of possible paths between sender S and receiver R. We
assume that the paths have length of at most L and |Paths| = M .

In Protocol 2 we adapt the peer-to-peer protocol from [7] to allow for reliable communic-
ation in the presence of a rushing adaptive adversary.

▶ Theorem 3. The authenticated P2P protocol of Wang and Wattenhofer [7] modified to only
accept messages received over t + 1 disjoint paths as described in Protocol 2 achieves reliable
communication between S and R in the presence of a rushing adaptive network adversary that
actively corrupts at most t parties as long as the network has connectivity k > 2t in every
round. The protocol runs for LM rounds.

We approach Theorem 3 by first introducing Lemma 4 and Lemma 5.

▶ Lemma 4. If the network has connectivity k in every round, then there are k disjoint paths
from the sender to the receiver over time.

Proof. Since there are a finite number of sets of k disjoint paths from sender S to receiver
R, and the adversary has to choose one such path set in every round, it follows that after a
finite number of rounds one path set will have been chosen sufficiently many times that the
message had the opportunity to traverse all of its paths. ◀

ITC 2023



13:10 Secure Communication in Dynamic Incomplete Networks

The following lemma is useful for analyzing the round complexity of our constructions.

▶ Lemma 5. Consider a path set Paths which is k-connected and a sender S who sends a
message along each path of Paths. Then, the receiver R would receive the messages from a set
of k disjoint paths in at most LM rounds, where L is the maximal length of paths in Paths
and M is the cardinality of Paths.

Proof. Let Cr be the set of paths along which S’s message has reached R at round r, and let
Pathsr be the set of paths between S and R chosen in that round. In the first round, the
message advances along at least k edges. In every subsequent round, if Cr contains a set
of k disjoint paths, then we are done. Otherwise, it must be that |Pathsr \ Cr| > 0, so the
message must advance along at least one edge it has not advanced along before. Since the
total number of edges across all paths in Paths is at most LM , we can be certain that we
are done once the message advances along all of them, we must be done after at most LM

rounds. ◀

We can now give the proof for Theorem 3.

Proof.
Correctness. Assume S and R are honest.

First consider the network without the corrupted nodes. This network is guaranteed
to be t + 1 connected in every round (the overall network is at least 2t + 1 connected). It
follows from Lemma 4 and Lemma 5 that the message m sent by the sender will arrive at
the receiver R in at most LM rounds via at least t + 1 disjoint paths. This makes m a valid
output.

Next, consider any message m′ ̸= m. If R gets a tuple (m′, π′) there must be a corrupt
Pj that sent (m′, π′′) for π′′ ⊂ π′ to an honest party. Honest parties only forward a tuple if
the sender of the tuple is in the path information. This implies that j ∈ π′′ and thus j ∈ π′.
There are at most t corrupted parties, so R will receive m′ on at most t disjoint paths. Hence
m′ can never be a valid output. This means m is the unique output for R after LM rounds.
Round complexity. Follows from the protocol description. ◀

Analyzing the communication complexity of Protocol 2

We observe that the maximum communication complexity of any party in a round r is
O(2nn2|m|). This is because a party in round r− 1 may have received messages from various
paths represented by different sets (which we refer to as metadata). Since there could be
2n−1 such sets (all possible sets that exclude this party), we can infer that a party has to
communicate a message of size |m| and metadata of size at most O(n2n) (n bits are sufficient
to represent one set) to each of her neighbours (which are at most O(n)), which adds up to
a communication complexity of O(2nn(n + |m|)).

Lastly, we point that the computation done by the receiver R to check if she has received
values along t + 1 disjoint paths would involve O(LMn) computation per round. This can
be done by the receiver R as follows: consider the graph Cr formed by the set of paths
containing the same message along which S’s message has reached R at round r. Apply the
Ford-Fulkerson algorithm [4] (with complexity O(|E|n), where |E| denotes the number of
edges and n denotes the number of nodes) on Cr to check if it is t + 1 connected. If yes,
output this common message. Else, try with set of paths containing a different message. If
none of them succeed, try again in the next round.



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:11

Efficiency

In this section, we discuss a special case when this authenticated communication protocol
becomes efficient (has complexity polynomial in n). For this, suppose there are k short paths
from sender to receiver at each round. We let c denote the upper bound on the length of such
a “short” path. First, we analyze the case where c is any constant (Lemma 6). Finally, we
argue that for sufficiently large k, we are guaranteed to have many short paths (Lemma 7).

▶ Lemma 6. If S is connected to R via k disjoint paths of length at most c in every round
(for a constant c), then the authenticated P2P protocol of Wang and Wattenhofer [7] described
in Figure 2 runs in at most a polynomial (in n) number of rounds.

Proof. Let Paths′ be a set of paths with length at most c. Protocol 2 on Paths′ runs in
c|Paths′| rounds as shown in Theorem 3. So it remains to analyze the size of |Paths′|. Let
|Pathsℓ| denote how many paths of length at most ℓ exist from S to R in Paths′. We have
|Paths1| ≤ 1 and for ℓ > 1, |Pathsℓ| ≤ |Pathsℓ−1|+ (n−2)!

((n−2)−(ℓ−1))!
3. We have |Paths′| = |Pathsc|

which is polynomial in n for constant c. We can thus conclude that the protocol terminates
in at most a polynomial (in n) number of rounds. ◀

Ensuring Enough Paths of Constant Length. We have shown that if we have k disjoint
paths of constant length c at every timestep, S’s message will reach R along k disjoint paths
in polynomial time. Of course, k-connectivity over constant length paths is in general a much
stronger assumption than k-connectivity. However, we show here that (loosely speaking) if
we have many disjoint paths, this implies that at least some of them must be short, and in
particular, if we have k-connectivity for k linear in n, this implies we have k′-connectivity
over constant length paths, where k′ can be very close to k.

▶ Lemma 7. Say we have k disjoint paths in a graph on n nodes. For any L, at least k− n
L+1

of these have length at most L.

Proof. Let k≤L and k>L be the number of paths of length at most L and greater than L,
respectively, among the k given ones. The subset of paths of length greater than L contain
at least (L + 1)k>L distinct nodes, so we have (L + 1)k>L ≤ n, implying k>L ≤ n

L+1 . Since
clearly k = k≤L + k>L, the lemma follows. ◀

An immediate consequence of this is that if k = dn for a constant fraction d, we are
guaranteed to have at least n(d − 1

L+1 ) disjoint paths of length L. By choosing a large
enough but constant L, we can have Ω(n)-connectivity over constant length paths; in fact
that underlying constant can be chosen arbitrarily close to d.

In particular, assume we want to tolerate a constant fraction of corrupted players, as is
standard in MPC. We know that for t active corruptions and even for a static network, we
must always have connectivity at least 2t + 1 = cn (for a constant c); otherwise broadcast is
impossible. Therefore, in the dynamic case, if we ask for slightly larger connectivity, namely
k = dn for any d > c, the above lemma allows us to assume 2t + 1-connectivity over constant
length paths, implying that our protocols will run in polynomial time.

We state the formal theorem below.

3 where the latter term is the number of ways of choosing ℓ − 1 intermediate nodes among n − 2 nodes
(excluding S and R).

ITC 2023



13:12 Secure Communication in Dynamic Incomplete Networks

▶ Theorem 8. The modified authenticated P2P protocol of Wang and Wattenhofer [7] as
described in Protocol 2 is an efficient reliable communication protocol (i.e. runs in polynomial
time and with polynomial complexity) in the presence of t active corruptions as long as the
network has connectivity k = dn for any d > c (where c is a constant) in every round (using
the set of all paths of length at most c as Paths).

4 Private Communication

In this section, we look at the feasibility of establishing a secure channel between sender S
and receiver R. The knowledge on G is given as a set Paths of bidirectional paths between S
and R. The set is of size M and paths in the set are of length of at most L.

As a starting point, assume that S and R somehow have shared secret randomness o.
Given the results from the previous section, they could establish a reliable channel to securely
transmit message m as c = m + o. This reduces the problem of secure communication to
establishing shared randomness between S and R. At a first glance this seems as difficult
as the original problem. However, we note that there is a slight difference i.e. this value
o (unlike m) need not be a “fixed” value pre-determined by S but can be dynamically
determined during the protocol.

This is exactly what we exploit in our upper bounds that have the following common
approach: S chooses a set of random values, one for each path in Paths. Next, R upon
receiving “sufficiently many” random values reports back to S which paths she received
information from. For this, R acts as a sender and can rely on a reliable communication
protocol. This is because while we may want to hide the random values along paths that the
adversary does not have access to (i.e. the paths that comprise of only honest nodes), there
is no harm in revealing to the adversary the identity of the paths R received information
from (as these paths were in fact determined by the dynamic adversary). Given this path
information both S and R can compute o from the randomness sent along those paths. Finally,
S can mask the actual m with o and send it over a reliable channel.

For simplicity, we assume in the following that m ∈ F.

4.1 Passive Corruptions
In this section, we present a protocol that constructs a secure channel given that the graph
is at least t + 1-connected.

Consider plugging in the above common approach in a network with connectivity k > t

where the dynamic adversary corrupts up to t nodes passively. We are guaranteed that R
would receive random values from (t + 1) disjoint paths, among which the adversary has
access to at most t of them (because in the worst case, there could be one corrupt node in
each of the t disjoint paths). These (t + 1) random values could simply be viewed as an
additive sharing of the shared randomness o that remains private from this passive adversary.
Tying this with the above outlined approach, R would reliably communicate the identity
of these (t + 1) disjoint paths to S, allowing S to compute o and reliably communicate the
masked secret c = m + o. The formal description of the protocol is given as Protocol 3.

▶ Theorem 9. Protocol 3 is perfectly secure protocol that allows S to securely send m to R
in the presence of a rushing adaptive adversary that passively corrupts at most t parties, as
long as the network has connectivity k > t. The protocol runs for LM + 2n rounds and in
each round a party sends O(Mn2(log M + |m|)) bits.



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:13

Protocol 3: Πprv
perf,sh(Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.

Randomness Generation For ML rounds the parties do the following:
For each path p ∈ Paths the sender S:

1. Sample randomness rp ∈ F.
2. In each time step send mp = (p, rp) to the first node on the path p until the

phase is complete.
Once intermediate node Pi receives the first message mp = (p, rp) on path p, it
will echo mp to the next node on the path in each of the subsequent time steps
until the phase is complete.
The receiver node R initializes sets RecPaths = ∅ and sets RecPaths = RecPaths∪
{p} upon receiving mp = (p, rp) for any p ∈ Paths.

Afterwards, the receiver define GoodPaths ⊆ RecPaths as a set of t + 1 disjoint
paths and send GoodPaths to S using an instance of Protocol 1. This concludes the
randomness generation phase.

Secure Communication The parties do the following:
1. Both S and R (locally) compute o = Σp∈GoodPathsrp.
2. S sends c = m + o to R using an instance of Protocol 1.
3. R outputs m = c− o.

Figure 3 Perfectly-secure private communication protocol against t < n passive corruptions in a
network with connectivity k > t.

Proof.

Correctness. As the graph is at least t+1 connected, receiver R will have received randomness
over at least t + 1 disjoint paths after LM rounds (cf. Lemma 5). This makes GoodPaths
well defined. Correctness therefore follows by the correctness of Protocol 1 (cf. Lemma 2)
and the correctness of one time pad encryption.

Privacy. To argue privacy, we note that the adversary has access to the random values
corresponding to at most t paths among the (t + 1) disjoint paths constituting GoodPaths.
The property of additive secret sharing guarantees that o remains perfectly hidden from
the adversary. It now directly follows from the security of the one-time pad encryption the
adversary does not learn m from c alone.

Complexity. Protocol 1 has a round complexity of n. This implies a round complexity of
LM + 2n. Lastly, we analyze the communication complexity. While sending the randomness
forward, the complexity per party in each round is O(M(log M + |m|)). Observe that
GoodPaths can be encoded in O(n log M) bits, so the per party per round complexity of
both instances of Protocol 1 is bounded by O(n2(log M + |m|)). This gives an overall (loose)
bound of O(Mn2(log M + |m|)). ◀

ITC 2023



13:14 Secure Communication in Dynamic Incomplete Networks

4.2 Active Corruptions
In this section, we provide protocols for secure communication in the presence of an adversary
that actively corrupts parties.

4.2.1 Statistical Security with k > 2t

The above construction (Protocol 3) does not withstand active corruptions as the active
adversary could tamper with the random values along the paths in GoodPaths where there is
an actively corrupt node. This would lead to R determining an incorrect random one-time
pad (o) i.e. different than the one computed by S; resulting in R obtaining the wrong secret.
Further, the adversary could also tamper with the path information (i.e. the sequence of
nodes forming the path); this may potentially lead R to wrongly believe that certain values
are coming from “disjoint” paths when in fact they are not.

To detect cheating of the above type in the statistical setting, one could authenticate the
random values (using information theoretic mac) and ensure that R verifies each potentially
tampered random value accompanied by its mac using the corresponding verification key
determined by the honest S. However, for this to work, we should make sure that the
verification key remains unknown to the adversary and untampered until it reaches R! We
resolve this seemingly circular issue in the following way: To authenticate a random value, say
rp along a path p, S generates a mac using a different verification key for every path disjoint
from p. R accepts rp only if its macs verify against at least t paths that are mutually disjoint
and also disjoint to p. The idea is that at least one of these t paths would comprise of only
honest nodes and the verification keys sent along this all-honest path would be untampered
and unknown to the adversary. (Note that if the value along p is tampered, then there must
be at least one corrupt node already in p; so there can be at most t− 1 paths disjoint to p

that could be influenced by the adversary.) This completes the high-level overview of the
protocol, whose formal details are described in Protocol 4.

▶ Theorem 10. Protocol 4 is a statistically-secure protocol that allows S to securely send m

to R in the presence of a rushing adaptive adversary that actively corrupts at most t parties,
as long as the network has connectivity k > 2t. The protocol runs for 3LM rounds and in
each round a party sends O(n32n(|m|+ log M) + M(|m|+ λ ·M)) bits.

Proof.

Correctness. By Theorem 3 sender and receiver will agree on GoodPaths and the receiver
will receive the sender’s c. So correctness follows if sender and receiver agree on o. This is
the case if R actually got the sender’s randomness for each path in GoodPaths. So assume
there must exist at least one path, say pi such that R obtained r′

pi
̸= rpi

but pi ∈ GoodPaths.
This can occur only if pi contains at least one corrupt node on behalf of which the adversary
tampered with the random value and potentially its set of accompanying macs. However,
since pi ∈ GoodPaths, it must hold that the macs verified against verification keys received
along t other disjoint paths, which must include at least one verification key that was
untampered and unknown to the adversary. This is because there can be at most t − 1
corrupt nodes along these t disjoint paths; therefore there must be a path containing all
honest nodes along which the verification key was correct (i.e. the same as chosen by S).
It now follows directly from the unforgeability property of the mac that the (potentially)
adversarial chosen mac can verify against this verification key successfully for r′

pi
̸= rpi only

with negligible probability. This implies statistical correctness.



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:15

Protocol 4: Πprv
stat,mal(Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.

Randomness Generation For ML rounds the parties do the following:
For each path pi ∈ Paths the sender S:

1. Sample randomness rpi
∈ F and for each disjoint path pj sample key opi,pj

and corresponding mac macpi,pj . Let Kpi = {opj ,pi} and Mpi = {macpi,pj}
the set of macs.

2. In each time step send mpi
= (pi, rpi

,Mpi
,Kpi

) to the first node on the path
pi until the phase is complete.

Once intermediate node P receives the first message mp = (p, rp,Mp,Kp) on path
p, it will echo mp to the next node on the path in each of the subsequent time
steps until the phase is complete.
The receiver node R initializes sets RecPaths = ∅ and sets RecPaths = RecPaths∪
{p} upon receiving mp = (p, rp,Mp,Kp).

Afterwards the receiver initializes GoodPaths = ∅ and does the following for each
pi ∈ RecPaths:
1. Check if RecPaths contains a set Paths′ of at least t path disjoint from pi such that

for each pj ∈ Paths′ the key opi,pj
(received via pj) confirms the mac macpi,pj

on
rpi

(both received via pi).
2. If the above check holds (and |GoodPaths| < t) set GoodPaths = GoodPaths∪{p}.
Then R sends GoodPaths to S using an instance of Protocol 2. This concludes the
randomness generation phase.

Secure Communication As in Protocol 3 the message is sent one-time padded except
that Protocol 2 is used for the reliable communication channel.

Figure 4 Statistically-secure private communication protocol against t < n active corruptions in
a network with connectivity k > 2t.

Privacy. Privacy follows by the same argument as in the proof of Theorem 9.

Complexity. Protocol 2 has a round complexity of LM . This implies a round complexity of
3LM . Lastly, we analyze the communication complexity. The two instances of Protocol 2 have
a communication complexity of O(n32n(|m|+ log M)). The messages mp have a complexity
of O(|m|+ λ ·M) as the mac and key sets are O(λ ·M). So in the first LM rounds a party
communicates O(M(|m|+λ ·M)) bits per round. This totals upto communication complexity
of O(n32n(|m|+ log M) + M(|m|+ λ ·M)). ◀

4.2.2 Perfect Security with k > 3t

In the above construction, settling for statistical security allowed us to use authentication
tools to detect cheating. We now analyze how to achieve perfect security, where it becomes
more challenging to deal with the adversary tampering with the random values sent across
the paths.

ITC 2023



13:16 Secure Communication in Dynamic Incomplete Networks

To handle this, we make S send redundant information in a way that allows R to detect
such misbehaviour. Instead of using sum sharing, we rely on threshold sharing in the following
way: We let R report back (2t + 1) disjoint paths (instead of t + 1 as before). Next, we make
S compute a threshold sharing (with threshold t) of the message m and mask the shares
(instead of the message directly) using the (2t + 1) random values corresponding to paths
that were reported by R. Once these (2t + 1) masked shares are reliably communicated to R,
R can retrieve the shares and attempt to reconstruct the secret. The main idea is that, unlike
before, R can now check that she has the “correct” secret by checking that all the (2t + 1)
shares lie on a t-degree polynomial. This is because, the set of shares will comprise of (t + 1)
untampered shares (that were masked with random values along the paths that comprised
only of honest nodes) which suffice to uniquely determine the t degree polynomial. If the
check fails, we make R retry with another set of (2t + 1) disjoint paths until she finds one that
verifies. To accommodate for this, we assume larger connectivity i.e. k > 3t. This completes
the high-level idea of the protocol, which is formally described in Protocol 5 (Section A). We
state the formal theorem below (whose proof appears in Section A.1).

▶ Theorem 11. Protocol 5 is a perfectly-secure protocol that allows S to securely send m to
R in the presence of a rushing adaptive adversary that actively corrupts at most t parties, as
long as the network has connectivity k > 3t. The protocol runs for 3LM rounds and in each
round a party sends O(nMn(M + |m|)) bits.

We refer to Section A for our other results related to perfect security.

References

1 E. R. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent Number
4,633,470. Issued Dec., 1986.

2 Danny Dolev. The byzantine generals strike again. Journal of algorithms, 3(1):14–30, 1982.
3 Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message

transmission. Journal of the ACM (JACM), 40(1):17–47, 1993.
4 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of

Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.
5 Alexandre Maurer, Sébastien Tixeuil, and Xavier Defago. Communicating reliably in multihop

dynamic networks despite byzantine failures. In 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS), pages 238–245, 2015. doi:10.1109/SRDS.2015.10.

6 Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

7 Ye Wang and Roger Wattenhofer. Asynchronous byzantine agreement in incomplete networks.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, AFT
’20, pages 178–188, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3419614.3423250.

A Perfect Security

A.1 Perfect Security with k > 3t

In this section, we present the formal protocol (Protocol 5) and the security proof of
Theorem 11.

https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1109/SRDS.2015.10
https://doi.org/10.1145/3419614.3423250
https://doi.org/10.1145/3419614.3423250


I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:17

Protocol 5: Πprv
perf,mal(Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.

Randomness Generation For ML rounds the parties do the following:
The sender S does the following:

1. For each set Paths′ ⊂ Paths such that the paths in Paths′ are disjoint and
|Paths′| = 2t + 1 the receiver samples for each p ∈ Paths′ random value rPaths′

p
a.

For any p ∈ Paths denote by rp = {rPaths′

p } the set of all sampled random
values.

2. In each time step send mp = (p, rp) to the first node on the path p until the
phase is complete.

Once intermediate node Pi receives the first message mp = (p, rp) on path p, it
will echo mp to the next node on the path in each of the subsequent time steps
until the phase is complete.
The receiver node R initializes sets RecPaths = ∅ and sets RecPaths = RecPaths∪
{p} upon receiving mp = (p, rp) for any p ∈ Paths.

Afterwards, the receiver R sets GoodPaths to the maximal set of pairwise disjoint
paths in RecPaths. This can be done using the Ford-Fulkerson Algorithm. Then R
sends GoodPaths to S using an instance of Protocol 2. This concludes the randomness
generation phase.

Secure Communication The message m is sent as follows.
1. LetW denote the set of all subsets Paths′ ⊆ GoodPaths such that |Paths′| = 2t+1

For each Paths′ ∈ W:
The sender computes shamir-sharing of the message m with threshold t as
(sPaths′

1 , . . . , sPaths′

2t+1 )← Shamir.share(m).
Set cPaths′

pi
= sPaths′

i +rPaths′

pi
for each pi ∈ Paths′, where rPaths′

pi
is the appropriate

random mask (i.e. the random value that was chosen for path pi corresponding
to set Paths′).

2. Sender S sends {cPaths′

pi
}pi∈Paths′,Paths′∈W to R using an instance of Protocol 2.

3. For each Paths′ ∈ W the receiver R:
Recovers the shares as si = cPaths′

pi
− rPaths′

pi
for pi ∈ Paths′

Checks if m′ ← reconstruct({si}i∈[2t+1]) results in m′ ̸= ⊥ (this step essen-
tially checks if all the shares lie on a t degree polynomial). If yes, the receiver
outputs m′.

a We assume that all possible sets Paths′ are lexicographically ordered. Abusing notation, when
Paths′ is used in superscript, it refers to the appropriate index of Paths′ based on this ordering.

Figure 5 Perfectly-secure private communication protocol against t < n active corruptions in a
network with connectivity k > 3t.

Proof.

Correctness. By Theorem 3 sender and receiver will agree on GoodPaths and thus on W.
This also hold for the set of one-time padded shares {cPaths′

pi
}.

By Lemma 4 the set W must contain at least 2t + 1 disjoint paths that comprise of only
honest nodes. So, there must exist at least one candidate set Paths′ which will lead would
lead to the correct output of m. On the other hand any set Paths′ that leads R to output
m′ contains at least t + 1 honest paths (This is because at most t paths in Paths′ could be
such that it has a corrupt node.). The adversary cannot tamper with the random values or

ITC 2023



13:18 Secure Communication in Dynamic Incomplete Networks

path information across these (t + 1) paths, therefore we are guaranteed that (t + 1) among
the (2t + 1) shares retrieved by R must indeed be correct. Since these suffice to uniquely
determine the t-degree polynomial that S used for Shamir sharing, it follows that the message
reconstructed by R must be correct.

Privacy. Note that for each candidate set Paths′ ⊆ W , the adversary knows at most t shares,
namely, those that were masked using random values corresponding to the (at most) t paths
in Paths′ that the adversarial nodes were a part of. Privacy of the secret now follows directly
from the privacy guarantee of threshold sharing and the security of one-time pad encryption
(which holds as each random value is used for encryption at most once).

Complexity. The round complexity follows analogous to the proof of Theorem 10. Lastly,
we analyze the communication complexity. The complexity is dominated by randomness
generation phase. There are fewer than M2t+1 sets Paths′ such that |Paths′| = 2t + 1.
Since there are 2t + 1 paths p in each Paths′, the sender picks fewer than (2t + 1)M2t+1

random values rPaths′

p . Each path can be represented using log M bits, and each random
value rPaths′

p can be represented using |m| bits; so, the communication per round per party is
O((2t + 1)M2t+1(log M + |m|)) = O(nMn(log M + |m|)). ◀

Improving the expected complexity. In Protocol 5, the primary communication bottleneck
is due to the fact that S has to account for all possible path sets of size 2t + 1. We propose
the following modification to improve the expected communication complexity: Similar to
Protocol 4, S could choose just one random value per path, and augment these values with
information-theoretic MACs. Accordingly R could include a path p in GoodPaths only if t of
the MACs have verified successfully using verification keys sent across t disjoint paths (that
are disjoint from p as well). Once GoodPaths comprises of 2t + 1 disjoint paths, these are
reported by R to S, who sends masked threshold shares corresponding to just this one subset.
However, the check in the communication phase still remains the same i.e. R continues
to check if all the shares lie on a t-degree polynomial (which maintains that the protocol
is perfectly-secure). If this check fails, then we re-run the protocol beginning with the
randomness generation phase.

While the communication complexity of the above modified protocol (which we refer
to as the communication-efficient variant of Protocol 5) is same as Protocol 5 in the worst
case (which occurs when the all-honest subset is the last one to be tried by R), the modified
protocol has an expected running time of poly(ML). This is because the security of the MAC
guarantees that the adversary can make an iteration fail only with negligible probability,
say µ. The probability that the protocol does not terminate in γ iterations is therefore µγ .

We remark that the MACs help only to improve the expected communication complexity,
but the protocol is still perfectly secure (due to the verification done by the receiver R before
accepting the output).

A.2 Perfect Security with k > 4t

In the above construction (Protocol 5), we make S account for all possible disjoint path sets
of size 2t + 1 as she does not know in advance which set of 2t + 1 all-honest disjoint paths will
eventually reach R. We observe that this can be avoided by assuming a larger connectivity
of k > 4t. Higher connectivity allows transferring more redundant information, enabling R
to recover from the incorrect information rather than simply detect it. We tweak the above



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:19

construction to let R report back (3t + 1) disjoint paths instead. Now upon receiving (3t + 1)
shares among which at most t could be incorrect, R can use error-correction techniques (such
as Reed-Solomon error correction) to reconstruct the correct t-degree polynomial despite the
errors. This completes the high-level description of the protocol, which is formally described
in Protocol 6.

Protocol 6: Πprv,k>4t
perf,mal (Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.
We assume parties have access to decoding algorithm ΠRSDec(W, t) that takes as input
a vector W of shamir shares with threshold t (viewed as a Reed-Solomon codeword)
where some of these may be incorrect, and either removes the errors and returns the
correct secret if there are at most |W |−t−1

2 of them, or produces ⊥ if there are more than
|W |−t−1

2 errors. This can be instantiated for instance by Berlekamp-Welch algorithm [1].

Randomness Generation Same as in Protocol 3 where S sends one random value per
path p ∈ Paths. The set GoodPaths is selected to contain at least 3t + 1 disjoint
paths and sent back to S using Protocol 2.

Secure Communication The message m is sent as follows.
1. S computes a shamir-sharing of the message m with threshold t as (s1, . . . , sk′) $←−

Shamir.share(m), where k′ = |GoodPaths|.
2. The sender computes cpi = si + rpi for each pi ∈ GoodPaths.
3. The sender S sends {cpi

}pi∈GoodPaths to R using an instance of Protocol 2.
4. The receiver computes the shares as si = cpi − rpi for pi ∈ GoodPaths.
5. The sender outputs m← RSDec({si})i∈[k′], t).

Figure 6 Perfectly-secure private communication protocol against t < n active corruptions in a
network with connectivity k > 4t.

▶ Theorem 12. Protocol 6 is a perfectly-secure protocol that allows S to securely send m to
R in the presence of a rushing adaptive adversary that actively corrupts at most t parties, as
long as the network has connectivity k > 4t. The protocol runs for 3LM rounds and in each
round a party sends O(Mn32n(|m|+ log M)) bits.

Proof.

Correctness. First, we note that Lemma 4 and the presence of at most t active corruptions
imply that GoodPaths must consist of at least 3t + 1 disjoint paths, therefore |W | > 3t holds.
Since the quantity |W |−t−1

2 ≥ t, error-correction would definitely be successful as long as
there are at most t errors. This is indeed true in our case as only the shares that were masked
using random values sent along paths in GoodPaths where there was at least one corrupt
node could be incorrect; and there could be at most t such paths. Correctness now follows
directly from the correctness of the error correction algorithm RSDec and the correctness of
the reliable communication protocols.

ITC 2023



13:20 Secure Communication in Dynamic Incomplete Networks

Privacy. Privacy follows by similar argument as Theorem 11. Since the adversary knows at
most t shares, (namely, those that were masked using random values corresponding to the
(at most) t paths in GoodPaths that the adversarial nodes were a part of), privacy follows
directly from the privacy guarantee of threshold sharing and the security of one-time pad
encryption.

Complexity. The round complexity follows analogous to the proof of Theorem 10. Lastly,
we analyze the communication complexity. The two instances of the reliable communication
protocol Protocol 2 have a communication complexity of O(n32n(|m|+log M)). The messages
mp have a complexity of M(|m|+ log M). This totals upto communication complexity of
O(Mn32n(|m|+ log M)). ◀

A.3 Perfect Security With k > 2t?

In this section, we elaborate on our conjecture that it is impossible to achieve perfectly
private communication against an active adversary in a dynamic network with connectivity
k > 2t. The guarantee in such a network is that the receiver R receives values sent via a set
of at least t + 1 disjoint paths (if she waits long enough, as shown in Lemma 5). Consider any
protocol which, like ours, tries to identify such a set of paths where only correct values were
received, it then uses the data received on these paths and public communication to send the
secret message. Of course, if there is exactly one suitable set of paths, we would be done, as
this would be the all-honest set of paths. However, as we now explain, there are cases where
there are multiple sets and where the receiver cannot identify the right one with certainty.

For simplicity, consider t = 1 and k = 2t + 1 = 3. Say, the adversary chooses the same
3-connected graph, say G in all the rounds: G has three disjoint paths p1, p2 and p3, where
the corrupt node is the last node on path p2 denoted as Pc, adjacent to the receiver Pr

(see Figure 7). The adversary has the following strategy: She blocks the message along
the path p2 and sends two fabricated paths to the receiver node Pr instead. (a) p′

1 that
intersects with p1 but is disjoint from p3. (b) p′

3 that intersects with p3 but is disjoint from
p1. Note that the last node in each of these fabricated paths would be the corrupt node
Pc who directly communicates them to the receiver node Pr. Now, from the perspective of
the receiver, there are three disjoint sets of size 2, namely (1) {p1, p3}, (1) {p′

1, p3} and (3)
{p1, p′

3}. Assuming that the adversary tampers with the values associated with p′
1, p′

3, only
the first set has correct values. However, there is no way for the receiver to identify {p1, p3}
to be the all-honest set. This is because the receiver could have the same identical view in
the following different scenario – when the last node in p2 was actually honest, the paths
p′

1, p′
3 and p3 existed and the values delivered for these paths were correct. While, on the

other hand, the path p1 and the value it carries was fabricated by a corrupt node. In this
case, the receiver would have the same set of three candidate disjoint sets and values, but
{p′

1, p3} is the correct set this time.
While authentication can be used to select the correct set with overwhelming probability

as we showed earlier, this cannot give perfect security. Hence if the protocol is not allowed
to abort but must continue with some set, there is a non-zero probability that a set will be
chosen with one correct and one incorrect value. Intuitively, it is not possible to send a private
message reliably based on such data and public communication: the output of the receiver
must depend on the values received on both paths (as well as the public communication), if
it only depends on one of them, this might be value the adversary knows and the message
would not be private. But if it depends on both values and one is tampered with, the output
will be incorrect.



I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:21

This type of argument is of course not a real impossibility proof as it only considers one
type of protocol, it should only be taken as evidence for our conjecture.

Ps

Pr

Pc

p2p1
p′1 p′3

p3

Figure 7 3-connected example graph.

ITC 2023


	1 Introduction
	1.1 Our Contribution
	1.2 Technical overview
	1.3 Related Work
	1.4 Future Directions

	2 Preliminaries
	2.1 Model
	2.2 Building Blocks
	2.2.1 Threshold Secret Sharing Scheme
	2.2.2 Instantiation


	3 Reliable Communication
	3.1 Passive Corruptions
	3.2 Active Corruptions

	4 Private Communication
	4.1 Passive Corruptions
	4.2 Active Corruptions
	4.2.1 Statistical Security with {k} > 2 {t}
	4.2.2 Perfect Security with {k} > 3 {t} 


	A Perfect Security
	A.1 Perfect Security with {k} > 3 {t}
	A.2 Perfect Security with {k} > 4 {t}
	A.3 Perfect Security With {k} > 2 {t}?


