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Abstract
In this work we study a new information theoretic problem, called online merging, that has direct
applications for constructing public-state accumulators and registration-based encryption schemes.
An online merger receives the sequence of sets {1} , {2} , . . . in an online way, and right after receiving
{i}, it can re-partition the elements 1, . . . , i into T1, . . . , Tmi by merging some of these sets. The goal
of the merger is to balance the trade-off between the maximum number of sets wid = maxi∈[n] mi

that co-exist at any moment, called the width of the scheme, with its depth dep = maxi∈[n] di, where
di is the number of times that the sets that contain i get merged. An online merger can be used to
maintain a set of Merkle trees that occasionally get merged.

An online merger can be directly used to obtain public-state accumulators (using collision-
resistant hashing) and registration-based encryptions (relying on more assumptions). Doing so, the
width of an online merger translates into the size of the public-parameter of the constructed scheme,
and the depth of the online algorithm corresponds to the number of times that parties need to
update their “witness” (for accumulators) or their decryption key (for RBE).

In this work, we construct online mergers with poly(log n) width and O(log n/ log log n) depth,
which can be shown to be optimal for all schemes with poly(log n) width. More generally, we show
how to achieve optimal depth for a given fixed width and to achieve a 2-approximate optimal width
for a given depth d that can possibly grow as a function of n (e.g., d = 2 or d = log n/ log log n).
As applications, we obtain accumulators with O(log n/ log log n) number of updates for parties’
witnesses (which can be shown to be optimal for accumulator digests of length poly(log n)) as
well as registration based encryptions that again have an optimal O(log n/ log log n) number of
decryption updates, resolving the open question of Mahmoody, Rahimi, Qi [TCC’22] who proved
that Ω(log n/ log log n) number of decryption updates are necessary for any RBE (with public
parameter of length poly(log n)). More generally, for any given number of decryption updates
d = d(n) (under believable computational assumptions) our online merger implies RBE schemes with
public parameters of length that is optimal, up to a constant factor that depends on the security
parameter. For example, for any constant number of updates d, we get RBE schemes with public
parameters of length O(n1/(d+1)).
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1 Introduction

Registration-based encryption [12] is a primitive that aims to offer what identity-based
encryption [26, 5] offers (i.e., a compact public parameter that can be used to encrypt for
all identities) but without the key-escrow problem (i.e., that the holder of the master secret
key can decrypt all the messages). It was shown [12] that essentially two relaxations will
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15:2 Online Mergers and Applications

enable such a primitive. In particular, in RBE the parties generate their own public and
secret keys, and then they register them to a transparent algorithm called the key curator
(KC). However, this comes at the cost of an evolving (compact) public parameter and need
for occasional decryption updates. Namely, firstly the public parameter ppn is now possibly
changing after the nth identity registers into the system, and secondly the parties might
sometimes need to reach out to the KC for hints/updates so that they can complete their
decryption tasks. It was shown in [12] that with a total of O(log n) number of decryption
updates, one can keep the length of the public parameter poly(log n) (with a constant that
depends on the security parameter). The follow-up works on RBE [13, 16, 9] made progress
in various aspects such as assumptions and concrete efficiency, but asymptotically they all
required the same Θ(log n) number of decryption updates.

How many decryption updates are needed? The above state of affairs left open the
possibility that RBE schemes with sub-logarithmic o(log n) number of updates could be
constructed. Recently, Qi, Rahimi, and Mahmoody [22] proved that Ω(log n/ log log n) many
updates are necessary for any RBE schemes (with a public parameter of size poly(log n), as
required by the standard definition of RBE) regardless of the computational assumptions
used for constructing them, so long as the updates arrived at fixed times. The latter property
is known to hold for all constructions of RBE so far. It remained open to close the gap
between the upper bound of O(log n) and the lower bound of Ω(log n/ log log n).

In this work, we further close this gap and show that the lower bound of Ω(log n/ log log n)
on the number of decryption updates is optimal (up to a constant factor that depends on
the security parameter). We do so by improving the core information theoretic object that is
at the center of the original RBE scheme of [12] as well as the accumulators used in such
RBE schemes. More specifically, the RBE scheme of [12] relies on a transparent accumulator
(i.e., one that does not have a secret state) [4, 3, 6, 25] that accumulates all the public-keys
tied with their corresponding identities. In such an accumulator, a short digest pp of all the
accumulated strings {x1, . . . , xn} can be used to efficiently verify membership of, say, xi in
the collection, so long as this verifier is provided with a short witness wi of the membership.
Hence, there are clear similarities between what RBE does with the keys and what an
accumulator does with the strings xi, and so it is not surprising that accumulators are useful
for building RBEs. Our main result is to identify a core problem that is also at the heart of
transparent accumulators that in turn are used for building RBEs.

The most natural approach for building a transparent accumulator is to use Merkle trees,
based on collision resistant hash functions. Namely, one can build a Merkle tree T over the
leaves S = {x1, . . . , xn}, and publish the label of the root r as the public parameter. Then,
to prove membership of xi in the collection S, one can provide the “Merkle opening” of xi,
which consists of the labels along the path from (the leaf) xi to the root r as well as the labels
of the neighbors of this path. Then the verifier will do the basic sanity checks to pass the
verification, and the scheme will be sound so long as the compressing hash function used for
building the tree is collision resistant. When we are in the dynamic setting and the elements
{x1, . . . , xn} arrive one by one, we no longer can use a single Merkle tree for hashing them,
at least as long as we do not want to change the “opening witnesses” frequently.

The work of Reyzin and Yakoubov [25] showed how to make use of a collection of Merkle
trees in such a way that the opening of each xi will needs to be updated only O(log n) times
over the course of the n steps of the system. They called an accumulator with this feature
an asynchronous accumulator, and their construction was also used in the RBE construction
of [12]. The idea behind this accumulator is to keep the collection of trees T in a way that:
(1) any tree T ∈ T is always a full binary tree with 2i leaves, (2) every pair of different trees
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T1, T2 ∈ T have different sizes, (3) there is a bijection between the leaves of the trees in
T and the accumulated set of objects. Therefore, the sizes of the trees in T directly give
the binary representation of n, where n is the total number of elements in the collection.
When a new element xn arrives, this accumulator first generates a set {xn}, and then the
accumulator keeps merging the trees of the same size till there is no such pair of trees. It
can be seen that the maximum depth of any tree T ∈ T will upper bound the number of
times that an opening witness of an element x ∈ {x1, . . . , xn} needs to be updated, and this
number is Θ(log n). This is the core reason that this accumulator and the RBE scheme
of [12] require logarithmically many updates.

1.1 Online mergers
In this work, we revisit the way a collection of sets/trees are merged to maintain a collection
of “Merkle trees”, but we study the problem more abstractly and independently of the
direct connection to Merkle trees. We ask how to do the merging, while we try to balance
the number of trees versus their maximum depth. More formally, we ask the following
question. Suppose the elements {x1, . . . , xn} arrive one by one in n rounds, and suppose
at the beginning of each round i + 1 we have a collection of sets T i

1, . . . , T i
mi

already that
partitions {x1, . . . , xi} and the new single-element set T i

mi+1 = {xi+1} gets added to the
current collection of sets. Then, the job of an online merger is to choose how to merge
some of the sets and shape the updated collection T i+1

1 , . . . , T i+1
mi+1

that is a partitioning of
T i

1, . . . , T i
mi

, {xi+1} (and also of {x1, . . . , xi+1}). Since the merger has to decide about these
choices in each of the n rounds, we call it an online merger.1 The two key parameters of
interest for online mergers are the following.

The width of an online merger is the maximum number of sets (i.e., maximum of mi

over all i ∈ [n]) that it ever maintains during the course of its execution in the n rounds.
This parameter is important as it captures the size of the digest/public parameter if each
of the sets T is a Merkle tree, because it simply counts the number of roots of the trees
at its maximum peak.
The depth of an online merger is the maximum of di for i ∈ [n], where di is the number
of times that the set containing xi gets merged with other sets. If we choose to represent
the sets as trees and merge them as such, the depth of a scheme is simply the maximum
depth of the collected trees at the end. If xi has depth di, then (in case the sets shape
Merkle trees) the opening witness for the membership of xi in the collection needs to be
updated di times.

Key questions about online mergers. On the extreme points, one can achieve width 1
and depth n − 1 by immediately merging any incoming set, and one can achieve depth 0
and width n by not merging any of the sets. Thus, the interesting question is to find the
optimal trade-off between the width and depth of online mergers as a function of n. We
can ask this question both for online mergers that know the set size n ahead of the time
(called bounded online mergers) and for those that are “unbounded” and receive the incoming
single-element sets without knowing the upper bound n on the final set size (called unbounded
online mergers). More specifically, we are interested in finding the minimum width needed
for mergers that are given an upper bound on their depth, and conversely we would like to
find out the minimum depth needed for mergers that are given an upper bound on their

1 In contrast, an offline merger gets all of {x1, . . . , xn} before deciding on how to partition them.
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width. The given upper bounds (for width or depth) could be absolute constants or growing
functions of n. On the one hand, both width and depth can be Θ(log n) simultaneously, due
to the accumulator of [25]. On the other hand, as we will show, the tools from [22] can be
used to show that the depth of any online merger needs to be at least Ω(log n/ log log n)
if the width needs to be poly(log n) (which is the standard size of the public parameter
for RBE [12]). Prior to our work, it was not known how many updates are necessary for
achieving public parameters of length poly(log n).

1.2 Our results
Our main result is to find the exact trade-off between the two key parameters (width
and depth) of online mergers. As a corollary, we obtain transparent accumulators and
RBE schemes that can take as input parameters the number of updates and produce
public parameters that are optimal within a constant factor. As a special case, we also
obtain accumulators and RBE schemes that have the optimal O(log n/ log log n) number
of witness/decryption updates, while their public parameter is assumed to be of length
O(poly(log n)). Below, we explain these results in more detail.

Our results about online mergers. To have a reference to judge the optimality of a trade
off between depth and width of an online merger, we start by proving a lower bound on
this trade off. In particular, using a key combinatorial tool from [22], we first derive a lower
bound on the trade-off between the depth d and width w of any online merger, and the lower
bound holds even if the set of elements [n] = {1, . . . , n}2 is known to the online merger ahead
of the time. In particular, we find lower bound functions widthLB(n, d) (for the with) and
depthLB(n, w) (for the depth) when we are given the set size n and either of the width w or
the depth d as inputs.

We remark that the mere fact that one can use the tools of [22] to obtain a lower bound
for the trade off between depth and width of online mergers is not surprising, as online
mergers are one way to obtain accumulators and RBEs and the lower bound of [22] applies
to any RBE scheme. However, we emphasize that as our starting point in this work we
obtain concrete lower bound functions widthLB(n, d) and depthLB(n, w) that do not hide any
unknown constants that can depend, say, on the security parameter, as online mergers are a
purely information theoretic object without security parameters. Hence, these lower bound
functions allow us to prove exact bounds on the trade-off between depth and width of online
mergers, which is what we do next. Having the reference lower bounds widthLB(n, d) and
depthLB(n, w) we show how to achieve positive constructions that (sometimes approximately)
match these lower bounds, as stated below.

▶ Theorem 1 (Optimal bounded online mergers – informally stated). For any known set size n,
there is an efficient construction of online merger MerWidw of width w that achieves optimal
depth depthLB(n, w), and there is an efficient construction of an online merger MerDepd of
depth d that achieves optimal width widthLB(n, d).

See Theorem 13 and Proposition 14 for formalization of the above theorem.
We remark that the appendix in [22] included a graph construction that showed their

lower-bound cannot be further improved. However, that graph construction only shows
the limitation of the proof approach of [22] and does not uniquely determine a positive

2 Note that even though we will use larger blocks of data in applications of online mergers (i.e., accumulators
and RBE schemes) for simplicity we can pretend that the arriving sets are {1} , . . . , {n}.
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construction. In fact, any positive construction (e.g., that of our Theorem 1) can be used to
obtain such graphs, showing that the approach of [22] cannot lead to better lower bounds,
but the reverse is not true.

▶ Theorem 2 (Approximately optimal unbounded online mergers – informally stated). If
we do not know n ahead of the time, and if d(n) is a non-decreasing function of n (e.g.,
d(n) = log n/ log log n) that upper bounds the depth of the online merger that we would like
to have for a set of n elements, then there is an unbounded online merger that achieves width
at most 2 · widthLB(n, d(n)).

See Proposition 19 for a formal statement.

The cost of being unbounded. Theorem 2 only achieves a solution whose width is within 2
multiplicative approximation of the optimal solution. Hence, it brings up the question of
whether the approximation factor 2 (or any other factor bigger than 1) is needed here. We
prove that this is indeed the case, so long as we aim for unbounded online mergers. Namely,
in Theorem 22 we show that for unbounded online mergers such overhead is necessary.

Implications to accumulators and RBEs. Theorems 1 and 2 can be directly used to
construct accumulators and RBEs whose number of witness/decryption updates are bounded
by the depth of the corresponding online merger, and whose public parameters are of the
size Oκ(w), where w is the width of the online merger and the constant in Oκ(w) could
depend on the security parameter κ of the accumulator/RBE scheme. In fact, Theorem 1
already suffices for obtaining accumulators and RBEs with optimal number of updates when
we already know the final size of the set of elements/identities that will join the system over
time. We then study unbounded online mergers who do not know the upper bound n on the
population size, and obtain an almost tight solution.

The idea is quite straightforward: an online merger can be used to maintain a set of
Merkle trees T = {T1, . . . , Tm} that would serve as an accumulator for the incoming objects
{x1, . . . , xn}, while the set of the roots of the trees r1, . . . , rm would serve as the digest/public
parameter. To prove membership of xi in the set, one has to prove the Merkle opening of xi

with respect to the tree T ∈ T that contains xi as a leaf. Then, so long as the hash function
used for constructing the Merkle trees in T is collision resistant, it would be computationally
hard to prove membership of any x ̸∈ {x1, . . . , xn} successfully. See Construction 44 for a
formal description of this reduction. As formally stated in Proposition 45 the width and
depth of the used online merger directly translate (in order) into the number of updates and
length of the public parameter of the constructed accumulator. Finally, we observe that this
construction of (transparent) accumulators is tight in its trade-off between the number of
updates vs. the length of public parameter (up to a constant factor that can depend on the
security parameter). The reason is that the same proof of the lower bound of [22] for RBEs
can be directly adapted to transparent accumulators as well.

Finally, due to the fact that RBE schemes heavily rely on an internal accumulators for
compressing the submitted public keys, using our optimal accumulator and extra assump-
tions (i.e., indistinguishability obfuscation [2, 11, 21] and somewhere-statistically binding
hashing [20]) we can adapt the original construction of [12] to obtain an RBE scheme with
an optimal log n/ log log n number of updates, while all the other efficiency and compactness
requirements of the scheme are as defined and required by [12].

ITC 2023
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▶ Theorem 3 (RBE with optimal number of decryption updates – informal). Assuming standard
computational hardness assumptions, there is an RBE scheme that has log n/ log log n number
of decryption updates.

See Construction 28 for a formal adaptation of the construction of [12] to using an
arbitrary online merger. The proof of security for this construction is identical to the
(rather long) proof of the similar scheme in [12]. In fact, we obtain a more general result:
using any given number of updates d(n) as input parameter that can depend on n (e.g.,
d(n) = log(n)1/2) we can use our optimal online merger for that depth function d(n) to
obtain RBE schemes with optimal length for the public parameter for the given number of
updates d(n). An interesting corollary is that even using just one update allows us to obtain
a scheme with a sublinear public parameter of length O(

√
n) and using a larger constant d

will lead to significantly smaller public parameters of length O(n1/(d+1)).

Other assumptions. We emphasize that our Theorem 3 above is merely to show that one
can obtain the right number of updates for RBEs using some computational assumptions,
and to show that we choose the simplest construction that is based on Indistinguishability
obfuscation and Somewhere Statistically Binding Hashing [20]. However, as we explain
in the full version of the paper, our main tool of this paper, namely online mergers, are
versatile enough to be incorporated into other constructions of RBE based on standard
assumptions [14, 16] as well.

1.3 Techniques

We now review some of the ideas used in the proof of our main results about online mergers.

Lower bound. To obtain the lower bound functions widthLB(n, d) (for the width) and
depthLB(n, w) (for the depth) we take the following steps.
1. We first show how to derive a DAG of out-degree at most d from any merger of depth d,

by connecting i to j if the set containing i gets merged in round j (see Definition 8).
2. We then use a result from [22] showing that DAGs with small out-degrees have a

substructure, called skipping sequence (see Definition 33 and Theorem 34).
3. Finally, we observe that skipping sequences directly imply lower bounds on the width.

Optimal depth for a given constant width. Our starting point is an extremely simple
scheme that obtains optimal depth (i.e., matching depthLB(n, w)) when we are given any fixed
width w as input. This scheme works even if we do not know the set size n in advance. The
scheme can be described in one sentence: when a new set T = {n} (as a single-node tree) is
added to the collection of trees T , if T has w + 1 trees, merge the newly arrived tree T with
all the trees in T that have minimum depth (among the trees already in T ). Equivalently, as
long as |T | = w + 1, keep merging all the trees of minimum depth in T . See Construction 11
and Theorem 13 for more details. One can interpret this scheme as “lazy merging” approach
that does not do any merges when it does not have to, but when the merge is needed it only
merges trees of minimal depth (with the incoming tree of depth 0). Interestingly, this simple
scheme achieves a depth that is optimal for every n, as careful calculations can be used to
show that its depth matches the lower bound depthLB(n, w) exactly.
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Optimal width for a given depth and known set sizes. Once we have an online merger
MerWidw that achieves optimal depth for any given set size n and width w, we can turn this
scheme around and switch the role of depth and width. Namely, for a given set size n and
depth d, the new online merger MerDepd can find the smallest w such that a construction
on set [n] with width w will have a depth at most d, and this would be an optimal choice
of the width due to the optimality of the original algorithm MerWidw. (See Proposition 14
for a formalization.) This finishes the proof of Theorem 1. Note that we lost something in
this transformation: although our “width-based” merger MerWidw did not need to know the
set size n (and hence it was unbounded ), the new “depth-based” merger MerDepd needs to
know n ahead of the time to find the optimal choice of width w. So, the new online merger
is not unbounded anymore.

2-approximation for the width of unbounded online mergers. We finally describe how to
achieve our online merger of Theorem 2. The key idea is to use our “width-based” merger
MerWidc for specifically chosen values of n(c), by pretending that n(c) is an upper bound on
the total size of the streaming set. We will also increase c whenever d(n) jumps by at least
one (as it can gradually grow). Our careful choice of n(c) and a “non-black-box” use of the
analysis of our scheme MerDepd allows us to prove that the resulting scheme will never use a
width more than 2 · widthLB(n, d(n)).

1.4 Related work

In addition to RBE, other works have also pursued paths to eliminate the key escrow problem
from IBE. The work of [5] aimed to make the private-key generator decentralized. The works
of [17, 18] proposed a notion of “accountablity” for PKG, by proposing how to catch an
irresponsible PKG in case of breach. The works of [7, 8, 28] aimed to make it harder for
the PKG to find out the receiver’s identity. The works of [8, 10] studied interactive key
generation that allows hiding user’s identities. The work of [1] proposed to mix IBE and
public-key encryption by constructing “Certificateless” Public Key Cryptography.

More recently, the work of [27] showed how to make RBE even more transparent by
deploying it on blockchain. The two works of [15, 19] showed how to achieve black-box
constructions of RBE based on assumptions on bilinear maps, while leveraging a polynomially
large CRS that can grow with the number of parties. Further more, the work of [15] gave
concrete implementations of RBE, and the work of [19] further generalized the notion of
RBE to registered attribute-based encryption schemes that can handle attributes beyond
identity (which is what RBE does).

The concept of cryptographic accumulators was first introduced by Benaloh and de
Mare [4]. Using an accumulator, one can represent a set of values S by a short digest
such that (1) there is a witness to prove membership for values in S and (2) it is infeasible
to find such witness for values that are not in S. Later, Barić and Pfitzmann [3] gave a
more generalized definition called collision-resistant accumulators and a construction of such
accumulators based on the strong RSA assumption. Both of the accumulators are static in
the sense that the set of values S never changes after the digest has been generated. However,
for many applications, the set of values can evolve with time. Observing this, Camenish and
Lysyanskaya [6] introduced the concept of dynamic accumulators and provided a construction
based on the strong RSA assumption. In a dynamic accumulator scheme, the set of values S
can change. Namely, values can be added to or removed from the set. Therefore, both the
digest and witnesses might be updated from time to time.

ITC 2023
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2 Online mergers and partitioners: constructions and lower bounds

In this section, we introduce the key information-theoretic problem of our work. To begin,
we need to define merging operation on rooted trees.

▶ Definition 4 (Merging operation and tree partitioning). A rooted tree is either a single vertex
rt (called root), or it has a root rt with i ≥ 1 children u1, . . . , ui such that each ui is the root
of a rooted tree itself. A leaf is any vertex that has no children. (So a tree with a single vertex
has a root that is also a leaf.) A merge operation takes a sequence (T1, . . . , Tj) of j ≥ 1
rooted trees and returns a single T, where T has a root rt with j children and the ith sub-tree
of rt for i ∈ [j] is Ti. For k ≤ m, we say that a set of trees {T′

1, . . . , T′
k} can be obtained by a

single merge operation from (T1, . . . , Tm), if there is a subset {T′′
1 , . . . , T′′

ℓ } ⊆ {T1, . . . , Tm}
that is merged into T, and {T′

1, . . . , T′
k} = {T} ∪ {T1, . . . , Tm} \ {T′′

1 , . . . , T′′
ℓ }. We also say

that a set of trees {T′
1, . . . , T′

k} is a merging of {T1, . . . , Tm}, if one can obtain {T′
1, . . . , T′

m}
from {T1, . . . , Tm} by a series of (zero or more) single merge operations. A set of rooted
trees {T1, . . . , Tm} form a tree partitioning of S, if they have |S| many leaves, and that each
x ∈ S appears as a leaf in exactly one of {T1, . . . , Tm}.

It is easy to see that if {T1, . . . , Tm} form a tree partitioning of S, then any merging of
{T1, . . . , Tm} will also be a tree partitioning of S.

We now define the main object of our interest, namely an online merger on a set [n].

▶ Definition 5 (Online merger). An online merger M for [n] is a deterministic algorithm
that works in n rounds as follows. Originally we have an empty set T0 = ∅ of trees. In
round i, we start from Ti−1 ∪ {i}; namely, a new tree with a single node labeled i gets added.
Then, the algorithm M is allowed to apply any number of merge operations on Ti−1 ∪ {i} to
reach Ti (at the end of round i). We call widi = |Ti| the width at (the end of) round i and
wid[n] = maxi∈[n] |Ti| simply the width of M for [n]. At round i and j ∈ [i], the depth of node
j in round i, denoted by depj

i is the distance of the node j from the root in its rooted tree
at the end of round i.3 The depth of Ti is simply defined as depi = maxj∈[i] depj

i , and the
depth of M for [n] is dep[n] = maxi∈[n] depi. An online merger for all the natural numbers N,
also called an unbounded online merger, informally, is one that keeps going forever. More
specifically, an unbounded merger gets the inputs {1} , {2} , . . . , and always maintains a tree
partitioning over [n] for all n ∈ N. For an unbounded merger, we can still define the depths
di, d[n] and widths widi, wid[n] of such mergers for all i, n ∈ N. Any online merger M for [n]
(resp. N) defines an online merger for all m ∈ [n] (resp. [n], n ∈ N).

Extensions and generalizations. The definition above can be extended in multiple ways:
Randomness. We could allow online mergers to be randomized algorithms, in which
case the depth and width are defined with respect to a fixed randomness. However, in
this work, we construct deterministic mergers, as our focus is on upper bounds, while our
lower bounds also directly apply to randomized algorithms as well.
Other sets. For simplicity, we defined mergers on [n], while one can think of mergers
who deal with arbitrary sets S of size n.
Partitioning. One can generalize the notion of online mergers to algorithms that
arbitrarily change the partitioning of the current set of elements. This class of algorithms
are, e.g., useful to model algorithms that maintain a set of Merkle trees, but decide to
break down those trees every now and then and reconstruct them from scratch.

3 This is equal to the number of times that the trees containing j are merged, since {j} was added and
till the end of round i.
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▶ Definition 6 (Online partitioner). An online partitioner Part for [n] and an unbounded
online partitioner for N are both defined similarly to their corresponding mergers with the
difference that they can arbitrarily re-partition the current set of vertices rather than merely
merging them. The notions of depth and width are defined similarly for partitioners, with
the only difference that depth of a node j ∈ [n] will denote the number of times that the set
containing j has changed.

Below, we first study lower bounds on depths and widths of bounded mergers. We then
give unbounded online schemes that (closely) match these lower bounds.

2.1 Lower bounds for bounded partitioners
The goal of this subsection is to present functions depthLB(n, w) (resp. widthLB(n, d)) that
serve as lower bounds on the depth (resp. width) of any online bounded partitioner, assuming
that the set size is n and the width is w (resp. depth is d).

We start by defining a DAG for any online partitioner or merger. Since partitioners
generalize mergers, we only define these notions for partitioners.

▶ Definition 7 (Forward DAGs of online partitioners and mergers). Let Part be a deterministic
online partitioner for [n]. Then, Part defines the following DAG Gn over [n]: (i, j) ∈ G for
i ≤ j if the set S that contains i at the beginning of round j is different from the one that
contains i at the end of the round j. For the special case of mergers, (i, j) ∈ G means that
the tree containing i at the beginning of round j is merged during round j.

We now observe that skipping sequences in the DAGs of online partitioners imply a lower
bound on their width.

▶ Proposition 8 (Lower bound on the width from skipping sequences). Let Part be an online
partitioner for [n]. Let Gn be the forward DAG over [n] defined by Part. Let S be a skipping
sequence in Gn. Then, the width of Part is at least |S|.

Proof. Let S = {s1 < · · · < sℓ}. It suffices to show that si and sj belong to different sets at
the end of round ℓ for all 1 ≤ i < j ≤ ℓ. Assume, on the contrary, that si and sj belong to
the same set at the end of round ℓ. This means that at some time k such that sj ≤ k ≤ sℓ

the sets containing si, sj change to include both of them, which implies the existence of the
edge (si, k) ∈ Gn, where si < sj ≤ k ≤ sℓ. Such an edge, however, contradicts the definition
of skipping sequences. ◀

If the depth of a partitioner or a merger is at most d, then by definition the out-degree of
the vertices in the corresponding forward DAG Gn is at most d. Therefore, using Proposition 8
and Theorem 34 (proved in [22]) we obtain the following lower bound.

▶ Theorem 9 (Lower bound on the width based on the depth). Suppose Part is an online
partitioner for [n]. Then the following hold for all d ≥ 0, w ≥ 1.
1. If n ≥

(
w+d
d+1

)
and dep[n] ≤ d, then wid[n] ≥ w.

2. If n ≥
(

w+d
d

)
and wid[n] ≤ w, then dep[n] ≥ d.

Proof. The first part follows directly from Proposition 8 and Theorem 34. To prove the
second part, suppose wid[n] ≤ w and dep[n] ≤ d−1. Then, by applying the first part on depth
d− 1 (rather than d), we obtain that the depth should be at least w + 1, which contradicts
wid[n] ≤ w. ◀

We now present the depthLB and widthLB functions that serve as lower bounds on the
depth and width of any online partitioner. Both of them can be expressed through the same
function in the following corollary that follows directly from Theorem 9 above.
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▶ Corollary 10 (Lower-bound functions depthLB, widthLB for depth and width). For natural
numbers x, y, let minBin(x, y) = min{z ∈ N+ |

(
y+z

y

)
> x}. Then, the following holds for

any partitioner Part over the set [n].
1. If wid[n] ≤ w, then dep[n] ≥ depthLB(n, w) for depthLB(n, w) = minBin(n, w)− 1.
2. If dep[n] ≤ d, then wid[n] ≥ widthLB(n, d) for widthLB(n, d) = minBin(n, d + 1).

2.2 Optimal bounded mergers
In this subsection, we focus on bounded online mergers that know the set-size n in advance
and aims to optimally balance the trade-off between the width and the depth. For this
setting, we show that a simple construction optimally matches the bounds of Corollary 10.
In fact, we show that the following extremely simple construction achieves optimal depth
for all set sizes, so long as the width is upper bounded by a fixed given amount. In other
words, our simple construction is even an unbounded online merger for any given bound on
the width. As a corollary, when the set-size n and a given depth are both known in advance,
one can use our simple construction using the width w = widthLB(n, d) and achieve optimal
width for the given depth.

▶ Construction 11 (Optimal unbounded online merger for fixed width). The online merger
MerWidw is parameterized by a positive integer w. At each round, while the total number
of trees equals w + 1, MerWidw merges the subset of trees consisting of all trees with the
minimum depth. (Note that if there is a unique tree of minimum depth, merging it with itself
will simply increase its depth by one.)

By definition the width (i.e., widi = |Ti|, where Ti is the collection of trees at the end of
every round i ∈ N) in Construction 11 it holds that widn ≤ w, and hence wid[n] ≤ w for all
n ∈ N. We now analyze the depth.

Alternative construction. Construction 11 sometimes merges a single tree, which simply
increases its depth. This artificial merging can be avoided without increasing the depth
or width. However, the redundant operations simplify some of the claims below about the
analysis of the depth.

▶ Lemma 12. In Construction 11, the following holds.
1. At the end of round

(
d+w

d

)
− 1 there are w trees of depth d− 1.

2. Round
(

d+w
d

)
is the first round, at the end of which there is a single tree of depth d.

Proof. We use induction on d. The base case where d = 1 is true by inspection of the
first w + 1 rounds. Assume the claim is true for d − 1. We show that it is true for d. By
assumption we know at round

(
d−1+w

d−1
)
, there is exactly one tree of depth d. Reusing the

assumption, we know at round
(

d+w−1
d−1

)
+

(
d+w−2

d−1
)

there are 2 trees of depth d and no trees
of other depth. Similarly, we know at round

∑w
i=1

(
d+w−i

d−1
)

=
(

d+w
d

)
− 1 there are w trees of

depth d and no trees of other depth. By inspection, we know at round
(

d+w
d

)
there is exactly

one tree of depth d and this is the first round where there is a tree of depth d. ◀

Using the lemma above, we can get an upper bound on the depth for Construction 11.

▶ Theorem 13 (Construction 11 achieves optimal depth for all set sizes and widths). In
Construction 11, the depth dep[n] of MerWidw for set size n is depthLB(n, w) = minBin(n, w)−
1, which is optimal.
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Proof. Using Lemma 12, we know for n ∈ [
(

d+w
d

)
,
(

d+w+1
d+1

)
− 1], the depth of M is exactly d.

For such choice of n, d, it holds that
(

w+d+1
w

)
> n and

(
w+d

w

)
≤ n. Therefore, by definition,

this means that d + 1 = minBin(n, w), and hence d = minBin(n, w)− 1. ◀

▶ Proposition 14 (Achieving optimal width, given set size and depth). Let n, d be two positive
integers. Using MerWidw in Construction 11 with width w = widthLB(n, d) = minBin(n, d+1)
will have depth at most d. Consequently, the scheme will use optimal width.

Proof. Using Lemma 12, we know round
(

d+1+w
d+1

)
is the first round where there is a tree of

depth d + 1. However, by construction we know
(

d+1+w
d+1

)
> n. Thus, the depth will be at

most d. ◀

2.3 Unbounded online mergers
In this section, we study unbounded online mergers that do not know the set size [n]
in advance. We first design unbounded mergers for a given constant depth and then will
generalize our construction to the setting in which d is a growing function of n (e.g., d = log n).

2.3.1 Unbounded mergers for a given fixed depth
The key idea of our extension to unbounded mergers is as follows. Even though unbounded
mergers play in a game with an infinite number of rounds, one can divide the rounds into
stages where each stage only has a finite number of consecutive rounds. We can then treat each
stage as an independent known-size merging game, which allows us to use Construction 11.

▶ Construction 15 (Unbounded online mergers for given fixed depth d). We construct a merger
MerDepd which uses MerWidw in Construction 11 as a subroutine. We first partition the set
of rounds into stages Si that consist of consecutive rounds and that |Si| =

(
d+i

d

)
. In stage

Si (i.e., for round k, k ∈ [
∑i−1

j=1 |Sj |+ 1,
∑i

j=1 |Sj |]) we use MerWidw using width w = i and
treat the incoming sets {ℓ} , ℓ ∈ I as if it is {ℓ−

∑i−1
j=1}. While doing so, we ignore the trees

that are constructed in the previous i− 1 stages (i.e., keep them as part of the set of trees,
without merging them).

▶ Proposition 16. In Construction 15, we have wid[n] ≤ 2 · widthLB(n, d)− 1 for all d ≥ 0.

Proof. If d = 0, Construction 15 is trivially optimal in width. Below, assume d > 0. Uing
Lemma 12, we know each completed stage ends up with exactly one tree of depth d.

Let k be the smallest positive integer such that
(

d+1
d

)
+

(
d+2

d

)
+· · ·+

(
d+k

d

)
=

(
d+1+k

d+1
)
−1 ≥ n.

There are at least k−1 completed stage. If the last stage is also completed, there are in total k

trees. Otherwise, since the width of the last stage is bounded by k, the total width is bounded
by 2k − 1. Note that

(
d+1+k

d+1
)

> n but
(

d+k
d+1

)
≤ n, which means k = minBin(n, d + 1) =

widthLB(n, d). ◀

2.3.2 Unbounded online mergers for growing depths
Let d(n) be a non-decreasing function from N to N modeling our desired upper bound on
dep[n]. For example, we might want to have a scheme with depth log log n or log n/ log log n

(rounded to integers). In this subsection, we show how to achieve online mergers that respect
the upper bound dep[n] ≤ d(n), while achieving a width that is within 2 multiplicative factor
of the optimal width, as it will hold that wid[n] ≤ 2widthLB(n, d(n)).

Before defining the construction, here we define jumping points of the function d(n).
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▶ Definition 17 (Jumping points). Suppose d(n) : N→ N is non-decreasing. Define the set
of jumping points of d(n), {a1, a2, a3, . . . }, as follows.
1. a1 = 1;
2. For i > 1, ai is the smallest positive integer satisfying d(ai) > d(ai−1).

▶ Construction 18 (Approximately optimal merger for a growing depth). Suppose {a1, a2, a3, . . .}
are the jumping points of the non-decreasing depth function d(n). Our unbounded merger
MerDepd(n) uses an unbounded merger MerDepc for fixed depth c as a subroutine. Originally,
there is no trees, and the algorithm MerDepd(n) works as follows at round n.

If n = ai for i ∈ {1, 2, . . .}, then MerDepd(n) will merge all the current trees (including
the single-node tree {ai} that has just arrived) into one tree.
For ai < n < ai+1, MerDepd(n) ignores the single merged tree that was shaped in round ai

and will treat the arriving sets {ℓ} as {ℓ− ai} and runs MerDepc for c = d(ai) = d(n).

The fact that the depth of the trees of Construction 18 satisfy dep[n] ≤ d(n) is immediate by
its definition and the fact that d(n) is non-decreasing. Specifically, for n = ai, assuming the
depth was previously at most d(ai − 1), by doing the single merge, the single merged tree
will have depth at most 1 + d(ai − 1) ≤ d(ai) = d(n). Hence, in the following we focus on
analyzing its width.

▶ Proposition 19. Suppose widc
[n] is the width of MerDepc that is used inside Construction 18.

Then the width of the final merger in Construction 18 is at most widd(n)
[n] + 1.

Proof. At every round ai for i ∈ {1, 2, . . . }, there will be exactly one tree. At round n

where ai < n < ai+1, the width of MerDepd(ai) is upper bounded by widd(ai)
[n−ai]. Since

widc
[n] is a non-decreasing function of n for any fixed c and that d(ai) = d(n), we have

widd(ai)
[n−ai] ≤ widd(ai)

[n] = widd(n)
[n] . Also note that the tree built at ai is not touched during

the rounds n such that ai < n < ai+1 . Therefore, the width wid[n] of the merger in
Construction 18 is upper bounded by widd(n)

[n] + 1. ◀

The following corollary follows immediately from Propositions 16 and 19.

▶ Corollary 20 (2-approximating the width for a given growing depth). If d(n) is a non-
decreasing depth function of n, and if one uses Construction 15 as the subroutine in Construc-
tion 18, then the resulting construction will have width bounded as wid[n] ≤ 2·widthLB(n, d(n)).

How about unbounded online mergers for a growing width? The results above leave
one case uncovered: what if we want to have an unbounded merger that satisfies width
wid[n] ≤ w(n) for a given non-decreasing function w(n)? For the constant w(n) = w, we
already have an optimal solution (see Theorem 13). But, what if w(n) is an increasing
function of n? Here we argue that it is in fact impossible to find an unbounded merger that
approximates the optimal depth within any constant factor, the way Corollary 20 does this
for the width. The reason is that the width function w(n) can remain small for too long
(when n grows) and then suddenly jump significantly. For example, suppose w(i) = 1 for all
i < n, and w(n) = n. Then, the depth is forced to grow linearly dn′ = n′ − 1 for all n′ < n,
while after reaching round n, the width is suddenly allowed to be n, for which we do not need
any depth more than 1. However, we have already paid the cost of having depth dn > n− 1.
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Examples of choices of depth functions. Here we demonstrate the bounds on the width
that follow from choosing the depth in various ways in the construction of Corollary 20.

▶ Corollary 21. In Construction 18, and for non-decreasing depth function d(n) it holds
that wid[n] = O(d · n

1
d+1 ), where d = d(n). In particular, if d(n) = c · log n/ log log n, then

wid[n] < poly(log n).

Proof. Let w = widthLB(n, d) = minBin(n, d + 1). Using the bound
(

m
k

)
≥ (m

k )k, we have
(w+d

d+1 )d+1 ≤
(

w+d
d+1

)
≤ n. We can then bound w ≤ (d + 1) · n

1
d+1 − d. By Corollary 20, we

know wid[n] ≤ 2 · (d + 1) · n
1

d+1 − 2d.
Now, we prove the second part. By the first part, we know wid[n] = O(d · n

1
d+1 ), where

d = d(n) = c·log n/ log log n. In addition, we have n
1

d+1 = n
1

c·log n/ log log n+1 < (2log n)
log log n
c log n =

log1/c n. Therefore, wid[n] = O(d · n
1

d+1 ) = O(log1+1/c n/ log log n). ◀

2.3.3 Stronger lower bounds for unbounded online mergers
In this section, we show that there is a real cost to pay when we aim for unbounded online
mergers. Namely, we show that when the merger is not aware of the set size n, it cannot
match the lower bound widthLB(n, d), even though we could match this bound knowing n

ahead of the time. In particular, we prove the following theorem.

▶ Theorem 22 (Stronger lower bound for depth-one unbounded online mergers). Let M be
an unbounded online merger (for N) whose depth is bounded by 1 (i.e., only one merge is
allowed for each element’s set). Then, wid[n] ̸≤ (2

√
2− Ω(1))

√
n.

To appreciate the bound of Theorem 22 we observe that when we know n ahead of the
time, we can beat this lower bound. As shown in Proposition 23, there is a merger satisfying
wid[n] ≤

√
2n. So, the lower bound of Theorem 22 is strictly larger than the optimal bound

for the setting of knowing set sizes.

▶ Proposition 23. Let n be a given positive integer. There is an online merger for [n] whose
depth is bounded by 1 and width is bounded by

√
2n.

Proof. From Proposition 14, we know MerWidw in Construction 11 with width w =
minBin(n, 2) is an online merger for [n] whose depth is bounded by 1. By definition, we know(

w+1
2

)
≤ n. We then have w ≤

√
8n+1−1

2 ≤
√

2n. ◀

Moreover, as shown in Proposition 24, Construction 15 matches this bound up to an
additive constant gap.

▶ Proposition 24. The unbounded merger of Construction 15 has wid[n] ≤ 2
√

2n for d = 1.

Proof. From Proposition 16, we know wid[n] ≤ 2·widthLB(n, 1) = 2·minBin(n, 2) ≤ 2
√

2n. ◀

The key tool we use is a special kind of depth one merger called 1-regular merger. First
recall that a stage is a sequence of consecutive rounds. Intuitively, a merger is 1-regular if
rounds can be divided into stages such that at the last round of every stage all trees added
during this stage are merged into one tree. Note that since the merger has depth one, no
trees are merged at times other than the last round of a stage.
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▶ Definition 25 (1-regular merger). Let M be an unbounded online merger (for N) whose
depth is bounded by 1. Let T = {t1 < t2 < t3 < · · · } be the set of all rounds where the merge
operation is performed. Let t0 = 0. We say M is 1-regular if at every ti ∈ T the set of
single-node trees {ti−1 + 1, ti−1 + 2, · · · , ti} are all merged into one set (i.e., tree of depth 1).

We first show that given any M whose depth is bounded by 1, there is a 1-regular M′

that is at least as good as M with respect to width.

▶ Lemma 26. Let M be a merger for N whose depth is bounded by 1. Then, there exists a
1-regular M′ for N such that the width of M′ is at most the width of M at every round n.

Proof. If M is already 1-regular, then we are done. Otherwise, let T = {t1 < t2 < t3 < · · · }
be the set of all rounds where the merge operation is performed by M. Let t0 = 0. M′ simply
merges {ti−1 + 1, ti−1 + 2, · · · , ti} at ti. At round ti ∈ T , M′ has only i trees while M has at
least i trees since it has performed at least i merge operations, and due to the depth being 1,
these merge operations are on separate nodes. At other times, since no merge operation is
performed, M has at least as many trees as M′ does. ◀

The following lemma is also useful for the proof of Theorem 22.

▶ Lemma 27. Let j > 2 be an integer, and d < 2 and c be two positive reals. Define the
function f(i) := i···j

(i−d)···(j−d) · c for arbitrary positive integer i > j. Then, f(i) = o(i2).

Proof. We first define the function g(i) := i···j
(i−2)···(j−2) · c for arbitrary positive integer i > j.

Note that we have g(i) = i·(i−1)
(j−1)·(j−2) · c. Therefore, we have g(i) = θ(i2). Then, it suffices to

prove that f(i) = o(g(i)).
Let γ be an arbitrary positive real number. We show that g(i) > γ · f(i) for sufficiently

large i. Equivalently, we prove that ln g(i)− ln f(i) > ln γ for sufficiently large i. We have

ln g(i)− ln f(i) = ln i− d

i− 2 + · · ·+ ln j − d

j − 2 =
i−2∑

k=j−2
ln

(
1 + 2− d

k

)
.

It suffices to show that the series
∑∞

k=j−2 ln(1 + 2−d
k ) diverges. To this end, we use

integral test to show that it diverges. Note that∫
ln

(
1 + 2− d

x

)
dx = (2− d) · ln |x + 2− d|+ x · ln

(
1 + 2− d

x

)
+ C.

Therefore, we have
∫ ∞

j−2 ln(1+ 2−d
x )dx =∞, which implies that

∑i−2
k=j−2 ln(1+ 2−d

k ) > ln γ

for sufficiently large i. ◀

Proof of Theorem 22. By Lemma 26, it suffices to prove the theorem for 1-regular mergers.
Therefore, we assume M is 1-regular. Let T = {t1 < t2 < t3 < · · · } be the set of all rounds
where M performs a merge operation. Let t0 = 0 and si = ti − ti−1 be the size of stage i.

We first consider the case where T is a finite set. Then, starting at some round, no merge
operation is ever performed, which means the width will be Θ(n).

Let d < 2 be an arbitrary positive real number. We now consider the case where T is
an infinite set and there are only finitely many i satisfying si ≥ d · ti

i . Then, there is a j

such that si < d · ti

i for i ≥ j. Note that si = ti − ti−1 < d · ti

i , which implies ti < i
i−d · ti−1.

We then have ti < i···j
(i−d)···(j−d) · tj−1. From Lemma 27, we know ti = o(i2), which means

i > ω(
√

ti). In this case, we know wid[ti] ≥ ω(
√

ti).
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Finally, we consider the case where T is an infinite set and there are infinitely many
i satisfying si ≥ d · ti

i . Let’s consider one such i. At round ti − 1, the width is at least
i− 1 + si− 1 > i + d · ti−1

i − 2 ≥ 2 ·
√

d · (ti − 1)− 2. Note that this holds for arbitrary d < 2,
which means that wid[n] ̸≤ (2

√
2− Ω(1))

√
n. Otherwise, there would be a constant d′ < 2

such that wid[n] ≤ 2
√

d′ · n for sufficiently large n, contradicting that wid[m] ≥ 2 ·
√

d ·m− 2
for a constant d > d′ and m = ti − 1, as proved above. ◀

3 RBE with optimal number of decryption updates

In this section, we observe that the same approach of using online merger for transparent
additive accumulators in Section B extends to registration based encryption schemes (RBEs),
while the length of the digests and number of witness updates would correspond to the length
of the public parameter and the number of decryption updates. Hence, we can obtain RBEs
with optimal number of decryption updates matching the lower bound of [22]. The basic
definitions of RBE and the primitives used in our construction can be found in Section A.
Roughly speaking, the construction is the same as the IO-based construction of [12], while
we use our own updates-optimal accumulator instead of the one by [25].

▶ Construction 28. We will use an IO scheme (Obf, Eval), and a SSB hash function system
(Hash, HGen) and a PKE scheme (G, E, D). Using them together with a merger M, we show
how to implement the subroutines of RBE according to Definition 37.

Stp(1κ)→ (pp0, aux0): This algorithm outputs pp0 = hk2 ← HGen(1κ, 2, 0) and aux = ∅
is empty. Then, initialize HMer (see Definition 43) using M and H. H is defined such
that H(Val(x1), . . . , Val(xi)) = Hash(hki, (Val(x1), . . . , Val(xi))). Note that here we have
only sampled hk2. If another key hki is needed in Reg because HMer needs to merge more
trees, Reg will generate the key on the fly by running HGen.
Reg[aux](ppn, id, pk)→ ppn+1: First add a new tree whose root has value Hash(hk2, (id, pk))
with id and pk as the children nodes. We then let HMer handles the merging of trees. If
another key hki is needed, run HGen(1κ, i, 0) to get the key. Then, output the list of pairs
of root and depth of all trees ((rt1, d1), . . . , (rtη, dη)) together with all keys hki as ppn+1.
Enc(pp, id, m) → ct: First parse pp to get a list of pairs of root and depth of all trees
((rt1, d1), . . . , (rtη, dη)). Generate programs P1, . . . , Pη where Pi works as follows:
Hardwired values: rti, di, (hk1, . . . , hkκ), m, id, r (the randomness)
Input: pth

1. Parse pth = ((ℓdi , rdi), . . . , (ℓ1, r1)), and if not possible, output ⊥.
2. If id ̸= ℓdi

, then output ⊥.
3. Compute tmpj−1 = Hash(hklenj , (ℓj , tmpj , rj)) for j = di, . . . , 1 where tmpdi

is the
empty string and lenj is the length of (ℓj , tmpj , rj). (Note that ℓj and rj are tuples.)
If tmp0 = rti, then output E(rdi

, m; r) by using rdi
as the public key and r as the

randomness, otherwise output ⊥.
Then, output ct := (pp, Obf(P1), . . . , Obf(Pη)) where Obf is IO obfuscation.
Updaux(pp, id)→ u: First locate the tree T having id as one of the leaves. If no such tree
exists, halt. Otherwise, let d be the depth of T and (pd, . . . , p0) be the path from pd, which
is id, to the root p0. Let ℓi (resp. ri) be the tuple of values of left (resp. right) siblings
of pi for i ∈ [d− 1]. Note that the sibling of id is pk. Let ℓd = id and rd = pk. Output
w = ((ℓd, rd), . . . , (ℓ1, r1)).
Dec(sk, u, ct) → m: Parse ct = (pp, Obf(P̄1), . . . , Obf(P̄η)). Form mi = Dsk(P̄i(u)) for
each program P̄i. Output the first mi ̸= ⊥.
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Completeness of Construction 28 is straightforward.

▶ Proposition 29 (Compactness and Efficiency of Construction 28). Construction 28 satisfies
the compactness requirements of Definition 38.

Proof. The length of public parameter is the sum of the length of keys, which is bounded
by κ · wid[n], and roots, which is again bounded by κ · wid[n], and depth, which is bounded
by wid[n] · log dep[n]. In total, it is bounded by (2 · κ + log dep[n]) · wid[n]. The number of
updates is bounded by dep[n]. The size of update for an accumulated value is the number
of trees that are merged with the tree it belongs times the length of the roots. Since the
depth is bounded by dep[n], we know at most dep[n] merges can happen. Since the width is
bounded by wid[n], we know at most wid[n] · dep[n] trees are merged. Therefore, the size of
update is bounded by κ · wid[n] · dep[n]. For efficiency, note that the total number of merges
during the addition of a value is bounded by wid[n] · dep[n]. Also note that one can use an
appropriate data structure that efficiently finds the tree an identity belongs. ◀

▶ Remark 30. By Corollary 21, we know that if we use the fully online merger in Construction
18 where d(n) = log n

log log n , the number of updates is bounded by log n
log log n and the length of

public parameter is poly(κ, log(n)), resolving the open question of [22].

▶ Proposition 31 (Security of Construction 28). Construction 28 satisfies the soundness
requirements of Definition 39.

Proof (Sketch). The proof is almost identical to the proof in [12]. The key idea is that
the index-hiding and somewhere statistically binding property forces all PPT algorithms to
behave as if the public key is statistically binding to the root of the tree. Then, obfuscation
and the semantic security of public key encryption guarantees that encryptions of different
messages are indistinguishable. We refer readers to [12] for details. ◀
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A Preliminaries

▶ Definition 32 (Forward DAGs). Let G = (VG, EG) be a directed acyclic graph (DAG)
with vertices VG = [n] (in case of being finite) or VG = N (in case of being infinite).
We write i ∈ G if i ∈ VG, ad we write (i, j) ∈ G if (i, j) ∈ EG (i.e., there is an edge
from i to j in G). We call G a forward DAG, if for all (i, j) ∈ G, we have i ≤ j. For
any vertex u, by deg+(u) = |{v | (u, v) ∈ G}| we denote the out-degree of u, and we let
deg+(G) = maxu∈G deg+(u).

▶ Definition 33 (Skipping sequences [22]). Let G be a forward DAG (see Definition 32). We
call S = {u1 < u2 < · · · < uk} ⊆ VG a skipping sequence if for every i ≤ k − 1 and every
edge (ui, v) ∈ G, it holds that: either v < ui+1 or v > uk (i.e., v /∈ {ui+1, ui+1 + 1, . . . , uk}).

▶ Theorem 34 (Skipping sequences in low-degree DAGs [22]). Let G be a forward DAG over
vertices [n], where n ≥

(
w+d
d+1

)
for w, d ∈ N, and that that deg+(G) ≤ d. Then, there exists a

skipping sequence in G of size at least w.

▶ Definition 35 (Indistinguishability obfuscation). A uniform PPT algorithm Obf is called an
indistinguishability obfuscator for a circuit class {Cκ}κ∈N (where each Cκ is a set indexed by
a security parameter κ) if the following holds:

Completeness. For all security parameters κ ∈ N and all circuits C ∈ Cκ, we obtain an
obfuscation with the same function:

Pr
Obf

[C ′ ≡ C : C ′ = Obf(1κ, C)] = 1.

https://doi.org/10.5220/0010337806610669
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Security. For any PPT distinguisher D, there exists a negligible function negl(·) such
that for all κ ∈ N, for all pairs of functionally equivalent circuits C1 ≡ C2 from the same
family C1, C2 ∈ Cκ,

|Pr
Obf

[D(1κ, Obf(1κ, C1)) = 1]− Pr
Obf

[D(1κ, Obf(1κ, C2)) = 2]| = 1.

▶ Definition 36 (SSB hash functions [23]). A somewhere statistically binding hash system
consists of two polynomial time algorithms HGen, Hash.

HGen(1κ, 1s, L, i)→ hk : This algorithm takes as input the security parameter 1κ, a block
size s, an input length L ≤ 2κ and an index i ∈ {0, . . . , L − 1} and outputs a hashing
key hk. Without loss of generality, we assume that s = κ. Therefore, we will not write s

explicitly.
Hash(hk, x) → y : This deterministic algorithm takes as input a hashing key hk and a
value x ∈ {0, 1}s·L and outputs a hash y ∈ {0, 1}κ.

We require the following properties:
Index hiding. We consider the following game between an attacker A and a challenger:

The attacker A(1κ) chooses parameters 1s, L and two indices i0, i1 ∈ {0, . . . , L− 1}.
The challenger chooses a bit b← {0, 1} and sets hk← HGen(1κ, 1s, L, ib).
The attacker A gets hk and outputs a bit b′.

We require that for any PPT attacker A we have |Pr[b = b′]− 1
2 | = negl(κ) in the above

game.
Somewhere statistically binding. Let x ∈ {0, 1}s·L and i ∈ {0, . . . , L − 1}. By x[i]
we denote the sub-string of x starting at s · i + 1 and ending at s · (i + 1). We say that
hk is statistically binding for an index i ∈ {0, . . . , L− 1} if there do not exist any values
x, x′ ∈ {0, 1}s·L with x[i] ̸= x′[i] such that Hash(hk, x) = Hash(hk, x′). We require that for
any parameters s, L and any integer i ∈ {0, . . . , L− 1} we have:

Pr
HGen

[hk is statistically binding for index i : hk← HGen(1κ, 1s, L, i)] ≥ 1− negl(κ).

A.1 Registration-Based Encryption
▶ Definition 37 (Syntax of RBE). PPT algorithms (Gen, Reg, Enc, Upd, Dec) form a
registration-based encryption (RBE for short) if they work together as follows.

Generating CRS. A common random string crs of length poly(κ) is publicly sampled at
the beginning, for the security parameter κ.
Key Generation. Gen(1κ)→ (pk, sk): The randomized algorithm Gen outputs a pair of
public and secret keys (pk, sk). The key generation algorithm is run by any honest party
locally who wants to register itself into the system.
Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic algorithm Reg takes as
input the CRS crs, current public parameter pp, a registering identity id and a public key
pk (supposedly for the identity id), and it outputs pp′ as the updated public parameters.
The Reg algorithm uses read and write access to auxiliary information aux which will be
updated into aux′ during the process of registration and helps with the efficiency of the
registration and updates (below). The system is initialized with pp, aux = ⊥.
Encryption. Enc(crs, pp, id, m)→ ct: The randomized algorithm Enc takes as input the
CRS crs, a public parameter pp, a recipient identity id, and a plaintext message m, and it
outputs a ciphertext ct.

ITC 2023
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Update. Updaux(pp, id, pk) → u: The deterministic algorithm Upd takes as input the
current public parameter pp, an identity id, and a public key pk. It has read only oracle
access to aux and generates an update information u that can help id to decrypt its
messages.
Decryption. Dec(sk, u, ct)→ m: The deterministic decryption algorithm Dec takes as
input a secret key sk, an update information u, and a ciphertext ct, and it outputs a
message m ∈ {0, 1}∗ or in {⊥, GetUpd}. The symbol ⊥ indicates a syntax error while
GetUpd indicates that more recent update information (than u) might be needed for
decryption.

The Reg and Upd algorithms are performed by the party called key curator, which we call
KC for short, and aux can be seen as the state held by the KC.

▶ Definition 38 (Completeness, compactness, and efficiency of RBE). Consider the following
game CompA(κ) between a challenger C and an interactive computationally unbounded
adversary A who is yet limited to poly(κ) rounds of interaction.
1. Initialization. C sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0, and

crs← Upoly(κ), and sends the sampled crs to A.
2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every iteration,
A chooses exactly one of the actions below to perform.
a. Registering a corrupted (non-target) identity. A sends some id /∈ D and pk to
C. C registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.

b. Registering the (uncorrupted) target identity. This step is allowed only if id∗ = ⊥.
In that case, A sends some id∗ /∈ D to C. C then samples (pk∗, sk∗)← Gen(1κ), updates
pp := Reg[aux](crs, pp, id∗, pk∗) and D := D ∪ {id∗}, and sends pk∗ to A.

c. Encrypting for the target identity. This step is allowed only if id∗ ̸= ⊥. In that
case, C sets t = t + 1. A sends mt ∈ {0, 1}∗ to C who then sets m′

t := mt and sends
back a corresponding ciphertext ctt ← Enc(crs, pp, id∗, mt) to A.

d. Decryption for the target identity. A sends a j ∈ [t] to C. C then lets
m′

j = Dec(sk∗, u, ctj). If m′
j = GetUpd, C gets u = Updaux(pp, id∗) and then

m′
j = Dec(sk∗, u, ctj).

Let n = |D| be the number of identities registered till a specific moment. We require the
following properties to hold for all such A (as specified above) and for all the moments during
the game CompA(κ).

Completeness. The adversary A wins, if there is some j ∈ [t] for which m′
j ̸= mj. We

require that Pr[Awins CompA(κ)] = negl(κ).
Parameterized compactness and efficiency. 4

Size of public parameter. |pp| = w(κ, n).
Number of updates. The total number of invocations of Upd for identity id∗ in Step
2(d) of the game CompA(κ) is at most d(κ, n).
Size of update. |u| ≤ poly(κ, w, d).
Runtime of registration and update. The running time of each invocation of Reg
and Upd is at most poly(κ, w, d).

▶ Definition 39 (Security of RBE). For any interactive PPT adversary A, consider the
following game SecA(κ) between A and a challenger C.

4 If both w(κ, n) and d(κ, n) are poly(κ, log n), then this becomes the standard definition.
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1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs← Upoly(κ) and sends the
sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every iteration,
A chooses exactly one of the actions below to perform.
a. Registering non-target identity. A sends some id /∈ D and pk to C. C registers

(id, pk) by pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.
b. Registering the target identity. This step can be run only if id∗ = ⊥. A

sends some id∗ /∈ D to C. C then samples (pk∗, sk∗) ← Gen(1κ), updates pp :=
Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗}, and sends pk∗ to A.

3. Encrypting for the target identity. If id∗ = ⊥, then A first sends some id∗ /∈ D to C
(this is for modeling encryptions for non-registered target identities.) Next A sends two
messages m0, m1 of the same length to C. Next, C generates ct ← Enc(crs, pp, id∗, mb),
where b← {0, 1} is a random bit, and sends ct to A.

4. The adversary A outputs a bit b′ and wins the game if b = b′.
An RBE scheme is secure if for all PPT A, Pr[Awins SecA(κ)] < 1

2 + negl(κ).

B Accumulators with optimal number of witness updates

An accumulator is a primitive in which a sequence of inputs x1, . . . , xn are added gradually
to a pool, while (1) there is a compact digest/public parameter that is the representative of
the added inputs {x1, . . . , xn}, and (2) using the right witness, and the digest, one can prove
the membership of xi to the set. Such accumulators are called additive accumulators [24].
In this section, we use our results about online mergers to study the relation between the
length of the digest and the number of updates for accumulators. Also, the accumulators
that we study are transparent. Namely, there is no secret state hold by the accumulator.

In the remainder of this section, we first give the formal definition of transparent additive
accumulators. Then, we give a general construction of such accumulators from collision
resistant hash functions and online mergers. Finally, by applying our results on online
merging, we will study the relation between the length of the digest and the number of times
that the witnesses of membership need to be updated in such accumulators.

▶ Definition 40 (Accumulators). An accumulator scheme consists of four algorithms.
Key Generation. Gen(1κ) → k : The randomized algorithm Gen takes as input the
security parameter 1κ and outputs an accumulator key k.
Addition. Add[aux](k, pp, v)→ pp′ : The deterministic algorithm Add takes as input an
accumulator key k, a digest pp and a value v, has read and write access to the auxiliary
information aux, and outputs a new digest pp′.
Witness update. Updaux(pp, v)→ w : The deterministic algorithm Upd takes as input a
digest pp, a value v, has read-only access to aux and outputs a witness w.
Verification. Ver(k, pp, v, w) → b : The deterministic algorithm Ver takes as input an
accumulator key k, a digest pp, a value v, a witness w and outputs a bit b ∈ {0, 1}.

▶ Definition 41 (Completeness of accumulators). For any interactive computationally un-
bounded adversary A that still has a limited poly(κ) round complexity, consider the following
game CompA(κ) between A and a challenger C.
1. Initialization. The challenger C sets pp = ⊥, aux = ⊥, t = ⊥, V = ∅, generates

k← Gen(1κ) and sends k to the adversary A.
2. Till A continues (which is at most poly(κ) steps), A chooses one of the following operations

to perform.
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a. Addition. A sends a value v /∈ V to C and C sets pp← Add[aux](k, pp, v) and adds v
to V.

b. Set target. A sends a value v ∈ V to C. If t ̸= ⊥, C does nothing. Otherwise, C sets
t← v.

c. Witness generation. If t = ⊥, C does nothing. Otherwise, C generates w ←
Updaux(pp, t).

The adversary A wins the game if Ver(k, pp, t, w) = 0 for at least once in Step 2c. We call an
accumulator scheme complete if Pr[A wins in CompA(κ)] = negl(κ) for any A.

Let n = |V| be the number of values added till a specific moment during the game CompA(κ).
We define the number of updates of an accumulator system at time n to be the number of
all possible different witnesses generated for value t in Step 2c.

Security requires that no PPT adversary can find a witness for values that are not added.

▶ Definition 42 (Security of accumulators). For any interactive PPT adversary A, consider
the following game SecA(κ) between A and a challenger C.
1. Initialization. The challenger C sets pp = ⊥, aux = ⊥, V = ∅, generates k← Gen(1κ)

and sends k to the adversary A.
2. Addition. Till A continues (which is at most poly(κ) steps), A sends a value v /∈ V to C

and C sets pp← Add[aux](k, pp, v) and adds v to V.
3. The adversary A outputs v /∈ V and a witness w and wins the game if Ver(k, pp, v, w) = 1.

We call an accumulator scheme secure if Pr[A wins in SecA(κ)] = negl(κ) for any PPT A.

To construct accumulators, we first construct a special kind of merger called hash tree
merger that has a hash function H as subroutine. The difference is that now the nodes in the
trees also have a string as its value. Let x be a node. For simplicity, we assume that every
node x is uniquely identified. We use Val(x) to denote its value. When merging a list of trees
whose roots are (rt1, . . . , rtk), the root of the new tree has value H(Val(rt1), . . . , Val(rtk)).

▶ Definition 43 (Hash tree merger). Let M be an online merger and H be a hash function.
At every round, the hash tree merger HMer(M, H) first uses M to merge trees. When a set
of trees whose roots are (rt1, . . . , rtk) are being merged, they will first be ordered according
to their unique identifiers. Without loss of generality, we can assume that rt1 < · · · < rtk.
Then, HMer(M, H) assigns the root of the new tree the value H(Val(rt1), . . . , Val(rtk)).

Now, we give the construction of accumulators from collision resistant hash functions,
where an online merger M is given as a subroutine. Looking ahead, the auxiliary information
aux will be a list of hash trees where the accumulated values are stored in the leaves of the
trees. The digest pp is simply the values of all the roots.

▶ Construction 44. Let M be an online merger and (Gen, Hash) be a collision resistant hash
function. Using them, we implement an accumulator according to Definition 40 as follows.

Gen(1κ)→ k : Sample and output a key k← Gen(1κ) for the function (Gen, Hash). Ini-
tialize HMer(M, H) such that H(Val(x1), . . . , Val(xt)) = 1||Hash(k, (Val(x1), . . . , Val(xt)))
for arbitrary t ∈ N.
Add[aux](k, pp, v)→ pp′ : Parse aux as a list of trees. Add a new tree with a single node
whose value is 0||v. Let HMer handle the merging. Output the values of the roots of the
trees as pp′.
Updaux(pp, v)→ w : First parse aux as a list of hash trees and locate one tree containing a
leaf of value 0||v. If no such tree exists, halt. Otherwise, let d be the depth of the tree and
(pd, . . . , p0) be the path from pd, which has value 0||v, to the root p0. Let ℓi (resp. ri) be
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the tuple of values of left (resp. right) siblings of pi for i ∈ [d]. Note that when computing
hashes, we first order the roots according to their identifiers. Thus, it is legitimate to talk
about tuples of left siblings and right siblings. Output w = ((ℓd, rd), . . . , (ℓ1, r1)).
Ver(k, pp, v, w)→ b : First parse pp = {rt1, . . . , rtk} and w = ((ℓd, rd), . . . , (ℓ1, r1)). Then,
compute tmpi−1 = 1||Hash(k, (ℓi, tmpi, ri)) for i = d, . . . , 1, where tmpd = 0||v. Output 1
if tmp0 ∈ pp and 0 otherwise.

Completeness of Construction 44 is straightforward. We now bound the length of digest
and number of updates.

▶ Proposition 45 (Length of digest and number of updates of Construction 44). In Construc-
tion 44, after adding n inputs, the length of digest is bounded by (κ + 1) ·w[n] and the number
of update is bounded by dep[n].

Proof. The length of digest equals the number of trees times the length of the root, which is
bounded by (κ + 1) · w[n]. An update for an accumulated value is required only when the
tree it belongs get merged. Therefore, the number of update is bounded by the depth of the
merger which is dep[n]. ◀

We now prove that Construction 44 satisfies the security requirement of Definition 42.

▶ Proposition 46 (Security of Construction 44). Construction 44 is a secure accumulator
according to Definition 42.

Proof. It suffices to show that when A wins SecA(κ), a collision for the underlying hash
function is found. Let v be the value outputted by A. Note that v can not be one
of the trees which has only a single node. Otherwise, it means A has already added
v. Therefore, A must have also outputted a witness w = ((ℓd′ , rd′), . . . , (ℓ1, r1)). Let
tmpi−1 = 1||Hash(k, (ℓi, tmpi, ri)) for i = d′, . . . , 1 where tmpd′ = 0||v. Since v is accepted,
we know there must exist a tree T whose root rt = tmp0. Let d be the depth of T . Let
{tmpk, . . . , tmp0} be the longest sub-path of {tmpd′ , . . . , tmp0} that exist in T .
1. Suppose k = d and k = d′. This contradicts the assumption that A wins the game as v

must be one of the leaves.
2. Suppose k = d and k < d′. Note that tmpk begins with 1 while the values of all nodes of

depth k in T begins with 0, which means we have found a collision.
3. Suppose k < d and k = d′. Note that tmpk begins with 0 while the values of all nodes of

depth k in T begins with 1, which means we have found a collision.
4. Suppose k < d and k < d′. In this case we have also found a collision because tmpk+1 ̸=

tmp′
k+1. ◀
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