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Abstract
In this paper, we introduce the imperfect shuffle differential privacy model, where messages sent
from users are shuffled in an almost uniform manner before being observed by a curator for private
aggregation. We then consider the private summation problem. We show that the standard split-
and-mix protocol by Ishai et. al. [FOCS 2006] can be adapted to achieve near-optimal utility bounds
in the imperfect shuffle model. Specifically, we show that surprisingly, there is no additional error
overhead necessary in the imperfect shuffle model.
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1 Introduction

Differential privacy (DP) [18] has emerged as a popular concept that mathematically quantifies
the privacy of statistics-releasing mechanisms. Consequently, DP mechanisms have been
recently deployed in industry [29, 21, 35, 16], as well as by government agencies such as the
US Census Bureau [2]. DP is parameterized by ε and δ, where ε is a privacy loss parameter
that is generally a small positive constant such as 1 and δ is an approximation parameter or
“failure” probability that is typically (smaller than) inverse-polynomial in n:

▶ Definition 1 (Differential privacy; [18, 17]). Given ε > 0 and δ ∈ (0, 1), a randomized
algorithm A : X → Y is (ε, δ)-differentially private if, for every neighboring datasets x and
x′, and for all S ⊆ Y , Pr [A(x) ∈ S] ≤ eε · Pr [A(x′) ∈ S] + δ.

In this paper, we study the real summation problem, where each of n parties holds
a number xi ∈ [0, 1] for all i ∈ [n] and the goal is to privately (approximately) compute∑n

i=1 xi. Due to its fundamental nature, the private real summation problem has a wide
range of applications, such as private distributed mean estimation [40, 10], e.g., in federated
learning [33, 27, 31], private stochastic gradient descent [37, 8, 1, 3, 13], databases and
information systems [34, 43], and clustering [39, 38].
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17:2 Differentially Private Aggregation via Imperfect Shuffling

In the central model of DP, where a curator is given full access to the raw data in order
to release the private statistic or data structure, the Laplace mechanism [18] can achieve, for
real summation, additive error O

( 1
ε

)
, which is known to be nearly optimal for ε ≤ 1 [26].

However, the ability for the curator to observe the full data is undesirable in many
commercial settings, where the users do not want their raw data to be sent to a central
curator. To address this shortcoming, the local model of DP [32, 42] (LDP) demands that
all messages sent from an individual user to the curator is private. Unfortunately, although
the local model enjoys near-minimal trust assumptions, numerous basic tasks provably must
suffer from significantly larger estimation errors compared to their counterparts in the central
model. For the real summation problem, [9] achieves additive error Oε(

√
n) and it is known

that smaller error bounds cannot be achieved [12].
Consequently, the shuffle model [11, 20, 14] of DP was introduced as an intermediary

between the generous central model and the strict local model. In the shuffle model, the
messages sent from the users are randomly permuted before being observed by the curator, in
an encode-shuffle-analyze architecture. Surprisingly, when users are allowed to send multiple
messages, there exist protocols in the shuffle model of DP that achieve additive error Oε(1)
for the private real summation problem [25, 6, 24]. Unfortunately, practical applications can
lack the ideal settings that provide the full assumptions required by the shuffle model of DP.

1.1 Model and Motivation
We first define a natural generalization of the uniform shuffler that tolerates imperfections.
Let Π be the set of permutations on [n]. For π, π′ ∈ Π, we define Swap(π, π′) to be the
minimum number of coordinate swaps1 that can be applied to π to obtain π′.

▶ Definition 2 (γ-Imperfect Shuffler). For a distortion parameter γ > 0, we say that S is a
γ-imperfect shuffler if, for all π, π′ ∈ Π,

Pr [S = π] ≤ eγ·Swap(π,π′)Pr [S = π′] .

We call an output from such a shuffler a γ-imperfect shuffle or a γ-I-shuffle, for short. Here,
γ represents an upper bound on the multiplicative distortion of the output probabilities of
the distributions of the shuffler, i.e., how the distribution deviates from a perfectly symmetric
shuffler. For example, γ = 0 corresponds to a perfectly symmetric shuffler while γ → ∞
represents almost no guarantee from the shuffler.

To understand the motivation behind this definition, consider a setting where a number
of user devices collect statistics to be sent to an intermediate buffer, which is ultimately sent
to a central curator for processing. The devices may choose to perform this collection over
different periods of time, so that immediately sending their statistics over to the curator
could reveal information about their identity, through the timestamp.

For example, consider a setting where sensors are monitoring traffic in US cities during
peak afternoon hours. Then reports that are received earlier in the day by the curator are
more likely to correspond to cities that are in the east, while reports that are received later
in the day by the curator are more likely to correspond to cities in the west. To mitigate
this, the sensors instead could choose a universally fixed hour during the day to broadcast
their reports from the previous day, at some random time during the hour.

1 We say that π′ results from an application of a coordinate swap on π iff π(i) = π′(i) on all except two
i ∈ [n].
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Specifically, each user i ∈ [n] could choose a time ti, say normalized without loss of
generality to ti ∈ [0, 1], and send their messages at time ti. If the ti are chosen uniformly
at random and this protocol was executed perfectly, it would result in a uniform shuffle
of the messages for a buffer that strips both the source information and the exact time
of arrival, e.g., [41].2 However, issues may arise such as different clock skews, where users
may not perfectly synchronize the fixed hour during which the messages should be sent, or
communication delays, either because an intermediate link has failed or simply because the
latency varies across different networks. It is unclear how to model the imperfect shuffle
resulting from these issues using the standard shuffle model.

For a better handle on modeling the imperfection, we can assume that each ti is ad-
versarially chosen in [0, 1]. Moreover, each message transmission time can now be altered
by a random offset from the intended release time, where the offset is drawn, e.g., from a
Laplacian distribution. Specifically, each user i ∈ [n] draws an offset τi from the (centered)
Laplacian distribution with scale 2

γ , and sends their message at time ti + τi instead of at
time ti.

In other words, each user i ∈ [n] sends their message at time ti + τi, which is determined
by the two following quantities:

(1) ti is an arbitrary and possibly adversarially chosen offset due to nature or some other
external source, e.g., clock skews, transmission failure, communication delay.

(2) τi is an internal source of noise that the protocol can sample from a predetermined
distribution to mitigate the negative privacy effects of ti.

Note that whereas two permutations π, π′ on [n] with swap distance one were equally
likely to be output by the shuffler, this may now no longer be the case. On the other hand, for
fixed i, j ∈ [n] and conditioning on the values of {t1, τ1, . . . , tn, τn}∖{ti, τi, tj , τj}, we can see
that for a, b ∈ [n], the probability that ta + τa ≤ ti + τi ≤ ta+1 + τa+1 and tb + τb ≤ tj + τj ≤
tb+1 + τb+1 is within an eγ factor of the probability that ta + τa ≤ tj + τj ≤ ta+1 + τa+1 and
tb + τb ≤ ti + τi ≤ tb+1 + τb+1.

Specifically, let E1 be the event that τi ∈ [ta + τa − ti, ta+1 + τa+1 − ti], where τi is
a (centered) Laplace random variable and scale 2

γ . Similarly, let E2 be the event that
τj ∈ [tb + τb − tj , tb+1 + τb+1 − tj ] where τj is a (centered) Laplace random variable and scale
2
γ . Furthermore, let E3 be the event that τj ∈ [ta +τa −tj , ta+1 +τa+1 −tj ] and E4 be the event
that τi ∈ [tb + τb − ti, tb+1 + τb+1 − ti]. Then by the properties of the Laplace distribution
and the assumption that ti, tj ∈ [0, 1], we have Pr [E1 ∧ E2] = Pr [E1] Pr [E2] ≤ (eγ/2 ·
Pr [E3])(eγ/2 · Pr [E4]) = eγ · Pr [E3 ∧ E4] . Thus, the resulting distribution over permutations
is captured by the γ-I-shuffle model.

We can naturally generalize this setting to the model where each user sends m messages,
e.g., m buffers collect messages from n users, which results in times {ti,j}i∈[n],j∈[m] and
offsets {τi,j}i∈[n],j∈[m]. Formally, for m rounds of messages for the n users, {mi,j}i∈[n],j∈[m],
a separate permutation πj drawn from a γ-imperfect shuffler is used to shuffle the messages
{mi,j}i∈[n], for each j ∈ [m]. For example, {mi,1}i∈[n] is shuffled according to a permutation
π1 drawn from a γ-imperfect shuffler, {mi,2}i∈[n] is shuffled according to an independent
permutation π2 drawn from the same γ-imperfect shuffler, and so on and so forth.

2 We assume in this example that the buffer can queue the messages, and then forward them to the
analyst at some point of time, but that it cannot further shuffle them. The (imperfect) shuffling we
consider stems solely from the randomization of the transmission time of the messages by the users.
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We remark that the above model is sometimes referred to as the m-parallel shuffling
model; another model that has been considered in literature is one where all the mn messages
are shuffled together using a single shuffler. We only focus on the former in this paper. It
remains an interesting open question whether our results can be extended to the latter model.

1.2 Our Contributions
Surprisingly, we present a protocol for the real summation problem that matches the utility
bounds of the best protocols in the shuffle model. Thus, we show that there is no additional
error overhead necessary in the γ-I-shuffle model, i.e., there is no utility loss due to the
imperfect shuffler.

▶ Theorem 3. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. Then there exists an

(ε, δ)-DP protocol for summation in the γ-I-shuffle model with expected absolute error O
( 1

ε

)
and m = O

(
e4γ + e4γ (log 1

δ +log n)
log n

)
messages per party. Each message uses O (log q) bits, for

q =
⌈
2n3/2⌉.

Observe that when δ is inverse-polynomial in n and the distortion parameter γ is a
constant O (1), then the number of messages m sent by each player in Theorem 3 is a
constant. Moreover, under these settings, Theorem 3 recovers the guarantees in the standard
shuffle model from [6, 25], though we remark that more communication efficient protocols [24]
are known in the standard shuffle model across more general settings. Regardless, we again
emphasize that the privacy and utility guarantees of the protocol are independent of the
distortion parameter γ.

1.3 Overview of our Techniques
In this section, we describe both our protocol for private real summation in the γ-I-shuffle
model and the corresponding analysis for correctness and privacy.

A natural starting point is the recent framework by [44, 45], which achieves amplification
of privacy using differentially oblivious (DO) shufflers that nearly match amplification of
privacy results using fully anonymous shufflers [20, 4, 14, 22]. Unfortunately, the framework
crucially uses LDP protocols, which are known to not give optimal bounds even with fully
anonymous shufflers. For instance, [6, 14, 5] showed that any single-message shuffled protocol
for summation based on LDP protocols must exhibit mean squared error Ω(n1/3) or absolute
error Ω(n1/6).

Another natural approach is to adapt recent works for private real summation in the
shuffle model, e.g., [25, 24]. One challenge in generalizing these proofs is that they often
leverage the fully anonymous shuffler by analyzing a random sample from an alternate view
of the output of the local randomizers, which often have some algebraic or combinatorial
interpretation that facilitates the proof of specific desirable properties. However, these
properties often seem substantially more difficult to prove once the symmetry of the fully
anonymous shuffler is lost. In fact, we do not even know the mass that the γ-imperfect
shuffler places on each permutation.

From private real summation to statistical security of summation on fixed fields. We
first use an observation from [6] that reduces the problem of private real summation to
the problem of private summation on a fixed field of size q, so that each user has an input
xi ∈ Fq for all i ∈ [n]. We then consider the well-known split-and-mix protocol [30], where
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each user i outputs a set of m messages xi,1, . . . , xi,m ∈ Fq uniformly at random conditioned
on xi,1 + . . . + xi,m = xi. For the private summation on a fixed field problem, we adapt
a well-known reduction [6] for the split-and-mix protocol in the shuffle DP model to the
notion of statistical security in the γ-I-shuffle model. Statistical security demands small total
variation between the output of a protocol on input x and input x′, if

∑n
i=1 xi =

∑n
i=1 x

′
i.

In other words, it suffices to show that the output distribution looks “similar” for two inputs
with the same sum. See Definition 5 for a formal definition of statistical security.

To show statistical security, we first upper-bound the total variation distance in terms of
the probability that two independent instances of the same protocol with the same input give
the same output. Balle et al. [6] use a similar approach, but then utilizes the symmetry of the
fully anonymous shuffler to further upper-bound this quantity in terms of the probability that
R⃗(X⃗) = S ◦ R⃗′(X⃗), where X⃗ = (x1, . . . , xn) is the input vector, R⃗ and R⃗′ are independent
instances of the local randomizer, and S is an instance of the uniform shuffler. We do not
have access to such symmetries in the γ-I-shuffle model or even explicit probabilities that
the γ-imperfect shuffler places on each permutation.

Connected components of a communication graph. Instead, we first upper-bound the
total variation distance by R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗), where S−1 is the inverse of an instance
of a γ-imperfect shuffle and S ′ is an independent instance of the same γ-imperfect shuffle.
Intuitively, R⃗(X⃗) and S−1 ◦ S ′ ◦ R⃗′(X⃗) can look very different if there exists a large number
of users whose messages are not shuffled with those of other users. Formally, this can be
captured by looking at the number of connected components in the communication graph
of S−1 ◦ S ′ ◦ R⃗′(X⃗), so that there exists an edge connecting users i and j if the protocol
swaps one of their messages. Hence, evaluating the number of connected components in the
communication graph is closely related to analyzing the probability that there is no edge
between S and [n] ∖ S, for a given set S ⊆ [n].

Although this quantity would be somewhat straightforward to evaluate for a uniform
shuffler [6], it seems more challenging to evaluate for γ-imperfect shufflers, since we do not
have explicit probabilities for each permutation. Therefore, we develop a novel coupling
argument to relate the probability that there is no edge between S and [n] ∖ S in the
γ-I-shuffle model to the probability of this event in the shuffle model. In particular, a specific
technical challenge that our argument handles is when both S and [n]∖S has large cardinality,
because then there can be a permutation π that swaps many coordinates while still leaving
S and [n] ∖ S disconnected. However, if we simply relate the probability of Π in the shuffle
and the γ-I-shuffle model, we incur a gap of et·γ , where γ is the distortion parameter and t

is the number of swaps by Π, which can have size Ω(n). Thus without additional care, this
gap can overwhelm the probability achieved from the coupling argument. We circumvent
this issue by considering a subset of S with size k and coupling the “good” permutations in
the shuffle and the γ-I-shuffle model, which results in a smaller gap of ek·γ . For more details,
see Lemma 26.

Putting things together. At this point, we are almost done. Unfortunately, our coupling
only addresses the case where a single imperfect shuffle is performed on a local randomizer,
but we require the bound for the composition S−1 ◦S ′ ◦R⃗′(X⃗), which seems significantly more
challenging because communication between users i and j under S ′ may be “erased” by S−1.
Instead, we show a simple observation for γ-imperfect shuffling, which states that if S,S ′

are two shufflers such that S is a γ-imperfect shuffler, then S ′ ◦ S is a γ-imperfect shuffler.
This statement, presented in Lemma 23, can be considered as a post-processing preservation

ITC 2023



17:6 Differentially Private Aggregation via Imperfect Shuffling

property of γ-imperfect shuffling. In light of this statement, we can now view S−1 ◦S ′ ◦R⃗′(X⃗)
as a single γ-imperfect shuffler applied to the local randomizer, and use our new results
upper-bounding the number of connected components in the resulting communication graph
to ultimately show σ-security.

1.4 Preliminaries
For an integer n > 0, we define [n] := {1, . . . , n}.

▶ Definition 4 (Total variation distance). Given probability measures µ, ν on a domain Ω,
their total variation distance is defined by TVD(µ, ν) = 1

2 ∥µ− ν∥1 = 1
2
∑

x∈Ω|µ(x) − ν(x)|.

▶ Definition 5 (σ-security). Given a security parameter σ > 0, a protocol P is σ-secure for
computing a function f : X n → Z if, for any x, x′ ∈ X n such that f(x) = f(x′), we have
TVD(P(x),P(x′)) ≤ 2−σ.

Recall the following two well-known properties of DP:

▶ Theorem 6 (Basic Composition, e.g., [19]). Let ε, δ ≥ 0. Any mechanism that permits k
adaptive interactions with mechanisms that preserve (ε, δ)-DP is (kε, kδ)-DP.

▶ Theorem 7 (Post-processing [19]). Let M : U∗ → X be an (ε, δ)-DP algorithm. Then, for
any arbitrary random mapping g : X → X ′, we have that g(M(x)) is (ε, δ)-DP.

We use Ber(p) to denote the Bernoulli distribution with parameter p and use DLap(α)
to denote the discrete Laplace distribution, so that Z ∼ DLap(α) has the probability mass
function Pr [Z = k] ∝ α|k| for k ∈ Z. We use Polya(r, p) to denote the Polya distribution
with parameter r > 0, p ∈ (0, 1), which induces the probability density function k 7→(

k+r−1
k

)
pk(1 − p)r for k ∈ Z≥0. We require the following equivalence between a discrete

Laplacian random variable and the sum of a differences of Polya random variables.

▶ Fact 8. Let x1, . . . , xn, y1, . . . , yn ∼ Polya
( 1

n , α
)
. Then z =

∑n
i=1(xi − yi) ∼ DLap(α).

We also require the following property about randomized rounding.

▶ Lemma 9 ([4]). Given a precision p ≥ 1, let x1, . . . , xn ∈ R and yi = ⌊xip⌋+Ber(xip−⌊xip⌋)

for each i ∈ [n]. Then E
[(∑n

i=1

(
xi − yi

p

))2
]

≤ n
4p2 .

1.5 Related Work
To amplify the privacy, the trusted shuffler is the key component of the shuffle model,
which in some sense only shifts the point of vulnerability from the curator to the shuffler,
particularly in the case where the shuffler may be colluding with the curator. Hence among
the various relaxations for distributed DP protocols, e.g., [7, 15], the DO shuffle model has
been recently proposed [36, 28] to permit some privacy leakage in the shuffling stage, called
a DO shuffle. In fact, [36, 28] showed that DO shuffling can be more efficient to achieve than
a fully anonymous shuffle while [44, 45] showed that locally private protocols can be used in
conjunction with a DO shuffler to achieve almost the same privacy amplification bounds as
with a fully anonymous shuffler, up to a small additive loss resulting from the DO shuffle.
However, the best known results in the shuffle model of DP do not utilize LDP protocols,
and thus cannot directly be applied in the framework of [44, 45].
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2 A Simple Reduction

In this section, we briefly describe a simple reduction for showing amplification of privacy
for imperfect shuffling. The result can be viewed as in the same spirit as similar privacy
amplification statements, e.g., [22, 44, 23], but for imperfect shuffling. In particular, the
following well-known result achieves privacy amplification for local randomizers in the shuffle
model:

▶ Theorem 10 ([22]). For any domain D and i ∈ [n], let R(i) : S(1) × . . .×S(i−1) ×D → S(i),
where S(i) is the range space of R(i), such that R(i)(z1:i−1, ·) is an ε0-DP local randomizer
for all values of auxiliary inputs z1:i−1 ∈ S(1) × . . . × S(i−1). Let As : Dn → S(1) ×
. . . × S(n) be the algorithm that given a dataset x1:n ∈ Dn, samples a uniform random
permutation π over [n] and sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n] and
outputs z1:n. Then for any δ ∈ [0, 1] such that ε0 ≤ log

(
n

16 log(2/δ)

)
, As is (ε, δ)-DP for

ε ≤ log
(

1 + eε0 −1
eε0 +1

(
8
√

eε0 log(4/δ)√
n

))
.

We would like to show privacy amplification statements for the imperfect shuffle model
that are qualitatively similar to Theorem 10. To that end, we first recall the following
definition of DO shufflers.

▶ Definition 11 (Differentially Oblivious Shuffle). A shuffle protocol is (ε, δ)-differentially
oblivious if for all adversaries V, all π, π′ ∈ Π, and all subsets S of the view space,
Pr
[
ViewV(π) ∈ S

]
≤ eε·Swap(π,π′)Pr

[
ViewV(π′) ∈ S

]
+ δ.

Zhou and Shi [44] showed that DO shufflers also amplify privacy.

▶ Theorem 12 (Theorem 1 in [44]). For any domain D and range space S, i ∈ [n],
let R(1), . . . ,R(n) : D → S be ε0-DP local randomizers and let As be a (ε1, δ1)-DO
shuffler. Then the composed protocol As(R(1), . . . ,R(n)) is (ε + ε1, δ + δ1)-DP for ε =

O
(

(1−eε0 )eε0/2
√

log(1/δ)√
n

)
.

It turns out that imperfect shufflers can be parametrized by DO shufflers, i.e., imperfect
shufflers are a specific form of DO shufflers. Therefore, we can immediately apply the previous
statement to obtain the following statement for privacy amplification for imperfect shufflers.

▶ Theorem 13. For any domain D and range space S, i ∈ [n], let R(1), . . . ,R(n) : D → S
be ε0-DP local randomizers and let As be a γ-imperfect shuffler. Then the composed protocol

As(R(1), . . . ,R(n)) is (ε+ γ, δ)-DP for ε = O
(

(1−eε0 )eε0/2
√

log(1/δ)√
n

)
.

Proof. By the definition of γ-imperfect shuffle, we have that for all π, π′ ∈ Π, Pr [S = π] ≤
eγ·Swap(π,π′)Pr [S = π′] . Since no additional information is leaked by the shuffler, then for
all adversaries V and all subsets S of the view space,

Pr
[
ViewV(π) ∈ S

]
≤ eγ·Swap(π,π′)Pr

[
ViewV(π′) ∈ S

]
.

In other words, the γ-imperfect shuffler is a (γ, 0)-DO shuffler. Thus by Theorem 12, the

composed protocol As(R(1), . . . ,R(n)) is (ε+γ, δ)-DP for ε = O
(

(1−eε0 )eε0/2
√

log(1/δ)√
n

)
. ◀

ITC 2023



17:8 Differentially Private Aggregation via Imperfect Shuffling

3 Differentially Private Summation

In this section, we first introduce the structural statements necessary to argue privacy for
the standard split-and-mix protocol [30]. We then assume correctness of these statements,
deferring their proofs to subsequent sections, and we prove the guarantees of Theorem 3. We
also give an application to private vector aggregation as a simple corollary of Theorem 3.

We first relate DP protocols for summation under a γ-imperfect shuffler to σ-secure
protocols. Lemma 4.1 in [4] showed this relationship for uniform shufflers. It turns out their
proof extends to γ-imperfect shufflers as well.

▶ Lemma 14 (Lemma 4.1 in [4]). Given a σ-secure protocol in the γ-I-shuffle model for
n-party private summation on Zq such that each player sends f(n, q, σ) bits of messages,
there exists an (ε, (1 + eε)2−σ−1)-DP protocol for any ε ≤ O(1) in the γ-I-shuffle model for
n-party private summation on real numbers with expected absolute error O

( 1
ε

)
such that each

player sends f(n,O(n3/2), σ) bits of messages.

In Section 4, we prove the following guarantees about the split-and-mix protocol from [30].

▶ Theorem 15. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. For worst-case

statistical security with parameter σ, it suffices to use m = O
(
e4γ + e4γ (σ+log n)

log n

)
messages,

where each message has O (log q) bits, for q =
⌈
2n3/2⌉.

By Lemma 14 and Theorem 15, we have our main statement:

▶ Theorem 3. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. Then there exists an

(ε, δ)-DP protocol for summation in the γ-I-shuffle model with expected absolute error O
( 1

ε

)
and m = O

(
e4γ + e4γ (log 1

δ +log n)
log n

)
messages per party. Each message uses O (log q) bits, for

q =
⌈
2n3/2⌉.

Applications to private vector summation. An immediate application of our results is to
the problem of private vector aggregation, where n parties have vectors x⃗1, . . . , x⃗n ∈ [0, 1]d
and the goal is to privately compute X⃗ =

∑n
i=1 x⃗i ∈ Rd. Given a protocol P for private

summation where n players each send m messages, the n players can perform a protocol P ′

for vector aggregation by performing P on each of their d coordinates. In particular, the n
players can first perform P on the first coordinate of their vectors, then perform P on the
second coordinate of their vectors, and so on and so forth, by sending md messages in total.
Equivalently, the n players can perform P on a field of size qd rather than size q and just
send m messages in total. However, the total communication size is still the same, because
each message increases by a factor of d due to the larger field size. Thus we consider the
approach where the n players perform P on each of the d coordinates.

To argue privacy, we observe that the n players run d iterations of the protocol P, once
for each of the coordinates. By composition of DP, i.e., Theorem 6, to guarantee ε-privacy
for the overall protocol, it suffices to run each of the d iterations with privacy ε′ = ε

d and
failure probability δ′ = δ

d . By post-processing of DP, i.e., Theorem 7, the resulting vector
where each coordinate is computed using the corresponding protocol is (ε, δ)-DP.

Then as a corollary to Theorem 3 with privacy parameter ε′ = ε
d and failure probability

δ′ = δ
d , we obtain:
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▶ Theorem 16. Let n ≥ 19, d ≥ 1, ε > 0 be a (constant) privacy parameter, and
γ ≤ log log n

80 be a distortion parameter. Then there exists an (ε, δ)-DP protocol for vec-
tor summation in the γ-I-shuffle model with expected absolute error O

(
d
ε

)
per coordinate and

m = O
(
d
(
e4γ + e4γ (log d

δ +log n)
log n

))
messages per party. Each message uses O (log q) bits, for

q =
⌈
2n3/2⌉.

4 Security of Split-and-Mix Protocol

In this section, we prove the σ-security of the split-and-mix protocol. The proof largely
attempts to follow the outline of the split-and-mix protocol analysis for private aggregation
by [4], which first reduces from worst-case input to average-case input and then analyzes the
connectivity of the resulting communication graph induced by a uniform shuffle.

We similarly first reduce from worst-case input to average-case input and then analyze
the connectivity of the resulting communication graph induced by a uniform shuffle. The
former appears in Section 4.1 and the latter appears in Section 4.2.

However, the main challenge is that the symmetric properties of the uniform shuffler
is often crucially utilized in various steps of the approach. Unfortunately, these properties
do not often seem to translate to γ-imperfect shufflers, where we might not even know the
mass that is placed on each permutation. Thus we need to handle a number of technical
challenges to recover qualitatively similar structural properties to the uniform shuffling model.
Along the way, we show that the composition of two shufflers, where the inner shuffler is a
γ-imperfect shuffler, is also a γ-imperfect shuffler with the same parameter, which can be
interpreted as a post-processing statement for γ-imperfect shuffling.

We first formally define the split-and-mix protocol:

▶ Definition 17 (Split-and-Mix Protocol, e.g., [30]). Given an integer parameter m ≥ 1, the
m-message n-player split-and-mix protocol Pm,n is defined as follows. Each player i outputs
a set of m messages xi,1, . . . , xi,m uniformly at random conditioned on xi,1 + . . .+ xi,m = xi.
For each j ∈ [m], the set of messages x1,j , . . . , xn,j are then swapped according to a γ-imperfect
shuffler S(j).

4.1 Worst-case to Average-case Reduction
In this section, we show a reduction from worst-case input to average-case input. In other
words, rather than analyze the split-and-mix protocol over the worst-case input, we show it
suffices to analyze the expected performance of the split-and-mix protocol across all possible
inputs. The approach is nearly identical to that of [6], but they can further simplify their
final expression due to the symmetric properties of the uniform shuffler, which do not hold
for the γ-imperfect shuffler.

Let Pm,n denote the m-message n-player split-and-mix protocol and let P̃m,n be defined
as follows. Each player i outputs a set of m+1 messages xi,1, . . . , xi,m+1 uniformly at random
conditioned on xi,1 + . . . + xi,m+1 = xi. For each i ∈ [n], we use the notation Rm(xi) =
(xi,1, . . . , xi,m) to denote the choice of the m messages for player i. Let G = Fq and for j ∈ [m],
let S(j) : Gn → Gn be independent shufflers. Then the output of P̃m,n is S(j) applied to the
first m messages of each player, concatenated with the unshuffled final message of each player,
i.e., P̃m,n(x1, . . . , xn) = S(1)(x1,1, . . . , xn,1) ◦ . . . ◦ S(m)(x1,m, . . . , xn,m) ◦x1,m+1, . . . , xn,m+1.

We first reduce the problem to average-case statistical security using the approach of
Lemma 6.1 in [6]. Formally, we say that a protocol Pm,n provides average-case statistical
security with parameter σ if EX⃗,X⃗′ [TVD|X⃗,X⃗′(Pm,n(X⃗),Pm,n(X⃗′))] ≤ 2−σ, where X⃗ and X⃗′ are
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17:10 Differentially Private Aggregation via Imperfect Shuffling

each drawn uniformly at random from all pairs of vectors in Gn with the same sum. Here we
use the notation TVD|X⃗,X⃗′ to denote the total variation distance between two distributions
conditioned on fixings of X⃗ and X⃗′.

▶ Lemma 18. Suppose Pm,n provides average-case statistical security with parameter σ, then
Pm+1,n and P̃m,n provide worst-case statistical security with parameter σ.

Proof. Let x⃗ and x⃗′ be a pair of vectors in Gn with the same sum. Given an output of
P̃m,n(x⃗), the protocol Pm+1,n(x⃗) can be simulated by using an additional application of Rm+1
to randomly permute the last message of each of the players according to the distribution of
the γ-imperfect shuffle. Hence, TVD(Pm+1,n(x⃗),Pm+1,n(x⃗′)) ≤ TVD(P̃m,n(x⃗), P̃m,n(x⃗′)). It
thus suffices to upper bound the worst-case statistical security of P̃m,n by σ.

The worst-case security of P̃m,n is reduced to the average-case security of P̃m,n by noting
that the addition of the (m+1)st message to each player can effectively be viewed as adding a
random value to each player’s input and thus transforming each input value xi into a uniformly
random value in G. More formally, consider the definition Rm+1(x) = (Rm(x− U),U), for
x ∈ G, where U is a uniformly random element of G.

Since x⃗ − U⃗ is a uniformly random vector in Gn, then we can couple the randomness
observed from two instances U⃗, U⃗′ resulting from two independent executions of Pm,n with
two inputs having the same sum. Therefore,

TVD(P̃m+1,n(x⃗), P̃m+1,n(x⃗′)) = TVD((Pm,n(x⃗− U⃗), U⃗), (Pm,n(x⃗′ − U⃗′), U⃗′))

= EU⃗,U⃗′ [TVD(Pm,n(x⃗− U⃗),Pm,n(x⃗′ − U⃗′))]]

= EX⃗,X⃗′ [TVD(Pm,n(X⃗),Pm,n(X⃗′))],

where X⃗, X⃗′ are chosen uniformly at random conditioned on X⃗ = X⃗′ + x⃗− x⃗′. ◀

We now upper bound the expected total variation distance between the two independent
executions of the γ-imperfect shuffle, using an approach similar to Lemma C.1 in [6].

▶ Lemma 19. Let X⃗ and X⃗′ be drawn uniformly at random from all pairs of vectors in
Gn with the same sum, noting that X⃗ and X⃗′ are not independent. For two independent
executions Pm,n and P ′

m,n of the γ-imperfect shuffle, EX⃗,X⃗′ [TVD|X⃗,X⃗′(Pm,n(X⃗),Pm,n(X⃗′))] ≤√
qmn−1Pr

[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

− 1.

We note that the probability that two independent executions of the protocol can be
decomposed into the split protocol and the mix protocol as follows. By comparison, Lemma
C.2 in [6] was able to prove a simpler relationship by leveraging properties of their symmetric
shuffler, which we do not have for an imperfect shuffler.

▶ Lemma 20. Let Rm,n and R′
m,n denote two independent executions of the split protocol

in Pm,n so that Pm,n = Sm,n ◦ Rm,n. Then

Pr
[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

= Pr
[
Rm,n(X⃗) = S−1

m,n ◦ S ′
m,n ◦ R′

m,n(X⃗)
]
.

Proof. Note that

Pr
[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

= Pr
[
Sm,n ◦ Rm,n(X⃗) = S ′

m,n ◦ R′
m,n(X⃗)

]
= Pr

[
Rm,n(X⃗) = S−1

m,n ◦ S ′
m,n ◦ R′

m,n(X⃗)
]
. ◀
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From Lemma 19 and Lemma 20, we have

▶ Lemma 21. For two independent executions Pm,n and P ′
m,n of the split-and-mix protocol

with a γ-imperfect shuffler,

EX⃗,X⃗′ [TVD(Pm,n(X⃗),Pm,n(X⃗′))] ≤
√
qmn−1Pr

[
Rm,n(X⃗) = S−1

m,n ◦ S ′
m,n ◦ R′

m,n(X⃗)
]

− 1.

4.2 Reduction to Connected Components
In this section, we prove the following general statement upper bounding the probability
that the shuffler S−1

m,n ◦ S ′
m,n(·) on the output of a randomizer achieves the same output as

an independent instance of the randomizer by the expectation of a quantity relating to the
number of connected components in the communication graph of the shuffler S−1

m,n ◦ S ′
m,n(·).

Specifically, we can view a protocol Pm,n that is an ordered tuple π1, . . . , πm, where πj is
a permutation on [n] for each j ∈ [m], so that in each round j ∈ [m], user i ∈ [n] sends a
message to user πj(i).

Then we can define the communication graph for the multi-message shuffle protocol Pm,n

as follows. The graph G consists of n vertices, which we associate with [n], corresponding to
the players [n] participating in the protocol Pm,n. We add an edge between vertices i and j
if player i passes one of their m messages to player j.

The following proof is the same as Lemma C.4 in [6].

▶ Lemma 22. Let G be the graph on n vertices formed the communication graph of
the shuffle S−1 ◦ S ′. Let C(G) be the number of connected components of G. Then
Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗)

]
≤ E

[
qC(G)−mn

]
.

Proof. By the law of total expectation,

Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗)

]
= E

[
Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗) | S,S ′

]]
.

Thus for the graph G conditioned on S and S ′, it suffices to show that

Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗) | S,S ′

]
= qC(G)−mn.

Note that C(G) depends on the choices of S and S ′ but we omit these dependencies in the
notation for the sake of presentation. Recall that Pm,n(X⃗) = Sm,n ◦ R⃗m,n(X⃗) is currently
indexed so that the first message of each player after the shuffle protocol completes are the
first n indices, followed by the second message of each of the n players and so forth. We
thus define a re-indexing permutation ψ : [mn] → [mn] to that the m messages of the first
player will be the first m indices, followed by the m messages of the second player and so
forth. That is, ψ(j) =

⌊
j−1
m

⌋
+ n(j − 1 mod n) + 1. Let W,W′ ∈ Gmn be defined so that

Wj = ψ(R⃗(X⃗))j and W′
j = ψ(S−1 ◦ S ′ ◦ R⃗′(X⃗))j . The task then becomes to show that

Pr [W = W′ | S,S ′] = qC(G)−mn. Toward that end, for each j ∈ [mn], we define Ej to be the
event that Wj = W′

j and pj = Pr [Ej | E1, . . . , Ej−1], so that Pr [W = W′ | S,S ′] =
∏m

j=1 npj .

Firstly, consider the messages that are not the last message by a particular player, i.e.,
consider the values of j ∈ [mn] that are not divisible by m. Observe that conditioning on
fixed values of X⃗ and R⃗′, as well as the events E1, . . . , Ej−1, the value of Wj remains uniformly
distributed and has probability q−1 of being equal to to W′

j . Hence, we have pj = q−1.
For the cases where j is divisible by m, we further consider two subcases. In particular,

we consider the case where j is the largest index in Cj and the case where j is not the largest
index in Cj , where Cj is the set of vertices in the same connected component as j in G.

ITC 2023



17:12 Differentially Private Aggregation via Imperfect Shuffling

In the first subcase, the multisets of W′ and R⃗′(X′) restricted to Ci are the same and thus
the multisets of the summands are the same, so that

∑
i|Ci=Cj

W′
i =

∑
i|Ci=Cj

ψ(R⃗′(X′))i.

Moreover, since the indices corresponding to all messages of a fixed player are in the same
connected component, then

∑
i|Ci=Cj

ψ(R⃗′(X′))i =
∑

i|Ci=Cj
Wi. Finally, we have that

conditioning on E1, . . . , Ej−1 and the fact that j is the largest index in Cj ,
∑

i|Ci=Cj ,i̸=j W′
i =∑

i|Ci=Cj ,i̸=j Wi. Therefore, we have pj = 1.
For the second subcase, we shall show that pj = q−1. Let T be the subset of (W,W′) ∈

G2mn that are consistent with E1, . . . , Ej−1 and a fixed value of X⃗. We show there exists
a homomorphism ϕ : G → G2mn that maps from g ∈ G to a ug ∈ G2mn with a specific
property to be defined. We then consider the action of G2mn on itself by addition of ug.
Then the property of ϕ that we show is that ug fixes T and Wj but adds g to W′

j . Consider
the partitioning of T into equivalence classes where two elements of T are equivalent if they
are equal under addition by ug for some g. Then the homomorphism induces a partitioning
of T into subsets of size q such that each subset contains exactly one element for which Ej

holds. Since each value of T is equally probable, it then follows that pj = q−1 as desired.
We now define the homomorphism ϕ as follows. Since there exists a path in G from the

vertex with the jth message to a higher index vertex, then there exists some path parameter
ℓ and a corresponding path (a1, b1, . . . , aℓ, bℓ, aℓ+1) such that the following hold. Firstly,
each of the terms ai, bi are elements of [mn] that will ultimately map to indices of elements
in Gmn. Secondly, for all i ∈ [ℓ], we have π(bi) = ai for the permutation π induced by
the m message n player protocol and moreover, bi and ai+1 correspond to the same vertex.
Finally, it holds that a1 = j, bℓ > j, ai ̸= ai′ for any i ̸= i′, and bi < j for all i < ℓ. Then
we implicitly define the homomorphism ϕ by defining ug to be the element of G2mn with
the value g in the entries a2, . . . , aℓ+1, b1 +mn, . . . , bℓ +mn and the identity 0 in all other
coordinates, where we recall that the elements ai and bi correspond to indices of elements in
Gmn.

We observe that the group action of addition by ug does not affect the realization of
E1, . . . , Ej−1 since Wai

and W′
ai

= R⃗′(X⃗)bi
are increased by exactly the same amount by ug,

except for the case when i = 1 or i = ℓ+ 1. However, note that ai ≥ j for both of the cases
where i = 1 and i = ℓ+ 1, which does not affect the realization of E1, . . . , Ej−1. Hence, ug

has the desired properties and so it follows that pj = q−1.
Therefore, conditioned on any fixed realization of S, we have that

∏mn
j=1 pj = qC(G)−mn,

so that in summary Pr
[
R⃗ = S−1 ◦ S ′ ◦ R⃗′(X⃗)

]
≤ E[qC(G)−mn]. ◀

We remark that the statement of Lemma 22 holds even for a general shuffler S with the
corresponding communication graph, rather than the specific shuffler S−1

m,n ◦ S ′
m,n(·).

We now show that the composition of two shufflers, where the inner shuffler is a γ-imperfect
shuffler, is also a γ-imperfect shuffler with the same parameter.
▶ Lemma 23. Let S,S ′ be two shufflers such that S is a γ-imperfect shuffler. Then, S ′ ◦ S
is a γ-imperfect shuffler.
Proof. Let S ′ be an arbitrary shuffler and S be a γ-imperfect shuffler. Then, for any
π, π′ ∈ Π,

Pr [S ′ ◦ S = π] = Pr
[
S = (S ′)−1 ◦ π

]
≤ eγ·Swap((S′)−1◦π,(S′)−1◦π′)Pr

[
S = (S ′)−1 ◦ π′]

= eγ·Swap(π,π′)Pr [S ′ ◦ S = π′] . ◀

We now show a few structural statements that upper bound the probability that there
exists no edge from a set S ⊂ [n] to [n] ∖ S for a communication graph induced by a
γ-imperfect shuffler.
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▶ Lemma 24. Let G be the communication graph of a γ-imperfect shuffler (on an n-player
m-message protocol). For a fixed set S of size s, the probability that there exists no edge from
S to [n] ∖ S in G is at most e2smγ

(
n
s

)−m for s ≤ n
2 and at most e2(n−s)mγ

(
n
s

)−m for s ≥ n
2 .

Proof. Without loss of generality, let S = [s], i.e., S is the first s integers of [n]. Then
for a permutation to not induce an edge between S and [n] ∖ S, the permutation can be
decomposed into a permutation of the first s integers and a permutation of the remaining
n− s integers. Hence, there are s!(n− s)! permutations of [n] such that S is preserved. Let
ΠS be the set of permutations that preserves S so that |ΠS | = s!(n− s)!.

For each permutation π ∈ ΠS , we define a subset Cπ of permutations so that (1)
Cπ′ ∩ Cπ = ∅ for all π, π′ ∈ ΠS with π ̸= π′, (2) π is the only permutation of Cπ that
preserves S, (3) |Cπ| =

(
n
s

)
, and (4) π and π′ have swap distance at most 2s for any π′ ∈ Cπ,

hence implying that Pr [S = π] ≤ e2sγ · Pr [S = π′]. Recall that since π ∈ ΠS , then π can be
decomposed into permutations π1 of the first s integers and permutations π2 of the remaining
n− s integers.

Let A be any set of s indices of [n], sorted in increasing order. Consider the following
transformation TA on a permutation π to produce a permutation ψ. Place the elements of π
in positions [s] in order into the s indices of A, so that π′(Ai) = π(i). For the supplanted
indices that have not been assigned to indices in A, place them in order into the remaining
positions of [s]. Formally, let X = [s] ∖A and Y = A∖ [s]. Then we set π′(Xi) = π(Yi) for
all i ∈ [|X|], noting that |X| = |Y |. We then define Cπ to be the set of permutations that
can be obtained from this procedure, i.e., Cπ = {π′ : ∃A with π = TA(π)}. See Figure 1 for
an example of the application of such an example TA.

[s]

2 4 3 1 7 5 8 6 9

A

(2, 4, 3, 1) ? ? ? ? 7 5 8 6 9

(5, 6) ? 2 4 ? 7 3 8 1 9

5 2 4 6 7 3 8 1 9

Figure 1 An example of the transformation TA for the permutation π = (8, 4, 6, 2, 1, 3, 7, 5, 9),
with n = 9, s = 4, and A = (2, 3, 6, 8). Note that the order (8, 4, 6, 2) is preserved within the indices
of A in the resulting permutation π′ = TA(π) and the order (3, 5) is preserved within the indices
[s] ∖ A.

We first claim that Cπ′ ∩ Cπ = ∅ for all π, π′ ∈ ΠS with π ̸= π′. Suppose by way of
contradiction, there exists ψ ∈ Cπ ∩Cπ′ , so that there exist sets A and A′ with ψ = TA(π) =
TA′(π′). Recall that since π, π′ ∈ ΠS , then π, π′ can be decomposed into permutations π1, π

′
1

of the first s integers and permutations π2, π
′
2 of the remaining n− s integers. After applying

TA to π, then the first s integers are in the indices of A′, in some order. Similarly, after
applying TA′ to π′, then the first s integers are in the indices of A, in some order. Hence for
ψ = TA(π) = TA′(π′), it follows that A = A′, so it suffices to show that TA is injective for a
fixed A. To that end, note that TA preserves the order of [s] within A and thus if π = π1 ◦π2,
then π1 is the restriction of TA(π) to A. Similarly, note that TA does not touch the indices
outside of A∪ [s] and so π2 is preserved by TA(π) in the restriction of [n]∖ (A∪ [s]). Finally,
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TA preserves the relative order of π2 inside the indices of [s] ∖ A. Therefore, given A and
TA(π), we can completely recover π1 and π2 and thus π. In other words, TA is injective, so
that TA(π) = TA(π′) implies π = π′, which is a contradiction.

To see that π is the only permutation of Cπ that preserves S, note that if any of the s
positions are picked outside [s], then there exists a value of [s] outside of the first s positions
and so the resulting permutation does not preserve S. However, there is only a single way to
pick s indices from [n] that are all inside [s], which corresponds to π. Hence, π is the only
permutation of Cπ that preserves S.

To see the third property, note that A is formed by choosing s indices of [n]. Hence,
|A| =

(
n
s

)
. Since A is exactly the set of positions for which π1 is mapped to, then each

element of A corresponds to a unique element in Cπ. Thus, |Cπ| =
(

n
s

)
.

To see the fourth property, note that the only swaps are indices in A with indices in [s],
meaning that at most 2s indices are changed. Thus, π and π′ have swap distance at most 2s
for any π′ ∈ Cπ. Then by the γ-imperfect shuffle property, Pr [S = π] ≤ e2sγ · Pr [S = π′].

Since we have associated each π ∈ ΠS with a set Cπ of size
(

n
s

)
such that π′ ̸∈ Cπ for

π′ ∈ ΠS with π′ ̸= π and Pr [S = π] ≤ esγ · Pr [S = π′], then it follows from a coupling
argument that the probability that there exists no edge from S to [n] ∖ S after one iteration
of the γ-imperfect shuffle is at most e2sγ

(
n
s

)−1. By independence, the probability that there
exists no edge from S to [n] ∖ S in G after m iterations is at most e2smγ

(
n
s

)−m.
By symmetry for sets S with size s and n − s, we have the probability is at most

min
(
e2smγ

(
n
s

)−m
, e2(n−s)mγ

(
n
s

)−m
)

across all ranges of s. ◀

▶ Lemma 25. Let G be the communication graph of a γ-imperfect shuffler (on an n-player
m-message protocol). For a fixed set S with size s, the probability that there exists no edge
from S to [n]∖S in G is at most ekmγ

(
n/2

k

)−m
for any integer k with 0 ≤ k ≤ min(s, n− s).

By Lemma 24 and Lemma 25, we have:

▶ Lemma 26. Let G be the communication graph of a γ-imperfect shuffler (on an n-player
m-message protocol). For a fixed set S with size s, the probability that there exists no edge
from S to [n]∖S in G is at most e2smγ

(
n
s

)−m for s ≤ n
2 , at most e2(n−s)mγ

(
n
s

)−m for s ≥ n
2 ,

and at most ekmγ
(

n/2
k

)−m
for any integer k with 0 ≤ k ≤ min(s, n− s).

Lemma 23 and Lemma 26 are the two main structural properties of imperfect shufflers
that we use to overcome the challenge of adapting the analysis of [6] to shufflers without
symmetry.

We now upper bound the probability that the number of connected components of G is
c, where G is the underlying communication graph for the split-and-mix-protocol under a
γ-imperfect shuffle.

▶ Lemma 27. Let n ≥ 19 and m ≥ 8e4γ . Let G be the communication graph of a γ-imperfect
shuffler (on an n-player m-message protocol). Let p(n, c) denote the probability that the
number of connected components of G is c. Then p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1).

We now upper bound the expected value of E
[
qC(G)] for the purposes of upper bounding

the right hand side of Lemma 22.

▶ Lemma 28. Let n ≥ 19, m ≥ 8e4γ, and q ≤
(

n
e

) (m−1)
32e4γ e2γ(1−m). Let G be the graph

on n vertices formed a random instantiation of the split-and-mix protocol Pm,n with m

messages for each of n players, using a γ-imperfect shuffler S. That is, let G have an edge
between i and j if and only if player i passes one of their m messages to player j. Then
E
[
qC(G)] ≤ q + 3q2e2γ(m−1) ( e

n

) m−1
32e4γ .
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Proof. By Lemma 27, we have p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1). Taking the ex-

pectation, we have E
[
qC(G)] ≤

∑n
c=1 q

c 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1). Since term in the

summand after the second term is at most 2q
3
(

e
n

) (m−1)
32e4γ e2γ(m−1) times the previous term

in the summand, then E
[
qC(G)] ≤ q + q2e2γ(m−1) ( e

n

) m−1
32e4γ

∑∞
i=0

(
2q
3
(

e
n

) (m−1)
32e4γ e2γ(m−1)

)i

.

Since q ≤
(

n
e

) (m−1)
32e4γ e2γ(1−m) by assumption, then E

[
qC(G)] ≤ q+ 3q2e2γ(m−1) ( e

n

) m−1
32e4γ . ◀

We now analyze the statistical security of the split-and-mix protocol.

▶ Lemma 29. Let n ≥ 19, m ≥ 8e4γ , and q ≤
(

n
e

) (m−1)
32e4γ e2γ(1−m). Then we have worst-case

statistical security with parameter σ ≤ (m− 1)
(

log n−log e
64e4γ − 2γ log e

)
− 3 log(3q),

Proof. By Lemma 21 and Lemma 22, we have

EX⃗,X⃗′ [TVD(Pm,n(X⃗),Pm,n(X⃗′))] ≤
√
qmn−1E

[
qC(G)−mn

]
− 1,

where C(G) is the communication graph for the shuffle S−1 ◦ S ′. By Lemma 23 and the
fact that S ′ is a γ-imperfect shuffler, we have that S−1 ◦ S ′ is also a γ-imperfect shuffler
and thus it suffices to upper bound E

[
qC(G)−mn

]
where C(G) is the communication graph

for an arbitrary γ-imperfect shuffler S. Therefore by Lemma 28, we have average case

statistical security less than or equal to 2−σ ≥
√

3q3e2γ(m−1)
(

e
n

) m−1
32e4γ , which holds for

σ ≤ (m− 1)
(

log n−log e
64e4γ − 2γ log e

)
− 3 log(3q). The claim then follows by the reduction of

worst-case input to average-case input by Lemma 18. ◀

Now it can be verified that by restricting γ ≤ log log n
80 , then we have both 728e4γ ≤ logn

and
⌈
2n3/2⌉ ≤

(
n
e

) (m−1)
32e4γ e2γ(1−m). These conditions imply that 1)

(
log n−log e

64e4γ − 2γ log e
)

=

O
(

log n
e4y

)
, so that the parameter σ has a non-empty range in the statement of Lemma 29,

and 2) q =
⌈
2n3/2⌉ satisfies q ≤

(
n
e

) (m−1)
32e4γ e2γ(1−m) in the statement of Lemma 29. As a

corollary, we obtain the following guarantees for worst-case statistical security:

▶ Theorem 15. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. For worst-case

statistical security with parameter σ, it suffices to use m = O
(
e4γ + e4γ (σ+log n)

log n

)
messages,

where each message has O (log q) bits, for q =
⌈
2n3/2⌉.

5 Conclusion and Discussion

In this work, we introduce the imperfect shuffle DP model, as a means of abstracting out
real-world scenarios that prevent perfect shuffling. We also give a real summation protocol
with nearly optimal error and small communication complexity. The protocol, which is based
on the split-and-mix protocol [30], is similar to that of the (perfect) shuffle model [6, 25],
while the main challenge comes in the analysis. Although we overcome this hurdle for this
particular protocol, our techniques are quite specific. Therefore, an interesting open question
is whether there is a general theorem that transfer the privacy guarantee in the perfect
shuffle model to that in the imperfect shuffle model, possibly with some loss in the privacy
parameters.
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A Missing Proofs

Proof of Lemma 19. We write P and P ′ as shorthand for Pm,n and P ′
m,n, respectively. Let

V⃗ be a uniformly random vector drawn from Gmn, conditioned on V⃗ having the same sum as
X⃗ and X⃗′. Then by the triangle inequality,

EX⃗,X⃗′ [TVD
|X⃗,X⃗′

(P(X⃗),P(X⃗′))] ≤ EX⃗,X⃗′ [TVD
|X⃗,X⃗′

(P(X⃗), V⃗) + TVD
|X⃗,X⃗′

(V⃗,P(X⃗′))]

= EX⃗[TVD
|X⃗

(P(X⃗), V⃗)] + EX⃗′ [TVD
|X⃗′

(V⃗,P(X⃗′))]

= 2EX⃗[TVD
|X⃗

(P(X⃗), V⃗)].

Moreover, considering the distribution over V⃗,

2 TVD
|X⃗

(P(X⃗), V⃗) =
∑

v⃗∈Gmn

∣∣∣Pr
[
P(X⃗) = v⃗

]
− Pr

[
V⃗ = v⃗

]∣∣∣
=

∑
v⃗∈Gmn,

∑
v⃗=
∑

X⃗

|Pr
[
P(X⃗) = v⃗

]
− q1−mn|

= qmn−1EV⃗

[∣∣∣Pr
[
P(X⃗) = V⃗

]
− q1−mn

∣∣∣] .
Since V⃗ is a uniformly random vector from Gmn with its sum being equal to that of X⃗, then
for the random variable Z := Z(X,V) := Pr

[
P(X⃗) = V⃗

]
, we have E [Z] = q1−mn. Therefore,

2 TVD|X⃗(P(X⃗), V⃗) ≤ qmn−1E[|Z − E[Z]|]. By convexity, E[|Z − E[Z]|] ≤
√
E[Z2]. Since we

have

EV⃗ [Z2] = q1−mn
∑

v⃗∈Gmn,
∑

v⃗=
∑

X⃗

Pr
[
P(X⃗) = v⃗

]2
= q1−mnPr

[
P(X⃗) = P ′(X⃗)

]
,

we thus have

EX⃗,X⃗′ [TVD
|X⃗,X⃗′

(P(X⃗),P(X⃗′)] ≤ 2 TVD
|X⃗

(P(X⃗), V⃗)

≤ qmn−1EV(X⃗′)[|Pr
[
P(X⃗) = V⃗

]
− q1−mn|]

≤
√
qmn−1Pr

[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

− 1. ◀

Proof of Lemma 25. We can similarly show that the probability that there exists no edge
from S to [n] ∖ S in G after the m iterations is at most ekmγ

(
n/2

k

)−m
for any integer k with

0 ≤ k ≤ min(s, n− s) by the following modifications to the coupling argument. We again let
S = [s] without loss of generality and let k ≤ min(s, n− s) be a fixed non-negative integer.
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Recall that there are s!(n− s)! permutations of [n] such that S is preserved. We define
ΠS to be the set of permutations that preserves S so that |ΠS | = s!(n− s)! and we define a
transformation TA(π) for a permutation π ∈ ΠS as follows.

If s ≤ n
2 , we let A be a set of k positions in {s + 1, . . . , n}, sorted in increasing order.

We then initialize ψ = π and iteratively perform the following procedure k times. For each
i ∈ [k], we swap the value in the ith index of ψ with the value in the Aith index of A. We
then output set TA(π) to be the result of ψ after applying these k swaps. Note that since [s]
and A are disjoint, we can also explicitly define the resulting ψ = TA(π) by

ψ(i) =


π(i), i /∈ (A ∪ [k])
π(Ai), i ∈ [k]
π(j), j = Ai, i ∈ [k]

.

Similarly, if s ≥ n
2 , we let A be a set of k positions in [n− s], sorted in increasing order,

and initialize ψ = π. Then for each i ∈ [k], we swap the value in the (n− i+ 1)st index of ψ
with the value in the ith index of A. Alternatively, we can also explicitly define the resulting
ψ = TA(π) by

ψ(i) =


π(i), i /∈ (A ∪ {n− k + 1, . . . , n})
π(Ai), i ∈ {n− k + 1, . . . , n}
π(j), j = Ai, i ∈ [k]

.

We again define Cπ to be the set of permutations that can be obtained from this procedure,
i.e., Cπ = {π′ : ∃A with π = TA(π)}. By the same argument as in Lemma 25, we have (1)
Cπ′ ∩Cπ = ∅ for all π, π′ ∈ ΠS with π ̸= π′, (2) π is the only permutation of Cπ that preserves
S, (3) |Cπ| =

(
n
k

)
. By the construction of TA performing k swaps on π, we also have that π

and π′ have swap distance at most k for any π′ ∈ Cπ, so that Pr [S = π] ≤ ekγ · Pr [S = π′].
Also by construction, we have |Cπ| ≥

(
n/2

k

)
and so by adapting the above coupling

argument, we have that the probability that there exists no edge from S to [n]∖S in G after
the m iterations is at most ekmγ

(
n/2

k

)−m
. ◀

Proof of Lemma 27. For a fixed set S, let PS denote the probability that there is no edge
from S to [n]∖S. Let p(n, c) denote the probability that the number of connected components
of G is c. Then

p(n, c) ≤ 1
c

∑
S⊆[n]

PS · p(n− |S|, c− 1) ≤ 1
c

n−c+1∑
s=1

(
n

s

)
PS · p(n− |S|, c− 1).

We decompose this sum and apply Lemma 26.
By Lemma 26, we have PS ≤ min(e2(n−s)mγ

(
n
s

)−m
, e2smγ

(
n
s

)−m). By Lemma 26, we also
have PS ≤ ekmγ

(
n/2

k

)−m
for any k ≤ min(s, n− s). Observe that for k ≥ n− s ≥ n

2 , we have
e2(n−s)mγ

(
n
s

)−m ≤ e2kmγ
(

n
k

)−m ≤ e2kmγ
(

n/2
k

)−m
. Thus for k = n

4e4γ ,

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)(
n/2
k

)−m

e2kmγ · p(n− |S|, c− 1).

ITC 2023



17:20 Differentially Private Aggregation via Imperfect Shuffling

Observe that k = n
4e4γ implies that

e2γ ≤
( n

2k

)1/2

e2kmγ ≤
( n

2k

)km/2
≤
(
n/2
k

)m/2

(
n/2
k

)−m

e2kmγ ≤
(
n/2
k

)−m/2
≤
(
n

k

)−m/2
.

Thus we have

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)(
n

k

)−m/2
· p(n− |S|, c− 1).

Since k = n
4e4γ , then

(
n

k

)−m/2
≤ (4e4γ)− nm

8e4γ ≤ (2e)− nm
8e4γ ≤

(
n

n/2

)− m
4e4γ

≤
(
n

s

)− m
4e4γ

.

Hence,

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)1− m
4e4γ

· p(n− |S|, c− 1).

For m ≥ 8e4γ , we have 1 ≤ m
8e4γ and thus

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)− m
8e4γ

· p(n− |S|, c− 1).

We first apply the induction hypothesis that p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · eγ(m−1)(c−1):

p(n, c) ≤ 2c−1

c!

( e
n

) (m−1)(c−1)
32e4γ

· e2γ(m−1)(c−1) · 1
2 · e

(1−m)
32e4γ · e2γ(1−m)

·

(
k∑

s=1

(
n

s

)1−m

e2smγ

(
nc−1

(n− s)c−2

) m−1
32e4γ

+
n−c+1∑
s=k+1

(
(n− s)!s!nc−1

n!(n− s)c−2

) m−1
32e4γ

)
.

We upper bound p(n, c) by upper bounding the summation across the first k terms, i.e.,
the head of the summation, then upper bounding the tail terms of the summation, i.e., the
terms with s ≥ 3n

4 , and finally upper bounding the remaining terms of the summation, i.e.,
s ∈

[
k, 3n

4
]
.
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Upper bounding the head terms in the summation. We now upper bound the summation

across all s ≤ k. Let as =
(

n
s

)1−m
e2smγ

(
nc−1

(n−s)c−2

) m−1
32e4γ

. For s ≤ k = n
4e4γ and m ≥ 8e4γ ,

as

as−1
=
(

s

n− s+ 1

)m−1
e2mγ

(
n− s+ 1
n− s

) (m−1)(c−2)
32e4γ

≤
(

1
8e4γ

)m−1
e2mγe

(m−1)(c−2)
n−s

≤
(

1
8e4γ

)m−1
(e4γ)m−1e

4(m−1)
3

≤
(
e4/3

8

)m−1

≤
(

1
2

)m−1
≤ 1

25 .

Then through a geometric series, we bound the summation
k∑

s=1
as ≤

∞∑
s=1

a1

25s−1 ≤ 26a1

25

≤ 26
25n

1−memγ

(
nc−1

(n− 1)c−2

) m−1
32e4γ

≤ 26
25e

mγe
m−1

32e4γ

Upper bounding the tail terms in the summation. We now upper bound the summation

across all s ≥ ⌈ 3n
4 ⌉. Let bs =

(
(n−s)!s!nc−1

n!(n−s)c−2

) m−1
32e4γ

. Then for s ≥ 3n
4 ,

bs

bs−1
=
(

s

n− s+ 1

(
n− s+ 1
n− s

)c−2
) m−1

32e4γ

≥
(

s

n− s

) m−1
32e4γ

≥ 9.

We again bound another subset of the sum through a geometric series:
n−c+1∑

s=⌈3n/4⌉

bs ≤
n−c+1∑

s=⌈3n/4⌉

bn−c+1

9n−c+1−s

n−c+1∑
s=−∞

bn−c+1

9n−c+1−s

= 9bn−c+1

8

= 9
8

(
(c− 1)!(n− c+ 1)!nc−1

n!(c− 1)c−2

) m−1
32e4γ

.

Similar to [6], we bound the last expression using Sterling’s bound,
√

2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n, so that 9
8

(
(c−1)!(n−c+1)!nc−1

n!(c−1)c−2

) m−1
32e4γ

≤

9
8

(
e√
2π

(c− 1)1.5
(

1 − (c−1)
n

)n−c+1.5
) m−1

32e4γ

, which is maximized at c = 3 for n ≥ 19,

m ≥ 8e4γ , and c ≤ n
4 . Thus,
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9
8

(
e√
2π

(c− 1)1.5
(

1 − (c− 1)
n

)n−c+1.5
) m−1

32e4γ

≤ 9
8

(
2e√
π

(
1 − 2

n

)n−1.5
) m−1

32e4γ

≤ 9
8(1.27)

m−1
32e4γ .

Upper bounding the middle terms in the summation. It remains to upper bound the

summation across s ∈
[

n
4e4γ ,

3n
4
]
. We have for α = s

n , bs =
(

((1−α)n)!(αn)!
(n−1)!(1−α)c−2

) m−1
32e4γ

. By Ster-

ling’s bound, we have bs ≤
(

e2
√

2π

√
n(1 − α)2.5−c+(1−α)nααn+ 1

2

) m−1
32e4γ

≤
(

e2√
n√

2π
ααn

) m−1
32e4γ

.

Since there are at most n such terms bs, then
∑⌈3n/4⌉−1

s=k+1 bs ≤ n
(

e2√
n√

2π

( 3
4
) 3n

4
) m−1

32e4γ

≤

2
(
en
( 3

4
) 3n

4
) m−1

32e4γ

≤ 2.

Putting things together. Combining the upper bounds across the three summations, we
have

k∑
s=1

(
n

s

)1−m

e2smγ

(
nc−1

(n− s)c−2

) m−1
32e4γ

+
n−c+1∑
s=k+1

(
(n− s)!s!nc−1

n!(n− s)c−2

) m−1
32e4γ

≤ 26
25e

mγe
m−1

32e4γ + 2 + 9
8(1.27)

m−1
32e4γ

≤ 2e
m−1

32e4γ · emγ ≤ 2e
m−1

32e4γ · e2γ(m−1).

Therefore, we have p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1), as desired. ◀
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