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Abstract
We conjecture that the smallest possible share size for binary secrets for the t-out-of-n and (n− t+1)-
out-of-n access structures is the same for all 1 ≤ t ≤ n. This is a strenghtening of a recent conjecture
by Csirmaz (J. Math. Cryptol., 2020). We prove the conjecture for t = 2 and all n. Our proof gives
a new (n − 1)-out-of-n secret sharing scheme for binary secrets with share alphabet size n.
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An access structure A over n parties is a nonempty monotone set system over ground set
{1, . . . , n}. A secret sharing scheme [7, 1] for A with secret alphabet Σ is a collection of joint
distributions (X1(σ), . . . , Xn(σ)) with σ ∈ Σ taking values in Γn such that

Secrecy: If S ̸∈ A then (Xi(σ) : i ∈ S) are identically distributed for all σ ∈ Σ.
Reconstruction: If R ∈ A then (Xi(σ) : i ∈ R) determine σ with probability 1.

The information rate of the scheme is the ratio log|Σ|/ log|Γ| of the secret size and the
share size. The dual of A is the access structure A∗ = {S : S ̸∈ A}. Csirmaz [4] asks whether
the following duality conjecture holds:

▶ Conjecture 1. If A has a secret sharing scheme of information rate ρ for some secret
alphabet size |Σ|, then A∗ has a secret sharing scheme of information rate at least ρ for some
secret alphabet size |Σ′|.

As supporting evidence, Csirmaz shows that duality holds for the polymatroid relaxation
of A. This is a relaxation whose variables are the joint entropies of subsets of shares and
whose constraints consist of a (in general incomplete) set of linear inequalities. On the other
hand, he proves that duality fails for a relaxed asymptotic notion of secrecy. It is natural to
consider the following even stronger conjecture:

▶ Conjecture 2. For every Σ, if A has a secret sharing scheme of information rate ρ for
secret alphabet Σ, then so does A∗.

In the case when Σ is the order of a finite field and the scheme is restricted to be linear,
Conjecture 2 is known to hold (see Lemma 7.2 in [5]).
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3:2 Csirmaz’s Duality Conjecture and Threshold Secret Sharing

My motivation for Conjecture 2 is that it can be tested on threshold schemes. Such
schemes have asymptotic information rate 1 as |Σ| grows with the number of parties so
Conjecture 1 does not say anything new about them. In contrast, when |Σ| < n, Conjecture 2
appears to be open for threshold schemes.

Here I study Conjecture 2 for threshold schemes and binary secrets, i.e., |Σ| = 2. This
specialization is formulated as Conjecture 3. The t-out-of-n access structure consists of all
t-element subsets of {1, . . . , n}.

▶ Conjecture 3. If there exists a t-out-of-n scheme for binary secrets and share alphabet size
γ then there also exists a (n − t + 1)-out-of-n scheme for binary secrets and share alphabet
size γ.

The conjecture is true for every n ≥ 2 when t ∈ {1, n}. Let γ2(A) denote the smallest
possible share alphabet size for binary secrets and access structure A. When t = 1 and t = n

one-bit secrets are possible and clearly optimal, so γ2(1-out-of-n) = γ2(n-out-of-n) = 2. A
more interesting case is t ∈ {2, n − 1}.

▶ Proposition 4. For all n ≥ 2, γ2(2-out-of-n) = n.

The lower bound γ2(2-out-of-n) ≥ n was proved by Kilian and Nisan (see [2]). When n is
a power of a prime (i.e., a finite field order) the upper bound can be obtained from Shamir’s
secret sharing with “infinity” as one of the evaluation points (see e.g. [3]). An alternative
construction, which was communicated to me by Ilan Komargodski around 2016, works for
all n. A variant of it is shown in the proof of Proposition 4 below.

If duality were to hold the same bound should be expected for the (n − 1)-out-of-n access
structure. The required lower bound was shown by Bogdanov, Guo, and Komargodski [2].
When n is a power of a prime the upper bound can also be derived from Shamir’s scheme.
The main result here is that this bound can be matched for non-prime powers n:

▶ Theorem 5. For all n ≥ 2, γ2((n − 1)-out-of-n) = n.

The smallest example for which Theorem 5 is new is n = 6. This is a good example to
keep in mind for the rest of the discussion.

Perspective: Lower bounds on alphabet size

There are two methods for lower bounding γ2(t-out-of-n) that give incomparable results.
The analysis of Kilian and Nisan (KN) shows γ2(t-out-of-n) ≥ n − t + 2 for all t ≥ 2. The
analysis of Bogdanov, Guo, and Komargodski (BGK) shows the same lower bound for
γ2((n − t + 1)-out-of-n). Among the two, KN is more intuitive. They reduce their statement
to the special case t = 2. When t = 2 let Xi and Yi denote the i-th party’s share of zero and
one, respectively. Assuming the shares of zero and one are sampled independently, the KN
bound follows from the two inequalities

1 = E[1] ≥ E
[
|{i : Xi = Yi}|

]
=

n∑
i=1

Pr[Xi = Yi] ≥
n∑

i=1

1
|Γ|

= n

|Γ|
.

The first inequality is by correctness of reconstruction (if Xi = Yi and Xj = Yj is possible
the corresponding values would reconstruct to both zero and one) and the second one is by
secrecy (Xi and Yi are identically distributed, so Pr[Xi = Yi] is a collision probability). The
middle equality is linearity of expectation.



A. Bogdanov 3:3

In contrast, BGK work directly with the probability mass functions p0, p1 of the shares
of zero and one. They derive two types of constraints on the Fourier transform f̂ of the
real-valued function f = p1 − p0 over Γn. The first type is a reformulation of secrecy in the
Fourier domain:

|f̂(χ)|2 = 0 for every χ such that Supp χ ̸∈ A, (BGK1)

where Supp χ = {i : χi ̸= 0} is the support of the character χ viewed as an element of
Zn

q where q = |Γ|. The second type of constraint is the following (somewhat mysterious)
relaxation of reconstruction:∑

A

(∑
χ : Supp χ=A

|f̂(χ)|2
)(

− 1
q − 1

)|A\B|
≥ 0 for all B ∈ A. (BGK2)

This system of constraints is a linear program in the variables |f̂(χ)|2, χ ∈ Zn
q . The BGK

lower bound follows from its infeasibility when q < n and A is the (n − 1)-out-of-n access
structure.

If Conjecture 3 were true, BGK would be a direct consequence of it and KN. Thus a
natural first step towards Conjecture 3 would be to seek an alternative proof of BGK. The
Conjecture itself suggests a route for such a proof: Assume that a (n − t + 1)-out-of-n scheme
with impossibly good share alphabet size γ2 exists. Use this scheme to construct a t-out-of-n
scheme with the same parameters. BGK offers a possible clue about this transformation:
A feasible solution to the linear program (BGK1-BGK2) for access structure A should
correspond to a secret sharing scheme for A∗.

I do not know how to construct this transformation. For the purposes of investigating this
potential “duality” between a secret sharing scheme and its Fourier transform it should be
instructive to compare known secret sharing schemes for A and A∗ and their Fourier trans-
forms. I discovered the proof of Theorem 5 by working backwards from this correspondence.
In the case of (n − 1)-out-of-n schemes, the constraints (BGK1-BGK2) provide substantial
information about what a scheme for this access structure should look like, if one exists at
all. The scheme itself was obtained by reverse engineering f (and the distributions p0 and
p1) from its Fourier transform. It would be interesting if the same result can be obtained by
direct construction.

Concrete challenges

Figure 1 shows the best currently known lower and upper bounds on γ2(t-out-of-n) for small
values of t and n. Except for the entries in bold, the upper bounds follow from Shamir’s
scheme, while the lower bounds are from KN or BGK. The upper bound for γ2(3-out-of-5)
can be obtained from a (6, 4, 3) MDS code over F4 (see e.g. [6, Chapter 11]). The upper
bound for γ2(2-out-of-6) is from Proposition 4. The upper bound for γ2(5-out-of-6) is from
Theorem 5. The obvious next challenges are to calculate γ2(3-out-of-6), and γ2(4-out-of-6),
or for those who prefer prime n, γ2(3-out-of-7) and γ2(5-out-of-7).

Constructions
Proof of the upper bound in Proposition 4. Shares of zero are n random symbols in Γ =
{0, . . . , n − 1} all equal to one another, while shares of one are a random cyclic permutation
of the sequence (0, 1, . . . , n − 1). Reconstruct to zero if the shares are equal and to one if
they are different. The scheme is secret because the marginal distribution of every share is
uniform (and therefore identical) in both cases. ◀

ITC 2023
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n

t 1 2 3 4 5 6 7

2 2 2
3 2 3 2
4 2 4 4 2
5 2 5 4 5 2
6 2 6 5-7 5-7 6 2
7 2 7 6-7 5-7 6-7 7 2

Figure 1 Upper and lower bounds on γ2(t-out-of-n).

The proof of Theorem 5 uses Fourier analysis of functions f : Zn
q → C. The qn character

functions

χ(x) = χ(x0, . . . , xn−1) = exp
(2πi

n
· (x0χ0 + · · · + xn−1χn−1)

)
with (χ0, . . . , χn−1) ∈ Zn

q (also denoted by χ) form an orthonormal basis of the linear space of
such functions with respect to the inner product ⟨f, g⟩ = E[f(x)g(x)] for x chosen uniformly
at random from Zn

q . The Fourier transform of f is the unique function f̂ : Zn
q → C for which

f =
∑

χ∈Zn
q

f̂(χ) · χ. The Fourier coefficients f̂(χ) are given by ⟨f, χ⟩. Parseval’s identity
states that ⟨f, g⟩ =

∑
χ∈Zn

q
f̂(χ) · ĝ(χ).

Proof of the upper bound in Theorem 5. Let f : Zn
n → C be the function whose Fourier

transform is

f̂(χ) =
{

1, if χ is a cyclic shift of (0, 1, . . . , n − 1) or (n − 1, n − 2, . . . , 0),
0, if not.

As will be shown shortly (or derived from symmetry of f̂ under negation) f is real-valued.
Shares of zero and one are sampled from the disjoint distributions p0 and p1 obtained by
writing f = C(p0 − p1) for a suitable normalizing constant C > 0. In more detail, let

p0(x) =
{

C · f(x), if f(x) ≥ 0
0, otherwise,

and p1(x) =
{

−C · f(x), if f(x) ≤ 0
0, otherwise,

where C is the factor that scales p0 and p1 to probability mass functions. The scaling factor
is the same because f̂(0) = 0.

Security follows from the fact that f̂(χ) vanishes on all characters χ of Hamming weight
at most n − 2. In more detail, the advantage of any distinguisher D is

C
∑

x∈Zn
n

D(x)f(x) = C

nn
E

[
D(x)f(x)

]
= C

nn

∑
χ∈Zn

n

D̂(χ)f̂(χ)

by Parseval’s identity. If D depends on at most n − 2 variables then D̂(χ) = 0 unless
|χ| ≤ n − 2. As f̂(χ) = 0 for all χ of size at most n − 2 the advantage of D must be zero.
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To show reconstruction, f is calculated using the inverse Fourier formula. Letting
x = (x0, . . . , xn−1),

f(x) =
∑

χ∈Zn
n

f̂(χ)χ(x)

=
∑
t∈Zn

exp
(2πi

n
·

n−1∑
k=0

(k + t)xk

)
+

∑
t∈Zn

exp
(2πi

n
·

n−1∑
k=0

(−k + t)xk

)

=
∑
t∈Zn

exp
(2πit

n
·

n−1∑
k=0

xk

)(
exp

(2πi

n
·

n−1∑
k=0

kxk

)
+ exp

(
−2πi

n
·

n−1∑
k=0

kxk

))

=
( ∑

t∈Zn

exp
(2πit

n

n−1∑
k=0

xk

))
· 2 cos

(2π

n

n−1∑
k=0

kxk

)
= n · 1

(
x0 + · · · + xn−1 = 0

)
· 2 cos

(2π

n
· (x1 + 2x2 + · · · + (n − 1)xn−1)

)
.

Any n − 1 of the n values x0, . . . , xn−1 determine the remaining one on the set of inputs
where f does not vanish. These values will satisfy the constraint x0 + · · · + xn−1 = 0 from
which the missing xi can be determined. This in turn determines the value of f and therefore
the secret, which equals sign f(x) up to a change in representation. ◀

In more detail, the reconstruction procedure is this: Given shares x0, . . . , xn−1 except for
xi, first compute xi = −

∑
j ̸=i xj mod n, then output the sign of cos(2π(

∑
kxk)/n). (The

cosine will never evaluate to zero because p0 and p1 assign zero probability to those shares.)
Two alternative descriptions of sign cos(2π(

∑
kxk)/n) are

the parity of ⌊(
∑

kxk)/n⌉, where ⌊ · ⌉ is the closest integer,
the indicator of |⌊

∑
kxk⌉n| < n/4, where ⌊ · ⌉n is the unique integer in the set (−n/2, n/2]

congruent modulo n.

The reconstruction procedure is clearly efficient. Its running time is quasilinear in n.
How about sharing? Perfect sampling of the shares is not even possible in a model where the
random seed is uniform over some finite domain! The reason is that some of the probabilities
are irrational numbers. The scheme has perfect secrecy and reconstruction, but any realistic
implementation of it must be imperfect.

It is possible to deduce from general considerations that if there exists a bit secret sharing
scheme, then there exists one over the same share alphabet in which all probabilities are
rational. The reason is that once the sign-pattern of f is fixed (i.e., once it is determined which
shares reconstruct to zero and which reconstruct to one), finding the share probabilities that
satisfy the secrecy constraints amounts to solving a linear program with rational coefficients.
If this linear program is feasible then a rational solution must exist.

Nevertheless, even if imperfections in sampling are allowed, it is unclear how efficient
a (n − 1)-out-of-n scheme with share alphabet size n can be. Is it possible to sample an
ϵ-approximation to the shares in time polynomial in n and 1/ϵ for all n and ϵ?

To summarize, the crucial property of f is that its weak sign can be determined from any
subset of shares that allow reconstruction. By weak sign I mean that one of the non-exclusive
conclusions f(x) ≤ 0 or f(x) ≥ 0 can be reached only from knowledge of those coordinates
of x that fall inside the reconstruction set. If an f with this property can be constructed
under the constraints (BGK1) then reconstruction is possible. In the proof of Theorem 5 the
cyclic structure of the nonvanishing Fourier coefficient plays a useful role. If, for example,
f̂(χ) was chosen to equal 1 on all characters of weight n − 1 it appears that reconstruction
wouldn’t be possible.

ITC 2023



3:6 Csirmaz’s Duality Conjecture and Threshold Secret Sharing

Finally, notice the symmetry between the secret sharing scheme in the proof of Propo-
sition 4 and the construction of f̂ in the proof of Theorem 5. Is this a coincidence or an
instance of duality?
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