
Phoenix: Secure Computation in an Unstable
Network with Dropouts and Comebacks
Ivan Damgård
Aarhus University, Denmark

Daniel Escudero
J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, NY, USA

Antigoni Polychroniadou
J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, NY, USA

Abstract
We consider the task of designing secure computation protocols in an unstable network where honest
parties can drop out at any time, according to a schedule provided by the adversary. This type of
setting, where even honest parties are prone to failures, is more realistic than traditional models,
and has therefore gained a lot of attention recently. Our model, Phoenix, enables a new approach
to secure multiparty computation with dropouts, allowing parties to drop out and re-enter the
computation on an adversarially-chosen schedule and without assuming that these parties receive the
messages that were sent to them while being offline - features that are not available in the existing
models of Sleepy MPC (Guo et al., CRYPTO ’19), Fluid MPC (Choudhuri et al., CRYPTO ’21)
and YOSO (Gentry et al. CRYPTO ’21). Phoenix does assume an upper bound on the number of
rounds that an honest party can be off-line – otherwise protocols in this setting cannot guarantee
termination within a bounded number of rounds; however, if one settles for a weaker notion, namely
guaranteed output delivery only for honest parties who stay on-line long enough, this requirement is
not necessary.

In this work, we study the settings of perfect, statistical and computational security and design
MPC protocols in each of these scenarios. We assume that the intersection of online-and-honest
parties from one round to the next is at least 2t + 1, t + 1 and 1 respectively, where t is the number
of (actively) corrupt parties. We show the intersection requirements to be optimal. Our (positive)
results are obtained in a way that may be of independent interest: we implement a traditional stable
network on top of the unstable one, which allows us to plug in any MPC protocol on top. This
approach adds a necessary overhead to the round count of the protocols, which is related to the
maximal number of rounds an honest party can be offline. We also present a novel, perfectly secure
MPC protocol in the preprocessing model that avoids this overhead by following a more “direct”
approach rather than first building a stable network and then using existing protocols. We introduce
our network model in the UC-framework, show that the composition theorem still holds, and prove
the security of our protocols within this setting.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases Secure Multiparty Computation, Unstable Networks

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.7

Related Version Full Version: https://eprint.iacr.org/2021/1376

Acknowledgements This paper was prepared in part for information purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not
a product of the Research Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the completeness, accuracy or reliability of the
information contained herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in any way for evaluating the merits of

© Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITC.2023.7
https://eprint.iacr.org/2021/1376
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Phoenix: Secure Computation in an Unstable Network

participating in any transaction, and shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to such person would be unlawful. 2023
JP Morgan Chase & Co. All rights reserved.

1 Introduction

Secure Multiparty Computation (MPC) is a technique that allows multiple mutually distrust-
ful parties to compute a function of their inputs without leaking anything else beyond the
output of the computation. Most protocols in the MPC literature assume that the parties
communicate over a synchronous network, that is, all the parties have access to a global
clock. This allows the parties to follow the protocol specification based on time. A protocol
under such network model proceeds in communication rounds, each of which has a fixed
duration and where each party can send a message to each other party.

Synchronous networks are natural for describing protocols and may make sense in many
contexts, but the model is not resilient to sudden slowdowns: if a party fails to send a message
within the allocated time for a specific round, this message will not be taken into account,
and what is worse, in the context of an active adversary this will be considered a deviation
from the protocol specification. Hence an honest party who accidentally misses a deadline
will be classified as corrupt. The first problem with this is that an MPC protocol can only
tolerate a certain maximal number of corruptions. Tagging parties as corrupt because of
natural network issues that may appear in practice leaves little room for real corruptions.
For instance, MPC over unstable mobile network connections or denial of service attacks
might consume all the corruptions we can handle. The second problem is that once a party
is tagged as corrupt, the protocol may now reveal her secret inputs, which seems unfair if
the party was actually honest but suffered a random network delay. An alternative model is
an asynchronous network, where the parties are not assumed to have a clock anymore. This
modeling is more resilient to the type of attacks described above since the communication
network allows for parties to be slow and no deadlines are set. However, this model comes
with its own set of issues since, when dealing with an active adversary, the parties cannot
distinguish a delayed message sent by a slow party, from a message that an actively corrupt
party decided not to send in the first place. As a result asynchronous protocols tend to
tolerate a smaller number of corruptions [3], and, what is worse, an asynchronous protocol
cannot guarantee that all honest parties get to contribute inputs to the computation.

Therefore, it seems to be a better approach of considering an imperfect synchronous
network where the adversary is allowed to cause some parties to go offline temporarily, and
require protocols to not classify such parties as corrupt. In such a setting we may still hope
to get (1) optimal corruption thresholds, (2) allow all parties to contribute input, and (3)
guarantee termination at a certain time. A series of works has studied MPC in different
variant of this model, see Section 1.3 and also the Full Version of this work for a detailed
comparison of prior works. However, it is still an open question whether we can have MPC
protocols with optimal security and corruption thresholds in the most adversarial, but also
most realistic setting, that we call an unstable network in this paper. In such a network
parties go offline and come back according to an adversarially chosen schedule (not a schedule
prescribed by the protocol specifications), and parties are not assumed to receive messages
sent while they were offline. Not receiving messages while being offline introduces more
challenges since one can only rely on the parties that are online in the current round and
were also online in the previous round.

I. Damgård, D. Escudero, and A. Polychroniadou 7:3

1.1 Unstable Networks
As we have mentioned, there are multiple attempts in the literature to model what a realistic
network where parties can dropout and return should represent concretely. In this work we
are interested in studying the setting of MPC over an unstable network, which is a type of
synchronous network we introduce where, in contrast to a stable network (i.e. a standard
synchronous network), the adversary can choose in each round a subset of parties that will
be offline in that specific round, and hence may not be able to send or receive messages. This
models honest parties dropping out in that specific round, possibly due to network errors or
malicious attacks, which serves to represent certain failures like weak mobile connections or
DDoS attacks. We remark that our “timing model” is still synchronous in that the parties
have a synchronized clock and know which current protocol step is being run, but crucially,
they may drop and re-join in every round.

Given that over an unstable network the set of offline parties can be different in every
round, an MPC protocol in such setting must allow parties to rejoin the computation after
being offline. Furthermore, these parties may not know they are under network attack,
so a missing message can mean that either (1) they are under attack, (2) the sender is
under attack, or (3) the sender is malicious. This ambiguity is crucial to maintain a strong
and realistic model, but it turns out to heavily complicate protocol design. This is further
accentuated by the fact that, in an unstable network – and in stark contrast with previous
networking models for tolerating dropouts – parties who rejoin the computation do not
necessarily receive the messages sent to them while being offline, which is an important
property to model settings like peer-to-peer networks where the parties do not count on
“always-running” servers that can queue messages for them. This is an important scenario
to consider in practice, since one might argue that counting on communication servers that
never fail can be equivalent to assuming parties who never drop.

1.2 Our Contribution
In this work we formally introduce the notion of an unstable network, which we believe to
be an appropriate communication model to capture realistic settings where parties join and
leave an ongoing computation according to a potentially adversarial schedule. Our first
contribution lies in the formal definition of this novel networking model, and we present a
rigorous treatment of this notion within the confines of the UC framework, which in particular
involves re-proving the UC theorem to ensure that composability still holds in this new
setting.

Our second contribution – and where most of our work is devoted – consists of a full char-
acterization of what types of security properties (i.e. perfect, statistical or computational) can
be achieved by MPC protocols over unstable networks in terms of the underlying adversarial
schedule. More precisely, we show that the minimum amount of honest parties that remain
online from one round to the next is the crucial metric that determines whether a given level
of security is attainable or not, and we show both impossibility and correspondingly matching
feasibility results for each one of the three security notions: computational, statistical and
perfect security. We believe our novel model and initial set of results open an exciting and
interesting research direction on the design of MPC protocols over realistic networks.

In order to discuss what the characterizations above are in detail, let us introduce some
notation. Let n be the number of parties and let t be the number of corrupt parties. Let Or

denote the set of online parties in round r, and let H denote the set of honest parties. Our
goal is to determine if we can construct MPC protocols for an unstable network which enjoy

ITC 2023

7:4 Phoenix: Secure Computation in an Unstable Network

Perfect
security

Statistical
security

Computational
security

Passive adversary
|Or ∩ Or+1| ≥

t + 1 t + 1 1

Active adversary
|Or ∩ Or+1 ∩H| ≥

2t + 1 t + 1 1

Figure 1 Overview of the required intersection sizes for each setting considered in this paper.
The result for statistical and passive security follows from the one for perfect and passive security.

the same security guarantees as protocols over a stable network and if so, what constraints we
must assume on the unstable network to make this happen. To be able to talk more concretely
about this, we will say that two protocols π, π′ are equivalent if they tolerate the same
number of corruptions, achieve the same type of security (computational/statistical/perfect)
and the same security guarantee (security with abort/fairness/guaranteed output delivery).
Our first set of results is as follows:

Perfect security. (Section 2) Given any perfectly secure synchronous MPC protocol against
t corruptions, we construct an equivalent protocol over an unstable network, assuming
that |Or ∩ Or+1 ∩H| ≥ 2t + 1 for all r > 0. Furthermore, this condition is required for
any MPC protocol with perfect security to exist over an unstable network.

Statistical security. (Section 3) Given any statistically secure synchronous MPC protocol
against t corruptions, we construct an equivalent protocol over an unstable network,
assuming that |Or ∩ Or+1 ∩H| ≥ t + 1 for all r > 0. This condition is required for any
MPC protocol with statistical security to exist over an unstable network.

Computational security. (Full Version) Given any computationally secure synchronous MPC
protocol secure against t corruptions, we construct an equivalent protocol over an unstable
network, assuming that |Or ∩ Or+1 ∩ H| ≥ 1 for all r > 0 (and, for malicious security,
assuming a PKI and public key encryption). The intersection condition is required for
any computationally secure MPC protocol to exist over an unstable network.

An overview of the intersection sizes required in each of the settings considered in our
work is presented in Fig 1. Notice that our results imply a necessary tradeoff between
instability and corruptions: taking perfect security as an example, it is well known that we
must have n ≥ 3t + 1 to have perfect security at all. So for a maximal value of t, we have
only 2t + 1 honest parties, and the result above then says that all honest parties must stay
online all the time. On the other hand, as we increase n above 3t + 1, an increasing number
of honest players can be sent offline. Also, note that even if the (minimal) assumptions in
our results say that a minimum amount of parties must stay online from one round to the
next, this does not imply that any particular party stays online for more than one round.
This makes protocol design considerably difficult, as in particular, the following scenario may
occur: a given party can be offline for a while, not receiving any messages, then it is set to
be online in a given round, but the scheduling1 is such that this party only receives messages
in this round after he or she has sent their own message, so this message can only depend on
outdated information this party learned before going offline. Furthermore, this party may be

1 As in the standard synchronous network, the adversary is allowed to choose the ordering of the messages
received by honest parties.

I. Damgård, D. Escudero, and A. Polychroniadou 7:5

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

Round r Round r + 1

(a) Lazy-MPC model.

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

Round r Round r + 1

(b) Guo et al. (Sleepy) model.

P2

P1

P ′
2

P ′
1

P ′
2

P ′
1

P ′′
2

P ′′
1

Round r Round r + 1

(c) Fluid MPC model.

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

Round r Round r + 1

(d) Our model.

Figure 2 Our model compared to other models in the literature. Parties inside the marked region
are online, and messages represented by dashed arrows are dropped. In Lazy-MPC, Fig. 2a, the
parties cannot return. In the model of Guo et al., Fig. 2b, the parties can return but it is assumed
they receive the messages sent to them while they were offline. In the Fluid-MPC model, Fig. 2c, in
each round the set of parties who send messages may differ from the set of parties who receive these
messages, but the identities of these parties must be known by the protocol. In our model, Fig. 2d,
the parties can return to the computation and it is not assumed that they receive the messages sent
to them while they were offline.

set to be offline for the next round immediately after sending their message, which makes
the contribution of this party to the protocol meaningless. The honest parties in Or ∩ Or+1
are these who are able to receive the messages in round r, and simultaneously are able to
send a derived message in round r + 1, so having enough honest parties in this intersection is
what enables us to design MPC protocols in this difficult networking setting.

1.3 Related Work
In what follows we discuss some of the works that study a similar problem to the one we
address in this work. The description in this section is relatively lightweight, and we defer a
more detailed analysis to the Full Version.

Fail-stop adversaries that may cause some parties to stop during a computation were
considered for the first time in [5], but this and subsequent works assume parties know when
a given party fail-stopped, plus these parties are not able to return the computation. A recent

ITC 2023

7:6 Phoenix: Secure Computation in an Unstable Network

model in [1] considers an adversary that can set parties to be offline at any round, but as
before these parties cannot return the computation, plus that work focuses on computational
assumptions, making use of strong homomorphic encryption tools. In the “sleepy model”
of [8] parties who drop can return. However, a crucial difference with our model is that, in
our case, parties who return after being offline may not receive the messages sent to them
before becoming onine, while in [8] these parties (who are not “offline” but “slow”) do receive
these messages. This makes the problem considerably easier, plus the authors consider only
computational assumptions. Finally, in [2, 12] a new model is considered where the set of
parties can change dynamically from one round to the next. In that work, the set of “online”
parties in a given round is not adversarially chosen, but rather set in advance and used in
the design of the protocol. As a result, this work may not model adversarial attacks to the
underlying network, and may be less realistic in these settings. Furthermore, the protocol
in [2], although statistically secure, only achieves security with abort. Our compilation-based
techniques allows us to transfer any result in the standard synchronous setting (e.g. protocols
with guaranteed output delivery) to the unstable networking setting.

The “You Only Speak Once” (YOSO) model for MPC is introduced in [7]. Our model
assumes a somewhat less powerful adversary who must allow a physical party to come back
after being offline, while in [7] this adversary can take a party down as soon as they speak,
and progress is guaranteed by means of assigning roles “on-the-fly” in certain randomized
fashion. Their model does not allow for perfect security, while in our case, on top of achieving
much easier protocol design, we can obtain information theoretic security based only on
point-to-point secure channels, and we allow for termination such that all parties can provide
input and get output. Finally, the “constrained parties” and “full-omission parties” from
[10] and [13] are such that whose messages are selectively blocked by the adversary, as in
our setting. However, in these works the adversary choses the subset of offline parties at the
beginning of the protocol execution, while in our case this subset can change adaptively as
the protocol is run. This is in fact one of the main sources of difficulties when designing
protocols in our setting, since a party who is “full-omission-corrupt” can stop being so, and
non-corrupted parties can later on become full-omission-corrupt. We remind the reader to
visit the Full Version for a more detailed discussion on related work.

We present in Figure 2 a more graphical comparison of our model with respect to the
works of [1, 8, 2].

1.4 Preliminaries and Organization
Let P = {P1, . . . , Pn} be the set of all parties, and H be the set of honest parties. We assume
that the adversary corrupts t out of the n parties. Let F be a finite field with |F| > n. Due
to space limitations we assume background on Shamir secret-sharing, with details given in
Section A and in the Full Version. For our results in the computational setting, we assume
the existence of a CPA-secure public key encryption scheme (enc, dec), and a EUF-CMA
signature scheme (sign, verify). The formal definitions of these primitives and their security
is standard and can be found in any modern book in Cryptography (e.g. [9]).

Unstable Networks
Now we provide the different functionalities we will make use of in our work. More thorough
definitions and considerations, including the proof of the composition theorem, are given in
the Full Version. Our timing model is synchronous, meaning there parties have a global clock
and there is a known upper bound ∆ on the time it takes for a message to be transmitted

I. Damgård, D. Escudero, and A. Polychroniadou 7:7

between any pair of parties. The communication pattern proceeds in rounds, identified
with integers 1, 2, 3, . . ., each taking ∆ time and consisting of all parties sending messages
to each other at the beginning of each round, and receiving some of these messages in a
way we will specify later before the end of that round. We use FStableNet to denote the
functionality that models a stable network in which all of the messages between honest
parties are always delivered. We also consider a family of functionalities {FPi→Pj

StableNet}n
i,j=1

that models a synchronous channel from Pi to Pj only. In this work we take the following
approach in order to obtain MPC over unstable networks: first, we instantiate the FStableNet
functionality on top of an unstable network, that is, we design a way for each pair of parties
to communicate reliably over an unstable network. Then, we take off-the-shelf MPC protocols
set in the stable/synchronous model and compose them with our protocol for emulating the
stable network, to get MPC protocols that are set in the unstable networking model. In the
Full Version we elaborate on which protocols we use, and on why the modular approach
sketched above works via the composition theorem. In this version we focus on instantiating
the stable networking model only.

An unstable network is formalized as a functionality, that we denote by FUnstableNet. In
each round, the functionality proceeds as follows: (1) At the beginning of the round the
environment, denoted by Z, specifies a subset of parties Or ⊆ P ; (2) For every Pi, Pj ∈ Or∩H,
the functionality delivers messages sent from Pi to Pj in the given round; (3) For every Pi

and Pj with either one of the two parties in (Or)c ∩H, the environment can choose whether
to drop the message sent from Pi to Pj in the given round.

If the adversary is allowed to set a given party Pi as offline forever, it is obvious that
no stable channel to or from Pi could be instantiated. To address this we introduce the
B-assumption, which states that the maximum amount of consecutive rounds that a party
can be offline is B. The protocols we present here require this assumption in order to produce
output, but in the Full Version we discuss alternative protocols that do not require this
during the entire computation.

2 Instantiating FPS→PR
StableNet with Perfect Security

In this section we take care of instantiating the functionality for a stable network with perfect
security. First, in Section 2.1 we discuss the simplest setting of passive security. Then, in
Section 2.2 we extend this to active security, while retaining perfect simulation.

2.1 Passive Security
Assuming a passive adversary, and assuming that |Or ∩ Or+1| ≥ t + 1 for all r > 0, our
protocol to instantiate FPS→PR

StableNet with perfect security is obtained as follows. At every round,
PS tries to secret-share its message m towards all the parties, which succeeds in the round
in which PS comes online. In the following rounds, the parties try to send their shares of
m to PR, who is able to get them when it comes online, and hence is able to reconstruct
m. The only missing step is that, when PS secret-shares m, only the parties online in the
current round are able to receive the shares. To alleviate this issue, the parties in each round
“transfer” the shared secret to the parties that are online in the next round. This is done via
a simple resharing protocol. Details are in Protocol Πperf,passive

StableNet (PS , PR, m).
We remark that, although it is not explicitly written in the protocol description, whenever

it is written that Pi sends a message to Pj , this is done by invoking the FUnstableNet function-
ality.

ITC 2023

7:8 Phoenix: Secure Computation in an Unstable Network

Protocol Πperf,passive
StableNet (PS , PR, m)

On input (m), PS samples random elements cij ∈ F for i, j = 0, . . . , t, subject to c0,0 = m

and cij = cji, and lets f(x, y) =
∑t

i,j=0 cijxiyj . Then, in rounds 1, . . . , B, PS sends f(x, i)
to each party Pi.

Every party Pi initializes a variable fi = ⊥. In rounds 1, . . . , 2B, Pi does the following:
If fi is not set already:
∗ If Pi receives a polynomial fi(x) = f(x, i) from PS , then Pi sets fi = fi.
∗ Else, if Pi receives messages mj ∈ F from at least t + 1 parties Pj , then Pi sets fi to be

the polynomial fi(x) such that fi(j) = mj for the first t + 1 messages mj .
If fi ̸= ⊥, then Pi sends fi(j) to each party Pj and fi(0) to PR.

In rounds B + 1, . . . , 2B, PR does the following: If PR receives messages mj ∈ F from at least
t + 1 parties Pj , then PR computes the polynomial f0(x) such that f0(j) = mj for the first
t + 1 messages mj , and outputs m = f0(0).

▶ Theorem 1. Assume that |Or ∩ Or+1| ≥ t + 1 for every r > 0. Then, protocol
Πperf,passive

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid model
with perfect security against an adversary passively corrupting t < n parties.

Proof. We claim that, in an execution of protocol Πperf,passive
StableNet (PR, PS), PR learns the value

of m at the end of the interaction, and the adversary does not learn the value of m, unless
PS or PR are passively corrupt.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS
, which exists

due to the B-assumption. We claim the following invariant: at the end of every round r with
rS ≤ r ≤ 2B, each Pi ∈ Or has fi ̸= ⊥, and these polynomials satisfy that fi(x) = f(x, i),
where f(x, y) is the polynomial sampled by PS at the beginning of the protocol. To see this
we argue inductively. First, notice that the invariant holds for r = rS given that parties
Pi ∈ OrS

receive this directly from PS . For the inductive step assume that the invariant
holds for some round r, that is, each party Pi ∈ Or has set its variable fi, and fi(x) = f(x, i).
In particular, this is held by the parties in Or ∩ Or+1, so each party Pi in this set sends
fi(j) to every other party Pj in round r + 1, which is received by the parties in Or+1.
Since |Or ∩ Or+1| ≥ t + 1, we see that each party Pj ∈ Or+1 receives at least t + 1 values
fi(j) = f(j, i) = f(i, j), which enables Pj to interpolate f(x, j), which is set to fj . We see
then that the invariant is preserved.

Finally, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR
, which is guaranteed

from the B-assumption. By the invariant, the parties in OrR−1 have set their variables fi

at the end of round rR − 1 correctly, so in particular the parties in OrR−1 ∩ OrR
will send

fi(0) = f(0, i) to PR in round OrR
. Since there are at least t + 1 such parties, this means

that PR gets at least t + 1 values f(0, i), which allows PR to interpolate m = f(0, 0).
The fact that the adversary does not learn anything if both PS and PR are honest follows

from the fact that its view is limited to t polynomials of the form f(x, i), which look uniformly
random. We remark that with the analysis above, it is straightforward to set up a simulator
S for the proof. ◀

Optimality of |Or ∩ Or+1| ≥ t + 1
Now we show that, in order to instantiate FPS→PR

StableNet with perfect security against a passive
adversary, the assumption that the adversary’s schedule satisfies |Or ∩Or+1| ≥ t + 1 in every
round r is necessary. However, we have to be careful about what this should actually mean:

I. Damgård, D. Escudero, and A. Polychroniadou 7:9

consider an adversary who respects the B-assumption and breaks the intersection condition
in one, or some finite number of rounds. Now, if the sender happens to start our protocol for
sending a message after the last bad round, it will clearly succeed. So we cannot hope to
show that communication between sender and receiver is impossible, unless we consider an
adversary who keeps breaking the intersection condition “for ever”. So we construct below
an adversary that breaks this condition once every B rounds, and by doing so it is able to
learn the message sent by an honest sender using any instantiation of FPS→PR

StableNet.
Assume the existence of an implementation of FPS→PR

StableNet with perfect security that tolerates
an adversary that schedules the parties as follows: (1) The adversary chooses a set A1 ⊂ P
such that |A1| = t+1, PS ∈ A1 and Ok·B = A1 for k > 0, and (2) the adversary chooses a set
A2 such that A1 ∪A2 = P and |A1 ∩A2| ≤ t such that PR ∈ A2, PS /∈ A2 and Or = A2 for
every r that is not of the form k ·B. Notice that this scheduling respects the B-assumption.
Now, suppose that PR learns the output in round rR = k · B + ℓ for some k and ℓ with
1 ≤ ℓ ≤ B. Since during the whole protocol PR only hears from the parties in A2, this means
that these parties together had enough information to reconstruct the secret in round rR.
However, these parties only hear from PS through A1 ∩ A2, which means that at a given
point in the protocol this set had enough information to reconstruct the secret. This is a
contradiction since |A1 ∩A2| ≤ t and PS , PR /∈ A1 ∩A2, and due to privacy no set of at most
t parties that does not contain the sender nor the receiver can reconstruct the message.

We remark that this lower bound rules out general MPC over unstable networks when
|Or ∩ Or+1| ≤ t, since FPS→PR

StableNet is a particular case of general MPC. This can be seen even
more clearly since what the lower bound actually shows is that, if the minimum intersection
size is not met, then the “state” of the computation is either leaked, or lost, which rules
out general MPC. Indeed, our perfectly secure protocol from Section B, which does not use
FStableNet directly, still requires |Or ∩ Or+1| ≥ t + 1 to hold for every round.

2.2 Active Security
The construction we presented in the previous section does not carry over to the actively
secure setting, given that a corrupted party Pi is not forced to send correct evaluations fi(j).
In this section we show an extension of this protocol that rules out this case. We assume
that, for every r, |Or ∩ Or+1 ∩ H| ≥ 2t + 1, which should be contrasted with the weaker
condition in the passively secure setting of |Or ∩ Or+1 ∩ H| ≥ t + 1. The use of a larger
threshold allows us to make use of error correction, which allows the parties to reconstruct
the right polynomials at each step of the protocol regardless of any incorrect value sent by
corrupt parties.

The protocol for active security, Protocol Πperf,active
StableNet (PS , PR, m), is similar to Protocol

Πperf,passive
StableNet (PS , PR, m), except for the following crucial change: when each Pi collects the

messages mj ∈ F for Pj received in a given round, only if there are at least 2t + 1 such
messages, Pi performs error correction on these to reconstruct a polynomial fi(x) such that
fi(j) = mj for every received message mj , and if this succeeds, then Pi sets fi = fi. Similarly,
only if PR receives at least 2t + 1 messages {mj}j , then PR performs error correction to
recover a polynomial f0(x) such that f0(j) = mj for every received message mj , and if this
succeeds then PR outputs m = f0(0).

▶ Theorem 2. Assume that |Or ∩ Or+1 ∩ H| ≥ 2t + 1 for every r > 0. Then, protocol
Πperf,active

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid model
with perfect security against an adversary actively corrupting t < n/3 parties.2

2 In principle the restriction is simply t < n, but we have that n− t = |H| ≥ |Or ∩ Or+1 ∩H| ≥ 2t + 1,
so n ≥ 3t + 1.

ITC 2023

7:10 Phoenix: Secure Computation in an Unstable Network

Proof. We claim that, in an execution of protocol Πperf,active
StableNet (PR, PS), PR learns the value of

m at the end of the interaction, and, if PR and PS are honest, the adversary does not learn
the value of m.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS
. We claim the

following invariant: at the end of every round r with rS ≤ r ≤ 2B, each Pi ∈ Or ∩ H has
fi ̸= ⊥, and these polynomials satisfy that fi(x) = f(x, i), where f(x, y) is the polynomial
sampled by PS at the beginning of the protocol. We use induction in order to show that
the invariant holds. First, notice that the invariant is true for r = rS given that parties
Pi ∈ OrS

∩H receive the polynomial directly from PS . For the inductive step assume that
the invariant holds for some round r, and we show that it holds for round r + 1. By the
hypothesis assumption each party Pi ∈ Or ∩ H has set its variable fi, and fi(x) = f(x, i).
In particular, this holds for the parties in Or ∩ Or+1 ∩ H, which means that each party
Pi in this set sends fi(j) to every other party Pj in round r + 1, which is received by the
parties in Or+1. Since |Or ∩Or+1 ∩H| ≥ 2t + 1, each party Pj ∈ Or+1 ∩H receives at least
2t + 1 correct values fi(j) = f(j, i) = f(i, j). Even if Pj receives more shares, some of them
potentially incorrect, Pj can still recover f(x, j) via error correction, as instructed by the
protocol. We see then that for Pj fj = f(x, j), so the invariant is preserved.

Now, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR
. By the invariant, the

parties in OrR−1 have set their variables fi at the end of round rR − 1 correctly, so in
particular the parties in OrR−1∩OrR

∩H will send fi(0) = f(0, i) to PR in round OrR
. Since

there are at least 2t + 1 such parties, this means that PR gets at least 2t + 1 correct values
f(0, i), which allows PR to error-correct m = f(0, 0). The fact that the adversary does not
learn anything if both PS and PR are honest follows as in the proof of Theorem 1.

As with the case with passive security, the analysis above enables the construction of
a simulator S for the proof in a straightforward manner. The main complication with the
actively secure setting in contrast to the scenario with passive security is that a corrupt PS

may send inconsistent shares in the first round in which it becomes online. However, in this
case, S can simply emulate the protocol exactly as the honest parties would do, and check if
the receiver would be able to error-correct or not at the end of the execution. Only if this
is the case, S would make use of the change command in the FPS→PR

StableNet functionality to set
PS ’s message to be the one that is recovered by PR, and then it would clock-out PR if PR is
honest. ◀

Optimality of |Or ∩ Or+1 ∩ H| ≥ 2t + 1
As in Section 2.1, we show that the bound |Or∩Or+1∩H| ≥ 2t+1 is necessary for essentially
all rounds by presenting an adversary that breaks the correctness of any perfectly secure
implementation of FPS→PR

StableNet against active adversaries, by using a scheduling that breaks the
condition above while still respecting the B-assumption.

The adversary’s scheduling is as follows. For simplicity let us assume that n = 5 and
t = 1, although the argument can be extended easily to any number of parties. Assume that
P1 is the sender, P5 is the receiver.

Let Ok·B = {P1, P2, P3, P4} for k = 0, 1,
Let Or = {P2, P3, P4, P5} for every r that is not of the form r0 + k · B. Notice that
|Ok·B ∩ Ok·B+1 ∩H| = |{P3, P4}| = 2 = 2t where Ok·B ∩ Ok·B+1 = {P2, P3, P4}.

Notice that this scheduling respects the B-assumption. Suppose that there is a protocol
that instantiates FPS→PR

StableNet with perfect security against an active adversary, supporting the
scheduling above. We will show a contradiction arising from the fact that the adversary can
actively cheat.

I. Damgård, D. Escudero, and A. Polychroniadou 7:11

Suppose that PR learns the output in round rR = k0 · B + ℓ for some k0 and ℓ with
1 ≤ ℓ ≤ B. Consider two different messages m ≠ m′, and let Mj and M ′

j for j = 2, 3, 4 be the
concatenation of the messages sent by Pj in round k ·B to the parties in Ok·B ∩ Ok·B+1 =
{P2, P3, P4} for k = 0, . . . , k0, when the inputs of PS to the protocol are m and m′ respectively.

First, we claim that the messages (M2, M3, M4) (resp. (M ′
2, M ′

3, M ′
4)) must uniquely

determine the secret m (resp. m′). To see why this is the case, observe that the receiver, P5,
only ever hears from the parties P2, P3, P4, but these in turn only hear from the sender, P1,
through the messages (M2, M3, M4) (resp. (M ′

2, M ′
3, M ′

4)), so these messages have to carry
enough information to determine the secret.

Now, due to privacy, no single party must be able to determine whether the message sent
is m or m′. If P3 was corrupt and if M3 ≠ M ′

3 for all possible initialization of all random
tapes, then the adversary would be able to distinguish the message by simply looking at
whether M3 or M ′

3 is being sent by P3. Hence, we see that there must exist an initial random
tape for which M3 = M ′

3. For the rest of the attack we assume this is the case.
With the observations we have seen so far, a corrupt party P2 can mount the following

attack: If P2 sees it needs to send M2, it will send M ′
2 instead. Since the protocol withstands

an active attack, the transcript (M2, M3, M4), which would be transformed to (M ′
2, M3, M4)

after the attack, would uniquely determine m. On the other hand, the very same transcript
can arise from an actively corrupt P4 that modifies the message M ′

4 when the message is
m′ to M4 (recall that M ′

3 = M3). In this case, due to the resilience of the protocol against
one active attack, (M ′

2, M3, M4) should reconstruct to the same message as (M ′
2, M ′

3, M ′
4),

which is m′. This is, however, a contradiction, since the same transcript cannot lead to two
different messages.

3 Instantiating FPS→PR
StableNet with Statistical Security

The goal of this section is to develop an information-theoretic protocol that instantiates
FPS→PR

StableNet against active adversaries, but replacing the condition |Or ∩ Or+1 ∩ H| ≥ 2t + 1
from Section 2.2 with |Or ∩ Or+1 ∩ H| ≥ t + 1. As shown in Section 2.2, perfect security
cannot be achieved in this setting, so we settle with statistical security.

Our construction at a high level works as follows. First, we design a pair of functions
f(m) = (m1, . . . , mn) and g(m′

1, . . . , m′
n) = m′ such that, if m′

i = mi for at least t + 1
(unknown) indices, then m′ = m. Also, it should hold that no set of at most t values mi

leaks anything about m. Assuming the existence of such pair of functions, we can envision a
simple construction of a protocol Π1(PS , PR, m) that guarantees that a receiver PR gets the
message m sent by a sender PS , as long as PR comes online either in the same round where
PS is, or in the next one. This operates as follows: PS computes (m1, . . . , mn) = f(m), and,
in every round, PS sends mi to party Pi, as well as m to PR. Once a party Pi receives mi,
it sends this value to PR in the next round. Let m′

1, . . . , m′
n be the values received by PR

when it comes online, where m′
i = ⊥ if PR does not receive a message from Pi (notice that

m′
i could differ from mi if Pi is actively corrupt). Since |Or ∩Or+1 ∩H| ≥ t + 1, we see that

at least t + 1 of the m′
i are equal to mi, so PR can output m = g(m′

1, . . . , m′
n).

Now, we would like to “bootstrap” the protocol Π1 into a protocol Π2(PS , PR, m) that
guarantees that a receiver PR gets the message m sent by a sender PS , as long as PR comes
online either in the same round where PS is, in the next one, or in the one after that. To this
end, the parties run Π1(PS , PR, m), which guarantees that PR gets m if it comes online in
the same round as PS , or at most in the round after. However, to deal with the case in which
PR comes online two rounds after PS , the parties also execute the following in parallel: PS

ITC 2023

7:12 Phoenix: Secure Computation in an Unstable Network

computes (m1, . . . , mn) = f(m) and executes Π1(PS , PR, mi) for i = 1, . . . , n. This ensures
that every Pi ∈ O2 will get mi, and at this point, the parties in O3 ∩ O2 can send these to
PR in the third round. Upon receiving m′

i, PR outputs m = g(m′
1, . . . , m′

n).
To analyze the protocol Π2, assume for simplicity that PS ∈ O1. We first observe that if

PR ∈ O1 ∪ O2, then PR gets m as Π1(PS , PR, m) is being executed. If, on the other hand,
PR ∈ O3, PR gets m as g(m1, . . . , mn) since the parties Pi ∈ O2 get mi from Π1(PS , PR, mi).
This idea can be iterated to obtain protocols that deliver messages as long as PR comes
online at most k rounds after PS comes online.

In what follows we present the tools necessary to formalize this idea, and later discuss
the actual protocols for instantiating FPS→PR

StableNet.

3.1 Robust Secret Sharing
The functions f and g discussed above are instantiated using robust secret-sharing, which
are techniques that enables a dealer to distribute a secret among multiple nodes in such a
way that (1) no subset of at most t nodes learn the secret and (2) if each node sends its
share to a receiver, no subset of at most t corrupt nodes can stop the receiver from learning
the correct secret.

The definition we consider here is more general than standard definitions from the
literature since, at reconstruction time, we allow for missing shares, and if there are many of
these we allow the reconstruction algorithm to output an error signal ⊥. However, if there
are enough honest non-missing shares, then reconstruction of the correct message must be
guaranteed. This is needed since, in our protocols, there are some rounds in which parties
may not receive enough shares to reconstruct the right secret, and they must be able to
detect this is the case to wait for subsequent rounds where more shares are available.

▶ Definition 3. Let A ⊆ {1, . . . , n} with |A| ≤ t. A robust secret-sharing (RSS) scheme
with deletions having message space M and share space S is made up of two randomized
polytime functions, share : M → Sn and rec : Sn → M, satisfying the properties below
for any not-necessarily-polytime algorithm A. Let (s1, . . . , sn) = share(m). Let Bc =
A(missing, {sj}j∈A) ⊆ P denote a set chosen by A of shares to be deleted. Let (s′

1, . . . , s′
n)

be defined as follows: s′
i = ⊥ for i ∈ Bc, s′

i = A(i, {sj}j∈A) ∈ S for i ∈ A ∩ B and s′
i = si

for i ∈ Ac ∩B.
Privacy. The distribution of {si}i∈A is independent of m.
Error detection. With probability 1− negl(κ), rec(s′

1, . . . , s′
n) outputs either m or ⊥.

Guaranteed reconstruction. If |Ac ∩B| > t then, with probability 1− negl(κ), it holds
that m = rec(s′

1, . . . , s′
n).

Several robust secret-sharing constructions can be found in the literature. However, since
we consider a non-standard version of robust secret-sharing, we present below a concrete
construction that fits Definition 3, which is motivated on the so-called information-checking
signatures from [11]. We remark that any instantiation of Definition 3 will suffice for our
stable network construction, with better parameters such as share length of computational
complexity directly leading to direct improvements on our protocols.

The following proposition shows that the scheme (share, rec) is an RSS scheme with error
detection.

▶ Proposition 4. The construction (share, rec) from above is an RSS scheme with deletions.

I. Damgård, D. Escudero, and A. Polychroniadou 7:13

RSS scheme with deletions: (share, rec)

share(m): Compute Shamir shares m1, . . . , mn of m. For each i ∈ {1, . . . , n}, sample
(αi, {βij}n

j=1), and let, for every i, j ∈ {1, . . . , n}, τij = αjmi + βji. Return (s1, . . . , sn), with
si = (mi, (αi, {βij}n

j=1, {τij}n
j=1).

rec(s′
1, . . . , s′

n). Let B = {i : s′
i ̸= ⊥}. Parse each s′

i for i ∈ B as (m′
i, (α′

i, {β′
ij}n

j=1, {τ ′
ij}n

j=1).
Then proceed as follows:
1. If |B| ≥ t + 1: for every i ∈ B do the following. If α′

jm′
i + β′

ji
?= τ ′

ij does not hold for at least
t + 1 values of j ∈ B, then set m′

i = ⊥.a

2. After this process, if |{m′
i : m′

i ̸= ⊥}| > t, then using any subset of this set of size t + 1 to
interpolate a polynomial f(x) of degree at most t, and output m = f(0). Else, output ⊥.

a In particular, if 0 ≤ |B| ≤ t then all m′
i would be set to ⊥ as the check would always fail.

Proof. Let share(m) = (s1, . . . , sn) with si = (mi, (αi, {βij}n
j=1), {τij = αjmi + βji}n

j=1).
First we argue privacy. It is clear that the n Shamir shares m1, . . . , mn do not leak anything
about the secret m towards the adversary. Additionally, the keys (αi, {βij}n

j=1) are simply
random values, which do not leak anything either. Finally, each Pi receives {τij = αjmi +
βji}n

j=1, but these only involve mi, which is already known by Pi. Notice that, since βji is
uniformly random and unknown to Pi (if j ̸= i), Pi learns no information about αj . This
will be crucial since, as we show below, αj is used to prevent Pi from changing their share.

Now, to see the guaranteed reconstruction property, let (s′
1, . . . , s′

n) be as in Definition 3.
Assume that |Ac ∩ B| > t, we want to show that rec(s′

1, . . . , s′
n) outputs m in this case.

Let us write each s′
i for i ∈ A ∩ B as s′

i = (m′
i, (α′

i, {β′
ij}n

j=1), {τ ′
ij}n

j=1). We claim that
if m′

i = mi + δi with δi ̸= 0, then τ ′
ij = αjm′

i + βji for at least j ∈ Ac ∩ B can only
happen with negligible probability. To see why this holds, let us write τ ′

ij = τij + ϵij , so
τ ′

ij = (αjmi + βji) + ϵij = (αjm′
i + βji) − αjδi + ϵij . For this to be equal to αjm′

i + βji,
it has to hold that αj = δ−1

i ϵij . However, δi and ϵij are functions of {sℓ}ℓ∈A, so they are
computed independently of the uniformly random value αj since j /∈ A. This shows that
the equation αj = δ−1

i ϵij for at least j ∈ Ac ∩ B can only hold with probability at most
1/|F| = negl(κ), so in particular the claim above holds (recall that n = poly(κ)).

From the above we see that if m′
i ̸= mi then, with overwhelming probability, τ ′

ij ̸=
αjm′

i + βji for every j ∈ Ac ∩B, so in particular τ ′
ij = αjm′

i + βji can only be satisfied for
j ∈ A ∩ B, but since |A ∩ B| ≤ t, we see that m′

i would be set to ⊥ from the definition of
rec(·). As a result, only values with m′

i = mi remain, and since there are at least |Ac∩B| > t

of these, we see that rec(·) outputs m correctly in this case.
The argument above also shows the error detection property: the extra assumption

|Ac ∩B| > t was only used at the end to show that the set {m′
i : m′

i ̸= ⊥} will have at least
t + 1 elements, in which case the correct m could be reconstructed. If this does not hold,
then rec(·) outputs ⊥. ◀

3.2 Delivering within 2 rounds
Let (share, rec) be a robust secret-sharing scheme with deletions. We begin by presenting a
protocol Π1(PS , PR, m) that guarantees that PR gets the message m sent by PS as long as
PR comes online either in the same round as PS , or at most one round later. First, we define
the concept of k-delivery, which formalizes and generalizes this notion.

ITC 2023

7:14 Phoenix: Secure Computation in an Unstable Network

Protocol Π1(PS , PR, m)

PS does the following:
Let (s1, . . . , sn) = share(m). Send si to Pi in every round.
Send m to PR.

Every party Pi does the following:
Pi sets an internal variable si = ⊥. In every round, if Pi receives si from Pi, then it sets
si = si.
In every round, if si ̸= ⊥, then Pi sends si to PR.

PR does the following in every round:
If PR receives m from PS , then PR outputs m.
Let s′

i be the message PR receives from Pi, setting s′
i = ⊥ if no such message arrives. If

rec(s′
1, . . . , s′

n) ̸= ⊥, then PR outputs this value.

▶ Definition 5 (k-delivery). A protocol Π is said to satisfy k-delivery if it instantiates the
functionality FPS ,PR

StableNet (with statistical security), modified so that PR is only guaranteed to
receive the message sent by PS if PR ∈

⋃k
r=0OrS+r, where rS is the first round in which

PS ∈ OrS
. If PR /∈

⋃k
r=0OrS+r, then PR cannot output an incorrect message.

▶ Proposition 6. Π1(PR, PS , m) satisfies 1-delivery.

Proof. Privacy holds from the privacy of the robust secret-sharing scheme.
Now, assume that PR ∈ OrS

∪OrS+1. If PR ∈ OrS
, then PR gets m as it is being sent by

PS directly. On the other hand, if PR ∈ OrS+1, the argument is the following. First, each
Pi ∈ OrS

receves si from PS , which in particular means that the parties in OrS
∩OrS+1 ∩H

send the correct si to PR. PR receives at least t + 1 correct shares si and at most t incorrect
ones, hence, by the guaranteed reconstruction property of the RSS, PR obtains s from these
shares.

Finally, the fact that if PS /∈ OrS
∪OrS+1 then PS does not output an incorrect message

follows from the error detection property of (share, rec). ◀

3.3 From (k − 1)-delivery to k-delivery
Now we show that, given a protocol Πk−1(PR, PS , ·) that achieves (k − 1)-delivery, one can
obtain a protocol that achieves k-delivery. This is achieved by Protocol Πk(PR, PS , m).

Protocol Πk(PR, PS , m)

In the following, multiple protocols will be executed in parallel. We assume that messages are
tagged with special identifiers so that they can be effectively distinguished.

The parties execute Πk−1(PS , PR, m). In parallel, they execute the following.
Let (s1, . . . , sn) = share(m). The parties run n protocol instances Πk−1(PS , Pi, si) for i =
1, . . . , n.
Each Pi, upon outputting si from Πk−1(PS , Pi, si), send (si) to PR in all subsequent rounds.
PR initializes variables s1, . . . , sn = ⊥. Then PR does the following in every round:

Upon outputting si from some execution Πk−1(PS , Pi, si), PR sets si = si.
Upon receiving s′

i from some party, sets si = s′
i.

PR outputs rec(s1, . . . , sn) if this value is not ⊥.

I. Damgård, D. Escudero, and A. Polychroniadou 7:15

▶ Proposition 7. Protocol Πk(PS , PR, m) achieves k-delivery.

Proof. Let rS be the first round in which PS ∈ OrS
, and assume that PR ∈

⋃k
r=0OrS+r. If

PR ∈
⋃k−1

r=0 OrS+r, then PR would receive m correctly from the properties of Πk−1.
Given the above, it remains to analyze the case in which PR ∈ OrS+k. From the properties

of Πk−1, every party Pi ∈ OrS+(k−1) receives si from PS in round rS + (k− 1). In particular,
each party Pi ∈ OrS+(k−1)∩OrS+k sends si to PR in round rS +k. An analysis similar to the
one in the proof of Proposition 6 shows that PR is able to recover m from this information,
and it also shows that if PR /∈

⋃k
r=0OrS+r, then PR cannot be fooled into reconstructing an

incorrect message. ◀

Combining Propositions 6 and 7, we obtain the following corollary:

▶ Corollary 8. For every k, there exists a protocol Πk satisfying k-delivery.

Now, recalling that the B-assumption implies that there is one round among 1, . . . , B in
which PS will come online, and a round among B + 1, . . . , 2B in which PR is online as well,
we obtain the following theorem as a corollary.

▶ Theorem 9. Assume that |Or ∩ Or+1 ∩ H| ≥ t + 1 for every r > 0. Then, protocol
Π2B(PR, PS , ·) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid model with
statistical security against an adversary actively corrupting t < n/2 parties.3

▶ Remark 10. The communication complexity of Πk is Θ(nk). This is because, in the execution
of Πk, PS must use Πk−1 to communicate a share to each single party, adding a factor of n

with respect to the communication complexity of this protocol. This is too inefficient for large
values of k. We leave is an open problem the challenging task of obtaining instantiations
of FPS ,PR

StableNet with statistical security in the setting in which |Or ∩ Or+1 ∩H| ≥ t + 1 having
communication complexity that is polynomial in the bound B.

References
1 Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC:

Laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 120–150. Springer, Heidelberg, December 2020. doi:
10.1007/978-3-030-64840-4_5.

2 Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel Kaptchuk.
Fluid mpc: Secure multiparty computation with dynamic participants. In Annual International
Cryptology Conference, pages 94–123. Springer, 2021.

3 Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous
multiparty computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik,
editors, PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, Heidelberg, March 2009.
doi:10.1007/978-3-642-00468-1_10.

4 Ivan Damgård, Daniel Escudero, and Divya Ravi. Information-theoretically secure mpc against
mixed dynamic adversaries. Thheory of Cryptography Conference, 2021.

5 Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in
unconditional multi-party computation (extended abstract). In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 121–136. Springer, Heidelberg, August 1998.
doi:10.1007/BFb0055724.

3 As with Theorem 2, in principle the restriction is simply t < n, but we have that n − t = |H| ≥
|Or ∩ Or+1 ∩H| ≥ t + 1, so n ≥ 2t + 1.

ITC 2023

https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/BFb0055724

7:16 Phoenix: Secure Computation in an Unstable Network

6 Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Information
processing letters, 43(4):169–174, 1992.

7 Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin,
and Sophia Yakoubov. YOSO: you only speak once - secure MPC with stateless ephemeral
roles. In CRYPTO 2021, 2021.

8 Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 499–529. Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-26948-7_
18.

9 Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2020.
10 Chiu-Yuen Koo. Secure computation with partial message loss. In Shai Halevi and Tal Rabin,

editors, TCC 2006, volume 3876 of LNCS, pages 502–521. Springer, Heidelberg, March 2006.
doi:10.1007/11681878_26.

11 Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.
doi:10.1145/73007.73014.

12 Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid mpc for dishonest majority.
Cryptology ePrint Archive, Paper 2021/1579, 2021. URL: https://eprint.iacr.org/2021/
1579.

13 Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. Realistic failures in secure multi-party
computation. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 274–293.
Springer, Heidelberg, March 2009. doi:10.1007/978-3-642-00457-5_17.

A Shamir Secret Sharing

Throughout this work we will make use of Shamir secret sharing in order to distribute
data among different parties. To secret-share a value s ∈ F among the n parties P1, . . . , Pn

using threshold t, a dealer proceeds as follows: (1) sample a uniformly random polynomial
f(x) ∈ F[x] of degree at most t, subject to f(0) = s, and (2) send to Pi its share si := f(i).
It is well known that for every set of t + 1 points (i, si) there exists a unique polynomial f(x)
of degree at most t such that f(i) = si for all i, which implies that any set of at least t + 1
shares can recover the secret, and any set of t shares does not reveal anything about the
secret.

Bivariate sharings

Sometimes we will make use of bivariate sharings, in which the dealer, to distribute a secret
s ∈ F, samples a random symmetric bivariate polynomial f(x, y) of degree at most t in each
variable subject to f(0, 0) = s, and sends the polynomial f(x, i) to Pi. As before, given at
most t of these polynomials nothing is leaked about the secret s since any secret could be
chosen so that it looks consistent with the given polynomials.

Error-detection and error-correction

Given m shares among which at most t can be incorrect, then the parties output f(0) as the
secret, where f(x) is the reconstructed polynomial. Given m shares {si} among which at
most t are incorrect we have the following two possibilities:

If at least t+1 are guaranteed to be correct, error-detection can be performed by checking
if these shares all lies in a polynomial of degree at most t, and if this is the case, the
reconstructed polynomial is guaranteed to be correct since it is determined by the t + 1
correct shares.

https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/11681878_26
https://doi.org/10.1145/73007.73014
https://eprint.iacr.org/2021/1579
https://eprint.iacr.org/2021/1579
https://doi.org/10.1007/978-3-642-00457-5_17

I. Damgård, D. Escudero, and A. Polychroniadou 7:17

If at least 2t + 1 are guaranteed to be correct, error-correction is possible by looping
through all possible subsets of these shares of size 2t + 1 and checking if all shares in
the given subset are consistent with a polynomial of degree at most t. The subset used
for reconstructing this polynomial has 2t + 1 points among which at least t + 1 are
correct (since at most t shares are assumed to be incorrect), which guarantees that the
reconstructed polynomial is the correct one. Although the process of looping through all
subsets of size 2t + 1 can be too inefficient if m is much larger than 2t + 1, this can be
made polynomial in m by using error-detection algorithms like Berlekamp-Welch [6].

In some of our protocols we will need a version of error-correction, which we call enhanced
error-correction, in which the correct polynomial is recovered if there are enough correct
shares, and else an error is output. To this end, given m ≥ 2t + 1 shares as above among
which at most t are incorrect, all possible subsets of 2t + 1 shares are inspected, checking if
all these shares are consistent with a polynomial of degree at most t. If one such subset is
found, then its corresponding polynomial is output, and else, an error ⊥ is produced as the
result. By the same analysis as above, this either results in the correct polynomial or an
error. The main complication is that error-correcting algorithms like Berlekamp-Welch are
not designed to handle this setting in which not enough correct shares may be available, but
one can easily modify this algorithm to handle this case (see for example [4]).

B A More Efficient Protocol with Perfect Security

Recall that in Section 2.2 we presented a protocol to instantiate the functionality FStableNet,
which is intended to represent a traditional stable and secure network among the n parties.
This is the typical communication model used in several MPC protocols, and, assuming
t < n/3, we can find perfectly secure protocols in this model which can be used together
with our protocol Πperf,active

StableNet (PS , PR) from Section 2.2 to obtain a perfectly secure protocol
over an unstable network.

In order to instantiate the functionality FStableNet, we required that the scheduling the
adversary provides allows each party to come online at least once within certain amount
of rounds, say B. This is necessary since FStableNet requires each message between honest
parties to be delivered, and if the receiver never comes online such guarantee cannot hold.
Unfortunately, our protocol Πperf,active

StableNet (PS , PR) requires 2B rounds to deliver a message
between a sender and a receiver, which ultimately means that the final protocol after
composing Πperf,active

StableNet (PS , PR) with an existing perfectly secure protocol would lead to a
multiplicative overhead of 2B in the number of rounds.

Round-count is a very sensitive metric in distributed protocols, especially in high-latency
scenarios where every communication trip incurs in a noticeable waiting time. Furthermore,
the θ(B) overhead may not be so noticeable if the higher level protocol has a low round count,
but unfortunately, it is a well-known open problem to achieve constant round protocols with
perfect security for functionalities outside NC1 while achieving polynomial computation and
communication complexity. Motivated by this, we develop in this section a perfectly secure
protocol over an unstable network whose number of rounds corresponds to the depth of
the circuit being computed plus a term that depends on B, but is independent of the size
of the circuit, matching the round complexity of existing protocols over stable networks.
Furthermore, after the inputs have been provided, our protocol does not require anymore the

ITC 2023

7:18 Phoenix: Secure Computation in an Unstable Network

assumption that each party has to be online at least once every B rounds.4 This is because,
as we will see, our protocol only relies on the assumption that |Or ∩ Or+1 ∩H| ≥ 2t + 1 for
every round r in order to transmit and advance the secret-shared state of the computation
from one round to the next. Intuitively, it is irrelevant if certain specific parties become
online at certain points of the protocol, and the only thing that matters is that enough
parties remain online from one round to the next one, irrespectively of their identities.

B.1 Bivariate Sharings and Transition of Shares

We describe the input and preprocessing phases of our protocol in Section B.2, and in
Section B.3 we describe its computation phase. However, before we dive into the protocols
themselves, we need to present certain primitives that will be useful for these constructions.
These are bivariate sharings, together with methods for transmitting bivariate shared values
from one round to the next. This will allow the parties to “transmit” the state of the
computation from the parties that are online in a given round, to these online in the next
one, making progress in one layer of the circuit at the same time.

We say that the parties have bivariate shares of a value s if there exists a symmetric
bivariate polynomial f(x, y) of degree at most t in both variables such that (1) each party
Pi ∈ P has f(x, i) and (2) it holds that f(0, 0) = s. We denote this by ⟨s⟩. Observe that
this scheme is linear, i.e. parties can locally compute additions of secret shared values, which
is denoted by ⟨x + y⟩ ← ⟨x⟩+ ⟨y⟩.

Bivariate sharings were used indirectly in Section 2.2 to instantiate FPS→PR

StableNet with perfect
security against an active adversary. This type of sharings proved useful in Protocol
Πperf,active

StableNet (PS , PR) to “transfer” a state between a set of parties to another one, and this is
the purpose of this primitive in this section as well. In a bit more detail, during the execution
of our protocol it will not hold that all parties have shares of certain given values, but rather
only specific subsets corresponding to online parties will do. Since the set of online parties
potentially changes from round to round, a crucial primitive our protocol relies on is what
we call transition of shares, which takes care of transmitting the shared state from one set of
parties to another.

We first formalize the notion that only (part of) the online parties hold shares of a given
value. We say that the parties have a bivariate-shared value s in round r if there exists a
symmetric bivariate polynomial f(x, y) of degree at most t in both variables such that (1)
there exists a subset Sr ⊆ Or ∩H with |Sr| ≥ 2t + 1 such that each Pi ∈ Sr has f(x, i), (2)
each Pi ∈ (Or ∩H) \ Sr has set their share to either f(x, i), or a predefined value ⊥, and (3)
it holds that f(0, 0) = s. This is denoted by ⟨s⟩Or . Observe that nothing is required from
parties outside Or ∩H. Also, notice that if all the parties have bivariate shares of a value s,
which we denote by ⟨s⟩, then it holds that ⟨s⟩Or for every r.

A protocol for transition of shares is a one-round protocol in which the parties start with
⟨s⟩Or in round r, and they obtain ⟨s⟩Or+1 in the next round r + 1. In what follows we present
a protocol for transition of shares, which is motivated in the perfectly secure protocol for
instantiating FPS→PR

StableNet from Section 2.

4 However, the output will be received only by the parties who happen to be online at the output phase.

I. Damgård, D. Escudero, and A. Polychroniadou 7:19

Protocol Πtransfer

Input: ⟨s⟩Or in round r

Output: ⟨s⟩Or+1 in round r + 1.

Parties do the following:
1. For each i = 1, . . . , n, if Pi has a share f(x, i) of ⟨s⟩Or+1 (different to ⊥), then Pi sends f(j, i)

to Pj for j = 1, . . . , n.
2. For each j = 1, . . . , n, if Pj receives at least 2t + 1 messages {f(j, i)}i, then Pj performs

enhanced error correction (see Section A) to either recover f(j, x) or output an error ⊥.

▶ Theorem 11. If executed in round r, protocol Πtransfer guarantees that the parties get
sharings ⟨s⟩Or+1 .

Proof. Let Sr ⊆ Or ∩ H with |Sr| ≥ 2t + 1 be the set of honest parties Pi having f(x, i),
guaranteed from the definition of bivariate sharings. Since the protocol above is executed
in round r, each party Pi ∈ Sr will send f(j, i) to each other party Pj , which in particular
is received by the parties Pj ∈ Or+1 ∩ Or ∩H, and given that |Sr| ≥ 2t + 1, the enhanced
error-correction algorithm executed by Pj will result in Pj recovering f(j, x), which is equal
to f(x, j). Let Sr+1 := Or+1 ∩ Or ∩ H and note that (1) |Sr+1| ≥ 2t + 1 and also each
Pj ∈ Sr+1 has f(x, j), (2) each Pj ∈ (Or+1 ∩H) \ Sr+1 set their share to either f(x, j) or ⊥
due to the properties of the enhance error-correction mechanism, and (3) it (still) holds that
f(0, 0) = s. From the definition of bivariate sharings, it holds that ⟨s⟩Or+1 . ◀

Transitioned Reconstruction
Another primitive that we will need in our protocol, besides transferring shares from one
set of parties to another, consists of reconstructing a bivariate-shared value. Assume that
the parties in round r have ⟨s⟩Or . If all parties in round r send their shares {f(0, j)}j to all
other parties, they can perform (enhanced) error correction to reconstruct s = f(0, 0). In
this way, the parties in Or ∩H are guaranteed to learn s. In particular, s is known by the
parties in Or+1 ∩Or ∩H, which contains at least 2t + 1 parties. This protocol is denoted by
s← Πrec(⟨s⟩Or).
▶ Remark 12. An important fact about the proof of Theorem 11 is that, it holds that
Sr+1 ⊆ Or+1 ∩Or ∩H. In addition, the reconstruction protocol from above ensures that the
parties in Or+1 ∩ Or ∩H, so in particular the parties in Sr+1, learn the secret. This will be
important in our main protocol in Section B.3.

B.2 Preprocessing and Input Phases
We assume that the functionality to be computed is given by a layered circuit
(x(L)

1 , . . . , x
(L)
ℓL

) = F (x(0)
1 , . . . , x

(0)
ℓ0

). Considering layered circuits, in contrast to more general
circuits, is useful for our construction since in this case the values in a given layer completely
determine the current state of the computation, that is, the next layer, and in particular the
remainder of the computation, is fully determined by these values. This is important since,
as we will see, at the heart of our construction lies the possibility of a given set of online
parties to transmit their shared state to the online parties in the next round, and, from the
structure of the protocol, this state is comprised by the shared values in a given layer.

For our main protocol, we assume that all the parties have certain bivariate-shared mul-
tiplication triples (as specified below), plus bivariate shares of the inputs of the computation.
By making use of the B-assumption, these shares can be computed by using any generic

ITC 2023

7:20 Phoenix: Secure Computation in an Unstable Network

MPC protocol for these tasks, together with our compiler from Section 2.2. This would incur
a multiplicative overhead of B in the number of rounds, however, the circuit representing
this computation is constant-depth, so this does not affect the overall result of this section.
Notice that this does not require all the parties to be online during the computation of these
sharings, but instead, the B-assumption, that requires every honest party to come online
once every B rounds, suffices.

The correlation required for the computation consists of secret-shared values (⟨a⟩, ⟨b⟩, ⟨c⟩),
one tuple for every multiplication gate in the circuit, where a, b ∈R F and c = a · b.

B.3 Computation Phase

With the primitives described above, the protocol for computing the given functionality F is
relatively straightforward: by making use of the Πtransfer and Πrec protocols, the parties can
use the standard approach to secure computation based on multiplication triples, making
progress from round to round depending on the set of parties that is online. This is possible
since, at the end of the execution of the method described in Section B.2, all the parties hold
the preprocessing material and shares of the inputs (even if some parties were offline during
certain parts of the execution), together with the fact that |Or ∩Or+1 ∩H| ≥ 2t + 1 for every
round r, which enables share transfer and reconstruction. The protocol is described in detail
below. The security proof follows straightforwardly from existing techniques, together with
the properties proven in Section B.1, and a sketch of this proof can be found towards the
end of this section. Observe that the protocol requires only L rounds, which, added to the
O(1) rounds from the preprocessing and input phases, leads to a protocol with comparable
round efficiency to protocols in the stable (i.e. traditional) model.

Protocol ΠMPC

Input: Secret-shared inputs ⟨x(0)
1 ⟩, . . . , ⟨x(0)

ℓ0
⟩, where ℓ0 is the number of input wires.

Preprocessing: A multiplication triple (⟨a⟩, ⟨b⟩, ⟨c = a · b⟩) for every multiplication gate in the
circuit.
Output: Let L be the final round of the protocol. The parties have ⟨x(L)

1 ⟩
OL , . . . , ⟨x(L)

ℓL
⟩OL in

round L, where (x(L)
1 , . . . , x

(L)
ℓL

) = F (x(0)
1 , . . . , x

(0)
ℓ0

).

For rounds r = 1, . . . , L:
The parties in round r − 1 already have shares ⟨x(r−1)

1 ⟩Or−1 , . . . , ⟨x(r−1)
ℓr−1

⟩Or−1 .

The parties in round r obtain shares ⟨x(r)
1 ⟩

Or , . . . , ⟨x(r)
ℓr
⟩Or as follows:

1. For every addition gate with inputs ⟨x⟩Or−1 and ⟨y⟩Or−1 , the parties locally obtain ⟨x +
y⟩Or−1 and call ⟨x + y⟩Or ← Πtransfer(⟨x + y⟩Or−1).

2. For every multiplication gate with inputs ⟨x⟩Or−1 and ⟨y⟩Or−1 , the parties proceed as
follows:
a. Let (⟨a⟩, ⟨b⟩, ⟨c⟩) be the next available multiplication triple. The parties in round r − 1

locally compute ⟨d⟩Or−1 = ⟨x⟩Or−1 − ⟨a⟩Or−1 and ⟨e⟩Or−1 = ⟨y⟩Or−1 − ⟨b⟩Or−1 .
b. The parties in round r learn d and e by calling d← Πrec(⟨d⟩Or−1) and e← Πrec(⟨e⟩Or−1).
c. The parties in round r compute ⟨x · y⟩Or as d · ⟨b⟩Or + e · ⟨a⟩Or + ⟨c⟩Or + d · e.a

3. For every identity gate with input ⟨x⟩Or−1 the parties call ⟨x⟩Or ← Πtransfer(⟨x⟩Or−1).
a Here is where Remark 12 becomes relevant: parties in Or (or rather Sr) can compute the linear

combination defining ⟨x · y⟩Or since both the constants and the sharings are known to the
parties in Sr.

I. Damgård, D. Escudero, and A. Polychroniadou 7:21

▶ Remark 13 (About the output). In our protocol above, the parties in OL obtain shares
⟨x(L)

1 ⟩OL , . . . , ⟨x(L)
ℓL
⟩OL in round L, where (x(L)

1 , . . . , x
(L)
ℓL

) = F (x(0)
1 , . . . , x

(0)
ℓ0

) is the result of
the computation. This output can be dealt with in multiple different ways:

The parties in OL can reconstruct the output to each other. This way, the parties in OL

are guaranteed to learn the output, but parties outside this set may not satisfy this.
If the B-assumption holds for some B, the parties can reconstruct and transfer this
sharing for B more rounds so that all parties learn the output.

B.4 Security Analysis
Now we provide a sketch of the security properties of protocol ΠMPC from Section B.3. Recall
that the function to be computed is assumed to be given by a layered circuit (x(L)

1 , . . . , x
(L)
ℓL

) =
F (x(0)

1 , . . . , x
(0)
ℓ0

). Furthermore, it is assumed that the parties have bivariate shares of the
inputs ⟨x(0)

1 ⟩, . . . , ⟨x(0)
ℓ0
⟩, and also, for every multiplication gate, a triple (⟨a⟩, ⟨b⟩, ⟨c = a · b⟩)

with a, b uniformly random in F.5 Recall that ⟨s⟩Or means that there is a large enough
subset Sr ⊆ Or ∩ H such that every party Pi ∈ Sr has f(x, i) such that f(0, 0) = s, and
parties in (Or ∩H) \ Sr either have f(x, i) or a special symbol ⊥.

Assume the protocol starts in round 0. We claim that the following invariant holds:
In round r, the parties in Or have shares of the intermediate results in layer r, namely
⟨x(r)

1 ⟩Or , . . . , ⟨x(r)
ℓr
⟩Or . To see this we argue inductively. For r = 0 this follows trivially as we

assumed that the parties start with shares ⟨x(0)
1 ⟩, . . . , ⟨x(0)

ℓ0
⟩, which in particular means they

have shares ⟨x(0)
1 ⟩O0 , . . . , ⟨x(0)

ℓ0
⟩O0 .

Assume the invariant holds for r, and let us show it also holds for r + 1. Let k ∈
{1, . . . , ℓr+1}. From the definition of a layered circuit, the value x

(r+1)
k can be computed in

either one of three ways:
Identity gate x

(r+1)
k = x

(r)
i . In this case the protocol instructs that the parties must call

⟨x(r+1)
k ⟩Or+1 ← Πtransfer(⟨x(r)

i ⟩Or).

Addition gate x
(r+1)
k = x

(r)
i +x

(r)
j . In this case the protocol dictates the parties to compute

⟨x(r)
k ⟩Or = ⟨x(r)

i ⟩Or + ⟨x(r)
j ⟩Or , followed by ⟨x(r+1)

k ⟩Or+1 ← Πtransfer(⟨x(r+1)
k ⟩Or).

Multiplication gate x
(r+1)
k = x

(r)
i · x(r)

j . Here, the parties in Or first compute locally
⟨d⟩Or = ⟨x(r)

i ⟩Or −⟨a⟩Or and ⟨e⟩Or = ⟨x(r)
j ⟩Or −⟨b⟩Or , and call d← Πrec(⟨d⟩Or) and e←

Πrec(⟨e⟩Or−1), which enables the parties in Or∩H, which include Or∩Or+1∩H, to learn d

and e. Observe that this does not reveal anthing about x
(r)
i and x

(r)
j to the adversary since

a and b are assumed to be uniformly random and unknown to the adversary. Finally, these
parties, which define the set Sr+1, compute d · ⟨b⟩Or+1 + e · ⟨a⟩Or+1 + ⟨c⟩Or+1 + d · e, which
can be easily checked to be equal to ⟨x(r)

i · x
(r)
j ⟩Or+1 , which is the same as ⟨x(r+1)

k ⟩Or+1 .

Since the invariant holds for every layer, in particular it holds for r = L, which shows
that, after L rounds, the parties obtain ⟨x(L)

1 ⟩OL , . . . , ⟨x(L)
ℓL
⟩OL . As mentioned in Remark 13

in Section B.3, these shared outputs can be handled in different ways, depending on the
application under consideration.

5 A simple “optimization” is that these shares do not need to be held by all the parties, but rather by
these that will make use of these sharings in each corresponding round.

ITC 2023

	1 Introduction
	1.1 Unstable Networks
	1.2 Our Contribution
	1.3 Related Work
	1.4 Preliminaries and Organization

	2 Instantiating F_{StableNet}^{P_S- > P_R} with Perfect Security
	2.1 Passive Security
	2.2 Active Security

	3 Instantiating F_{StableNet}^{P_S- > P_R} with Statistical Security
	3.1 Robust Secret Sharing
	3.2 Delivering within 2 rounds
	3.3 From (k-1)-delivery to k-delivery

	A Shamir Secret Sharing
	B A More Efficient Protocol with Perfect Security
	B.1 Bivariate Sharings and Transition of Shares
	B.2 Preprocessing and Input Phases
	B.3 Computation Phase
	B.4 Security Analysis

