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Abstract
Secret-sharing allows splitting a piece of secret information among a group of shareholders, so that
it takes a large enough subset of them to recover it. In weighted secret-sharing, each shareholder has
an integer weight, and it takes a subset of large-enough weight to recover the secret. Schemes in the
literature for weighted threshold secret sharing either have share sizes that grow linearly with the
total weight, or ones that depend on huge public information (essentially a garbled circuit) of size
(quasi)polynomial in the number of parties.

To do better, we investigate a relaxation, (α, β)-ramp weighted secret sharing, where subsets of
weight βW can recover the secret (with W the total weight), but subsets of weight αW or less cannot
learn anything about it. These can be constructed from standard secret-sharing schemes, but known
constructions require long shares even for short secrets, achieving share sizes of max

(
W, |secret|

ϵ

)
,

where ϵ = β − α. In this note we first observe that simple rounding let us replace the total weight W

by N/ϵ, where N is the number of parties. Combined with known constructions, this yields share
sizes of O

(
max(N, |secret|)/ϵ

)
.

Our main contribution is a novel connection between weighted secret sharing and wiretap
channels, that improves or even eliminates the dependence on N , at a price of increased dependence
on 1/ϵ. We observe that for certain additive-noise (R, A) wiretap channels, any semantically secure
scheme can be naturally transformed into an (α, β)-ramp weighted secret-sharing, where α, β are
essentially the respective capacities of the channels A, R. We present two instantiations of this
type of construction, one using Binary Symmetric wiretap Channels, and the other using additive
Gaussian Wiretap Channels. Depending on the parameters of the underlying wiretap channels, this
gives rise to (α, β)-ramp schemes with share sizes |secret| · log N/poly(ϵ) or even just |secret|/poly(ϵ).
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1 Introduction

Secret sharing [24, 10] allows a dealer to split some secret information among multiple parties,
giving each party an individual share, so that large enough subsets of shareholder can recover
the secret, but small subsets cannot learn any partial information about it. Such schemes
are typically parametrized by the number of parties N and a threshold T ≤ N , such that it
takes at least T parties to recover the secret.
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8:2 Weighted Secret Sharing from Wiretap Channels

Weighted secret sharing (WSS) is similar, except that each shareholder j has an integer
weight wj , it takes a “heavy enough” subsets to recover the secret, while “light” subsets
cannot learn any partial information about it. The threshold T ∈ [N ] is replaced by τ ∈ (0, 1),
such that it takes shareholders of aggregate weight τW to recover the secret (where W is
the total weight, W =

∑
j∈[N ] wj).

One method of implementing WSS is to rely on standard secret-sharing with N ′ = W

and T ′ = τW , giving wj shares to a shareholder j with weight wj . While this solution can
achieve good rate for long secrets (see Section 3.1), it is very wasteful for short ones, as its
share sizes grow linearly with the weight. Prior work on weighted secret sharing explored
other solutions (e.g., using Chinese remaindering) or limited models (e.g., specific weight
hierarchies). But they all still feature either linear dependency of the share-size on W , severe
restrictions to the access structures that can be realized, or huge public information that
must be broadcasted to everyone alongside the individual shares. (See more discussion in
Section 1.2 below.)

In an attempt to do better, in this work we consider the relaxed model of ramp secret-
sharing [9], that has a fuzzy threshold. Specifically, an (α, β)-ramp weighted secret sharing
scheme allows any subset of aggregate weight at least βW to recover the secret, but subsets
of weight αW or less cannot learn any information about it. Such gaps were considered often
in the literature for standard secret-sharing schemes, but to our knowledge were not studied
in the context of weighted secret sharing.

It is not hard to see (and we describe it explicitly in Section 3) that this relaxation enables
shorter secrets, just by keeping only a 1/ϵ precision for the weights, where ϵ = β −α. Rather
than linear dependence on the weights, we now get linear dependence on N/ϵ (where the
dependence on the number of parties N is due to the accumulation of rounding errors in this
limited-precision approximation).

Beyond this simple observation, the main technical meat in this work is a novel blueprint
for (α, β)-ramp WSS schemes, by exploring a surprising connection to secure transmission
schemes for wiretap channels. These constructions reduce or even eliminate the dependence
on N , at the price of potentially worse (but still polynomial) dependence on 1/ϵ. We note
that the field of wiretap coding is an ongoing line of research with an aim of decreasing
dependence on 1/ϵ. Any advances in wiretap coding can easily be applied to WSS with our
construction.

1.1 Overview of Our Techniques
The starting point for our new blueprint is the following approach: On input s, the dealer
gives each shareholder j an independent noise vector ej , whose magnitude depends on their
weight, and publishes the value g = Enc(s) +

∑
j ej , where Enc(·) is some encoding function.1

Given the public g and their individual ej ’s, the only information that a set T of shareholder
has on the secret s is the value

gT = g −
∑
j∈T

ej = Enc(s) +
∑
j /∈T

ej .

We can therefore associate with each subset T an additive-noise channel CT : x 7→
x +

∑
j /∈T ej , such that the information that T learns about s is exactly the received value

CT (Enc(s)). We are seeking an encoding function Enc(·) so that:

1 Publishing g can be done by sending it to all the shareholders, which will only double the size of the
shares that each one holds. It may be possible to use information dispersal to do even better.



F. Benhamouda, S. Halevi, and L. Stambler 8:3

Any qualified set S can recover s from CS(Enc(s));
For any unqualified set T , seeing CT (Enc(s)) yields no information on s.

Intuitively, the smaller (or “lighter”) the set is, the more error components it is missing, so
the more noisy its channel will be. Consider now R which is “the most noisy channel” for
any qualified set, and A which is “the least noisy channel” for any unqualified set.

We can hope that R is less noisy than A, and use a good transmission scheme for the
wiretap channel (R,A), with receiver channel R and adversary channel A. (Recall that a
wiretap scheme for a pair of channels (R,A) consists of an encoding function Enc(·) such
that a secret s can be recovered from R(Enc(s)) whp, but where A(Enc(s)) yields almost no
information on s.)

Trying to flesh out this approach, we need to associate an error distribution Dwj
to every

weight wj ∈ N, so that whenever
∑

j∈A wj >
∑

j∈B wj it holds that
∑

j∈ADwj has “more
error” than

∑
j∈B Dwj

. Then we need to find two concrete channels R,A such that
R is at least as noisy as CQ for any qualified set Q with weight ≥ βW .
A is at most as noisy as CU for any unqualified set U with weight ≤ αW .

If R is less noisy than A, then we can use a good transmission scheme for the wiretap channel
(R,A) to implement our (α, β)-ramp WSS scheme. The parameters of this WSS scheme can
be derived from those of the underlying wiretap scheme.

1.1.1 Binary Symmetric Channels
Trying to instantiate this approach with binary symmetric channels, we associate with each
weight wj an error probability pj and the corresponding Bernoulli random variable

Dj =
{

1 with probability pj

0 with probability 1− pj .

One problem to overcome is that for “the most natural mapping” of weights to probabilities,
the error probability does not add up linearly: If we set (say) pj = wj/W , it is not hard
to find instances where

∑
j∈A wj >

∑
j∈B wj and yet

∑
i∈ADj mod 2 has smaller error

probability than
∑

j∈B Dj mod 2, as the following example shows.

A problematic example

Consider three parties with w1 = w2 = 13 and w3 = 24, so W = 50 and we have Pr[D1 =
1] = Pr[D2 = 1] = 13/50 = 0.26 and Pr[D3 = 1] = 24/50 = 0.48. Let A = {1, 2} and
B = {3}, so the aggregate weight of A is 26, larger that the weight of B which is 24. On the
other hand, we have

Pr[D1 ⊕D2 = 1] = 0.26 + 0.26− 0.262 = 0.4525 < 0.48 = Pr[D3 = 1],

so the error rate for A is lower that for B.
Clearly, the reason for this example is the cancellation due to the term 0.262, namely

the fact that the error probabilities do not simply add up. This cancellation effect can be
reduced it by scaling down the probabilities, setting pj = γwj/W for some γ < 1 (that may
depend on α, β). For example, if we set pj = wj/2W rather than pj = wj/W , then we get
Pr[D1 = 1] = Pr[D2 = 1] = 0.13 and Pr[D3 = 1] = 0.24, and therefore

Pr[D1 ⊕D2 = 1] = 0.13 + 0.13− 0.132 = 0.2431 > 0.24 = Pr[D3 = 1].

ITC 2023
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While this can be made to work, it has a drawback that the error rates of the scaled R and A
become quite close, of distance only O(ϵ2) (where ϵ = β − α). This would require the codes
of fairly large block-length, making the share-size a large polynomial in 1/ϵ. Instead, we
describe here a different variant that was pointed out to us by the anonymous reviewers, that
improves the dependence on 1/ϵ by using a better mapping from weights to probabilities.

1.1.1.1 The BSC construction

The BSC-based construction that we present in Section 5 gives a weight-wj shareholder
an error variable D(wj) which is the sum modulo 2 of wj IID Bernoulli random variables,
all with the same head probability of τ < 1/2 (where τ can depend on α, and β and the
total weight W =

∑
j wj). With this definition, it is clear that we get additivity, namely

D(w1 + w2) = D(w1) +D(w2) (mod 2). Therefore, the error sum of a shareholder set with
cumulative weight w is exactly D(w), Also, it is not hard to show that for this construction,
the head probability of D(wj) is

Pr[D(wj) = 1] = 1
2 · (1− exp(−γ · wj/W )) ,

where γ is some constant that depends on τ . As we show in Section 5, optimizing the constant
γ in this construction yields a wiretap channel (R,A) where the capacity gap between R
and A is Θ(β − α).

1.1.2 Additive Gaussian Channels
Another natural attempt to instantiate our blueprint is using additive white Gaussian noise
(AWGN) channels. For these channels, the noise is natively additive: adding Gaussian
variables with variance σ2

1 and σ2
2 yields another Gaussian with variance σ2

1 + σ2
2 . The

AWGN-noise construction therefore associates each weight, w ∈ N with the Normal random
variable N (0, w/W ), i.e. zero-mean with variance w/W (stdev =

√
w/W ). Due to additivity,

the aggregate random variable for a set A is itself a Normal variable,∑
j∈A

N (0, wj/W ) = N (0,
∑
j∈A

wj/W ).

This implies that whenever S has higher weight than T , the channel CT has more error than
the channel CS .

For any β > α, we can therefore construct an (α, β)-ramp WSS scheme from a good
transmission scheme for the AWGN wiretap channel (R,A), where

R : x 7→ x +N (0, 1− β) and A : x 7→ x +N (0, 1− α).

Indeed, since β > α then A is more noisy than R.
One problem to solve when using AWGN channels is that they natively deal with real

numbers with infinite precision, whereas we can only use finite precision for our construction.
In Appendix A we therefore sketch an approach that uses discrete Gaussians instead. That
construction achieves somewhat worse rate than the BSC construction for long secrets, but
it can plausibly offer concrete parameter benefits for short secrets.

1.2 Prior Work
Ramp secret-sharing (without weights) was introduced by Blakley and Meadows [9]. A
textbook construction for a ramp-scheme with good rate based on standard “packed secret
sharing” can be found, e.g., in [12, 11.4.2] (and is described in Section 3.1 below).
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Some early work on weighted secret sharing was cast against the backdrop of general
access structures. Beimel et al. [3] characterized the weighted (strict) thresholds access
structures that admit ideal schemes, where the share size is equal to the secret size, proving
that only few specific threshold structures can be realized this way.

Beimel and Weinreb [4] showed that any threshold access structure can be realized using
shares of size quasiPoly(N log W ) times the secret size, or even just poly(N log W ) · λ if
computational security is enough (λ is the security parameter). They did that by describing
monotone circuits that compute every threshold function, and using known monotone-circuits-
to-secret-sharing compilers [7, 27].2 Works such as [16] and [25] propose an explicit scheme
for hierarchical threshold structures, those are solving a different (albeit somewhat related)
problem than ours.

Another notable prior work is due to Zou et al. [29], they use the Chinese Remainder
Theorem to improve some efficiency parameters of weighted multi-secret sharing, but secret
sizes are still the same as in the simple scheme based on Shamir sharing.

Also, noisy channels were used in many prior works as a tool for achieving secure
computation, starting with [14, 13]. The goals in that line of works are quite different from
ours, however, and the connection that we draw between ramp secret-sharing and wiretap
channels is new.

Organization
We present some background in Section 2, then define (α, β)-ramp WSS and describe a
simple rounding-based protocol for realizing it in Section 3. We formulate our blueprint
for WSS schemes from wiretap schemes in Section 4, then describe instantiations of this
blueprint from binary symmetric channels in Section 5 and from additive white Gaussian
noise channels in Appendix A.

2 Background

Notations. For an integer n, we denote [n] = {1, 2, . . . , n}. The ℓ’th entry in a vector e is
denoted e[ℓ]. For two distributions D, E , we denote by SD(D, E) their statistical distance.
Namely SD(D, E) = 1

2
∑

x∈X |D(x)− E(x)|, where X is the union of their support.
For a real number x and an integer η, we denote by ⌊x⌋2−η , ⌈x⌉2−η , ⌈x⌋2−η the rounding

of x down, up, or to the nearest number with precision 2−η, respectively. Namely, ⌊x⌋2−η

is the largest number of the form i/2η (with i an integer) which is not larger than x, and
similarly ⌈x⌉2−η is the smallest number of this form which is not smaller than x, and ⌈x⌋2−η is
one of the above which is closer to x (breaking ties arbitrarily). Omitting the 2−η parameter
means rounding to an integer (same as using 20).

2.1 Channels and Error Correcting Codes
A communication channel with input set X and output set Y is a transform that maps each
input symbol x ∈ X to a distribution over the output symbols Y. In this work we deal with
additive-noise channels where X = Y is an additive group, and the channel just adds to its
input some random noise, chosen from a known distribution D. Namely, Ch : x 7→ x + D.

2 Those compilers essentially construct a garbled circuit for the threshold function, with the secret being
the output label. Hence, they require a very large public information, namely the garbled circuit itself.

ITC 2023



8:6 Weighted Secret Sharing from Wiretap Channels

We assume a memoryless channel: when sending a sequence of symbols, each symbol is
transformed according to the channel Ch independently of the others (and their order is
maintained).

An error-correction scheme is meant to facilitate reliable transmission of a sequence of
symbols m ∈ X k (for some k) over the channel Ch. For any input length k it consists of a
code, defined by an encoding Enc : X k → Xn that adds redundancy, mapping the information
sequence m to a longer code-word w ∈ Xn that will be sent over the channel, and by a
matching decoding routine Dec : Xn → X k that attempts to recover the original information
from the received sequence Ch(w). An error-correction scheme is a sequence of codes for
increasing k.

The rate of a code is k/n, and the channel capacity is the highest possible rate (asymp-
totically as k →∞) of any scheme that achieves vanishing decoding error probability. For
additive noise channels with noise distribution D, the channel capacity is 1− h(D) where
h is the Shannon entropy function. In particular, for any channel Ch and any ν > 0, there
exist schemes with rate ν away from capacity (perhaps with inefficient encoding/decoding),
in which the decoding error probability is bounded below 2−Θ(n·ν2).

In this work we will be concerned with Binary Symmetric Channels (BSC, see Section 5)
and Additive White Gaussian Noise channels (AWGN, see Appendix A). For those channels,
there exist schemes with efficient encoding/decoding procedures that approach capacity
and achieve vanishing error probability. (The dependence on the slackness parameter
ν = capacity-minus-rate, affects the parameters that our blueprint can achieve, and will be
discussed in the sequel.)

The “more noisy” relation

We say that a channel Ch′ is more noisy than another channel Ch (or Ch is less noisy than
Ch′), and denote Ch ⪯ Ch′ or Ch′ ⪰ Ch, if there is some transform T such that Ch′ = T (Ch).
An example is when Ch′ is obtained from Ch by adding more noise, Ch′(x) = Ch(x) +D for
some noise distribution D. It is easy to see that the capacity of Ch is at least as high as that
of Ch′. Moreover, any error-correction scheme for Ch′ also works for Ch.3

2.2 Wiretap Channel Transmission Schemes

A wiretap channel is a pair of communication channels (R,A) with the same input and
output sets X ,Y , where R is a channel from the sender to an intended receiver and A is the
wiretap that goes to the adversary. Given a message m that the sender wants to send to
the receiver, the goal is to encode it as w = Enc(m), so that m can be recovered (whp) from
R(w), but not from A(w).

Bellare et al. defined in [6] the notion of semantically secure encryption scheme for a
wiretap channel (that we prefer to call a transmission scheme4). The following is essentially
their definition of distinguishing security. In our setting, it is sufficient to work with what
they call a “seeded” scheme, where encoding and decoding depend on a public random seed.

3 In theory, to use a decoder for Ch′ we may need to apply T to the output of Ch(w) before we can decode
it. In practice, decoders for the high-noise Ch′ always work as-is also for the low-noise Ch.

4 This is a keyless scheme, so it differs from cryptographic encryption.
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▶ Definition 1 (Secure Wiretap Transmission Schemes). Let (R,A) be a wiretap channel
(for message space M), a secure transmission scheme for it consists of (seed-dependent5)
encoding and decoding procedures Encsd, Decsd such that
Correctness. For all m ∈M, Pr[Decsd(R(Encsd(m))) = m] ≥ 1− negl(|sd|),
Secrecy. For all m, m′ ∈M, SD ((sd,A(Encsd(m))), (sd,A(Encsd(m′)))) ≤ negl(|sd|),
where the probability is over the channel randomness as well as the random selection of the
seed sd, and negl is some negligible function.

The literature contains many constructions of wiretap channel schemes from error-
correcting schemes, some of which we will be using in Section 5 and Appendix A. For the
abstract blueprint that we present in Section 4, we need the “obvious” property of all the
schemes in the literature, where if they work for one wiretap channel then they also work for
all “easier channels.” Namely, they are monotone in terms of the more-noisy relation:

▶ Definition 2 (Monotone Schemes). A secure transmission scheme (Enc, Dec) for a channel
(R,A) is noise-monotone if it is also a secure transmission scheme for any channel (R′,A′)
such that R′ ⪯ R and A ⪯ A′.

Clearly, the secrecy condition of a transmission scheme is always monotone. The cor-
rectness condition is monotone as long as the decoding error of the underlying code is not
increased by reducing the noise level of the channel (which is true for all coding schemes that
we know of).

3 Weighted Secret Sharing

A secret-sharing scheme is a two-phase multi-party protocol for N + 1 parties, a dealer and
N shareholders. In the dealing phase, the dealer has a secret input s, and it outputs a share
for each shareholder, and optionally also a public share. In the reconstruction phase, a subset
of the shareholders collect all their shares (and the public share if any) and attempt to use
them in order to reconstruct the secret.

Each secret-sharing schemes comes with an access structure, consisting of a collection of
qualified subsets Γ ⊂ 2[N ] that should be able to reconstruct the secret, and a collection of
unqualified subsets Ψ ⊂ 2[N ] that should not be able to learn anything about the secret.6
Non-perfect realizations of secret sharing come with a security parameter λ that is given as
input to all the parties, and we require that the imperfections are negligible in λ.

Below we denote by ViewS(s) the view of a subset of the shareholders S ⊂ [N ] when the
secret s is shared, consisting of their own shares and the public share (if any). For a qualified
set S we also denote by Recover(ViewS(s)) the value that these shareholders compute when
trying to recover the secret.

▶ Definition 3 (Secret Sharing). A secret-sharing scheme for the access structure (Γ, Ψ) and
the space of secrets S, satisfies the following (for some negligible function negl(·)):
Correctness. For any qualified subset S ∈ Γ and any secret s ∈ S,

Pr[Recover(ViewS(s)) = s] ≥ 1− negl(λ).

5 We use the seed length as the security parameter for this definition.
6 Sometimes we have Ψ = Γ, but rump schemes have Ψ ⊊ Γ.

ITC 2023



8:8 Weighted Secret Sharing from Wiretap Channels

Parameters: Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1. Let W :=
∑

i∈[N ] wi.

Sharing a secret s ∈ {0, 1}k: Let r = ⌈(β − α)W ⌉ and k′ = ⌈k/r⌉.
1. Break the secret into r chunks of length ≤ k′, let s⃗ ∈ ({0, 1}k′)r be the resulting vector;
2. Share s⃗ using (αW, βW ; r, W ) multi-secret sharing, party, j ∈ [N ], gets wj shares.

Reconstructing the secret by a qualified set S:
3. Use multi-secret reconstruction with all revealed shares to recover s⃗;
4. Concatenate the entries of s⃗ to get s.

Figure 1 A rate-efficient (α, β)-ramp WSS from multi-secret sharing.

Secrecy. For any unqualified subset T ∈ Ψ and any two secrets s, s′ ∈ S, the view of T when
sharing s is statistically close to the view when sharing s′,

SD (ViewT (s), ViewT (s′)) ≤ negl(λ).

In this work we study a relaxation of threshold weighted secret sharing, (α, β)-ramp
weighted secret sharing.

▶ Definition 4 ((α, β)-ramp weighted secret sharing). A (α, β)-ramp weighted secret sharing
for 0 < α < β < 1, N shareholders, and weights w1, . . . , wN ∈ N, is a secret-sharing scheme
for the access structure

Γ = {S ⊆ [N ] :
∑
i∈S

wi ≥ βW} and Ψ = {T ⊆ [N ] :
∑
i∈T

wi < αW},

where W =
∑

i∈[N ] wi.

Below we often use the notation ϵ = β − α when discussing the parameters of ramp WSS
schemes.

3.1 Ramp WSS from Multi-Secret Sharing
A (T1, T2; r, N) multi-secret sharing scheme shares r secrets (from some domain) among N

shareholders, with secrecy when T1 or less of the shares are revealed and recovery when T2
or more shares are revealed. A packed Shamir sharing, where multiple secrets are encoded in
different evaluation points of a degree-(T −1) polynomial, yields a (T −r, T ; r, N) multi-secret
sharing scheme over any field of size ≥ N + r, where each share is only a single field element.
Hence it achieves a “rate” of |secret|/|share| = r.

This can be converted to a ramp WSS scheme using the obvious approach of giving w

shares to a weight-w shareholder. This construction is described in Figure 1. To get an
(α, β)-ramp WSS we need a multi-secret scheme with N := W , T1 := αW , and T2 := βW .
Using the above construction, we can pack r = T2 − T1 = ϵW field elements while each
underlying share is a single element.

Each shareholder in the resulting WSS scheme holds at most W shares of the underlying
scheme, so we get a WSS scheme with share size ≤ W element that can handle secrets of
size upto ϵW elements. This yields encoding rate of

|secret|/|share| ≥ ϵW

W
= ϵ,
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Parameters: Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1. Let W :=
∑

i∈[N ] wi.

1. Let η :=
⌈
log 5N

β−α

⌉
. For all j ∈ [N ], set w′

j := 2η ·
⌈ wj

W

⌉
2−η .

2. Use the Ramp WSS from Figure 1 with the w′
j ’s and thresholds α′ = α + β−α

5 and
β′ = β − β−α

4 .

Figure 2 A rounded (α, β)-ramp weighted secret sharing.

as long as the secret is long enough (i.e., at least ϵW field elements). This scheme is not very
useful for short secrets, however, as its efficiency depends on breaking the secret into many
chunks. In particular, the size of shares is still W (or more) in the worst case, regardless of
how small is the secret. 7

3.2 A Rounding-Based (α, β)-ramp WSS Protocol
We note that simple rounding can be used to roughly replace the dependence on W in the
above scheme by dependent on N/ϵ. Specifically, we use the construction from Figure 1 to
implement a modified version of the system, with weights that are rounded to precision of only
about (β − α)/N . Due to rounding errors, the modified version has a smaller gap ϵ′ < β − α,
but the increase can be controlled by setting the precision appropriately. Specifically, with
precision of (β − α)/5N we can get ϵ′ ≥ ϵ/2. This simple protocol is described in Figure 2.

▶ Lemma 5. The protocol outline in Figure 2 is an (α, β)-ramp weighted secret sharing
scheme.

Proof. By our choice of η we get N/2η ≤ (β − α)/5, and for every set J ⊆ [N ] we have

2η
∑
j∈J

wj/W ≤
∑
j∈J

w′
j < |J |+ 2η

∑
j∈J

wj/W.

In particular for J = [N ] we have W ′ =
∑

j∈[N ] w′
j ∈ [2η, 2η + N ]. For any non-qualified set

J ⊆ [N ] with
∑

j∈J wj ≤ αW we therefore have

∑
j∈J

w′
j/W ′ ≤

N + 2η
∑

j∈J wj/W

2η
≤ N + 2η · α

2η
≤ (β − α)/5 + α = α′.

Similarly, for any qualified set J ⊆ [N ] with
∑

j∈J wj ≥ βW we have

∑
j∈J

w′
j/W ′ ≥

2η
∑

j∈J wj/W

N + 2η
≥ β

1 + (N/2η) ≥
β

1 + (β − α)/5
(∗)
≥ β − (β − α)/4 = β′.

To see why inequality (∗) holds, note that

β

1 + (β − α)/5 = β(1 + (β − α)/5)
1 + (β − α)/5 − β(β − α)/5

1 + (β − α)/5 = β − β(β − α)
5− (β − α) ≥ β − β − α

4 . ◀

In terms of performance for the protocol of Figure 2, the number of shares a party can
receive is upper-bounded by W ′ < N + 2η ≤ N

(
1 + 10

β−α

)
. Hence, the size of shares in this

scheme grows with O(N/ϵ) instead of the total weight W .

7 In other contexts it is sometimes helpful to use algebraic-geometric codes instead of the Reed-Solomon
codes of Shamir sharing, as it enables the use of smaller fields. In our case this does not seem to help,
since the inefficiency comes from the number of field elements and not their size.
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Sharing a secret s ∈ {0, 1}k, with security parameter λ:
1. If the wiretap scheme is seeded, choose a random seed sd of length λ;
2. ∀j ∈ [N ], draw ej ← Dwj

and send to party j;
3. Publish sd and g = Encsd(s) +

∑
j∈[N ] ej .

Reconstructing the secret by a qualified set S:
Set g′ = g −

∑
j∈S ej and output Decsd(g′).

Figure 3 The generic framework for ramp weighted secret sharing from wiretap channels.

4 A Blueprint for WSS from Wiretap Channels

Let w1, . . . , wN be the concrete weights that we want to implement and 0 < α < β < 1
be the parameters that we want to achieve. Denote W =

∑
i∈[N ] wi. An instance of our

blueprint operates in some additive group X , and consists of two components:
A mapping from weights w ∈ N to noise distributions Dw over X .
A (seeded) noise-monotone secure transmission scheme (Enc, Dec) for a wiretap channel
(R,A) (cf. Definition 1), such that:

For any qualified subset S ⊆ [N ] with
∑

i∈S wi ≥ βW , the channel R is more
noisy than adding all the noise distributions outside S. Namely, CS ⪯ R where
CS : x 7→ x +

∑
i/∈S Dwi

.
For any unqualified subset T ⊆ [N ] with

∑
i∈S wi ≤ αW , the channel A is less

noisy than adding all the noise distributions outside T . Namely, CT ⪰ A where
CT : x 7→ x +

∑
i/∈T Dwi

.
Given these components, our WSS scheme is described in Figure 3.

▶ Lemma 6. If (Enc, Dec) is a noise-monotone secure transmission scheme for a wiretap
channel (R,A), as per Definitions 1 and 2, that satisfy the conditions above. Then the
scheme from Figure 3 is a secure (α, β)-ramp weighted secret-sharing scheme.

Proof. This holds more or less by definition. Consider an arbitrary qualified set S and an
arbitrary unqualified set T . Then by construction we have CS ⪯ R and A ⪯ CT , and since
(Enc, Dec) is noise-monotone then it is also a secure transmission scheme for the wiretap
channel (CS , CT ). This means on one hand that for the qualified set S, seeing y = CS(Enc(s)),
we have Dec(y) = s with all but negligible probability. On the other hand, the unqualified
set T , seeing only CT (Enc(s)), cannot distinguish it from CT (Enc(s′)) except with a negligible
advantage. ◀

The public share

Our solutions, as well as some solutions from the literature (such as [4]), use a public share,
which is known to everyone, in addition to the individual shares of the shareholders. Clearly,
it is possible to eliminate the public share by adding it to each individual share, and in our
case this will at most double the share size of parties. In some solutions in the literature,
however, the public share is much larger than the individual shares. Here we chose to account
for the public share separately and only count it once (rather than once per shareholder).
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5 Constructions from Binary Symmetric Wiretap Channels

5.1 Background

5.1.1 Binary Symmetric Channels
A binary symmetric channel (BSC) is used for sending bits. It is associated with a “crossover
probability” p ≤ 1/2, which is the probability that the received bit differs from the one that
was sent. Namely, we have a Bernoulli error variable Bp with Pr[Bp = 1] = p and Pr[Bp =
0] = 1− p, and the channel is defined on message space {0, 1} as BSCp : x 7→ x + Bp mod 2.

The capacity of BSCp is 1 − h(p), where h is the binary entropy function. If we are
not concerned with efficient decoding, then random linear codes (with ML/MAP decoding)
have rates that approach the channel capacity with exponentially small error probability.
Capacity-approaching constructions with efficient decoding are known using concatenated
codes [17] or polar codes [1, 18], with somewhat weaker bounds on the decoding error. For
example, [2, 19] show that the error probability for block-length n and rate 1− h(p)− ν is at
most exp(−Θ(

√
n)), where the constant in the exponent depends on p and ν. Later results

feature stronger bounds in terms of the block-length n with polynomial dependence on the
slackness ν. In particular, we have

▶ Lemma 7 (Corollary of [11], Thm 17). For any p < 1/2, ν < 1−h(p), and µ < 1, there exists
a code for BSCp with rate 1− h(p)− ν, block length n = polyµ(1/ν) (for some polynomial
that depends on µ), error probability exp(−nµ), and decoding complexity O(n log n).

It is known that the polynomial dependence on 1/ν is quadratic for any discrete memoryless
channel, while for some efficient constructions there is evidence that poly1/2(x) ≤ x4.6 [23, 28].

5.1.2 Wiretap Schemes for Binary Symmetric Channels
Bellare et al. also described in [6] a construction called ItE (Invert-then-Encode) for discrete
wiretap channels, building on error-correction. The construction realizes Definition 1 for the
channels (R,A), using a code with low decoding error probability for R, at a rate noticeably
larger than the capacity of A. (In particular, if the code rate approaches the capacity of R
then this construction approaches the secrecy capacity of the wiretap channel.)

The ItE construction has integer parameters b < k < n (with values as set later in
this section). Identifying {0, 1}k with the finite field F2k , this is a seeded construction
with seed space the multiplicative group F2k \ {0k} and message space {0, 1}b. In addition,
it uses error-correction encoding Enc : {0, 1}k → {0, 1}n and the corresponding decoding
Dec : {0, 1}n → {0, 1}k. The encoding and decoding routines of the ItE construction (denoted
Enc′

sd, Dec′
sd) are described in Figure 4. The following is a re-phrasing of Lemma 5.3 and

Lemmas 5.5-5.6 from [5]:

▶ Lemma 8 ([5], Lemma 5.3). If (Enc, Dec) is an error-correction scheme with decoding-error
probability at most ϵ for the channel R, then the ItE scheme (Encsd, Decsd) from Figure 4 is
correct for (R,A) with correctness holding with probability ≥ 1− ϵ. ◀

▶ Lemma 9 (Corollary of [5], Lemmas 5.5-5.6). Let A be a symmetric memoryless channel
with capacity c(A). Assume that k

n (the rate of Enc) is larger than c(A), denote the slackness
by ρ = k

n − c(A), and let λ be the security parameter. Then for any 0 < δ < ρ− 2λ
n , setting

b := ⌊n(ρ− δ)− 2λ− 2⌋ in the ItE construction yields a wiretap transmission scheme with
secrecy upto statistical distance 4 · 2−δ2n/11 + 2 · 2−λ.
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Encoding: Enc′
sd(M ∈ {0, 1}b) with seed sd ∈ F2k \ {0k}:

1. Choose a random R← {0, 1}k−b, let Y = (M |R) ∈ F2k be the concatenation;
2. Set X := Y/sd ∈ F2k ;
3. Send the message W := Enc(X) ∈ {0, 1}n.
Decoding: Dec′

sd(W ′ ∈ {0, 1}n):
1. Use error-correction to get X ′ = Dec(W ′);
2. Compute Y ′ := X ′ · sd ;
3. Output M ′, the first b bits of Y ′.

Figure 4 The ItE construction from [6].

Plugging the coding parameter from above, we get the following instantiation:

▶ Corollary 10. For a binary symmetric wiretap channel (BSCpR
, BSCpA

) with 0 ≤ pR <

pA < 1/2, denote ξ := h(pA)−h(pR). There exists an instance of the ItE scheme (Encsd, Decsd)
with security parameter λ and

Encoding size n = max
(
poly 1

2
( 4

ξ ), λ2, 44λ
ξ2

)
; 8

Seed space F2k \ {0k} with k = (1− h(pA) + 3ξ
4 )n = (1− h(pR)− ξ

4 )n; and
Message space {0, 1}b, b ≥ ( ξ

4 −
2
λ )n− 2;

such that
For all m ∈ {0, 1}b, Pr[Decsd(BSCpR

(Encsd(m))) = m] ≥ 1− 2−λ;
For all m, m′ ∈ {0, 1}b,

SD
(
(sd, BSCpA

(Encsd(m))), (sd, BSCpA
(Encsd(m′)))

)
≤ 6 · 2−λ.

Proof. Recall that k determines both the seed space of the ItE construction and the input
space for the underlying error-correcting code. The rate of the underlying code is therefore
k/n = 1−h(pR)− ξ

4 , and by Lemma 7 we can find such codes as soon as the encoding-length
exceeds poly1/2(4/ξ), with decoding error probability at most exp(−n1/2) < 2−

√
n. If n ≥ λ2

then this is bounded below 2−λ, and due to Lemma 8 the same holds for correctness of the
ItE construction.

For the secrecy part, we have rate k/n = 1− h(pA) + 3ξ
4 , and we use δ = ξ

2 in Lemma 9.
This yields b = ξ

4 n− 2λ− 2, and since n ≥ λ2 then b ≥ ( ξ
4 −

2
λ )n− 2. If we also have n ≥ 44λ

ξ2 ,
then δ2n/11 ≥ (ξ/2)2 · (44λ/ξ2)/11 = λ, and therefore the statistical distance is bounded by

4 · 2−δ2n/11 + 2 · 2−λ ≤ 4 · 2−λ + 2 · 2−λ = 6 · 2−λ. ◀

5.1.2.1 Remark

Different from most works in the literature, in the setting above we do not aim at achieving
the secrecy capacity in the limit. Rather, we try to maintain a small encoding size n relative
not just to the message size b, but also to the security parameter λ and the parameters
pR, pA. 9

8 poly 1
2

is the polynomial from Lemma 7 for µ = 1
2 .

9 In particular, we opted for losing a constant factor in the ratio b/n in return for better dependency
on λ and ξ.
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Parameters:
Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1, security parameter λ.

Let W :=
∑

i∈[N ] wi and γ := 0.4
1−α .

Denote g(x) := 1−exp(−x)
2 , and let pR := g(γ(1− β)) and pA := g(γ(1− α)).

Let (Enc, Dec) (with parameters n, k, b) be as in the ItE construction from Corollary 10
for the wiretap channel (BSCpR

, BSCpA
).

Sharing a secret s ∈ {0, 1}k:
1. ∀j ∈ [N ], set pj := g( γ·wj

W ), draw ej ← (Bernoullipj )n and send to party j;
2. Draw a random sd ∈ F2k \ {0k}, publish sd and g := Encsd(s) +

∑
j∈[N ] ej mod 2.

Reconstructing the secret by a qualified set S:
Set g′ = g +

∑
j∈S ej mod 2 and output Decsd(g′).

Figure 5 Weighted secret sharing from symmetric binary wiretap channels.

5.2 Our Construction
In Figure 5 we show how to use the ItE instance from Corollary 10 to get an (α, β)-ramp
WSS for given weights w1, w2, . . . , wN and thresholds 0 < α < β < 1.

Clearly, this construction is an instance of the blueprint from Figure 3, instantiated over
the additive group F2k , using the noise distributions Dw = Bernoullig(γ·w/W ) and the ItE
construction from Corollary 10 for the wiretap channel (CSBpR

, CSBpA
). It is also clear

that the ItE construction is noise-monotone (since the underlying error-correction codes are).
The only thing left to prove in order to use Lemma 6, is that for any qualified S and

unqualified T , the corresponding channels satisfy CS ⪯ BSCpR
and CT ⪰ BSCpA

. To that
end, we use the following technical lemma:

▶ Lemma 11. Let B1, . . . ,Bt be independent Bernoulli random variables with Pr[Bj = 1] =
1−exp(−uj)

2 , and denote S :=
∑

j∈[t] Bj mod 2 then S is a Bernoulli random variable with:

Pr[S = 1] =
1− exp(−

∑
j∈[t] uj)

2 .

Proof. We prove the lemma by induction on t. The base case, where t = 1, is trivial. For
t > 1, we have that

Pr[S = 1] = Pr

 ∑
j∈[t−1]

Bj mod 2 = 1 & Bt = 0

 + Pr

 ∑
j∈[t−1]

Bj mod 2 = 0 & Bt = 1


=

1− exp
(∑

j∈[t−1] uj

)
2 · 1 + exp(xt)

2 +
1 + exp

(∑
j∈[t−1] uj

)
2 · 1− exp(xt)

2
(by the inductive hypothesis)

=
1− exp

(
−

∑
j∈[t] uj

)
2 .

Thus, the inductive step holds. ◀

We can now complete the proof that the ItE-based construction above satisfies all the
conditions of Lemma 6.
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▶ Corollary 12. With the parameters as set in Figure 5 and a straightforward application of
Lemma 11:
(A) For every subset S ⊆ [N ] with

∑
j∈S wj ≥ βW , we have CS ⪯ BSCpR

where CS : x 7→
x +

∑
j /∈S Bernoullipj

.
(B) For every subset T ⊆ [N ] with

∑
j∈S wj ≤ αW , we have CT ⪰ BSCpA

where CT : x 7→
x +

∑
j /∈T Bernoullipj

.

An Alternative Presentation

An alternative way of describing the scheme from Figure 5, is that the noise component for
party j with weight wj is set as the sum (modulo 2) of wj IID random vectors, all of the
form

(
Bernoullig(γ/W )

)n. By Lemma 11, this noise vector indeed has the form
(
Bernoullipj

)n,
where pj = g(γ · wj/W ).

5.3 Performance Characteristics of This Construction
Let ϵ = β − α > 0 and h : p 7→ −p log p − (1 − p) log(1 − p) the binary entropy function
(recall that log is in base 2). To get the best parameters from Corollary 10, we want to set
the parameter γ so as to maximize ξ := h(pA)− h(pR), where:

pA = g(γ(1− α)), pR = g(γ(1− β)), recalling that g : x 7→ 1− exp(−x)
2 .

Denote the function f : x 7→ h(g(x)). The mean value theorem implies that:

ξ = f(γ(1− α))− f(γ(1− β)) (1)
≥ (γ(1− α)− γ(1− β)) · inf

γ(1−β)<x<γ(1−α)
f ′(x)

= ϵ · γ · inf
γ(1−β)<x<γ(1−α)

f ′(x). (2)

where f ′ is the derivative of f .
Let us now compute f ′. We have h′(p) = log(1/p− 1) and g′(x) = exp(−x)/2. Thus:

f ′(x) = 1
2 exp(−x) · log

(
2

1− exp(−x) − 1
)

.

We remark that f ′ is decreasing, because exp(−x) is decreasing and log
(

2
1−exp(−x) − 1

)
is

decreasing. Therefore Equation (2) implies:

ξ ≥ ϵ · γ · f ′(γ(1− α)) = ϵ

1− α
· γ′ · f ′(γ′) ≥ ϵ · γ′ · f ′(γ′)

where γ′ := γ(1− α).
To maximize our lower bound of ξ, we just need to maximize γ′ · f ′(γ′). The optimal γ′

is about 0.4. In particular, setting γ′ = 0.4 gives γ′ · f ′(γ′) ≥ 0.31. Thus we can set γ = 0.4
1−α ,

which implies

ξ = h(pA)− h(pR) ≥ 0.31 · ϵ. (3)

By Corollary 10, there is a transmission scheme (Encsd, Decsd) for the wiretap channel
(BSCpR

, BSCpA
) with correctness/secrecy upto O(2−λ) and parameters

Encoding length: n ≤ max
(
poly 1

2
( 13

ϵ ), λ2, 458λ
ϵ2

)
;

Message length: b ≥ ( ϵ
13 −

2
λ )n− 2;

Seed length: k =
⌈
(1− h(pA) + ϵ

4 )n
⌉
.
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Recall that for this scheme, we have secrets of length b, each shareholder gets a share
of length n, and the public share is of size n + k. Note also that n, k, b depend only the
thresholds α, β and not on the weights themselves. Thus, we get a scheme where the share
sizes are independent of the weights, and the rate is b/(2n + k) = Θ(ϵ).

When the gap ϵ = β − α is a constant, we can obtain this constant rate already for
constant-size secret. As the gap gets smaller, the share sizes grow as a polynomial in 1/ϵ,
so we can only get Θ(ϵ) rate for longer secrets. For example, assuming that constructions
such as [28] yield good binary codes with efficient decoding and poly 1

2
(x) = x4.6, we get

n ≈ (13/ϵ)4.6.

6 Conclusions

In this work, we study a ramp weighted secret sharing, with a gap between the qualified and
unqualified sets, and described two different types of constructions, one based on rounding
and the other using a new connection to wiretap schemes. Both types have share size
independent of total weight, and dependent only the gap between qualified and unqualified
sets. We described in detail a construction based on binary symmetric wiretap channels, and
sketched one based on AWGN. It may be interesting to explore other channels as well, to see
if any of then can offer concrete parameter improvements.
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A Constructions from AWGN Wiretap Channels

Below we sketch an AWGN-based construction. It is plausible that such construction can
provide somewhat better performance than BSC-based construction, since AWGN-code use
“soft decoding” vs. the “hard decoding” that’s inherent in BSC code. We do not know if the
existing codes actually realize such improvement, however. Moreover, the construction below
features logarithmic dependence on the number of parties.

A.1 Background

A.1.1 Additive White Gaussian Noise Channels

Additive white Gaussian noise channels (AWGN) communicate real numbers rather than
bits. For each symbol x ∈ R transmitted over the channel, the received symbol is y = x + e

(addition over the reals), where e is a zero-mean Normal random variable. The variance σ2

of e is the noise level of the channel.
Symbols transmitted over the channel are chosen subject to some power constraint,

specifically their (expected) square is bounded by the power parameter P of the sender. The
quality of the channel is determined by the ratio between the power and the noise, called
the signal-to-noise ratio: SNR = P/σ2. 10 Below it will be convenient to fix the power to
P = 1 and set the variance accordingly. We denote the AWGN channel with variance σ2

(and power P = 1) by AWGNσ2 : x 7→ x +N (0, σ2). The capacity of this channel (denoted
c(σ) below) is

c(σ) := capacity(AWGNσ2) = ln
(

1 + 1
σ2

)
.

(The general formula is ln
(
1 + P

σ2

)
but we are fixing P = 1.) There are known constructions

of error-correcting codes with efficient decoding for the AWGN that approach capacity, see
for example [15, 21]. While AWGN codes can perhaps achieve somewhat better performance
than BSC codes (since they use “soft decoding”) this improvement has little effect on their
asymptotic behavior. In particular, for slackness parameter ν < c(σ), there exist codes
for AWGNσ2 with rate c(σ)− ν, block length n = poly(1/ν) (for some polynomial), error
probability exp(−

√
n), and decoding complexity polynomial in n.

10 Clearly, scaling P and σ2 by the same factor has no effect on the channel quality.
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A.1.2 AWGN Wiretap Channels
Tyagi and Vardy described in [26] a modular construction (in the same spirit as [6]) that
combines AWGN codes with randomness extractors. If the underlying code approaches the
receiver channel capacity, then the Tyagi-Vardy scheme can be made to approach the secrecy
capacity of the wiretap channel. A different approach for a secrecy-capacity-approaching
schemes was provided by Liu et al. [20].

These AWGN constructions may be practically more efficient than their BSC counterparts,
but as far as we know the improvement has little effect on their asymptotic behavior.
Namely, for an AWGN wiretap channel (AWGNσ2

r
, AWGNσ2

a
) with 0 ≤ σr < σa, denote

ξ := c(σr)− c(σa). Then the constructions in [26, 20] provide seeded wiretap transmission
schemes (Encsd, Decsd) with security parameter λ and

Encoding size n = max
(
poly( 1

ξ ), λ2, O( λ
ξ2 )

)
;

Seed size k = (c(σa) + Θ(ξ))n = (c(σr)−Θ(ξ))n; and
Message space {0, 1}b, b ≥ (Θ(ξ)− 2

λ )n;
such that

For all m ∈ {0, 1}b, Pr[Decsd(AWGNσ2
r
(Encsd(m))) = m] ≥ 1− 2−λ;

For all m, m′ ∈ {0, 1}b,

SD
(
(sd, AWGNσ2

a
(Encsd(m))), (sd, AWGNσ2

a
(Encsd(m′)))

)
≤ 2−λ.

A.1.3 Using Discrete Gaussian Distributions
Continuous Gaussian distributions cannot be used directly in our blueprint, since they require
working with real numbers with infinite precision. We therefore need to “quantize” these
numbers in some form. The two natural approaches for doing that are either to round them
to some finite precision, or to switch working with discrete Gaussian distributions [22]. Either
way, the share sizes will grow linearly with the precision that we use, so it is crucial to analyze
the precision needed for error-correction. The effect of rounding on error correction is harder
to gauge, especially since the magnitude of the rounding errors grows with

√
n (where n is

the code dimension). Below we therefore sketch an approach that uses discrete Gaussians.
Recall that a discrete Gaussian distribution over a point lattice Λ ⊂ Rn is a probability

distribution over Λ where each point x⃗ ∈ Λ is assigned probability mass proportional
to the Gaussian probability density function. Namely, for a parameter s ∈ R, denote
ρs(x⃗) := exp(−π∥x⃗/s∥2) and ρs(Λ) =

∑
x⃗∈Λ ρs(x⃗). Then the discrete Gaussian distribution

over Λ with parameter s ∈ R (centered at the origin), denoted DΛ,s, assigns to each x⃗ ∈ Λ
the probability mass DΛ,s(x⃗) := ρs(x⃗)/ρs(Λ).

An extensive line of work, starting with Micciancio and Regev [22], established that
Discrete Gaussians inherit most of the statistical properties of their continuous counterparts,
as long as the parameter s is “sufficiently larger that the precision of Λ”. Specifically, [22]
defined the smoothing parameter of Λ (relative to some target deviation ϵ), that captures
how large the parameter s needs to be for DΛ,s to resemble the continuous distribution upto
O(ϵ). Here we only use the fact that for the integer lattice Zn and any ϵ, γ ∈ R, we have
ηϵ(γ · Zn) ≤ γ ·

√
ln(2n(1 + 1/ϵ))/π (cf. [22, Lemma 3.3]). Specifically, setting ϵ = 2−λ we

get

η2−λ(γ · Zn) ≤ γ ·
√

ln(2n(1 + 2λ))
π

< γ ·
√

ln n + λ.
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While we could not find in the literature any treatment of error correction as applied to
discrete Gaussians, we take the extensive literature on the statistical properties as evidence
that the error-correction techniques for continuous Gaussians should still work. Specifically,
for discrete Gaussians over γ · Λn, the secrecy/correctness error should not increase by more
than O(ϵ), provided that we always use parameter s ≥ ηϵ(γ · Zn).

A.2 A Discrete AWGN Construction
Instantiating the approach above with precision γ seem to require that all the distributions
that we use will have parameter of at least the smoothness factor. Since in our construction
we give a party with weight w an error component with parameter sw ∼

√
w, then we need

to use a small enough γ so that even for the smallest non-zero weight (which could be w = 1)
already has a large enough parameter sw ≥ η2−λ−log N (γ · Zn). (The log N factor comes due
to the fact that we have N such distributions, one per party.) That is, we roughly need
γ ≈ 1/

√
ln n + λ + log N .

On the other hand, for the largest weights and (which could be as large as Ω(W )), and
certainly for the public share, we need to use numbers of size at least

√
W . Hence, each entry

in our code would require O(log(
√

W/γ)) = O(log(W ) + log λ + log log n + log log N) bits
to specify. We could use the rounding technique from Figure 2 to remove the dependence
on W , replacing the log W term by log(N/ϵ). This means that the number of bits to specify
each entry is O (log N + log λ + log(1/ϵ) + log log n) . Since we always have n = poly(λ), we
can ignore the log log n term above.

We now can set σr =
√

1− β and σa =
√

1− α, and consider the wiretap channel with
receiver channel DγZn,σr and adversary channel DγZn,σa . Since these distributions are above
the smoothing parameter (wrt ϵ = 2−λ/N ), we can expect the gap between their capacities to
be similar to their continuous counterparts, namely we expect ξ := c(DγZn,σr

)−c(DγZn,σa
) =

Θ(ϵ).
Plugging the parameters from Appendix A.1.2 we would get n = max

(
poly( 1

ϵ ), λ2, O( λ
ϵ2 )

)
,

so the share size is

max
(

poly(1
ϵ

), λ2, O( λ

ϵ2 )
)
·O (log N + log λ + log(1/ϵ)) .

With seed size k = Θ(ϵ)n and message size b ≈ (Θ(ϵ) − 2
λ )n. This implies a rate

|secret|/|share| = O(ϵ/(log N + log λ + log(1/ϵ))), which is not as good as for the BSC.
However, it is plausible that the poly(1/ϵ) term for decoding AWGN channels is better than
for BSC, in which case the concrete share sizes or short secrets could still be smaller.
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