
4th Conference on
Information-Theoretic
Cryptography

ITC 2023, June 6–8, 2023, Aarhus University, Aarhus, Denmark

Edited by

Kai-Min Chung

LIPIcs – Vo l . 267 – ITC 2023 www.dagstuh l .de/ l i p i c s

Editors

Kai-Min Chung
Academia Sinica, Taipei City, Taiwan
kmchung@iis.sinica.edu.tw

ACM Classification 2012
Mathematics of computing → Information theory; Theory of computation → Computational complexity
and cryptography; Security and privacy → Cryptography

ISBN 978-3-95977-271-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-271-6.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ITC.2023.0

ISBN 978-3-95977-271-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-3356-369X
mailto:kmchung@iis.sinica.edu.tw
https://www.dagstuhl.de/dagpub/978-3-95977-271-6
https://www.dagstuhl.de/dagpub/978-3-95977-271-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ITC.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-271-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University – Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ITC 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Kai-Min Chung . 0:vii

Steering Committee
. 0:ix

Organization
. 0:xi

Papers

Two-Round Perfectly Secure Message Transmission with Optimal Transmission
Rate

Nicolas Resch and Chen Yuan . 1:1–1:20

A Lower Bound on the Share Size in Evolving Secret Sharing
Noam Mazor . 2:1–2:9

Csirmaz’s Duality Conjecture and Threshold Secret Sharing
Andrej Bogdanov . 3:1–3:6

The Cost of Statistical Security in Proofs for Repeated Squaring
Cody Freitag and Ilan Komargodski . 4:1–4:23

Interactive Non-Malleable Codes Against Desynchronizing Attacks in the
Multi-Party Setting

Nils Fleischhacker, Suparno Ghoshal, and Mark Simkin . 5:1–5:26

Asymmetric Multi-Party Computation
Vipul Goyal, Chen-Da Liu-Zhang, and Rafail Ostrovsky . 6:1–6:25

Phoenix: Secure Computation in an Unstable Network with Dropouts and
Comebacks

Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou 7:1–7:21

Weighted Secret Sharing from Wiretap Channels
Fabrice Benhamouda, Shai Halevi, and Lev Stambler . 8:1–8:19

Quantum Security of Subset Cover Problems
Samuel Bouaziz-Ermann, Alex B. Grilo, and Damien Vergnaud 9:1–9:17

Distributed Shuffling in Adversarial Environments
Kasper Green Larsen, Maciej Obremski, and Mark Simkin . 10:1–10:15

MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More
Hannah Keller, Claudio Orlandi, Anat Paskin-Cherniavsky, and Divya Ravi 11:1–11:22

Randomness Recoverable Secret Sharing Schemes
Mohammad Hajiabadi, Shahram Khazaei, and Behzad Vahdani 12:1–12:25

Secure Communication in Dynamic Incomplete Networks
Ivan Damgård, Divya Ravi, Daniel Tschudi, and Sophia Yakoubov 13:1–13:21

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Locally Covert Learning
Justin Holmgren and Ruta Jawale . 14:1–14:12

Online Mergers and Applications to Registration-Based Encryption and
Accumulators

Mohammad Mahmoody and Wei Qi . 15:1–15:23

Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs
Amos Beimel . 16:1–16:13

Differentially Private Aggregation via Imperfect Shuffling
Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Jelani Nelson, and
Samson Zhou . 17:1–17:22

Exponential Correlated Randomness Is Necessary in Communication-Optimal
Perfectly Secure Two-Party Computation

Keitaro Hiwatashi and Koji Nuida . 18:1–18:16

Preface

The fourth Conference on Information-Theoretic Cryptography (ITC 2023) took place from
June 6–8, 2023, at the Department of Computer Science, Aarhus University, Aarhus, Denmark.
For the first time since the COVID-19 pandemic, we were thrilled to hold a fully in-person
conference. This year’s conference was co-located with the TPMPC 2023 workshop. The
general chair was Ivan Damgård, and the program chair was Kai-Min Chung. As with the
previous editions, the conference was held in cooperation with the International Association
for Cryptologic Research (IACR).

In its fourth year, ITC continued its mission of bringing together the cryptography and
information theory communities, and advancing research in all aspects of information-theoretic
techniques for cryptography and security. In pursuit of this mission, we invited multiple
Program Committee members from the information theory community, and broadened the
Call for Papers to encompass emerging topics such as adversarial and robust learning and
algorithmic fairness. Although we didn’t see a substantial increase in submissions from these
areas this year, we remain hopeful that this will be a valuable initiative for future years.

We received a total of 29 submissions which overall were of high quality. As in the last
year, we leveraged the small conference size to have interactive and anonymous discussions
with the authors to clarify technical issues. With the help of external reviewers, the program
committee selected 18 papers. One was conditionally accepted at first but eventually accepted
after shepherding. The proceedings contain the revised versions of these 18 papers. The
revisions were not reviewed, and the authors bear full responsibility for the content.

Continuing the tradition, the conference featured six “spotlight talks,” highlighting
the exciting development of information theoretical techniques in the cryptography and
information theory community. This year, the selection of spotlight talks was carried out
by the steering committee and the program chair. It was our great pleasure this year to
feature a historical talk by Ivan Damgård on information-theoretic MPC to celebrate the
35th anniversary of its invention.

We are grateful to everyone who made the 4th ITC conference a success. Our heartfelt
thanks go out to the authors who submitted their papers. We extend our sincere thanks to
the PC members and external reviewers for their dedicated efforts in providing thorough
reviews, insightful discussions, and expert opinions. We are deeply indebted to the steering
committee, particularly Benny Applebaum and Hoeteck Wee, for their invaluable guidance.
Special thanks are also due to the previous PC chairs, especially Dana Dachman-Soled, for
sharing their experience and providing answers to numerous questions. Lastly, we extend
our gratitude to all the invited speakers, presenting authors, and participants who devoted
their time and energy to ensuring the success of this conference.

Kai-Min Chung

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Steering Committee

Benny Applebaum (Chair, Tel-Aviv University)
Ivan Damgård (Aarhus University)
Yevgeniy Dodis (New York University)
Yuval Ishai (Technion)
Ueli Maurer (ETH Zurich)
Kobbi Nissim (Georgetown)
Krzysztof Pietrzak (IST Austria)
Manoj Prabhakaran (IIT Bombay)
Adam Smith (Boston University)
Yael Tauman Kalai (MIT and Microsoft Research New England)
Stefano Tessaro (University of Washington)
Vinod Vaikuntanathan (MIT)
Hoeteck Wee (ENS Paris)
Daniel Wichs (Northeastern University and NTT Research)
Mary Wootters (Stanford)
Chaoping Xing (Nanyang Technological University)
Moti Yung (Google)

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

General chairs

Ivan Damgård (Aarhus University)

Program chair

Kai-Min Chung (Academia Sinica)

Program Committee

Divesh Aggarwal (National University of Singapore)
Prabhanjan Ananth (University of California, Santa Barbara)
Jeremiah Blocki (Purdue University)
Amos Beimel (Ben Gurion University)
Rawad Bitar (Technical University of Munich)
Mahdi Cheraghchi (University of Michigan Ann Arbor)
Albert Cheu (Georgetown University)
Suhas Diggavi (University of California, Los Angeles)
Wei-Kai Lin (Northeastern University)
Qipeng Liu (Simons Institute)
Xiao Liang (Rice University)
Russell W. F. Lai (Aalto University)
Saeed Mahloujifar (Princeton University)
Maciej Obremski (National University of Singapore)
Vinod M. Prabhakaran (Tata Institute of Fundamental Research)
Anat Paskin-Cherniavsky (Ariel University)
Lior Rotem (Stanford University)
João Ribeiro (New University of Lisbon)
Noga Ron-Zewi (University of Haifa)
Salim El Rouayheb (Rutgers University)
Sruthi Sekar (University of California, Berkeley)
Kevin Yeo (Google NYC and Columbia University)
Takashi Yamakawa (NTT)
Yihan Zhang (Institute of Science and Technology Austria)

Local Organization Committee

Yashvanth Kondi (Aarhus University)
Divya Ravi (Aarhus University)
Malene Bisgaard (Aarhus University)

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Organization

External Reviewers

Gilles Zemor, Rafael D’Oliveira, Aditya Gulati, Laszlo Csirmaz, Oded Nir, Elisaweta Masser-
ova, Rahul Rachuri, Obbattu Sai Lakshmi Bhavana, Varun Narayanan, Nathan Manohar,
Aarushi Goel, Rohit Chatterjee, Justin Raizes, Ohad Klein, Fatih Kaleoglu, Bar Alon,
Alexander Poremba, Chen-Da Liu Zhang, Siyao Guo, Ethan Mook, Sebastian Bitzer

Two-Round Perfectly Secure Message Transmission
with Optimal Transmission Rate
Nicolas Resch #

Informatics’ Institute, University of Amsterdam, The Netherlands

Chen Yuan #

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

Abstract
In the model of Perfectly Secure Message Transmission (PSMT), a sender Alice is connected to a
receiver Bob via n parallel two-way channels, and Alice holds an ℓ symbol secret that she wishes
to communicate to Bob. There is an unbounded adversary Eve that controls t of the channels,
where n = 2t + 1. Eve is able to corrupt any symbol sent through the channels she controls, and
furthermore may attempt to infer Alice’s secret by observing the symbols sent through the channels
she controls. The transmission is required to be (a) reliable, i.e., Bob must always be able to recover
Alice’s secret, regardless of Eve’s corruptions; and (b) private, i.e., Eve may not learn anything
about Alice’s secret. We focus on the two-round model, where Bob is permitted to first transmit to
Alice, and then Alice responds to Bob.

In this work we provide upper and lower bounds for the PSMT model when the length of the
communicated secret ℓ is asymptotically large. Specifically, we first construct a protocol that allows
Alice to communicate an ℓ symbol secret to Bob by transmitting at most 2(1 + oℓ→∞(1))nℓ symbols.
Under a reasonable assumption (which is satisfied by all known efficient two-round PSMT protocols),
we complement this with a lower bound showing that 2nℓ symbols are necessary for Alice to privately
and reliably communicate her secret. This provides strong evidence that our construction is optimal
(even up to the leading constant).

2012 ACM Subject Classification Security and privacy → Mathematical foundations of cryptography

Keywords and phrases Secure transmission, Information theoretical secure, MDS codes

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.1

Related Version Full Version: https://eprint.iacr.org/2021/158

Funding Nicolas Resch: Research supported in part by ERC H2020 grant No.74079 (ALGSTRONG-
CRYPTO).
Chen Yuan: Research supported in part by the National Key Research and Development Projects
under Grant 2022YFA1004900 and Grant 2021YFE0109900, the National Natural Science Foundation
of China under Grant 12101403 and Grant 12031011.

Acknowledgements CY would also like to thank Serge Fehr for introducing him to this problem.

1 Introduction

Perfectly secure message transmission (PSMT) was first introduced by Dolev et al. in [2].
This problem involves two parties, the sender Alice and the receiver Bob. Alice wishes to
communicate a secret to Bob over n parallel channels in the presence of a computationally
unbounded adversary Eve. Eve is able to take control of up to t channels in such a way that
she can listen to and/or overwrite the message passing through these t corrupted channels.
Here, we assume Eve is static, i.e., she chooses up to t channels to corrupt before the protocol
and will not change corrupted channels during the protocol. The goal of PSMT is to devise a
procedure permitting Alice and Bob to communicate the secret reliably and privately. More

© Nicolas Resch and Chen Yuan;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 1; pp. 1:1–1:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.a.resch@uva.nl
https://orcid.org/0000-0002-5133-5631
mailto:chen_yuan@sjtu.edu.cn
https://orcid.org/0000-0002-3730-8397
https://doi.org/10.4230/LIPIcs.ITC.2023.1
https://eprint.iacr.org/2021/158
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

precisely, it is guaranteed that Bob always completely recovers the secret (reliability) and
Eve learns absolutely nothing about the secret (privacy).1 PSMT can be done in multiple
communication rounds. During each round, one party acts as the sender and the other acts
as the receiver. They are not permitted to change their roles in one round.

It is clear that for t > n/2, PSMT is not possible, regardless of how many rounds the
protocol uses. One can treat all the message transmitted over these n channels as a codeword
of length n. Assume c1 represents the secret 1 and c0 represents the secret 0 that Alice
wants to communicate to Bob. Since the distance of these two codewords is at most n and
the number of errors t is more than the half the distance between c1 and c0, unique decoding
is not possible.

The original paper in [2] showed that one-round PSMT is possible if n ≥ 3t + 1. The
same paper also showed that PSMT is possible when n ≥ 2t + 1 if two or more rounds are
performed. There have since been a number of efforts to devise improved PSMT protocols in
various settings. The most challenging case is two-round PSMT with n = 2t + 1 channels. To
measure the performance of a PSMT protocol in this case, we use the metric of transmission
rate, which is the total number of bits transmitted divided by the length (in bits) of the
secret communicated.

Prior Work. In what follows, we focus on the case that n = 2t + 1. Sayeed and Abu-
Amara [5] first presented a two-round PSMT achieving transmission rate O(n3). Agarwal et
al. [1] further improved it to O(n) which is asymptotically optimal as a lower bound of n was
proved in [7]. However, implementing this protocol requires an inefficient exponential-time
algorithm. A breakthrough was achieved by Kurosawa and Suzuki [4] whose protocol achieves
transmission rate 6n, and can be run in polynomial time. Inspired by this protocol, Spini
and Zémor [6] further reduced the transmission rate to 5n, and moreover their protocol is
arguably simpler than those that preceded it. Our protocol builds off of their ideas, as we
discuss at the end of this introduction. Their work also answers in the affirmative an open
problem posed in [4] of whether it is possible to achieve O(n) transmission rate for a secret
of size at most O(n2 log n).

Hence, in reviewing the literature on PSMT, we note that the only known lower bound on
the transmission rate for two-round PSMT is n, while the current state-of-the-art construction
in [6] achieves transmission rate 5n. While both bounds are Θ(n), there is still a gap of 4n

between the lower bound and the upper bound.

Our Results. Our results are two-fold. Our first contribution is a two-round PSMT protocol
communicating a length ℓ secret with transmission rate 2(1 + oℓ→∞(1))n.2 This protocol
improves over the state-of-the-art protocol in [6] by 3n. Furthermore, our protocol reaches
this transmission rate when Alice and Bob merely communicate an ω(n log n)-bit secret, and
moreover achieves transmission rate O(n) when they communicate an Ω(n log n)-bit secret
as in [6].

Our second contribution is a lower bound on two-round PSMT protocols. Specifically,
under a reasonable assumption, we show that Alice and Bob have to transmit at least 2nℓ bits
so as to securely communicate an ℓ-bit secret. Our assumption comes from the observation

1 One can also consider the model of secure message transmission where privacy and/or reliability is only
guaranteed to hold with high probability [3]. However, in this work, we focus exclusively on the case of
perfect privacy and reliability.

2 Here and throughout, oℓ→∞(1) denotes a quantity which tends to 0 as ℓ → ∞, holding n fixed.

N. Resch and C. Yuan 1:3

that all known efficient constructions such as [1, 4, 6] allow the adversary to learn the whole
transmission in the second round of communication. This means the adversary can recover
the transmission of all n channels by only listening to t of them. The reason is that in the
second round, Alice encodes the message via an error correcting code which ensures the
correctness of the transmission but sacrifices privacy. Therefore, in the security analysis of
their protocols, they assume that the adversary could learn the whole transmission in the
second round. Under this assumption, our two-round PSMT protocol actually achieves the
optimal transmission rate. In this sense, our lower bound argument reveals an inherent limit
for optimizing two-round PSMT: to beat our protocol, one must design a two-round PSMT
protocol bypassing this assumption.

Our Techniques. As mentioned above, we obtain tight upper and lower bounds for commu-
nicating an ℓ-bit secret in the model of two-round PSMT. We start by outlining the upper
bound proof.

Upper Bound. For the upper bound, we construct a two-round PSMT protocol achieving
transmission rate ∼ 2n. Instead of presenting our optimal protocol immediately, we first
present a simplified protocol which allows for communicating a log n bit secret securely,
which we view as a symbol m ∈ Fq with q ≥ n.

Bob first sends t+1 codewords c1, . . . , ct+1 which are picked independently and uniformly
at random from a [n, t + 1, n− t]q Reed-Solomon code3 over Fq. Alice receives the corrupted
codewords c̃i = ci + ei. She uses the parity check matrix of this Reed-Solomon code to
calculate the syndrome vectors Hc̃i = si. Since Eve can corrupt at most t channels, there
exist coefficients λ1, . . . , λt+1 ∈ Fq, not all zero, such that

∑t+1
i=1 λisi = 0. From this one can

show
∑t+1

i=1 λiei = 0 and thus
∑t+1

i=1 λici =
∑t+1

i=1 λic̃i. To simplify the following expressions,
denote c̄ :=

∑t+1
i=1 λici =

∑t+1
i=1 λic̃i.

Let h ∈ Fn
q be a vector of weight n that is not orthogonal to the [n, t + 1, n − t] Reed-

Solomon code. Alice broadcasts4 λ1, . . . , λt+1 together with ⟨h, c̄⟩+ m to Bob where m is
the secret; ⟨h, c̄⟩ is a mask for the secret. Bob first uses λ1, . . . , λt+1 to recover c̄ and then
obtains m by removing the mask ⟨h, c̄⟩ from the last broadcasted message.

The privacy analysis is quite straightforward. First, Eve can calculate λ1, . . . , λt+1 by
herself since each si = Hei is available to her. This means we can reduce the privacy argument
to the last message ⟨h, c̄⟩ + m which is an immediate consequence of the [n, t + 1, n − t]
Reed-Solomon code we use. This protocol allows Alice and Bob to securely communicate the
secret m ∈ Fq at the cost of n2 log n communication complexity (measured in bits).

Observe that if the syndrome space spanned by s1, . . . , st+1 has dimension r, Alice only
needs to send r + 1 coefficients instead of t + 1 so as to share a common codeword with Bob.
This observation leads to our most efficient two-round PSMT.

We now present the general protocol. Assume Alice and Bob want to communicate an
ℓ log n-bit secret securely. We first split it into ℓ secrets m1, . . . , mℓ, each of size log n, which
we think of as lying in Fq with q ≥ n. Bob first sends t + ℓ codewords c1, . . . , ct+ℓ which are
picked independently and uniformly at random from a [n, t + 1, n− t] Reed-Solomon code
over Fq. Alice receives the corrupted codewords c̃i = ci + ei for i ∈ [t + ℓ]. She uses the
parity-check matrix of this Reed-Solomon code to calculate the syndrome vectors Hc̃i = si.

3 A [n, k, d]q Reed-Solomon code has block-length n, dimension k and distance d = n − k + 1.
4 To broadcast λ ∈ Fq, Alice sends λ through every channel; note that Bob can easily recover λ by

choosing the majority symbol.

ITC 2023

1:4 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

Assume that the space spanned by s1, . . . , st+ℓ has dimension r. Let S ⊂ [t + ℓ] be the
index set of si that form the basis of this syndrome space. Without loss of generality, let us
assume S = {t+ ℓ−r +1, t+ ℓ−r +2, . . . , t+ ℓ}, the last r elements of [t+ ℓ]. For each i ∈ [ℓ],
there exist not all zero coefficients λij for j ∈ S such that si =

∑
j∈S λijsj . In analogy to

what we did in the simpler protocol, we let c̄i := ci −
∑

j∈S λijcj = c̃i −
∑

j∈S λij c̃j .
Before entering into the second round, we do the same thing as [6] so as to reduce the

communication complexity: we spot a corrupted codeword with error weight at least r by
applying linear operations to the c̃j ’s.5 We take a different approach which simplifies the
argument; for details, please see Algorithm 4. Let’s suppose Alice has managed to spot a
corrupted codeword c̃ =

∑
j∈S λj c̃j with error weight at least r. Alice first broadcasts the

index set S together with λj for j ∈ S and c̃ to Bob. Then, Alice uses an [n, r + 1, n− r]
Reed-Solomon code to encode the message data λij , j ∈ S and ⟨h, c̄i⟩+ mi for i ∈ [ℓ].

Once Bob receives the messages, he can correctly recover the index set S and λj for
j ∈ S and c̃ as these messages are broadcasted. By applying the same linear operation on
the codewords in S, Bob will obtain c =

∑
j∈S λjcj which is at least distance r away from

c̃. Bob then ignores the r channels that cause the inconsistency between c and c̃. Bob can
decode the rest of Alice’s messages correctly which were encoded by the [n, r + 1, n − r]
Reed-Solomon code since Eve can only cause r erasures and t− r errors now. The recovery
procedure is exactly the same as in the first protocol. The privacy argument is also quite
straightforward. First of all, the coefficients λij can be computed by Eve on her own. Then,
the privacy of the secret mi can be reduced to the privacy of ci for i ∈ [r] which is guaranteed
by the [n, t + 1, n− t] Reed-Solomon code.

It remains to bound the communication complexity. The first-round communication
complexity is (ℓ + t)n log n. The second-round communication complexity is nr log(t + ℓ) +
(r + n)n log n + n

r+1 (r + 1)ℓ log n. Thus, the transmission rate is 2n + O(n2

ℓ) which becomes
2(1 + oℓ→∞(1))n if Alice communicates to Bob an ℓ log n = ω(n log n)-bit secret.

Lower Bound. Let us first formalize PSMT by defining Alice and Bob’s moves. Assume
that Alice wants to communicate an ℓ-bit secret s securely to Bob via a two-round PSMT. In
the first round, Bob sends a vector a = (a1, . . . , an) to Alice, and Alice receives a corrupted
vector ã. Based on ã and the secret s ∈ [2ℓ], Alice sends back a vector b = (b1, . . . , bn) to
Bob. On receiving the corrupted vector b̃, Bob tries to decode the correct secret s with the
help of a.

Next, we justify our assumption that Eve learn the whole transmission in the second
round of communication. We design an adversary Eve to force Alice and Bob to transmit at
least 2ℓn bits so as to securely send the ℓ-bit secret. In the first round, Eve does nothing.
That means Alice will receive a correct vector a. Moreover, she has no idea which channels
are corrupted. She must therefore assume that any subset of t channels are equally likely to
be corrupted in the second round. Given a, Alice has to use a code of distance n = 2t + 1 to
encode the secret s ∈ [2ℓ] so as to achieve reliability. This gives a lower bound ℓn on the
second round communication complexity. In the meanwhile, if the code of distance n = 2t + 1
used by Alice and Bob in the second round is known to Eve, Eve will learn a. In fact, all

5 Note that Eve has to corrupt at least r channels so as to make the syndrome space have dimension
r. To simplify our discussion here, we assume r ≤ t

3 ; otherwise the protocol will be little more
complicated. Specifically, Alice first broadcasts a corrupted codeword with error weight t

3 and then
sends all corrupted codewords in S to Bob via a [n, t

3 , n − t
3 + 1] Reed-Solomon code. This extra cost

will not affect transmission rate as we can amortize it out by communicating ℓ log n = ω(n log n)-bit
secret. The interested reader can find the details in our proof.

N. Resch and C. Yuan 1:5

known efficient constructions use the same code book in this situation. Their protocol only
protects the correctness of the transmission in the second round not the privacy.6 In the
following argument, we assume that Eve knows b if there is no corruption in the first round.
Therefore, to achieve perfect security, Alice and Bob must share a private key of size ℓ in the
first round. We also notice that the message sent by Bob in the first round is independent
of Eve’s strategy, which means that the lower bound on the communication complexity of
the first round can be applied to the case Eve does nothing in the first round. We construct
a secret sharing scheme by treating a = (a1, . . . , an) as n shares and this private key as a
secret. Since Eve can listen to t channels, this means any t shares should learn nothing of
this secret. This implies that such a secret sharing scheme has t-privacy. We next show that
such secret sharing scheme must have t + 1-reconstruction.

Let a1 be any share vector of secret s1 and a2 be any share vector of secret s2. If a1 and
a2 are within distance t, Eve may inject t errors to change a1 to a2. Then, Alice can not
detect any corruption and take the move as if no corruption happens. However, this will
lead to the situation that Alice and Bob share a wrong key and thus Alice fails to recover
the correct secret. This implies the share vectors associated with different secrets must have
distance t + 1 and thus any n− (t + 1) + 1 = t + 1 shares can reconstruct the secret. As we
have t-privacy and t + 1-reconstruction, our secret sharing scheme is threshold, which implies
that the number of bits communicated in the first round is also at least ℓn. Putting it all
together, we obtain the desired 2ℓn lower bound on the communication of the two-round
PSMT. Although we do not pin down the actual value of optimal two-round PSMT, our
lower bound shows that any two-round PSMT beating our lower bound must bypass this
assumption. We leave this as a future direction.

Comparison to Previous Version. Our previous version does not include this assumption
and prove the same lower bound. However, one of the conference referees points out that
Eve may not learn the whole transmission in the second round if the code used by Alice and
Bob are not fixed in this situation. We thank for his valuable comment which helps us to fix
this bug. We also emphasize that in all known efficient PSMT protocols, Eve can predict the
code used by Alice and Bob. This means our new assumption holds for these constructions.
To beat our construction, one has to design a PSMT protocol bypassing this assumption.

Technical Comparison to Previous Works. Our protocol achieving transmission rate 2n

utilizes ideas from prior works, and we would like to take a moment here to properly
acknowledge them. The idea of leveraging the syndrome space and pseudobasis to correct
errors was first introduced by Kurosawa and Suzuki in [4]. They also proposed the idea of
generalized broadcast to decrease the communication cost of the second round. Spini and
Zémor [6] further developed this idea by showing how to spot a codeword with large error.
They also abandon the dependency on the codeword communicated in the first round in [4]
which greatly simplified the technique. These ideas also appear in our protocol; in particular,
the first round of our protocol matches that of [6].

To obtain a more efficient PSMT protocol, we observe that the protocol in [6] divided
the size of the global support of the errors into two cases: the small and the big one. In the
second round, Alice transmits information for both of the potential cases. Thus, in some

6 It might be possible that Alice and Bob use different codes with same minimum distance n = 2t + 1 in
the second round. In this case, Bob and Alice must share the code information which is kept secret from
Eve. We are not aware of any construction with this property and can not be sure that such strategy
will gain them any advantage.

ITC 2023

1:6 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

sense, half of her communication is wasted. Dealing with both cases simultaneously required
a more careful analysis of the syndrome space to generate the required masks: we exploit
linear dependencies amongst the syndromes, unlike [6] that used a decoding algorithm, which
itself was already a key improvement over the protocol in [4]. Furthermore, the approach
in [6] sends back syndrome vectors whose lengths are always t + 1. In our protocol, we exploit
the codewords in the pseudobasis S to correct the error, allowing us to only send back |S|
symbols to identify the vector. The bigger |S| is, the more errors can be detected, permitting
the use of more efficient generalized broadcast.

On the other hand, the lower bound argument is new, except that the need for broadcast
in the second round is also mentioned in the O(n) lower bound argument [7].

2 Preliminaries

Notations. For an integer n ≥ 1, we denote [n] := {1, 2, . . . , n}. By default, log denotes
the base-2 logarithm.

Throughout, Fq denotes the finite field with q elements, for q a prime power. We let n

denote the number of channels through which Alice and Bob may communicate and t the
number of channels Eve may corrupt; we focus exclusively on the n = 2t + 1 case. The
complexity measure of a protocol that concerns us is its transmission rate, defined as the
total number of symbols communicated divided by the number of symbols of the transmitted
secret. The length of the transmitted secret is denoted by ℓ. By oℓ→∞(1) we refer to a
quantity which tends to 0 as ℓ→∞ (fixing all other parameters, including n), and we write
f(ℓ) ∼ g(ℓ) if limℓ→∞

f(ℓ)
g(ℓ) = 1 (again, fixing all other parameters).

▶ Remark 1. As usual, a bit refers to an element of {0, 1}, while in this work, a symbol refers
to an element from the field Fq, and we will need q ≥ n. While it is most natural to measure
the total communication in bits, as our protocols will involve transmitting elements of Fq it is
more convenient for us to talk about the number of symbols transmitted. Note that when we
compute the transmission rate and we assume the length of the secret is a growing parameter,
whether we measure the communication in bits or symbols does not matter. However, when
we present our lower bound proof in Section 4 it will be most convenient for us to talk about
bits.

Codes. As in previous works, our protocols rely crucially on linear codes with desirable
properties. For two vectors x and y in Fn

q , the (Hamming) distance between them is
d(x, y) := |{i ∈ [n] : xi ̸= yi}|. Given a vector x and a subset Y ⊆ Fn

q we denote
d(x,Y) := min{d(x, y) : y ∈ Y}. The (Hamming) weight of a vector is wt(x) := d(x, 0).
The support of x is supp(x) := {i ∈ [n] : xi ̸= 0}. Note that wt(x) = |supp(x)| and
d(x, y) = |supp(x− y)|. For a vector x ∈ Fn

q and a subset S ⊆ [n], x|S := (xi)i∈S denotes
the length |S| vector obtained by projecting on the coordinates indexed by S. By a (linear)
code, we refer to a linear subspace C ≤ Fn

q ; n is the block-length, k = dim(C) is the dimension
and d = min{wt(c) : c ∈ C \ {0}} is the (minimum) distance. We refer to such a code as an
[n, k, d]q code.

A code is called maximum distance separable (MDS) if d = n− k + 1. Such codes exist
whenever q ≥ n and are furnished by the well-known Reed-Solomon (RS) codes defined via
the evaluations of degree ≤ k − 1 polynomials. However, in this work, we will not directly
use the specific structure of RS codes,7 so we will state our results for arbitrary linear MDS
codes.

7 Although in order to implement the protocol efficiently we will use the existence of efficient encoding
and decoding algorithms for RS codes.

N. Resch and C. Yuan 1:7

Any linear code C may be described as the kernel of a matrix, i.e., C = {x ∈ Fn
q : Hx = 0}.

Such a matrix H ∈ F(n−k)×n
q is called a parity-check matrix.

Given two vectors x, y ∈ Fn
q we define their inner product via ⟨x, y⟩ =

∑n
i=1 xiyi. We

will need the following lemma from [6]. It states that there exists an MDS code C ≤ Fn
q of

dimension t for n = 2t + 1 for which one can find a vector h ∈ Fn
q such that, even once t

coordinates are revealed from a codeword c ∈ C, the inner-product ⟨h, c⟩ ∈ Fq is completely
unconstrained.

▶ Lemma 2 (Lemma 1 from [6]). For any n and any t < n there exists a linear MDS code
C of parameters [n, t + 1, n − t] and a vector h ∈ Fn

q such that given a uniformly random
codeword c ∈ C, the scalar product ⟨h, c⟩ is a uniformly random element of Fq, even when
conditioned on any t symbols of c. Moreover, h can be found efficiently.

Formally, for any 1 ≤ i1 < i2 < · · · < it ≤ n and α1, α2, . . . , αt, β ∈ Fq, we have

Pr[⟨h, c⟩ = β|ci1 = α1, ci2 = α2, . . . , cit
= αt] = 1

q
,

where the randomness is over the uniformly random c ∈ C.

▶ Remark 3. We note that any such vector h must not lie in the dual of C, and moreover
that it must have weight at least t + 1.

Broadcast. Next, observe that since Eve controls at most t < n/2 of the channels, if Alice
transmits the same symbol through all n channels, then Bob can always recover Alice’s
intended symbol by choosing the majority symbol. Of course, such a procedure does not
guarantee any privacy, i.e., Eve will always learn the symbol Alice transmits to Bob.

Pseudobases
An important technical tool in our protocols are pseudobases, as introduced in the work
of Kurosawa and Suzuki [4]. Before providing the definition, we explain their utility. (A
similar discussion of the utility of pseudobases is available in Section 3.2 of [6].) Consider
the scenario where Bob has sent a codeword c ∈ C to Alice by sending the i-th coordinate ci

through the i-th channel. In order to guarantee privacy, as Eve can observe t of the channels,
it must be that dim C ≥ t + 1. However, by the Singleton bound, that forces the distance of
C to be at most n− (t + 1) + 1 = n− t = t + 1, which means that Bob can uniquely decode
Alice’s transmission only if Eve introduces ≤ t/2 errors. However, as Eve can introduce up
to t errors, it appears that we do not have an effective means of enforcing reliability.

However, consider the following scenario: instead of sending a single codeword through
the channel in this way, Bob sends many codewords c1, . . . , cr. Privacy is preserved so long
as the transmissions are not correlated in any way (say, each one is sampled independently
and uniformly at random). However, Alice now has an advantage in decoding: all of the
corruptions introduced by Eve are confined to the same set of t coordinates. The idea is to
exploit this fact to allow Alice and Bob to agree on some codeword c̄ of which Eve knows
at most t coordinates (which in turn means that ⟨h, c̄⟩ can effectively mask the secret m).
Using the concept of pseudobases, it turns out that this is possible (so long as the distance
of C is at least t + 1, as is the case when C is MDS).

We now provide the formal definition of a pseudobasis.

▶ Definition 4 (Pseudobasis [4]). Let y1, . . . , ys ∈ Fn
q be vectors. A pseudobasis for y1, . . . , ys

is a subcollection yi1 , . . . , yir with 1 ≤ i1 < · · · < ir ≤ s such that Hyi1 , . . . , Hyir ∈ Fn−k
q is

a basis for the linear space span{Hy1, . . . , Hys}.

ITC 2023

1:8 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

In other words, one computes a basis for the space spanned by Hy1, . . . , Hys ∈ Fn−k
q , and

then the preimage of the basis vectors in Fn
q provides a pseudobasis. Observe that, given

access to H, such a pseudobasis can be found in time polynomial in n, and furthermore that
it consists of at most n− k vectors.

▶ Remark 5. Note that if we have a code C ≤ Fn
q with parity-check matrix H and we write

yi = ci + ei for each i ∈ [s] with ci ∈ C, then as

Hyi = H(ci + ei) = Hci + Hei = Hei ,

we conclude that yi1 , . . . , yir forms a pseudobasis for y1, . . . , ys if and only if ei1 , . . . , eir

forms a pseudobasis for e1, . . . , es.
This observation will be crucial for us in our privacy analysis. We will be in the scenario

that Alice has received potentially corrupted codewords from Bob, which we write as
c̃i = ci + ei, where ei denotes the errors introduced by Eve. Alice will then broadcast some
information about a pseudobasis for her received vectors to Bob. This does not leak any
information to Eve, as she could have computed the same pseudobasis from the error vectors
ei that she knows.

3 The Protocol

In this section, we present our protocol which allows Alice to privately and reliably transmit
an ℓ symbol secret (m1, . . . , mℓ) ∈ Fℓ

q to Bob. In order to ease readability, we present two
simplifications of our full protocol first before presenting the full construction. The first
construction, presented in Section 3.1, allows Alice to transmit a one symbol secret m ∈ Fq.
Despite being fairly simple, it already introduces a crucial idea, which is a method for Alice
and Bob to agree on a random codeword that is not completely revealed to Eve. As we
elaborate upon further in Remark 8, this means of extracting this secret codewords represents
our core improvement over [6].

Next, in Section 3.2, we show how to generalize the protocol to the case of ℓ ≥ 1, and
achieve communication rate (4 + oℓ→∞(1))n. Intuitively, this requires Alice and Bob to agree
on ℓ random codewords that are not completely known to Eve. In order to guarantee small
transmission rate, we need a few more tricks. As in [6], one useful technique we employ
is a method for Alice to find a vector which indicates many of the channels that Eve is
corrupting, allowing Bob to safely ignore those channels.8 Informally, this transforms symbol
corruptions into erasures, and erasures are easier to recover from. In particular, Alice can
encode her data with a code of higher rate and Bob will still be able to uniquely-decode. To
get our final protocol achieving transmission rate (2 + oℓ→∞(1))n, we note that we only need
to do something different if Eve invests many corruptions in the first round.9 In order to
handle this, we ask Alice to send a bit more information to Bob to indicate a larger number
of corrupted channels, which transforms more of the symbol corruptions into erasures in the
subsequent transmissions, and hence allows Alice to use an error-correcting code of higher
rate. We describe the necessary modifications in Section 3.3.

8 There is a procedure with the same guarantee in [6]; however, we believe our procedure is simpler, and
moreover does not use the specific structure of RS codes.

9 More precisely, if the dimension of the syndrome space exceeds t/3.

N. Resch and C. Yuan 1:9

Notations for this section. Throughout, C ≤ Fn
q denotes an MDS code of dimension t + 1

and h ∈ Fn
q a vector satisfying the conclusion of Lemma 2. Also, H ∈ Ft×n

q denotes a
parity-check matrix for C. The datum (C, h, H) is public, fixed prior to the execution of the
protocol and available to Alice, Bob and Eve throughout the execution. Lastly, we denote by
E ⊆ [n] the set of t channels that Eve controls. Of course, this set is unknown to Alice and
Bob; we introduce this notation exclusively for the analysis.

3.1 A Simple Protocol for ℓ = 1

We begin by providing a simple protocol which allows Alice to transmit one secret symbol
m ∈ Fq to Bob. While this does not achieve our main goal, we find that it clarifies our
means of extracting a codeword known to both Alice and Bob but secret from Eve, which we
call c̄ and c′. As we discuss further in Remark 8, this idea is the core of what allows us to
go beyond the protocol of [6] and eventually compress Alice’s communication to just ∼ nℓ

symbols. The details of the protocol are provided in Algorithm 1.
We now sketch why the protocol indeed yields a PSMT.

Reliability. First, we argue that Lines 8 and 9 from Algorithm 1 are justified, i.e., that
Alice can indeed find p ∈ [t + 1] and λj ∈ Fq for j ∈ [t + 1] \ {p} such that sp =

∑
j ̸=p sj . As

s1, . . . , st+1 ∈ Ft
q are t + 1 vectors in a t-dimensional space, they must satisfy a nontrivial

linear dependence
∑t+1

j=1 λ′
jsj = 0. Alice can thus pick any p ∈ [t + 1] for which λ′

p ≠ 0, and
then set λj = −λ′

j/λ′
p for j ∈ [t + 1] \ {p}.

Now, the important observation is that since the code C has distance t + 1, we have c′ = c̄.
Indeed, first note that c̄ ∈ C, as

Hc̄ = H

c̃p −
∑
j ̸=p

λj c̃j

 = Hc̃p −
∑
j ̸=p

λjHc̃j = sp −
∑
j ̸=p

λjsj = 0 .

Now, recalling that E ⊆ [n] denotes the channels that the adversary controls, the coordinates
on which each cj can disagree with c̃j are confined to the set E. Thus, the support of(

cp −
∑

j ̸=p λjcj

)
−
(

c̃p −
∑

j ̸=p λj c̃j

)
is also contained in the set E. As |E| ≤ t, we

conclude that the codewords c′ = cp −
∑

j ̸=p λjcj and c̃ = c̃p −
∑

j ̸=p λj c̃j are distance at
most t from one another; as C has distance t + 1, they must be the same vector.

Thus, in particular, ⟨h, c′⟩ = ⟨h, c̄⟩, so m′ − ⟨h, c′⟩ = m + ⟨h, c̄⟩ − ⟨h, c′⟩ = m, i.e., Bob
returns Alice’s intended secret m.

Privacy. In the first round of the protocol, Eve can only see |E| ≤ t symbols from each
transmitted codeword. As the code C has dimension t + 1 and is MDS, Eve learns only learns
these |E| symbols from c1, . . . , ct+1.

In the second round, Eve sees (p, λj : j ̸= p). However, she already knows e1, . . . , et+1 and
H and, using the fact that sj = Hc̃j = Hej for j ∈ [t + 1], (p, λj : j ≠ p) can be computed
from e1, . . . , et+1 and H. Thus, she does not learn anything from the second transmission.

We conclude that after the protocol, Eve has only learned the symbols indexed by
the corrupted channels E from c1, . . . , ct+1. In particular, Eve only knows t symbols of
c′ = c̄ = c̃p −

∑
j ̸=p λj c̃j which is a codeword distributed uniformly at random in C, and

so Lemma 2 guarantees that Eve has no information on ⟨h, c̄⟩. Thus, even after observing
m + ⟨h, c̄⟩, she has no information on m, as desired.

ITC 2023

1:10 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

Communication Cost. In the first round, Bob transmits (t + 1)n ∼ n2/2 symbols. In the
second round, Alice transmits logq(t + 1) + tn + n ∼ n2/2 symbols. Hence, to communicate
a single symbol, the total communication requirement of Algorithm 1 is ∼ n2. In terms of
bits, as we require q ≥ n, we conclude that Alice and Bob must transmit ∼ n2 log n bits.

3.2 A Protocol with (4 + oℓ→∞(1))n Transmission Rate
In this subsection, we provide a protocol that will allow Alice to transmit an ℓ symbol secret
to Bob requiring only ∼ 4nℓ symbols to be communicated. We begin by outlining some of
the new ingredients we need.

Generalized Broadcast. One technique that we will use in our protocol is generalized
broadcast, as introduced in previous works [4, 6]. The situation that motivates the idea of
generalized broadcast is the following: imagine that in some way, Bob has become aware that
Eve is controlling some set R ⊆ [n] of the channels. Then, when decoding a transmission
from Alice, he can replace the symbols he receives through the channels in R by an erasure
symbol. Thus, instead of decoding from t symbol corruptions, he only has to perform the
easier task of decoding from t− r symbol corruptions and r erasures, where r = |R|.

In particular, to uniquely decode from t errors where n = 2t + 1, if Alice wants to
guarantee that the codeword she transmits can be uniquely-decoded by Bob, then she must
use a code with distance 2t + 1 = n: by the Singleton bound, she must use an MDS code of
dimension 1, i.e., she can only send a single symbol. A natural example of a dimension 1
MDS code is the repetition code: this precisely recovers broadcast as introduced earlier.

However, if Bob knows a subset R as above, then he can uniquely decode so long as the
code has distance at least 2(t − r) + r + 1 = n − r. Thus, if Alice uses an MDS code of
dimension r + 1, Bob can recover her intended transmission. We refer to this as r-generalized
broadcast, which we now formally define.

▶ Definition 6 (Generalized Broadcast). For an integer r ≥ 0, r-generalized broadcast refers
to the procedure where Alice uses an [n, r + 1, n − r]q code Cr to transmit r + 1 symbols
(x1, . . . , xr+1) ∈ Fr+1

q by encoding the message (x1, . . . , xr+1) into a codeword c ∈ Cr, and
sending the i-th symbol of c through the i-th channel for each i ∈ [n].

For succinctness, we write Alice r-broadcasts (x1, . . . , xr+1) to indicate that Alice uses
the r-generalized broadcast to transmit the data (x1, . . . , xr+1) to Bob.

▶ Remark 7. Assuming Alice and Bob communicate with a dimension r + 1 Reed-Solomon
code, then both encoding the message and decoding from r erasures and t − r symbol
corruptions can be done in polynomial time [8].

Thus, r-generalized broadcast allows Alice to reliably transmit r+1 times more information
to Bob than standard (i.e., 0-)broadcast, which can greatly improve the transmission rate of
the protocol if r is sufficiently large.

Finding a Set of Corrupted Channels. In light of the above discussion, we would like
to allow Bob to find a large set of corrupted channels. For general ℓ, we will have Bob
transmit t+ℓ uniformly random codewords in the first round, and Alice receives the corrupted
codewords c̃j = cj + ej , where the support of each ej is contained in the t channels Eve
controls, E.

N. Resch and C. Yuan 1:11

Now, if Alice were aware that ej has large weight for some j, then she could just broadcast
c̃j and the index j to Bob. Bob could then compute the set supp(c̃j − cj) and subsequently
ignore the transmissions sent through those channels. However, one problem is that there
might not be an ej that has sufficiently large weight. More concerningly, Alice does not
actually know e1, . . . , et+ℓ!

Dealing with the first issue, note that it actually suffices to find multipliers λj such that∑
j λjej has large weight: then Alice can broadcast the λj ’s and y :=

∑
j λj c̃j , and then

Bob can compute supp
(

y−
∑

j λjcj

)
and ignore the subsequent transmissions sent through

those channels.
Actually, in order to ensure a good transmission rate it will be important that the linear

dependency is chosen to be relatively short; in particular, it should be independent of ℓ. It
will turn out that we can find such a vector y which is a linear combination of a pseudobasis
for the vectors c̃1, . . . , c̃t+ℓ. Recalling that the dimension of the syndrome space is at most t,
this guarantees that we don’t need to transmit too many multipliers λj .

However, we still haven’t addressed the issue that Alice does not have direct access to
the ej ’s. But it turns out that this is not an problem: given a set of vectors with linearly
independent syndromes, we will be able to find a linear combination

∑
j λj c̃j that is far from

every codeword. So, in particular, it will be far from
∑

j λjcj , as required.
Specifically, if r ≤ t/3 and y1, . . . , yr ∈ Fr

q are vectors such that the syndromes
Hy1, . . . , Hyr ∈ Ft

q are linearly independent, then Algorithm 4 finds a vector y in the
span of y1, . . . , yr that satisfies d(y, C) ≥ r. This procedure and its analysis are presented in
Appendix D.

▶ Remark 8. There is a procedure in [6] with the same guarantee; however, we believe our
algorithm is a bit simpler, so we have chosen to present it. In particular, we do not need to
apply a unique-decoding algorithm as is required by the procedure in [6]; we just use simple
linear-algebraic operations.

A more significant difference between our protocols concerns the communication of the
masked secrets. For each of the message symbols m1, . . . , mℓ, the most efficient protocol
of [6] requires Alice to broadcast two symbols z

(i)
1 , z

(i)
2 ∈ Fq which each mask the message

symbol mi in a different way. The symbol z
(i)
1 uses the mask ⟨h, ypi

⟩; z
(i)
2 uses the mask

⟨h, c̃pi
⟩ where c̃pi

is the decoding of ypi
, or z

(i)
2 is just set to 0 if the decoding failed. Bob

then chooses which mask to open, depending on the size of the pseudobasis. The authors
comment they could use generalized broadcast for these symbols (as we do) to somewhat
decrease the communication cost; however, even this change would not bring the second
round communication down to ∼ nℓ. Thus, a key difference between our protocols can be
observed: by more carefully exploiting the structure of the pseudobasis, our extraction of the
codewords c̄pi

= c′
pi

to yield the masks ⟨h, c̄i⟩ prevents us from needing to use two different
masks to guarantee that Bob can reliably recover the message symbols.

The Protocol. We are now in position to give our PSMT for transmitting an ℓ symbol
secret: the details are in Algorithm 2.

▶ Theorem 9. Algorithm 2 is a PSMT with transmission rate (4 + oℓ→∞(1))n.

Proof. We first verify that the protocol is reliable. After, we show that it is private. Lastly,
we compute its transmission rate. Throughout the proof, we let E ⊆ [n] denote the set of t

channels that Eve is corrupting.

ITC 2023

1:12 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

Reliability. We first make a few observations to justify the algorithm. First, we note that
the definition of T on Appendix B is valid: indeed, r = |S| ≤ t since a pseudobasis has size at
most t, so there are at least ℓ elements in [t + ℓ] \ S. Also, we note that z =

∑
j∈S λjcj ∈ C,

so since y is at distance at least r′ from C, we have |supp(z− y)| = d(z, y) ≥ r′, as stated in
Appendix B. Furthermore, as y =

∑
j∈S λj c̃j , if E ⊆ [n] denotes the set of channels that

Eve controls, then supp(y− z) ⊆ E. Hence, for each i ∈ [ℓ], the transmission from Alice to
Bob of (λij : j ∈ S) and ⟨h, c̄pi

⟩+ mi via r′-generalized broadcast is reliable.
As in the analysis in Section 3.1, the reliability of Algorithm 2 follows from the fact that

for i = 1, . . . , ℓ, we have c̄pi = c′
pi

. And once again, the argument proceeds by demonstrating
that both c̄pi

and c′
pi

are elements of C. This is clear for c′
pi

; for c̄pi
, we use the parity-check

matrix H:

Hc̄pi
= H

c̃pi
−
∑
j∈S

λij c̃j

 = spi
−
∑
j∈S

λijsj = 0 .

Now, since supp(cj − c̃j) ⊆ E for each j ∈ [t + ℓ], we also have

supp(c′
pi
− c̄pi

) = supp

cpi
−
∑
j∈S

λijcj

−
c̃pi

−
∑
j∈S

λij c̃j

 ⊆ E ,

which implies d(c′
pi

, c̄pi
) ≤ |E| ≤ t. As C has distance t + 1, it follows that c′

pi
= c̄pi

. In
particular, we have ⟨h, c′

pi
⟩ = ⟨h, c̄pi

⟩.
Hence, for each i ∈ [ℓ], m′

i − ⟨h, c′
pi
⟩ = mi + ⟨h, c̄pi⟩ − ⟨h, c′

pi
⟩ = mi, demonstrating

reliability.

Privacy. First, we describe Eve’s view of the protocol. In the first round, she observes
(c1)|E , . . . , (ct+ℓ)|E . In the second round, she first observes (S, (λj : j ∈ S), y). Then, for
each i ∈ [ℓ], she observes (λij : j ∈ S) and m′

i = ⟨h, c̄pi⟩+ mi.
We wish to establish that Eve learns nothing about the symbols mi for each i ∈ [ℓ]. To

establish this, it suffices to show that, conditioned on Eve’s view, ⟨h, c̄pi
⟩ is a uniformly

random element of Fq. And to do this, according to Lemma 2, it suffices to show that from
Eve’s perspective, c̄pi

is a uniformly random codeword from which Eve has observed only t

coordinates.
First of all, as c1, . . . , ct+ℓ are sampled independently and uniformly from C and C has

dimension t + 1 and is MDS, after the first round Eve only learns (cj)|E for each j ∈ [t + ℓ].
Next, we consider the second round. We begin by noting that Eve can compute S from

H and e1, . . . , et+ℓ, which she knows. Indeed, as sj = Hc̃j = Hej , Eve can also compute the
pseudobasis S. So she learns nothing from this transmission. Once she has computed S Eve
can then compute the set T and subsequently (λij : j ∈ S) for each i ∈ [ℓ], as the λij ’s are a
function of the sets S and T and the syndromes s1, . . . , st+ℓ, to which she has access.

Next, consider revealing to Eve the codewords (cj : j ∈ S). Then, she can compute the
corrupted codeword c̃j = cj + ej for j ∈ S, so she can then compute the vector y and the
multipliers (λj : j ∈ S). Hence, what Eve sees in the second round is at most as informative
as (cj : j ∈ S).

Hence, at the termination of the protocol, what Eve can infer from her view about the
masks ⟨h, c̄pi

⟩ for i ∈ [ℓ] is no more than what she can infer about them from the following
data:

The codewords (cj : j ∈ S);
The coordinates of all the codewords indexed by E, i.e., (cj)|E for j ∈ [t + ℓ].

N. Resch and C. Yuan 1:13

Recall that, for each i ∈ [ℓ], c̄pi = c′
pi

= cpi −
∑

j∈S λijcj . On the one hand, from the two
pieces of data above, we have shown that Eve can compute exactly

∑
j∈S λijcj . On the other

hand, as the cj ’s are sampled independently, the above data reveals nothing about cpi
other

than the coordinates indexed by E. Thus, from Eve’s perspective, c̄pi = cpi −
∑

j∈S λijcj is
a uniformly random codeword from which she has only observed the coordinates indexed
by E. Therefore the messages m′

i = mi + ⟨h, c̄pi⟩ reveal nothing about the secret vector
(m1, . . . , mℓ). This concludes the proof of the assertion that the protocol is private.

Transmission Rate. In the first round, Bob sends (t + ℓ)n symbols. In the second round,
Alice first broadcasts r log(t+ℓ)

log q +r +n symbols and then r′-broadcasts ℓ(r +1) symbols, where
we recall that r denotes the size of the pseudobasis and r′ = min{r, ⌊t/e⌋}. This requires her
to send

nr log(t + ℓ)
log q

+ (r + n)n + (r + 1)ℓ n

r′ + 1

elements from Fq. Thus, if N is the total number of symbols transmitted, then N
ℓ is

tn

ℓ
+ n + nr log(t + ℓ)

ℓ log q
+ n2 + rn

ℓ
+ (r + 1)n

r′ + 1 ≤ 4n + O

(
n2

ℓ
+ n2 log(n + ℓ)

ℓ log n

)
, (1)

where the inequality uses q ≥ n, r ≤ t ≤ n and r+1
r′+1 ≤ 3. Hence, assuming ℓ = ω(n) we have

N
ℓ ∼ 4n, as promised. ◀

▶ Remark 10. Note that if we had been in the case that r = r′, i.e., r ≤ t
3 , then the

transmission rate of Algorithm 2 would have been ∼ 2n. Hence, in order to get our desired
transmission rate of 2n, we will only have to amend the protocol in the case that r > t

3 . This
is what we do in the following subsection.

3.3 Protocol with (2 + oℓ→∞(1))n Transmission Rate
In order to decrease the transmission rate to ∼ 2n, we look more carefully at the transmission
rate as computed in (1). We have a factor of ∼ n from the first round when Bob communicates
to Alice, and then a factor of ∼ 3n when Alice replies to Bob in the second round. In our
lower bound argument, we will show that both parties will have to communicate nℓ symbols
in each round; hence, our only hope of getting a ∼ 2n transmission rate will be to decrease
the communication of Alice in the second round.

Now, we note that the dominant term in Alice’s communication is the (r+1)n
r′+1 ℓ term which

comes from the ℓ r′-generalized broadcasts from Appendix B; as r′ ≤ t
3 and r can be as large

as t, this term could be as large as 3nℓ. If Alice used r-generalized broadcast for each of these
transmissions, then this communication would cost only ∼ nℓ symbols, and we would get the
∼ 2n transmission rate we desire. However, as y only informs Bob of r′ corrupted channels,
if r > r′ = min{r, ⌊t/3⌋} then Alice will have to communicate some more information for
Bob to learn of r corrupted channels, which will guarantee the reliability of the transmission.

The solution for this is rather simple. We assume from now on that r > r′, which is the
same as saying r > t

3 . First, Alice broadcasts (y, S, λj : j ∈ S) as before (see Appendix B);
thus, t/3-generalized broadcast is now reliable. Next, we have Alice t/3-generalized broadcast
the entire pseudobasis to Bob, i.e., all the vectors c̃j for j ∈ S. We claim that this implies
that r-generalized broadcast will now be reliable. Indeed, this follows from the following
simple lemma.

ITC 2023

1:14 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

▶ Lemma 11. Let c̃j = cj + ej for j ∈ S with cj ∈ C and put sj = Hc̃j = Hej. Assume
that dim (span{sj : j ∈ S}) = r. Then

∣∣∣⋃j∈S supp(ej)
∣∣∣ ≥ r.

Proof. Let di ∈ Fn
q denote the vector whose i-th coordinate is 1 and the remaining coordinates

are 0. Let R =
⋃

j∈S supp(ej); then clearly span{di : i ∈ R} ⊇ span{ej : j ∈ S}, so also

span{Hdi : i ∈ R} ⊇ span{Hej : j ∈ S} = span{sj : j ∈ S}.

As dim (span{Hdi : i ∈ R}) ≤ |R|, we conclude |R| ≥ dim (span{sj : j ∈ S}) = r, as desired.
◀

Thus, suppose Alice reliably transmits to Bob the vectors c̃j for j ∈ S. From this, Bob
can compute the set

⋃
j∈S supp(cj − c̃j) =

⋃
j∈S supp(ej); this set has cardinality at least r,

and moreover it is contained in E (where, as usual, E denotes the set of channels Eve
controls). Hence, there are now r channels that Bob can safely ignore, so Alice may reliably
r-broadcast the ℓ transmissions (λij : j ∈ S) and ⟨h, c̄pi

⟩+ mi, as in Appendix B.
It is reasonable now to wonder if this will negatively impact the privacy of the protocol,

as more information is revealed to Eve. However, by observing the proof of Theorem 9,
one can see that even if Eve learns of c̃j for j ∈ S, the inner-product ⟨h, c̄pi⟩ is still wholly
unknown to her, implying that they yield an effective mask for the secrets mi.

Instead of completely rewriting the protocol, we just indicate in Algorithm 3 the changes
that need to be made to Algorithm 2 to obtain the ∼ 2n transmission rate.

▶ Theorem 12. Algorithm 3 is a PSMT with transmission rate (2 + oℓ→∞(1))n.

Proof. The proof is omitted due to page limit. ◀

4 Lower Bound

In this section, we prove a lower bound on the transmission rate of any two-round PSMT
under an assumption about the protocol which we now formally introduce.

Our starting point is the observation that in our two-round PSMTs from Section 3, we
always have Alice broadcast her desired transmission to Bob which completely sacrifices the
privacy of her transmission. That is, the adversary completely learns the transmission from
the second round. And this is not unique to our protocols: all of the efficient two-round
PSMT protocols from the literature [1, 4, 6] sacrifice the privacy of Alice’s transmission.

Therefore, we make the assumption that the adversary learns the entire transmission of
the second round and prove a 2n lower bound on the transmission rate under this assumption.
This argument shows that among all two-round PSMTs satisfying this assumption, the one
guaranteed by Theorem 12 is actually optimal. In other words, if one want to design a more
efficient PSMT, the second round of this protocol must somehow bypass this assumption
and keep something hidden from Eve. In this sense, we prove an inherent limitation for the
line of optimizing two-round PSMT protocols [1, 4, 6].

▶ Assumption 1. The adversary learns the whole transmission of the second round. More
precisely, there is a function mapping the symbols Alice transmits through t of the channels
to the symbols she sends through the other channels.

▶ Theorem 13. Under Assumption 1, any two-round perfectly secure message transmission
of an ℓ-bit secret requires communicating 2nℓ bits.

N. Resch and C. Yuan 1:15

Proof. First of all, we formalize the behaviours of the sender Alice and the receiver Bob in a
two-round PSMT.
1. In the first round, Bob runs a randomized algorithm A(ℓ) to generate a message a =

(a1, . . . , an) ∈ A1 × · · · ×An where the randomness is only available to Bob. Bob sends a
to Alice such that ai is sent through the i-th channel.

2. Alice receives the corrupted vector ã and runs the algorithm B(ã, s) to generate the
message b = (b1, . . . , bn) ∈ B1 × · · · × Bn where s ∈ [2ℓ] is the secret. Then Alice sends b
to Bob such that bi is sent through the i-th channel.

3. Bob receives the corrupted vector b̃ and runs the algorithm C(b̃, a) to recover the secret.
The protocol succeeds if C outputs s and Eve learns nothing about the secret.

Note that if B(a, s) = b then we must have C(b, a) = s, i.e., the protocol must succeed if
the adversary Eve injects no errors. We defer the formal proof to the full version. ◀

References
1 Saurabh Agarwal, Ronald Cramer, and Robbert de Haan. Asymptotically optimal two-round

perfectly secure message transmission. In Cynthia Dwork, editor, Advances in Cryptology -
CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Computer Science,
pages 394–408. Springer, 2006. doi:10.1007/11818175_24.

2 Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message
transmission. J. ACM, 40(1):17–47, 1993. doi:10.1145/138027.138036.

3 Matthew Franklin and Rebecca N Wright. Secure communication in minimal connectivity
models. Journal of Cryptology, 13(1):9–30, 2000.

4 Kaoru Kurosawa and Kazuhiro Suzuki. Truly efficient 2-round perfectly secure message
transmission scheme. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 324–340. Springer, 2008.

5 Hasan Md. Sayeed and Hosame Abu-Amara. Efficient perfectly secure message transmission
in synchronous networks. Inf. Comput., 126(1):53–61, 1996. doi:10.1006/inco.1996.0033.

6 Gabriele Spini and Gilles Zémor. Perfectly secure message transmission in two rounds. In
Theory of Cryptography Conference, pages 286–304. Springer, 2016.

7 K. Srinathan, Arvind Narayanan, and C. Pandu Rangan. Optimal perfectly secure message
transmission. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California, USA, August 15-19,
2004, Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 545–561. Springer,
2004. doi:10.1007/978-3-540-28628-8_33.

8 Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, December
1986. US Patent 4,633,470.

ITC 2023

https://doi.org/10.1007/11818175_24
https://doi.org/10.1145/138027.138036
https://doi.org/10.1006/inco.1996.0033
https://doi.org/10.1007/978-3-540-28628-8_33

1:16 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

A Algorithm 1

Algorithm 1 A first protocol for transmitting a one symbol secret m ∈ Fq.
1: procedure Round 1: Bob Transmits
2: Bob samples c1, . . . , ct+1 ∈ C independently and uniformly at random.
3: For j = 1, . . . , t + 1, Bob transmits the i-th coordinate of cj through the i-th channel.
4: end procedure
5: procedure Round 2: Alice Transmits
6: For j = 1, . . . , t + 1, Alice receives the vectors c̃j where d(cj , c̃j) ≤ t.
7: For j = 1, . . . , t + 1, Alice computes sj = Hc̃j ∈ Ft

q.
8: Alice finds a coordinate p ∈ [t + 1] such that sp ∈ span{sj : j ̸= p}.
9: Alice finds λj ∈ Fq for j ∈ [t + 1] \ {p} such that sp =

∑
j ̸=p λjsj .

10: c̄← c̃p −
∑

j ̸=p λj c̃j

11: Alice broadcasts p, (λj : j ̸= p) and the symbol m′ ← m + ⟨h, c̄⟩.
12: end procedure
13: procedure Output Phase
14: Bob receives p, (λj : j ̸= p) and the symbol m′.
15: c′ ← cp −

∑
j ̸=p λjcj

16: return m′ − ⟨h, c′⟩.
17: end procedure

N. Resch and C. Yuan 1:17

B Algorithm 2

Algorithm 2 A protocol for transmitting an ℓ-symbol secret (m1, . . . , mℓ) ∈ Fℓ
q, which achieves

transmission rate (4 + oℓ→∞(1))n.
1: procedure Round 1: Bob Transmits
2: Bob samples c1, . . . , ct+ℓ ∈ C independently and uniformly at random.
3: For j = 1, . . . , t + ℓ, Bob transmits the i-th symbol of cj through the i-th channel.
4: end procedure
5: procedure Round 2: Alice Transmits
6: For j = 1, . . . , t + ℓ, Alice receives the vectors c̃j where d(cj , c̃j) ≤ t.
7: For j = 1, . . . , t + ℓ, Alice computes sj = Hc̃j ∈ Ft

q.
8: Alice computes a pseudobasis for c̃1, . . . , c̃t+ℓ. Let S ⊆ [t + ℓ] index the elements of

the pseudobasis.
9: r ← |S| and r′ ← min{r, ⌊t/3⌋}.

10: Let S′ ⊆ S denote a subset of size r′.
11: Let y← (c̃j : j ∈ S′); write y =

∑
j∈S λj c̃j . ▷ Of course, for j ∈ S \ S′, we may put

λj = 0.
12: Let T ← {p1, . . . , pℓ} denote the ℓ smallest elements of [t + ℓ] \ S.
13: For i ∈ [ℓ], choose coefficients λij ∈ Fq such that spi =

∑
j∈S λijsj , and define

c̄pi
← c̃pi

−
∑

j∈S λij c̃j .
14: Alice broadcasts the information (S, (λj : j ∈ S), y).
15: For each i ∈ [ℓ], Alice r′-broadcasts the data (λij : j ∈ S) and m′

i ← mi + ⟨h, c̄pi
⟩.

16: end procedure
17: procedure Output Phase
18: Bob recovers (S, (λj : j ∈ S), y) and defines z ←

∑
j∈S λjcj . He also lets T =

{p1, . . . , pℓ} denote the ℓ smallest elements of [t + ℓ] \ S.
19: Bob ignores the channels in the set supp(y− z), a set of cardinality at least r′.
20: For each i ∈ [ℓ], Bob recovers the information (λij : j ∈ S) and m′

i, defines c′
pi
←

cpi
−
∑

j∈S λijcj , and then defines mi ← m′
i − ⟨h, c′

pi
⟩.

21: return (m1, . . . , mℓ).
22: end procedure

ITC 2023

1:18 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

C Algorithm 3

Algorithm 3 Our final protocol for transmitting an ℓ-symbol secret (m1, . . . , mℓ) ∈ Fℓ
q, which

achieves transmission rate (2 + oℓ→∞(1))n. We just indicate what needs to be changed from
Algorithm 2 when r > r′ = min{r, ⌊t/3⌋}.

procedure Round 1: Bob Transmits
Bob performs lines 2-3 from Algorithm 2.

end procedure
procedure Round 2: Alice Transmits

Alice performs lines 6-14 from Algorithm 2.
if r = r′ then

Alice performs Appendix B from Algorithm 2.
else

Alice r′-broadcasts c̃j for each j ∈ S.
For each i ∈ [ℓ], Alice r-broadcasts the data (λij : j ∈ S) and ⟨h, c̄pi⟩+ mi.

end if
end procedure
procedure Output Phase

Bob performs lines 18-19 from Algorithm 2.
Let r ← |S|.
if r ≤ t/3 then Bob performs line 20
else

Bob recovers c̃j for each j ∈ S.
Bob ignores the channels in the set

⋃
j∈S supp(c̃j − cj), which has cardinality at

least r.
For each i ∈ [ℓ], Bob recovers the information (λij : j ∈ S) and m′

i, defines
c′

pi
← cpi −

∑
j∈S λijcj , and then defines mi ← m′

i − ⟨h, c′
pi
⟩.

end if
return (m1, . . . , mℓ).

end procedure

D Procedure for Finding a Vector Far from Code

In this section, we present our algorithm for finding a vector that is far from the code.

▶ Lemma 14. Let y1, . . . , yr have linearly independent syndromes and assume r ≤ t
3 . Then

the vector y returned by Algorithm 4 has distance at least r from C.

Proof. By assumption, we have that the syndromes si = Hyi ∈ Ft
q for i = 1, . . . , r are

linearly independent. We claim that the vectors e1, . . . , er ∈ Fn
q are linearly independent.

Suppose λ1, . . . , λr ∈ Fq are such that
∑r

i=1 λiei = 0. Then

0 =
r∑

i=1
λiHei =

r∑
i=1

λiH(yi − xi) =
r∑

i=1
λisi .

As s1, . . . , sr are linearly independent, this implies λ1 = · · · = λr = 0, as desired.

N. Resch and C. Yuan 1:19

Algorithm 4 A procedure for Alice to find a vector whose distance from C is at least r for r ≤ t
3 .

1: procedure Many-Errors(y1, . . . , yr)
2: For i = 1, . . . , r, let xi ∈ C denote the codeword agreeing with yi on the last t + 1

coordinates. ▷ This is possible, as every subset of t + 1 coordinates forms an information
set for C.

3: For i = 1, . . . , r, ei ← yi − xi.
4: Let M denote the matrix in Fr×n

q whose rows are e1, . . . , er.
5: Using Gaussian elimination, put M in reduced row echelon form; let e∗

1, . . . , e∗
r denote

the rows.
6: if ∃i ∈ [r] s.t. wt(e∗

i) ≥ r then e← e∗
i

7: else
8: for j = 2, 3, . . . , r do
9: if wt

(∑j
i=1 e∗

i

)
≥ r then e←

∑j
i=1 e∗

i

10: end if
11: end for
12: end if
13: Choose λ1, . . . , λr ∈ Fq such that e =

∑r
i=1 λiei.

14: y←
∑r

i=1 λiyi

15: return y
16: end procedure

Now, we note that if e =
∑r

i=1 λiei is found such that d(e, C) ≥ r, then it also follows
that y =

∑r
i=1 λiyi satisfies d(y, C) ≥ r. Indeed,

d(y, C) = d

(
e +

r∑
i=1

λixi, C

)
= d

(
e, C +

r∑
i=1

λixi

)
= d(e, C) ≥ r

as
∑r

i=1 λixi ∈ C.
Now, for e ∈ span{e1, . . . , er}, to ensure d(e, C) ≥ r, note that it is sufficient to show

that r ≤ wt(e) ≤ t− r + 1. Indeed, as we have d(0, e) = wt(e) ≥ r, it suffices to verify that
for all nonzero codewords c ∈ C \ {0} we have d(e, c) ≥ r. And indeed, this follows as

t + 1 ≤ d(0, c) ≤ d(0, e) + d(e, c) ≤ t− r + 1 + d(e, c) ,

and so d(e, c) ≥ r.
Hence, we now show how the algorithm finds a vector e ∈ span{e1, . . . , er} which satisfies

r ≤ wt(e) ≤ t− r + 1. Consider the matrix

M =

e1
e2
...

er

 ∈ Fr×n
q

whose rows are given by vectors e1, . . . , er.
Consider putting the matrix M into reduced row echelon form; denote the resulting rows

e∗
1, . . . , e∗

r . By the definition of row operations, span{e1, . . . , er} = span{e∗
1, . . . , e∗

r}, so it
suffices to find a vector e∗ ∈ span{e∗

1, . . . , e∗
r} satisfying r ≤ wt(e∗) ≤ t− r + 1.

As the vectors e1, . . . , er are linearly independent, there is a set R ⊆ [n] of r pivot points:
that is, we have indices 1 ≤ j1 < j2 < · · · < jr ≤ n such that for each i, p ∈ [r]:

ITC 2023

1:20 Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

(ei)jp
=
{

1 if i = p

0 otherwise
.

Therefore, for each i ∈ [r] we have supp(e∗
i) ⊆ ([t] \R)∪ {ji}, so wt(e∗

i) ≤ t− r + 1. Thus, if
we are in the case that for some i ∈ [r] we have r ≤ wt(e∗

i), we can just return the vector e∗
i .

Assume now that for each i we have wt(e∗
i) < r. Consider the sequence of vectors

∑j
i=1 e∗

i

for j = 2, . . . , r. Note that supp (
∑r

i=1 e∗
i) ⊇ R, so wt (

∑r
i=1 e∗

i) ≥ |R| = r. Hence, there
exists 2 ≤ j ≤ r such that:

wt
(∑j

i=1 e∗
i

)
≥ r;

for all 1 ≤ j′ ≤ j, wt
(∑j′

i=1 e∗
i

)
< r.

We claim that e∗ :=
∑j

i=1 e∗
i satisfies r ≤ wt(e∗) ≤ t + 1− r. The lower bound is obvious by

the definition of j. For the upper bound, we note that

wt
(

j∑
i=1

e∗
i

)
≤ wt

(
j−1∑
i=1

e∗
i

)
+ wt(e∗

j) < r + r ≤ t + 1− r ,

where the upper bound on the weight of
∑j−1

i=1 e∗
i is again by the definition of j and the

upper bound on wt(e∗
j) follows from our earlier assumption. That 2r ≤ t + 1− r follows from

r ≤ t/3. ◀

A Lower Bound on the Share Size in Evolving
Secret Sharing
Noam Mazor #

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract
Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures that only
authorized subsets of the parties learn the secret. Evolving secret sharing schemes (Komargodski,
Naor, and Yogev [TCC ’16]) allow achieving this end in a scenario where the parties arrive in an
online fashion, and there is no a-priory bound on the number of parties.

An important complexity measure of a secret sharing scheme is the share size, which is the
maximum number of bits that a party may receive as a share. While there has been a significant
progress in recent years, the best constructions for both secret sharing and evolving secret sharing
schemes have a share size that is exponential in the number of parties. On the other hand, the best
lower bound, by Csirmaz [Eurocrypt ’95], is sub-linear.

In this work, we give a tight lower bound on the share size of evolving secret sharing schemes.
Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower bound
on evolving secret sharing.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Secret sharing, Evolving secret sharing

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.2

Related Version Full Version: https://eprint.iacr.org/2023/129.pdf

Funding Research supported by Israel Science Foundation grant 666/19.

Acknowledgements We thank Iftach Haitner and Ilan Komargodski for useful discussions.

1 Introduction

Secret sharing is a fundamental concept in cryptography, that allows a dealer to distribute a
secret among a set of parties in a way that ensures that only authorized subsets of parties
learn the secret. Such schemes are used in secure multi-party computation, amplification
schemes for cryptographic primitives, Byzantine agreement protocols, and more (see [5]).
Evolving secret sharing (Komargodski, Naor, and Yogev [10]) is a variant of secret sharing,
that can be used in evolving systems, for which there is no a-priory bound on the number of
parties. In such schemes, the dealer distributes the secret to an infinite number of parties in
an online fashion: the parties arrive one by one, and each party receives its share of the secret
as it arrives. The correctness guarantee promises that by the time the n-th party receives
their share, all the authorized subsets among the first n parties can reconstruct the secret.
Such a scheme is adaptive if the dealer does not need to know the entire access structure to
give a share to a party. Rather, it is sufficient to know the list of authorized sets containing
only parties that already arrived.

The main complexity measure of a secret sharing scheme is its share size: the maximal
number of bits a party might receive as a share. While there have been significant advance-
ments in the area in recent years ([13, 12, 1, 2]), the best known constructions for (classical)
secret sharing have exponential share size in the number of parties (Applebaum and Nir [4]).
For the harder task of evolving secret sharing, the best construction for arbitrary access
structure gives the i-th party share of size 2i−1 ([10]).

© Noam Mazor;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 2; pp. 2:1–2:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noammaz@gmail.com
https://doi.org/10.4230/LIPIcs.ITC.2023.2
https://eprint.iacr.org/2023/129.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 A Lower Bound on the Share Size in Evolving Secret Sharing

Somewhat surprisingly, we do not know if exponential share size is the best possible, or
even if the share size must be super linear in the number of parties. Indeed, the best known
lower bound on (classical) secret sharing is due to Csirmaz [8], which showed a specific access
structure for which every scheme must give some party a share of size Ω(n/ log n). Thus, the
optimal share size for arbitrary access structures is an important open question. Prior to
this paper, this question was open also for the case of evolving secret sharing.

1.1 Our Result
In this work, we resolve the above question for the case of evolving secret sharing. We
show that the linear lower bound of Csirmaz [8] implies a tight exponential lower bound
on evolving secret sharing. This is stated in the following two theorems. The first is for
adaptive evolving secret sharing schemes.

▶ Theorem 1 (Lower bound for adaptive schemes, informal). There exists an access structure
A such that for every adaptive evolving secret sharing scheme and for every n, the total share
size of the first n parties in A is at least 2n. In particular, the share size of the i-th party is
at least 2i−1 for infinitely many i’s.

As stated before, this lower bound is tight with the scheme of [10] which gives the i-th
party share of size 2i−1. Interestingly, the access structure for which we prove this lower
bound does not contain a single authorized set. We also prove the following slightly weaker
lower bound, for a larger class of schemes, namely, non-adaptive schemes.

▶ Theorem 2 (Lower bound for non-adaptive schemes, informal). There exists an access
structure A such that the following holds. For every evolving secret sharing scheme for A
and for every n, the total share size of the first n parties is at least 2n−o(n). Moreover, the
share size of the i-th party is at least 2i−o(i) for infinitely many i’s.

The formal bound we prove (Theorem 14) is somewhat stronger, as we can choose the o(n)
term to be any super-constant. For example, Theorem 14 implies that the total share size of
the first n parties is at least 2n−log n. The proof of both theorems follows from an observation
on [8]’s lower bound. In his work, Csirmaz [8] shows that in some access structure over n

parties, there is a specific set of t = log n parties that must hold together at least n bits. We
observe that if these t parties are the first to arrive, by [8]’s lower bound they must hold
exponential (in t) share size. See more details in Section 3.1

1.2 Additional Related Work
Lower bounds on secret sharing schemes

Besides the aforementioned lower bound of [8], Csirmaz [7] showed an access structure for
which, the total share size must be quadratic. The construction is simply duplicating the
parties with large shares in [8]’s construction. Csirmaz [8] also shows that a better lower
bound on the share size cannot be proven using Shannon information inequalities. Beimel
and Orlov [6] showed the same result for a larger set of information inequalities. Recently,
Applebaum, Beimel, Nir, Peter, and Pitassi [3] showed a connection between the known

1 We remark that, as in [8], both of our bounds generalize to the information-ratio of the scheme. That is,
the ratio between the total share size of the first n parties to the length of the secret must be exponential
in n.

N. Mazor 2:3

constructions of secret sharing and monotone real circuits, and used this connection to give
a lower bound on a family of constructions. For evolving schemes, [10] gave a tight lower
bound for the special case of the 2-threshold access structure.

Constructions of evolving secret sharing schemes

Following Komargodski et al. [10], Paskin-Cherniavsky [14] showed a more efficient construc-
tion for some classes of access structures. In this scheme, the dealer needs to know the access
structure in advance. More efficient schemes are known for specific types of access structures
([9, 10, 11]).

Paper Organization

Basic definitions and notations are given in Section 2, and the proofs of the lower bounds
are given in Section 3.

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. We use [n] to denote
the set {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its i-th entry, let v<i = (v1, . . . , vi−1)
and v≤i = (v1, . . . , vi). Similarly, for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I .

When unambiguous, we will naturally view a random variable as its marginal distribution.
For a (discrete) distribution D, let x← D denote that x was sampled according to D. Let
Supp(D) = {p : PrD[p] > 0}, and define |D| = log(|Supp(D)|).

2.1.1 Entropy and Mutual Information

The Shannon entropy of a distribution P is defined by H(P) =
∑

p∈Supp(P) PrP [p] · log 1
PrP [p] .

The conditional entropy of a random variable A given B, is defined as H(A | B) =
Eb←B [H(A|B=b)]. The mutual information between two random variables A and B is
defined by

I(A; B) = H(A)−H(A | B) = H(B)−H(B | A)

and the conditional mutual information given a random variable C is defined similarly

I(A; B | C) = H(A | C)−H(A | B, C).

We will use the following well known facts:

▶ Fact 3 (Chain rule for mutual information). For two random variables A and B =
(B1, . . . , Bn), it holds that I(A; B) =

∑n
i=1 I(A; Bi | B<i).

▶ Fact 4 (Upper bound on mutual information). For two random variables A and B, it holds
that I(A; B) ≤ |A|.

ITC 2023

2:4 A Lower Bound on the Share Size in Evolving Secret Sharing

2.2 Secret Sharing Schemes
We now formally define secret sharing schemes. Let P be a set of parties. An access structure
is a monotone collection of subsets of P.

▶ Definition 5 (Access structure). A collection of sets A ⊆ 2P is an access structure if it is
monotone: for every set B ∈ A and for every B′ such that B ⊆ B′ ⊆ P, it holds that B′ ∈ A.
A set B is authorized if B ∈ A, and unauthorized otherwise.

An access structure can be defined by a set of minimal authorized sets. Given a (non-
monotone) setM of subsets of parties, the induced access structure AM is received by adding
to AM all the subsets containing a set in M. That is, AM := {B ⊆ P : ∃C ∈ M s.t. C ⊆ B}.
We are now ready to define secret sharing schemes.

▶ Definition 6 (Secret sharing scheme). A secret sharing scheme for an access structure A is
a pair of algorithms (SHARE, RECON) such that SHARE is a randomized algorithm and the
following holds:
1. Given a secret s ∈ {0, 1}, SHARE(s) returns shares π = {πp}p∈P . πp is called the share

of party p.
2. Correctness: For every secret s ∈ {0, 1}, π ← SHARE(s) and an authorized set B ∈ A,

RECON(B, πB) = s.
3. Perfect Privacy: For every unauthorized set B /∈ A, it holds that

SHARE(0)B ≡ SHARE(1)B.

2.3 Evolving Secret Sharing
We now formally define evolving secret sharing schemes, introduces by Komargodski et
al. [10].

▶ Definition 7 (Restriction). Given an access structure A over P, and a subset of parties
P ′ ⊆ P, let A|P′ := {B ∈ A : B ⊆ P ′}.

[10] showed that A|P′ is an access structure for every A and P ′.

▶ Definition 8 (Evolving access structure). Let P = N be an infinite set of parties. An
evolving access structure over P is a set of access structures {An}n∈N such that for every n,
An is an access structure over [n] and An+1|[n] = An.

For an evolving access structure A and a finite set of parties I ⊆ P , we use A|I to denote
the access structure An|I for some n with I ⊆ [n]. Notice that the set An|I is independent
from the choice of such n (That is, An|I = An′ |I for every n and n′ such that I ⊆ [n] and
I ⊆ [n′]).

▶ Definition 9 (Evolving secret sharing scheme). An evolving secret sharing scheme for an
evolving access structure {An}n∈N is a pair of algorithms (SHARE, RECON) such that the
following holds for every n:
1. Given a secret s ∈ {0, 1} and sequence of shares π1, . . . , πn−1, SHARE(s, π1, . . . , πn−1)

returns a share πn for party n. Denote by Πs = (Πs
1, Πs

2, . . .) the distribution of the shares
of the parties on secret s. That is, Πs

i = SHARE(s, Πs
1, . . . , Πs

i−1).
2. Correctness: For every secret s ∈ {0, 1}, shares π = (π1, . . . , πn)← Πs

≤n and an authorized
set B ∈ An, RECON(B, πB) = s.

3. Perfect Privacy: For every set B ⊆ [n] of parties with B /∈ An, it holds that Π0
B ≡ Π1

B.

N. Mazor 2:5

Note that for every set B ⊆ [n] of parties with B /∈ An, it holds that B /∈ Ak for every k ∈ N.
An adaptive evolving secret sharing scheme is a secret sharing scheme that doesn’t know

the access structure in advance. In this definition, the algorithms SHARE and RECON get a
description of the access structure.

▶ Definition 10 (Adaptive evolving secret sharing scheme). An adaptive evolving secret
sharing scheme is a pair of algorithms (SHARE, RECON) such that the following hold for
every evolving access structure {An}n∈N and for every n:
1. Given a secret s ∈ {0, 1}, An and sequence of shares π1, . . . , πn−1,

SHARE(s,An, π1, . . . , πn−1) returns a share πn for party n. Denote by Πs = (Πs
1, Πs

2, . . .)
the distribution of the shares of the first n parties on secret s. That is,

Πs
i = SHARE(s,Ai, Πs

1, . . . , Πs
i−1).

2. Correctness: For every secret s ∈ {0, 1}, shares π = (π1, . . . , πn)← Πs
≤n and an authorized

set B ∈ An, RECON(B,An, πB) = s.
3. Perfect Privacy: For every set B ⊆ [n] of parties with B /∈ An, it holds that Π0

B ≡ Π1
B.

We now formally define the share size of a set of parties.

▶ Definition 11 (Share size). For an evolving access structure A = {An}n∈N , an adaptive
scheme (SHARE, RECON), and S ← {0, 1}, let Πi := SHARE(S,Ai, Π1, . . . , Πi−1) for every
i ∈ N. Then the share size for A of a party p ∈ N is simply |Πp|. The total share size of a set
of parties B is |ΠB| ≤

∑
p∈B|Πp|. 2

We define share size and total share size for non-adaptive/non-evolving secret sharing
schemes similarly.

2.4 Csirmaz’s lower bound
Csirmaz [8] proved a lower bound on the share size of a (classic) secret sharing scheme for a
specific access structure. We exploit the properties of this access structure in our proof. The
following is the formal statement we need.

▶ Theorem 12 ([8]). For every t ∈ N, there exists an access structure Zt over t + 2t parties,
such that the following holds: The set of players is composed of two disjoint sets, B and C,
such that |C| = t, |B| = 2t, and:
1. C is an unauthorized set, and,
2. the total share size of players in C is at least 2t − 1.

For completeness, we give here the proof.

Proof. Fix t ∈ N and let n = 2t. We start with describing the access structure Zt. Let
B = {P1, . . . , Pn} be a set of n parties, and let C be a disjoint set of parties of size t. Let
C1, . . . , Cn be an ordering of all the subsets of C, such that for every i < j it holds that
Ci ⊈ Cj .3 Define the set of minimal authorized sets of Zt to be the set

M = {Ci ∪ {P1, . . . , Pi} : i ∈ [n]},

2 Recall that |Πb| := log(|Supp(Πp)|) is a lower bound on the maximal representation size of a sample
from Πp.

3 For example, order the sets according to there size in reverse order, with arbitrary order between sets of
equal size.

ITC 2023

2:6 A Lower Bound on the Share Size in Evolving Secret Sharing

and let Zt = AM be the induced access structure. Item 1 holds by construction. Moreover,
by the definition of C1, . . . , Cn andM, for every i the set Ci ∪ {P1, . . . , Pi−1} is unauthorized.
We now use this to prove the lower bound on the share size. Let S ← {0, 1} be a uniformly
chosen secret, and Π be a random sharing of S. We want to lower bound the size of ΠC . It
holds that,

|ΠC |+ |S| ≥ I(ΠC , S; ΠB)

=
∑

i

I(ΠC , S; ΠPi
| ΠP<i

)

≤
∑

i

I(ΠCi , S; ΠPi | ΠP<i)

≤
∑

i

I(S; ΠPi
| ΠCi

, ΠP<i
)

=
∑

i

H(S | ΠCi
, ΠP<i

)−H(S | ΠPi
, ΠCi

, ΠP<i
)

=
∑

i

1− 0

= n

where the first inequality holds by Fact 4. The first equality, the second inequality, and the
third inequality hold by the chain rule of mutual information. The last inequality holds since
Ci ∪ P<i is an unauthorized set, but Ci ∪ P≤i is authorized. Item 2 now follows from the
above since n = 2t and |S| = 1. ◀

3 The Lower Bound on the Share Size

In this section, we formally prove our lower bound. We start with a lower bound on adaptive
evolving secret sharing, and then show how to generalize the bound to hold for non-adaptive
schemes.

3.1 The Adaptive Case
We start by formally stating our main result.

▶ Theorem 13. Let A = {An}n∈N be the access structure for which An = ∅ for every n.
Then for every adaptive evolving secret sharing scheme and every t, the total share size for
A of the first t parties is at least 2t − 1. In particular, there are infinitely many parties i

with share size at least 2i−1 − 1.

The proof of the lower bound is by showing that for every t, after the first t parties arrived,
it is possible to add 2t parties such that the resulting access structure will be Csirmaz’s
structure. Thus, by Csirmaz’s lower bound, the t parties must hold long shares.

Proof. Let (SHARE, RECON) be an adaptive secret sharing scheme, and fix t ∈ N. We start
by defining an evolving access structure A′, and bounding its share size. Later, we relate the
share size of A and A′.

Let C = [t], and let n = 2t. Let B = {P1, . . . , Pn} for Pi = i + t. Define the evolving
access structure A′ = {A′m}m∈N as follows: for every i ∈ [t], let A′i = Ai = ∅. Let A′t+n = Zt

be the access structure over the set B ∪ C promised by Theorem 12. For every j ∈ [n], define
A′t+j = A′t+n|[t+j]. Finally, for every i > t + n, let A′i = A′t+n. Notice that A′ is indeed an
evolving access structure as A′t+n|[t] = At.

N. Mazor 2:7

Let S ← {0, 1} be an uniformly random secret, and let Π = (Π1, . . . , Πt+n) be the distri-
bution of the shares of the first t+n parties on A. That is, Πi = SHARE(S,Ai, Π1, . . . , Πi−1).
Similarly, let Π′ = (Π′1, . . . , Π′t+n) be the distribution of the shares of the first t + n parties
on A′ (using SHARE and the secret S).

Notice that by definition of evolving secret sharing scheme, the pair (ŜHARE, RECON)
is a secret sharing scheme for the access structure A′t+n, for ŜHARE(s) := Π′|S=s. Thus, it
must hold by Theorem 12 that |Π′C | =

∣∣Π′≤t

∣∣ ≥ 2t − 1. However, since A′i = Ai for every
i ≤ t, it holds that Π′≤t = Π≤t. Therefore, |Π≤t| ≥ 2t − 1, and the first part of the theorem
follows.

To see the second part, assume towards a contradiction that there is only a finite number
of parties i for which the share size is at least 2i−1 − 1, and let i∗ be the maximal such i (or
i∗ = 1 if no such exists). Let ℓ be the total share size of the first i∗ parties. Consider the
i∗ + ℓ first parties of A. By the assumption, their total share size is at most

ℓ +
i∗+ℓ∑

j=i∗+1
(2j−1 − 1) =

i∗+ℓ∑
j=i∗+1

2j−1 <
i∗+ℓ∑
j=1

2j−1 = 2i∗+ℓ − 1.

On the other hand, by the first part of the theorem, the total share size of the first i∗ + ℓ

parties is at least 2i∗+ℓ − 1 which is a contradiction to the above. ◀

3.2 The Non-Adaptive Case
We now prove our main result for non-adaptive schemes. We start with formally stating the
result.

▶ Theorem 14. For every function f : N→ N with f ∈ ω(1), there exists an access structure
A = {An}n∈N such that the following holds for any evolving secret sharing scheme for A.
For every t, the total share size of the first t parties is at least 2t−f(t) − 1. Moreover, there
are infinitely many parties i with share size at least 2i−f(i)−1 − 1.

The proof of the above theorem is similar to the proof of Theorem 13. However, since
the access structure is fixed, we cannot argue that the security and correctness hold if we
change the access structure on parties that did not arrive yet. To overcome this, we need to
embed inside A all the access structures Zt for every value of t ∈ N. Recall that Csirmaz’s
structure Zt is over two sets of parties, C and B, such that the set C is of size t and has total
share size 2t. To get the stated lower bound, we need to embed in A the structure Zt in
such a way that the parties that hold long shares (that is, the parties in the set C) will arrive
early enough. This is done by associating only a sparse fraction (determined by the function
f) of the parties in A with the set B.

Proof. Fix a function f ∈ ω(1). We start by describing the access structure A. Assume
without loss of generality that f(0) = 0 and 0 ≤ f(n + 1)− f(n) ≤ 1/2,4 and for every n let
xn be a number such that f(xn) ≥ n and f(xn − 1) < n. Let X = {x1, x2, . . . }. We divide
X into disjoint segments {Ij}j∈N as follows, such that the size of the j-th segment is 2j .
Namely, for every j ∈ N let Ij = {x2j , . . . , x2j+1−1}. For every t ∈ N, let [t]X = [t] \ X , and
let t′ =

∣∣[t]X ∣∣ be the size of [t]X . Observe that t′ ≥ t− f(t).

4 Otherwise, define f ′(n) = min
{

f ′(n − 1) + 1/2, minn′>n

{
f(n′)

}}
. Clearly f ′ has the assumed property,

and for every n, f ′(n) ≤ f(n).

ITC 2023

2:8 A Lower Bound on the Share Size in Evolving Secret Sharing

We next define the evolving access structure A such that A|[t]X∪It′ = Zt′ where Zt′

is the access structure promised by Theorem 12. Moreover, [t]X will match the set C in
Theorem 12. This concludes the proof of the theorem similarly to the proof of Theorem 13,
as it follows that the total share size of the parties in [t]X (and therefore also in [t]) is at
least 2t′ − 1 ≥ 2t−f(t) − 1.

To define A as stated above, for every t′ ∈ N let Zt′ be the access structure promised by
Theorem 12, over the sets of parties C = [t]X and B = It′ . For every n ∈ N define

An :=
∞⋃

t′=1
{D ∈ Zt′ : D ⊆ [n]}.

By definition the sequence A = {An}n∈N is an evolving access structure. Moreover, by
construction it holds that for every t′ and for every large enough n (with f(n) > 2t′+1), it
holds that An|[t]X∪It′ is equal to Zt′ , as stated above. Indeed, to make sure that we didn’t
add additional authorized subsets, observe that every authorized set of any structure Zj

for j ̸= t′ contains at least one party from Ij . Since [t]X ∪ It′ and Ij are disjoint, all the
authorized sets in An|[t]X∪It′ are authorized in Zt′ . ◀

3.3 Evolving Secret Sharing Over a Fixed Number of Parties
Our technique also implies a (weaker) lower bound on the share size of adaptive evolving
secret sharing, when the number of parties is known from advanced (but the access structure
is unknown).5 For example, one can prove that for the empty access structure, every scheme
that supports an arbitrary structure over 2n parties, must give a share of length n/ log n to at
least n− log n of the first n parties. Otherwise, there are log n such parties with total share
size less than n. We thus can use the remaining n parties to complete Csirmaz’s structure,
with these log n parties being the set C. This is of course a contradiction to Theorem 12.

We also observe that the share size in this model, of adaptive evolving secret sharing
when the number of parties is known, is related to the share size in classical secret sharing, up
to a linear factor in the number of parties n. Indeed, assume that for every access structure
over n parties there exists a (classical) secret sharing scheme with maximal share size ℓ. The
following shows that the optimal share size of evolving secret sharing over n players is at
most 2n× ℓ (the other direction - that the share size in evolving secret sharing is not smaller
than the share size in classical secret sharing - is trivial). Let P = {P1, . . . , Pn} be the set of
parties, and first assume for simplicity that every authorized set contains the last party Pn.
Let An be the final access structure, and let (SHARE, REC) be a (classic) secret sharing
scheme for An. We can construct an evolving secret sharing scheme as follows: when the i-th
party arrives, for every i ∈ [n− 1], the scheme gives it random (uniformly and independently
chosen) ℓ bits as the share πi. The share of Pn is {πi ⊕ SHARE(s)i}i∈[n] (letting πn = 0ℓ).
Clearly, the share size of the Pn in this scheme is n · ℓ, and all other parties get a share of
size ℓ.

To get rid of the assumption that all the authorized sets contain the last player, we can
simply share the secret independently to n access structures, when the i-th access structure
contains all the authorized sets in which Pi is the last party. This will yield a share size
of length at most (n − 1) · ℓ + n · ℓ (as every party is the last in exactly one such access
structure).

5 Non-adaptive evolving secret sharing with finite number of parties is equivalent to classical secret
sharing.

N. Mazor 2:9

References
1 Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing

schemes for general and uniform access structures. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 441–471. Springer, 2019.

2 Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via robust
conditional disclosure of secrets. In Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, pages 280–293, 2020.

3 Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, and Toniann Pitassi. Secret sharing,
slice formulas, and monotone real circuits. In 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

4 Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity
of 1. 5 n. In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part III, pages
627–655, 2021.

5 Amos Beimel. Secret-sharing schemes: A survey. In International conference on coding and
cryptology, pages 11–46. Springer, 2011.

6 Amos Beimel and Ilan Orlov. Secret sharing and non-shannon information inequalities. IEEE
Transactions on Information Theory, 57(9):5634–5649, 2011.

7 László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Scientiarum
Mathematicarum Hungarica, 32(3):429–438, 1996.

8 László Csirmaz. The size of a share must be large. Journal of cryptology, 10(4):223–231, 1997.
9 László Csirmaz and Gábor Tardos. On-line secret sharing. Designs, Codes and Cryptography,

63(1):127–147, 2012.
10 Ilan Komargodski, Moni Naor, and Eylon Yogev. How to share a secret, infinitely. IEEE

Transactions on Information Theory, 64(6):4179–4190, 2017.
11 Ilan Komargodski and Anat Paskin-Cherniavsky. Evolving secret sharing: dynamic thresholds

and robustness. In Theory of Cryptography Conference, pages 379–393. Springer, 2017.
12 Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
699–708, 2018.

13 Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential
barrier for general secret sharing. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 567–596. Springer, 2018.

14 Anat Paskin-Cherniavsky. How to infinitely share a secret more efficiently. Cryptology ePrint
Archive, 2016.

ITC 2023

Csirmaz’s Duality Conjecture and Threshold Secret
Sharing
Andrej Bogdanov #

University of Ottawa, Canada

Abstract
We conjecture that the smallest possible share size for binary secrets for the t-out-of-n and (n− t+1)-
out-of-n access structures is the same for all 1 ≤ t ≤ n. This is a strenghtening of a recent conjecture
by Csirmaz (J. Math. Cryptol., 2020). We prove the conjecture for t = 2 and all n. Our proof gives
a new (n − 1)-out-of-n secret sharing scheme for binary secrets with share alphabet size n.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Theory of computation → Cryptographic primitives; Mathematics of computing →
Information theory; Security and privacy → Mathematical foundations of cryptography

Keywords and phrases Threshold secret sharing, Fourier analysis

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.3

Funding Andrej Bogdanov: This work was supported by RGC GRF grant CUHK 14301519 and
NSERC grant RGPIN-2023-05006.

Acknowledgements Part of the research was carried out while the author was with the Chinese
University of Hong Kong. I thank the anonymous ITC 2023 reviewers for helpful suggestions.

An access structure A over n parties is a nonempty monotone set system over ground set
{1, . . . , n}. A secret sharing scheme [7, 1] for A with secret alphabet Σ is a collection of joint
distributions (X1(σ), . . . , Xn(σ)) with σ ∈ Σ taking values in Γn such that

Secrecy: If S ̸∈ A then (Xi(σ) : i ∈ S) are identically distributed for all σ ∈ Σ.
Reconstruction: If R ∈ A then (Xi(σ) : i ∈ R) determine σ with probability 1.

The information rate of the scheme is the ratio log|Σ|/ log|Γ| of the secret size and the
share size. The dual of A is the access structure A∗ = {S : S ̸∈ A}. Csirmaz [4] asks whether
the following duality conjecture holds:

▶ Conjecture 1. If A has a secret sharing scheme of information rate ρ for some secret
alphabet size |Σ|, then A∗ has a secret sharing scheme of information rate at least ρ for some
secret alphabet size |Σ′|.

As supporting evidence, Csirmaz shows that duality holds for the polymatroid relaxation
of A. This is a relaxation whose variables are the joint entropies of subsets of shares and
whose constraints consist of a (in general incomplete) set of linear inequalities. On the other
hand, he proves that duality fails for a relaxed asymptotic notion of secrecy. It is natural to
consider the following even stronger conjecture:

▶ Conjecture 2. For every Σ, if A has a secret sharing scheme of information rate ρ for
secret alphabet Σ, then so does A∗.

In the case when Σ is the order of a finite field and the scheme is restricted to be linear,
Conjecture 2 is known to hold (see Lemma 7.2 in [5]).

© Andrej Bogdanov;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 3; pp. 3:1–3:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abogdano@uottawa.ca
https://orcid.org/0000-0002-0338-6151
https://doi.org/10.4230/LIPIcs.ITC.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Csirmaz’s Duality Conjecture and Threshold Secret Sharing

My motivation for Conjecture 2 is that it can be tested on threshold schemes. Such
schemes have asymptotic information rate 1 as |Σ| grows with the number of parties so
Conjecture 1 does not say anything new about them. In contrast, when |Σ| < n, Conjecture 2
appears to be open for threshold schemes.

Here I study Conjecture 2 for threshold schemes and binary secrets, i.e., |Σ| = 2. This
specialization is formulated as Conjecture 3. The t-out-of-n access structure consists of all
t-element subsets of {1, . . . , n}.

▶ Conjecture 3. If there exists a t-out-of-n scheme for binary secrets and share alphabet size
γ then there also exists a (n − t + 1)-out-of-n scheme for binary secrets and share alphabet
size γ.

The conjecture is true for every n ≥ 2 when t ∈ {1, n}. Let γ2(A) denote the smallest
possible share alphabet size for binary secrets and access structure A. When t = 1 and t = n

one-bit secrets are possible and clearly optimal, so γ2(1-out-of-n) = γ2(n-out-of-n) = 2. A
more interesting case is t ∈ {2, n − 1}.

▶ Proposition 4. For all n ≥ 2, γ2(2-out-of-n) = n.

The lower bound γ2(2-out-of-n) ≥ n was proved by Kilian and Nisan (see [2]). When n is
a power of a prime (i.e., a finite field order) the upper bound can be obtained from Shamir’s
secret sharing with “infinity” as one of the evaluation points (see e.g. [3]). An alternative
construction, which was communicated to me by Ilan Komargodski around 2016, works for
all n. A variant of it is shown in the proof of Proposition 4 below.

If duality were to hold the same bound should be expected for the (n − 1)-out-of-n access
structure. The required lower bound was shown by Bogdanov, Guo, and Komargodski [2].
When n is a power of a prime the upper bound can also be derived from Shamir’s scheme.
The main result here is that this bound can be matched for non-prime powers n:

▶ Theorem 5. For all n ≥ 2, γ2((n − 1)-out-of-n) = n.

The smallest example for which Theorem 5 is new is n = 6. This is a good example to
keep in mind for the rest of the discussion.

Perspective: Lower bounds on alphabet size

There are two methods for lower bounding γ2(t-out-of-n) that give incomparable results.
The analysis of Kilian and Nisan (KN) shows γ2(t-out-of-n) ≥ n − t + 2 for all t ≥ 2. The
analysis of Bogdanov, Guo, and Komargodski (BGK) shows the same lower bound for
γ2((n − t + 1)-out-of-n). Among the two, KN is more intuitive. They reduce their statement
to the special case t = 2. When t = 2 let Xi and Yi denote the i-th party’s share of zero and
one, respectively. Assuming the shares of zero and one are sampled independently, the KN
bound follows from the two inequalities

1 = E[1] ≥ E
[
|{i : Xi = Yi}|

]
=

n∑
i=1

Pr[Xi = Yi] ≥
n∑

i=1

1
|Γ|

= n

|Γ|
.

The first inequality is by correctness of reconstruction (if Xi = Yi and Xj = Yj is possible
the corresponding values would reconstruct to both zero and one) and the second one is by
secrecy (Xi and Yi are identically distributed, so Pr[Xi = Yi] is a collision probability). The
middle equality is linearity of expectation.

A. Bogdanov 3:3

In contrast, BGK work directly with the probability mass functions p0, p1 of the shares
of zero and one. They derive two types of constraints on the Fourier transform f̂ of the
real-valued function f = p1 − p0 over Γn. The first type is a reformulation of secrecy in the
Fourier domain:

|f̂(χ)|2 = 0 for every χ such that Supp χ ̸∈ A, (BGK1)

where Supp χ = {i : χi ̸= 0} is the support of the character χ viewed as an element of
Zn

q where q = |Γ|. The second type of constraint is the following (somewhat mysterious)
relaxation of reconstruction:∑

A

(∑
χ : Supp χ=A

|f̂(χ)|2
)(

− 1
q − 1

)|A\B|
≥ 0 for all B ∈ A. (BGK2)

This system of constraints is a linear program in the variables |f̂(χ)|2, χ ∈ Zn
q . The BGK

lower bound follows from its infeasibility when q < n and A is the (n − 1)-out-of-n access
structure.

If Conjecture 3 were true, BGK would be a direct consequence of it and KN. Thus a
natural first step towards Conjecture 3 would be to seek an alternative proof of BGK. The
Conjecture itself suggests a route for such a proof: Assume that a (n − t + 1)-out-of-n scheme
with impossibly good share alphabet size γ2 exists. Use this scheme to construct a t-out-of-n
scheme with the same parameters. BGK offers a possible clue about this transformation:
A feasible solution to the linear program (BGK1-BGK2) for access structure A should
correspond to a secret sharing scheme for A∗.

I do not know how to construct this transformation. For the purposes of investigating this
potential “duality” between a secret sharing scheme and its Fourier transform it should be
instructive to compare known secret sharing schemes for A and A∗ and their Fourier trans-
forms. I discovered the proof of Theorem 5 by working backwards from this correspondence.
In the case of (n − 1)-out-of-n schemes, the constraints (BGK1-BGK2) provide substantial
information about what a scheme for this access structure should look like, if one exists at
all. The scheme itself was obtained by reverse engineering f (and the distributions p0 and
p1) from its Fourier transform. It would be interesting if the same result can be obtained by
direct construction.

Concrete challenges

Figure 1 shows the best currently known lower and upper bounds on γ2(t-out-of-n) for small
values of t and n. Except for the entries in bold, the upper bounds follow from Shamir’s
scheme, while the lower bounds are from KN or BGK. The upper bound for γ2(3-out-of-5)
can be obtained from a (6, 4, 3) MDS code over F4 (see e.g. [6, Chapter 11]). The upper
bound for γ2(2-out-of-6) is from Proposition 4. The upper bound for γ2(5-out-of-6) is from
Theorem 5. The obvious next challenges are to calculate γ2(3-out-of-6), and γ2(4-out-of-6),
or for those who prefer prime n, γ2(3-out-of-7) and γ2(5-out-of-7).

Constructions
Proof of the upper bound in Proposition 4. Shares of zero are n random symbols in Γ =
{0, . . . , n − 1} all equal to one another, while shares of one are a random cyclic permutation
of the sequence (0, 1, . . . , n − 1). Reconstruct to zero if the shares are equal and to one if
they are different. The scheme is secret because the marginal distribution of every share is
uniform (and therefore identical) in both cases. ◀

ITC 2023

3:4 Csirmaz’s Duality Conjecture and Threshold Secret Sharing

n

t 1 2 3 4 5 6 7

2 2 2
3 2 3 2
4 2 4 4 2
5 2 5 4 5 2
6 2 6 5-7 5-7 6 2
7 2 7 6-7 5-7 6-7 7 2

Figure 1 Upper and lower bounds on γ2(t-out-of-n).

The proof of Theorem 5 uses Fourier analysis of functions f : Zn
q → C. The qn character

functions

χ(x) = χ(x0, . . . , xn−1) = exp
(2πi

n
· (x0χ0 + · · · + xn−1χn−1)

)
with (χ0, . . . , χn−1) ∈ Zn

q (also denoted by χ) form an orthonormal basis of the linear space of
such functions with respect to the inner product ⟨f, g⟩ = E[f(x)g(x)] for x chosen uniformly
at random from Zn

q . The Fourier transform of f is the unique function f̂ : Zn
q → C for which

f =
∑

χ∈Zn
q

f̂(χ) · χ. The Fourier coefficients f̂(χ) are given by ⟨f, χ⟩. Parseval’s identity
states that ⟨f, g⟩ =

∑
χ∈Zn

q
f̂(χ) · ĝ(χ).

Proof of the upper bound in Theorem 5. Let f : Zn
n → C be the function whose Fourier

transform is

f̂(χ) =
{

1, if χ is a cyclic shift of (0, 1, . . . , n − 1) or (n − 1, n − 2, . . . , 0),
0, if not.

As will be shown shortly (or derived from symmetry of f̂ under negation) f is real-valued.
Shares of zero and one are sampled from the disjoint distributions p0 and p1 obtained by
writing f = C(p0 − p1) for a suitable normalizing constant C > 0. In more detail, let

p0(x) =
{

C · f(x), if f(x) ≥ 0
0, otherwise,

and p1(x) =
{

−C · f(x), if f(x) ≤ 0
0, otherwise,

where C is the factor that scales p0 and p1 to probability mass functions. The scaling factor
is the same because f̂(0) = 0.

Security follows from the fact that f̂(χ) vanishes on all characters χ of Hamming weight
at most n − 2. In more detail, the advantage of any distinguisher D is

C
∑

x∈Zn
n

D(x)f(x) = C

nn
E

[
D(x)f(x)

]
= C

nn

∑
χ∈Zn

n

D̂(χ)f̂(χ)

by Parseval’s identity. If D depends on at most n − 2 variables then D̂(χ) = 0 unless
|χ| ≤ n − 2. As f̂(χ) = 0 for all χ of size at most n − 2 the advantage of D must be zero.

A. Bogdanov 3:5

To show reconstruction, f is calculated using the inverse Fourier formula. Letting
x = (x0, . . . , xn−1),

f(x) =
∑

χ∈Zn
n

f̂(χ)χ(x)

=
∑
t∈Zn

exp
(2πi

n
·

n−1∑
k=0

(k + t)xk

)
+

∑
t∈Zn

exp
(2πi

n
·

n−1∑
k=0

(−k + t)xk

)

=
∑
t∈Zn

exp
(2πit

n
·

n−1∑
k=0

xk

)(
exp

(2πi

n
·

n−1∑
k=0

kxk

)
+ exp

(
−2πi

n
·

n−1∑
k=0

kxk

))

=
(∑

t∈Zn

exp
(2πit

n

n−1∑
k=0

xk

))
· 2 cos

(2π

n

n−1∑
k=0

kxk

)
= n · 1

(
x0 + · · · + xn−1 = 0

)
· 2 cos

(2π

n
· (x1 + 2x2 + · · · + (n − 1)xn−1)

)
.

Any n − 1 of the n values x0, . . . , xn−1 determine the remaining one on the set of inputs
where f does not vanish. These values will satisfy the constraint x0 + · · · + xn−1 = 0 from
which the missing xi can be determined. This in turn determines the value of f and therefore
the secret, which equals sign f(x) up to a change in representation. ◀

In more detail, the reconstruction procedure is this: Given shares x0, . . . , xn−1 except for
xi, first compute xi = −

∑
j ̸=i xj mod n, then output the sign of cos(2π(

∑
kxk)/n). (The

cosine will never evaluate to zero because p0 and p1 assign zero probability to those shares.)
Two alternative descriptions of sign cos(2π(

∑
kxk)/n) are

the parity of ⌊(
∑

kxk)/n⌉, where ⌊ · ⌉ is the closest integer,
the indicator of |⌊

∑
kxk⌉n| < n/4, where ⌊ · ⌉n is the unique integer in the set (−n/2, n/2]

congruent modulo n.

The reconstruction procedure is clearly efficient. Its running time is quasilinear in n.
How about sharing? Perfect sampling of the shares is not even possible in a model where the
random seed is uniform over some finite domain! The reason is that some of the probabilities
are irrational numbers. The scheme has perfect secrecy and reconstruction, but any realistic
implementation of it must be imperfect.

It is possible to deduce from general considerations that if there exists a bit secret sharing
scheme, then there exists one over the same share alphabet in which all probabilities are
rational. The reason is that once the sign-pattern of f is fixed (i.e., once it is determined which
shares reconstruct to zero and which reconstruct to one), finding the share probabilities that
satisfy the secrecy constraints amounts to solving a linear program with rational coefficients.
If this linear program is feasible then a rational solution must exist.

Nevertheless, even if imperfections in sampling are allowed, it is unclear how efficient
a (n − 1)-out-of-n scheme with share alphabet size n can be. Is it possible to sample an
ϵ-approximation to the shares in time polynomial in n and 1/ϵ for all n and ϵ?

To summarize, the crucial property of f is that its weak sign can be determined from any
subset of shares that allow reconstruction. By weak sign I mean that one of the non-exclusive
conclusions f(x) ≤ 0 or f(x) ≥ 0 can be reached only from knowledge of those coordinates
of x that fall inside the reconstruction set. If an f with this property can be constructed
under the constraints (BGK1) then reconstruction is possible. In the proof of Theorem 5 the
cyclic structure of the nonvanishing Fourier coefficient plays a useful role. If, for example,
f̂(χ) was chosen to equal 1 on all characters of weight n − 1 it appears that reconstruction
wouldn’t be possible.

ITC 2023

3:6 Csirmaz’s Duality Conjecture and Threshold Secret Sharing

Finally, notice the symmetry between the secret sharing scheme in the proof of Propo-
sition 4 and the construction of f̂ in the proof of Theorem 5. Is this a coincidence or an
instance of duality?

References
1 G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS National

Computer Conference, pages 313–317, Monval, NJ, USA, 1979. AFIPS Press.
2 Andrej Bogdanov, Siyao Guo, and Ilan Komargodski. Threshold secret sharing requires a linear-

size alphabet. Theory of Computing, 16(2):1–18, 2020. doi:10.4086/toc.2020.v016a002.
3 Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty Computation

and Secret Sharing. Cambridge University Press, 2015. URL: http://www.cambridge.
org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/
secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053.

4 László Csirmaz. Secret sharing and duality. J. Math. Cryptol., 15(1):157–173, 2020. doi:
10.1515/jmc-2019-0045.

5 Satyanarayana V. Lokam. Complexity Lower Bounds Using Linear Algebra. Now Publishers
Inc., Hanover, MA, USA, 2009.

6 Ron Roth. Introduction to Coding Theory. Cambridge University Press, 2006. doi:10.1017/
CBO9780511808968.

7 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.
doi:10.1145/359168.359176.

https://doi.org/10.4086/toc.2020.v016a002
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://doi.org/10.1515/jmc-2019-0045
https://doi.org/10.1515/jmc-2019-0045
https://doi.org/10.1017/CBO9780511808968
https://doi.org/10.1017/CBO9780511808968
https://doi.org/10.1145/359168.359176

The Cost of Statistical Security in Proofs for
Repeated Squaring
Cody Freitag #

Cornell Tech, New York, NY, USA

Ilan Komargodski #

The Hebrew University, Jerusalem, Israel
NTT Research, Sunnyvale, CA, USA

Abstract
In recent years, the number of applications of the repeated squaring assumption has been growing
rapidly. The assumption states that, given a group element x, an integer T , and an RSA modulus N ,
it is hard to compute x2T

mod N – or even decide whether y
?= x2T

mod N – in parallel time less
than the trivial approach of simply computing T squares. This rise has been driven by efficient proof
systems for repeated squaring, opening the door to more efficient constructions of verifiable delay
functions, various secure computation primitives, and proof systems for more general languages.

In this work, we study the complexity of statistically sound proofs for the repeated squaring
relation. Technically, we consider proofs where the prover sends at most k ≥ 0 elements and
the (probabilistic) verifier performs generic group operations over the group Z⋆

N . As our main
contribution, we show that for any (one-round) proof with a randomized verifier (i.e., an MA proof)
the verifier either runs in parallel time Ω(T/(k + 1)) with high probability, or is able to factor N

given the proof provided by the prover. This shows that either the prover essentially sends p, q such
that N = p · q (which is infeasible or undesirable in most applications), or a variant of Pietrzak’s
proof of repeated squaring (ITCS 2019) has optimal verifier complexity O(T/(k + 1)). In particular,
it is impossible to obtain a statistically sound one-round proof of repeated squaring with efficiency
on par with the computationally-sound protocol of Wesolowski (EUROCRYPT 2019), with a generic
group verifier.

We further extend our one-round lower bound to a natural class of recursive interactive proofs
for repeated squaring. For r-round recursive proofs where the prover is allowed to send k group
elements per round, we show that the verifier either runs in parallel time Ω(T/(k + 1)r) with high
probability, or is able to factor N given the proof transcript.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Cryptographic Proofs, Repeated Squaring, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.4

Related Version Full Version: https://eprint.iacr.org/2022/766

Funding Cody Freitag: Cody Freitag’s work was partially done during an internship at NTT Research.
He is also supported in part by the National Science Foundation Graduate Research Fellowship under
Grant No. DGE–2139899, DARPA Award HR00110C0086, and AFOSR Award FA9550-18-1-0267.
Ilan Komargodski: Ilan Komargodski is the incumbent of the Harry & Abe Sherman Senior Lecture-
ship at the School of Computer Science and Engineering at the Hebrew University, supported in
part by an Alon Young Faculty Fellowship, by a JPM Faculty Research Award, by a grant from the
Israel Science Foundation (ISF Grant No. 1774/20), and by a grant from the US-Israel Binational
Science Foundation and the US National Science Foundation (BSF-NSF Grant No. 2020643).

© Cody Freitag and Ilan Komargodski;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cfreitag@cs.cornell.edu
https://orcid.org/0000-0002-6307-204X
mailto:ilank@cs.huji.ac.il
https://orcid.org/0000-0002-1647-2112
https://doi.org/10.4230/LIPIcs.ITC.2023.4
https://eprint.iacr.org/2022/766
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 The Cost of Statistical Security in Proofs for Repeated Squaring

1 Introduction

The repeated squaring (RS) assumption (first introduced by Rivest, Shamir, and Wagner [33])
states that for an RSA modulus N , a group element x, and a time bound T , it is hard to
compute x2T mod N – or even decide whether y

?= x2T mod N – in parallel time less than
the trivial approach of simply computing T squares. Under this assumption, the RS function
is a candidate sequential function, meaning it cannot be sped up using parallel processors.
This gives the ability to tune the time bound T so that computing the RS function requires
a specified amount of wall-clock time, e.g. you can set T so that computing x2T mod N

takes at least 1 hour. This property, combined with the algebraic structure of the repeated
squaring function, has led to many exciting applications.

Originally, Rivest, Shamir, and Wagner [33] used the RS function to construct time-lock
puzzles. Time-lock puzzles provide a mechanism to send a message “to the future”, by
allowing a sender to quickly generate a puzzle with an underlying message that remains
hidden for a specified amount of wall-clock time. These are possible because repeated
squaring in RSA group has a natural trapdoor that allows the puzzle generator to evaluate
the function quickly. Namely, given the factorization of N , one can reduce 2T mod the order
of the group to compute x2T efficiently. In this sense, time-lock puzzles effectively give a
“fine-grained” variant of standard cryptographic commitments, where the hiding property
only holds for some fixed amount of time specified by T .

More recently, Pietrzak [30] and Wesolowski [41] showed how to construct efficient (non-
interactive) proofs for the RS relation. (In both works, this was obtained by first designing
an interactive protocol for RS and then making it non-interactive via the Fiat-Shamir
transform [12].) Such proofs for the RS relation have been the main driving force behind
various applications of the repeated squaring function. For instance, they are used to
construct verifiable delay functions (VDFs), first proposed by Boneh, Bonneau, Bünz, and
Fisch [5], where the output of the function serves as a unique “proof-of-sequential-work” that
can be efficiently verified with an associated non-interactive proof. Among other applications,
Boneh et al [5] propose VDFs as a way to generate randomness for a trusted lottery or to
construct resource-efficient blockchains (which has since been adopted by Chia [1]).

Since the initial works of [6, 30, 41], there have been many new proposed applications
for proofs of repeated squaring: [7] construct accumulators, [11] construct randomness
beacons, [10] construct polynomial commitments for succinct arguments, and [4] build
off of [10] to construct time and space-efficient arguments. Furthermore, there has been
much focus on understanding the efficiency and security of such proofs (see e.g. [30, 41, 6,
11, 34, 4, 19]) as well as the security of the sequentiality assumption underlying RS (see
e.g. [36, 23, 37, 35]).

Proofs of repeated squaring. In this work, we are interested in proofs for the repeated
squaring language, defined with respect to a multiplicative group of integers modulo N :

RSN =
{

(x, y, T) | y = x2T

mod N
}

,

where x and y are two group elements and T is an integer.1 A proof system for this language
consists of a prover P and a (probabilistic) verifier V . The goal of the verifier is to decide,
given an instance (x, y, T), whether it is in RSN or not, and the prover sends the verifier a

1 More generally, our results hold for the repeated squaring relation in any multiplicative group of unknown
order. We focus on RSA groups for this introduction for simplicity of presentation.

C. Freitag and I. Komargodski 4:3

proof string π to help in this task. We emphasize that we are mostly interested in the setting
of non-interactive proofs in this work as they are most useful for applications, but later we
also generalize the above and consider interactive protocols.

For a proof system to be meaningful, it must satisfy completeness and soundness. Com-
pleteness stipulates that an honestly generated proof will convince the verifier whenever
(x, y, T) ∈ RSN , and soundness requires that, whenever (x, y, T) ̸∈ RSN , there is no cheating
proof π that will convince a verifier with noticeable probability. As stated, this is a statistical
notion of soundness, asking whether there exist cheating proofs at all. We also consider
proof systems that are only computationally sound – commonly known as arguments – where
there may exist such cheating proofs, but we assume they are hard to find. Furthermore,
computationally sound proofs come in many forms depending on the kind of assumptions
they rely on.

There are several known proofs for RSN (see Appendix B for an overview). For all of
them, at least one of the following hold:
(A) The proof is only computationally sound. This is undesirable or even insufficient for

several important applications; see below.
(B) The prover leaks the factorization to the verifier. This only allows N to be used once

and is infeasible unless the prover can factor N .
(C) There is a tradeoff between proof size, |π|, and (parallel) running time of V , TimeV ,

where

|π| · TimeV ≥ T.

That is, inefficiency is somewhat necessary: any improvement in communication com-
plexity must necessarily cause an increase in computational complexity and vice versa.

All three of the above properties are undesirable for various reasons as we discussed
above. So, in this work, we aim to understand whether having one of the above drawbacks is
necessary. We do this by studying the cost of statistical soundness in RSN :

Can we construct a (statistically sound) non-interactive proof system for RSN with low
communication, an efficient verifier, and that doesn’t leak the factorization of N?

On statistical soundness and tradeoffs between efficiency and security. Purely based
on security and ignoring efficiency, it is clear that proofs with statistical soundness are
strictly better than ones with only computational soundness. So perhaps in high-stakes
applications (e.g. for blockchains where lots of money is at stake), having soundness rely on
newer and untested mathematical/ computational assumptions may not be worth it. It’s
worth emphasizing, however, that the computationally sound, non-interactive proofs for
RSN rely not only on well-formulated computational assumptions, but potentially also on
assumptions regarding the setup used to generate the RSA modulus N .

Wesolowski’s argument [41], for instance, is completely broken if the prover knows
the factorization of N . This is not the case for Pietrzak’s non-interactive proof [30], but
this already suffers an O(log T) multiplicative communication overhead in efficiency. Still,
Pietrzak’s protocol is potentially broken if N is not a product of safe primes. To fix this,
Block et al. [4] give a non-interactive proof that works for any group and hence value of N ,
but results in an additional O(λ) blowup in efficiency over Pietrzak’s proof.2 This protocol

2 We mention that Hoffmann et al. [19] give a similar result to [4] that works in any group with improved
efficiency by considering repeated qth powers for structured q ≫ 2. Still, their protocol inherently
cannot be made more efficient than the protocol of [30].

ITC 2023

4:4 The Cost of Statistical Security in Proofs for Repeated Squaring

still relies on a random oracle to securely instantiate the FS heuristic though. Technically,
the FS heuristic can be instantiated for [4] assuming LWE [3], but only at a further cost
in efficiency for both the prover and the verifier with its own additional trusted setup. So
it seems, no matter which computationally sound proof you choose, there is a complex
combination of both computational and setup assumptions, and if one piece fails, the security
of the entire system may be completely compromised. However, if the underlying proof is
statistically sound, then this problem does not exist as it is impossible to generate accepting
proofs for false statements (this is true even if P = NP and factoring is easy).

Even if one is extremely confident in their computational assumptions, there are protocols
based on proofs for RSN that are completely broken if the wrong underlying protocol is
used. Specifically, in the recent work of Freitag, Komargodski, Pass, and Sirkin [13], they
use proofs for RSN on top of a time-lock puzzle based on the RS function in order to
construct publicly verifiable and non-malleable time-lock puzzles (on their way to building
fair multi-party coin-flipping and auction protocols without trusted setup). In the context
of time-lock puzzles, the party who generates the puzzle needs to know the factorization
of N ; this is actually a feature of time-lock puzzles, not a bug. However, this implies that
they need the corresponding proof in their construction to be sound even if some party
may know the factorization of N , so as pointed out above, Wesolowki’s protocol will not
suffice. They instead rely on Pietrzak’s protocol, which is still plausibly secure when the
factorization of N is leaked. But again, even though Wesolowski and Pietrzak’s protocols
are both “computationally secure”, you cannot simply default to using the more practically
efficient protocol of Wesolowski.

We highlight two important takeaways from the example of [13]:
If using computationally sound rather than statistically sound proofs, protocol designers
need to be very careful about the specific assumptions that the soundness of this proof
relies on. This crucially includes the interplay between the setup assumptions and
mathematical/ computational assumptions that are needed in the case of [13].
In settings where security is required (or simply desired) even when the factorization of
N may be known, current protocols start with a statistically sound interactive proof,
and then compile it to a non-interactive argument using the FS heuristic. As such, we
see it as an important goal to characterize the efficiency of general, statistically sound,
interactive proofs for RSN , which first requires understanding the setting of statistically
sound, non-interactive proofs.

Still, statistically secure protocols tend to be much less efficient than their computationally
secure counterparts. As such, our overall goal is to try to formally characterize the exact
tradeoffs between efficiency and security for proofs of RSN , which has led to many exciting
practical and theoretical applications in recent years.

The complexity of RS (without proofs). Even ignoring the potential help from a prover,
the complexity of the RS function – or deciding the RSN language – was not well understood
until the very recent works of [36, 23], even in generic models. Specifically, Rotem and
Segev [36] show that computing the RS function or deciding RSN in less than T parallel
time implies a factoring algorithm for N , at least when restricted to generic-ring algorithms.
Katz, Loss, and Xu [23] show a similar result for computing the RS function in the strong
algebraic group model.3

3 These are incomparable models. The generic-ring model allows for multiplication/ division/ addition/
subtraction/ equality queries, but require that queries are independent of the group elements represen-
tations. The strong algebraic group model only allows multiplication/ division queries, but allows these
queries to be made in a way that depends on the group elements explicit bit representations.

C. Freitag and I. Komargodski 4:5

1.1 Our Results
We make progress towards resolving the above-mentioned questions. Within a certain
restricted model (the generic-group model relative to a hidden order group; see below),
we prove results on the tradeoffs between the communication complexity and the verifier’s
complexity in a large class of proof systems for RS. In particular, for the class of proof
systems that we consider, any improvement over known ones would lead to a non-trivial
factoring algorithm. Thus, assuming that factoring is hard, any improvement must either be
outside of the restricted model or relax soundness to computational.

A bound for MA proof systems. We consider proof systems where the prover sends the
verifier a single possibly long message, and then the verifier decides whether to accept or not
by running a probabilistic polynomial time computation. This corresponds to the class MA
(which generalizes NP by allowing the verifier to be probabilistic).

We briefly mention two statistically sound proofs for RS. First, the prover can just send
the factorization (p, q) where N = p · q. The verifier can check that N = p · q, compute the
order of the group φ(N), and then efficiently check that y equals x2T mod φ(N) mod N . The
second is a sumcheck-style proof [27] that is a generalization of Pietrzak’s protocol [30] due
to [11]. Here, the prover sends k evenly spaced “midpoints” between x and T , which results
in k + 1 statements corresponding to T/(k + 1) squares. The verifier uses random exponents
to combines these statements into a new statement (x′, y′, T/(k + 1)) that it can check itself
in time T/(k + 1).

We show that the above two protocols are essentially the best possible among all generic-
group proofs. Specifically, we show that either we can factor composite numbers (matching
the first protocol), or otherwise in any MA proof that includes k ≥ 0 group elements, the
verifier must run in parallel time at least Ω(T/(k + 1)) (matching the second protocol).
Additionally, if neither of these hold, then the protocol must not be statistically sound –
there must exist proofs for false statements, even if they may be computationally hard to
find.

We prove our result by presenting an algorithm that uses any “too-good-to-be-true” generic-
group MA proof to solve factoring in the plain model. To this end, we use Maurer’s [28]
generic-group algorithms abstraction and extend it to capture MA proofs. In our model,
we restrict the verifier to be a generic-group algorithm (in Maurer’s sense) that makes a
bounded number of group multiplication and division queries4, and we say that it accepts
if it outputs the group’s identity 1. Notice, for example, that this allows the verifier to
compute two element g, h and accept if they are equal by outputting g ·h−1. Furthermore, the
verifier can perform ANDs of equality checks and accept if many pairs (g1, h1), . . . , (gn, hn)
are equal (allowing parallel repetition). This can be done by sampling random exponents
r1, . . . , rn ∈ [2λ] and outputting

∏n
i=1(gi · h−1

i)ri , a la the sumcheck-style technique used
in [30]. Finally, we note that all efficient proofs specifically designed for RSN fall into this
generic model.

The prover, on the other hand, may still be an unbounded (not necessarily generic)
algorithm whose proof consists of a bit string and a sequence of group elements. Note
that not restricting the prover to be generic only makes our result applicable to larger
classes of constructions, thereby making it stronger. Refer to Section 2 for the precise model

4 Such algorithms are sometimes referred to as straight-line programs.

ITC 2023

4:6 The Cost of Statistical Security in Proofs for Repeated Squaring

definition. We emphasize that even in this simplified one-round setting, it turns out to
be highly non-trivial to prove our result in a way that captures the behaviors of arbitrary
provers and verifiers; see Section 1.3 for an overview.

▶ Theorem 1 (Simplified and Informal; see Theorem 4). For any generic-group MA proof
system for RSN , if the prover sends k ≥ 0 group elements and a string st, the verifier either
runs in parallel time Ω(T/(k + 1)), or is able to factor N given st.

In fact, we prove in Corollary 9 that the above holds for any hidden order group. In
addition to RSA groups, this notably includes class groups of unknown order, which was
suggested in the context of repeated squaring by Wesolowski [41] (see [9] for a more general
survey on the use of class groups in cryptography). In the general case, we show that either
the verifier runs in parallel time Ω(T/(k + 1)), or is able to compute (a non-zero multiple of)
the order of the group given the string st output by the prover. However, by a variant of the
Miller-Rabin primality test [29, 31], it is well known that this implies a factoring algorithm
for N when working over the multiplicative group Z⋆

N .
We note that if the prover is efficient, we can compute st ourselves. So, the existence of a

verifier with o(T/(k + 1)) parallel runtime implies a standard model factoring algorithm.

A bound for recursive interactive proofs. We extend our lower bound for MA proofs
to a certain natural class of general (multi-round) interactive proofs (IPs). Specifically,
we consider a class of recursive IPs, where in every round of communication, the prover
attempts to prove a new instance of RSN , although with a different starting point x, a
different endpoint y, and a different delay parameter T . This class of IPs captures many
sumcheck-style proofs for RSN ; see Appendix B for an overview. In particular, for a bound
on the round complexity r and a communication bound k, the adaptation of Pietrzak’s [30]
protocol results with a recursive IP with total communication k · r and verifier running time
O(T/(k + 1)r). Here, we obtain an optimal tradeoff between the message complexity, the
round complexity, and the verifier’s parallel running time, at least when restricted to generic
group verifiers.

▶ Theorem 2 (Simplified and Informal). For any generic-group r-round recursive interactive
proof system for RSN , if the prover sends k group elements per round and results in a
transcript tr, the verifier either runs in parallel time Ω(T/(k + 1)r), or is able to factor N

given tr.

Future Directions and Open Problems

Our work leaves many exciting open problems. We mention some of them next:
1. We prove our result in the generic-group model where we only allow multiplication and

division queries. It would be interesting to extend this to handle general equality queries
or addition/ subtraction queries in the the generic-ring model [2, 21, 36].

2. Can we get a similar result to Theorem 2 for general (public-coin) IPs rather than just
for “recursive” IPs?

3. In general, for what other languages can we say that sumcheck-style (e.g. see [8] and
references therein) proofs are optimal (at least among a reasonable but restricted class of
verifiers)?

C. Freitag and I. Komargodski 4:7

Paper Organization

In Section 1.2, we give an overview of related work, and then in Section 1.3, we give a detailed
overview of the main techniques in this work. In Section 2, we define the generic group model
we use in this work in the context of proofs. Then in Section 3, we give our main result for
MA proofs. We provide standard notation and preliminaries in Appendix A and a detailed
overview of existing non-interactive proofs for the repeated squaring relation in Appendix B.

Due to space constraints, we refer the reader to the full version of the paper for more
details regarding our result on recursive interactive proofs and for all proofs.

1.2 Related Work

Complexity of interactive proofs. Goldreich and Håstad [15] initiated the investigation
of interactive proofs with bounded communication. They showed that if a language L

has an interactive proof in which the total communication is bounded by c(n) bits then
L ∈ BPTime(2c(n) · poly(n)). Further relations between the communication complexity of
interactive proof for a language and its complement were shown by Goldreich, Vadhan, and
Widgerson [16].

The IP=PSPACE result [27, 38] says that languages that can be verified in polynomial
time are exactly those proofs that can be generated with polynomial space. In this interactive
proof system, the honest prover runs in super-polynomial time (even for log-space languages);
this is true even for the scaled down version which captures polynomially recognizable
languages. Nevertheless, the “easy” side of this result says that every language with an
interactive proof of c bits is decidable with c space [27, 38]. Therefore, languages that require
a lot of space to decide cannot have super efficient interactive proof systems.

Computationally sound proof systems can recognize any language in NP while using only
poly-logarithmic message complexity (assuming collision resistant hash functions) [24].

In the statistical setting, the first interactive proofs with an efficient prover were given by
Goldwasser, Kalai, and Rothblumn [17]. They designed an interactive proof system where
the honest prover is efficient and run in polynomial time. In their proof system the language
is given by a log-space uniform Boolean circuit with depth d and input length n. Their
verifier runs in time n · poly(d, log n), the communication complexity is poly(d, log n), and
the prover runs in time poly(n). This protocol is very useful for low-depth computations.

Reingold, Rothblum, and Rothblum [32] showed a different protocol which suits polynomial
time and bounded-polynomial space computations. They give a constant round protocol
for polynomial time and space S = S(n) languages such that: the honest prover runs in
polynomial time, the verifier is almost linear time, and the communication complexity is
O(S · nδ) for δ ∈ (0, 1). Applied on the repeated squaring language, (where S = poly log n)
this protocol’s communication roughly matches Pietrzak’s [30] when adapted to run in
constant rounds (in which case it also requires the transmission of nδ group elements).

Generic models. The problem we consider can be placed in a long line of research on
proving efficiency trade-offs for various primitives, in some restricted class of constructions
usually termed “black-box” or “generic”. Generic or black-box constructions have the benefit
of being applicable to every instantiation of the underlying structure, irrespectively of the
exact details of its description. For specific instances, this usually allows for cleaner and more
efficient constructions. The interactive proofs for RS of Pietrzak [30] and Wesolowski [41]
are generic.

ITC 2023

4:8 The Cost of Statistical Security in Proofs for Repeated Squaring

Our work is the first to study the complexity of proofs for RS from a foundational
perspective. The most relevant previous works study the (“generic”) complexity of related
cryptographic primitives or assumptions. Rotem and Segev [36] and Katz et al. [23] showed
that any generic algorithm for repeated squaring which is faster-than-trivial can be used to
solve factoring. The result of [36] rules out generic constructions in the generic-ring model
introduced by Aggarwal and Maurer [2] (see also Jager and Schwenk [21]). The result of [23]
rules out constructions in the strong algebraic group model (extending [14]) wherein the
adversary may use the concrete representation of group elements to make its group queries. In
another work, Rotem, Segev, and Shahaf [37] showed that hidden order groups are necessary
for achieving “delay” functions, at least generically. The result of [37] rules out generic-group
constructions in Maurer’s model [28] (same as our proof).

On class groups. It is worth noting that class groups are an alternative candidate for
a group of hidden order. In contrast to RSA groups, they only require a trusted setup
consisting of an honestly generated random string. Since this setup is simpler and easy to
generate, it is presumably less likely that someone may know a trapdoor (the order of the
group) for class groups. However, while they can be used to construct VDFs, it is not known
how to use them to get TLPs. See [9] for a general survey of the use of class groups in
cryptography.

1.3 Technical Overview
Throughout this overview, we use λ ∈ N to refer to the security parameter and let N denote
the RSA modulus, where N is a product of two random λ-bit primes. We use Z⋆

N to denote
the multiplicative group of integers mod N . We consider interactive proof systems for the
repeated squaring relation RSN , which we represent via the function fN,T (x) = x2T mod N

for any time bound T ∈ N. As a warm up, we will start by considering single-round, NP-style,
proof systems where the verifier is a deterministic, generic group algorithm. We will later
show how to deal with randomized verifiers, and additionally extend to the class of recursive
interactive proofs.

Overview of generic group proof systems. A (non-interactive) proof system consists of
two parties, the prover P and the verifier V . On input a group element x ∈ Z⋆

N , P ’s goal
is to convince V that another group element y is equal to fN,T (x) = x2T mod N . P is
allowed to send V up to k group elements π1, . . . , πk ∈ Z⋆

N as well as a bit string st ∈ {0, 1}∗.
Throughout the overview, we will always assume that P sends exactly k group elements as
part of its proof. V processes this information and outputs 1 to accept that y = x2T mod N

or rejects otherwise. We require that the proof system satisfies the standard notions of
completeness and soundness. Completeness says that if y = x2T mod N , then an honest
prover P causes V to accept. We parameterize soundness by a parameter δ, which says that
if y ̸= x2T mod N , then no (potentially unbounded) cheating prover P ⋆ can cause V to
accept with probability more than δ.

We restrict the above model by requiring that V is a (straight-line) generic group verifier,
whereas we still allow the prover to be unbounded and behave arbitrarily. Specifically, V

takes as input the modulus N , the time bound T , the prover’s string st as explicit inputs.
However, V only has implicit access to the input group element x, the purported output y,
and the proof elements π1, . . . , πk sent by P . Intuitively, this means that V is allowed to
multiply and divide these elements arbitrarily, as long as it does so in a way that independent
of their representation. We formalize this following Maurer’s generic group model [28], which
we outline in Section 2.

C. Freitag and I. Komargodski 4:9

At the end of the day, we leverage the fact that V uses its explicit inputs5 to effectively
generate various exponents α, β, γ1, . . . , γk such that its output is given by the group element
corresponding to

V (N, T, st, x, y, π1, . . . , πk) = xα · yβ ·
k∏

i=1
πγi

i = g.

Furthermore, we can always run V with dummy elements x, y, π1, . . . , πk and compute the
exponents (α, β, γ1, . . . , γk) by observing its group operations. We say that V accepts if
the output group element g is equal to the multiplicative identity 1 ∈ Z⋆

N , and V rejects
otherwise. While this convention may seem restrictive, as V doesn’t even know whether it
is accepting or rejecting, we claim that this is still very expressive as V can compute two
different group elements g, h and then output g · h−1, which is 1 if and only if g = h. Most
natural protocol for repeated squaring including [30, 41] fall into this category. Furthermore,
the verifier can perform ANDs of equality checks and accept if many pairs (g1, h1), . . . , (gn, hn)
are equal (allowing parallel repetition). This can be done by sampling random exponents
r1, . . . , rn ∈ [2λ] and outputting

∏n
i=1(gi · h−1

i)ri , a la the sumcheck-style technique used
in [30].

The complexity of deterministic (NP) proofs. As a warm-up, suppose that the verifier V

is deterministic. This means that for every set of explicit inputs N, T, st that V receives, it
generates the same exponents (α, β, γ1, . . . , γk). Given this knowledge, we want to characterize
all possible strategies a cheating prover may use. So, say a cheating prover P ⋆ wants to fool
V on any y = xd ̸= x2T mod N . Effectively, P ⋆ can only set each group element πi to be
equal to xzi for some value zi.6 Then, it follows that V accepts if

xα · xd·β ·
k∏

i=1
xzi·γi = 1.

However, since the base x is shared by all of the group elements, the above holds if

α + d · β +
k∑

i=1
zi · γi = 0 mod Carm(N),

where Carm(N) is Carmichael totient function, which is defined as the minimal value c such
that gc = 1 ∈ Z⋆

N for all g ∈ Z⋆
N .7 But, as long as γ⃗ = (γ1, . . . , γk) ̸= 0⃗ mod Carm(N), it

follows that P ⋆ can simply solve for a solution to z1, . . . , zk in the equation above to generate
a proof that will falsely convince V that xd = x2T .8

5 If we allowed V to also use the representation of the input group elements, this would correspond to the
strong algebraic group model of [23].

6 Note that this is not true in general since Z⋆
N is not cyclic and hence there are group elements not

represented as xc for some c ∈ Z. However, we assume this in the overview for simplicity as it captures
the main idea of the proof.

7 We note that we can simply choose x to be a group element whose order attains the maximal value
Carm(N). This is what allows us to switch to working over the exponent without loss of generality.

8 We note that this style of attack works for Wesolowski’s (computationally sound) proof of repeated
squaring [41], which is an AM protocol. The adaptive root assumption essentially states that it is
computationally infeasible to perform such an attack, leveraging the randomness sampled by the verifier
before the prover sends its message.

ITC 2023

4:10 The Cost of Statistical Security in Proofs for Repeated Squaring

Still, it may be the case that V simply ignores the proof elements π1, . . . , πk by setting
γ1, . . . , γk = 0. In this case, we leverage the completeness of the proof system to conclude
that either V is inefficient and runs in parallel time T , or V must be able to factor N . If
y = x2T mod N and γ1, . . . , γk = 0, then we know, by the above equation, that V accepts if

α + 2T · β = 0 mod Carm(N).

We consider two different cases, either (1) α + 2T · β = 0 ∈ Z or (2) α + 2T · β = c · Carm(N)
for some c ̸= 0 ∈ Z.

In case (2), this actually immediately implies a probabilistic factoring algorithm for N

via a well known adaptation of the Miller-Rabin primality test (formally stated in Lemma 6).
Since we can compute α and β, given the code of V and the prover’s string st, and hence
α+2T ·β = c·Carm(N), this implies a factoring algorithm in the standard model given st. If the
prover P is efficient, then we can compute st by ourselves, so it implies a factoring algorithm
for any N , without any auxiliary advice. We emphasize, however, that it may be the case
that the explicit string st sent by P helps V to compute some value α = 2T mod Carm(N).
For example, P could have just set st to be a representation of Carm(N), and V simply set
α = 2T mod Carm(N) and β = −1. This is why the factoring algorithm must receive the
proof string st as input in general.

We split case (1) into two further subcases, either (1A) β = 0 or (1B) β ≠ 0. In case (1B)
where β ̸= 0, this implies that

2T ≤ 2T · |β| ≤ |α|.

But that implies that V must run in parallel time T to compute xα since |α| ≥ 2T .
In case (1A) where β = 0 and α+2T ·β = 0, it must also be the case that α = 0. However,

we’ve already assumed that γ1, . . . , γk = 0, so this means that V just always outputs 1 and
accepts! So clearly, (P, V) cannot be a valid proof system as V accepts any y ̸= x2T mod N

with probability 1 in this case.
In summary, if (P, V) is a sound proof system where V is a deterministic generic group

verifier, then either:
1. V must run in parallel time at least T , or
2. there is a standard model factoring algorithm for N given the code of V and the string st

output by P .
Stated another way, if V runs in parallel time less than T , then V must be able to factor N

(with the help of the prover via st).

Extending to randomized verifiers. The high level outline of the lower bound for randomized
verifiers is actually very similar to the case of deterministic verifiers. However, allowing the
verifier to use randomness to determine its exponents introduces many highly non-trivial
challenges. The key distinction between deterministic and randomized verifiers is that
randomized verifiers are allowed to choose their exponents as a function of their randomness,
so the attack where a cheating prover simply solves a single equation to fool the verifier no
longer works. Instead, the cheating prover needs to satisfy a random equation with better
than δ probability in order to violate soundness. Still, we will show how we can use the
verifier’s exponents to factor, or argue that the verifier must have parallel running time
greater than T/(k + 1) with high probability.

C. Freitag and I. Komargodski 4:11

Throughout, we will consider a fixed set of explicit inputs N , T , and st received by the
verifier. Then, for any random string ρ ∈ {0, 1}λ sampled by the verifier, we use coef(ρ) to
denote the exponents that V uses to compute its output. So, if

V (N, T, st, x, y, π1, . . . , πk; ρ) = xα · yβ ·
k∏

i=1
πγi

i ,

then we say that coef(ρ) = (α, β, γ1, . . . , γk). We note that we refer to these exponents
as “coefficients” as they will correspond to coefficients in a system of equations over the
exponent, hence the notation coef(ρ).

Our main strategy is to sample many different values ρ1, . . . , ρn such that ||coef(ρi)||max ≪
2T/(k+1) for each i ∈ [n], where ||·||max indicates the maximum absolute value in the coefficient
vector. If this isn’t possible, then that means that the verifier must run in parallel time
at least T/(k + 1), and we are done. Otherwise, it remains to show that we can either
use these coefficients to factor or show that (P, V) is not a valid proof system. For each
randomness value ρi, let coef(ρi) = (αi, βi, γi,1, . . . , γi,k) denote the corresponding coefficient
vector for ρi. We combine all of these coefficients together in the following way. Let
Γ ∈ Zn×k be the matrix consisting of all of the γi,j values, and let α⃗, β⃗ ∈ Zn be vectors
of the αi and βi values. A key property we will leverage is that the system of equations
Γ · z⃗ = −α⃗ − d · β⃗ mod Carm(N) has a solution for d = 2T by completeness, but does not
have a solution for any d ̸= 2T mod Carm(N) by soundness (with high probability), which
we explain next.

For simplicity, we will assume throughout this overview that the proof elements πj

potentially output by the prover are all equal to xzj for some zj ∈ Z. Then, for y = x2T and
all i ∈ [n], completeness tells us that there must be a solution for z1, . . . , zk to the equation

αi + 2T · βi +
k∑

j=1
γi,j · zj = 0 mod Carm(N).

Since the prover’s proof must work for all randomness values by completeness, we know that
the prover’s vector z⃗ = (z1, . . . , zk)⊤ actually satisfies

Γ · z⃗ = −α⃗− 2T · β⃗ mod Carm(N).

However, for any d ̸= 2T mod Carm(N) corresponding to xd ̸= x2T , we use soundness to
show that

̸ ∃z⃗, Γ · z⃗ = −α⃗− d · β⃗ mod Carm(N),

as long as we sample enough vectors n. At a very high level, this follows since each newly
sampled coefficient vector must restrict the space of solutions in a non-trivial way, since
otherwise the same solution will work with good probability for many different choices of
exponents. So we set n large enough such that, with high probability, the space of possible
solutions for any d ̸= 2T mod Carm(N) is empty. The details of this argument are given in
the full version of the paper.

Next, we prove a key technical lemma that allows us to relate whether or not a system of
equations mod Carm(N) has a solution. Specifically, we show that there exists an efficiently
computable matrix M that satisfies the following two properties:

ITC 2023

4:12 The Cost of Statistical Security in Proofs for Repeated Squaring

1. If there exists a solution z⃗ such that Γ·z⃗ = −α⃗−d·β⃗ mod Carm(N), then M ·(−α⃗−d·β⃗) =
0⃗ mod Carm(N).

2. If M · (−α⃗− d · β⃗) = 0⃗ over Z, then there exists a solution z⃗ such that Γ · z⃗ = (−α⃗− d · β⃗)
over Z (and hence mod Carm(N)).

Furthermore, we show that ||M · v⃗||max < 2T when ||v⃗||max, ||Γ||max << 2T/(k+1). When
working over a field, such a result is well known by simply converting Γ into reduced row
echelon form and the linear function M is closely related to the determinant of Γ. However,
working over the integers mod Carm(N), this becomes much messier to work with. At a very
high level, we show the lemma by first converting Γ to its Hermite normal form H, which is
the integer counterpart to reduced row echelon form. We then augment the matrix H with
the column (−α⃗− d · β⃗) and apply linear operations to zero out the last column to construct
the matrix M . However, working over the integers, we must be careful to make sure that the
values don’t blow up in order to get our desired bound on ||M · v⃗||max. The full details for
the proof of this technical lemma are provided in the full version of the paper.

Armed with our key technical lemma and the observations above, we are ready to complete
the logic of our result, which follows the same high level structure as the deterministic case.
Given M , we compute v⃗ = M · (−α⃗− 2T · β⃗). By completeness, we know that there exists a
vector z⃗ such that Γ · z⃗ = (−α⃗− d · β⃗) mod Carm(N), so by the technical lemma, we know
that v⃗ = 0⃗ mod Carm(N). We consider two different cases, either (1) v⃗ = 0⃗ over Z or (2)
there exists an index i such that v⃗i = c · Carm(N) for c ∈ Z. In case (2), we can factor given
v⃗i using the variant of the Miller-Rabin primality test, so we are done.

For case (1), we use the fact that M is linear, so

v⃗ = M · (−α⃗− 2T · β⃗) = −M · α⃗− 2T ·M · β⃗ mod Carm(N).

We consider two further subcases, either (1A) M · β⃗ = 0⃗ over Z or (1B) there exists an index
i such that Mi · β⃗ ̸= 0. In case (1B), this implies that

2T ≤ 2T · |Mi · β⃗| ≤ |Mi · α⃗|,

but we show in our key technical lemma that |Mi · α⃗| < 2T . So case (1B) cannot happen.
In case (1A) where M · β⃗ = 0⃗, this actually implies that M · α⃗ = 0⃗ since we have already

assumed that v⃗ = M · (−α⃗− 2T · β⃗) = 0⃗. But, this implies that M · (−α⃗− d · β⃗) = 0⃗ over Z
for any d ̸= 2T mod Carm(N)! So, by our key technical lemma, we conclude that there exists
a solution over Z, and hence mod Carm(N) for some d ̸= 2T mod Carm(N). However, we
argued above that this cannot be the case by soundness (with high probability).

Combining the above, we’ve ruled out the possibility of case (1), so case (2) must hold,
which implies we can factor with high probability. So, in summary, if (P, V) is a sound proof
system where V is now a randomized generic group verifier and P sends at most k group
elements in its proof, then either:
1. V runs in parallel time at least T/(k + 1) with high probability, or
2. there is a standard model factoring algorithm for N given the code of V and the string st

output by P .
An alternative way to view this result is as follows. If V runs in parallel time less than
T/(k + 1) with good probability, then either it must “know” a factorization of N to be able
to reduce its exponents mod Carm(N), or there must be a cheating strategy that falsely
convinces V on such randomness values. Hence, if you want both statistical security and an
efficient verifier V , it must be the case that V can factor N .

C. Freitag and I. Komargodski 4:13

Recursive interactive proofs. We next discuss how our result for one-round, MA-style,
proofs extends to the class of recursive interactive proofs. First, we define what we mean by
a r-round recursive interactive proof for the function fN,T (x) = x2T mod N . In each round
i, there is an input statement (x, y, T) claiming that y = x2T mod N . P starts the round
by sending a string st ∈ {0, 1}∗ and up to k group elements π1, . . . , πk. V then responds
with a random string ρ← {0, 1}λ. If i is the last round, V uses its randomness ρ and the
message from P to decide whether or not y = x2T mod N . Otherwise, P and V both use
a generic group algorithm Ai to compute a new statement (x′, y′, T ′) given the prover’s
message and the verifier’s random coins, and they start a new independent (recursive) proof
for this statement with one fewer round.

The overall running time of V is simply the running time of Ai in each round i, plus
its final running time to compute its output at the end of the protocol. In addition to
standard notions of completeness and soundness, we require that if (x, y, T) is valid at the
beginning of the round, then (x′, y′, T ′) is also valid for the start of the next round. However,
if (x, y, T) starts as invalid, so y ̸= x2T mod N , then we require that (x′, y′, T ′) is invalid
with probability at least 1− δ.

Due to the recursive nature of this interactive proof, we are able to reduce to the one-round
case to show that in each round T ′ cannot shrink too much relative to T , assuming Ai (and
hence V) runs in low parallel time. If there exists a round i such that T ′ is much smaller than
T , then we could construct a proof system (P̂ , V̂) for y = x2T mod N as follows. The prover
P̂ sends whatever P would have sent in round i. Then, V̂ runs Ai to compute (x′, y′, T ′)
and outputs (x′)2T ′

· (y′)−1. It follows that V̂ runs in time corresponding to the running
time of Ai plus T ′, which is dominated by T ′. By our result for one-round proofs, this
means that T ′ must be at least T/(k + 1) with high probability, otherwise we can construct
a factoring algorithm given the proof string st from P in round i. Hence, after r − 1 rounds,
the final time bound T ′ must be at least T/(k + 1)r−1 and V must run in parallel time at
least T/(k + 1)r to be a valid proof system.

In summary, if (P, V) is a recursive, generic group, r-round interactive proof for fN,T (x) =
x2T mod N , where the prover sends at most k group elements per round, then either:
1. V runs in parallel time at least T/(k + 1)r with high probability, or
2. there is a standard model factoring algorithm for N given the code of V and the transcript

generated by an honest prover P .

2 Generic Group Proof Systems

We next give the details for the generic group model we use in this work. Then we define
proof systems where the verifier is restricted to generic group operations.

2.1 The Generic Group Model
In this work, we use Maurer’s generic group model abstraction [28], following the related
works of Aggarwal and Maurer [2] and Rotem and Segev [36]. We note that this is not
the same as Shoup’s random representation model [39]. See the work of Zhandry [42] for a
detailed comparison between these two models.

Informally, a generic group algorithm is one that can perform arbitrary group operations
as long as the operations performed are independent of the representation of the group
elements. At a high level, we model this by giving the algorithm indirect access to its input
group elements via pointers into a table, and each new multiplication or division adds a new
element to the table and returns the corresponding pointer.

ITC 2023

4:14 The Cost of Statistical Security in Proofs for Repeated Squaring

Formally, we consider the multiplicative group Z⋆
N in this work, where N is an RSA

modulus in Supp
(
ModGen(1λ)

)
for some security parameter λ ∈ N. A generic group

algorithm A receives N as input as an explicit bit string and also receives access to a table
Table via an oracle O that stores the group elements computed so far. Initially, Table contains
the identity v0 = 1 ∈ Z⋆

N at index 0, and all of the group elements x1, . . . , xk ∈ Z⋆
N provided

as input to A in indices 1, . . . , k. A can make queries to the oracle O via the following syntax:
Mutliplication: On input (i1, i2, j,×), the oracle O checks that the values vi1 and vi2 at
indices i1 and i2 in Table are non-empty and not ⊥. If so, O computes vi1 ◦ vi2 and stores
the result at index j in Table. Otherwise, O stores ⊥ at index j.
Division: On input (i1, i2, j,÷), the oracle O additionally checks vi2 is invertible. If so, O
computes v−1

i2
and stores vi × v−1

i2
at index j in Table, if applicable. Otherwise, O stores

⊥ at index j.
We note that Maurer’s generic group model usually includes equality queries, which we do
not handle in this work. An algorithm A that does not issue any equality queries is known
as a straight-line algorithm, so for this reason, we state our formal results for straight-line
generic group algorithms to avoid confusion. We note that generic-ring algorithms are defined
similarly as above, but they also include addition and subtraction queries with essentially
the same syntax.

For a group element g computed by A, we use ĝ to denote the pointer to the corresponding
element g in the table Table. We abuse notation slightly and whenever we write that A

receives a group element g as input, we mean that it receives a pointer ĝ to the element in
the corresponding table Table.

We allow generic group algorithms to receive and output both “explicit” values, represented
by bit strings, and “implicit” values indicating group elements, represented by pointers into
Table. We can think of all of the explicit values as helping the generic algorithm decide how
to invoke the oracle O to perform generic operations.

A randomized generic group algorithm also receives as input a string ρ ∈ {0, 1}λ (we
assume λ bits of randomness for simplicity, however this could be extended arbitrarily).
For any input inp, We denote A(1λ, N, inp; ρ) the randomized generic group algorithm with
random tape ρ.

Measuring complexity. Let A be a generic group algorithm. We denote by TimeA(1λ, N, inp;
ρ) the total running time of A on the given inputs with random tape ρ, where each oracle
query costs a single unit of time. Additionally, we allow A to be a parallel algorithm.
Following Rotem and Segev [36], we model parallel generic group algorithms A by allowing A

to issue oracle queries in “rounds”. In each round, A can issue any number of oracle queries
to O in a single time step via multiple processors. We use WidthA(1λ, N, inp; ρ) to denote
the maximum number of processors used by A at any time step and ParTimeA(1λ, N, x⃗; ρ)
to denote the number of sequential time steps that it takes for A to compute its output.
Whenever we omit input/ randomness parameters from TimeA, WidthA, or ParTimeA, we
mean the worst case running time over an arbitrary choice of input parameters.

The behavior of generic group algorithms. Let λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. Let

A be a straight-line generic group algorithm such that A(1λ, N, st, x⃗; ρ) takes as input an
explicit string st ∈ {0, 1}∗ and group elements x⃗ = x1, . . . , xk ∈ Z⋆

N and outputs a group
element g. As A is only allowed to perform generic operations, it follows that A’s output is
of the form

∏k
i=1 xγi

i for γ1, . . . , γk ∈ Z. Furthermore, by running A, we can compute these
coefficients by providing arbitrary pointers as input to A in place of x⃗. We use the notation

C. Freitag and I. Komargodski 4:15

coefV,λ,N,st(ρ) = (γ1, . . . , γk)⊤ to denote the coefficient vector of V on input ρ for security
parameter λ, modulus N , and explicit string st. We note that the main distinction between
our model and the strong algebraic group model of [23] is that they allow the coefficient
vector to additionally depend on the bit representations of the input group elements.

Relating parallel running time to degree. Its easy to see that a straight-line generic
group algorithm that computes A(1λ, N, st, x⃗; ρ) =

∏k
i=1 xγi

i , where γ1, . . . , γk are given by
γ⃗ = coefA,λ,N,st(ρ), must run in depth at least log ||γ⃗||max. This can be shown by induction
for ||γ⃗||max equal to 2i for i ≥ 0. If ||γ⃗||max = 20 = 1, then it may be the case that A just
immediately outputs a group element in 0 steps, satisfying the base case. Suppose that
||γ⃗||max = 2i. After i−1 steps, the maximum exponent in absolute value of any group element
in Table is 2i−1 by assumption. So, in the next time step, A can issue a multiplication query
multiplying two such elements together. However, this will result in an element with depth
at most 2i, as required. It follows that

ParTimeA(1λ, N, st, x⃗; ρ) ≥ log ||coefA,λ,N,st(ρ)||max

for all λ ∈ N, N ∈ Supp
(
ModGen(1λ)

)
, string st ∈ {0, 1}∗, input elements x⃗, and random

string ρ ∈ {0, 1}λ.
We additionally note that, even if we only require A to compute a high degree function

with high probability and with pre-processing over a random input, then the same lower
bound holds by the work of Rotem and Segev [36].

2.2 Proof Systems in the Generic Group Model

A proof system consists of two algorithms: the prover P and the verifier V . For a language
L, P and V interact on common input x over potentially many rounds until V either accepts
or rejects. In order to be non-trivial, the prover P must have some additional capabilities
compared to the verifier V . For classical proof systems, the prover P is an unbounded
algorithm while V is polynomially bounded. The two main properties of a proof system
are completeness and soundness. Completeness stipulates that P convinces V on x ∈ L,
and δ-soundness stipulates no cheating prover P ⋆ can convince V on x ̸∈ L with probability
better than δ.

We consider generic group proof systems for languages defined by a function f defined
over a group Z⋆

N for λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. For such proof systems, we restrict

V to be a generic group algorithm that makes a bounded number of group multiplication and
division queries, whereas P may still be an unbounded (not necessarily generic) algorithm
that sends a bit string and group elements to V . So, for a function f , P and V receive an
input a security parameter 1λ, the group description N , an input group element x, and the
output of the function f(x) as common input. P sends a bit string st ∈ {0, 1}∗ and sequence
of group elements π1, . . . , πk to V , which V receives access to via pointers into a table as a
generic group algorithm. V then performs generic computations and outputs a pointer to a
group element ĝ and “accepts” if the corresponding group element g = 1.

▶ Definition 3 (Generic Group Proof Systems). Let δ : N → [0, 1] and k : N → N. For any
λ ∈ N, N ∈ Supp

(
ModGen(1λ)

)
, let f : Z⋆

N → Z⋆
N be a function. We say that the pair (P, V)

is a k-element generic group proof system for f with δ-soundness if V is a generic group
algorithm, and for all λ ∈ N, N ∈ Supp

(
ModGen(1λ)

)
, and k = k(λ), the following hold:

ITC 2023

4:16 The Cost of Statistical Security in Proofs for Repeated Squaring

Completeness: For all x ∈ Z⋆
N , let st, π1, . . . , πk be the output of P (1λ, N, x, f(x)), then

it holds that

V (1λ, N, st, x, f(x), π1, . . . , πk) = 1.

Soundness: For all x ∈ Z⋆
N , y ≠ f(x), and algorithms P ⋆ such that P ⋆(1λ, N, x, y) outputs

a string st and group elements z1, . . . , zk, it holds that

Pr
ρ←{0,1}λ

[
V (1λ, N, st, x, y, z1, . . . , zk) = 1

]
≤ δ(λ).

If the verifier V is a straight-line algorithm, we say that (P, V) is a straight-line generic
group proof system.

3 One Round Proofs

In this section, we provide our main theorem. Let λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. We

show that if there is a k-element generic group proof system with a straight-line verifier that
runs in parallel time less than T/2(k + 1) with probability ϵ, then there is a poly(1/ϵ) ·TimeV

algorithm that factors N . We define some useful notation for the theorem first, and then
provide a high level outline of the proof structure.

For each randomness ρ, let coefV,λ,N,st(ρ) = (γ1, . . . , γk, α, β)⊤ be the coefficients such that
V (1λ, N, st, x, y, z1, . . . , zk) outputs xα · yβ ·

∏k
i=1 zγi

i . As V is a generic group algorithm, we
can compute coefV,λ,N,st(ρ) by simply running V (1λ, N, st, x, y, z1, . . . , zk) for generic elements
x, y, z1, . . . , zk and keep track of the operations of V . For notational convenience, when
V, λ, N, st are clear from context, we simply write coef(ρ). We also define dcoefV,λ,N,st(ρ, d)
to denote the vector (γ1, . . . , γk, α + d · β)⊤, where (γ1, . . . , γk, α, β) are given by coef(ρ),
which will be useful in our analysis.

▶ Theorem 4. Let λ ≥ 2, T ∈ N, k : N→ N, δ, ϵ : N→ [0, 1], N ∈ Supp
(
ModGen(1λ)

)
, and

(P, V) be a k-element straight-line generic-group proof system for the function fN,T (x) =
x2T mod N with soundness error δ.

Let x ∈ Z⋆
N and (st, π1, . . . , πk(λ)) ∈ Supp

(
P (1λ, N, T, x, fN,T (x))

)
. If

Pr
ρ

[
ParTimeV (1λ, N, T, st) <

T

k(λ) + 1 − log(k(λ))
]
≥ max(2δ(λ), ϵ(λ)),

then there exists a standard model probabilistic poly(λ, k(λ), T, 1/ϵ(λ)) ·TimeV (1λ, N, st) time
algorithm A such that

Pr
[
p, q ← A

(
1λ, N, k, T, st, 1/ϵ(λ)

)
: N = p · q

]
≥ 1− 2−λ.

We refer the reader to the full version for the proof of the theorem.

References
1 Chia network. https://chia.net/. Accessed: 2022-10-05.
2 Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring. IEEE

Trans. Inf. Theory, 62(11):6251–6259, 2016.
3 Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lombardi, Omer

Paneth, and Ron D. Rothblum. Ppad is as hard as lwe and iterated squaring. In TCC, 2022.

https://chia.net/

C. Freitag and I. Komargodski 4:17

4 Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik Soni. Time-
and space-efficient arguments from groups of unknown order. In Advances in Cryptology -
CRYPTO, pages 123–152, 2021.

5 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Advances in Cryptology - CRYPTO, pages 757–788, 2018.

6 Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay functions. IACR
Cryptol. ePrint Arch., page 712, 2018.

7 Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with
applications to iops and stateless blockchains. In CRYPTO (1), volume 11692 of Lecture Notes
in Computer Science, pages 561–586. Springer, 2019.

8 Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and their
applications. In CRYPTO (1), volume 12825 of Lecture Notes in Computer Science, pages
742–773. Springer, 2021.

9 Johannes Buchmann and Safuat Hamdy. A survey on iq cryptography. In Public-Key
Cryptography and Computational Number Theory, pages 1–15, 2001.

10 Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK compilers.
In Advances in Cryptology - EUROCRYPT, pages 677–706, 2020.

11 Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable
delay functions. In Advances in Cryptology - EUROCRYPT, pages 125–154, 2020.

12 Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology - CRYPTO, pages 186–194, 1986.

13 Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable time-lock
puzzles and applications. In Theory of Cryptography - 19th International Conference, TCC,
pages 447–479, 2021.

14 Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Advances in Cryptology - CRYPTO, pages 33–62, 2018.

15 Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett., 67(4):205–214, 1998.

16 Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a laconic
prover. Comput. Complex., 11(1-2):1–53, 2002.

17 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015.

18 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963. URL: http://www.jstor.org/
stable/2282952.

19 Charlotte Hoffmann, Pavel Hubácek, Chethan Kamath, Karen Klein, and Krzysztof Pietrzak.
Practical statistically-sound proofs of exponentiation in any group. In CRYPTO (2), 2022.

20 Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-shamir via list-recoverable
codes (or: parallel repetition of GMW is not zero-knowledge). In STOC, pages 750–760. ACM,
2021.

21 Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assumptions in the generic
ring model. J. Cryptol., 26(2):225–245, 2013.

22 Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. Snargs for
bounded depth computations and PPAD hardness from sub-exponential LWE. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 708–721, 2021.

23 Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and timed
commitments. In Theory of Cryptography – TCC, pages 390–413, 2020.

24 Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC, pages
723–732, 1992.

ITC 2023

http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952

4:18 The Cost of Statistical Security in Proofs for Repeated Squaring

25 Swastik Kopparty and Abhishek Bhrushundi. Lecture 3: Finding integer solutions to systems
of linear equations, fall 2014. URL: https://sites.math.rutgers.edu/~sk1233/courses/
ANT-F14/lec3.pdf.

26 Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with applications
to ppad-hardness and vdfs. In Advances in Cryptology - CRYPTO, pages 632–651, 2020.

27 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

28 Ueli M. Maurer. Abstract models of computation in cryptography. In IMACC, volume 3796
of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

29 Gary L Miller. Riemann’s hypothesis and tests for primality. Journal of computer and system
sciences, 13(3):300–317, 1976.

30 Krzysztof Pietrzak. Simple verifiable delay functions. In 10th Innovations in Theoretical
Computer Science Conference, ITCS, pages 60:1–60:15, 2019.

31 Michael O Rabin. Probabilistic algorithm for testing primality. Journal of number theory,
12(1):128–138, 1980.

32 Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. SIAM J. Comput., 50(3), 2021.

33 Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology. Laboratory for Computer
Science, 1996.

34 Lior Rotem. Simple and efficient batch verification techniques for verifiable delay functions. In
TCC (3), volume 13044 of Lecture Notes in Computer Science, pages 382–414. Springer, 2021.

35 Lior Rotem. Revisiting the uber assumption in the algebraic group model: Fine-grained
bounds in hidden-order groups and improved reductions in bilinear groups. In ITC, volume
230 of LIPIcs, pages 13:1–13:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

36 Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is equivalent to factoring:
Sharp thresholds for all generic-ring delay functions. In Advances in Cryptology - CRYPTO,
pages 481–509, 2020.

37 Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions require hidden-order
groups. In Advances in Cryptology - EUROCRYPT, pages 155–180, 2020.

38 Adi Shamir. Ip=pspace. In 31st Annual Symposium on Foundations of Computer Science,
FOCS, pages 11–15, 1990.

39 Victor Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT,
volume 1233 of Lecture Notes in Computer Science, pages 256–266. Springer, 1997.

40 Victor Shoup. A computational introduction to number theory and algebra. Cambridge
University Press, 2006.

41 Benjamin Wesolowski. Efficient verifiable delay functions. J. Cryptol., 33(4):2113–2147, 2020.
42 Mark Zhandry. To label, or not to label (in generic groups). IACR Cryptol. ePrint Arch., page

226, 2022.

A Preliminaries

For any n ∈ N, we use [n] = {1, . . . , n} to denote the set from 1 to n. For a distribution X,
we denote by x← X the process of sampling a value x from the distribtion X. For a set X ,
we use x ← X to denote the process of sampling a value x from the uniform distribution
over X . For a bit string st ∈ {0, 1}∗, we use |st| to denote the length of st. Throughout, we
use λ ∈ N to denote the security parameter.

A.1 Number Theory
In this work, we consider the multiplicative group of integers mod N , denoted by Z⋆

N , where
N is a product of two primes. Specifically, for any λ ∈ N, we let ModGen(1λ) denote the

https://sites.math.rutgers.edu/~sk1233/courses/ANT-F14/lec3.pdf
https://sites.math.rutgers.edu/~sk1233/courses/ANT-F14/lec3.pdf

C. Freitag and I. Komargodski 4:19

algorithm that samples two random primes p, q in the interval [2λ, 2λ+1) and outputs N = p·q.
The group is given by Z⋆

N = {x ∈ [1, N) : gcd(x, N) = 1}, and multiplication in the group
corresponds to multiplication over Z mod N . When it is clear from context we are working
in the group Z⋆

N , we will omit mod N when discussing multiplication of group elements.
The main language we consider in this work is the repeated squaring relation, RSN ,

defined as follows

RSN =
{

(x, y, T) | y = x2T

mod N
}

.

For a particular value of N and T , we represent this relation by the function fN,T (x) =
x2T mod N . It is widely believed that fN,T cannot be computed and RSN cannot be
decided in depth less than T even with poly(λ, T) parallel processors. We focus on the proof
complexity of this language in this work.

For any a, b ∈ Z, we use gcd(a, b) and lcm(a, b) to denote the greatest common divisor
and least common multiple of a and b, respectively. Specifically, gcd(a, b) is the maximal
c ∈ N such that c divides a and b, and lcm is the minimal c ∈ N such that a and b both
divide c. Let a, b ∈ Z, then there always exist integers c, d such that c · a + d · b = gcd(a, b).
c and d are known as Bezout coefficients for a and b. While Bezout coefficients may not be
unique, we note that there always exist bezout coefficients such that |c|, |d| ≤ max(|a|, |b|),
and these are the coefficients given by the standard euclidean algorithm.

We denote by φ(N) = |Z⋆
N |, known as the Euler totient function of N , and Carm(N) =

min{a ∈ N : ∀g ∈ Z⋆
N , ga = 1}, known as the Carmichael totient function. For λ ∈ N and

N ∈ Supp
(
ModGen(1λ)

)
such that N = p · q, it holds that

φ(N) = (p− 1) · (q − 1), and Carm(N) = lcm(p− 1, q − 1).

For a specific element g ∈ Z⋆
N , we define the order of g, ord(g), to be the minimum c ∈ N

such that gc = 1 ∈ Z⋆
N .

In this work, we use the fact that for N = p · q, Z⋆
N
∼= Z⋆

p × Z⋆
q , where Z⋆

p and Z⋆
q are

each cyclic groups of order φ(p) = p − 1 and φ(q) = q − 1, respectively. Let gp and gq be
generators for the corresponding subgroups. Then, we can write any group element h ∈ Z⋆

N

in the form h = ga
p · gb

q for some a, b ∈ N. For convenience of notation, we will use h|p to
denote the p “component” of h and h|q to denote the q component, so a = h|p and b = h|q
above.

In order to translate between results mod a composite number Φ and its solutions mod
its prime power divisors, we make use of the Chinese remainder theorem (CRT). We use the
following version of CRT.

▶ Lemma 5. Let k ∈ N, n1, . . . , nk, a1, . . . , ak ∈ N. Then, the set of equations

x = ai mod ni

has a solution over Z if and only if for all i, j ∈ [k], ai = aj mod gcd(ni, nj). Moreover, any
two solutions x1, x2 satisfy x1 = x2 mod lcm(n1, . . . , nk).

The following lemma, based on the Miller-Rabin primality test [29, 31], gives a probabilistic
factoring algorithm given any non-zero multiple of Carm(N). For the proof of the lemma
and further discussion, we refer the reader to Section 10.4 of Shoup [40].

▶ Lemma 6 (Factoring Lemma). Let λ ∈ N, N ∈ Supp
(
ModGen(1λ)

)
, and m = c · Carm(N)

for c ∈ Z such that c ̸= 0. For any δ : N→ [0, 1], there exists a probabilistic algorithm A that
runs in poly(λ, log(1/δ(λ))) time such that

Pr
[
p, q ← A(1λ, N, m) : N = p · q

]
≥ 1− δ(λ).

ITC 2023

4:20 The Cost of Statistical Security in Proofs for Repeated Squaring

A.2 Linear Algebra
Let M be a matrix in Zm×ℓ. For i ∈ [m], j ∈ [ℓ], we use Mi to denote the ith row and Mi,j

to denote the element in the ith row and jth column. We use M⊤ to denote the transpose of
a matrix. We treat vectors v⃗ ∈ Zn as column vectors, so implicitly of the form v⃗ ∈ Zn×1. To
take the dot product of two vectors v⃗, u⃗, we write v⃗⊤ · u⃗. If v ∈ Zm×1 is a vector, we simply
write vi to denote the ith component. We write ||M ||max = maxi∈[m],j∈[ℓ] |Mi,j | to denote
the largest element in absolute value in the matrix M . For a matrix M (1) ∈ Zm×ℓ1 and a
matrix M (2) ∈ Zm×ℓ2 , we write M ′ = (M (1)|M (2)) to denote the augmented matrix which
appends M (2) to the right of M (1) to get the matrix M ′ ∈ Zm×(ℓ1+ℓ2).

For any composite Φ, let ZΦ be the ring of integers mod Φ. We say that a function
f : Zn

Φ → Zn
Φ is linear if for any vectors g⃗, h⃗ ∈ ZΦ and a, b ∈ Z, it satisfies f(a · g⃗ + b · h⃗) =

a · f(g⃗) + b · f (⃗h). We say that a function f is affine if there exists some matrix M such that
f(g⃗) = M · g⃗′ where g⃗′ is equal to g⃗ appended by 1. In particular, this means that f is a
linear function shifted by a constant.

Let Perm(n) denote the set of all permutations over [n]. For a permutation σ ∈ Perm(n),
we write sign(σ) to denote the sign of σ, i.e. 1 if there are an even number transpositions from
the identity to σ, and −1 otherwise. For a square matrix M , the determinant of M is given
by det(M) =

∑
σ∈Perm(n) sign(σ) ·

∏n
i=1 Mi,σ(i). It follows by definition of the determinant

that det(M) ≤ n! · ||M ||nmax. We say that an integer matrix U ∈ Zm×m is unimodular if
det(U) ∈ {+1,−1}.

Let v⃗(1), . . . , v⃗(n) ∈ Zm be a set of vectors. This determines a lattice

L = L
(

v⃗(1), . . . , v⃗(n)
)

=
{

m∑
i=1

ci · v⃗(i) : c1, . . . , cm ∈ Z

}
of points spanned by these vectors. For a lattice L, we refer to a basis of the lattice as
a set of vectors b⃗(1), . . . , b⃗(m), often written in matrix matrix B = (⃗b(1)| . . . |⃗b(m)), that are
linearly independent over R and L = L(B). A lattice is unique up to multiplication of B by
a unimodular matrix U , so when the basis is clear from context, we refer simply to the lattice
L. The determinant of a lattice det(L) is defined to be the volume of the parallelepiped
formed by a set of basis vectors over Rm.

We next define the Hermite normal form (HNF) of an integer matrix M ∈ Zm×n. We use
the notion of column-style HNF, defined via right multiplication by a unimodular matrix, in
contrast to row-style HNF.

▶ Definition 7 (Hermite Normal Form). A matrix H ∈ Zm×n is in Hermite normal form if
the following hold:
1. Lower triangular: For some h ≤ n, there exists a sequence 1 ≤ i1 < i2 < . . . < ih ≤ n

such that Hi,j ̸= 0⇒ i > ij.
2. Row-reduced: For all k ≤ j ≤ n, 0 ≤ Hij ,k ≤ Hij ,j.

We additionally use the fact that the HNF of a matrix M ∈ Zm×n has entries bounded by
||M ||nmax. See [25] for a proof of this claim.

When working over a field F, such as the integers mod a prime p or the rationals Q, we
can define standard notions like span and rank. The span of a set over vectors over an n

dimensional vector space over a field F is defined as the set of all linear combinations of
the vectors, with coefficients from the field F. When clear from context, we use span in the
context of integers to refer to the set of linear combinations with coefficients from Z, as in
the definition of a lattice. The rank of a matrix or vector space over a field F is the size of
the minimal set of vectors that spans the space over F.

C. Freitag and I. Komargodski 4:21

A.3 Concentration Inequalities
Concentration inequalities allow us to bound the probability that certain random variables
take values too far away from their mean. In this work, we use the following version of the
well known Chernoff-Hoeffding bound [18].

▶ Lemma 8 (Chernoff-Hoeffding Bound [18]). Let X =
∑m

i=1 Xi such that Xi ∈ [0, 1] are
independent random variables. Let µ = E[X]. Then, for all t,

Pr[|X − µ| > t] ≤ 2e−2t2/m.

B Existing Proofs for RS

We give a brief overview of the currently known proof systems for RSN , focusing on the
practical setting of non-interactive proofs. When discussing the proofs below, we use λ to
denote the security parameter. Informally, we say that a verifier is efficient if it runs in time
poly(λ, log T), essentially independent of the time bound T .

The empty proof. The prover can always do nothing and let the verifier check the
relation y = x2T mod N itself.
This is a valid, albeit not very helpful, proof system that is perfectly complete and sound.
In terms of efficiency, the verifier runs in time T to compute T squares, so nothing has
been gained.
The factoring proof. The prover can factor N to get primes p, q where N = p · q and
send (p, q) to the verifier. The verifier can check that indeed N = p · q, compute the order
of the group φ(N), and check if y = x2T mod ϕ(N) mod N .
This protocol is extremely efficient for the verifier, and is perfectly complete and sound.
However, such a proof disallows N to be reused again since RS is not a sequential
function whenever p, q are known. Furthermore, unless P generated N itself, it requires
an inefficient prover.
Sumcheck-style proofs. This is a general proof style that follows the structure of the
sumcheck protocol of Lund, Fortnow, Karloff, and Nisan [27]. The main idea is that the
prover first splits the statement (x, y, T) into k ≥ 2 sub-statements (xi, yi, T ′) for i ∈ [k]
for T ′ < T . Then, the verifier uses its randomness to merge these sub-statements into a
single statement (x′, y′, T ′) which is hopefully easier to handle. Such protocols naturally
lend themselves to recursive interactive proofs. We note that the proofs of [30, 11, 4, 19]
as well as a generic proof for space-bounded computation [32] generally fall into this
framework. We focus on Pietrzak’s protocol [30] as it is the simplest and is specifically
tailored for RSN .
In the proof of [30], the prover sends a midpoint µ = x2T/2 , which induces two sub-
statements (x, µ, T/2) and (µ, y, T/2). The verifier samples a random exponent r ← [2λ],
and computes a new statement (x′, y′, T/2) where x′ = xr · µ, y′ = µr · y, and T ′ = T/2.
In the non-interactive setting, the verifier can then simply check (x′)2T/2 = y′ itself.
In terms of efficiency, this protocol only cuts down the running time of the verifier by a
factor of 2. [11] show how to reduce this to an T/k + 1-time verifier for any k ≥ 0 by
having the prover sending k evenly spaced midpoints.
It’s easy to see that if (x, y, T) is valid, then so is (x′, y′, T ′). Soundness follows since if
(x, y, T) is invalid, then (x′, y′, T ′) becomes valid only with probability at most O(1/s),
where s is the size of the smallest subgroup of Z⋆

N . If N is a product of safe primes, then
s = 2λ, and the protocol is statistically sound. Block et al. [4] show how to adapt this
protocol, at the cost of O(λ) multiplicative overhead in communication, to be statistically
sound for any multiplicative group.

ITC 2023

4:22 The Cost of Statistical Security in Proofs for Repeated Squaring

FS-style arguments. We can get non-interactive proofs by applying the Fiat-Shamir
(FS) heuristic [12] to the public-coin, interactive variants of the sumcheck-style proofs
above. Again, we focus on the protocol of Pietrzak [30] for sake of comparison.
The FS heuristic generates the verifier’s randomness in each round by applying a (suffi-
ciently random) hash function on the transcript of the protocol so far. Hence, the prover
can generate all of its messages without needing to interact with the verifier, resulting in
a non-interactive proof.
In the case of [30], the prover generates an initial midpoint µ1 = x2T/2 , then hashes µ1
(along with the statement) to get a random value r1 ∈ [2λ]. The prover can then compute
(x′, y′, T/2) itself as above. At this point, P compute a second midpoint µ2 = (x′)2T/4 ,
generate randomness r2 using the hash function, and continue this process r times until
it generates a statement (x̂, ŷ, T ′) where T ′ = T/2r that the verifier can check directly. If
r = log T , then T ′ = O(1), resulting in an efficient verifier. The prover needs to send r

group elements in this protocol, so this requires Ω(log T · λ)-bits of communication in
total.
In terms of security, we note that, even when modeling the hash function h as a random
function, the resulting protocols are only computationally sound. An unbounded prover
that can query the random oracle arbitrarily can generate cheating proofs for false
statements. However, there is a recent line of work (see e.g. [26, 22, 3]) showing how
to securely instantiate hash functions for different sumcheck-style protocols from more
standard assumptions. Most relevant to us is the work of Bitansky et al. [3] that
instantiates the FS-heuristic for the interactive proof of [4] for RSN assuming only
(polynomially hardness) LWE using the hash function of [20].
Wesolowski’s argument. Wesolowski [41] gave an extremely efficient non-interactive
proof for RSN where the prover sends a single group element and the verifier computes
only O(λ) squares. In this protocol, the verifier first samples a random λ-bit prime ℓ (or
is sampled using a random function as in the FS-heuristic), and the prover sends an ℓth
root of y, π = x⌊2

T /ℓ⌋. The verifier then accepts iff y = πℓ · xc for c = 2T mod ℓ.
The computational soundness of this protocol relies on a new “adaptive root assumption”,
which says that the prover cannot compute an ℓth root of a group element for a random
prime ℓ. Aside from this assumption being relatively new, this protocol is broken if the
prover knows the factorization of N . Namely, given the order of the group, the prover can
break the adaptive root assumption. This means that the protocol additionally requires
a strong assumption on the setup used to generate N as well. We note that this style of
assumption is not required for the computational soundness for the FS-style arguments
mentioned above.

C Extension to General Hidden Order Groups

Let G be any finite, abelian, multiplicative group. For any λ ∈ N, we let GroupGen(1λ) be
an algorithm that outputs some group of size [2λ, 2λ + 1) such that it is believe that it is
hard to compute the order of a random group G← GroupGen(1λ). Any such group G must
be finitely generated, so there exist elements g1, . . . , gs such that every h ∈ Z⋆

N is equal to∏s
i=1 g

h|i
i , where h|i ∈ Z is the ith component of h. We use ord(G) to denote the size of the

group, and ord(g) to denote the minimum c such that gc = 1. Borrowing notation from Z⋆
N ,

we use Carm(G) to denote the maximum value of ord(g) for any g ∈ G. In particular, there
must exist some g ∈ G such that ord(g) = Carm(G).

C. Freitag and I. Komargodski 4:23

The proof of Theorem 4 goes through by considering an arbitrary group G. We refer to
the full version of the paper for more details.

▶ Corollary 9. Let λ ≥ 2, T ∈ N, k : N→ N, δ, ϵ : N→ [0, 1], G ∈ Supp
(
GroupGen(1λ)

)
, and

(P, V) be a k-element straight-line generic-group proof system for the function fG,T (x) =
x2T ∈ G with soundness error δ. For any (st, π1, . . . , πk(λ)) ∈ Supp

(
P (1λ,G, T, x, fG,T (x))

)
.

If

Pr
ρ

[
ParTimeV (1λ,G, T, st) <

T

(k(λ) + 1) − log(k(λ) + 1)
]
≥ max(2δ(λ), ϵ(λ)),

then there exists a standard model probabilistic poly(λ, k(λ), T, 1/ϵ(λ)) ·TimeV (1λ,G, st) time
algorithm A such that

Pr
[
c← A

(
1λ,G, k, T, st, 1/ϵ(λ)

)
: ord(G) divides c, c ̸= 0

]
≥ 1− 2−λ.

ITC 2023

Interactive Non-Malleable Codes Against
Desynchronizing Attacks in the Multi-Party Setting
Nils Fleischhacker #

Ruhr-Universität Bochum, Germany

Suparno Ghoshal #

Ruhr-Universität Bochum, Germany

Mark Simkin #

Ethereum Foundation, Aarhus, Denmark

Abstract
Interactive Non-Malleable Codes were introduced by Fleischhacker et al. (TCC 2019) in the two party
setting with synchronous tampering. The idea of this type of non-malleable code is that it “encodes”
an interactive protocol in such a way that, even if the messages are tampered with according to
some class F of tampering functions, the result of the execution will either be correct, or completely
unrelated to the inputs of the participating parties. In the synchronous setting the adversary is able
to modify the messages being exchanged but cannot drop messages nor desynchronize the two parties
by first running the protocol with the first party and then with the second party. In this work, we
define interactive non-malleable codes in the non-synchronous multi-party setting and construct
such interactive non-malleable codes for the class Fs

bounded of bounded-state tampering functions.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Mathematics
of computing → Coding theory

Keywords and phrases non-malleability, multi-party protocols

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.5

Funding Nils Fleischhacker and Suparno Ghoshal were supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2092
CASA – 390781972.

1 Introduction

There is a long line of research that aims to make communication resilient to tampering,
starting with error correcting codes. Error correcting codes allow a sender to encode a
message m into a codeword c, such that a receiver can always recover the message m even
from a tampered codeword c′ as long as the tampering is done in some restricted way.
Specifically, the class of tampering functions tolerated by traditional error correcting codes
are those that erase or modify at most a constant fraction of the symbols in codeword c. If
the tampering function, however, behaves in any other way, there is no longer any guarantee
on the output of the decoding algorithm. Error detecting codes are a relaxation that allows
the decoder to also output a special symbol ⊥ when m is not recoverable from c′. But these
codes, again, cannot tolerate, i.e. will decode incorrectly when tampered with, many simple
tampering functions such as a constant function.

Dziembowski, Pietrzak, and Wichs [30] introduced a further relaxation which they called
non-malleable codes (NMC). Very informally, an encoding scheme (Enc, Dec) is an NMC
for a class of tampering functions, F , if the following holds: given a tampered codeword
c′ = f(Enc(m)) for some f ∈ F , the decoded message m′ = Dec(c′) is either the original
message m or completely unrelated to m. I.e., the tampering function can only “destroy” the

© Nils Fleischhacker, Suparno Ghoshal, and Mark Simkin;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 5; pp. 5:1–5:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@nilsfleischhacker.de
https://orcid.org/0000-0002-2770-5444
mailto:suparno.ghoshal@rub.de
https://orcid.org/0000-0002-3675-1629
mailto:mark.simkin@ethereum.org
https://orcid.org/0000-0002-7325-5261
https://doi.org/10.4230/LIPIcs.ITC.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

information being transferred, but not modify it in a meaningful way. Obviously, NMCs
can still not exist for the set of all tampering functions Fall. To see this, consider the
tampering function that retrieves m = Dec(c), chooses a message m′ related to m and
encodes c′ = Enc(m′). This tampering trivially defeats the requirement above. In light of
this observation, a rich line of works has dealt with constructing non-malleable codes for
different classes of tampering attacks (see Section 1.3 for a discussion).

Non-malleable codes have the obvious advantage that we can obtain meaningful guarantees
for larger classes of tampering functions (compared to error correcting codes) and they have
also found a number of interesting applications in cryptography such as tamper-resilient
cryptography [30, 46, 33, 34]. They have also been useful as a building block in constructing
non-malleable encryption [23], round optimal non-malleable commitments [39], and non-
malleable secret sharing schemes [37, 38, 7].

Interactive Coding

Traditional codes, whether error correcting, error detecting or non-malleable are only con-
cerned with the scenario where a sender sends a single message to a receiver. Interactive
Coding, introduced by Schulman [49, 50, 51], generalizes (error correcting) codes to arbitrary
interactive protocols between two or more [48] parties. Consider the following scenario: n

parties, each with their own input, are running an interactive protocol to perform some task
involving their inputs, such as computing a joint function on them. Now, say an adversary
can get access to their communication channels and tamper with the messages being sent in
the protocol. An interactive code for a class of tampering functions F is essentially a wrapper
around the protocol that would guarantee that, as long as the tampering is performed using
a function f ∈ F , the protocol will conclude correctly and all participants will be able to
recover their correct output.

Interactive Non-Malleable Codes

In interactive coding, just as in the case of error correcting codes, there are strong limits on
which classes of tampering can be dealt with. To achieve meaningful guarantees for larger
classes of tampering functions Fleischhacker et al. [36] introduced the notion of interactive
non-malleable codes (INMC). Just as interactive coding generalizes error correcting codes,
INMCs generalize NMCs, by encoding “active communication” instead of “passive data”.
An INMC is supposed to give a similar guarantee as an NMC. Informally, that means that
the participants of the protocol should either be able to recover the correct output from the
protocol or the correct output would be completely “destroyed” and the participants would
recover something completely unrelated to their inputs. Fleischhacker et al. in fact define
two seperate notion of non-malleability, weak non-malleability only requires the outputs to be
unrelated from other parties’ inputs, while strong non-malleability requires the outputs to be
unrelated even to the party’s own input. We are only interested in the strong non-malleability
notion, which we will simply call non-malleability. It turns out that strong non-malleability
somewhat counterintuitively actually implies error detection in the interactive case.

Fleischhacker et al. [36] define three classes of tampering functions, bounded-state tam-
pering, a variation of split-state tampering, and sliding-window tampering. For each class
they give a construction of a strongly non-malleable INMC.

However, both the definitions and the constructions are limited, because they only apply
to the two party setting and they only consider synchronous tampering. Consider a protocol
between two parties, Alice and Bob. In the synchronous setting, when Alice sends a message

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:3

m to Bob, the tampering function can arbitrarily modify m, but it must then forward it to
Bob without further delay. I.e., at all times, even in a tampered execution of the protocol,
Alice and Bob remain in sync and the tampering function can not choose to, e.g., first finish
the protocol with Alice, before later resuming the communication with Bob.

When considering desynchronization between parties in an interactive protocol we need
to consider how protocols are modeled. As pointed out by Braverman et al. [13] there are
essentially two paradigms for protocols without fully synchronized parties. In a clock-driven
model, each party has a clock and wakes up with each clock tick, checks for incoming
messages, performs some computation, and potentially send messages to the other parties.
Here desynchronization can occur because the different parties’ clocks may be mismatched
or skewed. In a message-driven model, the parties sleep until they receive a new message,
which triggers them to wake up and perform some action. Here desynchronization can occur
because messages are dropped causing one party to be ahead in the protocol. The model for
desynchronization considered in this paper is of the latter kind. I.e., parties in our model are
purely activated by receiving messages and have no sense of time, i.e., they do not notice
how long they may have been asleep. This strengthens the possible attacker, since it allows
for even the most extreme forms of desynchronization.

1.1 Results and Technical Overview
In this work, we aim to remedy the shortcomings of the previous work by Fleischhacker et
al. [36]. In Section 3 we introduce new definitions for arbitrary (potentially desynchronizing)
tampering with interactive protocols between n ≥ 2 parties, define interactive non-malleability
and formalize the class of bounded-state tampering functions. In Section 5 we construct an
INMC for bounded-state tampering functions.

The “Obvious” Solution

When faced with the task of constructing an interactive non-malleable code it may seem
tempting to directly apply the huge body of work around regular non-malleable codes and
try to build an INMC by simply applying an NMC on a per-message basis. While we might
not get guarantees against the same class of tampering functions, we might still hope to
get some useful guarantees. Sadly, this is not the case for general protocols. Consider a
protocol between Alice and Bob, where Alice has input (x1, x2) and Bob has no input. In
the protocol, Alice first sends x1 to Bob, Bob replies with some arbitrary message and then
Alice sends x2. At the end Alice outputs nothing and Bob outputs (x1, x2).

If we encode the messages in this protocol individually, a tampering function can simply
leave all the messages related to x1 intact and replace the messages related to x2 with
constant messages that will decode to some x′

2, causing Bob to output (x1, x′
2), an output

very much not unrelated (x1, x2). This attack works for any class of tampering functions
that allow to tamper with the entire message, no matter how restrictive.

Technical Overview
On a technical level, our construction is heavily inspired by the bounded-state INMC of [36]
and follows the same basic idea: At the beginning of the protocol, each pair of parties runs a
key-exchange protocol that is secure against a bounded state attacker with full control of the
communication channel. Once the key material has been successfully exchanged, the parties
will engage in the underlying protocol while encrypting all messages with an information
theoretically secure encryption scheme and authenticating each message with an information
theoretically secure message authentication code.

ITC 2023

5:4 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

However, since [36] was restricted to two parties and worked in a strictly synchronized
setting, it is unsurprising that directly lifting their protocol to the multi-party unsynchronized
setting causes it to fail in several ways. The key-exchange of [36] works as follows: The
two parties P1, P2 each choose random strings α1, β1 and α2, β2 of sufficient length. They
then send these in alternating order, use a 2-non-malleable extractor to agree on a key
k := nmExt(α1, β1) ⊕ nmExt(α2, β2) and go on to exchange key-confirmation messages to
confirm that both parties have received the same key. Once we allow the tampering function
to desynchronize the two parties this key exchange becomes trivially broken. Consider the
tampering function f that simply ignores P2 and their messages. Instead, when P1 sends
α1, the tampering function immediately sends back α1 and likewise for β1. Note that this
attack works, even though P1 will now receive α2 in the “wrong round”. This is because, as
discussed above, we work in a purely message-driven model where P1 does not notice how
much time has passed between sending α1 and receiving α2. This means that P1 will now
derive the constant key nmExt(α1, β1)⊕ nmExt(α1, β1) = 0κ. This key is of course trivially
known to the tampering function in future rounds meaning the tampering function can
simply engage in the underlying protocol pretending to be P2 with some arbitrary input y′ of
its own choice. If the protocol is meant to evaluate a function g on the joint inputs, P1 will
now output g(x, y′) which is in general neither the correct result nor independent of (x, y).

To fix this problem, we split each bidirectional communication channel into two unidi-
rectional channels and negotiate separate keys. The two parties still choose random strings
α1, β1 and α2, β2 of sufficient length and send them in separate messages. However the
parties agree on two separate keys k1 := nmExt(α1, β1) and k2 := nmExt(α2, β2). Each party
Pi then uses ki to encrypt messages sent to the other party and to verify the authentication
tags on messages received from the other party. This way, each party always uses a key that
is known to be untampered to perform the security critical operations.

It is still critical, that keys are confirmed and bound to a specific channel. If keys are
not explicitly confirmed, a tampering function could replace one of the keys, say k2 without
any of the parties realizing. If P2 would now send a message to P1, this message would be
authenticated using k1 which was not tampered with, meaning P1 would accept it. However
they would then go on to decrypt the message with an incorrect key k′

2. This would likely
result in P1 passing a random string to the underlying protocol and there is no guarantee
how the underlying protocol would behave in that case. If the key was not explicitly bound
to a specific channel, a tampering function could potentially “swap” two parties. Say there’s
a protocol where P3 and P2 do not communicate with one another but do communicate with
P1. The tampering function could swap all messages from the channel between P1 and P2 to
the channel between P1 and P3 and vice versa. If P2 and and P3 behave identically in the
protocol and never explicitly identify themselves, this would lead P1 to output g(x1, x3, x2)
which again is obviously neither correct nor independent of the original input (x1, x2, x3) in
general.

To prevent all these and other problems introduced by the existence of multiple parties
and the ability of the tampering function to desynchronize the parties each message is always
authenticated together with the identifier of the channel it is being sent on and the message
counter.

Different Message Topologies

The INMC for bounded-state tampering functions presented in Section 5 is still somewhat
restricted in the sense that it can only directly be applied to protocols with a fixed message
topology. This means the message flow of the protocol is required to be known is a priori and

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:5

has to be independent of inputs and randomness. I.e., when party Pi is invoked for the rth
time, we a priori know from which parties they should be receiving messages and to which
parties they should be sending.

Restricting ourselves to protocols with a fixed message topology makes our live significantly
easier, as it allows us to sidestep many subtle issues. The most obvious problem would be an
input dependent message topology. If, whether Pi sends a message to Pj when invoked for
the rth time depends on the value xi, we can easily come up with ways to leak xi to the
tampering function, which would make non-malleability impossible. A more subtle issue are
protocols that misbehave if messages are reordered or dropped. Consider a protocol between
two parties. In an untampered execution P1 would receive a message from P2 in its first
invocation. At the end both parties output 0. Now we can modify this protocol to misbehave
if the messages from P2 never arrives. In this case P1 could simply output x1, which is
neither correct nor unrelated to (x1, x2). If we, however, know which messages should be
arriving in which order, we can abort any party that did not receive messages as specified in
the protocol preventing them from misbehaving.

Obviously, restricting the INMC to protocols with a fixed message topology limits its
applicability at least in theory. However, we show in Section 4 that any protocol (with a
fixed upper bound on the number of rounds) can be transformed into a protocol with a fixed
message topology, thereby extending the applicability of the INMC to (almost) arbitrary
protocols. The transformation is fairly straightforward and simply involves sending dummy
messages when the original protocol decides not to send a message. The transformation
naturally comes with a certain blowup in the communication complexity.

1.2 Instantiating the Construction
To instantiate the protocol the main question is how to instantiate the 2-source non-malleable
extractor. Before going into details of the instantiation of the non-malleable extractor one
needs to understand the amount of key material that will be required by each party in order
to carry out the protocol execution efficiently. As per the construction of our protocol every
party will use the 2-source non-malleable extractor to extract an authentication key and an
encryption key per party it communicates with. The length of those keys will depend on
the number of messages the party expects to exchange with each other party. For a rough
ballpark estimate, let us assume that the encoded protocol is between n parties, that each
party sends the same number r of messages to every other party, and that those messages
are all of length ℓ ≥ λ.

From the two sources sent from party A to party B, both parties must thus extract a
key for a statistically unforgeable (r + 1)-time MAC and a key for stateful r-time encryption
scheme with perfect indistinguishability. Following, Remark 2 and Remark 4 they have to
extract at least (2r + 2) · ℓ bits from each pair of sources. For a 2-source non-malleable
extractor with source length κnm we will later see, that the sources will have min-entropy
at least κnm − (s + 3nλ). To get the lowest possible overhead, we will need a 2-source non-
malleable extractor that can tolerate sources with the lowest possible min-entropy. The best
currently known extractor in this regard was described in a recent paper by Xin Li [44]. The
description of the construction, as is common for the literature on extractors, unfortunately
only makes asymptotic statements about the extractor. It is thus hard to find out what the
exact concrete source length of the extractor needs to be. We can however make an estimate
on the best possible overhead achievable with the extractor from [44].

The construction described in Theorem 6.3 of [44] requires sources with min-entropy
(2/3 + γ) · κnm for the first source and k with k ≥ C log κnm for the second source, where
0 < γ < 1/3 can be chosen arbitrarily and C > 1 is some “large enough” constant. For large

ITC 2023

5:6 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

enough κnm we can choose k = (2/3 + γ) · κnm which is convenient as the guaranteed min-
entropy of the sources will be balanced in our application. The absolute best-case scenario for
Li’s extractor, depending on its exact instantiation, is that the output length is 9·10−6·κnm and
therefore we must have that κnm > (106/9) · (2r +2)ℓ. However, this is not the only condition.
Additionally, we need to consider that we must have κnm− (s+3nλ) ≥ (2/3+γ) ·κnm for the
non-malleability guarantee to apply. Therefore, we must also have κnm ≥ (s+3nλ)/(1/3+γ).
Which of these two bounds is larger depends on the the exact parameters of the protocol and
the size of the tampering function’s state. However clearly even in the best case scenario
the current state of the art makes the encoded protocol incur a multiplicative overhead of
roughly 440, 000. It is thus clear that, which the current state of the art, our construction is
chiefly of theoretical interest.

1.3 Related Works
To the best of our knowledge, the only previous work on non-malleable codes in the interactive
setting has been the already mentioned work of Fleischhacker et al. [36]. In concurrent work
Lin [45] used the results of [36] to construct non-malleable multi-party computation. However,
Lin’s results are largely orthogonal to our work. In particular the tampering model is weaker.
E.g., while we allow the tampering function to tamper jointly on all parties’ concurrent
messages, Lin requires a fixed execution order and only allows tampering based on past
messages. At the same time Lin attempts to achieve not merely a non-malleable encoding but
non-malleable MPC, where the same party who controls the tampering function also controls
a number of corrupted parties. Overall this means that the results of [45] are incomparable
even if the used techniques are similar.

In contrast, non-malleable codes in the non-interactive setting have been studied ex-
tensively for a large variety of different classes of tampering functions. The most ex-
tensively studied class in the non-interactive setting are certainly split-state tampering
functions [46, 29, 3, 19, 18, 2, 20, 42, 40, 41, 4]. But other classes of tampering functions have
been studied such as tampering circuits of limited size or depth [35, 10, 17, 11, 8], tampering
functions computable by decision trees [12], memory-bounded tampering functions [32] where
the size of the available memory is a priori bounded, bounded polynomial time tampering
functions [9], bounded parallel-time tampering functions [26], and non-malleable codes against
streaming tampering functions [11]. Non-malleable codes were also generalized in several
ways, such as continuously non-malleable codes in [33, 25, 23, 47, 31, 24, 4] and locally
decodable and updatable non-malleable codes [28, 15, 27].

As a general rule non-malleable codes are usually considered in the information theoretic
setting. However, there has also been some work in the computational setting. [1, 5, 6, 11]

2 Preliminaries

In this section we introduce our notation and recall some definitions needed for our construc-
tions and proofs.

2.1 Notation
We denote the security parameter by λ ∈ N. For an integer n ∈ N, denote [n] = {1, . . . , n}.

Let M be a matrix. We denote by rowi(M) the i-th row vector and by colj(M) the
j-th column vector of M . If M is square, we denote by diag(M) the vector representing
the main diagonal of M .

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:7

Let S and S′ be sets, let P : S → {true, false} be a predicate, let f : S → S′ be a function,
and let L = (x1, . . . , xℓ) ∈ Sℓ be a list. We denote by

(
f(x) | x ∈ L ∧ P (x)

)
the list that

contains f(xi) iff P (xi) = true and preserves the relative order of the elements.
For x′ ∈ S we denote by L◦x′ the list (x1, . . . , xℓ, x′), i.e. the list resulting from appending

x′ to L. Further, we write Li to denote the ith entry of L and L≤i to denote the length i

prefix of L, i.e. L≤i = (x1, . . . , xi).
Let D be some distribution over S. We denote by f(D) the distribution over S′ sampled by

first sampling x according to D and then applying f to x. For a pair D1, D2 of distributions
over a domain S, we denote their statistical distance by

SD(D1, D2) = 1
2

∑
v∈S

∣∣∣Pr[x← D1 : x = v]− Pr[x← D2 : x = v]
∣∣∣.

If SD(D1, D2) ≤ ϵ, we say that D1, D2 are ϵ-close. For an arbitrary set S we define the
functions replace : (S ∪ {same})× S → S and indicate : S → {same,⊥} as

replace(x, y) :=
{

y if x = same
x otherwise

and indicate(x) :=
{

same if x ̸= ⊥
⊥ otherwise

We extend replace and indicate to n-tuples in the natural way by applying them component-
wise, i.e. replace(x, y) := (replace(x1, y1), . . . , replace(xn, yn)) and indicate(x) := (indicate(x1),
. . . , indicate(xn)).

2.2 Encryption and Message Authentication Codes
Our constructions relies exclusively on information theoretically secure primitives, specifically
perfectly indistinguishable encryption and statistically secure message authentication codes.
For notational convenience we formalize encryption as stateful which allows us not burden
the description of the protocol with keeping track of key-usage.

▶ Definition 1 (Stateful q-time Encryption with Perfect Indistinguishability). A correct stateful
q-time encryption scheme E for message space {0, 1}ℓ and keyspace {0, 1}κ consists of a
pair of deterministic stateful algorithms (Enc, Dec), such that for all keys k ∈ {0, 1}κ and all
messages (m1, . . . , mq) ∈ ({0, 1}ℓ)r we have that for c1 := Enc(k, m1), . . . , cq := Enc(k, mq)
and m′

1 := Dec(k, c1), . . . , m′
q := Dec(k, cq) it holds that mi = m′

i for all i ∈ [r].
Let LoR be the stateful “left-or-right” algorithm defined as LoR(k, b, m0, m1) := Enc(k, mb)

for the first q invocations and as ⊥ afterwards. A stateful q-time encryption scheme is
perfectly indistinguishable if for any unbounded algorithm A it holds that

Pr
[
k ← {0, 1}κ : ALoR(k,0,·,·) = 0

]
= Pr

[
k ← {0, 1}κ : ALoR(k,1,·,·) = 0

]
For convenience we extend the notation of encryption schemes to vectors in the natural way
by applying the algorithm component wise. I.e., for m ∈ ({0, 1}ℓ)n and k ∈ ({0, 1}κ)n we
write c := Enc(k, m) to denote the vector consisting of ci := Enc(ki, mi). Similarly we write
m′ := Dec(k, c) for the vector consisting of m′

i := Dec(ki, ci).

▶ Remark 2. A stateful q-time encryption with perfect indistinguishability can easily be
instantiated using the one-time pad where the key k is split into keys k1, . . . , kq ∈ {0, 1}ℓ and
ci is computed as mi ⊕ ki. The perfect indistinguishability follows from the regular perfect
secrecy of the one-time pad.[52] In this case κ = qℓ.

ITC 2023

5:8 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

▶ Definition 3 (Statistically Unforgeable q-time MACs). A q-time message authentication
code M for message space {0, 1}ℓ and keyspace {0, 1}κ consists of a pair of deterministic
algorithms (MAC, Vf), such that for all keys k ∈ {0, 1}κ and all messages m ∈ {0, 1}ℓ it holds
that Vf(k, m, MAC(k, m)) = 1.

Let n ∈ N and let M̃AC be the algorithm defined as M̃AC(k1, . . . , kn, i, m) := MAC(ki, m).
A q-time message authentication code is ϵ-unforgeable, if for all unbounded algorithms A it
holds that

Pr
[

k1, . . . , kn ← {0, 1}κ

(i, m, t)← AM̃AC(k1,...,kn,·,·)()
:
Vf(ki, m, t) = 1
∧ (m, t) /∈ Qi ∧ |Qi| ≤ q

]
≤ ϵ

where Qi denotes the set of message-answer pairs, queried by A for index i.

Similar to encryption schemes, we extend the notation of message authentication codes
to vectors in the natural way by applying the algorithm component wise. I.e., for m ∈
({0, 1}ℓ)n and k ∈ ({0, 1}κ)n we write t := MAC(k, m) to denote the vector consisting of
ti := MAC(ki, mi).

▶ Remark 4. Statistically unforgeable q-time MACs can be instantiated using any family of
q +1-wise independent functions such as the family of degree q polynomials over F2max{ℓ,λ} [53].
In this case κ = (q + 1) ·max{ℓ, λ} and ϵ = 2− max{ℓ,λ}.

2.3 2-Non-Malleable Extractors
Our construction also makes use of 2-non-malleable extractors. These were first defined by
Cheraghchi and Guruswami [19, 21] but constructing them was left as an open problem. The
definition was finally instantiated by Chattopadhyay, Goyal, and Li [16]. Such an extractor
allows to non-malleably extract an almost uniform random string from two sources with a
given min-entropy that are being tampered by a split-state tampering function. We closely
follow the definition from [16].

▶ Definition 5 (2-Non-Malleable Extractor). A function nmExt : {0, 1}n×{0, 1}n → {0, 1}m is
a 2-non-malleable extractor for sources with min-entropy k < n and with error ϵ if it satisfies
the following property: If X, Y are independent sources of length n with min-entropy k and
f = (f0, f1) is an arbitrary 2-split-state tampering function, then there exists a distribution
Df over {0, 1}m ∪ {same}, such that

SD
((

nmExt(X, Y), nmExt(f0(X), f1(Y))
)
,
(
Um, replace(Df , Um)

))
≤ ϵ

where both Um refer to the same uniform m-bit string.

▶ Remark 6. The required 2-non-malleable extractor can be instantiated with the construction
of Chattopadhyay Goyal and Li [16] or a number of other construction. [42, 43, 22].

3 Interactive Protocols and Tampering Model

We consider protocols Π between n parties P1, . . . , Pn for evaluating functionalities g =
(g1, . . . , gn) of the form gi : X1 × · · · × Xn → Yi, where Xi, Yi are finite domains. Each
party Pi holds an input xi ∈ Xi and randomness ωi ∈ Ωi and the goal of the protocol is to
interactively evaluate the functionality, such that at the end of the protocol party Pi outputs
gi(x1, . . . , xn) ∈ Yi.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:9

Formally, an interactive protocol Π between n parties can be described either using
interactive Turing machines, or using next-message functions. The two formalizations
are equivalent up to a slight computational overhead. We will switch between the two
formalizations whenever this is convenient for exposition.

Interactive Protocols as Interactive Turing Machines

In this formalization an interactive protocol Π between n parties is described by an n-tuple
of interactive Turing machines Pi. Each interactive Turing machine Pi has an input tape
containing xi, a random tape containing ωi, an internal work tape, as well as an incoming
communication tape and an outgoing communication tape for each party Pj with j ̸= i and
an output tape.

Interactive Protocols as Next Message Functions

In this formalization an interactive protocol Π between n parties is described by a an n-tuple
of “next message” functions πi and an n-tuple of output functions outi. The next message
function πi takes as input the view of Pi, i.e., the input xi, the randomness ωi, and the
sequence of message vectors received by Pi thus far and outputs the vector si ∈ {0, 1}∗ ∪{⊥}
of messages to be sent by Pi. The output function outi takes as input the final view of Pi,
i.e., xi, ωi, and received message vectors and outputs Pi’s protocol output.

Equivalence of Formalizations

The two formalizations are equivalent up to a slight computational overhead. To see this
consider the following two simple conversions: Given an interactive Turing machine Pi, the
equivalent next message function πi can be computed on input xi, ωi, mi by simulating the
Turing machine on input xi and randomness ωi, writing the received messages for each round
on the appropriate incoming communication tapes until the current round is reached. The
content of the outgoing communication tapes can then be output as si. Similarly, given a
next message function πi, the equivalent interactive Turing machine Pi will simply store
the contents of its incoming communication tapes on its internal work tape, evaluate πi on
its input xi, randomness ωi and all incoming messages, and write the output of πi to its
outgoing communication tapes.

3.1 Correctness and Encodings
We denote by Π(x) the joint distribution of the outputs of an honest execution of the protocol
Π using inputs x and uniformly sampled randomness ω. Further, we denote by g(x) the
vector (g1(x1, . . . , xn), . . . , g1(x1, . . . , xn)).

▶ Definition 7 (Correctness). A protocol Π, is said to ϵ-correctly evaluate a functionality g =
(g1, . . . , gn) if an untampered execution of the protocol correctly computes g with probability
at least 1− ϵ. I.e., for all valid input vectors x it holds that Pr[y ← Π(x) : y = g(x)] ≥ 1− ϵ,

where the probability is taken over the uniform choice of the random tape of all parties.

▶ Definition 8 (Encoding of an Interactive Protocol). An encoding E of n-party interactive
protocols is defined by n interactive oracle machines Enci.

Let Π be an arbitrary interactive n-party protocol that ϵ-correctly evaluate a functionality g.
The encoded protocol is then the interactive n-party protocol between interactive Turing
machines (Q1, . . . , Qn) defined as follows: On input xi, Qi samples uniform randomness ωi,

ITC 2023

5:10 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

initiates the oracle Ox,ω′ = Pi(xi; ωi) and then executes EncOx,ω′

i (), giving it direct access to
all communication tapes. Once EncOx,ω′

i () terminates with some output y, Qi also outputs y.
E is a δ-correct protocol encoding for Π if for all inputs x, the protocol E(Π) = (Q1, . . . , Qn)
ϵ + δ-correctly evaluates the functionality g.

3.2 Tampering Model
The transcript of a protocol executed under tampering needs to specify for each round of
execution both the messages sent by each party and the messages received by each party.
Remember that, due to the presence of the tampering function, the messages received are
not necessarily related in any way to the messages sent.

We consider a scenario in which each party has a point-to-point channel to each other
party, but not to itself. I.e., a protocol among n parties is executed over a complete directed
communication graph (excluding loops) with n nodes Pi.

For each round, the transcript needs to label each edge (Pi, Pj) for i ̸= j in the graph
with the message Pi sent to Pj and the message Pj received from Pi, the two of which need
not be related. We will denote this with two n× n matrices S and R of labels per round of
execution, where a label is either an arbitrary bitstring or the special symbol ⊥ denoting
that no message was sent or received respectively.

▶ Definition 9 (Transcripts). Let M = {0, 1}∗ ∪{⊥} be the set of possible labels for the edges
of the communication graph. The set of possible transcripts is then the set of lists of pairs of
matrices Si, Ri ∈Mn×n such that the diagonal of both matrices only contains ⊥. I.e.,

T =
({

M ∈Mn×n
∣∣ diag(M) ∈ {⊥}n

}2
)∗

.

For any transcript τ =
(
(S1, R1), . . . , (Sℓ, Rℓ)

)
, rowj(Si) denotes the vector of messages

sent by Pj in round i of the execution, while colj(Ri)⊤ denotes the vector of messages received
by Pj in round i of the execution.
We denote by TransΠ(x, ω) the function mapping the input vector x along with the randomness
ω to the transcript of an honest execution of Π with inputs x and randomness ω.

A party’s view of the transcript consists exactly of the vectors of messages it receives. In
particular, if a party does not receive any messages in a particular round of the execution,
this round is not included in the party’s view. This models that a party is not necessarily
capable of detecting that desynchronization happens and allows general tampering functions
to arbitrarily desynchronize different parties during protocol execution.

▶ Definition 10 (Views). Let τ be a transcript. The corresponding view of party Pi is then
defined as Vi(τ) =

(
coli(R)⊤

∣∣ (S, R) ∈ τ ∧ coli(R)⊤ ̸∈ {⊥}n
)
.

The interactive non-malleable code presented in Section 5 is restricted to protocols with
a fixed message topology. This means that the number of messages exchanged over each
channel is fixed, the expected relative ordering of all the messages received by a single party is
a priori known, and whether or not a party sends a message along a communication channel
does not depend on their input or their received messages. I.e., the “structure” of each vector
in a party’s view as well as the output vector in any particular round of execution is fixed in
an untampered execution. We define this formally as follows.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:11

▶ Definition 11 (Fixed Message Topology). An interactive protocol Π with n parties defined by
next message functions πi and output functions outi is said to have a fixed message topology,
if there exists a function µ : [n]×N→ {0, 1}n ×{0, 1}n, such that for all vectors of inputs x,
all randomness vector ω and the transcript τ of an honest untampered execution of Π on x

with ω, all i ∈ [n], and all r ∈ [|Vi(τ)|] it holds that µ(i, r) = (v′, s′), where

v′
j :=

{
0 if Vi(τ)r,j = ⊥
1 otherwise

s′
j :=

{
0 if πi(xi, ωi, Vi(τ)≤r)j = ⊥
1 otherwise

for j ∈ [n] and for all r ≥ |Vi(τ)| it holds that µ(i, r) = (0n, 0n). We further define the
function ν : [n]× [n]→ N as ν(i, j) :=

∑
r∈N µ(i, r)1,j =

∑
r∈N µ(j, r)2,i as the exact number

of messages received by party i from j during an execution of the protocol.

Let Π be a protocol with n parties defined by next message functions πi and output functions
outi. For ease of notation we define the function NextΠ which describes computation
of all messages sent during a particular round of execution depending on the protocol
specification, the vector of inputs x = (x1, . . . , xn) and the partial transcript τ ∈ T . Let
F : T ×Mn×n →Mn×n be an arbitrary tampering function. We describe execution of Π
on inputs x = (x1, . . . , xn) under tampering by F using the algorithm ExecuteΠ,F .

NextΠ(x, ω, τ)
parse τ = ((S1, R1), . . . , (Sℓ, Rℓ))
for 1 ≤ i ≤ n do

if τ = ∅ ∨ coli(Rℓ)⊤ ̸= ⊥n

si := πi(xi, ωi, Vi(τ))
else

si := ⊥n

return

s1
...

sn

ExecuteΠ,F (x; ω)
τ := ∅
S := Next(Π, x, ω, τ)
R := F (τ, S)

while R ̸= ⊥n×n

τ := τ ◦ (S, R)
S := Next(Π, x, ω, τ)
R := F (τ, S)

return
(
out1(x1, V1(τ)), . . . , outn(xn, Vn(τ))

)

Let I : T × Mn×n → Mn×n be the function defined as I(τ, S) := S. We call I the
identity tampering function. Note that the distribution Π(x) is identical to the distribution
ExecuteΠ,I(x).

▶ Definition 12 (Protocol Non-malleability). An n-party protocol Π for functionality g is
ϵ-protocol non-malleable for a family F of tampering functions if for every tampering function
F ∈ F there exists a distribution DF over {⊥, same}n such that for all x, it holds that

SD(ExecuteΠ,F (x), replace(DF , Π(x))) ≤ ϵ.

▶ Definition 13 (Interactive Non-Malleable Code). A protocol encoding E is called a (δ, ϵ)−inter-
active non-malleable code for a family F of tampering functions and a class of protocols, if for
any protocol Π of this class, E(Π) δ-correctly encodes Π and E(Π) is ϵ-protocol non-malleable
for F .

ITC 2023

5:12 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

3.3 Bounded State Tampering

We now define bounded state tampering functions for multi-party protocols. This is a natural
model in which the adversary can arbitrarily and jointly tamper with all channels, however
there exists an a priori upper bound on the size of the state they can hold. Similar classes of
adversaries have already been considered starting with the work of Cachin and Maurer [14]
which proposed encryption and key exchange protocols secure against computationally
unbounded adversaries. With respect to non-malleable codes Faust et al. [32] introduced the
notion of non-malleable codes against space-bounded tampering. Our formalization closely
follows the one of Fleischhacker et al. [36] but adapted to the multi-party case. This means
that we do not limit the size of the memory available for computing the tampering function
in each round of tampering. Instead, we only limit the size of the state that can be carried
over to the next round of tampering. I.e., an adversary in this model can jointly tamper
with all of the messages exchanged in one round of execution depending on some function of
all previously exchanged messages. But the function can only depend on up to some fixed
number of s bits of information about previous messages. This is formalized as follows.

▶ Definition 14 (Bounded State Tampering Functions). Functions of the class of s-bounded
state tampering functions F ∈ Fs

bounded for an interactive protocol are defined by a function

f : {0, 1}s ∪ {⊥} ×Mn×n → {0, 1}s ×Mn×n

The function f takes as input a previous state of the tampering function and a matrix of sent
messages and outputs an updated state and a matrix of received messages.

The full tampering function F : T ×Mn×n →Mn×n is then defined in terms of f as
seen below.

F (τ, S)
σ := ⊥
for (S′, R′) in τ

(σ, R) := f(σ, S′)
(σ, R) := f(σ, S)
return R

4 Arbitrary Message Topologies

The INMC for Bounded-state tampering functions that is introduced in Section 5 requires
the underlying protocol to have a fixed message topology. In this section we show that is is
not in general a restriction, as any protocol can be transformed protocol with a fixed message
topology. Therefore, the INMC can be applied to any protocol by first transforming it to a
protocol with a fixed message topology and then applying the INMC itself.

For this purpose we first introduce a general definition of a message topology, which for
any party and round defines the probability that messages are received or sent over each
channel, maximized over all possible inputs.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:13

▶ Definition 15 (Message Topology). Let Π be interactive protocol with n parties defined by
next message functions πi and output functions outi. The message topology of Π is defined
by a function µ : [n]× N→ [0, 1]n × [0, 1]n, such that for all i ∈ [n], and all r ∈ N it holds
that µ(i, r) = (v′, s′), where

v′
j := max

x

{
Pr

[
ω ← Ω1 × Ω2 × · · · × Ωn

τ ← TransΠ(x, ω)
: |Vi(τ)| ≥ r ∧ Vi(τ)r,j ̸= ⊥

]}

s′
j := max

x

{
Pr

[
ω ← Ω1 × Ω2 × · · · × Ωn

τ ← TransΠ(x, ω)
: |Vi(τ)| ≥ r ∧ πi(xi, ωi, Vi(τ)≤r)j ̸= ⊥

]}
for j ∈ [n].

A fixed message topology can then be seen as a special case, where µ is defined over {0, 1}
and the probabilities used in the definition are independent of the input vectors.

4.1 Transformations from Arbitrary to Fixed Message Topology
We propose three different transformations from an arbitrary message topology (AMT) to a
fixed message topology (FMT). The first transformation is very naive, resulting in a very
large blowup of the communication complexity but can be applied without any detailed
consideration to the original message topology, i.e. it does not even reference the above
definition. The second transformation considers the original message topology and will result
in a lower blowup in the communication complexity for most reasonable protocols. However,
in the worst case, for pathological examples, it can still result in the same blowup as the
naive transformation. The third transformation finally allows us to limit the blowup, even
in the worst case, but at the cost of potentially degrading the correctness of the protocol.
Throughout this section, we assume that there exists a fixed upper bound on the number
rounds the execution of a protocol may take.

4.1.1 Trivial Transformation
The simplest transformation floods the entire network in every round by sending dummy
messages whenever there’s no actual message to be sent. To reliably distinguish between
real and dummy messages, real messages are marked by a prefix identifying them as real.
Specifically, if in any round of the original protocol an actual message is sent by party Pi to
party Pj then party Pi just prepends 1 to the message and sends it to the concerned party Pj .
If on the other hand no message is sent in the original protocol a dummy message consisting
of 0 is sent to Pj . To formally describe the next-message functions of the transformed
protocol, we first define two functions addDummies and remDummies used to add and remove
the dummy messages. We define the function

addDummies : [n]× [rmax]× ({0, 1}∗ ∪ {⊥})n → ({0, 1}∗ ∪ {⊥})n

as

addDummies(i, r, m) := m′, where m′
j :=

⊥ if i = j

0 if mj = ⊥ and i ̸= j

1∥mj otherwise.1

and the function

1 Note that addDummies takes an input r which is then ignored. This will make our lives easier when we
modify the transformation going forward.

ITC 2023

5:14 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

remDummies : ({0, 1}∗ ∪ {⊥})n → ({0, 1}∗ ∪ {⊥})n

as

remDummies(m) := m′, where m′
j :=

{
⊥ if mj ∈ {0,⊥}
m′′ if mj = 1∥m′′

For ease of notation we will apply remDummies to lists of vectors, which is to be interpreted
as component-wise application. Let Π be an arbitrary ϵ-correct protocol described by next
message functions πi with an upper bound of rmax on the number of rounds. The next
message function π′

i of the naively transformed protocol can then simply be defined as

π′
i(xi, ωi, Vi) :=

{
⊥n if |Vi| ≥ rmax

addDummies(i, |Vi|, πi(xi, ωi, remDummies(Vi))) otherwise.

This trivially transformed protocol works exactly in the same way as the original protocol
with the only exception being that in every round, all channels on which the original protocol
would not have sent messages, the transformed protocol sends dummy messages and then
promptly ignores them. The protocol terminates after exactly rmax rounds. This means that
since the transformed protocol doesn’t drop any messages and the original views of the parties
can easily be reconstructed by ignoring the dummy messages. Hence it will still be ϵ-correct.
This transformation clearly serves the purpose of transforming any protocol into a protocol
with a fixed message topology. A clear downside, however, is the blowup in communication
complexity, especially if the original protocol used a rather sparse communication graph.
In every round each party starts sends messages to every other party whether they were
expecting messages or not. In the worst case, this means that the expected communication
complexity of the protocol blows up infinitely.2 But even in more reasonable protocols that
happen to use a sparse communication graph, the blowup is quite severe. Luckily we can do
a bit better at least for reasonable protocols.

4.1.2 Maintaining the Communication Graph
The overhead of the transformation can be reduced if we only flood those channels where
messages could possibly be sent. In order for that to happen we let party Pi send a dummy
message only on those channels where there’s a non-zero probability of a real message being
sent. We can achieve that if we redefine the function addDummies as follows

addDummies(i, r, m) := m′, where m′
j :=

0 if m′

j = ⊥ and µ(i, r)2,j > 0
1∥m′

j if m′
j ̸= ⊥

⊥ otherwise.

The next message function is still defined as before. Clearly, this again results in a fixed
message topology. This transformed protocol will also be ϵ-correct if the actual protocol
is ϵ-correct as no messages are dropped and the original view can be reconstructed. Even
though this transformation eliminates quite a lot of redundant messages and will result in a
much smaller blowup for many protocols run over a sparse communication graph, the worst
case blowup still remains infinite by the same argument as before.

2 An example of a pathological protocol that exhibits infinite blowup is a protocol with at most one round,
where one party sends a message with probability ζ, where ζ tends towards 0.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:15

4.1.3 Dropping Low Probability Messages

To fix this issue of an infinite blowup in the expected communication complexity we can
modify the transformation, by introducing a threshold value t and dropping all messages
that are sent with probability less than t. In order to achieve this we again redefine the
function addDummies as as

addDummies(i, r, m) := m′, where m′
j :=

0 if m′

j = ⊥ and µ(i, r)2,j > t

1∥m′
j if m′

j ̸= ⊥ and µ(i, r)2,j > t

⊥ otherwise.

This transformation only allows messages to be sent if their probability is above the threshold
probability of t. The implementation of the next message function πi remains the same for
this transformation as was for the last transformation. For this transformation potentially
degrades the correctness of the protocol. In a protocol with rmax rounds there are rmax(n2−n)
potential messages, each of which may have a probability of being sent infinitesimally less
than t. Each message that is actually sent by the underlying protocol but them blocked by
the transformation can result in the protocol computing an incorrect output. But we can
apply a union bound and get that the transformed protocol remains ϵ + trmax(n2−n)-correct.
However, this degraded correctness buys us a finite bound on the blowup of the expected
communication complexity. In the worst case, each message in the original protocol is sent
with probability exactly t, whereas it is sent with probability 1 in the transformed protocol.
Therefore, the blowup can be at most 1/t therefore allowing us to bound the blowup.

5 An INMC for Bounded-State Tampering Functions

We devise an interactive non-malleable code for bounded state tampering functions that can
be applied to any multi-party protocol Π′ with fixed message topology, i.e., to any protocol
where for every party Pi and every invocation r of the next message function πi, whether
or not a message is sent to party Pj is a priori known and does not depend on any of π′

is

inputs. The basic idea is that each pair of parties will first run a key-exchange in which they
will exchange enough key-material to the execute the original protocol encrypted under an
information theoretically secure encryption scheme and authenticated with a statistically
unforgeable MAC. Besides making sure that the tampering function cannot replay, redirect
or omit messages by binding the authentication to a specific channel and including message
counters in the authentication, the main challenge is to construct a key exchange that is
secure against a computationally unbounded but bounded state adversary. We achieve this
using a 2-non-malleable extractor. Essentially each party chooses a key by choosing two
random sources α, β which will be much longer than the bounded state of the tampering
function and extracting a key k := nmExt(α, β). They will be using this key which they
know is untampered to encrypt messages and to verify authentication tags. The two sources
α, β are then sent in seperate rounds, ensuring that they cannot be tampered jointly, except
for some amount of leakage through the state of the tampering function and potentially
conditional aborts. This leakage can be handled by reinterpreting the sources as coming
from a different distribution with slightly less min-entropy. Once the keys are exchanged,
the parties verify that the keys were not modified in transit by sending a MAC computed
over the ID of the channel with the key they received from the other party.

ITC 2023

5:16 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

CheckMsgOrder(V)
r = 0n

for j ∈ [n] \ {i} do
if V|V |,j ̸= ⊥

rj := 1
if µ(i, |V | − 3)1 ̸= r

return 0
return 1

Figure 1 The func-
tion checking the order-
ing of messages against
the fixed message topol-
ogy.

π
O′

x,ω′

i (ω, Vi(τ))
s := ⊥n

if |V | = 0
rec := 0n, sent := 0n

(αi, βi)← (({0, 1}κnm)2)n

(kenc
i , kauth

i) := nmExt(αi, βi)
s := αi

elseif |V | = 1
if ⊥ ∈ V1

abort
s := βi

elseif |V | = 2
if ⊥ ∈ V2

abort

(k̃enc
j , k̃

auth
j) := nmExt(V1, V2)

for j ∈ [n] \ {i} do

sj := MAC(k̃auth
i,j , (i, j))

else
if |V | = 3

if ⊥ ∈ V3

abort
for j ∈ [n] \ {i} do

if Vf(kauth
i , (j, i), V3,j) = 0

abort
else

m := ⊥n

if CheckMsgOrder(V) = 0
abort

else
for j ∈ [n] \ {i} do

if V|V |,j ̸= ⊥
(c, t) := V|V |,j , recj := recj + 1

if Vf(kauth
i , (c, j, i, recj), t) = 0

abort

mj := Dec(k̃enc
j , c)

s′ ← O′
x,ω′ (m)

for j ∈ [n] \ {i} do
if s′

j ̸= ⊥

c := Enc(k̃enc
i , s′

j), sentj := sentj + 1

sj := (c, MAC(k̃auth
j , (c, i, j, sentj))

return s

Figure 2 The next message function describing the INMC for bounded
state tampering functions. For the sake of readability, we write the
function as if it were stateful. I.e., in particular the variables rec and sent
retain their value accross different invocations of πi and do not need to
be recomputed.

5.1 Defining the Next Message Function

The INMC is restricted to protocols with a fixed message topology as defined in Definition 11.
Refer to Section 4 for a discussion on how arbitrary protocols can be transformed into
protocols with a fixed message topology. To formally describe the next message function
and output function of the INMC, we need an algorithm that checks whether the sequence
of messages received from the other parties involved in the protocol confirm to the fixed
message topology. The function CheckMsgOrder defined in Figure 1 allows to perform this
check. Now that we have defined the CheckMsgOrder function we are ready to define the
next message function in Figure 2. Remember, that according to Definition 8 an encoding is
specified by an oracle machine or equivalently a next message function that is defined relative
to an stateful oracle representing the next message function of the underlying protocol. The
next message function π

Oi,x,ω′

i has three phases. In the initial phase every party shares their
keys with the rest of the parties taking part in the protocol. In the next phase all of the
parties confirms their respective keys with the other parties by sending a key confirmation
value. The last phase of the execution of the next message function just deals with the

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:17

actual message exchanges that happens between all the parties taking part in the protocol Π′.
The output function outi of the INMC simply takes the view V ′ of the underlying protocol
that it can extract from it’s own view exactly as in the next message function and outputs
out′

i(x, ω′, V ′) if the view conforms to the fixed message topology or ⊥ otherwise.

▶ Theorem 16. Let Π′ be a protocol between n parties with fixed message topology, with
r = maxi,j∈[n]{ν(i, j)} and message length ℓ. If (MAC, Vf) is a statistically ϵmac-unforgeable
r +1-time message authentication code with with message length ℓ+2⌈log n⌉+⌈log r⌉ and key
length κmac, (Enc, Dec) is a perfectly indistinguishable stateful t-time encryption scheme with
message length ℓ and key length κenc, and nmExt : {0, 1}κnm ×{0, 1}κnm → {0, 1}κmac+κEnc is
an ϵnm-non-malleable 2-source extractor for sources with min-entropy at least κnm− s− 3nλ,
then Π as described by πi and outi specified above is a (0, (2n2 +n)·2−λ +(n2−n)·ϵnm +ϵMAC)-
interactive non-malleable code for Π′ for the class Fs

bounded of bounded state tampering
functions.

Due to space constraints the proof is deferred to Appendix A.

References
1 Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey,

and Manoj Prabhakaran. Optimal computational split-state non-malleable codes. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference,
Part II, volume 9563 of Lecture Notes in Computer Science, pages 393–417, Tel Aviv, Israel,
January 10–13 2016. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-49099-0_15.

2 Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable
reductions and applications. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual
ACM Symposium on Theory of Computing, pages 459–468, Portland, OR, USA, June 14–17
2015. ACM Press. doi:10.1145/2746539.2746544.

3 Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of
Computing, pages 774–783, New York, NY, USA, May 31 – June 3 2014. ACM Press. doi:
10.1145/2591796.2591804.

4 Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obremski, and Erick Purwanto.
Continuous non-malleable codes in the 8-split-state model. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture
Notes in Computer Science, pages 531–561, Darmstadt, Germany, May 19–23 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-17653-2_18.

5 Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes against bit-wise tampering and permutations. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part I,
volume 9215 of Lecture Notes in Computer Science, pages 538–557, Santa Barbara, CA, USA,
August 16–20 2015. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-47989-6_26.

6 Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. A rate-optimizing compiler for non-malleable codes against bit-wise tampering
and permutations. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th
Theory of Cryptography Conference, Part I, volume 9014 of Lecture Notes in Computer Sci-
ence, pages 375–397, Warsaw, Poland, March 23–25 2015. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-46494-6_16.

7 Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable secret shar-
ing. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part I, volume 11476 of Lecture Notes in Computer Science, pages 593–622, Darmstadt, Ger-
many, May 19–23 2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-17653-2_20.

ITC 2023

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1145/2746539.2746544
https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1007/978-3-030-17653-2_18
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-030-17653-2_20

5:18 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

8 Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable
codes for small-depth circuits. In Mikkel Thorup, editor, 59th Annual Symposium on Founda-
tions of Computer Science, pages 826–837, Paris, France, October 7–9 2018. IEEE Computer
Society Press. doi:10.1109/FOCS.2018.00083.

9 Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, Huijia Lin, and Tal Malkin. Non-
malleable codes against bounded polynomial time tampering. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of
Lecture Notes in Computer Science, pages 501–530, Darmstadt, Germany, May 19–23 2019.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-17653-2_17.

10 Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes
for bounded depth, bounded fan-in circuits. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes
in Computer Science, pages 881–908, Vienna, Austria, May 8–12 2016. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-49896-5_31.

11 Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes from average-case hardness: AC0, decision trees, and streaming space-bounded
tampering. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer Science,
pages 618–650, Tel Aviv, Israel, April 29 – May 3 2018. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-78372-7_20.

12 Marshall Ball, Siyao Guo, and Daniel Wichs. Non-malleable codes for decision trees. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part I, volume 11692 of Lecture Notes in Computer Science, pages 413–434, Santa Barbara, CA,
USA, August 18–22 2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-26948-7_
15.

13 Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for interactive
communication correcting insertions and deletions. IEEE Transactions on Information Theory,
63(10):6256–6270, 2017. doi:10.1109/TIT.2017.2734881.

14 Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded
adversaries. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 292–306, Santa Barbara, CA, USA, August
17–21 1997. Springer, Heidelberg, Germany. doi:10.1007/BFb0052243.

15 Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-theoretic
local non-malleable codes and their applications. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A: 13th Theory of Cryptography Conference, Part II, volume 9563 of Lecture Notes
in Computer Science, pages 367–392, Tel Aviv, Israel, January 10–13 2016. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-49099-0_14.

16 Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with
their many tampered extensions. In Daniel Wichs and Yishay Mansour, editors, 48th Annual
ACM Symposium on Theory of Computing, pages 285–298, Cambridge, MA, USA, June 18–21
2016. ACM Press. doi:10.1145/2897518.2897547.

17 Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits,
and affine functions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th
Annual ACM Symposium on Theory of Computing, pages 1171–1184, Montreal, QC, Canada,
June 19–23 2017. ACM Press. doi:10.1145/3055399.3055483.

18 Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-
state tampering. In 55th Annual Symposium on Foundations of Computer Science, pages
306–315, Philadelphia, PA, USA, October 18–21 2014. IEEE Computer Society Press. doi:
10.1109/FOCS.2014.40.

19 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-
state tampering. In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,

https://doi.org/10.1109/FOCS.2018.00083
https://doi.org/10.1007/978-3-030-17653-2_17
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-030-26948-7_15
https://doi.org/10.1007/978-3-030-26948-7_15
https://doi.org/10.1109/TIT.2017.2734881
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1145/2897518.2897547
https://doi.org/10.1145/3055399.3055483
https://doi.org/10.1109/FOCS.2014.40
https://doi.org/10.1109/FOCS.2014.40

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:19

volume 8349 of Lecture Notes in Computer Science, pages 440–464, San Diego, CA, USA,
February 24–26 2014. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-54242-8_19.

20 Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. IEEE
Transactions on Information Theory, 62(3):1097–1118, March 2016.

21 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. Journal of Cryptology, 30(1):191–241, January 2017. doi:10.1007/
s00145-015-9219-z.

22 Eldon Chung, Maciej Obremski, and Divesh Aggarwal. Extractors: Low entropy requirements
colliding with non-malleability. arXiv, 2021. doi:10.48550/arXiv.2111.04157.

23 Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable
encryption: Simpler, shorter, stronger. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-
A: 13th Theory of Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer
Science, pages 306–335, Tel Aviv, Israel, January 10–13 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-49096-9_13.

24 Sandro Coretti, Antonio Faonio, and Daniele Venturi. Rate-optimizing compilers for continu-
ously non-malleable codes. In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and
Moti Yung, editors, ACNS 19: 17th International Conference on Applied Cryptography and Net-
work Security, volume 11464 of Lecture Notes in Computer Science, pages 3–23, Bogota, Colom-
bia, June 5–7 2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-21568-2_1.

25 Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to
multi-bit public-key encryption via non-malleable codes. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014
of Lecture Notes in Computer Science, pages 532–560, Warsaw, Poland, March 23–25 2015.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46494-6_22.

26 Dana Dachman-Soled, Ilan Komargodski, and Rafael Pass. Non-malleable codes for bounded
parallel-time tampering. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
– CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer Science, pages 535–
565, Virtual Event, August 16–20 2021. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-84252-9_18.

27 Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi. Tight upper and lower bounds
for leakage-resilient, locally decodable and updatable non-malleable codes. In Serge Fehr,
editor, PKC 2017: 20th International Conference on Theory and Practice of Public Key
Cryptography, Part I, volume 10174 of Lecture Notes in Computer Science, pages 310–332,
Amsterdam, The Netherlands, March 28–31 2017. Springer, Heidelberg, Germany. doi:
10.1007/978-3-662-54365-8_13.

28 Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable
and updatable non-malleable codes and their applications. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014
of Lecture Notes in Computer Science, pages 427–450, Warsaw, Poland, March 23–25 2015.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46494-6_18.

29 Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages 239–
257, Santa Barbara, CA, USA, August 18–22 2013. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-40084-1_14.

30 Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew
Chi-Chih Yao, editor, ICS 2010: 1st Innovations in Computer Science, pages 434–452, Tsinghua
University, Beijing, China, January 5–7 2010. Tsinghua University Press.

31 Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi. Continuously
non-malleable codes with split-state refresh. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18: 16th International Conference on Applied Cryptography and Network Security,

ITC 2023

https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/s00145-015-9219-z
https://doi.org/10.1007/s00145-015-9219-z
https://doi.org/10.48550/arXiv.2111.04157
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14

5:20 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

volume 10892 of Lecture Notes in Computer Science, pages 121–139, Leuven, Belgium, July 2–4
2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-93387-0_7.

32 Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi. Non-malleable
codes for space-bounded tampering. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 95–126, Santa Barbara, CA, USA, August 20–24 2017. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-63715-0_4.

33 Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Con-
tinuous non-malleable codes. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages 465–
488, San Diego, CA, USA, February 24–26 2014. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-54242-8_20.

34 Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper
and leakage resilient von neumann architecture. In Jonathan Katz, editor, PKC 2015: 18th
International Conference on Theory and Practice of Public Key Cryptography, volume 9020 of
Lecture Notes in Computer Science, pages 579–603, Gaithersburg, MD, USA, March 30 – April 1
2015. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46447-2_26.

35 Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of
Lecture Notes in Computer Science, pages 111–128, Copenhagen, Denmark, May 11–15 2014.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-55220-5_7.

36 Nils Fleischhacker, Vipul Goyal, Abhishek Jain, Anat Paskin-Cherniavsky, and Slava Radune.
Interactive non-malleable codes. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019:
17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes in Computer
Science, pages 233–263, Nuremberg, Germany, December 1–5 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-36033-7_9.

37 Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, 50th Annual ACM Symposium on Theory
of Computing, pages 685–698, Los Angeles, CA, USA, June 25–29 2018. ACM Press. doi:
10.1145/3188745.3188872.

38 Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access structures.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pages 501–530, Santa Barbara, CA,
USA, August 19–23 2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-96884-1_
17.

39 Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments.
In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Symposium on Theory of
Computing, pages 1128–1141, Cambridge, MA, USA, June 18–21 2016. ACM Press. doi:
10.1145/2897518.2897657.

40 Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state non-
malleable codes with explicit constant rate. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part II, volume 10678 of Lecture Notes
in Computer Science, pages 344–375, Baltimore, MD, USA, November 12–15 2017. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-70503-3_11.

41 Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable
randomness encoders and their applications. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 589–617, Tel Aviv, Israel, April 29 – May 3 2018. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-78372-7_19.

42 Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th Annual ACM

https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-030-36033-7_9
https://doi.org/10.1145/3188745.3188872
https://doi.org/10.1145/3188745.3188872
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:21

Symposium on Theory of Computing, pages 1144–1156, Montreal, QC, Canada, June 19–23
2017. ACM Press. doi:10.1145/3055399.3055486.

43 Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions.
In Proceedings of the 34th Computational Complexity Conference, CCC ’19, Dagstuhl, DEU,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2019.28.

44 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. arXiv,
2023. doi:10.48550/arXiv.2303.06802.

45 Fuchun Lin. Non-malleable multi-party computation. Cryptology ePrint Archive, Report
2022/978, 2022. URL: https://eprint.iacr.org/2022/978.

46 Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 517–532, Santa Barbara, CA, USA,
August 19–23 2012. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-32009-5_30.

47 Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti. Continuously non-
malleable codes in the split-state model from minimal assumptions. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993
of Lecture Notes in Computer Science, pages 608–639, Santa Barbara, CA, USA, August 19–23
2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-96878-0_21.

48 Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for distributed computation.
In 26th Annual ACM Symposium on Theory of Computing, pages 790–799, Montréal, Québec,
Canada, May 23–25 1994. ACM Press. doi:10.1145/195058.195462.

49 Leonard J. Schulman. Communication on noisy channels: A coding theorem for computation. In
33rd Annual Symposium on Foundations of Computer Science, pages 724–733, Pittsburgh, PA,
USA, October 24–27 1992. IEEE Computer Society Press. doi:10.1109/SFCS.1992.267778.

50 Leonard J. Schulman. Deterministic coding for interactive communication. In 25th Annual
ACM Symposium on Theory of Computing, pages 747–756, San Diego, CA, USA, May 16–18
1993. ACM Press. doi:10.1145/167088.167279.

51 Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on Informa-
tion Theory, 42(6):1745–1756, November 1996.

52 Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

53 Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981. doi:
10.1016/0022-0000(81)90033-7.

A Proof of Main Theorem

Proof. In order to prove that the protocol Π is a (0, ϵ)-interactive non-malleable code we need
to prove the correctness as well as non-malleability of the protocol as stated in Lemma 17
and Lemma 18.

▶ Lemma 17. For any protocol Π′, Π 0-correctly encodes Π′.

Proof. The extractor is deterministic and hence all the parties involved in the protocol will
extract identical keys in an untampered execution. Since the MAC is correct, and tags are
computed and verified with the correct keys, all messages will always verify and no party will
abort during the protocol. As the correctness of the stateful encryption scheme Enc allows
each party decrypt all received messages correctly all the parties will be able to faithfully
execute a perfectly honest untampered execution of the underlying protocol Π. Therefore Π
evaluates correctly whith the same probability as Π′. ◀

ITC 2023

https://doi.org/10.1145/3055399.3055486
https://doi.org/10.4230/LIPIcs.CCC.2019.28
https://doi.org/10.48550/arXiv.2303.06802
https://eprint.iacr.org/2022/978
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-96878-0_21
https://doi.org/10.1145/195058.195462
https://doi.org/10.1109/SFCS.1992.267778
https://doi.org/10.1145/167088.167279
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7

5:22 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

▶ Lemma 18. The interactive protocol Π is ϵ-protocol non-malleable, where ϵ = (2n2 + n) ·
2−λ + (n2 − n) · ϵnm + ϵMAC.

Proof. In order to show that the coding scheme is non-malleable we need to provide a
distribution DF as defined in Definition 12. In order to achieve a sampler for the distribution
DF , we start with the output distribution of an honest execution of the actual protocol
and modify it through a serie of hyrids, until we reach a distribution that can be sampled
independently of x. To define the different hybrid distributions, first define a function V̄i

which essentially gives us the equivalent of a party’s current view in the protocol, but replaces
all received messages, with the messages that were originally sent.

V̄ (τ)
V := Vi(τ)
for j ∈ [n] do

s := (Si,j | (S, R) ∈ τ ∧ Si,j ̸= ⊥)
c := 1
for q ∈ [|V |] do

if Vq,j ̸= ⊥
Vq,j := tj,c

c = c + 1
return V

Now, let F ∈ Fs
bounded be an arbitrary tampering function. For i, j ∈ [n] and o ∈ {α, β}, let

ζα,i,j be the probability that the tampering function modifies or drops oi,j

during an execution of the protocol. We define the modified tampering function F ′ which
behaves exactly like F , but for any (i, j, o) such that ζα,i,j < 2−λ it always keeps oi,j

unmodified. We then further define for i ∈ [n] and r ∈ {1, 2, 3}, γi,r to be the probability
that in an execution tampered by F ′, πi aborts in execution round r, i.e., after receiving
the αs, after receiving the βs, or after receiving the key confirmation values. Finally, let
x′ ∈ X1×· · ·×Xn be arbitrary but fixed. We then define several variants of Execute, Next, and
πi in Figure 3 and Figure 4 respectively and are then finally ready to specify a series of hybrid
distribution we construct to reach the distribution that corresponds to replace(DF , Π(x)).
H0 : Hybrid 0 is the original output distribution of a tampered execution. I.e, H0 =

ExecuteΠ,F (x).
H1 : Hybrid 1 is still the distribution of a tampered execution, however we replace the

tampering function with the modified tampering function F ′. I.e., H1 = ExecuteΠ,F ′(x).
H2 : In hybrid 2, we switch to using the modified execution algorithm Execute1 and Π1.

This change gives the next message function access to the message it should have received,
i.e., those that were originally sent. I.e., H2Execute1

Π1,F ′(x).
H3 : In hybrid 3 we switch to using Π2, which means that parties that abort with over-

whelming probability during the key exchange or key confirmation phase, now abort with
probability 1. I.e., H3 = Execute1

Π2,F ′(x).
H4 : In hybrid 4, we switch to using Π3 which means that the keys are now no longer

extracted but instead sampled uniformly at random on the sender’s side and according
to Df on the receiver’s side, where f is a split state tampering function induced by F ′.
I.e., H4 = Execute1

Π3,F ′(x).
H5 : Hybrid 5 switches to using Π4, which means that instead of verifying MACs the

next message functions now directly check if messages were modified or not. I.e., H5 =
Execute1

Π4,F ′(x).

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:23

Executeχ
Π,F (x; ω)

τ := ∅
S := Next1(Π, x, ω, τ) // χ = 1

R := F (τ, S)

while R ̸= ⊥n×n

τ := τ ◦ (S, R)

S := Next1(Π, x, ω, τ) // χ = 1

R := F (τ, S)

return
(
out1(x1, V1(τ)), . . . , outn(xn, Vn(τ))

)
// χ = 1

return

indicate(out1(x1, V1(τ))),
. . . ,

indicate(outn(xn, Vn(τ)))

 // χ = 2

Next1
Π(x, ω, τ)

parse τ = ((S1, R1), . . . , (Sℓ, Rℓ))
for 1 ≤ i ≤ n do

if τ = ∅ ∨ coli(Rℓ)⊤ ̸= ⊥n

si := πl
i(xi, ωi, Vi(τ), V̄i(τ))

else
si := ⊥n

return

s1
...

sn

⊤

Figure 3 Variants of Execute and Next as used in the hybrid distributions. Differences from
the original are highlighted in gray. The different versions of Execute used in the hybrids are
differentiated by the index χ. Each line where differences exist is marked with a comment indicating
for which values of χ this line will be executed.

H6 : In hybrid 6 we switch to Execute2. This means that the execution no longer out-
puts the actual outputs of the parties. Instead it only indicates which parties pro-
duced an output and which aborted. The outputs of all non-aborting parties are
then replaced by the outputs of an honest untampered execution of Π(x). I.e., H6 =
replace(Execute2

Π4,F ′(x), Π(x)).
H7 : Finally in hybrid 7, we replace the input x of the tampered execution with the arbitrary

fixed input x′. I.e., H7 = replace(Execute2
Π4,F ′(x′), Π(x)).

We note, that in H7, the distribution of Execute2
Π4,F ′(x′) no longer depends on x. I.e., we

define DF as Execute2
Π4,F ′(x′) and it is then sufficient to bound that SD(H0, H7) to prove the

Lemma. We do so by bounding the statistical distance of each pair of neighboring hybrids.

▷ Claim 19. SD(H0, H1) ≤ 2(n2 − n) · 2−λ.

Proof. In H1 we replaced F with the modified tampering function F ′. This function is
modified such that a series of low probability events (that oi,j for o ∈ {α, β} and i, j ∈ [n] is
modified by F) does not happen. Each event happens with probability less than 2−λ. The
number of events is bounded by two times the number of edges in the communication graph.
This is a directed complete graph, i.e., the number of edges is n2 − n. Hence, by a union
bound over all events, the statistical distance between hybrids H0 and H1 can be bounded
by 2(n2 − n) · 2−λ. ◁

▷ Claim 20. SD(H1, H2) = 0

Proof. In hybrids H1, H2, it is easy to see that the only differences between the hybrids are
syntactic. I.e., the next message function receives the additional input V̄i(τ) in H2, but does
not actually use it yet. Therefore the output distributions remain identical. ◁

▷ Claim 21. SD(H2, H3) ≤ 3n · 2−λ

Proof. In hybrid H3 we eliminate another series of low probability events. If F ′ causes any
of the parties to abort with overwhelming probability > (1− 2−λ) in the first three rounds of

ITC 2023

5:24 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

π
d,O′

x,ω′

i (ω, Vi(τ))
s := ⊥n

if |V | = 0
rec := 0n, sent := 0n

(αi, βi)← (({0, 1}κnm)2)n

(kenc
i , kauth

i) := nmExt(αi, βi) // d < 3

(kenc
i , kauth

i)← {0, 1}κenc+κmac // d ≥ 3

s := αi

elseif |V | = 1
if ⊥ ∈ V1 // d < 2

if ⊥ ∈ V1 or γi,1 > 1− 2−λ // d ≥ 2

abort
s := βi

elseif |V | = 2
if ⊥ ∈ V2 // d < 2

if ⊥ ∈ V2 or γi,2 > 1− 2−λ // d ≥ 2

abort

(k̃enc
j , k̃

auth
j) := nmExt(V1, V2) // d < 3

(k̃enc
j , k̃

auth
j) := replace(Df , (kenc

j , kauth
j)) // d ≥ 3

for j ∈ [n] \ {i} do
sj := MAC(k̃auth

i,j , (i, j))

else
if |V | = 3

if ⊥ ∈ V3 // d < 2

if ⊥ ∈ V3 or γi,3 > 1− 2−λ // d ≥ 2

abort
for j ∈ [n] \ {i} do

if Vf(kauth
i , (j, i), V3,j) = 0 // d < 4

if (k̃i ̸= ki) or V̄3,j ̸= V3,j // d ≥ 4

abort
else

m := ⊥n

if (CheckMsgOrder = 0)
abort

else
for j ∈ [n] \ {i} do

if V|V |,j ̸= ⊥
(c, t) := V|V |,j , recj := recj + 1

if Vf(kauth
i , (c, j, i, recj), t) = 0 // d < 4

if V̄|V |,j ̸= V|V |,j // d ≥ 4

abort
mj := Dec(k̃enc

j , c)
s′ ← O′

x,ω′ (m)

for j ∈ [n] \ {i} do
if s′

j ̸= ⊥

c := Enc(k̃enc
i , s′

j), sentj := sentj + 1

sj := (c, MAC(k̃auth
j , (c, i, j, sentj))

return s

Figure 4 The modified next message functions used in the hybrid distributions. Differences from
the original are highlighted in gray. The different next message functions used in the hybrids are
differentiated by the index d. Each line where differences between next message functions exist is
marked with a comment indicating for which values of d this line will be executed.

the protocol, i.e., during key-exchange or key-confirmation, the party now aborts at the same
point in time with probability 1. I.e., each eliminated event, i.e. the “non-abort”, happens
with probability less than 2−λ. The number of eliminated events is bounded by three times
the number of parties in the protocol. Therefore a union bound over all eliminated events
gives us that the statistical distance between H2 and H3 can be bounded by 3n · 2−λ. ◁

▷ Claim 22. SD(H3, H4) ≤ (n2 − n) · ϵnm.

Proof. For any i, j, let fi,j be the tampering function for αi,j , βi,j induced by F . We observe
that the changes that were made in H4 are that rather than using the extracted keys the
sender uses uniformly chosen keys while the receiver either receives keys that are distributed
according to Dfi,j

that is independent of the actual key, or it receives the same uniformly
distributed key used by the sender.

Now, if fi,j were split state, then the non-malleability of the extractor would imply that
the statistical distance caused by each replaced key can be at most ϵnm. The main issue is

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:25

that fi,j is in fact not split state. The tampering function can use both, its bounded state
as well as conditional aborts (and non-aborts) of the individual parties to leak information
from the first part of the tampering function to the second part and from both parts to the
rest of the protocol. However, if we can bound the amount of information that can be leaked,
then we can change our perspective and look at fi,j as a split state tampering functions, that
tampers with sources sampled from a distribution defined by sampling almost uniformly, but
conditioned on the leakage.

It remains to actually bound the leakage. Clearly a tampering function in Fs
bounded can

leak s bits simply through its persistent state. Additional leakage is obtained by causing any
of the parties to abort or not to abort with low probability. However, due to the elination
of low probability events in previous hybrids, we know that each of these events happens
with probability at least 2−λ. Per party there exist three abort/non-abort events, i.e. the
tampering function can leak at most 3n log 1

2−λ = 3nλ additional bits of information.
We can thus reinterpret fi,j as a split-state tampering function on sources with min-

entropy κnm − s− 3nλ. Since, nmExt is specified as working with sources of this type, we
have that each replaced key increases the statistical distance by at most ϵnm. As there are,
as mentioned before, (n2 − n) keys to deal with, we can bound the total statistical distance
between the hybrids H1 and H2 with (n2 − n) · ϵnm. ◁

▷ Claim 23. SD(H4, H5) ≤ ϵMAC

Proof. Here we bound the statistical distance between the hybrids using a reduction from
the statistical unforgeability of the MAC. The output distribution of the two hybrids only
differs, if at any point one of the parties receives a ciphertext and tag pair (c, t) such that
for some (i, j, r), Vf(kauth

i,j , (c, i, j, r), t) = 1 but where none of the parties ever computed
MAC(kauth

i,j , (c, i, j, r)). That means that the statistical distance between the hybrids is
equal to the probability that the above event occurs. We can then construct an attacker A
against the MAC scheme as follows: A executes H4 as specified, except that it ignores the
actual authentication keys and instead uses the MAC oracle to compute all tags. When the
event specified above occurs, A outputs (c, i, j, r), t, i. If the event never occurs, A aborts.
Clearly A forges a MAC with probability SD(H4, H5). Since the MAC is ϵmac-statistically
unforgeable, we therefore have SD(H4, H5) ≤ ϵMAC as claimed. ◁

▷ Claim 24. SD(H5, H6) = 0.

Proof. Due to the changes in the previous hybrids, we know that all messages received by
any party that does not abort are exactly those messages that were originally sent. Further,
whenever a party aborts it does not send any more messages, ensuring that all messages that
are sent are computed solely based on untampered messages. Additionally, since the protocol
has a fixed message topology and both the next message function as well as the output
function check that the view conforms to this topology, we know that any party that does
not abort computed their output based on a complete view consisting of honestly computed
messages that were received in the correct order. I.e., in H5 the outputs of the non-aborting
parties are distributed according to the same distribution as in a completely untampered
execution of Π on x. In H6, Execute2

Π4,F (x) returns ⊥ for all aborting parties and same for
all non-aborting parties. The function indicate then replaces the same entries with consistent
outputs of an honest execution of Π(x). Therefore the two distributions are identical. ◁

▷ Claim 25. SD(H6, H7) = 0.

ITC 2023

5:26 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

Proof. Since the message topology is fixed in both the hybrids, the “shape” of the transcripts
of the underyling protocol during the execution in both the hybrids are identical, only the
content of the messages might differ based on the inputs x and x′. However, due to the
perfect indistingishability of the stateful encryption scheme, the distribution of the ciphertexts
is identical. Therefore the distributions of the overall transcripts observed by the tampering
function are identical and therefore, so are the output distributions. ◁

Using the triangle inequality over the bounds from Claim 19 through Claim 25 we can thus
conclude that

SD(ExecuteΠ,F (x), replace(DF , Π(x)))
= SD(ExecuteΠ,F (x), replace(Execute2

Π4,F (x′), Π(x)))

= SD(H0, H7) ≤
7∑

i=1
SD(Hi−1, Hi) = (2n2 + n) · 2−λ + (n2 − n) · ϵnm + ϵMAC ◀

The theorem finally follows immediately from Lemma 17 and Lemma 18. ◀

Asymmetric Multi-Party Computation
Vipul Goyal #

NTT Research, Sunnyvale, CA, USA
Carnegie Mellon University, Pittsburgh, PA, USA

Chen-Da Liu-Zhang #

NTT Research, Sunnyvale, CA, USA

Rafail Ostrovsky #

University of California at Los Angeles, CA, USA

Abstract
Current protocols for Multi-Party Computation (MPC) consider the setting where all parties have
access to similar resources. For example, all parties have access to channels bounded by the same
worst-case delay upper bound ∆, and all channels have the same cost of communication. As a
consequence, the overall protocol performance (resp. the communication cost) may be heavily
affected by the slowest (resp. the most expensive) channel, even when most channels are fast (resp.
cheap). Given the state of affairs, we initiate a systematic study of asymmetric MPC. In asymmetric
MPC, the parties are divided into two categories: fast and slow parties, depending on whether they
have access to high-end or low-end resources.

We investigate two different models. In the first, we consider asymmetric communication delays:
Fast parties are connected via channels with small delay δ among themselves, while channels
connected to (at least) one slow party have a large delay ∆ ≫ δ. In the second model, we consider
asymmetric communication costs: Fast parties benefit from channels with cheap communication,
while channels connected to a slow party have an expensive communication. We provide a wide
range of positive and negative results exploring the trade-offs between the achievable number of
tolerated corruptions t and slow parties s, versus the round complexity and communication cost in
each of the models. Among others, we achieve the following results. In the model with asymmetric
communication delays, focusing on the information-theoretic (i-t) setting:

An i-t asymmetric MPC protocol with security with abort as long as t + s < n and t < n/2, in a
constant number of slow rounds.
We show that achieving an i-t asymmetric MPC protocol for t + s = n and with number of
slow rounds independent of the circuit size implies an i-t synchronous MPC protocol with
round complexity independent of the circuit size, which is a major problem in the field of
round-complexity of MPC.
We identify a new primitive, asymmetric broadcast, that allows to consistently distribute a value
among the fast parties, and at a later time the same value to slow parties. We completely
characterize the feasibility of asymmetric broadcast by showing that it is possible if and only if
2t + s < n.
An i-t asymmetric MPC protocol with guaranteed output delivery as long as t + s < n and
t < n/2, in a number of slow rounds independent of the circuit size.

In the model with asymmetric communication cost, we achieve an asymmetric MPC protocol for
security with abort for t + s < n and t < n/2, based on one-way functions (OWF). The protocol
communicates a number of bits over expensive channels that is independent of the circuit size. We
conjecture that assuming OWF is needed and further provide a partial result in this direction.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases multiparty computation, asymmetric, delays, communication

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.6

© Vipul Goyal, Chen-Da Liu-Zhang, and Rafail Ostrovsky;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 6; pp. 6:1–6:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vipul@cmu.edu
mailto:chen-da.liuzhang@ntt-research.com
https://orcid.org/0000-0002-0349-3838
mailto:rafail@cs.ucla.edu
https://doi.org/10.4230/LIPIcs.ITC.2023.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Asymmetric Multi-Party Computation

Funding Rafail Ostrovsky: The author was supported in part by DARPA under Cooperative
Agreement HR0011-20-2-0025, the Algorand Centers of Excellence programme managed by Algorand
Foundation, NSF grants CNS-2246355, CCF-2220450 and CNS-2001096, US-Israel BSF grant
2015782, Amazon Faculty Award, Cisco Research Award and Sunday Group. Any views, opinions,
findings, conclusions or recommendations contained herein are those of the author(s) and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of
DARPA, the Department of Defense, the Algorand Foundation, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for governmental purposes not
withstanding any copyright annotation therein.

1 Introduction

Secure Multi-Party Computation [49, 24, 7, 11, 46] allows a set of distrustful parties to
compute a function over their private inputs, in such a way that nothing about the inputs is
revealed beyond the output of the computation.

Generally speaking, current MPC protocols consider the simplest setting where all
parties have network resources with the same guarantees. In particular, the most common
synchronous network model considers the setting where all channel delays are upper bounded
by a single worst-case delay ∆ and all channels have the same cost of communication. Even
though this model is theoretically interesting, it suffers from important practical limitations.
In particular, ∆ has to be set large enough to accommodate any possible delay: Even in
cases where almost all parties have fast channels with delay δ ≪ ∆, the protocols do not
take advantage of this, and the running time of the protocol is affected by the slowest party.
This is particularly critical for information-theoretic protocols, where all current solutions
have a round complexity that depends on the depth of the circuit to evaluate. Similarly, the
protocols designed in this model also fail to take advantage of the cost of communication
from channels that are cheap, and the total communication cost is affected by the most
expensive channel.

Given the state of affairs, we initiate the study of asymmetric MPC. In asymmetric MPC,
the parties are divided into two categories. We consider fast parties, which are parties that
have access to high-end network resources (e.g. channels with small delay, cheap channels,
etc), and slow parties, which are parties that have access only to low-end network resources.
One can think about the fast parties as parties that are in some sense privileged and have
access to fast and cheap internet connection, e.g. with fiber, while slow parties are not so
privileged, and only have access to slow and expensive connectivity, e.g. one may think
of mobile devices or IoT devices such as sensors collecting data. Considering parties with
asymmetric resources allows us to not only model more realistic scenarios, where parties
have access to different levels of resources, but also to design more refined protocols that
exploit such asymmetries, thereby improving the performance and communication cost of
protocols, while at the same time achieving more refined levels of security and assumptions.

2 Our Contributions

We initiate a systematic study of asymmetric MPC with respect to two different models for
network resources. In the first model, we consider a network with asymmetric communication
delay. Fast parties are connected via channels with small delay δ among themselves, while
all other channels, which are connected to a slow party, have a large delay ∆. In the second

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:3

model, we consider a network with asymmetric communication cost. This means that fast
parties benefit from channels with cheap communication, while other channels incur a high
cost of communication.

Our focus is on minimizing the complexity from the slow parties (minimizing the number
of slow rounds, respectively the usage of expensive channels) while at the same time tolerating
as many corruptions and slow parties as possible. This allows us to give a first overall study
of asymmetric MPC protocols in a clean manner.

What are the achievable trade-offs between the number of tolerated corruptions and
slow parties compared to the number of slow rounds in the model with asymmetric
delays? And similarly, trade-offs with respect to the number of bits transmitted over
expensive channels in the model with asymmetric communication cost?
To the best of our knowledge, no previous work has addressed the setting of asymmetric

MPC, for any of the resource models. For example, synchronous protocols assume that all
channels have the same worst-case delay and also that the cost of communication is the same
for all channels. Similarly, asynchronous protocols assume that all channels have eventual
delivery, and that all channels have the same cost of communication.

Note, however, that existing protocols using standard cryptographic assumptions do
achieve a constant number of slow rounds [49, 5], and FHE-based protocols [40, 1, 26] achieve
low communication over expensive channels, so our focus is on information-theoretic protocols
when minimizing the number of slow rounds, and non-FHE protocols when minimizing the
communication over expensive channels. See a more detailed discussion in Appendix A.

2.1 MPC with Asymmetric Delays
The Model. As mentioned above, in this model we divide the parties into two categories:
fast and slow parties. Parties have access to a complete network of point-to-point (P2P)
channels. The channels between fast parties have a small delay δ and are denoted fast
channels, and all the other channels, i.e. the channels that contain at least one slow party,
have a large delay ∆ and are denoted slow channels.

We are interested in counting the number of slow P2P-rounds, which are the number of
P2P communication steps via all channels, and the number of fast rounds, which are the
number of P2P communication steps via the fast channels. Optimally, we would like to find
protocols that have a constant number of slow P2P-rounds, or at least a number of slow
P2P-rounds that is independent of the circuit to evaluate. Throughout the paper, we will
omit the P2P term, and simply denote such rounds as fast and slow rounds.

Existing Solutions. Current constant-round solutions based on cryptographic assumptions
[49, 5, 37, 35, 42, 34, 20, 8], are already asymmetric MPC protocols with a constant number
of slow rounds. This is because any constant-round synchronous MPC protocol trivially
implies an asymmetric MPC protocol in our setting with a constant number of slow rounds.

Information-Theoretic Protocols. Information-theoretic protocols are much more inter-
esting, since all current synchronous solutions require a number of rounds proportional to
the depth of the circuit to evaluate. This is in stark contrast with protocols in our model,
where we will be able to achieve a number of slow rounds that is independent of the circuit
(sometimes even constant). We propose several information-theoretic protocols for the setting
of malicious security, with abort and with guaranteed output delivery.

In the following, we let C be the circuit to evaluate, and let n, s, t be the number of
parties, bound on the number of slow parties, and bound on the number of corruptions.

ITC 2023

6:4 Asymmetric Multi-Party Computation

Security with Abort. We first present a protocol that achieves security with abort and is
secure as long as t + s < n and t < n/2. The round complexity is O (1) slow rounds and
O (depth(C)) fast rounds.

▶ Theorem 1. Let n, s, t be natural numbers such that t + s < n and t < n/2. There is
an information-theoretic asymmetric MPC protocol among n parties that securely evaluates
circuit C with security with abort, in the presence of up to t malicious corruptions and s slow
parties. The round complexity is O (1) slow rounds and O (depth(C)) fast rounds.

We then show that improving the resiliency of our asymmetric MPC protocol requires a
breakthrough. Assume that t + s = n. Then, the following result implies that information-
theoretic asymmetric MPC in a constant number of slow rounds implies constant-round
information-theoretic MPC in the synchronous model resilient up to 1 corruption, which is
known to be a major barrier in information-theoretic MPC.

▶ Theorem 2. Let n, s, t > 0 be natural numbers such that t + s = n. Then n-party
information-theoretic asymmetric MPC with security with abort (resp. guaranteed output
delivery), resilient up to t corruptions and s slow parties in R slow rounds, implies (s + 1)-
party information-theoretic synchronous MPC with security with abort (resp. guaranteed
output delivery), resilient up to 1 corruption in R rounds.

Guaranteed Output Delivery. In the setting of malicious security with guaranteed output
delivery, we present two results.

A Protocol for 2t+s < n and t < n/3. We start by presenting a solution for an information-
theoretic protocol with guaranteed output delivery in the regime where 2t + s < n and
t < n/3 (with no setup nor broadcast).

▶ Theorem 3. Let κ be a security parameter. Let n, s, t be natural numbers such that 2t+s < n

and t < n/3. There is an asymmetric MPC protocol among n parties that securely evaluates
circuit C with guaranteed output delivery in the presence of up to t malicious corruptions and
s slow parties. The round complexity is O (κ) slow rounds and O (depth(C) · κ) fast rounds.

In the above theorem statement, if synchronous broadcast channels are assumed as setup
(or alternatively, a setup for i-t signatures [44]), the condition t < n/3 is not necessary. The
above protocol inherently requires the condition 2t + s < n. However, optimally one would
wish to require an honest majority overall, rather than among the fast parties. We therefore
want to find protocols that deal with a dishonest majority among the fast parties.

Broadcast with Asymmetric Delays. To overcome this bound, we identify a natural
primitive in our setting with asymmetric delays, called asymmetric broadcast. This primitive
ensures that all the fast parties obtain the output within dbc fast rounds, while slow parties
obtain the same output much later, within Dbc slow rounds. We call the quantity dbc the
fast asymmetric broadcast delay, and Dbc the slow asymmetric broadcast delay.

Our first step is to investigate the possible trade-offs for asymmetric broadcast. Our
results completely characterize the feasibility of asymmetric broadcast from point-to-point
channels, by showing matching positive and negative results.

First, in Section 5.2, we show a simple construction of n-party asymmetric broadcast
with a fast sender, where dbc and Dbc are O(κ), and security holds up to t corruptions and s

slow parties, as long as 2t + s < n, assuming a PKI setup for signatures. The theorem holds
also unconditionally, if the setup consists of information-theoretic signatures [44].

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:5

▶ Theorem 4. Let n, s, t be natural numbers such that 2t + s < n. Assuming a PKI setup
for signatures, there is an n-party asymmetric broadcast protocol with dbc = Dbc = O(κ),
tolerating t malicious corruptions and s slow parties.

Perhaps surprisingly, this is the best trade-off one can achieve, and tolerating 2t + s = n

for any non-trivial parameters t > 0 and s > 0 is impossible, even with setup, and for any
number of fast and slow rounds.

▶ Theorem 5. Let n, s, t > 0 be natural positive numbers such that 2t + s = n. Then,
asymmetric broadcast is impossible against t malicious corruptions and s slow parties, even
with setup.

A Protocol for t + s < n and t < n/2. We now present an asymmetric MPC protocol
where parties have access to asymmetric broadcast channels with fast and slow delays dbc

and Dbc, and achieve a protocol that is secure as long as t + s < n and t < n/2. The round
complexity is O (n · Dbc) slow rounds and O (depth(C) · n · dbc) fast rounds. In the optimistic
case where no party is corrupted, we save a factor n in the round complexity. That is, in
this case the protocol incurs O (Dbc) slow rounds and O (depth(C) · dbc) fast rounds.

▶ Theorem 6. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming
asymmetric broadcast with slow and fast delays Dbc and dbc, there is an asymmetric MPC
protocol among n parties that securely evaluates circuit C with guaranteed output delivery,
in the presence of up t corruptions and s slow parties. The round complexity is O (n · Dbc)
slow rounds and O (depth(C) · n · dbc) fast rounds. In the optimistic case where no party is
corrupted, the round complexity is O (Dbc) slow rounds and O (depth(C) · dbc) fast rounds.

The number of rounds in the protocol above has a linear dependency in the number of
parties in the worst case. This linear dependency can be removed at the cost of requiring
any constant fraction of honest parties among the fast parties.

▶ Corollary 7. Let ϵ > 0 and n, s, t be natural numbers such that t < min{(1−ϵ)(n−s), n/2}.
Assuming asymmetric broadcast with slow and fast delays Dbc and dbc, there is an asymmetric
MPC protocol among n parties that securely evaluates circuit C with guaranteed output
delivery, in the presence of up to t corruptions and s slow parties. The round complexity is
O (Dbc) slow rounds and O (depth(C) · dbc) fast rounds.

2.2 MPC with Asymmetric Communication Cost

The Model. Similar to the previous model, we divide the parties into two categories:
fast and slow parties. Parties have access to a complete network of standard synchronous
point-to-point channels with the same delay upper bound. However, now the channels are
differentiated with respect to the cost of communication. The channels between fast parties
have a small cost and are denoted by cheap channels, and all other channels, i.e. the channels
that contain at least one slow party as sender or receiver, have a high cost and are denoted
by expensive channels.

We are interested in minimizing the number of bits transmitted over the expensive
channels. Note that slow parties need to distribute their inputs, so the number of transmitted
bits over expensive channels will definitely depend (at least) on the total number of slow
parties and their input size. Our main focus is therefore that the number of bits over
expensive channels does not depend on the circuit to evaluate.

ITC 2023

6:6 Asymmetric Multi-Party Computation

Existing Solutions. Current solutions that make use of (multi-key) fully-homomorphic
encryption (FHE) [40, 1, 26] already transmit a number of bits over expensive channels that
is independent of the circuit to evaluate, given that the computation is performed under the
homomorphic evaluation with no interaction.

A Protocol From One-Way Functions. Our focus is then on protocols that do not make
use of FHE. Even more, we will focus on protocols that make use of as weaker cryptography
assumptions as possible (preferably one-way functions, or no assumptions).

We provide a protocol that is resilient as long as t+s < n and t < n/2 and achieves security
with abort. The protocol communicates O(poly(n, κ)) bits over the expensive channels and
assumes the existence of one-way functions.

▶ Theorem 8. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming
the existence of one-way functions, there is an asymmetric MPC protocol among n parties
that securely evaluates circuit C with security with abort, in the presence of up to t malicious
corruptions and s slow parties. The communication complexity is O (poly(n, κ)) bits of
expensive communication and O (poly(n, κ)|C|) bits of cheap communication.

Interestingly, our communication-efficient protocol requires the existence of one-way
functions, in contrast to our round-efficient protocols. We conjecture that this is necessary,
and provide a partial result in this direction.

▶ Lemma 9. Assume an n-party asymmetric MPC, secure up to t semi-honest corruptions
and s slow parties such that the slow parties perform constant computation, for any n, s, t > 0
natural numbers such that n − s > 1, t + s < n and t < n/2. Then, this implies the existence
of one-way functions.

2.3 Open Questions
Our work initiates the area of asymmetric MPC and leaves several exciting new directions
for future research. We highlight some of them:

1. General network topologies: We divide the parties into slow and fast parties, where fast
parties have high-end channels among themselves, while all other channels are low-end.
One can generalize this setting and consider more general network topologies, where a
party may at the same time have some high-end and some low-end channels.

2. Other resource asymmetries: Our work considers models with respect to network asymme-
tries. One can explore other types of resources. For example, one can explore trade-offs
with respect to asymmetric computation or memory resources.

3. Communication-efficient protocol with guaranteed output delivery: Our communication
efficient protocols achieve security with abort. It would be interesting to see if our
techniques extend to the case of guaranteed output delivery.

4. Concrete efficiency: Our protocols serve as a basis for feasibility of asymmetric MPC,
and our focus is on minimizing the complexity coming from the slow parties. In practice,
one may consider more refined settings where the cost difference is explicit (for example,
expensive channels cost as twice as cheap channels). Understanding which concrete cost
differences are relevant in practice and designing protocols tailored to such settings is an
exciting open research direction.

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:7

3 Technical Overview

In this section we describe the techniques used to achieve our theorem statements.

3.1 Information-Theoretic MPC with Asymmetric Delays
We present several information-theoretic solutions for the settings of security with abort and
guaranteed output delivery.

Security with Abort. We provide a simple solution that achieves security with abort in a
constant number of slow rounds, when t + s < n and t < n/2. The protocol lets all parties
generate during a pre-processing phase OT correlations among the fast parties, using an
information-theoretic MPC protocol for honest majority and security with abort, with round
complexity linear in the depth of the circuit (e.g. [46, 21]). Since the OTs can be generated
in parallel and can be computed with a constant-depth circuit, this takes a constant number
of slow rounds. Then, the parties execute an information-theoretic MPC protocol in the
client-server model, that achieves security with abort against a dishonest majority in the
OT-hybrid model: The parties (acting as clients) distribute their inputs to the fast parties
(acting as servers), who will compute the corresponding outputs and send them back to the
respective parties. Existing protocols [36, 15] run in a constant number of rounds during the
input and output phases, and the number of rounds during the computation is linear in the
depth of the circuit to evaluate. This leads to Theorem 1.

We then show that our protocol achieves the optimal resilience: any asymmetric MPC
protocol secure when t + s = n among n parties and with constant number of slow rounds,
implies a synchronous MPC protocol with security with abort, resilient up to 1 corruption in
constant number of rounds, which is a major open problem in round complexity of MPC. The
proof implication follows from a simple emulation argument: In order to design a synchronous
MPC protocol among s + 1 parties, we simply let s parties emulate each of the slow parties
in the asymmetric MPC protocol, and the last party to emulate all fast parties altogether
(in total t parties). The resulting synchronous protocol has a round-complexity that is the
same as the number of slow rounds in the asymmetric MPC protocol, and therefore the
implication follows. This corresponds to Theorem 2.

Asymmetric Broadcast. We briefly sketch the arguments that exactly characterize the
feasibility of asymmetric broadcast.

First observe that it is clear that for a sender that is a slow party, it is impossible to
expect the fast parties to obtain output fast, even when all parties are honest. Therefore, we
focus on the case where the sender is a fast party.

The protocol to achieve asymmetric broadcast (for a fast sender), for any 2t + s < n,
assuming a PKI for signatures, is quite simple: Fast parties run a synchronous broadcast
protocol [33] among themselves, and reach agreement on a value v. All fast parties send the
value v to the slow parties, who take a majority decision. Since there is honest majority
among the fast parties, all slow parties output the same value. This is presented in Theorem 4.

In order to show that asymmetric broadcast (for a fast sender) is impossible when
2t + s = n, even with setup, we make use of two ideas. First, observe that fast parties must
output before the slow parties are even able to communicate with any fast party. This is
because fast rounds may be much faster than slow rounds, i.e., the delay δ ≪ ∆ of fast
channels could be much smaller than the delay ∆ of slow channels, and asymmetric broadcast
requires fast parties to output fast. Let v denote the value that the fast parties output.

ITC 2023

6:8 Asymmetric Multi-Party Computation

Second, since there is a dishonest majority among the fast parties, the corrupted parties
(including the sender) can simulate towards the slow parties an execution with input value
v′ ̸= v. As a consequence, the honest slow parties cannot decide on a consistent output value.
A precise scenario-based proof is presented in Theorem 5.

Guaranteed Output Delivery. We present two results. We first present a somewhat simple
solution for an information-theoretic protocol in the regime where 2t + s < n and t < n/3.
The protocol works as follows: First, since t < n/3, the protocol generates a setup for
information-theoretic signatures to emulate synchronous broadcast channels with guaranteed
termination [44, 33] from slow parties to all parties in O(κ) slow rounds, and from fast parties
to themselves in O(κ) fast rounds, where κ is the security parameter. Using these broadcast
channels, parties can execute an existing synchronous protocol in the client-server model
as follows: All parties initially play the role of a client, while each fast party in addition
plays the role of a server. The clients distribute their inputs towards the n − s servers, where
each synchronous round corresponds to a slow round. The servers then perform the protocol
computation, where each synchronous round corresponds to a fast round. Finally, the fast
parties robustly reconstruct each output to the respective clients, where each synchronous
round corresponds to a slow round. Standard information-theoretic protocols [46, 14] tolerate
up to half of the corrupted servers (we assume 2t < n − s) and any number of clients, and
have a constant number of rounds and broadcast invocations, during the input and the output
phase, and a number of rounds proportional to the circuit depth during the computation
phase. This results in an asymmetric MPC protocol with O(κ) slow rounds and a number of
fast rounds proportional to the circuit depth times κ, corresponding to Theorem 3.

We then present our information-theoretic asymmetric MPC protocol with guaranteed
output delivery, and resilience t + s < n and t < n/2, which assumes asymmetric broadcast.

The protocol follows the sharing-based paradigm, and has a preprocessing phase and
an online phase. During the preprocessing phase, the parties generate raw data that is
independent of the inputs. During the online phase, the parties receive their inputs and
perform the protocol evaluation.

In the preprocessing phase, we generate certified Beaver multiplication triples, using the
MPC protocol by Cramer et. al. [14].

Background. Let us first recap their VSS protocol Πvss [14]. The protocol follows
traditional verifiable secret sharing schemes [19, 7] with bivariate polynomials, but uses
so-called information-checking (IC) signatures, instead of error correction. One can think
about such signatures as information-theoretic signatures that can only be forwarded once.
These can be generated unconditionally without setup, and also have a linearity property,
where given signatures for values x and y, one can compute a signature on x + y.

In order to share a value v, the dealer D creates a random bivariate polynomial f(x, y)
of degree at most t, with f(0, 0) = v. The univariate polynomial projections f(x, i) and
f(i, y) are sent to party Pi in a signed manner (by sending all the points (ai1, . . . , ain) =
(f(i, 1), . . . , f(i, n)) and (b1i, . . . , bni) = (f(1, i), . . . , f(n, i)), where each point is signed using
IC-signatures). After this, the parties can bilaterally compare the cross-point values between
them, and expose inconsistent behavior by the dealer by broadcasting the signatures. If an
inconsistency is detected, the dealer is disqualified.

After the checking process, the values held by honest parties are consistent, and since
there are at least n − t ≥ t + 1 honest parties, these values uniquely define a bivariate
polynomial f ′(x, y) of degree at most t, which in turn defines a fixed secret v′ (which is
v′ = v if the dealer is honest). Therefore, this already ensures that the dealer is committed
to a value after the sharing phase.

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:9

Still, the reconstruction might fail if the adversary sends corrupted shares (the adversary
can send arbitrary shares). To avoid that, each share of Pi is also signed by the other parties.
This will in turn prevent the adversary from corrupting the secret at reconstruction time.

At the end of the VSS, each party Pi holds sub-shares (ai1, . . . , ain), where aij is signed
by Pj . This implicitly defines a share ai, which in the case of an honest dealer is f(i, 0).

With the above VSS, one can process addition gates locally (using the fact that the
IC-signatures are linear). The multiplication gates are processed using the well-known
method by Gennaro, Rabin and Rabin [22]: Each party Pi locally multiplies his shares ai

and bi of the input wires a and b, and shares the result di = aibi using VSS. This results
in n VSSs and a proper sharing of the output wire c can be computed as a fixed linear
combination of these. The authors show a way for Pi to share a secret di, such that di = aibi

and to prove that he has done so properly. The details can be found in [14].
The Online Protocol. At the start of the online phase, enough triples (x, y, z) have

been shared using the protocol described above, where each of the shares xi, yi, zi are
held (implicitly) by party Pi via the corresponding sub-shares, which are IC-signed by the
other parties. Note that generating such certified Beaver triples takes O(1) invocations of
broadcast, since they can be generated in parallel.

The online phase proceeds as follows. Parties distribute their inputs using Πvss. The
addition gates are locally computed (simply adding the shares and the IC-signatures, since
they are linear). In the multiplication gates, fast parties publicly open two random values,
(a − x) and (b − y), where a and b are the values of the input wires to the multiplication
gate, by running the same reconstruction procedure of Πvss, except that they distribute their
shares using asymmetric broadcast. Since the values are IC-signed, corrupted fast parties
can only withhold their shares. Since fast parties distribute their shares via the asymmetric
broadcast channel, this implies that all parties, fast and slow, reach agreement on the set of
parties that did not contribute their share and are corrupted.

Note that since the threshold is t < n − s, if all fast parties contribute their shares, the
slow parties do not need to participate (and the protocol can proceed between between
the fast parties, without incurring additional slow rounds). However, if not all shares are
received, a process to identify and kick out corrupted parties is performed: fast parties wait
for the slow parties to help opening the shares (note that n − t > t, and therefore all honest
parties can jointly open the shares). The corrupted identified parties are then kicked out
of the computation, and the protocol is restarted without the kicked parties. This process
incurs and overhead of a constant number of slow asymmetric broadcast delays. And since
every time at least one corrupted party is kicked out, the incurred overhead on the total
number of slow rounds is linear in the number of parties. This corresponds to Theorem 6.

3.2 MPC with Asymmetric Communication Cost
We describe the protocol for MPC that communicates O(poly(n, κ)) bits over slow connections,
and achieves resilience t + s < n and t < n/2. The protocol is based on one-way functions,
and is similar to the simple protocol mentioned in Theorem 1 in the asymmetric delay model.

In that protocol, the step that is communication expensive, is the generation of the OT
correlations, which depends on the circuit size. In order to solve that, we will make use of
OT-extension protocols [41, 2], which can be based on one-way functions. More concretely,
since t < n/2, parties can jointly create κ OT correlations among each pair of fast parties
using an honest-majority MPC protocol [46, 14]. This step communicates O(poly(n, κ)) bits
over slow connections. The fast parties then perform an OT-extension protocol to set up

ITC 2023

6:10 Asymmetric Multi-Party Computation

an OT channel between each pair of fast parties [41, 2]. With this setup, parties can then
perform an unconditional protocol achieving dishonest majority in the OT-hybrid model
[36, 15] among the fast parties. This is stated in Theorem 8.

The protocol described above makes use of one-way functions. We conjecture that this
is necessary, and provide a partial result: we show that any asymmetric MPC protocol
containing at least two fast parties, where the slow parties perform little computation, and
with resilience t + s < n, implies the existence of one-way functions.

The high-level idea is to build an OT extension protocol from an asymmetric MPC
protocol. Since OT extension implies the existence of one-way functions [38], the claim
follows. Assume that there is an asymmetric MPC protocol that outputs a large number
of OTs. We can emulate the computation of each slow party using a protocol for dishonest
majority (e.g. [24]). Note that since each slow party performs a small amount of computation,
the circuit that is used to emulate the computation uses a small number of (seed) OTs as
well. This is stated in Lemma 9.

4 Models and Definitions

We consider a set of n parties P = {P1, . . . , Pn}. We partition the set of parties into two
known categories, slow parties and fast parties, P = S ⊔ F . Let κ be the security parameter.

4.1 Communication Network and Adversary
We consider a complete network of point-to-point secure channels. Parties have access to
synchronized clocks, and messages sent by honest parties are guaranteed to be delivered
within some known upper bound delay. We consider two asymmetric network models.

Network with Asymmetric Delays. In the first model, we consider a network with asym-
metric delays. The channels between fast parties deliver messages within a small delay δ, and
are denoted fast channels. And all channels containing at least one slow party have a large
delay ∆, and are denoted slow channels. We measure the round complexity as the number of
slow P2P-rounds (communication steps via all channels), and the number of fast P2P-rounds
(communication steps via fast channels). We will omit mentioning the P2P term, and simply
denote such rounds as fast and slow rounds.

Network with Asymmetric Communication Cost. In the second model, we consider
a network with asymmetric communication cost. Here, all the channels have the same
delay upper bound, similar to the standard synchronous network model, but the cost of
communication is asymmetric. We will consider expensive communication, the number of
bits transmitted via channels that contain at least one slow party, and cheap communication,
the number of bits transmitted via channels that contain only fast parties.

Adversary. We consider a static adversary who corrupts parties in an arbitrary manner at
the beginning of the protocol.

4.2 Broadcast
Broadcast allows a designated party called the sender to consistently distribute a message
among a set of receivers.

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:11

Synchronous Broadcast. The synchronous broadcast channel with guaranteed termination
delivers the output to the set of receivers after a fixed number of rounds.1 Synchronous
broadcast protocols with guaranteed termination can be achieved within O(κ) rounds, when
there are up to a third fraction of corrupted parties [19]. This is also the case for honest
majority, if a setup is available [33]. In the dishonest majority setting, synchronous broadcast
is achievable in O(n) rounds with a PKI setup [18], and even unconditionally with a setup
for information-theoretic signatures [44].

These protocols, when run in the asymmetric network delay model, achieve an actual
number of rounds that is proportional to the slowest channel. This means, that if all the
parties involved (sender and receivers) are connected via fast channels, the output is received
after a fixed number of fast rounds. However, when some of the channels between the
considered parties are slow, the protocols guarantee that the receivers obtain the output in a
fixed number of slow rounds.

4.3 Secret Sharing

In some of our protocols, we make use of Shamir secret sharing scheme [48]. This is a
t-out-of-n linear secret-sharing scheme over a finite field F , consisting of two protocols,
(Sh, Rec), called share and reconstruct.

Protocol Sh allows a designated party, called the dealer, to distribute a value s ∈ F
among n parties, P1, . . . , Pn. For that, the dealer samples a uniform random polynomial
f ∈ F [x] with degree at most t, and subject to the fact that f(0) = s. Then, the dealer sends
the value f(i) = si to Pi. We denote si the share of Pi, and the vector [s]t = (s1, . . . , sn)
is called a degree-t sharing of s. We may omit the degree if it is clear from the context.
Note that any set of t shares does not reveal anything about the secret. Protocol Rec allows
parties to jointly reconstruct a secret s′, which corresponds to the original secret s if the
dealer is honest. Shamir secret sharing scheme satisfies in addition the following properties:

Additive Homomorphism: ∀[x]t, [y]t, [x + y]t = [x]t + [y]t.
Local Multiplication of Degree-t Sharings: ∀[x]t, [y]t, [x · y]2t = [x]t · [y]t.

4.4 Oblivious Transfer

Oblivious transfer [45] is a two-party primitive between a sender S, and a receiver R. The
sender has two inputs x0, x1 ∈ {0, 1}, called the messages, and the receiver R has an
input c ∈ {0, 1}, called the selection bit. The oblivious transfer guarantees that R outputs
xc = c(x0 ⊕ x1) ⊕ x0, and that no party learns any other information.

5 MPC with Asymmetric Delays

In this section we introduce protocols in the model with asymmetric delays. We are interested
in protocols that incur as few slow rounds as possible, preferably a constant, and tolerating
a high number of corruptions and slow parties.

1 There are also protocols with probabilistic termination [19, 33], where the parties obtain output after
an expected-constant number of rounds. However, composing such protocols involves many subtleties.
See for example [13] for a nice discussion.

ITC 2023

6:12 Asymmetric Multi-Party Computation

5.1 Security with Abort
Protocol Description. We present a naive protocol that achieves security with abort in a
constant number of slow rounds, when t + s < n and t < n/2.

The protocol lets all parties generate during a pre-processing phase OT correlations
among the fast parties, using a (synchronous) information-theoretic MPC protocol for honest
majority and security with abort (e.g. [46, 21]), with round complexity linear in the circuit
depth to evaluate. Note that since the OTs can be generated in parallel and can be computed
with a constant-depth circuit, this is possible in a constant number of slow rounds. Then,
the parties execute an information-theoretic MPC protocol in the client-server model, that
achieves security with abort against a dishonest majority in the OT-hybrid model: All parties
act as clients and distribute their inputs to the fast parties, who also act as servers. The fast
parties will then compute the corresponding outputs and send them back to the respective
parties. Existing protocols [36, 15] run in a constant number of rounds during the input and
output phases, and the number of rounds during the computation is linear in the depth of
the circuit to evaluate. As a consequence, the overall protocol incurs a constant number of
slow rounds, and a number of fast rounds proportional to the depth of the circuit. This leads
to the following theorem, and the proof follows from the security of [46, 21] and [15].

▶ Theorem 1. Let n, s, t be natural numbers such that t + s < n and t < n/2. There is
an information-theoretic asymmetric MPC protocol among n parties that securely evaluates
circuit C with security with abort, in the presence of up to t malicious corruptions and s slow
parties. The round complexity is O (1) slow rounds and O (depth(C)) fast rounds.

Barrier Result. Our result shows that improving the resiliency achieved by the protocols in
the above sections would be a breakthrough in the area of information-theoretic synchronous
MPC. In particular, if there is an information-theoretic protocol that is constant in the
number of slow rounds for t + s = n, this implies a constant-round information-theoretic
synchronous MPC protocol secure up to 1 corruption.

▶ Theorem 2. Let n, s, t > 0 be natural numbers such that t + s = n. Then n-party
information-theoretic asymmetric MPC with security with abort (resp. guaranteed output
delivery), resilient up to t corruptions and s slow parties in R slow rounds, implies (s + 1)-
party information-theoretic synchronous MPC with security with abort (resp. guaranteed
output delivery), resilient up to 1 corruptions in R rounds.

Proof. Let Π be the protocol for fast and slow parties with R slow rounds. We want to
construct a synchronous protocol Π′ among s + 1 parties with R rounds.

Let us call the s + 1 virtual parties P1, . . . , Ps+1. Each party Pi, i ∈ [s] emulates a slow
party, and the last party Ps+1 emulates all the fast parties. The parties then execute the
protocol Π, where the messages between fast parties are emulated internally by Ps+1.

The resulting protocol Π′ is a secure synchronous protocol up to 1 corruption and with R

rounds. This follows from the fact that Π is a secure protocol tolerating t corruptions, and
each virtual party contains at most t parties from Π. ◀

5.2 Broadcast with Asymmetric Delays
The asymmetric broadcast channel guarantees the delivery of a consistent message fast to the
fast parties and slow to the slow parties. More precisely, an asymmetric broadcast channel
achieves guaranteed output after Dbc slow rounds for slow parties, and dbc fast rounds for

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:13

the fast parties. We will make use of this channel in the protocol for guaranteed output
delivery with resilience t + s < n and t < n/2, but in this section we study the feasibility of
this primitive from a complete network of point-to-point channels as a stand-alone question.

Functionality FsBC

1: On input x from the sender P ∗, output x to the adversary. Then, output x to all parties
in S after Dbc slow rounds and all parties in F after dbc fast rounds.

First, note that when the sender is slow, it is impossible to achieve asymmetric broadcast,
since one needs at least a slow round to distribute the value towards the fast parties. Therefore,
in the following we focus on the more interesting case where the sender is a fast party.

Feasibility. Assuming setup, if 2t + s < n, it is easy to see that asymmetric broadcast with
a fast sender is achievable. The protocol proceeds as follows: The sender with input s uses
a synchronous broadcast protocol to distribute his value among all the fast parties. Since
there is an honest majority of fast parties, one can for example use the protocol by Katz
and Koo [33]. All the fast parties reach agreement on a value s′ (which is s if the sender is
honest) within O(κ) fast rounds, and they send their value to the slow parties, who will take
a majority decision and output the result. Therefore, the slow parties output after O(κ) fast
rounds, and 1 slow round.

▶ Theorem 4. Let κ be a security parameter. Further let n, s, t be natural numbers such that
2t + s < n. Assuming a PKI setup for signatures, there is an n-party asymmetric broadcast
protocol with dbc = Dbc = O(κ), tolerating t malicious corruptions and s slow parties.

The protocol can be achieved with unconditional security, if a setup for information-
theoretic signatures is assumed [44].

Impossibility. We show that asymmetric broadcast is impossible when 2t + s = n for
a fast sender (even with setup), for any non-trivial parameters t > 0 and s > 0. Note
that this is in contrast to synchronous broadcast, which is achievable for any number of
corruptions assuming a PKI setup [18]. (Or even unconditionally, assuming information-
theoretic signatures [44].) The main challenge is to achieve agreement between fast and slow
parties. Intuitively, since asymmetric broadcast requires fast parties to obtain the output
fast, they need to decide their output value (let us denote it v) without having received
any value from the slow parties. Moreover, since there is dishonest majority among the fast
parties, they can act towards the slow parties as if their output value was v′ ̸= v. As a
consequence, the honest slow parties will not output v and consistency is broken. The proof
of the following theorem can be found in Appendix B.

▶ Theorem 5. Let n, s, t > 0 be natural positive numbers such that 2t + s = n. Then,
asymmetric broadcast is impossible against t malicious corruptions and s slow parties, even
with setup.

5.3 Guaranteed Output Delivery
In this section, we present two protocols. The first protocol achieves a lower resilience, but
operates only assuming point-to-point channels. The second protocol has a higher resilience,
but makes use of asymmetric broadcast.

ITC 2023

6:14 Asymmetric Multi-Party Computation

Protocol for 2t + s < n and t < n/3. In the regime where 2t + s < n and t < n/3, it is
easy to design an asymmetric MPC protocol, by simply delegating the computation to the
fast parties. Note that since t < n/3, the parties can create a setup of information-theoretic
signatures, which can be used to construct a synchronous broadcast channel [44, 33] from slow
parties to all parties in O(κ) slow rounds, and from fast parties among themselves in O(κ)
fast rounds. With the emulated synchronous broadcast channels, parties can then execute
an honest majority protocol such as [46] as follows: the slow parties, using the emulated
broadcast channel, use a verifiable secret sharing scheme to share their input towards the
fast parties (with threshold t), who will robustly evaluate the circuit among themselves. The
fast parties can then robustly reconstruct the output towards the respective recipients. The
total round complexity is O (κ) slow rounds and O (depth(C) · κ) fast rounds. The proof of
the following theorem follows from the security of [46] and [33].

▶ Theorem 3. Let κ be a security parameter. Let n, s, t be natural numbers such that 2t+s < n

and t < n/3. There is an asymmetric MPC protocol among n parties that securely evaluates
circuit C with guaranteed output delivery in the presence of up to t malicious corruptions and
s slow parties. The round complexity is O (κ) slow rounds and O (depth(C) · κ) fast rounds.

We note that if a synchronous broadcast channel is given (or alternatively a setup for
information-theoretic signatures), the condition t < n/3 is not necessary.

Protocol for t + s < n and t < n/2. In this section, we present a protocol that achieves
guaranteed output delivery with the higher trade-off t + s < n and t < n/2. The resulting
protocol has round complexity O (n · Dbc) slow rounds and O (depth(C) · n · dbc) fast rounds,
assuming asymmetric broadcast.

Generating Certified Beaver Triples. We generate Beaver multiplication triples (a, b, c),
that are shared among all parties. The triples are certified, in the sense that all shares are
signed via information-checking signatures. There can be thought of as signatures that are
information-theoretic, and can only be forwarded once. The signatures are also homomorphic,
in the sense that for two values that can be verified by the scheme, any linear combination of
them can also be verified with no additional information. See [14] for a concrete construction.

We generate the triples using the protocol by Cramer et al. [14], which makes use of such a
IC-signature scheme. The protocol takes O(1) invocations to asymmetric broadcast (incurring
a total of O(Dbc) slow rounds), since the multiplication triples can be generated in parallel.
In this protocol, a value s is shared using a bivariate polynomial f(x, y) with degree at most
t. At the end of the sharing protocol, each honest party Pi holds the values si1, . . . , sin

that lie on a degree-t polynomial, which in the case the dealer is honest, corresponds to
the values f(i, 1), . . . , f(i, n). This implicitly defines the share of Pi, which is si = f(i, 0).
Moreover, each value sij is signed by party Pj , and we denote such a signature (from Pj to
Pi) by σ(sij , Pj , Pi). This signature allows Pi to forward the value sij in an authentic way.
In Appendix C, we recap the protocol in detail.

The Online Phase. At the start of the online phase, enough triples (a, b, c) have been
shared using the protocol in [14]. This means, that each party Pi implicitly holds each of the
shares ai, bi, ci via the corresponding sub-shares, which are signed by the other parties.

The online phase proceeds as follows. Parties distribute their inputs using Πvss, the VSS
scheme in [14]. The addition gates can locally be computed (simply by locally adding the
shares and locally adding the signatures, since they are linear). In the multiplication gates,

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:15

fast parties robustly open two random values, (x − a) and (y − b), where x and y are the
values of the input wires to the multiplication gate, by running the same reconstruction
procedure of Πvss, except that they distribute their shares using asymmetric broadcast. Since
the values are signed, corrupted fast parties can only withhold their shares. Since fast parties
distribute their shares via the asymmetric broadcast channel, this implies that all parties,
fast and slow, reach agreement on the set of parties that did not contribute their share and
are corrupted. Note that since the threshold is t < n − s, if all fast parties contribute their
shares, the slow parties do not need to participate (and therefore we do not need to incur
additional slow rounds). However, if not all shares are received, a process to identify and
kick out corrupted parties is performed: fast parties wait for the slow parties to help opening
the shares (note that n − t > t, and therefore all honest parties can jointly open the shares).
The corrupted identified parties are then kicked out of the computation, and the protocol is
restarted without the kicked parties. This process involves O(Dbc) slow rounds. And since
every time at least one corrupted party is kicked out, the incurred total number of slow
rounds is linear in the number of parties times the broadcast slow delay. We formally describe
the protocol in Appendix D, and a proof of the following theorem appears in Appendix E.

▶ Theorem 6. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming
asymmetric broadcast with slow and fast delays Dbc and dbc, Πrgod is an asymmetric MPC
protocol among n parties that securely evaluates circuit C with guaranteed output delivery,
in the presence of up t corruptions and s slow parties. The round complexity is O (n · Dbc)
slow rounds and O (depth(C) · n · dbc) fast rounds. In the optimistic case where no party is
corrupted, the round complexity is O (Dbc) slow rounds and O (depth(C) · dbc) fast rounds.

Although the number of slow rounds is independent of the depth of the circuit, it has
the drawback that it depends on the number of parties in the worst case. However, if we
assume that among the fast parties there is a constant fraction of parties that are honest,
then we can modify the above protocol to achieve round complexity O (Dbc) slow rounds
and O (depth(C) · dbc) fast rounds. Then, the adversary needs ϵ(n − s) corrupted parties to
not send messages in order to execute Steps 3 and 4 in a multiplication step, which will be
all identified and kicked out of the computation. This can only happen at most 1/ϵ times.

▶ Corollary 7. Let ϵ > 0 and n, s, t be natural numbers such that t < min{(1−ϵ)(n−s), n/2}.
Assuming asymmetric broadcast with slow and fast delays Dbc and dbc, there is an asymmetric
MPC protocol among n parties that securely evaluates circuit C with guaranteed output
delivery, in the presence of up to t corruptions and s slow parties. The round complexity is
O (Dbc) slow rounds and O (depth(C) · dbc) fast rounds.

6 MPC with Asymmetric Communication Cost

In this section we introduce protocols in the model with asymmetric communication cost.
We are interested in protocols that transmit as few bits as possible over expensive channels
(channels containing at least one slow party), and that tolerate a high number of corrupted
parties and slow parties. Looking closer, our protocol from Theorem 3 already achieves small
expensive communication, independent of the circuit since expensive communication only
occurs in the input and output stages. However, the resiliency is only 2t + s < n. Therefore,
we turn our attention to protocols achieving resiliency t + s < n and t < n/2.

ITC 2023

6:16 Asymmetric Multi-Party Computation

6.1 Security with Abort
We provide a protocol that achieves security with abort and communicates O(poly(n, κ)) bits
over the expensive channels. The protocol assumes the existence of one-way functions, and
follows from existing results. The idea is to generate pair-wise OT correlations among the
fast parties during a pre-processing phase. This is possible [46, 21] since there is an honest
majority t < n/2 of parties, and the total number of communicated bits over expensive
channels is independent of the circuit size. More concretely, all parties will prepare κ OT
correlations per fast connection (in total O(n2κ) OTs2. Each pair of fast parties can then
use OT extension protocols [4, 32, 41] to set up OT channels between them. Once the OT
channels are prepared, we can execute a standard unconditional OT-based protocols for
dishonest majority [36, 15] to perform the computation among the fast parties, and deliver
the outputs to all the parties, leading to the following theorem statement.

▶ Theorem 8. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming
the existence of one-way functions, there is an asymmetric MPC protocol among n parties
that securely evaluates circuit C with security with abort, in the presence of up to t malicious
corruptions and s slow parties. The communication complexity is O (poly(n, κ)) bits of
expensive communication and O (poly(n, κ)|C|) bits of cheap communication.

6.2 Barriers on Communication Complexity
In this section, we show that if one assumes an asymmetric MPC, where the slow parties
perform a small amount of computation, then this implies OT extension.

▶ Lemma 9. Assume an n-party asymmetric MPC, secure up to t semi-honest corruptions
and s slow parties such that the slow parties perform constant amount of computation, for
any n, s, t > 0 natural numbers such that n − s > 1, t + s < n and t < n/2. Then, this
implies the existence of one-way functions.

Proof. The proof strategy is to build a semi-honest OT extension protocol from a semi-
honest asymmetric MPC protocol. Since OT extension for semi-honest corruption implies the
existence of one-way functions [38], the claim follows. Let c the total circuit size to represent
the computation of the slow parties (this has polynomial size). Assume that there is an
n-party asymmetric MPC protocol Π with at least 2 fast parties and secure up to t = n−s−1
and t < n/2. Further assume that the protocol outputs c + 1 OT correlations. We first
describe an (n − s)-party reactive functionality Fslow that emulates the computation of the
slow parties. Concretely, this is a reactive functionality which keeps the internal joint state of
the slow parties, and which, upon giving inputs from the fast parties, it updates its internal
joint state and computes the outputs to the fast parties according to the protocol description
Π for the slow parties. Now we create a two-party protocol Π′ for OT extension, where both
parties have access to the reactive functionality described above, and where: P1 emulates
n − s − 1 fast parties, and P2 emulates the 1 remaining fast party. The two parties execute
the asymmetric MPC protocol, where any interaction with the slow parties is performed
via the reactive functionality Fslow instead. First, note that the reactive functionality can
be realized using a dishonest majority synchronous MPC protocol such as GMW among

2 This can be reduced to O(nκ) OTs if there is a constant fraction of honest fast parties, i.e. t < (1−ϵ)(n−s),
for ϵ > 0 constant, using the results of Harnik, Ishai and Kushilevitz [30], which combines from
distributing computations among several committees from Bracha [10], techniques for combining
oblivious transfers from Harnik et al. [31], and constructions of dispersers [25, 47])

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:17

the fast parties. Further note that since we are assuming that the slow parties performs
computation represented by a total circuit size c. This means that the number of OTs needed
to realize Fslow is c. Finally, in terms of security, note that since the asymmetric MPC
protocol tolerates t = n − s − 1 corruptions, the resulting two-party protocol tolerates 1
corruption. In conclusion, the resulting two-party protocol where the reactive functionality is
emulated among the two fast parties is a secure OT extension protocol against a semi-honest
static adversary, which implies one-way functions. This concludes the proof. ◀

References
1 Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and

Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012. doi:10.1007/
978-3-642-29011-4_29.

2 Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer extensions with security for malicious adversaries. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 673–701.
Springer, Heidelberg, April 2015. doi:10.1007/978-3-662-46800-5_26.

3 Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC:
Laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 120–150. Springer, Heidelberg, December 2020. doi:
10.1007/978-3-030-64840-4_5.

4 Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In
28th ACM STOC, pages 479–488. ACM Press, May 1996. doi:10.1145/237814.237996.

5 Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990. doi:
10.1145/100216.100287.

6 Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear communica-
tion complexity. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 213–230.
Springer, Heidelberg, March 2008. doi:10.1007/978-3-540-78524-8_13.

7 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988. doi:10.1145/62212.62213.

8 Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532. Springer, Heidelberg,
April / May 2018. doi:10.1007/978-3-319-78375-8_17.

9 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part I, volume 12550 of LNCS, pages 353–380. Springer, Heidelberg, November
2020. doi:10.1007/978-3-030-64375-1_13.

10 Gabriel Bracha. An o (log n) expected rounds randomized byzantine generals protocol. Journal
of the ACM (JACM), 34(4):910–920, 1987.

11 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.
doi:10.1145/62212.62214.

12 Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel Kaptchuk.
Fluid MPC: Secure multiparty computation with dynamic participants. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 94–123, Virtual
Event, August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-84245-1_4.

ITC 2023

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-030-84245-1_4

6:18 Asymmetric Multi-Party Computation

13 Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and
composability of cryptographic protocols. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 240–269. Springer, Heidelberg, August
2016. doi:10.1007/978-3-662-53015-3_9.

14 Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient
multiparty computations secure against an adaptive adversary. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 311–326. Springer, Heidelberg, May 1999.
doi:10.1007/3-540-48910-X_22.

15 Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and
private multi-party computation. In Don Coppersmith, editor, CRYPTO’95, volume 963 of
LNCS, pages 110–123. Springer, Heidelberg, August 1995. doi:10.1007/3-540-44750-4_9.

16 Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty
computation. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590.
Springer, Heidelberg, August 2007. doi:10.1007/978-3-540-74143-5_32.

17 Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou. Phoenix: Secure computation
in an unstable network with dropouts and comebacks. Cryptology ePrint Archive, Report
2021/1376, 2021. URL: https://ia.cr/2021/1376.

18 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

19 Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In 20th ACM
STOC, pages 148–161. ACM Press, May 1988. doi:10.1145/62212.62225.

20 Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from
minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg, April / May 2018.
doi:10.1007/978-3-319-78375-8_16.

21 Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits
resilient to additive attacks with applications to secure computation. In David B. Shmoys,
editor, 46th ACM STOC, pages 495–504. ACM Press, May / June 2014. doi:10.1145/2591796.
2591861.

22 Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In Brian A. Coan and Yehuda Afek,
editors, 17th ACM PODC, pages 101–111. ACM, June / July 1998. doi:10.1145/277697.
277716.

23 Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin,
and Sophia Yakoubov. YOSO: You only speak once - secure MPC with stateless ephemeral
roles. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826
of LNCS, pages 64–93, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/
978-3-030-84245-1_3.

24 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987. doi:10.1145/28395.28420.

25 Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–343, 1997.

26 S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg, August
2015. doi:10.1007/978-3-662-48000-7_4.

27 Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC
with guaranteed output delivery. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 85–114. Springer, Heidelberg, August
2019. doi:10.1007/978-3-030-26951-7_4.

https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-44750-4_9
https://doi.org/10.1007/978-3-540-74143-5_32
https://ia.cr/2021/1376
https://doi.org/10.1145/62212.62225
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/2591796.2591861
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-030-26951-7_4

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:19

28 Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in honest
majority MPC. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 618–646. Springer, Heidelberg, August 2020. doi:
10.1007/978-3-030-56880-1_22.

29 Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 499–529. Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-26948-7_
18.

30 Danny Harnik, Yuval Ishai, and Eyal Kushilevitz. How many oblivious transfers are needed for
secure multiparty computation? In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 284–302. Springer, Heidelberg, August 2007. doi:10.1007/978-3-540-74143-5_
16.

31 Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust combiners
for oblivious transfer and other primitives. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 96–113. Springer, Heidelberg, May 2005. doi:10.1007/11426639_
6.

32 Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_9.

33 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462.
Springer, Heidelberg, August 2006. doi:10.1007/11818175_27.

34 Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354. Springer,
Heidelberg, August 2004. doi:10.1007/978-3-540-28628-8_21.

35 Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party computa-
tion with a dishonest majority. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of
LNCS, pages 578–595. Springer, Heidelberg, May 2003. doi:10.1007/3-540-39200-9_36.

36 Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31.
ACM Press, May 1988. doi:10.1145/62212.62215.

37 Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 171–189. Springer, Heidelberg,
August 2001. doi:10.1007/3-540-44647-8_10.

38 Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious transfer. In Amit
Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 519–538. Springer, Heidelberg, March
2013. doi:10.1007/978-3-642-36594-2_29.

39 Chen-Da Liu-Zhang, Julian Loss, Ueli Maurer, Tal Moran, and Daniel Tschudi. MPC
with synchronous security and asynchronous responsiveness. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 92–119. Springer,
Heidelberg, December 2020. doi:10.1007/978-3-030-64840-4_4.

40 Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666
of LNCS, pages 735–763. Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-49896-5_
26.

41 Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra.
A new approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer,
Heidelberg, August 2012. doi:10.1007/978-3-642-32009-5_40.

42 Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a constant
number of rounds. In 44th FOCS, pages 404–415. IEEE Computer Society Press, October
2003. doi:10.1109/SFCS.2003.1238214.

ITC 2023

https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-56880-1_22
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-540-74143-5_16
https://doi.org/10.1007/978-3-540-74143-5_16
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/3-540-44647-8_10
https://doi.org/10.1007/978-3-642-36594-2_29
https://doi.org/10.1007/978-3-030-64840-4_4
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1109/SFCS.2003.1238214

6:20 Asymmetric Multi-Party Computation

43 Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confir-
mation. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 3–33. Springer, Heidelberg, April / May 2018.
doi:10.1007/978-3-319-78375-8_1.

44 Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any number
of faulty processors. In Annual Symposium on Theoretical Aspects of Computer Science, pages
337–350. Springer, 1992.

45 Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005. URL: https://eprint.iacr.org/2005/187.

46 Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.
doi:10.1145/73007.73014.

47 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In Proceedings 41st Annual Symposium on
Foundations of Computer Science, pages 3–13. IEEE, 2000.

48 Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

49 Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986. doi:10.1109/SFCS.1986.
25.

Appendix

A Related Work

To the best of our knowledge, all current protocols consider a symmetric network resource
model, where all parties have access to the same types of channels: all channels have the same
delay and the same communication cost. In contrast, we consider a more refined asymmetric
resource model, by making a distinction between two party categories. In the following, we
show how our results compare to previous existing results.

Round Complexity of Information-Theoretic Synchronous MPC. The round complexity
of MPC has a significant line of works. We focus on the information-theoretic setting. Here,
all known protocols incur a number of rounds, that is linear in the depth of the computed
circuit [7, 11, 46], and each round corresponds to the worst-case delay upper bound ∆. This
is the case even when only one channel has delay ∆, and all other channels have delay δ ≪ ∆.
In contrast, we provide protocols where the number of slow ∆-rounds is independent of the
circuit size (even constant in some cases). Note that a constant number of slow rounds is
necessary in order to distribute the inputs of all slow parties.

Responsive MPC. A line of works focused on the problem of obtaining MPC protocols that
are responsive. These are protocols where the running time is as fast as the actual network
delay. Note that any asynchronous protocol is responsive, but there are also synchronous
protocols that remain responsive when the number of corruptions is small [43, 39]. These
protocols inherently cannot achieve input completeness, i.e., the inputs of up to t honest
parties may be ignored from the computation, and are responsive up to t < n/3 corruptions
(above n/3 corruptions, the running time is similar to that of synchronous protocols). In
contrast, our protocols achieve input completeness, and benefit from the fast channels even
up to t < n/2 corruptions.

https://doi.org/10.1007/978-3-319-78375-8_1
https://eprint.iacr.org/2005/187
https://doi.org/10.1145/73007.73014
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:21

Communication Complexity of MPC. The communication complexity of MPC has a
significant line of works as well. Traditional solutions incur poly(n)|C| communication, and
since then, there has been a significant progress in the communication efficiency (see e.g.
[16, 6, 27, 28]). All these works consider the communication cost to be the same for all
channels, and, as a consequence, their communication depends on the circuit size. Our work
makes a distinction between cheap and expensive channels, and we provide protocols where
the amount of bits transmitted over expensive channels is independent of the circuit size.

MPC with Sporadic Participation. A line of works [29, 3, 9, 12, 23, 17] considered MPC
protocols where not all parties need to be online and/or participate at all steps of the protocol.
In such protocols, a main challenge is to keep the state of the honest parties consistent
throughout the protocol execution, and the protocol efficiency is counted uniformly (there is
no asymmetry between network resources). In our case all parties are always online, and
the main challenge is on minimizing the use of resources from a fixed known set of (slow)
parties.

B Proof of Theorem 5

We prove by contradiction. Assume that there is such a secure asymmetric broadcast protocol
resilient up to t corruptions and s slow parties such that 2t + s = n, for s, t > 0 and n − s > 1.
We partition the set of parties into three sets: the slow parties S, and two sets of size t F0
and F1 for the fast parties. We make the argument for an external fast sender role P ∗.

The adversary corrupts the sender P ∗ and chooses a random bit b. Then, it corrupts Fb.
In addition, the adversary runs the following two executions Exec0 and Exec1 at the same
time.

In Execb, the corrupted parties Fb and the corrupted sender P ∗ run an execution with
the other parties where the sender has input b, but where Fb ignores every message from
F1−b and does not communicate with them either.

In Exec1−b, the corrupted sender P ∗ runs an execution with the slow parties and parties
in F1−b, where the sender has input 1 − b, and the parties in Fb do not send any message
to F1−b.

Consider an execution with the above adversary strategy. First, note that no matter
what value b is chosen, the view of the slow parties S is exactly the same. This is because
the view of the slow parties consist of two independent executions, where Fb and F1−b do
not communicate, but otherwise follow an execution where the sender has input b and 1 − b,
respectively.

Second, note that when the bit b is chosen, the parties in F1−b output 1 − b. This is
because the view of F1−b is identically distributed as in an execution where the sender is
honest with input 1 − b, and parties in Fb crashed. Note that F1−b must output fast, before
receiving any message from S.

The above observations imply that the slow parties output a value that is inconsistent
with F1−b, with probability 1/2. Note that even though S sees the sender is corrupted, he
does not see whether F0 or F1 is honest (these sets output different bits).

ITC 2023

6:22 Asymmetric Multi-Party Computation

C Recap of Protocol [14]

In this section, we describe the details of the protocol by Cramer et al. [14], which is used in
the preprocessing phase of the protocol Πrgod in Section 5.3.

IC-Signatures. Information checking (IC) [14] is a tool for authenticating data that is
information-theoretic. We make use of information checking among n parties P1, . . . , Pn.
Protocol Dist will be carried out by the dealer D with intermediary INT and the receivers
P1, . . . , Pn, each with the same input value s. The information sent by D to INT will be
called an IC-signature and we denote such a signature as σ(s, D, INT). In order to verify a
signature among n parties, the AuthVal protocol is executed bilaterally by INT and each
party Pi. Then, in protocol Reveal, INT broadcasts s and the authentication information,
and if t + 1 parties accept s then we say that the signature has been confirmed. These
signatures enable D to give INT a signature which only INT can use to convince the other
parties about the authenticity of a value received from the dealer. Therefore, we can use
these IC-signatures as signatures given specifically from D to INT , so that INT can prove
authenticity of a received value to any party.

Verifiable Secret Sharing. We recall the definition of verifiable secret sharing (VSS).

▶ Definition 10. A t-secure VSS scheme for sharing a secret s ∈ F is a pair (Sh, Rec) n-party
protocols that satisfy the following properties, even in the presence of an adversary corrupting
up to t parties:

Correctness: Once all honest parties terminate protocol Sh, there exists a fixed value,
s′ ∈ F ∪ ⊥, such that the following requirements hold:

If the dealer D is honest, then s′ = s, and each honest party outputs s′ in protocol Rec.
If the dealer is corrupted then each honest party outputs s′ in protocol Rec.

Privacy: If the dealer is honest and no honest party has yet started Rec, then the adversary
has no information about the shared secret s.
Termination: If the dealer D is honest then all honest parties terminate Sh, and if the
honest parties invoke Rec, then each honest party eventually terminates Rec.

Protocol Description. The protocol is based on classical protocols [19, 7], but using IC-
signatures, instead of error correction.

In order to share a value s, the dealer D will make use of a bivariate polynomial f(x, y)
of degree at most t. The projections f(x, i) and f(i, y) will be sent to party Pi (where all
the points are signed using IC-signatures). The parties can now bilaterally compare the
cross-point values between them, and expose inconsistent behavior by the dealer using the
signatures. This implies that the values held by honest parties are consistent, and since there
are at least n − t > t + 1 honest parties, these values uniquely define a bivariate polynomial
f ′(x, y) of degree at most t, which in turn defines the secret. Therefore, this already ensures
that the dealer is committed to a value after the sharing phase.

However, the reconstruction might still fail if the adversary sends corrupted shares. In
order to avoid that, each share of Pi is also signed by the other parties. This will in turn
prevent the adversary from corrupting the secret at reconstruction time.

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:23

Protocol Πvss

Share Let s be the input for the dealer D.

1: D chooses a random bivariate polynomial f(x, y) of degree at most t in each variable,
such that f(0, 0) = s. Let sij = f(i, j). The dealer sends to party Pi the values a1i =
s1i, . . . , ani = sni and bi1 = si1, . . . , bin = sin. For each value aji, bij , D attaches IC-
signatures σ(aji, D, Pi), and σ(bij , D, Pi).

2: Party Pi checks that the two sets a1i, . . . , ani and bi1, . . . , bin are t-consistent. If the values
are not t-consistent, Pi broadcasts these values with D’s signature on them. If a party
hears a broadcast of inconsistent values with the dealer’s signature then D is disqualified
and execution is halted.

3: Pi sends aji and a signature which he generates on aij , σ(aji, Pi, Pj) privately to Pj .
4: Party Pi compares the value aij which he received from Pj in the previous step to the

values bij received from D. If there is an inconsistency, Pi broadcasts bij and σ(bij , D, Pi).
5: Party Pi checks if Pj broadcasted a value bji, σ(bji, D, Pj) which is different than the value

aji which he holds. If such a broadcast exists then Pi broadcasts aji and σ(aji, D, P i).
6: If for an index pair (i, j) a party hears two broadcasts with signatures from the dealer on

different values, then D is disqualified and execution is halted.
Reconstruct

1: Party Pi broadcasts the values bi1, . . . , bin with the signature for value bij which he received
from party Pj .

2: Party Pi checks whether Pj ’s shares broadcasted in the previous step are t-consistent and
all the signatures are valid. If not then Pj is disqualified.

3: The values of all non-disqualified parties are taken and interpolated to compute the secret.

Multi-Party Computation. Using the VSS scheme Πvss from above, it is easy to come up
with an MPC protocol. Addition gates are straightforward and parties can process them
locally (using the fact that the IC-signatures are linear). Multiplication gates are processed
using the well-known method by Gennaro, Rabin and Rabin [22]: Each party Pi locally
multiplies his shares ai and bi of the input wires a and b, and shares the result di = aibi using
VSS. This results in n VSSs and a proper sharing of the output wire c can be computed as a
fixed linear combination of these. The authors show a way for Pi to share a secret di, such
that di = aibi and to prove that he has done so properly. The details can be found in [14].

D Description of Protocol Πrgod

Protocol Πrgod

Initialize t′ = t, F ′ = F .
Preprocessing Phase

1: Parties use the protocol [14] to create:
nm random sharings of certified Beaver triples ([ak], [bk], [ck]), where nm is the number
of multiplication gates, as explained before. This means, that for each triple (a, b, c),
each honest party Pi implicitly holds his share ai by holding sub-shares ai1, . . . , ain,
where each sub-share is IC-signed by Pj . These sub-shares lie on a degree-t polynomial;
and the shares ai also lie on a degree-t polynomial f with f(0) = a. And similarly, for
the values b and c = ab.

Input Phase Let xj be the input from party Pj .

1: Pj uses the protocol Πvss (described in Section C) to share his input xj .

ITC 2023

6:24 Asymmetric Multi-Party Computation

Addition Gates

1: Fast parties locally add the shares using linearity of the sharing scheme, and compute the
corresponding IC-signatures using its linearity property.

Multiplication Gates Let [x] and [y] be sharings of the inputs to the gate.

1: Fast parties in F ′ use a multiplication triple ([a], [b], [c]) to publicly reconstruct the values
x − a and y − b among the fast parties, using the reconstruction procedure of Πvss (where
only the fast parties start). That is, the fast parties use asymmetric broadcast to distribute
their share towards all parties, and the corresponding IC-signatures.

2: After time dbc, all the fast parties reach agreement on whether all the shares received have
correct IC-signatures are t-consistent. If not, they keep waiting for a total of 2Dbc time.
Otherwise, execute Step 5.

3: After time Dbc, all slow parties reach agreement on whether the shares distributed by the
fast parties were correct (t-consistent and with correct signatures). If not, slow parties
participate in the reconstruction by broadcasting their shares and IC-signatures.

4: After time 2Dbc, either there were enough shares to reconstruct at Step 2, or all honest
parties (fast and slow) identify at least one corrupted fast party Pk ∈ F ′ that did not
contribute its share. In this case, parties kick out the identified corrupted party, and restart
the protocol, now with threshold t′ = t′ − 1, and set F ′ = F \ {Pk}.

5: Fast parties in F ′ locally compute a share of the output to the gate as [z] = (x − a)[b] +
(y − b)[a] + [c] + (x − a)(y − b) (via locally adding each of the sub-shares), and update the
IC-signatures accordingly using the linearity property.

Output Phase

1: To reconstruct a sharing [x] towards Pj , parties robustly reconstruct the secret to the Pj ,
using the VSS reconstruction protocol in Πvss.

E Proof of Theorem 6

We describe the simulator for the online phase of the protocol, as the preprocessing phase is
executed using the protocol [14] and can also be simulated.

Simulation of the Input Phase. For each honest party Pi, the simulator emulates an
execution of Πvss with input 0 towards the adversary. This includes sending random projected
univariate polynomials to the adversary, along with IC-signatures. Each time a complain is
received by the adversary, the simulator responds by broadcasting the corresponding stored
share and signature.

For each corrupted party Pi, the simulator emulates an honest execution of Πvss on behalf
of the honest parties: it receives univariate polynomials with signatures on behalf of the
honest parties. It then checks that they are all of degree-t, and if not, it broadcasts the
values with Pi’s signatures. Finally, for any share and signature that are broadcasted, if the
corresponding party holding the cross-point share is honest, it checks whether that received
share is consistent, and if not, it broadcasts these values with Pi’s signature on them.

Simulation of Addition Gates. The addition gates require no simulation, since they consti-
tute local computation only.

Simulation of Multiplication Gates. During each multiplication gate, the simulator emulates
the reconstruction procedure of Πvss from the fast parties. That is, it emulates an execution
of asymmetric broadcast, and gives to the adversary the shares and signatures corresponding

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky 6:25

to x − a and y − b, where x and y are the input wire values in the simulated execution, and
(a, b, c) is a multiplication triple. (Note that since a and b are random, the reconstructed
values are also random.)

Simulation of the Output Stage. During the output phase, the simulator receives the
output yi for Pi, and the shares of the corrupted parties. With these, the simulator can
consistently reconstruct the shares of the honest parties and send them to the adversary.

Analysis of the Simulation. We first argue about correctness. First, the pre-processing
phase is successful, and all parties hold correct shares of the multiplication triples with
correct signatures (with high probability). Similarly, after the input phase, parties hold
correct shares of their inputs and signatures. This correctness trivially propagates to the
rest of the wires in the circuit, since all operations are linear.

Now let us argue that the protocol securely computes the function. During the input
phase for an honest party Pi, the adversary receives the projections of univariate polynomials
f(x, j) and f(j, y), for up to t indices j. By properties of bivariate polynomials, this reveals
no information about the secret, and is therefore identically distributed as the univariate
polynomials that the simulator reveals. In the multiplication phase, as hinted above, since
the multiplication triple (a, b, c) contains uniform random values a and b, the reconstructed
values are also distributed uniformly at random, identically as the simulated execution. This
is also the case for the output gates, where the simulator outputs honest shares and signatures
that are consistent with the corresponding reconstructed output.

ITC 2023

Phoenix: Secure Computation in an Unstable
Network with Dropouts and Comebacks
Ivan Damgård
Aarhus University, Denmark

Daniel Escudero
J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, NY, USA

Antigoni Polychroniadou
J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE, New York, NY, USA

Abstract
We consider the task of designing secure computation protocols in an unstable network where honest
parties can drop out at any time, according to a schedule provided by the adversary. This type of
setting, where even honest parties are prone to failures, is more realistic than traditional models,
and has therefore gained a lot of attention recently. Our model, Phoenix, enables a new approach
to secure multiparty computation with dropouts, allowing parties to drop out and re-enter the
computation on an adversarially-chosen schedule and without assuming that these parties receive the
messages that were sent to them while being offline - features that are not available in the existing
models of Sleepy MPC (Guo et al., CRYPTO ’19), Fluid MPC (Choudhuri et al., CRYPTO ’21)
and YOSO (Gentry et al. CRYPTO ’21). Phoenix does assume an upper bound on the number of
rounds that an honest party can be off-line – otherwise protocols in this setting cannot guarantee
termination within a bounded number of rounds; however, if one settles for a weaker notion, namely
guaranteed output delivery only for honest parties who stay on-line long enough, this requirement is
not necessary.

In this work, we study the settings of perfect, statistical and computational security and design
MPC protocols in each of these scenarios. We assume that the intersection of online-and-honest
parties from one round to the next is at least 2t + 1, t + 1 and 1 respectively, where t is the number
of (actively) corrupt parties. We show the intersection requirements to be optimal. Our (positive)
results are obtained in a way that may be of independent interest: we implement a traditional stable
network on top of the unstable one, which allows us to plug in any MPC protocol on top. This
approach adds a necessary overhead to the round count of the protocols, which is related to the
maximal number of rounds an honest party can be offline. We also present a novel, perfectly secure
MPC protocol in the preprocessing model that avoids this overhead by following a more “direct”
approach rather than first building a stable network and then using existing protocols. We introduce
our network model in the UC-framework, show that the composition theorem still holds, and prove
the security of our protocols within this setting.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases Secure Multiparty Computation, Unstable Networks

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.7

Related Version Full Version: https://eprint.iacr.org/2021/1376

Acknowledgements This paper was prepared in part for information purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”), and is not
a product of the Research Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the completeness, accuracy or reliability of the
information contained herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in any way for evaluating the merits of

© Ivan Damgård, Daniel Escudero, and Antigoni Polychroniadou;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITC.2023.7
https://eprint.iacr.org/2021/1376
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Phoenix: Secure Computation in an Unstable Network

participating in any transaction, and shall not constitute a solicitation under any jurisdiction or to
any person, if such solicitation under such jurisdiction or to such person would be unlawful. 2023
JP Morgan Chase & Co. All rights reserved.

1 Introduction

Secure Multiparty Computation (MPC) is a technique that allows multiple mutually distrust-
ful parties to compute a function of their inputs without leaking anything else beyond the
output of the computation. Most protocols in the MPC literature assume that the parties
communicate over a synchronous network, that is, all the parties have access to a global
clock. This allows the parties to follow the protocol specification based on time. A protocol
under such network model proceeds in communication rounds, each of which has a fixed
duration and where each party can send a message to each other party.

Synchronous networks are natural for describing protocols and may make sense in many
contexts, but the model is not resilient to sudden slowdowns: if a party fails to send a message
within the allocated time for a specific round, this message will not be taken into account,
and what is worse, in the context of an active adversary this will be considered a deviation
from the protocol specification. Hence an honest party who accidentally misses a deadline
will be classified as corrupt. The first problem with this is that an MPC protocol can only
tolerate a certain maximal number of corruptions. Tagging parties as corrupt because of
natural network issues that may appear in practice leaves little room for real corruptions.
For instance, MPC over unstable mobile network connections or denial of service attacks
might consume all the corruptions we can handle. The second problem is that once a party
is tagged as corrupt, the protocol may now reveal her secret inputs, which seems unfair if
the party was actually honest but suffered a random network delay. An alternative model is
an asynchronous network, where the parties are not assumed to have a clock anymore. This
modeling is more resilient to the type of attacks described above since the communication
network allows for parties to be slow and no deadlines are set. However, this model comes
with its own set of issues since, when dealing with an active adversary, the parties cannot
distinguish a delayed message sent by a slow party, from a message that an actively corrupt
party decided not to send in the first place. As a result asynchronous protocols tend to
tolerate a smaller number of corruptions [3], and, what is worse, an asynchronous protocol
cannot guarantee that all honest parties get to contribute inputs to the computation.

Therefore, it seems to be a better approach of considering an imperfect synchronous
network where the adversary is allowed to cause some parties to go offline temporarily, and
require protocols to not classify such parties as corrupt. In such a setting we may still hope
to get (1) optimal corruption thresholds, (2) allow all parties to contribute input, and (3)
guarantee termination at a certain time. A series of works has studied MPC in different
variant of this model, see Section 1.3 and also the Full Version of this work for a detailed
comparison of prior works. However, it is still an open question whether we can have MPC
protocols with optimal security and corruption thresholds in the most adversarial, but also
most realistic setting, that we call an unstable network in this paper. In such a network
parties go offline and come back according to an adversarially chosen schedule (not a schedule
prescribed by the protocol specifications), and parties are not assumed to receive messages
sent while they were offline. Not receiving messages while being offline introduces more
challenges since one can only rely on the parties that are online in the current round and
were also online in the previous round.

I. Damgård, D. Escudero, and A. Polychroniadou 7:3

1.1 Unstable Networks
As we have mentioned, there are multiple attempts in the literature to model what a realistic
network where parties can dropout and return should represent concretely. In this work we
are interested in studying the setting of MPC over an unstable network, which is a type of
synchronous network we introduce where, in contrast to a stable network (i.e. a standard
synchronous network), the adversary can choose in each round a subset of parties that will
be offline in that specific round, and hence may not be able to send or receive messages. This
models honest parties dropping out in that specific round, possibly due to network errors or
malicious attacks, which serves to represent certain failures like weak mobile connections or
DDoS attacks. We remark that our “timing model” is still synchronous in that the parties
have a synchronized clock and know which current protocol step is being run, but crucially,
they may drop and re-join in every round.

Given that over an unstable network the set of offline parties can be different in every
round, an MPC protocol in such setting must allow parties to rejoin the computation after
being offline. Furthermore, these parties may not know they are under network attack,
so a missing message can mean that either (1) they are under attack, (2) the sender is
under attack, or (3) the sender is malicious. This ambiguity is crucial to maintain a strong
and realistic model, but it turns out to heavily complicate protocol design. This is further
accentuated by the fact that, in an unstable network – and in stark contrast with previous
networking models for tolerating dropouts – parties who rejoin the computation do not
necessarily receive the messages sent to them while being offline, which is an important
property to model settings like peer-to-peer networks where the parties do not count on
“always-running” servers that can queue messages for them. This is an important scenario
to consider in practice, since one might argue that counting on communication servers that
never fail can be equivalent to assuming parties who never drop.

1.2 Our Contribution
In this work we formally introduce the notion of an unstable network, which we believe to
be an appropriate communication model to capture realistic settings where parties join and
leave an ongoing computation according to a potentially adversarial schedule. Our first
contribution lies in the formal definition of this novel networking model, and we present a
rigorous treatment of this notion within the confines of the UC framework, which in particular
involves re-proving the UC theorem to ensure that composability still holds in this new
setting.

Our second contribution – and where most of our work is devoted – consists of a full char-
acterization of what types of security properties (i.e. perfect, statistical or computational) can
be achieved by MPC protocols over unstable networks in terms of the underlying adversarial
schedule. More precisely, we show that the minimum amount of honest parties that remain
online from one round to the next is the crucial metric that determines whether a given level
of security is attainable or not, and we show both impossibility and correspondingly matching
feasibility results for each one of the three security notions: computational, statistical and
perfect security. We believe our novel model and initial set of results open an exciting and
interesting research direction on the design of MPC protocols over realistic networks.

In order to discuss what the characterizations above are in detail, let us introduce some
notation. Let n be the number of parties and let t be the number of corrupt parties. Let Or

denote the set of online parties in round r, and let H denote the set of honest parties. Our
goal is to determine if we can construct MPC protocols for an unstable network which enjoy

ITC 2023

7:4 Phoenix: Secure Computation in an Unstable Network

Perfect
security

Statistical
security

Computational
security

Passive adversary
|Or ∩ Or+1| ≥

t + 1 t + 1 1

Active adversary
|Or ∩ Or+1 ∩H| ≥

2t + 1 t + 1 1

Figure 1 Overview of the required intersection sizes for each setting considered in this paper.
The result for statistical and passive security follows from the one for perfect and passive security.

the same security guarantees as protocols over a stable network and if so, what constraints we
must assume on the unstable network to make this happen. To be able to talk more concretely
about this, we will say that two protocols π, π′ are equivalent if they tolerate the same
number of corruptions, achieve the same type of security (computational/statistical/perfect)
and the same security guarantee (security with abort/fairness/guaranteed output delivery).
Our first set of results is as follows:

Perfect security. (Section 2) Given any perfectly secure synchronous MPC protocol against
t corruptions, we construct an equivalent protocol over an unstable network, assuming
that |Or ∩ Or+1 ∩H| ≥ 2t + 1 for all r > 0. Furthermore, this condition is required for
any MPC protocol with perfect security to exist over an unstable network.

Statistical security. (Section 3) Given any statistically secure synchronous MPC protocol
against t corruptions, we construct an equivalent protocol over an unstable network,
assuming that |Or ∩ Or+1 ∩H| ≥ t + 1 for all r > 0. This condition is required for any
MPC protocol with statistical security to exist over an unstable network.

Computational security. (Full Version) Given any computationally secure synchronous MPC
protocol secure against t corruptions, we construct an equivalent protocol over an unstable
network, assuming that |Or ∩ Or+1 ∩ H| ≥ 1 for all r > 0 (and, for malicious security,
assuming a PKI and public key encryption). The intersection condition is required for
any computationally secure MPC protocol to exist over an unstable network.

An overview of the intersection sizes required in each of the settings considered in our
work is presented in Fig 1. Notice that our results imply a necessary tradeoff between
instability and corruptions: taking perfect security as an example, it is well known that we
must have n ≥ 3t + 1 to have perfect security at all. So for a maximal value of t, we have
only 2t + 1 honest parties, and the result above then says that all honest parties must stay
online all the time. On the other hand, as we increase n above 3t + 1, an increasing number
of honest players can be sent offline. Also, note that even if the (minimal) assumptions in
our results say that a minimum amount of parties must stay online from one round to the
next, this does not imply that any particular party stays online for more than one round.
This makes protocol design considerably difficult, as in particular, the following scenario may
occur: a given party can be offline for a while, not receiving any messages, then it is set to
be online in a given round, but the scheduling1 is such that this party only receives messages
in this round after he or she has sent their own message, so this message can only depend on
outdated information this party learned before going offline. Furthermore, this party may be

1 As in the standard synchronous network, the adversary is allowed to choose the ordering of the messages
received by honest parties.

I. Damgård, D. Escudero, and A. Polychroniadou 7:5

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

Round r Round r + 1

(a) Lazy-MPC model.

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

Round r Round r + 1

(b) Guo et al. (Sleepy) model.

P2

P1

P ′
2

P ′
1

P ′
2

P ′
1

P ′′
2

P ′′
1

Round r Round r + 1

(c) Fluid MPC model.

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

Round r Round r + 1

(d) Our model.

Figure 2 Our model compared to other models in the literature. Parties inside the marked region
are online, and messages represented by dashed arrows are dropped. In Lazy-MPC, Fig. 2a, the
parties cannot return. In the model of Guo et al., Fig. 2b, the parties can return but it is assumed
they receive the messages sent to them while they were offline. In the Fluid-MPC model, Fig. 2c, in
each round the set of parties who send messages may differ from the set of parties who receive these
messages, but the identities of these parties must be known by the protocol. In our model, Fig. 2d,
the parties can return to the computation and it is not assumed that they receive the messages sent
to them while they were offline.

set to be offline for the next round immediately after sending their message, which makes
the contribution of this party to the protocol meaningless. The honest parties in Or ∩ Or+1
are these who are able to receive the messages in round r, and simultaneously are able to
send a derived message in round r + 1, so having enough honest parties in this intersection is
what enables us to design MPC protocols in this difficult networking setting.

1.3 Related Work
In what follows we discuss some of the works that study a similar problem to the one we
address in this work. The description in this section is relatively lightweight, and we defer a
more detailed analysis to the Full Version.

Fail-stop adversaries that may cause some parties to stop during a computation were
considered for the first time in [5], but this and subsequent works assume parties know when
a given party fail-stopped, plus these parties are not able to return the computation. A recent

ITC 2023

7:6 Phoenix: Secure Computation in an Unstable Network

model in [1] considers an adversary that can set parties to be offline at any round, but as
before these parties cannot return the computation, plus that work focuses on computational
assumptions, making use of strong homomorphic encryption tools. In the “sleepy model”
of [8] parties who drop can return. However, a crucial difference with our model is that, in
our case, parties who return after being offline may not receive the messages sent to them
before becoming onine, while in [8] these parties (who are not “offline” but “slow”) do receive
these messages. This makes the problem considerably easier, plus the authors consider only
computational assumptions. Finally, in [2, 12] a new model is considered where the set of
parties can change dynamically from one round to the next. In that work, the set of “online”
parties in a given round is not adversarially chosen, but rather set in advance and used in
the design of the protocol. As a result, this work may not model adversarial attacks to the
underlying network, and may be less realistic in these settings. Furthermore, the protocol
in [2], although statistically secure, only achieves security with abort. Our compilation-based
techniques allows us to transfer any result in the standard synchronous setting (e.g. protocols
with guaranteed output delivery) to the unstable networking setting.

The “You Only Speak Once” (YOSO) model for MPC is introduced in [7]. Our model
assumes a somewhat less powerful adversary who must allow a physical party to come back
after being offline, while in [7] this adversary can take a party down as soon as they speak,
and progress is guaranteed by means of assigning roles “on-the-fly” in certain randomized
fashion. Their model does not allow for perfect security, while in our case, on top of achieving
much easier protocol design, we can obtain information theoretic security based only on
point-to-point secure channels, and we allow for termination such that all parties can provide
input and get output. Finally, the “constrained parties” and “full-omission parties” from
[10] and [13] are such that whose messages are selectively blocked by the adversary, as in
our setting. However, in these works the adversary choses the subset of offline parties at the
beginning of the protocol execution, while in our case this subset can change adaptively as
the protocol is run. This is in fact one of the main sources of difficulties when designing
protocols in our setting, since a party who is “full-omission-corrupt” can stop being so, and
non-corrupted parties can later on become full-omission-corrupt. We remind the reader to
visit the Full Version for a more detailed discussion on related work.

We present in Figure 2 a more graphical comparison of our model with respect to the
works of [1, 8, 2].

1.4 Preliminaries and Organization
Let P = {P1, . . . , Pn} be the set of all parties, and H be the set of honest parties. We assume
that the adversary corrupts t out of the n parties. Let F be a finite field with |F| > n. Due
to space limitations we assume background on Shamir secret-sharing, with details given in
Section A and in the Full Version. For our results in the computational setting, we assume
the existence of a CPA-secure public key encryption scheme (enc, dec), and a EUF-CMA
signature scheme (sign, verify). The formal definitions of these primitives and their security
is standard and can be found in any modern book in Cryptography (e.g. [9]).

Unstable Networks
Now we provide the different functionalities we will make use of in our work. More thorough
definitions and considerations, including the proof of the composition theorem, are given in
the Full Version. Our timing model is synchronous, meaning there parties have a global clock
and there is a known upper bound ∆ on the time it takes for a message to be transmitted

I. Damgård, D. Escudero, and A. Polychroniadou 7:7

between any pair of parties. The communication pattern proceeds in rounds, identified
with integers 1, 2, 3, . . ., each taking ∆ time and consisting of all parties sending messages
to each other at the beginning of each round, and receiving some of these messages in a
way we will specify later before the end of that round. We use FStableNet to denote the
functionality that models a stable network in which all of the messages between honest
parties are always delivered. We also consider a family of functionalities {FPi→Pj

StableNet}n
i,j=1

that models a synchronous channel from Pi to Pj only. In this work we take the following
approach in order to obtain MPC over unstable networks: first, we instantiate the FStableNet
functionality on top of an unstable network, that is, we design a way for each pair of parties
to communicate reliably over an unstable network. Then, we take off-the-shelf MPC protocols
set in the stable/synchronous model and compose them with our protocol for emulating the
stable network, to get MPC protocols that are set in the unstable networking model. In the
Full Version we elaborate on which protocols we use, and on why the modular approach
sketched above works via the composition theorem. In this version we focus on instantiating
the stable networking model only.

An unstable network is formalized as a functionality, that we denote by FUnstableNet. In
each round, the functionality proceeds as follows: (1) At the beginning of the round the
environment, denoted by Z, specifies a subset of parties Or ⊆ P ; (2) For every Pi, Pj ∈ Or∩H,
the functionality delivers messages sent from Pi to Pj in the given round; (3) For every Pi

and Pj with either one of the two parties in (Or)c ∩H, the environment can choose whether
to drop the message sent from Pi to Pj in the given round.

If the adversary is allowed to set a given party Pi as offline forever, it is obvious that
no stable channel to or from Pi could be instantiated. To address this we introduce the
B-assumption, which states that the maximum amount of consecutive rounds that a party
can be offline is B. The protocols we present here require this assumption in order to produce
output, but in the Full Version we discuss alternative protocols that do not require this
during the entire computation.

2 Instantiating FPS→PR
StableNet with Perfect Security

In this section we take care of instantiating the functionality for a stable network with perfect
security. First, in Section 2.1 we discuss the simplest setting of passive security. Then, in
Section 2.2 we extend this to active security, while retaining perfect simulation.

2.1 Passive Security
Assuming a passive adversary, and assuming that |Or ∩ Or+1| ≥ t + 1 for all r > 0, our
protocol to instantiate FPS→PR

StableNet with perfect security is obtained as follows. At every round,
PS tries to secret-share its message m towards all the parties, which succeeds in the round
in which PS comes online. In the following rounds, the parties try to send their shares of
m to PR, who is able to get them when it comes online, and hence is able to reconstruct
m. The only missing step is that, when PS secret-shares m, only the parties online in the
current round are able to receive the shares. To alleviate this issue, the parties in each round
“transfer” the shared secret to the parties that are online in the next round. This is done via
a simple resharing protocol. Details are in Protocol Πperf,passive

StableNet (PS , PR, m).
We remark that, although it is not explicitly written in the protocol description, whenever

it is written that Pi sends a message to Pj , this is done by invoking the FUnstableNet function-
ality.

ITC 2023

7:8 Phoenix: Secure Computation in an Unstable Network

Protocol Πperf,passive
StableNet (PS , PR, m)

On input (m), PS samples random elements cij ∈ F for i, j = 0, . . . , t, subject to c0,0 = m

and cij = cji, and lets f(x, y) =
∑t

i,j=0 cijxiyj . Then, in rounds 1, . . . , B, PS sends f(x, i)
to each party Pi.

Every party Pi initializes a variable fi = ⊥. In rounds 1, . . . , 2B, Pi does the following:
If fi is not set already:
∗ If Pi receives a polynomial fi(x) = f(x, i) from PS , then Pi sets fi = fi.
∗ Else, if Pi receives messages mj ∈ F from at least t + 1 parties Pj , then Pi sets fi to be

the polynomial fi(x) such that fi(j) = mj for the first t + 1 messages mj .
If fi ̸= ⊥, then Pi sends fi(j) to each party Pj and fi(0) to PR.

In rounds B + 1, . . . , 2B, PR does the following: If PR receives messages mj ∈ F from at least
t + 1 parties Pj , then PR computes the polynomial f0(x) such that f0(j) = mj for the first
t + 1 messages mj , and outputs m = f0(0).

▶ Theorem 1. Assume that |Or ∩ Or+1| ≥ t + 1 for every r > 0. Then, protocol
Πperf,passive

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid model
with perfect security against an adversary passively corrupting t < n parties.

Proof. We claim that, in an execution of protocol Πperf,passive
StableNet (PR, PS), PR learns the value

of m at the end of the interaction, and the adversary does not learn the value of m, unless
PS or PR are passively corrupt.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS
, which exists

due to the B-assumption. We claim the following invariant: at the end of every round r with
rS ≤ r ≤ 2B, each Pi ∈ Or has fi ̸= ⊥, and these polynomials satisfy that fi(x) = f(x, i),
where f(x, y) is the polynomial sampled by PS at the beginning of the protocol. To see this
we argue inductively. First, notice that the invariant holds for r = rS given that parties
Pi ∈ OrS

receive this directly from PS . For the inductive step assume that the invariant
holds for some round r, that is, each party Pi ∈ Or has set its variable fi, and fi(x) = f(x, i).
In particular, this is held by the parties in Or ∩ Or+1, so each party Pi in this set sends
fi(j) to every other party Pj in round r + 1, which is received by the parties in Or+1.
Since |Or ∩ Or+1| ≥ t + 1, we see that each party Pj ∈ Or+1 receives at least t + 1 values
fi(j) = f(j, i) = f(i, j), which enables Pj to interpolate f(x, j), which is set to fj . We see
then that the invariant is preserved.

Finally, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR
, which is guaranteed

from the B-assumption. By the invariant, the parties in OrR−1 have set their variables fi

at the end of round rR − 1 correctly, so in particular the parties in OrR−1 ∩ OrR
will send

fi(0) = f(0, i) to PR in round OrR
. Since there are at least t + 1 such parties, this means

that PR gets at least t + 1 values f(0, i), which allows PR to interpolate m = f(0, 0).
The fact that the adversary does not learn anything if both PS and PR are honest follows

from the fact that its view is limited to t polynomials of the form f(x, i), which look uniformly
random. We remark that with the analysis above, it is straightforward to set up a simulator
S for the proof. ◀

Optimality of |Or ∩ Or+1| ≥ t + 1
Now we show that, in order to instantiate FPS→PR

StableNet with perfect security against a passive
adversary, the assumption that the adversary’s schedule satisfies |Or ∩Or+1| ≥ t + 1 in every
round r is necessary. However, we have to be careful about what this should actually mean:

I. Damgård, D. Escudero, and A. Polychroniadou 7:9

consider an adversary who respects the B-assumption and breaks the intersection condition
in one, or some finite number of rounds. Now, if the sender happens to start our protocol for
sending a message after the last bad round, it will clearly succeed. So we cannot hope to
show that communication between sender and receiver is impossible, unless we consider an
adversary who keeps breaking the intersection condition “for ever”. So we construct below
an adversary that breaks this condition once every B rounds, and by doing so it is able to
learn the message sent by an honest sender using any instantiation of FPS→PR

StableNet.
Assume the existence of an implementation of FPS→PR

StableNet with perfect security that tolerates
an adversary that schedules the parties as follows: (1) The adversary chooses a set A1 ⊂ P
such that |A1| = t+1, PS ∈ A1 and Ok·B = A1 for k > 0, and (2) the adversary chooses a set
A2 such that A1 ∪A2 = P and |A1 ∩A2| ≤ t such that PR ∈ A2, PS /∈ A2 and Or = A2 for
every r that is not of the form k ·B. Notice that this scheduling respects the B-assumption.
Now, suppose that PR learns the output in round rR = k · B + ℓ for some k and ℓ with
1 ≤ ℓ ≤ B. Since during the whole protocol PR only hears from the parties in A2, this means
that these parties together had enough information to reconstruct the secret in round rR.
However, these parties only hear from PS through A1 ∩ A2, which means that at a given
point in the protocol this set had enough information to reconstruct the secret. This is a
contradiction since |A1 ∩A2| ≤ t and PS , PR /∈ A1 ∩A2, and due to privacy no set of at most
t parties that does not contain the sender nor the receiver can reconstruct the message.

We remark that this lower bound rules out general MPC over unstable networks when
|Or ∩ Or+1| ≤ t, since FPS→PR

StableNet is a particular case of general MPC. This can be seen even
more clearly since what the lower bound actually shows is that, if the minimum intersection
size is not met, then the “state” of the computation is either leaked, or lost, which rules
out general MPC. Indeed, our perfectly secure protocol from Section B, which does not use
FStableNet directly, still requires |Or ∩ Or+1| ≥ t + 1 to hold for every round.

2.2 Active Security
The construction we presented in the previous section does not carry over to the actively
secure setting, given that a corrupted party Pi is not forced to send correct evaluations fi(j).
In this section we show an extension of this protocol that rules out this case. We assume
that, for every r, |Or ∩ Or+1 ∩ H| ≥ 2t + 1, which should be contrasted with the weaker
condition in the passively secure setting of |Or ∩ Or+1 ∩ H| ≥ t + 1. The use of a larger
threshold allows us to make use of error correction, which allows the parties to reconstruct
the right polynomials at each step of the protocol regardless of any incorrect value sent by
corrupt parties.

The protocol for active security, Protocol Πperf,active
StableNet (PS , PR, m), is similar to Protocol

Πperf,passive
StableNet (PS , PR, m), except for the following crucial change: when each Pi collects the

messages mj ∈ F for Pj received in a given round, only if there are at least 2t + 1 such
messages, Pi performs error correction on these to reconstruct a polynomial fi(x) such that
fi(j) = mj for every received message mj , and if this succeeds, then Pi sets fi = fi. Similarly,
only if PR receives at least 2t + 1 messages {mj}j , then PR performs error correction to
recover a polynomial f0(x) such that f0(j) = mj for every received message mj , and if this
succeeds then PR outputs m = f0(0).

▶ Theorem 2. Assume that |Or ∩ Or+1 ∩ H| ≥ 2t + 1 for every r > 0. Then, protocol
Πperf,active

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid model
with perfect security against an adversary actively corrupting t < n/3 parties.2

2 In principle the restriction is simply t < n, but we have that n− t = |H| ≥ |Or ∩ Or+1 ∩H| ≥ 2t + 1,
so n ≥ 3t + 1.

ITC 2023

7:10 Phoenix: Secure Computation in an Unstable Network

Proof. We claim that, in an execution of protocol Πperf,active
StableNet (PR, PS), PR learns the value of

m at the end of the interaction, and, if PR and PS are honest, the adversary does not learn
the value of m.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS
. We claim the

following invariant: at the end of every round r with rS ≤ r ≤ 2B, each Pi ∈ Or ∩ H has
fi ̸= ⊥, and these polynomials satisfy that fi(x) = f(x, i), where f(x, y) is the polynomial
sampled by PS at the beginning of the protocol. We use induction in order to show that
the invariant holds. First, notice that the invariant is true for r = rS given that parties
Pi ∈ OrS

∩H receive the polynomial directly from PS . For the inductive step assume that
the invariant holds for some round r, and we show that it holds for round r + 1. By the
hypothesis assumption each party Pi ∈ Or ∩ H has set its variable fi, and fi(x) = f(x, i).
In particular, this holds for the parties in Or ∩ Or+1 ∩ H, which means that each party
Pi in this set sends fi(j) to every other party Pj in round r + 1, which is received by the
parties in Or+1. Since |Or ∩Or+1 ∩H| ≥ 2t + 1, each party Pj ∈ Or+1 ∩H receives at least
2t + 1 correct values fi(j) = f(j, i) = f(i, j). Even if Pj receives more shares, some of them
potentially incorrect, Pj can still recover f(x, j) via error correction, as instructed by the
protocol. We see then that for Pj fj = f(x, j), so the invariant is preserved.

Now, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR
. By the invariant, the

parties in OrR−1 have set their variables fi at the end of round rR − 1 correctly, so in
particular the parties in OrR−1∩OrR

∩H will send fi(0) = f(0, i) to PR in round OrR
. Since

there are at least 2t + 1 such parties, this means that PR gets at least 2t + 1 correct values
f(0, i), which allows PR to error-correct m = f(0, 0). The fact that the adversary does not
learn anything if both PS and PR are honest follows as in the proof of Theorem 1.

As with the case with passive security, the analysis above enables the construction of
a simulator S for the proof in a straightforward manner. The main complication with the
actively secure setting in contrast to the scenario with passive security is that a corrupt PS

may send inconsistent shares in the first round in which it becomes online. However, in this
case, S can simply emulate the protocol exactly as the honest parties would do, and check if
the receiver would be able to error-correct or not at the end of the execution. Only if this
is the case, S would make use of the change command in the FPS→PR

StableNet functionality to set
PS ’s message to be the one that is recovered by PR, and then it would clock-out PR if PR is
honest. ◀

Optimality of |Or ∩ Or+1 ∩ H| ≥ 2t + 1
As in Section 2.1, we show that the bound |Or∩Or+1∩H| ≥ 2t+1 is necessary for essentially
all rounds by presenting an adversary that breaks the correctness of any perfectly secure
implementation of FPS→PR

StableNet against active adversaries, by using a scheduling that breaks the
condition above while still respecting the B-assumption.

The adversary’s scheduling is as follows. For simplicity let us assume that n = 5 and
t = 1, although the argument can be extended easily to any number of parties. Assume that
P1 is the sender, P5 is the receiver.

Let Ok·B = {P1, P2, P3, P4} for k = 0, 1,
Let Or = {P2, P3, P4, P5} for every r that is not of the form r0 + k · B. Notice that
|Ok·B ∩ Ok·B+1 ∩H| = |{P3, P4}| = 2 = 2t where Ok·B ∩ Ok·B+1 = {P2, P3, P4}.

Notice that this scheduling respects the B-assumption. Suppose that there is a protocol
that instantiates FPS→PR

StableNet with perfect security against an active adversary, supporting the
scheduling above. We will show a contradiction arising from the fact that the adversary can
actively cheat.

I. Damgård, D. Escudero, and A. Polychroniadou 7:11

Suppose that PR learns the output in round rR = k0 · B + ℓ for some k0 and ℓ with
1 ≤ ℓ ≤ B. Consider two different messages m ≠ m′, and let Mj and M ′

j for j = 2, 3, 4 be the
concatenation of the messages sent by Pj in round k ·B to the parties in Ok·B ∩ Ok·B+1 =
{P2, P3, P4} for k = 0, . . . , k0, when the inputs of PS to the protocol are m and m′ respectively.

First, we claim that the messages (M2, M3, M4) (resp. (M ′
2, M ′

3, M ′
4)) must uniquely

determine the secret m (resp. m′). To see why this is the case, observe that the receiver, P5,
only ever hears from the parties P2, P3, P4, but these in turn only hear from the sender, P1,
through the messages (M2, M3, M4) (resp. (M ′

2, M ′
3, M ′

4)), so these messages have to carry
enough information to determine the secret.

Now, due to privacy, no single party must be able to determine whether the message sent
is m or m′. If P3 was corrupt and if M3 ≠ M ′

3 for all possible initialization of all random
tapes, then the adversary would be able to distinguish the message by simply looking at
whether M3 or M ′

3 is being sent by P3. Hence, we see that there must exist an initial random
tape for which M3 = M ′

3. For the rest of the attack we assume this is the case.
With the observations we have seen so far, a corrupt party P2 can mount the following

attack: If P2 sees it needs to send M2, it will send M ′
2 instead. Since the protocol withstands

an active attack, the transcript (M2, M3, M4), which would be transformed to (M ′
2, M3, M4)

after the attack, would uniquely determine m. On the other hand, the very same transcript
can arise from an actively corrupt P4 that modifies the message M ′

4 when the message is
m′ to M4 (recall that M ′

3 = M3). In this case, due to the resilience of the protocol against
one active attack, (M ′

2, M3, M4) should reconstruct to the same message as (M ′
2, M ′

3, M ′
4),

which is m′. This is, however, a contradiction, since the same transcript cannot lead to two
different messages.

3 Instantiating FPS→PR
StableNet with Statistical Security

The goal of this section is to develop an information-theoretic protocol that instantiates
FPS→PR

StableNet against active adversaries, but replacing the condition |Or ∩ Or+1 ∩ H| ≥ 2t + 1
from Section 2.2 with |Or ∩ Or+1 ∩ H| ≥ t + 1. As shown in Section 2.2, perfect security
cannot be achieved in this setting, so we settle with statistical security.

Our construction at a high level works as follows. First, we design a pair of functions
f(m) = (m1, . . . , mn) and g(m′

1, . . . , m′
n) = m′ such that, if m′

i = mi for at least t + 1
(unknown) indices, then m′ = m. Also, it should hold that no set of at most t values mi

leaks anything about m. Assuming the existence of such pair of functions, we can envision a
simple construction of a protocol Π1(PS , PR, m) that guarantees that a receiver PR gets the
message m sent by a sender PS , as long as PR comes online either in the same round where
PS is, or in the next one. This operates as follows: PS computes (m1, . . . , mn) = f(m), and,
in every round, PS sends mi to party Pi, as well as m to PR. Once a party Pi receives mi,
it sends this value to PR in the next round. Let m′

1, . . . , m′
n be the values received by PR

when it comes online, where m′
i = ⊥ if PR does not receive a message from Pi (notice that

m′
i could differ from mi if Pi is actively corrupt). Since |Or ∩Or+1 ∩H| ≥ t + 1, we see that

at least t + 1 of the m′
i are equal to mi, so PR can output m = g(m′

1, . . . , m′
n).

Now, we would like to “bootstrap” the protocol Π1 into a protocol Π2(PS , PR, m) that
guarantees that a receiver PR gets the message m sent by a sender PS , as long as PR comes
online either in the same round where PS is, in the next one, or in the one after that. To this
end, the parties run Π1(PS , PR, m), which guarantees that PR gets m if it comes online in
the same round as PS , or at most in the round after. However, to deal with the case in which
PR comes online two rounds after PS , the parties also execute the following in parallel: PS

ITC 2023

7:12 Phoenix: Secure Computation in an Unstable Network

computes (m1, . . . , mn) = f(m) and executes Π1(PS , PR, mi) for i = 1, . . . , n. This ensures
that every Pi ∈ O2 will get mi, and at this point, the parties in O3 ∩ O2 can send these to
PR in the third round. Upon receiving m′

i, PR outputs m = g(m′
1, . . . , m′

n).
To analyze the protocol Π2, assume for simplicity that PS ∈ O1. We first observe that if

PR ∈ O1 ∪ O2, then PR gets m as Π1(PS , PR, m) is being executed. If, on the other hand,
PR ∈ O3, PR gets m as g(m1, . . . , mn) since the parties Pi ∈ O2 get mi from Π1(PS , PR, mi).
This idea can be iterated to obtain protocols that deliver messages as long as PR comes
online at most k rounds after PS comes online.

In what follows we present the tools necessary to formalize this idea, and later discuss
the actual protocols for instantiating FPS→PR

StableNet.

3.1 Robust Secret Sharing
The functions f and g discussed above are instantiated using robust secret-sharing, which
are techniques that enables a dealer to distribute a secret among multiple nodes in such a
way that (1) no subset of at most t nodes learn the secret and (2) if each node sends its
share to a receiver, no subset of at most t corrupt nodes can stop the receiver from learning
the correct secret.

The definition we consider here is more general than standard definitions from the
literature since, at reconstruction time, we allow for missing shares, and if there are many of
these we allow the reconstruction algorithm to output an error signal ⊥. However, if there
are enough honest non-missing shares, then reconstruction of the correct message must be
guaranteed. This is needed since, in our protocols, there are some rounds in which parties
may not receive enough shares to reconstruct the right secret, and they must be able to
detect this is the case to wait for subsequent rounds where more shares are available.

▶ Definition 3. Let A ⊆ {1, . . . , n} with |A| ≤ t. A robust secret-sharing (RSS) scheme
with deletions having message space M and share space S is made up of two randomized
polytime functions, share : M → Sn and rec : Sn → M, satisfying the properties below
for any not-necessarily-polytime algorithm A. Let (s1, . . . , sn) = share(m). Let Bc =
A(missing, {sj}j∈A) ⊆ P denote a set chosen by A of shares to be deleted. Let (s′

1, . . . , s′
n)

be defined as follows: s′
i = ⊥ for i ∈ Bc, s′

i = A(i, {sj}j∈A) ∈ S for i ∈ A ∩ B and s′
i = si

for i ∈ Ac ∩B.
Privacy. The distribution of {si}i∈A is independent of m.
Error detection. With probability 1− negl(κ), rec(s′

1, . . . , s′
n) outputs either m or ⊥.

Guaranteed reconstruction. If |Ac ∩B| > t then, with probability 1− negl(κ), it holds
that m = rec(s′

1, . . . , s′
n).

Several robust secret-sharing constructions can be found in the literature. However, since
we consider a non-standard version of robust secret-sharing, we present below a concrete
construction that fits Definition 3, which is motivated on the so-called information-checking
signatures from [11]. We remark that any instantiation of Definition 3 will suffice for our
stable network construction, with better parameters such as share length of computational
complexity directly leading to direct improvements on our protocols.

The following proposition shows that the scheme (share, rec) is an RSS scheme with error
detection.

▶ Proposition 4. The construction (share, rec) from above is an RSS scheme with deletions.

I. Damgård, D. Escudero, and A. Polychroniadou 7:13

RSS scheme with deletions: (share, rec)

share(m): Compute Shamir shares m1, . . . , mn of m. For each i ∈ {1, . . . , n}, sample
(αi, {βij}n

j=1), and let, for every i, j ∈ {1, . . . , n}, τij = αjmi + βji. Return (s1, . . . , sn), with
si = (mi, (αi, {βij}n

j=1, {τij}n
j=1).

rec(s′
1, . . . , s′

n). Let B = {i : s′
i ̸= ⊥}. Parse each s′

i for i ∈ B as (m′
i, (α′

i, {β′
ij}n

j=1, {τ ′
ij}n

j=1).
Then proceed as follows:
1. If |B| ≥ t + 1: for every i ∈ B do the following. If α′

jm′
i + β′

ji
?= τ ′

ij does not hold for at least
t + 1 values of j ∈ B, then set m′

i = ⊥.a

2. After this process, if |{m′
i : m′

i ̸= ⊥}| > t, then using any subset of this set of size t + 1 to
interpolate a polynomial f(x) of degree at most t, and output m = f(0). Else, output ⊥.

a In particular, if 0 ≤ |B| ≤ t then all m′
i would be set to ⊥ as the check would always fail.

Proof. Let share(m) = (s1, . . . , sn) with si = (mi, (αi, {βij}n
j=1), {τij = αjmi + βji}n

j=1).
First we argue privacy. It is clear that the n Shamir shares m1, . . . , mn do not leak anything
about the secret m towards the adversary. Additionally, the keys (αi, {βij}n

j=1) are simply
random values, which do not leak anything either. Finally, each Pi receives {τij = αjmi +
βji}n

j=1, but these only involve mi, which is already known by Pi. Notice that, since βji is
uniformly random and unknown to Pi (if j ̸= i), Pi learns no information about αj . This
will be crucial since, as we show below, αj is used to prevent Pi from changing their share.

Now, to see the guaranteed reconstruction property, let (s′
1, . . . , s′

n) be as in Definition 3.
Assume that |Ac ∩ B| > t, we want to show that rec(s′

1, . . . , s′
n) outputs m in this case.

Let us write each s′
i for i ∈ A ∩ B as s′

i = (m′
i, (α′

i, {β′
ij}n

j=1), {τ ′
ij}n

j=1). We claim that
if m′

i = mi + δi with δi ̸= 0, then τ ′
ij = αjm′

i + βji for at least j ∈ Ac ∩ B can only
happen with negligible probability. To see why this holds, let us write τ ′

ij = τij + ϵij , so
τ ′

ij = (αjmi + βji) + ϵij = (αjm′
i + βji) − αjδi + ϵij . For this to be equal to αjm′

i + βji,
it has to hold that αj = δ−1

i ϵij . However, δi and ϵij are functions of {sℓ}ℓ∈A, so they are
computed independently of the uniformly random value αj since j /∈ A. This shows that
the equation αj = δ−1

i ϵij for at least j ∈ Ac ∩ B can only hold with probability at most
1/|F| = negl(κ), so in particular the claim above holds (recall that n = poly(κ)).

From the above we see that if m′
i ̸= mi then, with overwhelming probability, τ ′

ij ̸=
αjm′

i + βji for every j ∈ Ac ∩B, so in particular τ ′
ij = αjm′

i + βji can only be satisfied for
j ∈ A ∩ B, but since |A ∩ B| ≤ t, we see that m′

i would be set to ⊥ from the definition of
rec(·). As a result, only values with m′

i = mi remain, and since there are at least |Ac∩B| > t

of these, we see that rec(·) outputs m correctly in this case.
The argument above also shows the error detection property: the extra assumption

|Ac ∩B| > t was only used at the end to show that the set {m′
i : m′

i ̸= ⊥} will have at least
t + 1 elements, in which case the correct m could be reconstructed. If this does not hold,
then rec(·) outputs ⊥. ◀

3.2 Delivering within 2 rounds
Let (share, rec) be a robust secret-sharing scheme with deletions. We begin by presenting a
protocol Π1(PS , PR, m) that guarantees that PR gets the message m sent by PS as long as
PR comes online either in the same round as PS , or at most one round later. First, we define
the concept of k-delivery, which formalizes and generalizes this notion.

ITC 2023

7:14 Phoenix: Secure Computation in an Unstable Network

Protocol Π1(PS , PR, m)

PS does the following:
Let (s1, . . . , sn) = share(m). Send si to Pi in every round.
Send m to PR.

Every party Pi does the following:
Pi sets an internal variable si = ⊥. In every round, if Pi receives si from Pi, then it sets
si = si.
In every round, if si ̸= ⊥, then Pi sends si to PR.

PR does the following in every round:
If PR receives m from PS , then PR outputs m.
Let s′

i be the message PR receives from Pi, setting s′
i = ⊥ if no such message arrives. If

rec(s′
1, . . . , s′

n) ̸= ⊥, then PR outputs this value.

▶ Definition 5 (k-delivery). A protocol Π is said to satisfy k-delivery if it instantiates the
functionality FPS ,PR

StableNet (with statistical security), modified so that PR is only guaranteed to
receive the message sent by PS if PR ∈

⋃k
r=0OrS+r, where rS is the first round in which

PS ∈ OrS
. If PR /∈

⋃k
r=0OrS+r, then PR cannot output an incorrect message.

▶ Proposition 6. Π1(PR, PS , m) satisfies 1-delivery.

Proof. Privacy holds from the privacy of the robust secret-sharing scheme.
Now, assume that PR ∈ OrS

∪OrS+1. If PR ∈ OrS
, then PR gets m as it is being sent by

PS directly. On the other hand, if PR ∈ OrS+1, the argument is the following. First, each
Pi ∈ OrS

receves si from PS , which in particular means that the parties in OrS
∩OrS+1 ∩H

send the correct si to PR. PR receives at least t + 1 correct shares si and at most t incorrect
ones, hence, by the guaranteed reconstruction property of the RSS, PR obtains s from these
shares.

Finally, the fact that if PS /∈ OrS
∪OrS+1 then PS does not output an incorrect message

follows from the error detection property of (share, rec). ◀

3.3 From (k − 1)-delivery to k-delivery
Now we show that, given a protocol Πk−1(PR, PS , ·) that achieves (k − 1)-delivery, one can
obtain a protocol that achieves k-delivery. This is achieved by Protocol Πk(PR, PS , m).

Protocol Πk(PR, PS , m)

In the following, multiple protocols will be executed in parallel. We assume that messages are
tagged with special identifiers so that they can be effectively distinguished.

The parties execute Πk−1(PS , PR, m). In parallel, they execute the following.
Let (s1, . . . , sn) = share(m). The parties run n protocol instances Πk−1(PS , Pi, si) for i =
1, . . . , n.
Each Pi, upon outputting si from Πk−1(PS , Pi, si), send (si) to PR in all subsequent rounds.
PR initializes variables s1, . . . , sn = ⊥. Then PR does the following in every round:

Upon outputting si from some execution Πk−1(PS , Pi, si), PR sets si = si.
Upon receiving s′

i from some party, sets si = s′
i.

PR outputs rec(s1, . . . , sn) if this value is not ⊥.

I. Damgård, D. Escudero, and A. Polychroniadou 7:15

▶ Proposition 7. Protocol Πk(PS , PR, m) achieves k-delivery.

Proof. Let rS be the first round in which PS ∈ OrS
, and assume that PR ∈

⋃k
r=0OrS+r. If

PR ∈
⋃k−1

r=0 OrS+r, then PR would receive m correctly from the properties of Πk−1.
Given the above, it remains to analyze the case in which PR ∈ OrS+k. From the properties

of Πk−1, every party Pi ∈ OrS+(k−1) receives si from PS in round rS + (k− 1). In particular,
each party Pi ∈ OrS+(k−1)∩OrS+k sends si to PR in round rS +k. An analysis similar to the
one in the proof of Proposition 6 shows that PR is able to recover m from this information,
and it also shows that if PR /∈

⋃k
r=0OrS+r, then PR cannot be fooled into reconstructing an

incorrect message. ◀

Combining Propositions 6 and 7, we obtain the following corollary:

▶ Corollary 8. For every k, there exists a protocol Πk satisfying k-delivery.

Now, recalling that the B-assumption implies that there is one round among 1, . . . , B in
which PS will come online, and a round among B + 1, . . . , 2B in which PR is online as well,
we obtain the following theorem as a corollary.

▶ Theorem 9. Assume that |Or ∩ Or+1 ∩ H| ≥ t + 1 for every r > 0. Then, protocol
Π2B(PR, PS , ·) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid model with
statistical security against an adversary actively corrupting t < n/2 parties.3

▶ Remark 10. The communication complexity of Πk is Θ(nk). This is because, in the execution
of Πk, PS must use Πk−1 to communicate a share to each single party, adding a factor of n

with respect to the communication complexity of this protocol. This is too inefficient for large
values of k. We leave is an open problem the challenging task of obtaining instantiations
of FPS ,PR

StableNet with statistical security in the setting in which |Or ∩ Or+1 ∩H| ≥ t + 1 having
communication complexity that is polynomial in the bound B.

References
1 Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC:

Laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 120–150. Springer, Heidelberg, December 2020. doi:
10.1007/978-3-030-64840-4_5.

2 Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel Kaptchuk.
Fluid mpc: Secure multiparty computation with dynamic participants. In Annual International
Cryptology Conference, pages 94–123. Springer, 2021.

3 Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous
multiparty computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik,
editors, PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, Heidelberg, March 2009.
doi:10.1007/978-3-642-00468-1_10.

4 Ivan Damgård, Daniel Escudero, and Divya Ravi. Information-theoretically secure mpc against
mixed dynamic adversaries. Thheory of Cryptography Conference, 2021.

5 Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in
unconditional multi-party computation (extended abstract). In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 121–136. Springer, Heidelberg, August 1998.
doi:10.1007/BFb0055724.

3 As with Theorem 2, in principle the restriction is simply t < n, but we have that n − t = |H| ≥
|Or ∩ Or+1 ∩H| ≥ t + 1, so n ≥ 2t + 1.

ITC 2023

https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/BFb0055724

7:16 Phoenix: Secure Computation in an Unstable Network

6 Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Information
processing letters, 43(4):169–174, 1992.

7 Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin,
and Sophia Yakoubov. YOSO: you only speak once - secure MPC with stateless ephemeral
roles. In CRYPTO 2021, 2021.

8 Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of
LNCS, pages 499–529. Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-26948-7_
18.

9 Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2020.
10 Chiu-Yuen Koo. Secure computation with partial message loss. In Shai Halevi and Tal Rabin,

editors, TCC 2006, volume 3876 of LNCS, pages 502–521. Springer, Heidelberg, March 2006.
doi:10.1007/11681878_26.

11 Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.
doi:10.1145/73007.73014.

12 Rahul Rachuri and Peter Scholl. Le mans: Dynamic and fluid mpc for dishonest majority.
Cryptology ePrint Archive, Paper 2021/1579, 2021. URL: https://eprint.iacr.org/2021/
1579.

13 Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. Realistic failures in secure multi-party
computation. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 274–293.
Springer, Heidelberg, March 2009. doi:10.1007/978-3-642-00457-5_17.

A Shamir Secret Sharing

Throughout this work we will make use of Shamir secret sharing in order to distribute
data among different parties. To secret-share a value s ∈ F among the n parties P1, . . . , Pn

using threshold t, a dealer proceeds as follows: (1) sample a uniformly random polynomial
f(x) ∈ F[x] of degree at most t, subject to f(0) = s, and (2) send to Pi its share si := f(i).
It is well known that for every set of t + 1 points (i, si) there exists a unique polynomial f(x)
of degree at most t such that f(i) = si for all i, which implies that any set of at least t + 1
shares can recover the secret, and any set of t shares does not reveal anything about the
secret.

Bivariate sharings

Sometimes we will make use of bivariate sharings, in which the dealer, to distribute a secret
s ∈ F, samples a random symmetric bivariate polynomial f(x, y) of degree at most t in each
variable subject to f(0, 0) = s, and sends the polynomial f(x, i) to Pi. As before, given at
most t of these polynomials nothing is leaked about the secret s since any secret could be
chosen so that it looks consistent with the given polynomials.

Error-detection and error-correction

Given m shares among which at most t can be incorrect, then the parties output f(0) as the
secret, where f(x) is the reconstructed polynomial. Given m shares {si} among which at
most t are incorrect we have the following two possibilities:

If at least t+1 are guaranteed to be correct, error-detection can be performed by checking
if these shares all lies in a polynomial of degree at most t, and if this is the case, the
reconstructed polynomial is guaranteed to be correct since it is determined by the t + 1
correct shares.

https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/11681878_26
https://doi.org/10.1145/73007.73014
https://eprint.iacr.org/2021/1579
https://eprint.iacr.org/2021/1579
https://doi.org/10.1007/978-3-642-00457-5_17

I. Damgård, D. Escudero, and A. Polychroniadou 7:17

If at least 2t + 1 are guaranteed to be correct, error-correction is possible by looping
through all possible subsets of these shares of size 2t + 1 and checking if all shares in
the given subset are consistent with a polynomial of degree at most t. The subset used
for reconstructing this polynomial has 2t + 1 points among which at least t + 1 are
correct (since at most t shares are assumed to be incorrect), which guarantees that the
reconstructed polynomial is the correct one. Although the process of looping through all
subsets of size 2t + 1 can be too inefficient if m is much larger than 2t + 1, this can be
made polynomial in m by using error-detection algorithms like Berlekamp-Welch [6].

In some of our protocols we will need a version of error-correction, which we call enhanced
error-correction, in which the correct polynomial is recovered if there are enough correct
shares, and else an error is output. To this end, given m ≥ 2t + 1 shares as above among
which at most t are incorrect, all possible subsets of 2t + 1 shares are inspected, checking if
all these shares are consistent with a polynomial of degree at most t. If one such subset is
found, then its corresponding polynomial is output, and else, an error ⊥ is produced as the
result. By the same analysis as above, this either results in the correct polynomial or an
error. The main complication is that error-correcting algorithms like Berlekamp-Welch are
not designed to handle this setting in which not enough correct shares may be available, but
one can easily modify this algorithm to handle this case (see for example [4]).

B A More Efficient Protocol with Perfect Security

Recall that in Section 2.2 we presented a protocol to instantiate the functionality FStableNet,
which is intended to represent a traditional stable and secure network among the n parties.
This is the typical communication model used in several MPC protocols, and, assuming
t < n/3, we can find perfectly secure protocols in this model which can be used together
with our protocol Πperf,active

StableNet (PS , PR) from Section 2.2 to obtain a perfectly secure protocol
over an unstable network.

In order to instantiate the functionality FStableNet, we required that the scheduling the
adversary provides allows each party to come online at least once within certain amount
of rounds, say B. This is necessary since FStableNet requires each message between honest
parties to be delivered, and if the receiver never comes online such guarantee cannot hold.
Unfortunately, our protocol Πperf,active

StableNet (PS , PR) requires 2B rounds to deliver a message
between a sender and a receiver, which ultimately means that the final protocol after
composing Πperf,active

StableNet (PS , PR) with an existing perfectly secure protocol would lead to a
multiplicative overhead of 2B in the number of rounds.

Round-count is a very sensitive metric in distributed protocols, especially in high-latency
scenarios where every communication trip incurs in a noticeable waiting time. Furthermore,
the θ(B) overhead may not be so noticeable if the higher level protocol has a low round count,
but unfortunately, it is a well-known open problem to achieve constant round protocols with
perfect security for functionalities outside NC1 while achieving polynomial computation and
communication complexity. Motivated by this, we develop in this section a perfectly secure
protocol over an unstable network whose number of rounds corresponds to the depth of
the circuit being computed plus a term that depends on B, but is independent of the size
of the circuit, matching the round complexity of existing protocols over stable networks.
Furthermore, after the inputs have been provided, our protocol does not require anymore the

ITC 2023

7:18 Phoenix: Secure Computation in an Unstable Network

assumption that each party has to be online at least once every B rounds.4 This is because,
as we will see, our protocol only relies on the assumption that |Or ∩ Or+1 ∩H| ≥ 2t + 1 for
every round r in order to transmit and advance the secret-shared state of the computation
from one round to the next. Intuitively, it is irrelevant if certain specific parties become
online at certain points of the protocol, and the only thing that matters is that enough
parties remain online from one round to the next one, irrespectively of their identities.

B.1 Bivariate Sharings and Transition of Shares

We describe the input and preprocessing phases of our protocol in Section B.2, and in
Section B.3 we describe its computation phase. However, before we dive into the protocols
themselves, we need to present certain primitives that will be useful for these constructions.
These are bivariate sharings, together with methods for transmitting bivariate shared values
from one round to the next. This will allow the parties to “transmit” the state of the
computation from the parties that are online in a given round, to these online in the next
one, making progress in one layer of the circuit at the same time.

We say that the parties have bivariate shares of a value s if there exists a symmetric
bivariate polynomial f(x, y) of degree at most t in both variables such that (1) each party
Pi ∈ P has f(x, i) and (2) it holds that f(0, 0) = s. We denote this by ⟨s⟩. Observe that
this scheme is linear, i.e. parties can locally compute additions of secret shared values, which
is denoted by ⟨x + y⟩ ← ⟨x⟩+ ⟨y⟩.

Bivariate sharings were used indirectly in Section 2.2 to instantiate FPS→PR

StableNet with perfect
security against an active adversary. This type of sharings proved useful in Protocol
Πperf,active

StableNet (PS , PR) to “transfer” a state between a set of parties to another one, and this is
the purpose of this primitive in this section as well. In a bit more detail, during the execution
of our protocol it will not hold that all parties have shares of certain given values, but rather
only specific subsets corresponding to online parties will do. Since the set of online parties
potentially changes from round to round, a crucial primitive our protocol relies on is what
we call transition of shares, which takes care of transmitting the shared state from one set of
parties to another.

We first formalize the notion that only (part of) the online parties hold shares of a given
value. We say that the parties have a bivariate-shared value s in round r if there exists a
symmetric bivariate polynomial f(x, y) of degree at most t in both variables such that (1)
there exists a subset Sr ⊆ Or ∩H with |Sr| ≥ 2t + 1 such that each Pi ∈ Sr has f(x, i), (2)
each Pi ∈ (Or ∩H) \ Sr has set their share to either f(x, i), or a predefined value ⊥, and (3)
it holds that f(0, 0) = s. This is denoted by ⟨s⟩Or . Observe that nothing is required from
parties outside Or ∩H. Also, notice that if all the parties have bivariate shares of a value s,
which we denote by ⟨s⟩, then it holds that ⟨s⟩Or for every r.

A protocol for transition of shares is a one-round protocol in which the parties start with
⟨s⟩Or in round r, and they obtain ⟨s⟩Or+1 in the next round r + 1. In what follows we present
a protocol for transition of shares, which is motivated in the perfectly secure protocol for
instantiating FPS→PR

StableNet from Section 2.

4 However, the output will be received only by the parties who happen to be online at the output phase.

I. Damgård, D. Escudero, and A. Polychroniadou 7:19

Protocol Πtransfer

Input: ⟨s⟩Or in round r

Output: ⟨s⟩Or+1 in round r + 1.

Parties do the following:
1. For each i = 1, . . . , n, if Pi has a share f(x, i) of ⟨s⟩Or+1 (different to ⊥), then Pi sends f(j, i)

to Pj for j = 1, . . . , n.
2. For each j = 1, . . . , n, if Pj receives at least 2t + 1 messages {f(j, i)}i, then Pj performs

enhanced error correction (see Section A) to either recover f(j, x) or output an error ⊥.

▶ Theorem 11. If executed in round r, protocol Πtransfer guarantees that the parties get
sharings ⟨s⟩Or+1 .

Proof. Let Sr ⊆ Or ∩ H with |Sr| ≥ 2t + 1 be the set of honest parties Pi having f(x, i),
guaranteed from the definition of bivariate sharings. Since the protocol above is executed
in round r, each party Pi ∈ Sr will send f(j, i) to each other party Pj , which in particular
is received by the parties Pj ∈ Or+1 ∩ Or ∩H, and given that |Sr| ≥ 2t + 1, the enhanced
error-correction algorithm executed by Pj will result in Pj recovering f(j, x), which is equal
to f(x, j). Let Sr+1 := Or+1 ∩ Or ∩ H and note that (1) |Sr+1| ≥ 2t + 1 and also each
Pj ∈ Sr+1 has f(x, j), (2) each Pj ∈ (Or+1 ∩H) \ Sr+1 set their share to either f(x, j) or ⊥
due to the properties of the enhance error-correction mechanism, and (3) it (still) holds that
f(0, 0) = s. From the definition of bivariate sharings, it holds that ⟨s⟩Or+1 . ◀

Transitioned Reconstruction
Another primitive that we will need in our protocol, besides transferring shares from one
set of parties to another, consists of reconstructing a bivariate-shared value. Assume that
the parties in round r have ⟨s⟩Or . If all parties in round r send their shares {f(0, j)}j to all
other parties, they can perform (enhanced) error correction to reconstruct s = f(0, 0). In
this way, the parties in Or ∩H are guaranteed to learn s. In particular, s is known by the
parties in Or+1 ∩Or ∩H, which contains at least 2t + 1 parties. This protocol is denoted by
s← Πrec(⟨s⟩Or).
▶ Remark 12. An important fact about the proof of Theorem 11 is that, it holds that
Sr+1 ⊆ Or+1 ∩Or ∩H. In addition, the reconstruction protocol from above ensures that the
parties in Or+1 ∩ Or ∩H, so in particular the parties in Sr+1, learn the secret. This will be
important in our main protocol in Section B.3.

B.2 Preprocessing and Input Phases
We assume that the functionality to be computed is given by a layered circuit
(x(L)

1 , . . . , x
(L)
ℓL

) = F (x(0)
1 , . . . , x

(0)
ℓ0

). Considering layered circuits, in contrast to more general
circuits, is useful for our construction since in this case the values in a given layer completely
determine the current state of the computation, that is, the next layer, and in particular the
remainder of the computation, is fully determined by these values. This is important since,
as we will see, at the heart of our construction lies the possibility of a given set of online
parties to transmit their shared state to the online parties in the next round, and, from the
structure of the protocol, this state is comprised by the shared values in a given layer.

For our main protocol, we assume that all the parties have certain bivariate-shared mul-
tiplication triples (as specified below), plus bivariate shares of the inputs of the computation.
By making use of the B-assumption, these shares can be computed by using any generic

ITC 2023

7:20 Phoenix: Secure Computation in an Unstable Network

MPC protocol for these tasks, together with our compiler from Section 2.2. This would incur
a multiplicative overhead of B in the number of rounds, however, the circuit representing
this computation is constant-depth, so this does not affect the overall result of this section.
Notice that this does not require all the parties to be online during the computation of these
sharings, but instead, the B-assumption, that requires every honest party to come online
once every B rounds, suffices.

The correlation required for the computation consists of secret-shared values (⟨a⟩, ⟨b⟩, ⟨c⟩),
one tuple for every multiplication gate in the circuit, where a, b ∈R F and c = a · b.

B.3 Computation Phase

With the primitives described above, the protocol for computing the given functionality F is
relatively straightforward: by making use of the Πtransfer and Πrec protocols, the parties can
use the standard approach to secure computation based on multiplication triples, making
progress from round to round depending on the set of parties that is online. This is possible
since, at the end of the execution of the method described in Section B.2, all the parties hold
the preprocessing material and shares of the inputs (even if some parties were offline during
certain parts of the execution), together with the fact that |Or ∩Or+1 ∩H| ≥ 2t + 1 for every
round r, which enables share transfer and reconstruction. The protocol is described in detail
below. The security proof follows straightforwardly from existing techniques, together with
the properties proven in Section B.1, and a sketch of this proof can be found towards the
end of this section. Observe that the protocol requires only L rounds, which, added to the
O(1) rounds from the preprocessing and input phases, leads to a protocol with comparable
round efficiency to protocols in the stable (i.e. traditional) model.

Protocol ΠMPC

Input: Secret-shared inputs ⟨x(0)
1 ⟩, . . . , ⟨x(0)

ℓ0
⟩, where ℓ0 is the number of input wires.

Preprocessing: A multiplication triple (⟨a⟩, ⟨b⟩, ⟨c = a · b⟩) for every multiplication gate in the
circuit.
Output: Let L be the final round of the protocol. The parties have ⟨x(L)

1 ⟩
OL , . . . , ⟨x(L)

ℓL
⟩OL in

round L, where (x(L)
1 , . . . , x

(L)
ℓL

) = F (x(0)
1 , . . . , x

(0)
ℓ0

).

For rounds r = 1, . . . , L:
The parties in round r − 1 already have shares ⟨x(r−1)

1 ⟩Or−1 , . . . , ⟨x(r−1)
ℓr−1

⟩Or−1 .

The parties in round r obtain shares ⟨x(r)
1 ⟩

Or , . . . , ⟨x(r)
ℓr
⟩Or as follows:

1. For every addition gate with inputs ⟨x⟩Or−1 and ⟨y⟩Or−1 , the parties locally obtain ⟨x +
y⟩Or−1 and call ⟨x + y⟩Or ← Πtransfer(⟨x + y⟩Or−1).

2. For every multiplication gate with inputs ⟨x⟩Or−1 and ⟨y⟩Or−1 , the parties proceed as
follows:
a. Let (⟨a⟩, ⟨b⟩, ⟨c⟩) be the next available multiplication triple. The parties in round r − 1

locally compute ⟨d⟩Or−1 = ⟨x⟩Or−1 − ⟨a⟩Or−1 and ⟨e⟩Or−1 = ⟨y⟩Or−1 − ⟨b⟩Or−1 .
b. The parties in round r learn d and e by calling d← Πrec(⟨d⟩Or−1) and e← Πrec(⟨e⟩Or−1).
c. The parties in round r compute ⟨x · y⟩Or as d · ⟨b⟩Or + e · ⟨a⟩Or + ⟨c⟩Or + d · e.a

3. For every identity gate with input ⟨x⟩Or−1 the parties call ⟨x⟩Or ← Πtransfer(⟨x⟩Or−1).
a Here is where Remark 12 becomes relevant: parties in Or (or rather Sr) can compute the linear

combination defining ⟨x · y⟩Or since both the constants and the sharings are known to the
parties in Sr.

I. Damgård, D. Escudero, and A. Polychroniadou 7:21

▶ Remark 13 (About the output). In our protocol above, the parties in OL obtain shares
⟨x(L)

1 ⟩OL , . . . , ⟨x(L)
ℓL
⟩OL in round L, where (x(L)

1 , . . . , x
(L)
ℓL

) = F (x(0)
1 , . . . , x

(0)
ℓ0

) is the result of
the computation. This output can be dealt with in multiple different ways:

The parties in OL can reconstruct the output to each other. This way, the parties in OL

are guaranteed to learn the output, but parties outside this set may not satisfy this.
If the B-assumption holds for some B, the parties can reconstruct and transfer this
sharing for B more rounds so that all parties learn the output.

B.4 Security Analysis
Now we provide a sketch of the security properties of protocol ΠMPC from Section B.3. Recall
that the function to be computed is assumed to be given by a layered circuit (x(L)

1 , . . . , x
(L)
ℓL

) =
F (x(0)

1 , . . . , x
(0)
ℓ0

). Furthermore, it is assumed that the parties have bivariate shares of the
inputs ⟨x(0)

1 ⟩, . . . , ⟨x(0)
ℓ0
⟩, and also, for every multiplication gate, a triple (⟨a⟩, ⟨b⟩, ⟨c = a · b⟩)

with a, b uniformly random in F.5 Recall that ⟨s⟩Or means that there is a large enough
subset Sr ⊆ Or ∩ H such that every party Pi ∈ Sr has f(x, i) such that f(0, 0) = s, and
parties in (Or ∩H) \ Sr either have f(x, i) or a special symbol ⊥.

Assume the protocol starts in round 0. We claim that the following invariant holds:
In round r, the parties in Or have shares of the intermediate results in layer r, namely
⟨x(r)

1 ⟩Or , . . . , ⟨x(r)
ℓr
⟩Or . To see this we argue inductively. For r = 0 this follows trivially as we

assumed that the parties start with shares ⟨x(0)
1 ⟩, . . . , ⟨x(0)

ℓ0
⟩, which in particular means they

have shares ⟨x(0)
1 ⟩O0 , . . . , ⟨x(0)

ℓ0
⟩O0 .

Assume the invariant holds for r, and let us show it also holds for r + 1. Let k ∈
{1, . . . , ℓr+1}. From the definition of a layered circuit, the value x

(r+1)
k can be computed in

either one of three ways:
Identity gate x

(r+1)
k = x

(r)
i . In this case the protocol instructs that the parties must call

⟨x(r+1)
k ⟩Or+1 ← Πtransfer(⟨x(r)

i ⟩Or).

Addition gate x
(r+1)
k = x

(r)
i +x

(r)
j . In this case the protocol dictates the parties to compute

⟨x(r)
k ⟩Or = ⟨x(r)

i ⟩Or + ⟨x(r)
j ⟩Or , followed by ⟨x(r+1)

k ⟩Or+1 ← Πtransfer(⟨x(r+1)
k ⟩Or).

Multiplication gate x
(r+1)
k = x

(r)
i · x(r)

j . Here, the parties in Or first compute locally
⟨d⟩Or = ⟨x(r)

i ⟩Or −⟨a⟩Or and ⟨e⟩Or = ⟨x(r)
j ⟩Or −⟨b⟩Or , and call d← Πrec(⟨d⟩Or) and e←

Πrec(⟨e⟩Or−1), which enables the parties in Or∩H, which include Or∩Or+1∩H, to learn d

and e. Observe that this does not reveal anthing about x
(r)
i and x

(r)
j to the adversary since

a and b are assumed to be uniformly random and unknown to the adversary. Finally, these
parties, which define the set Sr+1, compute d · ⟨b⟩Or+1 + e · ⟨a⟩Or+1 + ⟨c⟩Or+1 + d · e, which
can be easily checked to be equal to ⟨x(r)

i · x
(r)
j ⟩Or+1 , which is the same as ⟨x(r+1)

k ⟩Or+1 .

Since the invariant holds for every layer, in particular it holds for r = L, which shows
that, after L rounds, the parties obtain ⟨x(L)

1 ⟩OL , . . . , ⟨x(L)
ℓL
⟩OL . As mentioned in Remark 13

in Section B.3, these shared outputs can be handled in different ways, depending on the
application under consideration.

5 A simple “optimization” is that these shares do not need to be held by all the parties, but rather by
these that will make use of these sharings in each corresponding round.

ITC 2023

Weighted Secret Sharing from Wiretap Channels
Fabrice Benhamouda #

Algorand Foundation, New York, NY, USA

Shai Halevi #

Algorand Foundation, New York, NY, USA

Lev Stambler #

Independent Researcher, NJ, USA

Abstract
Secret-sharing allows splitting a piece of secret information among a group of shareholders, so that
it takes a large enough subset of them to recover it. In weighted secret-sharing, each shareholder has
an integer weight, and it takes a subset of large-enough weight to recover the secret. Schemes in the
literature for weighted threshold secret sharing either have share sizes that grow linearly with the
total weight, or ones that depend on huge public information (essentially a garbled circuit) of size
(quasi)polynomial in the number of parties.

To do better, we investigate a relaxation, (α, β)-ramp weighted secret sharing, where subsets of
weight βW can recover the secret (with W the total weight), but subsets of weight αW or less cannot
learn anything about it. These can be constructed from standard secret-sharing schemes, but known
constructions require long shares even for short secrets, achieving share sizes of max

(
W, |secret|

ϵ

)
,

where ϵ = β − α. In this note we first observe that simple rounding let us replace the total weight W

by N/ϵ, where N is the number of parties. Combined with known constructions, this yields share
sizes of O

(
max(N, |secret|)/ϵ

)
.

Our main contribution is a novel connection between weighted secret sharing and wiretap
channels, that improves or even eliminates the dependence on N , at a price of increased dependence
on 1/ϵ. We observe that for certain additive-noise (R, A) wiretap channels, any semantically secure
scheme can be naturally transformed into an (α, β)-ramp weighted secret-sharing, where α, β are
essentially the respective capacities of the channels A, R. We present two instantiations of this
type of construction, one using Binary Symmetric wiretap Channels, and the other using additive
Gaussian Wiretap Channels. Depending on the parameters of the underlying wiretap channels, this
gives rise to (α, β)-ramp schemes with share sizes |secret| · log N/poly(ϵ) or even just |secret|/poly(ϵ).

2012 ACM Subject Classification Theory of computation → Cryptographic primitives; Security
and privacy → Information-theoretic techniques

Keywords and phrases Secret sharing, ramp weighted secret sharing, wiretap channel

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.8

Related Version Full Version: IACR ePrint 2022/1578 [8]

Funding Lev Stambler : Work done while in Algorand Foundation, USA.

Acknowledgements We thank the anonymous reviewers for their comments, which vastly improved
this work.

1 Introduction

Secret sharing [24, 10] allows a dealer to split some secret information among multiple parties,
giving each party an individual share, so that large enough subsets of shareholder can recover
the secret, but small subsets cannot learn any partial information about it. Such schemes
are typically parametrized by the number of parties N and a threshold T ≤ N , such that it
takes at least T parties to recover the secret.

© Fabrice Benhamouda, Shai Halevi, and Lev Stambler;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabrice.benhamouda@gmail.com
https://orcid.org/0000-0002-8300-1820
mailto:shaih@alum.mit.edu
https://orcid.org/0000-0003-3432-7899
mailto:levstamb@umd.edu
https://doi.org/10.4230/LIPIcs.ITC.2023.8
https://eprint.iacr.org/2022/1578
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Weighted Secret Sharing from Wiretap Channels

Weighted secret sharing (WSS) is similar, except that each shareholder j has an integer
weight wj , it takes a “heavy enough” subsets to recover the secret, while “light” subsets
cannot learn any partial information about it. The threshold T ∈ [N] is replaced by τ ∈ (0, 1),
such that it takes shareholders of aggregate weight τW to recover the secret (where W is
the total weight, W =

∑
j∈[N] wj).

One method of implementing WSS is to rely on standard secret-sharing with N ′ = W

and T ′ = τW , giving wj shares to a shareholder j with weight wj . While this solution can
achieve good rate for long secrets (see Section 3.1), it is very wasteful for short ones, as its
share sizes grow linearly with the weight. Prior work on weighted secret sharing explored
other solutions (e.g., using Chinese remaindering) or limited models (e.g., specific weight
hierarchies). But they all still feature either linear dependency of the share-size on W , severe
restrictions to the access structures that can be realized, or huge public information that
must be broadcasted to everyone alongside the individual shares. (See more discussion in
Section 1.2 below.)

In an attempt to do better, in this work we consider the relaxed model of ramp secret-
sharing [9], that has a fuzzy threshold. Specifically, an (α, β)-ramp weighted secret sharing
scheme allows any subset of aggregate weight at least βW to recover the secret, but subsets
of weight αW or less cannot learn any information about it. Such gaps were considered often
in the literature for standard secret-sharing schemes, but to our knowledge were not studied
in the context of weighted secret sharing.

It is not hard to see (and we describe it explicitly in Section 3) that this relaxation enables
shorter secrets, just by keeping only a 1/ϵ precision for the weights, where ϵ = β −α. Rather
than linear dependence on the weights, we now get linear dependence on N/ϵ (where the
dependence on the number of parties N is due to the accumulation of rounding errors in this
limited-precision approximation).

Beyond this simple observation, the main technical meat in this work is a novel blueprint
for (α, β)-ramp WSS schemes, by exploring a surprising connection to secure transmission
schemes for wiretap channels. These constructions reduce or even eliminate the dependence
on N , at the price of potentially worse (but still polynomial) dependence on 1/ϵ. We note
that the field of wiretap coding is an ongoing line of research with an aim of decreasing
dependence on 1/ϵ. Any advances in wiretap coding can easily be applied to WSS with our
construction.

1.1 Overview of Our Techniques
The starting point for our new blueprint is the following approach: On input s, the dealer
gives each shareholder j an independent noise vector ej , whose magnitude depends on their
weight, and publishes the value g = Enc(s) +

∑
j ej , where Enc(·) is some encoding function.1

Given the public g and their individual ej ’s, the only information that a set T of shareholder
has on the secret s is the value

gT = g −
∑
j∈T

ej = Enc(s) +
∑
j /∈T

ej .

We can therefore associate with each subset T an additive-noise channel CT : x 7→
x +

∑
j /∈T ej , such that the information that T learns about s is exactly the received value

CT (Enc(s)). We are seeking an encoding function Enc(·) so that:

1 Publishing g can be done by sending it to all the shareholders, which will only double the size of the
shares that each one holds. It may be possible to use information dispersal to do even better.

F. Benhamouda, S. Halevi, and L. Stambler 8:3

Any qualified set S can recover s from CS(Enc(s));
For any unqualified set T , seeing CT (Enc(s)) yields no information on s.

Intuitively, the smaller (or “lighter”) the set is, the more error components it is missing, so
the more noisy its channel will be. Consider now R which is “the most noisy channel” for
any qualified set, and A which is “the least noisy channel” for any unqualified set.

We can hope that R is less noisy than A, and use a good transmission scheme for the
wiretap channel (R,A), with receiver channel R and adversary channel A. (Recall that a
wiretap scheme for a pair of channels (R,A) consists of an encoding function Enc(·) such
that a secret s can be recovered from R(Enc(s)) whp, but where A(Enc(s)) yields almost no
information on s.)

Trying to flesh out this approach, we need to associate an error distribution Dwj
to every

weight wj ∈ N, so that whenever
∑

j∈A wj >
∑

j∈B wj it holds that
∑

j∈ADwj has “more
error” than

∑
j∈B Dwj

. Then we need to find two concrete channels R,A such that
R is at least as noisy as CQ for any qualified set Q with weight ≥ βW .
A is at most as noisy as CU for any unqualified set U with weight ≤ αW .

If R is less noisy than A, then we can use a good transmission scheme for the wiretap channel
(R,A) to implement our (α, β)-ramp WSS scheme. The parameters of this WSS scheme can
be derived from those of the underlying wiretap scheme.

1.1.1 Binary Symmetric Channels
Trying to instantiate this approach with binary symmetric channels, we associate with each
weight wj an error probability pj and the corresponding Bernoulli random variable

Dj =
{

1 with probability pj

0 with probability 1− pj .

One problem to overcome is that for “the most natural mapping” of weights to probabilities,
the error probability does not add up linearly: If we set (say) pj = wj/W , it is not hard
to find instances where

∑
j∈A wj >

∑
j∈B wj and yet

∑
i∈ADj mod 2 has smaller error

probability than
∑

j∈B Dj mod 2, as the following example shows.

A problematic example

Consider three parties with w1 = w2 = 13 and w3 = 24, so W = 50 and we have Pr[D1 =
1] = Pr[D2 = 1] = 13/50 = 0.26 and Pr[D3 = 1] = 24/50 = 0.48. Let A = {1, 2} and
B = {3}, so the aggregate weight of A is 26, larger that the weight of B which is 24. On the
other hand, we have

Pr[D1 ⊕D2 = 1] = 0.26 + 0.26− 0.262 = 0.4525 < 0.48 = Pr[D3 = 1],

so the error rate for A is lower that for B.
Clearly, the reason for this example is the cancellation due to the term 0.262, namely

the fact that the error probabilities do not simply add up. This cancellation effect can be
reduced it by scaling down the probabilities, setting pj = γwj/W for some γ < 1 (that may
depend on α, β). For example, if we set pj = wj/2W rather than pj = wj/W , then we get
Pr[D1 = 1] = Pr[D2 = 1] = 0.13 and Pr[D3 = 1] = 0.24, and therefore

Pr[D1 ⊕D2 = 1] = 0.13 + 0.13− 0.132 = 0.2431 > 0.24 = Pr[D3 = 1].

ITC 2023

8:4 Weighted Secret Sharing from Wiretap Channels

While this can be made to work, it has a drawback that the error rates of the scaled R and A
become quite close, of distance only O(ϵ2) (where ϵ = β − α). This would require the codes
of fairly large block-length, making the share-size a large polynomial in 1/ϵ. Instead, we
describe here a different variant that was pointed out to us by the anonymous reviewers, that
improves the dependence on 1/ϵ by using a better mapping from weights to probabilities.

1.1.1.1 The BSC construction

The BSC-based construction that we present in Section 5 gives a weight-wj shareholder
an error variable D(wj) which is the sum modulo 2 of wj IID Bernoulli random variables,
all with the same head probability of τ < 1/2 (where τ can depend on α, and β and the
total weight W =

∑
j wj). With this definition, it is clear that we get additivity, namely

D(w1 + w2) = D(w1) +D(w2) (mod 2). Therefore, the error sum of a shareholder set with
cumulative weight w is exactly D(w), Also, it is not hard to show that for this construction,
the head probability of D(wj) is

Pr[D(wj) = 1] = 1
2 · (1− exp(−γ · wj/W)) ,

where γ is some constant that depends on τ . As we show in Section 5, optimizing the constant
γ in this construction yields a wiretap channel (R,A) where the capacity gap between R
and A is Θ(β − α).

1.1.2 Additive Gaussian Channels
Another natural attempt to instantiate our blueprint is using additive white Gaussian noise
(AWGN) channels. For these channels, the noise is natively additive: adding Gaussian
variables with variance σ2

1 and σ2
2 yields another Gaussian with variance σ2

1 + σ2
2 . The

AWGN-noise construction therefore associates each weight, w ∈ N with the Normal random
variable N (0, w/W), i.e. zero-mean with variance w/W (stdev =

√
w/W). Due to additivity,

the aggregate random variable for a set A is itself a Normal variable,∑
j∈A

N (0, wj/W) = N (0,
∑
j∈A

wj/W).

This implies that whenever S has higher weight than T , the channel CT has more error than
the channel CS .

For any β > α, we can therefore construct an (α, β)-ramp WSS scheme from a good
transmission scheme for the AWGN wiretap channel (R,A), where

R : x 7→ x +N (0, 1− β) and A : x 7→ x +N (0, 1− α).

Indeed, since β > α then A is more noisy than R.
One problem to solve when using AWGN channels is that they natively deal with real

numbers with infinite precision, whereas we can only use finite precision for our construction.
In Appendix A we therefore sketch an approach that uses discrete Gaussians instead. That
construction achieves somewhat worse rate than the BSC construction for long secrets, but
it can plausibly offer concrete parameter benefits for short secrets.

1.2 Prior Work
Ramp secret-sharing (without weights) was introduced by Blakley and Meadows [9]. A
textbook construction for a ramp-scheme with good rate based on standard “packed secret
sharing” can be found, e.g., in [12, 11.4.2] (and is described in Section 3.1 below).

F. Benhamouda, S. Halevi, and L. Stambler 8:5

Some early work on weighted secret sharing was cast against the backdrop of general
access structures. Beimel et al. [3] characterized the weighted (strict) thresholds access
structures that admit ideal schemes, where the share size is equal to the secret size, proving
that only few specific threshold structures can be realized this way.

Beimel and Weinreb [4] showed that any threshold access structure can be realized using
shares of size quasiPoly(N log W) times the secret size, or even just poly(N log W) · λ if
computational security is enough (λ is the security parameter). They did that by describing
monotone circuits that compute every threshold function, and using known monotone-circuits-
to-secret-sharing compilers [7, 27].2 Works such as [16] and [25] propose an explicit scheme
for hierarchical threshold structures, those are solving a different (albeit somewhat related)
problem than ours.

Another notable prior work is due to Zou et al. [29], they use the Chinese Remainder
Theorem to improve some efficiency parameters of weighted multi-secret sharing, but secret
sizes are still the same as in the simple scheme based on Shamir sharing.

Also, noisy channels were used in many prior works as a tool for achieving secure
computation, starting with [14, 13]. The goals in that line of works are quite different from
ours, however, and the connection that we draw between ramp secret-sharing and wiretap
channels is new.

Organization
We present some background in Section 2, then define (α, β)-ramp WSS and describe a
simple rounding-based protocol for realizing it in Section 3. We formulate our blueprint
for WSS schemes from wiretap schemes in Section 4, then describe instantiations of this
blueprint from binary symmetric channels in Section 5 and from additive white Gaussian
noise channels in Appendix A.

2 Background

Notations. For an integer n, we denote [n] = {1, 2, . . . , n}. The ℓ’th entry in a vector e is
denoted e[ℓ]. For two distributions D, E , we denote by SD(D, E) their statistical distance.
Namely SD(D, E) = 1

2
∑

x∈X |D(x)− E(x)|, where X is the union of their support.
For a real number x and an integer η, we denote by ⌊x⌋2−η , ⌈x⌉2−η , ⌈x⌋2−η the rounding

of x down, up, or to the nearest number with precision 2−η, respectively. Namely, ⌊x⌋2−η

is the largest number of the form i/2η (with i an integer) which is not larger than x, and
similarly ⌈x⌉2−η is the smallest number of this form which is not smaller than x, and ⌈x⌋2−η is
one of the above which is closer to x (breaking ties arbitrarily). Omitting the 2−η parameter
means rounding to an integer (same as using 20).

2.1 Channels and Error Correcting Codes
A communication channel with input set X and output set Y is a transform that maps each
input symbol x ∈ X to a distribution over the output symbols Y . In this work we deal with
additive-noise channels where X = Y is an additive group, and the channel just adds to its
input some random noise, chosen from a known distribution D. Namely, Ch : x 7→ x + D.

2 Those compilers essentially construct a garbled circuit for the threshold function, with the secret being
the output label. Hence, they require a very large public information, namely the garbled circuit itself.

ITC 2023

8:6 Weighted Secret Sharing from Wiretap Channels

We assume a memoryless channel: when sending a sequence of symbols, each symbol is
transformed according to the channel Ch independently of the others (and their order is
maintained).

An error-correction scheme is meant to facilitate reliable transmission of a sequence of
symbols m ∈ X k (for some k) over the channel Ch. For any input length k it consists of a
code, defined by an encoding Enc : X k → Xn that adds redundancy, mapping the information
sequence m to a longer code-word w ∈ Xn that will be sent over the channel, and by a
matching decoding routine Dec : Xn → X k that attempts to recover the original information
from the received sequence Ch(w). An error-correction scheme is a sequence of codes for
increasing k.

The rate of a code is k/n, and the channel capacity is the highest possible rate (asymp-
totically as k →∞) of any scheme that achieves vanishing decoding error probability. For
additive noise channels with noise distribution D, the channel capacity is 1− h(D) where
h is the Shannon entropy function. In particular, for any channel Ch and any ν > 0, there
exist schemes with rate ν away from capacity (perhaps with inefficient encoding/decoding),
in which the decoding error probability is bounded below 2−Θ(n·ν2).

In this work we will be concerned with Binary Symmetric Channels (BSC, see Section 5)
and Additive White Gaussian Noise channels (AWGN, see Appendix A). For those channels,
there exist schemes with efficient encoding/decoding procedures that approach capacity
and achieve vanishing error probability. (The dependence on the slackness parameter
ν = capacity-minus-rate, affects the parameters that our blueprint can achieve, and will be
discussed in the sequel.)

The “more noisy” relation

We say that a channel Ch′ is more noisy than another channel Ch (or Ch is less noisy than
Ch′), and denote Ch ⪯ Ch′ or Ch′ ⪰ Ch, if there is some transform T such that Ch′ = T (Ch).
An example is when Ch′ is obtained from Ch by adding more noise, Ch′(x) = Ch(x) +D for
some noise distribution D. It is easy to see that the capacity of Ch is at least as high as that
of Ch′. Moreover, any error-correction scheme for Ch′ also works for Ch.3

2.2 Wiretap Channel Transmission Schemes

A wiretap channel is a pair of communication channels (R,A) with the same input and
output sets X ,Y , where R is a channel from the sender to an intended receiver and A is the
wiretap that goes to the adversary. Given a message m that the sender wants to send to
the receiver, the goal is to encode it as w = Enc(m), so that m can be recovered (whp) from
R(w), but not from A(w).

Bellare et al. defined in [6] the notion of semantically secure encryption scheme for a
wiretap channel (that we prefer to call a transmission scheme4). The following is essentially
their definition of distinguishing security. In our setting, it is sufficient to work with what
they call a “seeded” scheme, where encoding and decoding depend on a public random seed.

3 In theory, to use a decoder for Ch′ we may need to apply T to the output of Ch(w) before we can decode
it. In practice, decoders for the high-noise Ch′ always work as-is also for the low-noise Ch.

4 This is a keyless scheme, so it differs from cryptographic encryption.

F. Benhamouda, S. Halevi, and L. Stambler 8:7

▶ Definition 1 (Secure Wiretap Transmission Schemes). Let (R,A) be a wiretap channel
(for message space M), a secure transmission scheme for it consists of (seed-dependent5)
encoding and decoding procedures Encsd, Decsd such that
Correctness. For all m ∈M, Pr[Decsd(R(Encsd(m))) = m] ≥ 1− negl(|sd|),
Secrecy. For all m, m′ ∈M, SD ((sd,A(Encsd(m))), (sd,A(Encsd(m′)))) ≤ negl(|sd|),
where the probability is over the channel randomness as well as the random selection of the
seed sd, and negl is some negligible function.

The literature contains many constructions of wiretap channel schemes from error-
correcting schemes, some of which we will be using in Section 5 and Appendix A. For the
abstract blueprint that we present in Section 4, we need the “obvious” property of all the
schemes in the literature, where if they work for one wiretap channel then they also work for
all “easier channels.” Namely, they are monotone in terms of the more-noisy relation:

▶ Definition 2 (Monotone Schemes). A secure transmission scheme (Enc, Dec) for a channel
(R,A) is noise-monotone if it is also a secure transmission scheme for any channel (R′,A′)
such that R′ ⪯ R and A ⪯ A′.

Clearly, the secrecy condition of a transmission scheme is always monotone. The cor-
rectness condition is monotone as long as the decoding error of the underlying code is not
increased by reducing the noise level of the channel (which is true for all coding schemes that
we know of).

3 Weighted Secret Sharing

A secret-sharing scheme is a two-phase multi-party protocol for N + 1 parties, a dealer and
N shareholders. In the dealing phase, the dealer has a secret input s, and it outputs a share
for each shareholder, and optionally also a public share. In the reconstruction phase, a subset
of the shareholders collect all their shares (and the public share if any) and attempt to use
them in order to reconstruct the secret.

Each secret-sharing schemes comes with an access structure, consisting of a collection of
qualified subsets Γ ⊂ 2[N] that should be able to reconstruct the secret, and a collection of
unqualified subsets Ψ ⊂ 2[N] that should not be able to learn anything about the secret.6
Non-perfect realizations of secret sharing come with a security parameter λ that is given as
input to all the parties, and we require that the imperfections are negligible in λ.

Below we denote by ViewS(s) the view of a subset of the shareholders S ⊂ [N] when the
secret s is shared, consisting of their own shares and the public share (if any). For a qualified
set S we also denote by Recover(ViewS(s)) the value that these shareholders compute when
trying to recover the secret.

▶ Definition 3 (Secret Sharing). A secret-sharing scheme for the access structure (Γ, Ψ) and
the space of secrets S, satisfies the following (for some negligible function negl(·)):
Correctness. For any qualified subset S ∈ Γ and any secret s ∈ S,

Pr[Recover(ViewS(s)) = s] ≥ 1− negl(λ).

5 We use the seed length as the security parameter for this definition.
6 Sometimes we have Ψ = Γ, but rump schemes have Ψ ⊊ Γ.

ITC 2023

8:8 Weighted Secret Sharing from Wiretap Channels

Parameters: Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1. Let W :=
∑

i∈[N] wi.

Sharing a secret s ∈ {0, 1}k: Let r = ⌈(β − α)W ⌉ and k′ = ⌈k/r⌉.
1. Break the secret into r chunks of length ≤ k′, let s⃗ ∈ ({0, 1}k′)r be the resulting vector;
2. Share s⃗ using (αW, βW ; r, W) multi-secret sharing, party, j ∈ [N], gets wj shares.

Reconstructing the secret by a qualified set S:
3. Use multi-secret reconstruction with all revealed shares to recover s⃗;
4. Concatenate the entries of s⃗ to get s.

Figure 1 A rate-efficient (α, β)-ramp WSS from multi-secret sharing.

Secrecy. For any unqualified subset T ∈ Ψ and any two secrets s, s′ ∈ S, the view of T when
sharing s is statistically close to the view when sharing s′,

SD (ViewT (s), ViewT (s′)) ≤ negl(λ).

In this work we study a relaxation of threshold weighted secret sharing, (α, β)-ramp
weighted secret sharing.

▶ Definition 4 ((α, β)-ramp weighted secret sharing). A (α, β)-ramp weighted secret sharing
for 0 < α < β < 1, N shareholders, and weights w1, . . . , wN ∈ N, is a secret-sharing scheme
for the access structure

Γ = {S ⊆ [N] :
∑
i∈S

wi ≥ βW} and Ψ = {T ⊆ [N] :
∑
i∈T

wi < αW},

where W =
∑

i∈[N] wi.

Below we often use the notation ϵ = β − α when discussing the parameters of ramp WSS
schemes.

3.1 Ramp WSS from Multi-Secret Sharing
A (T1, T2; r, N) multi-secret sharing scheme shares r secrets (from some domain) among N

shareholders, with secrecy when T1 or less of the shares are revealed and recovery when T2
or more shares are revealed. A packed Shamir sharing, where multiple secrets are encoded in
different evaluation points of a degree-(T −1) polynomial, yields a (T −r, T ; r, N) multi-secret
sharing scheme over any field of size ≥ N + r, where each share is only a single field element.
Hence it achieves a “rate” of |secret|/|share| = r.

This can be converted to a ramp WSS scheme using the obvious approach of giving w

shares to a weight-w shareholder. This construction is described in Figure 1. To get an
(α, β)-ramp WSS we need a multi-secret scheme with N := W , T1 := αW , and T2 := βW .
Using the above construction, we can pack r = T2 − T1 = ϵW field elements while each
underlying share is a single element.

Each shareholder in the resulting WSS scheme holds at most W shares of the underlying
scheme, so we get a WSS scheme with share size ≤ W element that can handle secrets of
size upto ϵW elements. This yields encoding rate of

|secret|/|share| ≥ ϵW

W
= ϵ,

F. Benhamouda, S. Halevi, and L. Stambler 8:9

Parameters: Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1. Let W :=
∑

i∈[N] wi.

1. Let η :=
⌈
log 5N

β−α

⌉
. For all j ∈ [N], set w′

j := 2η ·
⌈ wj

W

⌉
2−η .

2. Use the Ramp WSS from Figure 1 with the w′
j ’s and thresholds α′ = α + β−α

5 and
β′ = β − β−α

4 .

Figure 2 A rounded (α, β)-ramp weighted secret sharing.

as long as the secret is long enough (i.e., at least ϵW field elements). This scheme is not very
useful for short secrets, however, as its efficiency depends on breaking the secret into many
chunks. In particular, the size of shares is still W (or more) in the worst case, regardless of
how small is the secret. 7

3.2 A Rounding-Based (α, β)-ramp WSS Protocol
We note that simple rounding can be used to roughly replace the dependence on W in the
above scheme by dependent on N/ϵ. Specifically, we use the construction from Figure 1 to
implement a modified version of the system, with weights that are rounded to precision of only
about (β − α)/N . Due to rounding errors, the modified version has a smaller gap ϵ′ < β − α,
but the increase can be controlled by setting the precision appropriately. Specifically, with
precision of (β − α)/5N we can get ϵ′ ≥ ϵ/2. This simple protocol is described in Figure 2.

▶ Lemma 5. The protocol outline in Figure 2 is an (α, β)-ramp weighted secret sharing
scheme.

Proof. By our choice of η we get N/2η ≤ (β − α)/5, and for every set J ⊆ [N] we have

2η
∑
j∈J

wj/W ≤
∑
j∈J

w′
j < |J |+ 2η

∑
j∈J

wj/W.

In particular for J = [N] we have W ′ =
∑

j∈[N] w′
j ∈ [2η, 2η + N]. For any non-qualified set

J ⊆ [N] with
∑

j∈J wj ≤ αW we therefore have

∑
j∈J

w′
j/W ′ ≤

N + 2η
∑

j∈J wj/W

2η
≤ N + 2η · α

2η
≤ (β − α)/5 + α = α′.

Similarly, for any qualified set J ⊆ [N] with
∑

j∈J wj ≥ βW we have

∑
j∈J

w′
j/W ′ ≥

2η
∑

j∈J wj/W

N + 2η
≥ β

1 + (N/2η) ≥
β

1 + (β − α)/5
(∗)
≥ β − (β − α)/4 = β′.

To see why inequality (∗) holds, note that

β

1 + (β − α)/5 = β(1 + (β − α)/5)
1 + (β − α)/5 − β(β − α)/5

1 + (β − α)/5 = β − β(β − α)
5− (β − α) ≥ β − β − α

4 . ◀

In terms of performance for the protocol of Figure 2, the number of shares a party can
receive is upper-bounded by W ′ < N + 2η ≤ N

(
1 + 10

β−α

)
. Hence, the size of shares in this

scheme grows with O(N/ϵ) instead of the total weight W .

7 In other contexts it is sometimes helpful to use algebraic-geometric codes instead of the Reed-Solomon
codes of Shamir sharing, as it enables the use of smaller fields. In our case this does not seem to help,
since the inefficiency comes from the number of field elements and not their size.

ITC 2023

8:10 Weighted Secret Sharing from Wiretap Channels

Sharing a secret s ∈ {0, 1}k, with security parameter λ:
1. If the wiretap scheme is seeded, choose a random seed sd of length λ;
2. ∀j ∈ [N], draw ej ← Dwj

and send to party j;
3. Publish sd and g = Encsd(s) +

∑
j∈[N] ej .

Reconstructing the secret by a qualified set S:
Set g′ = g −

∑
j∈S ej and output Decsd(g′).

Figure 3 The generic framework for ramp weighted secret sharing from wiretap channels.

4 A Blueprint for WSS from Wiretap Channels

Let w1, . . . , wN be the concrete weights that we want to implement and 0 < α < β < 1
be the parameters that we want to achieve. Denote W =

∑
i∈[N] wi. An instance of our

blueprint operates in some additive group X , and consists of two components:
A mapping from weights w ∈ N to noise distributions Dw over X .
A (seeded) noise-monotone secure transmission scheme (Enc, Dec) for a wiretap channel
(R,A) (cf. Definition 1), such that:

For any qualified subset S ⊆ [N] with
∑

i∈S wi ≥ βW , the channel R is more
noisy than adding all the noise distributions outside S. Namely, CS ⪯ R where
CS : x 7→ x +

∑
i/∈S Dwi

.
For any unqualified subset T ⊆ [N] with

∑
i∈S wi ≤ αW , the channel A is less

noisy than adding all the noise distributions outside T . Namely, CT ⪰ A where
CT : x 7→ x +

∑
i/∈T Dwi

.
Given these components, our WSS scheme is described in Figure 3.

▶ Lemma 6. If (Enc, Dec) is a noise-monotone secure transmission scheme for a wiretap
channel (R,A), as per Definitions 1 and 2, that satisfy the conditions above. Then the
scheme from Figure 3 is a secure (α, β)-ramp weighted secret-sharing scheme.

Proof. This holds more or less by definition. Consider an arbitrary qualified set S and an
arbitrary unqualified set T . Then by construction we have CS ⪯ R and A ⪯ CT , and since
(Enc, Dec) is noise-monotone then it is also a secure transmission scheme for the wiretap
channel (CS , CT). This means on one hand that for the qualified set S, seeing y = CS(Enc(s)),
we have Dec(y) = s with all but negligible probability. On the other hand, the unqualified
set T , seeing only CT (Enc(s)), cannot distinguish it from CT (Enc(s′)) except with a negligible
advantage. ◀

The public share

Our solutions, as well as some solutions from the literature (such as [4]), use a public share,
which is known to everyone, in addition to the individual shares of the shareholders. Clearly,
it is possible to eliminate the public share by adding it to each individual share, and in our
case this will at most double the share size of parties. In some solutions in the literature,
however, the public share is much larger than the individual shares. Here we chose to account
for the public share separately and only count it once (rather than once per shareholder).

F. Benhamouda, S. Halevi, and L. Stambler 8:11

5 Constructions from Binary Symmetric Wiretap Channels

5.1 Background

5.1.1 Binary Symmetric Channels
A binary symmetric channel (BSC) is used for sending bits. It is associated with a “crossover
probability” p ≤ 1/2, which is the probability that the received bit differs from the one that
was sent. Namely, we have a Bernoulli error variable Bp with Pr[Bp = 1] = p and Pr[Bp =
0] = 1− p, and the channel is defined on message space {0, 1} as BSCp : x 7→ x + Bp mod 2.

The capacity of BSCp is 1 − h(p), where h is the binary entropy function. If we are
not concerned with efficient decoding, then random linear codes (with ML/MAP decoding)
have rates that approach the channel capacity with exponentially small error probability.
Capacity-approaching constructions with efficient decoding are known using concatenated
codes [17] or polar codes [1, 18], with somewhat weaker bounds on the decoding error. For
example, [2, 19] show that the error probability for block-length n and rate 1− h(p)− ν is at
most exp(−Θ(

√
n)), where the constant in the exponent depends on p and ν. Later results

feature stronger bounds in terms of the block-length n with polynomial dependence on the
slackness ν. In particular, we have

▶ Lemma 7 (Corollary of [11], Thm 17). For any p < 1/2, ν < 1−h(p), and µ < 1, there exists
a code for BSCp with rate 1− h(p)− ν, block length n = polyµ(1/ν) (for some polynomial
that depends on µ), error probability exp(−nµ), and decoding complexity O(n log n).

It is known that the polynomial dependence on 1/ν is quadratic for any discrete memoryless
channel, while for some efficient constructions there is evidence that poly1/2(x) ≤ x4.6 [23, 28].

5.1.2 Wiretap Schemes for Binary Symmetric Channels
Bellare et al. also described in [6] a construction called ItE (Invert-then-Encode) for discrete
wiretap channels, building on error-correction. The construction realizes Definition 1 for the
channels (R,A), using a code with low decoding error probability for R, at a rate noticeably
larger than the capacity of A. (In particular, if the code rate approaches the capacity of R
then this construction approaches the secrecy capacity of the wiretap channel.)

The ItE construction has integer parameters b < k < n (with values as set later in
this section). Identifying {0, 1}k with the finite field F2k , this is a seeded construction
with seed space the multiplicative group F2k \ {0k} and message space {0, 1}b. In addition,
it uses error-correction encoding Enc : {0, 1}k → {0, 1}n and the corresponding decoding
Dec : {0, 1}n → {0, 1}k. The encoding and decoding routines of the ItE construction (denoted
Enc′

sd, Dec′
sd) are described in Figure 4. The following is a re-phrasing of Lemma 5.3 and

Lemmas 5.5-5.6 from [5]:

▶ Lemma 8 ([5], Lemma 5.3). If (Enc, Dec) is an error-correction scheme with decoding-error
probability at most ϵ for the channel R, then the ItE scheme (Encsd, Decsd) from Figure 4 is
correct for (R,A) with correctness holding with probability ≥ 1− ϵ. ◀

▶ Lemma 9 (Corollary of [5], Lemmas 5.5-5.6). Let A be a symmetric memoryless channel
with capacity c(A). Assume that k

n (the rate of Enc) is larger than c(A), denote the slackness
by ρ = k

n − c(A), and let λ be the security parameter. Then for any 0 < δ < ρ− 2λ
n , setting

b := ⌊n(ρ− δ)− 2λ− 2⌋ in the ItE construction yields a wiretap transmission scheme with
secrecy upto statistical distance 4 · 2−δ2n/11 + 2 · 2−λ.

ITC 2023

8:12 Weighted Secret Sharing from Wiretap Channels

Encoding: Enc′
sd(M ∈ {0, 1}b) with seed sd ∈ F2k \ {0k}:

1. Choose a random R← {0, 1}k−b, let Y = (M |R) ∈ F2k be the concatenation;
2. Set X := Y/sd ∈ F2k ;
3. Send the message W := Enc(X) ∈ {0, 1}n.
Decoding: Dec′

sd(W ′ ∈ {0, 1}n):
1. Use error-correction to get X ′ = Dec(W ′);
2. Compute Y ′ := X ′ · sd ;
3. Output M ′, the first b bits of Y ′.

Figure 4 The ItE construction from [6].

Plugging the coding parameter from above, we get the following instantiation:

▶ Corollary 10. For a binary symmetric wiretap channel (BSCpR
, BSCpA

) with 0 ≤ pR <

pA < 1/2, denote ξ := h(pA)−h(pR). There exists an instance of the ItE scheme (Encsd, Decsd)
with security parameter λ and

Encoding size n = max
(
poly 1

2
(4

ξ), λ2, 44λ
ξ2

)
; 8

Seed space F2k \ {0k} with k = (1− h(pA) + 3ξ
4)n = (1− h(pR)− ξ

4)n; and
Message space {0, 1}b, b ≥ (ξ

4 −
2
λ)n− 2;

such that
For all m ∈ {0, 1}b, Pr[Decsd(BSCpR

(Encsd(m))) = m] ≥ 1− 2−λ;
For all m, m′ ∈ {0, 1}b,

SD
(
(sd, BSCpA

(Encsd(m))), (sd, BSCpA
(Encsd(m′)))

)
≤ 6 · 2−λ.

Proof. Recall that k determines both the seed space of the ItE construction and the input
space for the underlying error-correcting code. The rate of the underlying code is therefore
k/n = 1−h(pR)− ξ

4 , and by Lemma 7 we can find such codes as soon as the encoding-length
exceeds poly1/2(4/ξ), with decoding error probability at most exp(−n1/2) < 2−

√
n. If n ≥ λ2

then this is bounded below 2−λ, and due to Lemma 8 the same holds for correctness of the
ItE construction.

For the secrecy part, we have rate k/n = 1− h(pA) + 3ξ
4 , and we use δ = ξ

2 in Lemma 9.
This yields b = ξ

4 n− 2λ− 2, and since n ≥ λ2 then b ≥ (ξ
4 −

2
λ)n− 2. If we also have n ≥ 44λ

ξ2 ,
then δ2n/11 ≥ (ξ/2)2 · (44λ/ξ2)/11 = λ, and therefore the statistical distance is bounded by

4 · 2−δ2n/11 + 2 · 2−λ ≤ 4 · 2−λ + 2 · 2−λ = 6 · 2−λ. ◀

5.1.2.1 Remark

Different from most works in the literature, in the setting above we do not aim at achieving
the secrecy capacity in the limit. Rather, we try to maintain a small encoding size n relative
not just to the message size b, but also to the security parameter λ and the parameters
pR, pA. 9

8 poly 1
2

is the polynomial from Lemma 7 for µ = 1
2 .

9 In particular, we opted for losing a constant factor in the ratio b/n in return for better dependency
on λ and ξ.

F. Benhamouda, S. Halevi, and L. Stambler 8:13

Parameters:
Weights w1, w2, . . . , wN ∈ N, thresholds 0 < α < β < 1, security parameter λ.

Let W :=
∑

i∈[N] wi and γ := 0.4
1−α .

Denote g(x) := 1−exp(−x)
2 , and let pR := g(γ(1− β)) and pA := g(γ(1− α)).

Let (Enc, Dec) (with parameters n, k, b) be as in the ItE construction from Corollary 10
for the wiretap channel (BSCpR

, BSCpA
).

Sharing a secret s ∈ {0, 1}k:
1. ∀j ∈ [N], set pj := g(γ·wj

W), draw ej ← (Bernoullipj)n and send to party j;
2. Draw a random sd ∈ F2k \ {0k}, publish sd and g := Encsd(s) +

∑
j∈[N] ej mod 2.

Reconstructing the secret by a qualified set S:
Set g′ = g +

∑
j∈S ej mod 2 and output Decsd(g′).

Figure 5 Weighted secret sharing from symmetric binary wiretap channels.

5.2 Our Construction
In Figure 5 we show how to use the ItE instance from Corollary 10 to get an (α, β)-ramp
WSS for given weights w1, w2, . . . , wN and thresholds 0 < α < β < 1.

Clearly, this construction is an instance of the blueprint from Figure 3, instantiated over
the additive group F2k , using the noise distributions Dw = Bernoullig(γ·w/W) and the ItE
construction from Corollary 10 for the wiretap channel (CSBpR

, CSBpA
). It is also clear

that the ItE construction is noise-monotone (since the underlying error-correction codes are).
The only thing left to prove in order to use Lemma 6, is that for any qualified S and

unqualified T , the corresponding channels satisfy CS ⪯ BSCpR
and CT ⪰ BSCpA

. To that
end, we use the following technical lemma:

▶ Lemma 11. Let B1, . . . ,Bt be independent Bernoulli random variables with Pr[Bj = 1] =
1−exp(−uj)

2 , and denote S :=
∑

j∈[t] Bj mod 2 then S is a Bernoulli random variable with:

Pr[S = 1] =
1− exp(−

∑
j∈[t] uj)

2 .

Proof. We prove the lemma by induction on t. The base case, where t = 1, is trivial. For
t > 1, we have that

Pr[S = 1] = Pr

 ∑
j∈[t−1]

Bj mod 2 = 1 & Bt = 0

 + Pr

 ∑
j∈[t−1]

Bj mod 2 = 0 & Bt = 1

=

1− exp
(∑

j∈[t−1] uj

)
2 · 1 + exp(xt)

2 +
1 + exp

(∑
j∈[t−1] uj

)
2 · 1− exp(xt)

2
(by the inductive hypothesis)

=
1− exp

(
−

∑
j∈[t] uj

)
2 .

Thus, the inductive step holds. ◀

We can now complete the proof that the ItE-based construction above satisfies all the
conditions of Lemma 6.

ITC 2023

8:14 Weighted Secret Sharing from Wiretap Channels

▶ Corollary 12. With the parameters as set in Figure 5 and a straightforward application of
Lemma 11:
(A) For every subset S ⊆ [N] with

∑
j∈S wj ≥ βW , we have CS ⪯ BSCpR

where CS : x 7→
x +

∑
j /∈S Bernoullipj

.
(B) For every subset T ⊆ [N] with

∑
j∈S wj ≤ αW , we have CT ⪰ BSCpA

where CT : x 7→
x +

∑
j /∈T Bernoullipj

.

An Alternative Presentation

An alternative way of describing the scheme from Figure 5, is that the noise component for
party j with weight wj is set as the sum (modulo 2) of wj IID random vectors, all of the
form

(
Bernoullig(γ/W)

)n. By Lemma 11, this noise vector indeed has the form
(
Bernoullipj

)n,
where pj = g(γ · wj/W).

5.3 Performance Characteristics of This Construction
Let ϵ = β − α > 0 and h : p 7→ −p log p − (1 − p) log(1 − p) the binary entropy function
(recall that log is in base 2). To get the best parameters from Corollary 10, we want to set
the parameter γ so as to maximize ξ := h(pA)− h(pR), where:

pA = g(γ(1− α)), pR = g(γ(1− β)), recalling that g : x 7→ 1− exp(−x)
2 .

Denote the function f : x 7→ h(g(x)). The mean value theorem implies that:

ξ = f(γ(1− α))− f(γ(1− β)) (1)
≥ (γ(1− α)− γ(1− β)) · inf

γ(1−β)<x<γ(1−α)
f ′(x)

= ϵ · γ · inf
γ(1−β)<x<γ(1−α)

f ′(x). (2)

where f ′ is the derivative of f .
Let us now compute f ′. We have h′(p) = log(1/p− 1) and g′(x) = exp(−x)/2. Thus:

f ′(x) = 1
2 exp(−x) · log

(
2

1− exp(−x) − 1
)

.

We remark that f ′ is decreasing, because exp(−x) is decreasing and log
(

2
1−exp(−x) − 1

)
is

decreasing. Therefore Equation (2) implies:

ξ ≥ ϵ · γ · f ′(γ(1− α)) = ϵ

1− α
· γ′ · f ′(γ′) ≥ ϵ · γ′ · f ′(γ′)

where γ′ := γ(1− α).
To maximize our lower bound of ξ, we just need to maximize γ′ · f ′(γ′). The optimal γ′

is about 0.4. In particular, setting γ′ = 0.4 gives γ′ · f ′(γ′) ≥ 0.31. Thus we can set γ = 0.4
1−α ,

which implies

ξ = h(pA)− h(pR) ≥ 0.31 · ϵ. (3)

By Corollary 10, there is a transmission scheme (Encsd, Decsd) for the wiretap channel
(BSCpR

, BSCpA
) with correctness/secrecy upto O(2−λ) and parameters

Encoding length: n ≤ max
(
poly 1

2
(13

ϵ), λ2, 458λ
ϵ2

)
;

Message length: b ≥ (ϵ
13 −

2
λ)n− 2;

Seed length: k =
⌈
(1− h(pA) + ϵ

4)n
⌉
.

F. Benhamouda, S. Halevi, and L. Stambler 8:15

Recall that for this scheme, we have secrets of length b, each shareholder gets a share
of length n, and the public share is of size n + k. Note also that n, k, b depend only the
thresholds α, β and not on the weights themselves. Thus, we get a scheme where the share
sizes are independent of the weights, and the rate is b/(2n + k) = Θ(ϵ).

When the gap ϵ = β − α is a constant, we can obtain this constant rate already for
constant-size secret. As the gap gets smaller, the share sizes grow as a polynomial in 1/ϵ,
so we can only get Θ(ϵ) rate for longer secrets. For example, assuming that constructions
such as [28] yield good binary codes with efficient decoding and poly 1

2
(x) = x4.6, we get

n ≈ (13/ϵ)4.6.

6 Conclusions

In this work, we study a ramp weighted secret sharing, with a gap between the qualified and
unqualified sets, and described two different types of constructions, one based on rounding
and the other using a new connection to wiretap schemes. Both types have share size
independent of total weight, and dependent only the gap between qualified and unqualified
sets. We described in detail a construction based on binary symmetric wiretap channels, and
sketched one based on AWGN. It may be interesting to explore other channels as well, to see
if any of then can offer concrete parameter improvements.

References

1 Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels. IEEE Transactions on Information Theory,
55(7):3051–3073, 2009. doi:10.1109/TIT.2009.2021379.

2 Erdal Arikan and Emre Telatar. On the rate of channel polarization. In 2009 IEEE International
Symposium on Information Theory, pages 1493–1495, 2009. doi:10.1109/ISIT.2009.5205856.

3 Amos Beimel, Tamir Tassa, and Enav Weinreb. Characterizing ideal weighted threshold secret
sharing. In Theory of Cryptography Conference, pages 600–619. Springer, 2005.

4 Amos Beimel and Enav Weinreb. Monotone circuits for monotone weighted threshold functions.
Information Processing Letters, 97(1):12–18, 2006. doi:10.1016/j.ipl.2005.09.008.

5 Mihir Bellare and Stefano Tessaro. Polynomial-time, semantically-secure encryption achieving
the secrecy capacity. IACR Cryptology ePrint Archive, page 22, 2012. URL: http://eprint.
iacr.org/2012/022.

6 Mihir Bellare, Stefano Tessaro, and Alexander Vardy. Semantic security for the wiretap channel.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 294–311. Springer, 2012.
Also available from https://arxiv.org/abs/1201.2205. doi:10.1007/978-3-642-32009-5_18.

7 Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In Shafi Goldwasser, editor, Advances in Cryptology - CRYPTO’88, volume 403 of Lecture
Notes in Computer Science, pages 27–35. Springer, 1988. doi:10.1007/0-387-34799-2_3.

8 Fabrice Benhamouda, Shai Halevi, and Lev Stambler. Weighted secret sharing from wiretap
channels. IACR Cryptol. ePrint Arch., page 1578, 2022. URL: https://eprint.iacr.org/
2022/1578.

9 G. R. Blakley and Catherine A. Meadows. Security of ramp schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara,
California, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer
Science, pages 242–268. Springer, 1984. doi:10.1007/3-540-39568-7_20.

ITC 2023

https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/ISIT.2009.5205856
https://doi.org/10.1016/j.ipl.2005.09.008
http://eprint.iacr.org/2012/022
http://eprint.iacr.org/2012/022
https://doi.org/10.1007/978-3-642-32009-5_18
https://doi.org/10.1007/0-387-34799-2_3
https://eprint.iacr.org/2022/1578
https://eprint.iacr.org/2022/1578
https://doi.org/10.1007/3-540-39568-7_20

8:16 Weighted Secret Sharing from Wiretap Channels

10 George R. Blakley. Safeguarding cryptographic keys. In 1979 International Workshop on
Managing Requirements Knowledge (MARK), pages 313–318, 1979. doi:10.1109/MARK.1979.
8817296.

11 Jaroslaw Blasiok, Venkatesan Guruswami, and Madhu Sudan. Polar codes with exponentially
small error at finite block length. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David
Steurer, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2018, volume 116 of LIPIcs, pages 34:1–34:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.
34.

12 Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, 2015. URL: http://www.cambridge.
org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/
secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053.

13 Claude Crépeau. Efficient cryptographic protocols based on noisy channels. In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Conference on the
Theory and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding, volume 1233 of Lecture Notes in Computer Science, pages 306–317. Springer, 1997.
doi:10.1007/3-540-69053-0_21.

14 Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened security assump-
tions (extended abstract). In 29th Annual Symposium on Foundations of Computer Science,
White Plains, New York, USA, 24-26 October 1988, pages 42–52. IEEE Computer Society,
1988. doi:10.1109/SFCS.1988.21920.

15 U. Erez and R. Zamir. Achieving 1/2 log(1+SNR) on the AWGN channel with lattice
encoding and decoding. IEEE Transactions on Information Theory, 50(10):2293–2314, 2004.
doi:10.1109/TIT.2004.834787.

16 Oriol Farras and Carles Padró. Ideal hierarchical secret sharing schemes. IEEE transactions
on information theory, 58(5):3273–3286, 2012.

17 Venkatesan Guruswami and Atri Rudra. Concatenated codes can achieve list-decoding capacity.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, pages 258–267, USA, 2008. Society for Industrial and Applied Mathematics.

18 Venkatesan Guruswami and Patrick Xia. Polar codes: Speed of polarization and polynomial
gap to capacity. IEEE Trans. Inf. Theory, 61(1):3–16, 2015. doi:10.1109/TIT.2014.2371819.

19 S. Hamed Hassani, Ryuhei Mori, Toshiyuki Tanaka, and Rüdiger L. Urbanke. Rate-dependent
analysis of the asymptotic behavior of channel polarization. IEEE Transactions on Information
Theory, 59(4):2267–2276, 2013. doi:10.1109/TIT.2012.2228295.

20 Ling Liu, Yanfei Yan, and Cong Ling. Achieving secrecy capacity of the gaussian wiretap
channel with polar lattices. IEEE Transactions on Information Theory, 64(3):1647–1665, 2018.
Also available at https://arxiv.org/abs/1503.02313. doi:10.1109/TIT.2018.2794327.

21 Ling Liu, Yanfei Yan, Cong Ling, and Xiaofu Wu. Construction of capacity-achieving lattice
codes: Polar lattices. IEEE Transactions on Communications, 67(2):915–928, 2019. Also
available at https://arxiv.org/abs/1411.0187. doi:10.1109/TCOMM.2018.2876113.

22 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007. doi:10.1137/S0097539705447360.

23 Marco Mondelli, S. Hamed Hassani, and Rüdiger L. Urbanke. Unified scaling of polar codes:
Error exponent, scaling exponent, moderate deviations, and error floors. IEEE Transactions
on Information Theory, 62(12):6698–6712, 2016. doi:10.1109/TIT.2016.2616117.

24 Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
25 Tamir Tassa. Hierarchical threshold secret sharing. Journal of cryptology, 20(2):237–264, 2007.
26 Himanshu Tyagi and Alexander Vardy. Explicit capacity-achieving coding scheme for the

gaussian wiretap channel. In 2014 IEEE International Symposium on Information Theory,
pages 956–960, 2014. See also https://arxiv.org/abs/1412.4958. doi:10.1109/ISIT.2014.
6874974.

https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.34
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.34
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://doi.org/10.1007/3-540-69053-0_21
https://doi.org/10.1109/SFCS.1988.21920
https://doi.org/10.1109/TIT.2004.834787
https://doi.org/10.1109/TIT.2014.2371819
https://doi.org/10.1109/TIT.2012.2228295
https://doi.org/10.1109/TIT.2018.2794327
https://doi.org/10.1109/TCOMM.2018.2876113
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1109/TIT.2016.2616117
https://doi.org/10.1109/ISIT.2014.6874974
https://doi.org/10.1109/ISIT.2014.6874974

F. Benhamouda, S. Halevi, and L. Stambler 8:17

27 Vinod Vaikuntanathan, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and Kwangjo
Kim. On the power of computational secret sharing. In Thomas Johansson and Subhamoy
Maitra, editors, Progress in Cryptology - INDOCRYPT 2003, volume 2904 of Lecture Notes in
Computer Science, pages 162–176. Springer, 2003. doi:10.1007/978-3-540-24582-7_12.

28 Hsin-Po Wang, Ting-Chun Lin, Alexander Vardy, and Ryan Gabrys. Sub-4.7 scaling exponent
of polar codes. arXiv 2204.11683, 2022. URL: https://arxiv.org/abs/2204.11683.

29 Xukai Zou, Fabio Maino, Elisa Bertino, Yan Sui, Kai Wang, and Feng Li. A new approach
to weighted multi-secret sharing. In 2011 Proceedings of 20th International Conference on
Computer Communications and Networks (ICCCN), pages 1–6. IEEE, 2011.

A Constructions from AWGN Wiretap Channels

Below we sketch an AWGN-based construction. It is plausible that such construction can
provide somewhat better performance than BSC-based construction, since AWGN-code use
“soft decoding” vs. the “hard decoding” that’s inherent in BSC code. We do not know if the
existing codes actually realize such improvement, however. Moreover, the construction below
features logarithmic dependence on the number of parties.

A.1 Background

A.1.1 Additive White Gaussian Noise Channels

Additive white Gaussian noise channels (AWGN) communicate real numbers rather than
bits. For each symbol x ∈ R transmitted over the channel, the received symbol is y = x + e

(addition over the reals), where e is a zero-mean Normal random variable. The variance σ2

of e is the noise level of the channel.
Symbols transmitted over the channel are chosen subject to some power constraint,

specifically their (expected) square is bounded by the power parameter P of the sender. The
quality of the channel is determined by the ratio between the power and the noise, called
the signal-to-noise ratio: SNR = P/σ2. 10 Below it will be convenient to fix the power to
P = 1 and set the variance accordingly. We denote the AWGN channel with variance σ2

(and power P = 1) by AWGNσ2 : x 7→ x +N (0, σ2). The capacity of this channel (denoted
c(σ) below) is

c(σ) := capacity(AWGNσ2) = ln
(

1 + 1
σ2

)
.

(The general formula is ln
(
1 + P

σ2

)
but we are fixing P = 1.) There are known constructions

of error-correcting codes with efficient decoding for the AWGN that approach capacity, see
for example [15, 21]. While AWGN codes can perhaps achieve somewhat better performance
than BSC codes (since they use “soft decoding”) this improvement has little effect on their
asymptotic behavior. In particular, for slackness parameter ν < c(σ), there exist codes
for AWGNσ2 with rate c(σ)− ν, block length n = poly(1/ν) (for some polynomial), error
probability exp(−

√
n), and decoding complexity polynomial in n.

10 Clearly, scaling P and σ2 by the same factor has no effect on the channel quality.

ITC 2023

https://doi.org/10.1007/978-3-540-24582-7_12
https://arxiv.org/abs/2204.11683

8:18 Weighted Secret Sharing from Wiretap Channels

A.1.2 AWGN Wiretap Channels
Tyagi and Vardy described in [26] a modular construction (in the same spirit as [6]) that
combines AWGN codes with randomness extractors. If the underlying code approaches the
receiver channel capacity, then the Tyagi-Vardy scheme can be made to approach the secrecy
capacity of the wiretap channel. A different approach for a secrecy-capacity-approaching
schemes was provided by Liu et al. [20].

These AWGN constructions may be practically more efficient than their BSC counterparts,
but as far as we know the improvement has little effect on their asymptotic behavior.
Namely, for an AWGN wiretap channel (AWGNσ2

r
, AWGNσ2

a
) with 0 ≤ σr < σa, denote

ξ := c(σr)− c(σa). Then the constructions in [26, 20] provide seeded wiretap transmission
schemes (Encsd, Decsd) with security parameter λ and

Encoding size n = max
(
poly(1

ξ), λ2, O(λ
ξ2)

)
;

Seed size k = (c(σa) + Θ(ξ))n = (c(σr)−Θ(ξ))n; and
Message space {0, 1}b, b ≥ (Θ(ξ)− 2

λ)n;
such that

For all m ∈ {0, 1}b, Pr[Decsd(AWGNσ2
r
(Encsd(m))) = m] ≥ 1− 2−λ;

For all m, m′ ∈ {0, 1}b,

SD
(
(sd, AWGNσ2

a
(Encsd(m))), (sd, AWGNσ2

a
(Encsd(m′)))

)
≤ 2−λ.

A.1.3 Using Discrete Gaussian Distributions
Continuous Gaussian distributions cannot be used directly in our blueprint, since they require
working with real numbers with infinite precision. We therefore need to “quantize” these
numbers in some form. The two natural approaches for doing that are either to round them
to some finite precision, or to switch working with discrete Gaussian distributions [22]. Either
way, the share sizes will grow linearly with the precision that we use, so it is crucial to analyze
the precision needed for error-correction. The effect of rounding on error correction is harder
to gauge, especially since the magnitude of the rounding errors grows with

√
n (where n is

the code dimension). Below we therefore sketch an approach that uses discrete Gaussians.
Recall that a discrete Gaussian distribution over a point lattice Λ ⊂ Rn is a probability

distribution over Λ where each point x⃗ ∈ Λ is assigned probability mass proportional
to the Gaussian probability density function. Namely, for a parameter s ∈ R, denote
ρs(x⃗) := exp(−π∥x⃗/s∥2) and ρs(Λ) =

∑
x⃗∈Λ ρs(x⃗). Then the discrete Gaussian distribution

over Λ with parameter s ∈ R (centered at the origin), denoted DΛ,s, assigns to each x⃗ ∈ Λ
the probability mass DΛ,s(x⃗) := ρs(x⃗)/ρs(Λ).

An extensive line of work, starting with Micciancio and Regev [22], established that
Discrete Gaussians inherit most of the statistical properties of their continuous counterparts,
as long as the parameter s is “sufficiently larger that the precision of Λ”. Specifically, [22]
defined the smoothing parameter of Λ (relative to some target deviation ϵ), that captures
how large the parameter s needs to be for DΛ,s to resemble the continuous distribution upto
O(ϵ). Here we only use the fact that for the integer lattice Zn and any ϵ, γ ∈ R, we have
ηϵ(γ · Zn) ≤ γ ·

√
ln(2n(1 + 1/ϵ))/π (cf. [22, Lemma 3.3]). Specifically, setting ϵ = 2−λ we

get

η2−λ(γ · Zn) ≤ γ ·
√

ln(2n(1 + 2λ))
π

< γ ·
√

ln n + λ.

F. Benhamouda, S. Halevi, and L. Stambler 8:19

While we could not find in the literature any treatment of error correction as applied to
discrete Gaussians, we take the extensive literature on the statistical properties as evidence
that the error-correction techniques for continuous Gaussians should still work. Specifically,
for discrete Gaussians over γ · Λn, the secrecy/correctness error should not increase by more
than O(ϵ), provided that we always use parameter s ≥ ηϵ(γ · Zn).

A.2 A Discrete AWGN Construction
Instantiating the approach above with precision γ seem to require that all the distributions
that we use will have parameter of at least the smoothness factor. Since in our construction
we give a party with weight w an error component with parameter sw ∼

√
w, then we need

to use a small enough γ so that even for the smallest non-zero weight (which could be w = 1)
already has a large enough parameter sw ≥ η2−λ−log N (γ · Zn). (The log N factor comes due
to the fact that we have N such distributions, one per party.) That is, we roughly need
γ ≈ 1/

√
ln n + λ + log N .

On the other hand, for the largest weights and (which could be as large as Ω(W)), and
certainly for the public share, we need to use numbers of size at least

√
W . Hence, each entry

in our code would require O(log(
√

W/γ)) = O(log(W) + log λ + log log n + log log N) bits
to specify. We could use the rounding technique from Figure 2 to remove the dependence
on W , replacing the log W term by log(N/ϵ). This means that the number of bits to specify
each entry is O (log N + log λ + log(1/ϵ) + log log n) . Since we always have n = poly(λ), we
can ignore the log log n term above.

We now can set σr =
√

1− β and σa =
√

1− α, and consider the wiretap channel with
receiver channel DγZn,σr and adversary channel DγZn,σa . Since these distributions are above
the smoothing parameter (wrt ϵ = 2−λ/N), we can expect the gap between their capacities to
be similar to their continuous counterparts, namely we expect ξ := c(DγZn,σr

)−c(DγZn,σa
) =

Θ(ϵ).
Plugging the parameters from Appendix A.1.2 we would get n = max

(
poly(1

ϵ), λ2, O(λ
ϵ2)

)
,

so the share size is

max
(

poly(1
ϵ

), λ2, O(λ

ϵ2)
)
·O (log N + log λ + log(1/ϵ)) .

With seed size k = Θ(ϵ)n and message size b ≈ (Θ(ϵ) − 2
λ)n. This implies a rate

|secret|/|share| = O(ϵ/(log N + log λ + log(1/ϵ))), which is not as good as for the BSC.
However, it is plausible that the poly(1/ϵ) term for decoding AWGN channels is better than
for BSC, in which case the concrete share sizes or short secrets could still be smaller.

ITC 2023

Quantum Security of Subset Cover Problems
Samuel Bouaziz-Ermann #

LIP6, Paris, France
Sorbonne Université, Paris, France
CNRS, Paris, France

Alex B. Grilo #

LIP6, Paris, France
Sorbonne Université, Paris, France
CNRS, paris, France

Damien Vergnaud #

LIP6, Paris, France
Sorbonne Université, Paris, France
CNRS, Paris, France

Abstract

The subset cover problem for k ≥ 1 hash functions, which can be seen as an extension of the collision
problem, was introduced in 2002 by Reyzin and Reyzin to analyse the security of their hash-function
based signature scheme HORS. The security of many hash-based signature schemes relies on this
problem or a variant of this problem (e.g. HORS, SPHINCS, SPHINCS+, . . .).

Recently, Yuan, Tibouchi and Abe (2022) introduced a variant to the subset cover problem,
called restricted subset cover, and proposed a quantum algorithm for this problem. In this work, we

prove that any quantum algorithm needs to make Ω
(

(k + 1)− 2k

2k+1−1 · N
2k−1

2k+1−1

)
queries to the

underlying hash functions with codomain size N to solve the restricted subset cover problem, which
essentially matches the query complexity of the algorithm proposed by Yuan, Tibouchi and Abe.

We also analyze the security of the general (r, k)–subset cover problem, which is the underlying
problem that implies the unforgeability of HORS under a r-chosen message attack (for r ≥ 1).
We prove that a generic quantum algorithm needs to make Ω

(
Nk/5) queries to the underlying

hash functions to find a (1, k)-subset cover. We also propose a quantum algorithm that finds a
(r, k)-subset cover making O

(
Nk/(2+2r)) queries to the k hash functions.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases Cryptography, Random oracle model, Quantum information

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.9

Related Version Full Version: https://eprint.iacr.org/2022/1474

Funding This work was partially funded by PEPR integrated project EPiQ ANR-22-PETQ-0007
part of Plan France 2030. This work is part of HQI initiative (www.hqi.fr) and is supported by
France 2030 under the French National Research Agency award number “ANR-22-PNCQ-0002”.
Alex B. Grilo: ABG is supported by ANR JCJC TCS-NISQ ANR-22-CE47-0004, and by the PEPR
integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030.

Acknowledgements We thanks the anonymous reviewers for their valuable comments that helped
improving the quality of this paper.

© Samuel Bouaziz-Ermann, Alex B. Grilo, and Damien Vergnaud;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:samuel.bouaziz@ens-rennes.fr
mailto:alex.bredariol-grilo@lip6.fr
mailto:damien.vergnaud@lip6.fr
https://doi.org/10.4230/LIPIcs.ITC.2023.9
https://eprint.iacr.org/2022/1474
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Quantum Security of Subset Cover Problems

1 Introduction

Cryptographic hash functions are functions mapping arbitrary-length inputs to fixed-length
outputs and are one of the central primitives in cryptography. They serve as building blocks
for numerous cryptographic primitives such as key-establishment, authentication, encryption,
or digital signatures. In particular, one-time signatures – i.e. in which the signing key can
be used only once – based only on hash functions were proposed by Lamport as soon as
in 1979 [9]. The basic idea is to evaluate a cryptographic hash function on secret values
to generate the public verification key and to authenticate a single message by revealing a
subset of those secret pre-images.

With the development of quantum technologies, which may bring drastic attacks against
widely deployed cryptographic schemes based on the hardness of integer factorization or the
discrete logarithm [12], hash-based signatures have regained interest within the realm of
“post-quantum” cryptography and the recent NIST standardization process. In particular,
the SPHINCS+ candidate [3] has been selected in 2022 for standardization by NIST and
other constructions are standardized by IETF/IRTF. The SPHINCS+ signature scheme and
its predecessor SPHINCS [2] make use of a Merkle-hash tree and of HORST, a variant of a
hash-based scheme called HORS [11]. HORS (for “Hash to Obtain Random Subset”) uses
a hash function to select the subset of secret pre-images to reveal in a signature and the
knowledge of these secrets for several subsets may not be enough to produce a forgery, a
property that makes HORS a few-time signature scheme.

More concretely, the security of HORS (and HORST) relies on the hardness of finding a
subset cover (SC) for the underlying hash function. More formally, to define the (r, k)–SC
problem, we consider the hash function as the concatenation of k ≥ 1 hash functions h1, . . . ,
hk (with smaller outputs) and the problem is to find, for some integer r ≥ 1, r + 1 elements
x0, x1 . . . , xr in the hash function domain such that x0 /∈ {x1, . . . , xr}, and

{hi(x0)|1 ≤ i ≤ k} ⊆
r⋃

j=1
{hi(xj)|1 ≤ i ≤ k} .

The hardness of this problem for concrete popular hash functions has not been studied in
depth but Aumasson and Endignoux [1] proved in 2017 a lower bound on the number of
queries to hash functions for the SC problem in the Random Oracle Model (ROM). However,
the exact security of HORS (and more generally HORST, SPHINCS and SPHINCS+) with
respect to quantum attacks is still not clear. Since quantum computing provides speedups
for many problems (e.g. Grover’s search algorithm [8] and Brassard, Høyer, and Tapp [6]
collision search algorithm), it is important to provide lower bounds in a quantum world.

1.1 Our results
In this paper, we explore the difficulty of finding subset cover for idealized hash functions for
quantum algorithms. We also consider a variant called the k-restricted subset cover (k–RSC)
problem where, given k functions h1, . . . , hk : X → Y such that N = |Y|, one has to find
k + 1 elements x0, x1 . . . , xk such that:

∀1 ≤ i ≤ k, hi(x0) = hi(xi)

and x0 /∈ {x1, . . . , xk}. This variant was defined recently by Yuan, Tibouchi and Abe [14],
who showed a quantum algorithm to solve it. The main contributions of this work are:

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:3

1. Lower bound on k–RSC: we prove that Ω
(

(k + 1)− 2k

2k+1−1 ·N
2k−1

2k+1−1

)
quantum quer-

ies to the idealized hash functions are needed to find a k–RSC with constant probability.
(Theorem 14)

2. Lower bound on (1, k)–SC: we prove that Ω
(
(k!)−1/5 ·Nk/5) quantum queries to the

idealized hash functions are needed to find a (1, k)–SC with constant probability.
(Theorem 21)

3. Upper bound on (r, k)–SC: we present a quantum algorithm that finds a (r, k)–SC
with constant probability with O

(
Nk/(2+2r)) queries to the hash functions when k is

divisible by r + 1, and O
(
Nk/(2+2r)+1/2) otherwise.

(Theorem 29)

1.2 Technical Overview

To prove our lower bounds on the query complexity, we use the technique called compressed
random oracle model introduced by Zhandry in [15]. Its goal is to record information about
the queries of an adversary A in the quantum random oracle model and it permits “on-the-fly”
simulation of random oracles (or lazy sampling) by considering the uniform superposition of
all possible random oracles instead of picking a single random oracle at the beginning of the
computation. The technique uses a register to keep a record of a so-called database of the
random oracle and this register is updated whenever A makes a query to the random oracle.
At the end of A’s computation, the reduction can measure the register of the database, and
the distribution of the outputs is uniformly random, as if we had chosen a random oracle at
the beginning of its computation. This new register that contains the database is at the gist
of our lower bounds.

In Section 3, we prove the lower bound on the query complexity to solve the RSC problem.
We consider an algorithm A after i quantum queries to the random oracle and call its state
at this moment |ψi⟩. Our goal is to compute an upper bound for the value |PRSC

k |ψi⟩ |2,
where PRSC

k is the projection onto the databases that contain a k–RSC. Computing such
a bound leads to a lower bound on the number of queries needed for solving k–RSC with
constant probability. To prove our bound, we proceed by induction: assuming we proved
a bound for the k′–RSC problem for all k′ < k, we prove a bound for the k–RSC problem.
The analysis is naturally divided into two parts: whenever A finds a k–RSC after i quantum
queries, it means that either:
1. A finds it after i− 1 quantum queries;
2. or A finds it with the ith quantum query.
The first case is recursive and it remains to bound |PRSC

k |ψi⟩ | in the second case. Here, the
database (after i− 1 quantum queries) must contain a certain number of k′–RSC (for some
k′ < k), in order for A to find k–RSC with the ith query. Using this strategy, we obtain a
recursive formula from which we can deduce the bound on |PRSC

k |ψi⟩ |.
In Section 4.1, we prove a lower bound for the (1, k)–SC problem. The idea of the proof

is similar to the proof for the lower bound of the k–RSC problem but we have to compute a
bound for another problem that we define: the j–repetition problem.

Finally in Sections 4.2 and 4.3, we design a family of quantum algorithms for finding
a (r, k)–SC. These algorithms are inspired by the algorithm from [14] to solve the k–RSC
problem and [10]’s algorithm for finding multi-collisions. These algorithms are recursive and
take as input two parameters t, k′ ∈ N and perform the following:
1. Find t distinct (r − 1, k′)–SC;
2. Find the (r, k)–SC.

ITC 2023

9:4 Quantum Security of Subset Cover Problems

The parameters t and k′ are chosen in order to optimize the complexity of the algorithm.
The first step is done by applying r − 1 times the algorithm for the value k′, and the second
step uses Grover’s algorithm [8][5].

Full version of the paper

In this paper, most of the proofs are omitted in the interest of space. The proofs of all the
lemmas and theorems stated in this paper can be found in the full version of the paper,
available on eprint.

1.3 Related works, discussion and open problems
Collision-finding

The link between finding a multi-collision and finding a subset cover was first discussed
in [14], since their algorithm is inspired from the one for finding multi-collisions in [10].
In the latter, they also show a lower bound for finding multi-collisions, and our proof of
lower bounds uses the same technique they used. We make use of the compressed oracle
technique, first introduced by Zhandry in [15], and generalize the proof of the lower bound
on multi-collisions to the RSC and SC problems.

Restricted Subset Cover

There is currently only one quantum algorithm for finding RSC [14]. Our lower bound for
finding a RSC matches their upper bound when k, the number of functions, is constant.

However when k is not a constant, their algorithm makes O

(
k ·N

2k−1
2k+1−1

)
queries to

h1, . . . , hk, which roughly leaves a k3/2 gap between the best known attack and our lower
bound. To the best of our knowledge, this is the first lower bound on the RSC problem
for a quantum algorithm, and there are no such result for classical algorithms. It would be
interesting to see if we can close this gap further.

Tighter bounds for (1, k)–SC

When k is constant, the lower bound for (1, k)–SC is Ω
(
Nk/5), while our algorithm for this

problem makes O
(
Nk/4) queries to the oracle (when k is even). It would be interesting to

tighten this gap, especially since the results for (1, k)–SC are probably necessary to prove
the lower bounds (r, k)–SC for r ≥ 2.

For non-constant k, our lower bound for (1, k)–SC is Ω
(
C

−1/5
k ·Nk/5

)
, where Ck =∑k

j=2
k!

(j−1)! ≤ k! · e. Notice that this term cannot be neglected for large values of k. For
example with k = log(N), we have Ck ≥ N . In comparison, our best algorithm for (1, k)–
RSC, the factor in k is

(
k

(k+1)/2
)−1/2 ≤ 2(k+1)/2

(k+1
2 ·π)1/4 , which is very far from our bound on Ck.

It would also be interesting to see if we can tighten this gap.

Bounds for (r, k)–SC

Unfortunately, expanding our result for the (r, k)–SC problem is much more complicated
than the case r = 1 and actually even proving the case r = 2 is not simple. To prove such
a result, one would need a bound for the problem of finding j distinct (1, k)–SC problem.
While proving such a bound is challenging, it is also unclear what the problem of finding

https://eprint.iacr.org/2022/1474

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:5

j distinct (1, k)–SC is. Indeed, an important property for our technique in the first lower
bound proofs is that by making one query to the oracle, the adversary cannot find two or
more k–RSC. The same property must hold for the problem of finding j distinct (1, k)–SC,
and this definition and subsequent analysis remain open.

Security of SPHINCS and SPHINCS+

The signature scheme SPHINCS relies on the HORST scheme (for “HORS with trees”) which
adds a Merkle tree to the HORS scheme to compress the public key. The security of HORST
also relies on the (r, k)–SC problem but the security of SPHINCS rely on different security
notions of the underlying hash functions. In particular, it depends on a variation of the SC
problem classed the target subset cover (TSC) problem [11]. The main difference comes from
the fact that the message signed using HORST is an unpredictable function of the actual
message and this prevents an attacker to construct a subset cover beforehand.

Nevertheless, the authors of [2] stated an existential unforgeability result for SPHINCS [2,
Theorem 1] under qs-adaptive chosen message attacks. The success probability in such
attacks is roughly upper-bounded by:

∞∑
r=1

min
(

2r(log qs−h)+h, 1
)

· SuccA((r, k) − SC),

where h is the height of the tree used in SPHINCS, and SuccA((r, k) − SC) denotes the
success probability of an adversary A to find a (r, k)–SC. The authors made the assumption
that this term is negligible for any probabilistic adversary A and our quantum lower bound
on the query number to find a (1, k)–SC can be seen as a first step towards proving this
assumption (for idealized hash functions). To assess the security of SPHINCS from [2,
Theorem 1] for concrete parameters such as those proposed in [2] (namely h = 60, qs = 230),
it would also be necessary to upper-bound the success probabilities SuccA((2, k) − SC) and
SuccA((3, k) − SC), which we leave for future work. For example, one could try to apply
[13, Theorem 4.12] to get a lower bound for (r, k)–SC more easily, but the obtained bound
will most likely not be tight.

SPHINCS+ is an enhancement of SPHINCS, which makes the scheme more efficient and
its security relies on another variant of the SC problem, namely the interleaved target subset
cover (ITSC) problem. It would also be interesting to see if our methods can be used to
prove similar bounds for the TSC and ITSC problems. At last, one could also try to design
algorithms for these two problems, as no quantum algorithms for them exist yet to the best
of our knowledge.

2 Preliminaries

We assume the reader is familiar with the theory of quantum information. We denote the
concatenation by ||.

2.1 Compressed oracle technique
We now present the key ingredients of Zhandry’s compressed oracle technique, first defined
in [15] and refined in [7]. As mentioned in the introduction, the technique uses a register
to keep a record of a so-called database of the random oracle and this register is updated
whenever an adversary A makes a query to the random oracle. This new register that
contains the database is at the gist of our lower bounds.

ITC 2023

9:6 Quantum Security of Subset Cover Problems

We consider the Quantum Random Oracle Model, first defined in [4]. In this model, we
are given black-box access to a random function H : X → Y. For our model, the adversary
will work on three different registers |x, y, z⟩. The first register is the query register, the
second register is the answer register and the third register is the work register. The first
two registers are used for queries and answers to the oracle, while the last register is for the
adversary’s other computations. We first define the unitary StO that represents the Standard
Oracle and that computes as follows:

StO
∑
x,y,z

αx,y,z |x, y, z⟩ →
∑
x,y,z

αx,y,z |x, y +H(x), z⟩

This unitary corresponds to a query to H.
Now, we define Zhandry’s compressed oracle. In this model, instead of starting with a

random function H, we start with the uniform superposition of all random functions |H⟩,
where |H⟩ encodes the truth table of the function H. In this model, there is a register for
each x ∈ X , and the value of this register in the state |H⟩ corresponds to H(x). That is, we
have that |H⟩ =

⊗
x∈X |H(x)⟩x Let H = {H : X → Y} be the set of all possible functions H .

We define a new register, the database register |H⟩, that starts in the uniform superposition
1

|H|
∑

H∈H |H⟩. This register starts in product state with the other registers, and Zhandry’s
idea is that instead of modifying the adversary’s register when querying the oracle, we will
modify the database register instead. To do so, we simply consider the Fourier basis for the
y and the H register before querying the Standard Oracle.

We write this unitary O and it works as follows:

O
∑
x,ŷ,z

αx,ŷ,z |x, ŷ, z⟩ ⊗
∑

Ĥ∈H

αĤ

∣∣∣Ĥ〉 →
∑
x,ŷ,z

αx,ŷ,z |x, ŷ, z⟩ ⊗
∑

Ĥ∈H

αĤ

∣∣∣Ĥ ⊖ (x, ŷ)
〉
,

where, for any fixed x ∈ X and z ∈ Y, H ⊖ (x, z) : X → Y is defined as:

H ⊖ (x, z)(x′) =
{
H(x′) if x′ ̸= x

H(x) − z if x′ = x.

In other words, H ⊖ (x, z) is obtained by replacing the value of H(x) by H(x) − z in H.
This unitary can be implemented by applying the QFT to the registers |y⟩ and |H⟩,

applying the Standard Oracle, then applying the QFT † again on the |y⟩ and |H⟩ registers.
Finally, we define the compression part. The idea behind the compression is that for

every x in the database mapped to
∣∣0̂〉, we remap it to |⊥⟩, where ⊥ is a new value outside

of Y. More formally, the compression part is done by applying:

Comp =
⊗

x

|⊥⟩
〈
0̂
∣∣+

∑
ŷ:ŷ ̸=0̂

|ŷ⟩ ⟨ŷ|

in the Fourier basis.

Since at the start of the computation, the database will be initiated with the uniform
superposition over all H possible, then after q queries the state of the database can be
described with q vectors. In order to apply the compression as a unitary, we declare that
Comp |⊥⟩ =

∣∣0̂〉.
Now, we can define the Compressed Oracle:

cO = Comp ◦ O ◦ Comp†.

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:7

Of course the compression part inevitably creates some losses, compared to only using
the Standard Oracle. The precise characterization of these losses is given in one of Zhandry’s
lemma, and can be stated as follows:

▶ Lemma 1 (Lemma 5 from [15]). Let A be an algorithm that makes queries to a random
oracle H : X → Y, and output (x1, . . . , xk, y1, . . . , yk) ∈ X k ×Yk. Let p be the probability that
∀1 ≤ i ≤ k, H(xi) = yi. Similarly, consider the algorithm A running with the Compressed
Oracle cO, and output (x′

1, . . . , x
′
k, y

′
1, . . . , y

′
k) ∈ X k × Yk. Let p′ be the probability that

∀1 ≤ i ≤ k, H ′(x′
i) = y′

i, where H ′ is obtained by measuring the H register at the end of the
execution of the algorithm A. Then:

√
p ≤

√
p′ +

√
k

|Y|
.

In the rest of the paper, we will have that
√

k
|Y| is negligible, and thus we will neglect

this term.
We also have the following lemma from [7] that describes the operator cO(x,ŷ) : H → H,

which is defined as the operator applied on |H⟩ when applying cO to |x⟩ |ŷ⟩ ⊗ |H⟩. More
formally, we have that:

cO |x⟩ |ŷ⟩ ⊗ |H⟩ = |x⟩ |ŷ⟩ ⊗ cO(x,ŷ) |H⟩ .

▶ Lemma 2 (Lemma 4.3 from [7]). For any ŷ ̸= 0̂, the operator cO(x,ŷ) is represented by the
following matrix:

⊥ r

⊥ 0 ω−ry
N√
|Y|

y′ ωyy′
N√
|Y|

(

1 − 2
|Y|

)
ωyy′

N + 1
|Y| if y′ = r

1−ωyy′
N

−ωry
N

|Y| if y′ ̸= r

For ŷ = 0̂, we have that cO(x,0̂) is the identity.

We also define, for any compressed H : X → Y ∪ {⊥}, for any fixed x ∈ X and z ∈ Y,
H ∪ (x, z) : X → Y as:

H ∪ (x, z)(x′) =
{
H(x′) if x′ ̸= x

z if x′ = x.

In other words, H ∪ (x, z) is obtained by replacing the value of H(x) by z in H.
In the following, we will model the adversary (A) as a series of computation alternating

between unitaries and oracle calls. The adversary’s quantum state will first be initialized to
|0⟩⊗N . Then, his computation will be decomposed as:

A = UkcOUk−1cO . . . cOU2cOU1 (1)

So that, if |ψi⟩ =
∑

x,y,z,D αx,y,z,D |x, y, z,D⟩ is the state of the adversary after i quantum
queries to cO, then Ui+1 operates on the registers x, y and z only. We also define database
properties:

ITC 2023

9:8 Quantum Security of Subset Cover Problems

▶ Definition 3 (Database property). A database property is a subset of H. Any database
property D can be seen as a projector on H, as follows:∑

d∈D

|d⟩ ⟨d|

We write D = {I|I ⊆ H} the set of all subspaces of H, that also corresponds to the set
of all database properties.

We now state and prove two lemmas adapted from [10] that we will use thoroughly in
this paper. The first lemma will allow us to ignore the unitaries that the adversary A applies
on the first registers of the state.

▶ Lemma 4 (adapted from Lemma 8 from [10]). For any unitary U , any projector P , and
any state |ϕ⟩,

|(I ⊗ P) · (U ⊗ I) |ϕ⟩| = |(I ⊗ P) |ϕ⟩|

The second lemma bounds the amplitude of measuring a database that satisfies a property
P at the ith step of the algorithm, i.e. just after the ith query to the oracle. In this bound,
the first term captures the case where we succeed to find a database that satisfies P before
the ith query. The second term captures the case where we did not have it before the ith

query, but found it with the ith one.

▶ Lemma 5 (adapted from Lemma 9 from [10]). Let |ϕi⟩ be the state of an algorithm A just
before the ith quantum query to cO, and |ψi⟩ the state of the same algorithm right after the
ith quantum query to cO. Let P be any projector on D. We have that:

|P |ψi⟩ | ≤ |P |ϕi⟩| + |P cO(I − P) |ϕi⟩|

Proof.

|P |ψi⟩| = |P cO |ϕi⟩| = |P cO(P |ϕi⟩ + (I − P) |ϕi⟩)|
≤ |P |ϕi⟩| + |P cO(I − P) |ϕi⟩)| ,

where the inequality comes from the triangle inequality and the fact that P cOP ≤ P . ◀

▶ Remark. In the next section and in the rest of the paper, we will consider multiple functions
h1, . . . , hk : X → Y for some fixed k. Note that this is equivalent to considering one function
H : X → Yk, such that we interpret, for any x ∈ X , the output H(x) as the concatenation
of values of the functions applied to x, i.e. H(x) = h1(x)||h2(x)|| · · · ||hk(x). Hence, in this
setting, the compressed oracle is used on the function H, and a query to any of the hi is a
query to all of the hi’s. Thus, in our results, we count the number of queries to the function
H and thus the number of queries to all of the hi’s. It may seem that we lose some accuracy
in this setting, however this is with the same method that multiple random functions are
implemented in the literature.

2.2 The problem of subset cover and its variants
We define the problem of subset cover.

▶ Definition 6 ((r, k)–SC). Let k, r ∈ N∗. Let h1, · · · , hk : X → Y. A (r, k)–SC for
(h1, · · · , hk) is a set of r + 1 elements x0, x1, x2, · · · , xr in X such that:

{hi(x0)|1 ≤ i ≤ k} ⊆
r⋃

j=1
{hi(xj)|1 ≤ i ≤ k}

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:9

In other words, for each 1 ≤ i ≤ k, there exists a 1 ≤ j ≤ r and a 1 ≤ ℓ ≤ k such that
hi(x0) = hℓ(xj).

We notice two facts regarding the parameters of (r, k)–SC. First, we have that the problem
becomes easier when r increases. Secondly, we have that when r > k, a (r, k)–SC contains a
(k, k)–SC. Thus finding a (r, k)–SC when r > k is the same as when r = k. For simplicity,
we use k–SC as a shorthand of (k, k)–SC.

We also define the database properties PSC
(r,k) of containing a (r, k)–SC, that is the set of

databases that contains a (r, k)–SC. More formally, we have that:

PSC
(r,k) =

{
D ∈ D

∣∣∣∣∣∃x0, x1, . . . , xr, ∀i ̸= 0, x0 ̸= xi, H(x0) ⊆
r⋃

i=1
H(xi)

}
,

where for x ∈ X , H(x) = {h1(x), . . . , hk(x)}.
We follow now with the definition of a harder variation of the k-subset cover called the

k-restricted subset cover (k–RSC).
▶ Definition 7 (k–RSC). Let k ∈ N∗. Let h1, . . . , hk : X → Y. A k-restricted subset cover
(k–RSC) for (h1, . . . , hk) is a set of k + 1 elements x0, x1, x2, . . . , xk in X such that:

∀i ∈ {1, . . . , k}, hi(x0) = hi(xi) and x0 ̸= xi.

We also define the database properties PRSC
k,ℓ of k distinct ℓ–RSC, that is the set of

databases that contains k distinct ℓ–RSC. More formally, we have that:

PRSC
k,ℓ =

D ∈ D

∣∣∣∣∣∣∣∣∣∣∣

∃x0,1, . . . , xℓ,1, ∀i ̸= 0, x0,1 ̸= xi,1, ∀i, hi(x0,1) = hi(xi,1)
∃x0,2, . . . , xℓ,2, ∀i ̸= 0, x0,2 ̸= xi,2, ∀i, hi(x0,2) = hi(xi,2)
...
∃x0,ℓ, . . . , xℓ,k, ∀i ̸= 0, x0,k ̸= xi,k, ∀i, hi(x0,k) = hi(xi,k)
∀i ̸= j, (h1(x0,i), . . . , hℓ(x0,i)) ̸= (h1(x0,j), . . . , hℓ(x0,j))

(2)

The problem of finding a k–RSC was introduced in [14], in which the authors describe an

algorithm that finds a k–RSC in O

(
kN

1
2

(
1− 1

2k+1−1

))
quantum queries to h1, . . . , hk when

the hi’s are such that |X | ≥ (k + 1)|Y|.
We discuss now the last condition in Equation (2). We remark that while such condition

was not explicitly imposed in [10] for their lower bound for finding multi-collisions, this
property is implicitly and extensively used in their proof. Such a property is needed because
when they count k-collisions (that is, k distinct x1, . . . , xk such that H(x1) = · · · = H(xk)),
they are actually interested in the number of possible images that would be helpful to reach
a (k + 1)-collision. In particular, this is helpful since one query can only transform one
k-collision (with such a property) into a (k + 1)-collision.

In our case, the last line of (2) ensures that the “supporting set” of the k–RSC (i.e. the
set of images of the x0,i by the different random functions h1, . . . , hk) is unique. As in the
multi-collision case, this condition will be crucial to extend a k–RSC to a (k + 1)–RSC, and
for this reason we define it explicitly in PRSC

k,ℓ .
Finally, we state a result from [10], regarding the amplitude of finding j distinct 2-

collisions:
▶ Lemma 8 (adapted from [10], Corollary 11). Given a random function h : X → Y where
|N | = Y, let f col

i,j be the amplitude of the D containing at least j distinct 2-collisions after i
quantum queries. Then:

f col
i,j ≤

(
4e · i3/2

j
√
N

)j

.

ITC 2023

9:10 Quantum Security of Subset Cover Problems

3 Lower bound on the k-restricted subset cover problem

In this section, we prove a lower bound for the k–RSC problem defined in Definition 7. This
section follows closely [10]’s proof of their lower bound on finding multi-collisions. We first
prove a lower bound for finding k distinct 2–RSC, which will be necessary in our induction
step. Finally, we will prove the induction step in the last subsection and obtain a lower
bound on finding s distinct k–RSC.

3.1 Finding k distinct 2-restricted subset cover
We want to bound the number of queries needed to find k distinct triplets that satisfy a
2–RSC. We have the following result:

▶ Theorem 9. Given two random functions h1, h2 : X → Y where N = |Y|, a quantum
algorithm needs to make Ω(k4/7 ·N3/7) queries to h1 and h2 to find k distinct 2–RSC with
constant probability, for any k ≤ N1/8.

To prove this theorem, we first introduce some notation. We denote P2,k,ℓ the set of
databases that satisfies k distinct 2–RSC, and that contain exactly ℓ collisions on h1. We
denote gi,k =

∣∣∣PRSC
k,2 |ψi⟩

∣∣∣ and ĝi,k,ℓ = |P2,k,ℓ |ψi⟩|, where |ψi⟩ is the state just after the ith

query to H = (h1, h2).
Our goal is to bound gi,k, and we will first prove a recursive formula stated in the next

lemma.

▶ Lemma 10. For every i ∈ N, and every k ∈ N, we have that:

gi,k ≤ gi−1,k +
√

2
∑
ℓ≥0

ℓ

N
ĝ2

i−1,k−1,ℓ + (i− 1)
N

gi−1,k−1.

We will split the sum in two using µ3(j) as a threshold. We also define a new notation
that will simplify expressions:

▶ Definition 11.

Ai =
i−1∑
ℓ=0

√
2
(√

µ3(ℓ− 1)
N

+
√

8ℓ− 1
N

)
,

where

µ3(ℓ) = max
{

8e ℓ
3/2

√
N
, 10N1/8

}
.

Before bounding gi,k, we first prove a bound on Ai.

▶ Lemma 12. For every i ∈ N, we have that:

Ai ≤ 8
√
e
i7/4

N3/4 + 4 i
2

N
+O

(
N−1/48

)
.

It follows that Ai < 2eN1/8 for i ≤ N1/2.

We can now state the lemma that bounds gi,k.

▶ Lemma 13. For every i ∈ N and k ∈ N, we have that:

gi,k <
Ak

i

k! +
√

2 · 2−N1/8
.

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:11

We can now prove the main theorem of this subsection.

Proof of Theorem 9. Following from Lemma 13, we have that:

gi,k ≤ Ak
i

k! +
√

2 · 2−N1/8
≤
(
Ai · e
k

)k

+
√

2 · 2−N1/8
.

We now use the bound on Ai of Lemma 12:

gi,k ≤
(

8e3/2

k
· i7/4

N3/4 + 4e
k

· i
2

N
+ e

k
·O
(
N−1/48

))k

+
√

2 · 2−N1/8
.

So if i = o(k4/7 ·N3/7), then gi,k = o(1). Hence if we want gi,k to be a constant, i.e. not o(1),
we must have i = Ω

(
k4/7 ·N3/7). ◀

3.2 Finding k distinct s-restricted subset cover
In this section, we generalize the result to the problem of finding k distinct s–RSC, for any
s ≥ 3 and any k ≥ 1. We are given s random functions h1, . . . , hs such that for any i ∈ [1, s],
hi : X → Y. We will prove the following theorem.

▶ Theorem 14. Given s random functions h1, . . . , hs : X → Y where N = |Y|, a quantum

algorithm needs to make Ω
(

(s+ 1)− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
queries to h1, . . . , hs to find

k distinct s–RSC with constant probability, for any s ≤ log(log(N)) and any k ≥ N1/2s+1 .

And naturally we have the following corollary for k = 1:

▶ Corollary 15. Given s random functions h1, . . . , hs : X → Y where N = |Y|, a quantum

algorithm needs to make Ω
(

(s+ 1)− 2s

2s+1−1 ·N
2s−1

2s+1−1

)
queries to h1, . . . , hs to find one

s–RSC with constant probability, for any s ≤ log(log(N)).

In order to prove Theorem 14, we first define some notations, starting with the notations
for the amplitudes. We define:
1. fi,j as the amplitude of the databases D containing at least j distinct (s− 1)–RSC after

i quantum queries.
2. ĝi,j,k as the amplitude of the databases D containing at least j distinct (s− 1)–RSC and

exactly k distinct s–RSC after i quantum queries.
3. gi,k as the amplitude of the databases D containing exactly k distinct s–RSC after i

quantum queries.

More formally, let |ϕi⟩ (resp. |ψi⟩) be the state of the algorithm just before (resp. after)
the ith query to the oracle. We have:

fi,j =
∣∣∣PRSC

j,(s−1) |ψi⟩
∣∣∣ ,

ĝi,j,k =
∣∣∣PRSC

j,(s−1)P
RSC
k,s ¬PRSC

k+1,s |ψi⟩
∣∣∣ ,

gi,k =
∣∣PRSC

k,s ¬PRSC
k+1,s |ψi⟩

∣∣ .
We want to bound gi,k, and to do so, we define some convenient notation. We start by

defining Πs, a term that appears in the bound of gi,k.

ITC 2023

9:12 Quantum Security of Subset Cover Problems

▶ Definition 16. Let Πs be defined as follows:
Π1 = 1
Π2 = 1
∀s ≥ 2, Πs+1 = 2 ·

√
s ·

√
Πs

We define Ai,s and µs(ℓ) as follows:

▶ Definition 17.

Ai,s =
i−1∑
ℓ=0

Bℓ,s−1,

where

Bℓ,s =
√
s · µs+1(ℓ)

N
+ 4

(
ℓ

N

)s/2
+
(

s∑
r=2

ℓ

Nr

)1/2

,

and

µs(ℓ) = max
{

Πs−1 · (8e)
2s−2−1

2s−3
ℓ(2s−1−1)/2s−2

N (2s−2−1)/2s−2 , 40 · s2 · Πs−1 ·N1/2s

}
.

We can now state the bound on gi,k that we will need to prove Theorem 14:

▶ Lemma 18. For every i ∈ N and every k ∈ N, we have that:

gi,k ≤
Ak

i,s+1

k! +O
(

2−(s+1)2·Πs·N1/2s+1)
.

In order to prove Lemma 18, we first prove a bound on Ai,s.

▶ Lemma 19. Ai,s ≤ (8e)
2s−2−1

2s−2 i(2s−1)/2s−1

N(2s−1−1)/2s−1 · Πs +O
(
s4 · Πs ·N−1/(2s(2s−2)))

At last we bound Πs to conclude the analysis.

▶ Proposition 20. We have for any s ∈ N that:

Πs ≤ 4s

Proof. The statement is true for s = 1, 2. Assume it is true for s ≥ 2. Then,

Πs+1 = 2
√
s ·
√

Πs ≤ 2
√
s ·

√
4s ≤ 4(s+ 1). ◀

Finally, we can prove Theorem 14:

Proof of Theorem 14. From Lemma 19, we have:

Ai,s ≤ (8e)
2s−2−1

2s−2
i(2s−1)/2s−1

N (2s−1−1)/2s−1 · Πs +O
(
s4 · Πs ·N−1/(2s(2s−2))

)
.

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:13

Hence we can bound gi,k for any i, k, by:

gi,k ≤
Ak

i,s+1

k! +O
(

2−(s+1)2·Πs·N1/2s+1)
≤
(
e ·Ai,s+1

k

)k

+O
(

2−(s+1)2·Πs·N1/2s+1)
≤

(
e

k
(8e)

2s−1−1
2s−1

i(2s+1−1)/2s

N (2s−1)/2s · Πs+1 + e

k
·O
(

(s+ 1)4Πs+1 ·N−1/(2s+1(2s+1−2))
))k

+O
(

2−(s+1)2·Πs·N1/2s+1)
≤

(
e

k
· (8e)

2s−1−1
2s−1

i(2s+1−1)/2s

N (2s−1)/2s · 4(s+ 1) + e

k
·O
(

4(s+ 1)5 ·N−1/(2s+1(2s+1−2))
))k

+O
(

2−4s(s+1)2·N1/2s+1)
,

where the first inequality comes from Lemma 18, the third inequality comes from Lemma 19
and the last inequality comes from Proposition 20.

If i = o

(
(s+ 1)− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
, then gi,k = o(1). Hence if we want gi,k to

be constant, i.e. not o(1), we must have i = Ω
(
s

− 2s

2s+1−1 · k
2s

2s+1−1 ·N
2s−1

2s+1−1

)
. ◀

4 The (r, k)-subset cover problem

In this section, we prove some upper and lower bounds on the (r, k)–SC problem. As far
as we know, there is no quantum algorithm to find a (r, k)–SC problem, except for [14]’s
algorithm when k = r, and for the harder problem of finding a k–RSC. We first prove a lower
bound on the (1, k)–SC problem, then design new algorithms for finding a (r, k)–SC.

4.1 Lower bound on finding a (1, k)-subset cover

In this subsection, we will prove a lower bound on the (1, k)–SC problem. We are given k

random functions h1, . . . , hk such that for i ∈ [1, k], hi : X → Y. We write N = |Y| and
for x ∈ X , we write H(x) = {hi(x)|i ∈ [1, k]}. The goal of this subsection is to prove the
following theorem.

▶ Theorem 21. Given k random functions h1, . . . , hk : X → Y where N = |Y|, a quantum
algorithm needs to make Ω

(
C

−1/5
k ·Nk/5

)
queries to h1, . . . , hk to find one (1,k)–SC with

constant probability, where Ck =
∑k

j=2
k!

(j−1)! .

To prove Theorem 21, we introduce the problem of finding a j-repetition on hi1 , . . . , hij , that
consists in finding an x ∈ X such that hi1(x) = · · · = hij

(x). More formally, we define the
following database property:

▶ Definition 22.

∀ℓ, j, P rep
ℓ,j =

{
D ∈ D

∣∣∣∣ ∃x1, x2, . . . , xℓ, ∀i, ∀1 ≤ ℓ ≤ j, h1(xi) = hℓ(xi)
∀i ̸= p, xi ̸= xp

}
.

ITC 2023

9:14 Quantum Security of Subset Cover Problems

Note that we define the property only for ℓ distinct j-repetition on h1, . . . , hj , because
by symmetry, the probability of finding a j-repetition on h1, . . . , hj is the same as finding a
j-repetition on hi1 , . . . , hiℓ

.
We also define:

1. f̃rep
i,ℓ,j as the amplitude of the databases D containing at least ℓ distinct j-repetitions on
h1, . . . , hj after i quantum queries.

2. frep
i,ℓ,j as the amplitude of the databases D containing exactly ℓ distinct j-repetitions on
h1, . . . , hj after i quantum queries.

3. gi,k as the amplitude of the databases D containing at least one (1, k)-SC after i quantum
queries.

More formally, let |ψi⟩ be the state just after the ith query to the oracle, then f̃rep
i,ℓ,j =∣∣∣P rep

ℓ,j |ψi⟩
∣∣∣, frep

i,ℓ,j =
∣∣∣P rep

ℓ,j ¬P rep
ℓ+1,j |ψi⟩

∣∣∣, and gi,k =
∣∣∣PSC

(1,k) |ψi⟩
∣∣∣.

Our goal is to bound gi,k and for that we will bound f̃rep
i,ℓ,j .

▶ Lemma 23. For all i, ℓ, j ∈ N, we have that:

f̃rep
i,ℓ,j ≤

(
4e · i

ℓ ·N j−1
2

)ℓ

.

We now bound the amplitude gi,k with an inductive formula, as for the RSC problem.

▶ Lemma 24. For all i ∈ N and k ∈ N, we have that:

gi,k ≤ gi−1,k + 4
(
kk i− 1

Nk

)1/2
+

 k∑
j=2

∑
ℓ≥0

ℓ

Nk+1−j
· k!

(j − 1)!f
rep
i−1,ℓ,j

2

1/2

.

We now bound gi,k in the following lemma.

▶ Lemma 25. For every i ∈ N and k ∈ N, we have that:

gi,k ≤ 4kk/2 · i3/2

Nk/2 +

√√√√ k∑
j=2

k!
(j − 1)! · 4e · i5/2

Nk/2 .

We can now prove Theorem 21.

Proof of Theorem 21. From Lemma 25, we have that:

gi,k ≤ 4kk/2 · i3/2

Nk/2 +

√√√√ k∑
j=2

k!
(j − 1)! · 4e · i5/2

Nk/2 .

Writing Ck =
∑k

j=2
k!

(j−1)! , this rewrites as:

gi,k ≤ 4kk/2 · i3/2

Nk/2 +
√
Ck · 4e · i5/2

Nk/2 .

If i = o
(
C

−1/5
k ·Nk/5

)
, then gi,k = o(1). Hence if we want gi,k to be constant, i.e. not

o(1), we must have i = Ω
(
C

−1/5
k ·Nk/5

)
. ◀

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:15

4.2 Algorithm for finding a (1, k)-subset cover

We now describe an algorithm that finds a (1, k)–SC, assuming |X | = |Y|k = Nk. We first
notice that an algorithm that finds a collision on H also finds a (1, k)–SC in an expected
O(Nk/3) number of queries. We show now that there is a more efficient algorithm, as stated
in the following theorem:

▶ Theorem 26. There exists a quantum algorithm that finds a (1, k)–SC in expected O
(
Nk/4)

quantum queries if k is even, and O(Nk/4+1/12) if k is odd.

To prove this theorem, we describe the following algorithm (which takes as parameters j
and t, whose values will be chosen later):

▶ Algorithm 27. Input: j ∈ {2, . . . , k} and t ∈ N.
1. Define F1 : X → {0, 1} as follows:

F1(x) =
{

1, if h1(x) = h2(x) = · · · = hj(x)
0, otherwise.

(Note that an element x ∈ X such that F1(x) = 1 is a j-repetition.)
2. Execute Grover’s algorithm t times on F1 to find t distinct j-repetitions in H. Let T =

{x1, . . . , xt} be the set of these j-repetitions.
3. Define F2 : X → {0, 1} as follows:

F2(x) =

1, if there exists x0 ∈ T such that h1(x) = h1(x0)

and for 1 ≤ m ≤ k − j, hm+1(x) = hj+m(x0)
0, otherwise.

4. Execute Grover’s algorithm to find an x such that F2(x) = 1
5. Find x0 in T corresponding to x, and output (x, x0).

▶ Lemma 28. Algorithm 27 makes an expected number of O
(
N (2k−j+1)/6) queries to the

oracle when j ≤ k+2
2 for t = N (k−2j+2)/3.

We now prove Theorem 26

Proof of Theorem 26. From Lemma 28, the complexity of Algorithm 27 is O(N (2k−j+1)/6)
when j ≤ k+2

2 .
If k is even, then we pick j = k+2

2 to reach a complexity of O(Nk/4).
If k is odd, then we pick j = k+1

2 to reach a complexity of O(Nk/4+1/12).

Note that if j > k+1
2 , then the second step of the algorithm is expected to make at least

O
(
N

k+1
4

)
quantum queries, which is worse than O(Nk/4+1/12). ◀

▶ Remark. Note that we do not reach the lower bound of Theorem 21, and it would be
interesting to see if the gap can be further reduced by either improving our lower bounds or
designing a more efficient algorithm.

ITC 2023

9:16 Quantum Security of Subset Cover Problems

4.3 Algorithm for finding a (r, k)-subset cover
In this section, we describe an algorithm for solving the (r, k)–SC problem. We consider the
case where |X | = |r · Y|k = rk ·Nk. The result is stated as follows:

▶ Theorem 29. There exists a quantum algorithm that finds a (r, k)–SC in O
(
Nk/(2+2r))

quantum queries to H, if k is divisible by r + 1, and O
(
Nk/(2+2r)+1/2) otherwise.

The idea of the algorithm is essentially the same as Algorithm 27 of Section 4.2:
1. we first find t distinct (r − 1, k′)–SC for some integers t and k′;
2. we then find the (r, k)–SC.

The first step is done recursively, using the algorithm defined for lower values of k′ and
r − 1. The second step uses Grover’s algorithm. The algorithm can be defined for any value
of k′ and t, and we pick them to optimize the complexity.

More formally, we define the algorithm recursively. Assume that we have an algorithm
that can output a (r−1, k′)–SC in O

(
Nk′/2r

)
queries, for any k′ < k such that k′ is divisible

by r. Then, we can find a (r, k)–SC as follows:

▶ Algorithm 30. Input: t ∈ N, k′ ∈ N.
1. Execute the (r − 1, k′)–SC algorithm t times to find t distinct (r − 1, k′)–SC in H. Let T

= {(x1,0, x1,1, . . . , x1,r−1), . . . , (xt,0, xt,1, . . . , xt,r−1)} be the set of these (r − 1, k′)–SC.
2. Define F : X → {0, 1} as follows:

F (x) =

1, if there exists (xi,0, xi,1, . . . , xi,r−1) ∈ T such that

∀1 ≤ m ≤ k − k′, hm(x) = hk′+m(xi,0),
0, otherwise.

3. Execute Grover’s algorithm to find an x such that F (x) = 1
4. Find (xi,0, xi,1, . . . , xi,r−1) in T and output (xi,0, xi,1, . . . , xi,r−1, x).

▶ Lemma 31. Algorithm 30 makes an expected number of O
(
Nk/(2+2r)) queries to the

oracle, when k is divisible by r, and O
(
Nk/(2+2r)+1/2) otherwise.

The proof of Theorem 29 follow directly from Lemma 31.

References
1 Jean-Philippe Aumasson and Guillaume Endignoux. Clarifying the subset-resilience problem.

Cryptology ePrint Archive, Report 2017/909, 2017. URL: https://eprint.iacr.org/2017/
909.

2 Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen,
Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn.
SPHINCS: Practical stateless hash-based signatures. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 368–397. Springer, Heidelberg,
April 2015. doi:10.1007/978-3-662-46800-5_15.

3 Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and
Peter Schwabe. The SPHINCS+ signature framework. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2129–2146. ACM Press,
November 2019. doi:10.1145/3319535.3363229.

4 Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.
doi:10.1007/978-3-642-25385-0_3.

https://eprint.iacr.org/2017/909
https://eprint.iacr.org/2017/909
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-642-25385-0_3

S. Bouaziz-Ermann, A. B. Grilo, and D. Vergnaud 9:17

5 Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik, 46(4-5):493–505, June 1998. doi:10.1002/(sici)
1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p.

6 Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free
functions. In Claudio L. Lucchesi and Arnaldo V. Moura, editors, LATIN ’98: Theoretical
Informatics, Third Latin American Symposium, Campinas, Brazil, April, 20-24, 1998, Pro-
ceedings, volume 1380 of Lecture Notes in Computer Science, pages 163–169. Springer, 1998.
doi:10.1007/BFb0054319.

7 Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 598–629. Springer, Heidelberg, October 2021. doi:10.1007/978-3-030-77886-6_21.

8 Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM
STOC, pages 212–219. ACM Press, May 1996. doi:10.1145/237814.237866.

9 L. Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, October 1979.

10 Qipeng Liu and Mark Zhandry. On finding quantum multi-collisions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 189–218.
Springer, Heidelberg, May 2019. doi:10.1007/978-3-030-17659-4_7.

11 Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures with fast signing
and verifying. In Lynn Margaret Batten and Jennifer Seberry, editors, ACISP 02, volume 2384
of LNCS, pages 144–153. Springer, Heidelberg, July 2002. doi:10.1007/3-540-45450-0_11.

12 Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, October 1997.
doi:10.1137/s0097539795293172.

13 Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 568–597. Springer, Heidelberg, October 2021. doi:10.1007/978-3-030-77886-6_20.

14 Quan Yuan, Mehdi Tibouchi, and Masayuki Abe. On subset-resilient hash function families.
Designs, Codes and Cryptography, 90, March 2022. doi:10.1007/s10623-022-01008-4.

15 Mark Zhandry. How to record quantum queries, and applications to quantum indiffer-
entiability. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 239–268. Springer, Heidelberg, August 2019. doi:
10.1007/978-3-030-26951-7_9.

ITC 2023

https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1007/978-3-030-77886-6_20
https://doi.org/10.1007/s10623-022-01008-4
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

Distributed Shuffling in Adversarial Environments
Kasper Green Larsen #

Aarhus University, Denmark

Maciej Obremski #

National University of Singapore, Singapore

Mark Simkin #

Ethereum Foundation, Aarhus, Denmark

Abstract
We study mix-nets in the context of cryptocurrencies. Here we have many computationally weak
shufflers that speak one after another and want to joinlty shuffle a list of ciphertexts (c1, . . . , cn).
Each shuffler can only permute k << n ciphertexts at a time. An adversary A can track some of
the ciphertexts and adaptively corrupt some of the shufflers.

We present a simple protocol for shuffling the list of ciphertexts efficiently. The main technical
contribution of this work is to prove that our simple shuffling strategy does indeed provide good
anonymity guarantees and at the same time terminates quickly.

Our shuffling algorithm provides a strict improvement over the current shuffling strategy in
Ethereum’s block proposer elections. Our algorithm is secure against a stronger adversary, provides
provable security guarantees, and is comparably in efficiency to the current approach.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Computing, Shuffling

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.10

Related Version Full Version: https://eprint.iacr.org/2022/560

Funding Kasper Green Larsen: Supported by Independent Research Fund Denmark (DFF) Sapere
Aude Research Leader grant No 9064-00068B.
Maciej Obremski: Funded by MOE2019-T2-1-145 Foundations of quantum-safe cryptography.

1 Introduction

Shuffling the elements of a long vector efficiently is a problem that appears in various shapes
and forms throughout many different domains of cryptography. In most applications, the
vector entries are either commitments or ciphertexts and each position in the vector is
associated with a corresponding identity. The process of shuffling the vector produces a new
vector that contains the same multi-set of committed or encrypted values, but hides which
value is associated to which identity. In anonymous communication systems [11, 26, 20], for
instance, a set of senders would each like to communicate one message to a set of receivers
without revealing who is talking to who. In electronic voting [26, 20, 23], we have a long list
of votes and we would like to determine the election outcome without revealing who voted
for who. In the domain of cryptocurrencies [21, 6], we have multiple payers, who would like
to transfer money to multiple payees without revealing who is paying who.

A popular approach for achieving anonymity in the above applications are mix-nets [11].
Here, we assume the existence of one or more shufflers that shuffle the input vector one
after another. If only one shuffler was honest, then even an adversary that corrupts all other
shufflers cannot tell which entry in the input vector belongs to which entry in the output
vector. From a security perspective this approach is great, but unfortunately such strong

© Kasper Green Larsen, Maciej Obremski, and Mark Simkin;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:larsen@cs.au.dk
https://orcid.org/0000-0001-8841-5929
mailto:obremski.math@gmail.com
https://orcid.org/0000-0003-4174-0438
mailto:mark.simkin@ethereum.org
https://orcid.org/0000-0002-7325-5261
https://doi.org/10.4230/LIPIcs.ITC.2023.10
https://eprint.iacr.org/2022/560
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Distributed Shuffling in Adversarial Environments

anonymity guarantees do not come for free. The required memory and the computational
overhead of each shuffler grows linearly in the length of the vector that should be shuffled. In
applications like electronic voting, the length of a vector of votes could easily be in the millions,
which places a significant memory burden on each shuffler. In addition, shufflers often need
to provide computationally expensive zero-knowledge proofs attesting the correctness of their
performed shuffle [26, 15, 23, 2] to show that no values in the vector have been changed by
them. These high costs make mix-nets unsuitable for applications, where shuffling needs to
terminate in a timely fashion and where the shufflers are restricted in terms of memory or
computational power.

1.1 Our Contribution
In this work, we study mix-nets in the context of cryptocurrencies. Here we have many
shufflers, but all of them are computationally weak, in the sense that they can only read and
shuffle k entries in a vector of length n, where k is potentially much smaller than n. Initially,
a vector of ciphertexts (c1, . . . , cn) is written on a public bulletin board, accessible to all.
The shufflers speak one after another and each shuffler chooses k entries, re-randomizes,
and permutes them. We assume that shuffling takes place in the presence of an adversary
A. At the start of the protocol, A is allowed to corrupt a subset of indices I ⊂ {1, . . . , n}
with |I| ≤ α and can track all ciphertexts ci for i ∈ I throughout the shuffling process.
Additionally, the adversary can adaptively corrupt up to β shufflers throughout the execution.
The goal of the shuffling protocol is to hide the output location of the uncorrupted entries in
the input vector from the adversary. In terms of efficiency, we would like to minimize the
number of shuffles of size k that need to be performed.

We present a very simple shuffling mechanism, where each shuffler picks k uniformly
random entries and permutes them. The main technical contribution of this work is a upper
bound that shows that this shuffling process terminates quickly and provides good anonymity
guarantees. The following informal theorem is a corollary of our main theorem.

▶ Theorem 1 (Informal). Let (c1, . . . , cn) be a vector of ciphertexts. Let A be a PPT
adversary that tracks α = C · n ciphertexts, where C is a constant, and adaptively corrupts β

shufflers adaptively. If each shuffler randomly permutes k ∈ Ω(ln2(n)) random ciphertexts,
then shuffling terminates in O(n/k · ln(n) + β) steps with a constant success probability.

To underline the practicality of our distributed shuffling protocol, we implemented our
solution and we provide benchmarks, which show that shuffling is not only asymptotically,
but also practically efficient.

1.2 Applications
1.2.1 Single Secret Leader Elections
In the single secret leader election (SSLE) problem, introduced by Boneh et al. [4], we have
a public bulletin board and n parties that would like to elect exactly one leader among them.
The leader should be fairly chosen, in the sense that each party should have a roughly equal
probability of becoming the leader. Additionally, the leader should remain hidden until they
decide to reveal themselves.

Boneh et al. present three solutions to this problem. The first two solutions are
based on indistinguishability obfuscation [16] and threshold fully homomorphic encryption [5]
respectively. Both of these solutions are theoretically interesting, but concretely too inefficient
to be useful in a practical setting.

K. G. Larsen, M. Obremski, and M. Simkin 10:3

The third presented solution is based on a distributed shuffling protocol. In their protocol,
each of the n participants publishes a commitment ci only they can open on the bulletin
board. Then, each participant’s commitment is assigned a bucket of size

√
n, which is

shuffled once. The protocol guarantees that each entry in the output vector could come from√
n possible locations in the input vector. The authors mention that stronger anonymity

guarantees may be achieved using Håstad’s square shuffle [17, 18], but leave the analysis of
such an approach as an explicit open question. Håstad’s square shuffle is an algorithm that
shuffles a vector of length n using shuffles of size k =

√
n in a benign setting. The algorithm

itself does not provide any security guarantees in a setting, where an adversary may track
some of the commitments or where the adversary can adaptively prevent some of the shuffles
from happening. Even worse, it is straightforward to design an adaptive adversary with a
relatively small budget of allowed corruptions that can prevent certain commitments from
being shuffled at all.

Using our distributed shuffling protocol, which works for various choices of k beyond just
k =
√

n, we obtain a new SSLE protocol that is secure against adaptive adversaries, where
the elected leader is hidden not only among

√
n other participants, but instead among close

to all n of them.

Ethereum Block Proposer Elections

A variant of the SSLE problem has recently been considered in the context of the Ethereum
blockchain, where we are not only interested in electing one, but rather a ordered list of γ

leaders. Two real-world efficiency constraints are important to point out here. Every shufflers
needs to speak in a timely manner, yet at the same time they need to provide zero-knowledge
proofs attesting the correctness of their performed shuffle. These two constraints mean that
no shuffler has enough time to permute the full vector at once.

The currently proposed protocol [14] for potential deployment in Ethereum is effectively a
direct implementation of Håstad’s square shuffle along with some other minor steps that are
not relevant for the discussion here. The protocol is heuristically claimed to be secure against
non-adaptive corruptions. However, the protocol is only discussed in an informal model and
no security proofs are provided. Similarly to the plain square shuffle of Håstad, the proposed
construction is not secure against an adaptive adversary that may adaptively target specific
shufflers during the protocol execution. Especially in the context of a blockchain, where
shufflers are known entities, and an adversary that may have the ability to target some of
them adaptively, we believe that a stronger adaptive security notion and provable security
guarantees are of crucial importance.

Our distributed shuffling protocol, which provides provable security guarantees against
a stronger adversary, can be used as a direct replacement of the current proposal. Our
experimental results show that the efficiency of our protocol is comparable to the current
proposal of Ethereum. We discuss this application in more depth in Section 5.

1.3 Related Works
Multiple research domains are related to our work here.

1.3.1 Benign Shuffling
A series of existing works [27, 12, 1, 17, 18, 25, 22] has studied the question of how long it
takes to shuffle the elements of a vector via either smaller or restricted shuffling operations.
There, the problem is studied in a benign setting and it is unclear what security can be
achieved in the presence of an adversarial entity.

ITC 2023

10:4 Distributed Shuffling in Adversarial Environments

Conceptually, the work of Diaconis and Shahshahani [12], which considers shuffling a
deck of cards by repeatedly picking two random cards and switching them, is closest to our
algorithm. In their work, the authors are interested in determining the required number of
rounds until the resulting permutation looks close to uniformly random to a distinguisher
that does not see which cards were swapped. In contrast to their work, we want to determine
the required number of shuffles of size k until any uncorrupted card is at an unpredictable
location, even if the adversary gets to see all subsets of k elements that were shuffled in the
protocol.

1.3.2 Single Secret Leader Elections
After the first three initial approaches for solving the SSLE problem by Boneh et al. [4],
an alternative solution based on functional encryption was proposed by Catalano, Fiore,
and Giunta [9]. Their solution has many attractive properties, but requires an expensive
initial setup to be performed between the parties participating in the elections. In situations
where elections are performed periodically and many participants may join or leave between
elections, the setup needs to be repeatedly renewed. Shuffling based solutions on the other
hand, gracefully deal with joining and leaving participants, since no setup is required.

In a recent independent work by Catalano, Fiore, and Giunta [10], the authors also
study SSLE in the presence of an adaptive adversary. Their work focuses on providing a
full formalization of the SSLE problem in the universal composability framework [8]. The
authors provide a solution based on shuffling that requires each shuffler to speak multiple
times and to permute the full vector. In contrast to their work, we focus on distributed
shuffling protocols, where shufflers have bounded memory and only speak once. We believe
that our model is closer to how shufflers would actually operate in a real blockchain like
Ethereum.

2 Preliminaries

2.1 Notation
We write [n] to denote the set {1, . . . , n}. We denote the computational security parameter
by λ. For a set X, we write x← X to denote the process of sampling a uniformly random
element x from X. For a randomized algorithm A we write A(x; r) to explicitly specify the
random tape r when A is executed on some input x. Otherwise, we write A(x) and simply
assume that r is implicitly chosen uniformly at random. We write ⊥ ← A(x) to denote that
an algorithm A failed to produce an output. We write AO(·) to denote algorithm A with
oracle access to algorithm O.

2.2 Encryption Schemes
We define the minimal security properties that are sufficient for proving our shuffling
algorithm secure in our model. For the remainder of this work, we focus on shuffling a vector
of ciphertexts, but all of our results easily carry over to commitments.

▶ Definition 2. A public-key encryption scheme E = (Gen, Enc, Dec) is a comprised of the
following algorithms:
(ek, dk)← Gen(1λ): The key generation algorithm takes the security parameter 1λ as input

and outputs a public encryption key ek and a secret decryption key dk.

K. G. Larsen, M. Obremski, and M. Simkin 10:5

c← Enc(ek, m): The encryption algorithm takes the key ek and a message m as input and
outputs a ciphertext c.

m← Dec(dk, c): The decryption algorithm takes key dk and ciphertext c as input and
outputs message m.

▶ Definition 3 (Semantic Security). We say E = (Gen, Enc, Dec) is semantically secure, if for
any PPT adversary A, it holds that

Pr

(ek, dk)← Gen(1λ)
(m0, m1)← A(ek)

b← {0, 1}
b∗ ← A(Enc(ek, mb))

: b = b∗

 ≤ 1
2 + negl(λ),

where the probability is taken over the uniform random coins of the adversary, the key
generation, and the encryption algorithm.

The input to our distributed shuffling algorithm will be a vector of ciphertexts, where
each one is encrypted under a different public key. To be able to meaningfully shuffle this
vector, we require that ciphertexts under different keys are indistinguishable from each other.
This notion of key privacy was first considered by Bellare et al. [3]. We use slightly weaker
formalization of key privacy that is sufficient for our purposes.

▶ Definition 4 (Key Privacy). We say a semantically secure encryption scheme E =
(Gen, Enc, Dec) is key private, if for any PPT adversary A, it holds that

Pr

(ek0, dk0)← Gen(1λ)
(ek1, dk1)← Gen(1λ)

m← A(ek0, ek1)
b← {0, 1}

b∗ ← A(Enc(ekb, m))

: b = b∗

 ≤
1
2 + negl(λ),

where the probability is taken over the uniform random coins of the adversary, the key
generation, and the encryption algorithms.

One possible instantiation of an encryption scheme with the desired properties is the
ElGamal cryptosystem [13].

2.3 Local Shuffling Algorithms
The focus of our work lies in answering how to shuffle the elements of a vector of length n

through the use of shuffle operations that permute k many elements at a time. To abstract
away the concrete shuffling procedure that is used by any shuffler locally, we define an
idealized function Shuffle that takes k ciphertexts as input and produces a fresh list of k

ciphertexts that commit to the same multi-set of messages. In practice, the local shuffling
procedure would be realized by combining a re-randomizable encryption or commitment
scheme with an appropriate non-interactive zero-knowledge proof that attests the correctness
of the performed shuffle. If the list were to contain ElGamal ciphertexts, then efficient
shuffling arguments of Bayer and Groth [2] or Bünz et al. [7] could be used. If the list were
to contain pedersen commitments [24], then efficient shuffling arguments of Bünz et al. [7] or
Hoffmann et al. [19] could be used.

ITC 2023

10:6 Distributed Shuffling in Adversarial Environments

3 Model

In this section, we define the formal model within which we will present and analyze our
distributed shuffling protocol. In our setting, we have a public bulletin board, where parties
can post authenticated messages that are visible to all other parties. The messages are
authenticated in the sense that each message on the bulletin board can be traced to its sender.
In the beginning, the only thing written on the message board are ciphertxts c1, . . . , cn,
where ci ← Enc(eki, mi) for some mi for i ∈ [n]. The parties P1, . . . , PT , also known as the
shufflers, speak one after another by posting messages on the bulletin board. To compute
their messages, each shuffler reads at most k ciphertexts, locally shuffles them using the
Shuffle procedure, and writes the permuted vector of k ciphertexts (along with possibly
auxiliary information) back on the bulletin board. At the end of the protocol execution,
after all T shufflers have spoken, ciphertexts c̃1, . . . , c̃n, which encrypt the same multiset
as the input vector, should be written on the bulletin board. We call such a protocol Π a
(T, n, k)-shuffle.

3.1 Corruptions
The shuffling protocol runs in the presence of adversarial behavior. The PPT adversary A
can see who posts which messages on the bulletin board and in addition can perform two
types of corruptions. At the beginning of a protocol execution, the adversary is corrupting α

ciphertexts. For each corrupted ciphertext, the adversary learns the corresponding decryption
key and can thus “track their positions” throughout the shuffling procedure. Additionally,
the adversary is allowed to corrupt β shufflers in a fully adaptive manner, meaning that at
the start of every round i ∈ [T], the adversary is allowed to decide whether or not to corrupt
shuffler Pi on the fly, as long as the total number of corrupted shufflers is at most β.

A corrupt shuffler can perform an arbitrary chosen, but valid permutation on an arbitrary
choice of at most k ciphertexts. In principle, we do not need to assume that the adversary
honestly permutes k ciphertexts or that she would even honestly report, which ciphertexts she
touched. Both of these issues are easily resolved via standard non-interactive zero-knowledge
arguments attesting the correctness of the shuffle. To avoid explicitly talking about such
arguments, we simply restrict the adversary in her behaviour.

3.2 Definitions
For a shuffling protocol Π with input vector c⃗ and an adversary A, we write (z, π) ←
⟨Π(c⃗; r),A(c⃗; r̃)⟩ to denote the execution Π with random coins r in the presence of A with
random coins r̃, where z is the adversary’s output and π is the permutation on domain [n], i.e.
between the input and output ciphertexts’ values. If at the end of a protocol execution the
values inside the output ciphertexts are not a permutation of the input ciphertexts’ values,
then we write π = ⊥.

▶ Definition 5 (Correctness). We say that an (T, n, k)-shuffle Π is correct in the presence of
an adversary A, if

Pr

(eki, dki)← Gen(1λ) ∀i ∈ [n]

ci ← Enc(eki, i) ∀i ∈ [n]
c⃗ := (c1, . . . , cn)

(z, π)← ⟨Π(c⃗; r),A(c⃗; r̃)⟩

: π ̸= ⊥

 = 1,

where the probability is taken over the random coins r and r̃.

K. G. Larsen, M. Obremski, and M. Simkin 10:7

Π(c1, . . . , cn)
for t ∈ [T] :

St picks random {i1, . . . , ik} ⊂ [n]
St computes (c̃i1 , . . . , c̃ik)← Shuffle(ci1 , . . . , cik)
St publishes (c̃i1 , . . . , c̃ik)

Figure 1 Distributed shuffling protocol.

▶ Definition 6 (Security). Let A be a PPT adversary that corrupts at most β shufflers. We
say that an (T, n, k)-shuffle Π is (ϵ, δ)-secure in the presence of an (α, β)-adversary A, if for
all I ⊂ [n] with |I| ≤ α, it holds that with probability at least 1− δ we have

Pr

(eki, dki)← Gen(1λ) ∀i ∈ [n]
ci ← Enc(eki, i) ∀i ∈ [n]

c⃗ := (c1, . . . , cn)

d⃗k := {dki | i ∈ I}

((i, j), π)← ⟨Π(c⃗; r),A(c⃗, d⃗k; r̃)⟩

: π(i) = j ∧ i ̸∈ I

≤ ϵ,

where the randomness is taken over the random coins r and r̃.

In the definition above, there exists a naive attacking strategy. The adversary could just
guess a random pair (i, j) of indices with i, j ̸∈ I, which means that the best security we
can hope for is ϵ = 1/(n− |I|). If on the other hand, we achieve ϵ ≤ C/(n− |I|) for some
constant C, then this translates into the intuitive guarantee that any element in the output
vector comes from at least (n− |I|)/C possible locations in the input vector.

4 Construction

Our distributed shuffling protocol is conceptually very simple. Each round, a shuffler picks
a random subset of k ciphertexts and permutes those. The main technical challenge is to
prove that after a not too large number of rounds, this procedure will shuffle the input vector
sufficiently well.

We note that all shufflers in our protocol act independently and do not coordinate who
will shuffle which entries in the vector. For this reason, even a powerful adaptive adversary
cannot do anything better than corrupting an arbitrary subset of β shufflers. Thus, the
question of how big the number of rounds T has to be set to tolerate an adversary that
corrupts β shufflers, effectively reduces to the question of how well the input vector is shuffled
in T − β rounds in the presence of an adversary that can corrupt no shufflers at all.

The formal protocol description is given in Figure 1 and we prove the following theorem.

▶ Theorem 7. Let A be a PPT adversary that corrupts at most β shufflers. Let E =
(Gen, Enc, Dec) be a semantically secure and key private encryption scheme. For any 0 <

δ < 1/3, if T ≥ 20(n/k) ln(n/δ) + β and k ≥ 256 ln2(n/δ)(1 − α/n)−2, then the protocol
in Figure 1 is a (ϵ, δ)-secure (T, n, k)-shuffle in the presence of a (α, β)-adversary, where
ϵ = 2/(n− α) + negl(λ).

ITC 2023

10:8 Distributed Shuffling in Adversarial Environments

Proof. Let I ⊂ [n] with |I| = α be an arbitrary, but fixed subset of indices belonging to
ciphertexts that are corrupted by the adversary. Let H := [n]\I be the indices of uncorrupted
ciphertexts. Let hybrid hybrid0 be the security game as stated in Definition 6. We consider
hybrid hybrid1, which is identical to hybrid0 with the exception that (eki, dki) := (ek1, dk1)
for all i ∈ H. Indistinguishability of hybrid0 and hybrid1 follows from the key privacy
of the underlying encryption scheme. In hybrid2 we set ci ← Enc(eki, 1) for all i ∈ H.
Indistinguishability of hybrid1 and hybrid2 follows from the semantic security of the underlying
encryption scheme. At this point, we observe that in each invocation of Shuffle by an honest
shuffler the adversary learns nothing about how the honest ciphertexts were permuted. To
see this, we note that each honest ciphertext returned by Shuffle is identically distributed,
encrypted under the same key, encrypting the same message.

Next, we observe that an adaptive adversary can not do anything better than corrupting
an arbitrary set of β shufflers. To see this, observe that each shuffler chooses its subset of k

ciphertexts independently, thus the distribution of permutations between input and output
vector that is produced by our protocol is independent of which shufflers are corrupted by A.
For the remainder of the proof we determine the number TH of honest shuffles that need to
be performed, such that every ciphertext’s location is hidden sufficiently well. Our protocol
can then be run for T ≥ TH + β rounds to be secure against β corrupt shufflers.

We now view the ciphertexts as a set of n cups, denoted c1, . . . , cn. Of these n cups, the
last α are idle and the first n− α are active. The cups may contain a non-negative amount
of water.

Let k ≥ 2. A TH step k-way mixing consists of repeatedly selecting k cups uniformly at
random (without replacement). If B denotes the set of selected cups, we then gather all
water in active cups ci ∈ B. The collected water is then distributed evenly among the active
cups. This process is repeated for TH steps. We call one such step a mixing step.

We say that a TH step k-way mixing is successful if, for any ci among the active cups,
if we had placed 1 unit of water in ci and 0 in all remaining cups, then at the end of the
mixing, no cup contains more than 2/(n− α) water. That is, regardless of which active cup
we choose put 1 unit of water in, at the end of shuffling, no cup contains more than a factor
2 more water than if we had distributed all water uniformly among active cups.

▶ Lemma 8. For any 0 < δ < 1/3, if TH ≥ 20(n/k) ln(n/δ) and k ≥ 256 ln2(n/δ)(1−α/n)−2,
then a TH step k-way mixing with α idle cups is successful with probability at least 1− δ.

Observe first that if a TH step k-way mixing is successful, then if we perform another
mixing step, the mixing remains successful. This is because the maximum amount of water in
a cup cannot increase in a mixing step. Hence we prove the lemma for TH = 20(n/k) ln(n/δ)
and note that it also implies the result for larger TH .

In our proof, we first show that if c1 has 1 unit of water and the remaining have 0, then
with probability at least 1− δ/n, it holds that after T steps that there is no cup with more
than 2/(n− α) units of water. A union bound over all n− α active cups that may contain
the initial 1 unit of water completes the proof.

So consider the setup where c1 has 1 unit of water and the remaining have 0. We define
two undesirable events, such that if none of these events occur, the mixing is successful. To
define the first of these events, let Bt be the indices of the cups selected for mixing in the
t’th step.

Consider an execution of a TH step k-way mixing. A back-tracking from cup ci is a
sequence of indices i1, . . . , ir ∈ [k], possibly with repetitions, such that the following holds:
Initialize b = i, j = 0 and t = TH . Repeat until t = 0: If cup cb was selected for mixing in

K. G. Larsen, M. Obremski, and M. Simkin 10:9

step t, increment j and set b to be the index of the ij ’th cup in Bt (for some arbitrary but
fixed ordering on cups). Decrement t and repeat (regardless of whether cup cb was selected
for mixing in step t).

A back-tracking thus specifies a “path” that starts with ci and as we go backwards
through the TH mixing steps, whenever the current cup cb is selected for mixing, the path
proceeds to trace the next cup in the list. When j reaches r in the back-tracking, it must be
the case that the currently traced cup cb is not selected in any further mixing steps while
decrementing t. The first undesirable event says that there is a short back-tracking:

Event E1: There is a back-tracking i1, . . . , ir with r ≤ 4 lgk n.

To define the second event, let wt
i denote the amount of water in cup ci after t steps

of mixing. We have w0
1 = 1 and w0

i = 0 for i ̸= 1. Also, let At ⊆ Bt denote the indices of
the active cups among Bt. Finally, let Wt =

∑
i∈At

wt−1
i /|At| denote average amount of

water in the cups selected in step t. By definition, we have wt
i = Wt for every i ∈ At. With

these definitions in place, the second undesirable events says that we in some step perform a
mixing that results in much water on average, yet none of the involved cups had significantly
more water than the average:

Event E2: There is a step t where Wt ≥ 2/(n− α) but maxi∈At wt−1
i ≤ k1/4Wt.

Success when none of E1 and E2 occur. We first show that a TH step mixing is successful
when none of the events E1 and E2 occur. For this, consider an unsuccessful mixing where E2
did not occur. We claim that this implies that E1 occurred. We thus need to show that an
unsuccessful mix together with the fact that E2 does not occur implies a short back-tracking.
For this, let ci∗ be a cup such that wT

i∗ > 2/(n − α). Such a cup exists since the mixing
is unsuccessful. We will now back-track from that cup. So let i = i∗, b = i and initialize
t = TH . Also, let ωt denote the amount of water in the cup cb traced in step t. We thus have
ωTH = wTH

i∗ > 2/(n − α). We will guarantee that the values ωt are non-decreasing when
we decrement t from TH towards 0. For t = TH down to 0, if cup cb is selected for mixing
in step t, we know that Wt = ωt ≥ ωTH > 2/(n − α). Since E2 did not occur, it must be
the case that maxh∈At wt−1

h > k1/4Wt. Let h∗ be the index into Bt of the h obtaining this
maximum water in step t− 1. We append h∗ to the constructed list of indices i1, . . . , ir in
the back-tracking as well as append the step t to the list of steps t1, . . . , tr. We then update
b to h, set ωt−1 to wt−1

h ≥ k1/4ωt and decrement t. If cb was not selected for mixing, we
simply decrement t.

Since ω increases by a factor at least k1/4 each time the traced cup cb is selected for mixing,
it must be the case that ω0 ≥ 2kr/4/(n−α) if the produced back-tracking has length r. Since
no cup ever contains more than 1 unit of water, this implies 2kr/4/(n−α) ≤ 1⇒ r < 4 lgk n.
This implies that the event E1 occurs.

Probability of success. In the following two paragraphs, we will show that Pr[E1] ≤ 2δ10/n

and Pr[E2] ≤ δ2/n. A union bound and the fact that δ < 1/3 implies that a TH step
k-way mixing is successful with probability at least 1 − δ/n when c1 has 1 unit of water.
As mentioned earier, a union bound over all n− α choices of the cup with 1 unit of water
completes the proof. What remains is thus to bound the probability of E1 and E2.

There is a short back-tracking (Event E1). To rule out the existence of a short back-
tracking, consider a fixed value of r ≤ 4 lgk n. For any such r, there are no more than
kr ≤ n4 choices for i1, . . . , ir and n choices for i. For any such choice, there are no more
than

(
TH

r

)
≤ T r

H choices for the steps t1, . . . , tr where j is decremented (the traced cup

ITC 2023

10:10 Distributed Shuffling in Adversarial Environments

is selected for mixing). Fix any such r, i1, . . . , ir and t1, . . . , tr. For this to be a valid
back-tracking, it must hold for all steps t /∈ {t1, . . . , tr} that the cup cb traced in that
step is not selected for mixing. Since the mixing steps are independent, this happens with
probability precisely (1− k/n) independently of the random choices in steps t + 1, . . . , TH .
For all steps t ∈ {t1, . . . , tr}, it must be the case that the cup cb traced in that step is
selected for mixing. Again by independence, this happens with probability precisely k/n

independently of the random choices in steps t + 1, . . . , TH . For the fixed choice of i, r,
i1, . . . , ir and t1, . . . , tr, the probability that these form a valid back-tracking is thus no more
than (1− k/n)TH −r(k/n)r ≤ exp(−(TH − r)k/n)(k/n)r. We have TH = 20(n/k) ln(n/δ) and
k ≤ n, thus r = 4 lgk n ≤ TH/2 and the probability is no more than exp(−THk/(2n))(k/n)r =
exp(−10 ln(n/δ))(k/n)r = (k/n)r(δ/n)10. A union bound over all possible back-trackings of
length r ≤ 4 lgk n shows that

Pr[E1] ≤
4 lgk n∑

r=0
n5T r

H(k/n)r(δ/n)10

=
4 lgk n∑

r=0
n5(20(n/k) ln(n/δ))r(k/n)r(δ/n)10

=
4 lgk n∑

r=0
n5(20 ln(n/δ))r(δ/n)10.

For k ≥ 40 ln(n/δ), this is no more than

4 lgk n∑
r=0

n5(20 ln(n/δ))r(δ/n)10 ≤

4 lgk n∑
r=0

n5(k/2)r(δ/n)10 ≤

4 lgk n∑
r=0

2−rn5k4 lgk n(δ/n)10 =

2δ10/n.

A mix with much water, but no full cup (Event E2). Let us first consider a fixed step
t and condition on a fixed cardinality a of At and an arbitrary execution of the first t− 1
steps. If we let E′

2,t denote the event that maxi∈At wt−1
i ≤ k1/4Wt and E′′

2,t the event that
Wt ≥ 2/(n− α). We now wish to bound Pr[E′

2,t ∩ E′′
2,t | |At| = a]. For this, we further split

E′
2,t and E′′

2,t into smaller events. Let E′
2,t,ξ denote the event that maxi∈At wt−1

i ≤ 2k1/4ξ

and E′′
2,t,ξ the event Wt ≥ ξ and consider values of ξ = 2i/(n− α) for i = 1, . . . , lg2 n. We

claim that

Pr[E′
2,t ∩ E′′

2,t | |At| = a] ≤ Pr
[
∪lg2 n

i=1 (E′
2,t,2i/(n−α) ∩ E′′

2,t,2i/(n−α)) | |At| = a
]

.

To see this, note that when E′′
2,t occurs, there is a maximal 1 ≤ i < lg2 n for which

2i/(n−α) ≤Wt ≤ 2i+1/(n−α). When E′
2,t also occurs, this further implies maxi∈At

wt−1
i ≤

2i+1k1/4/(n − α). That is, both of the events E′
2,t,2i/(n−α) and E′′

2,t,2i/(n−α) occur. By a
union bound, we thus have

K. G. Larsen, M. Obremski, and M. Simkin 10:11

Pr[E′
2,t ∩ E′′

2,t, |At| = a] ≤
log2 n∑
i=1

Pr[E′′
2,t,2i/(n−α) ∩ E′

2,t,2i/(n−α) | |At| = a] ≤

log2 n∑
i=1

Pr[E′′
2,t,2i/(n−α) | E

′
2,t,2i/(n−α), |At| = a]

Next, we recall that each shuffler picks a uniformly random subset of cups to mix. If
we condition this choice on E′

2,t,ξ and |At| = a, then At is distributed as a uniform sample
of a elements without replacement from the set of active cups ci where wt−1

i ≤ 2k1/4ξ.
Furthermore, recall that we started with one cup containing one unit of water and all
other cups being empty. If we were to sample a cup uniformly at random among all active
cups, then the expected amount of water in a sampled cup would be precisely 1/(n − α).
Conditioning on E′

2,t,ξ removes the most full cups and hence the expected amount of water in
each sampled cup may only decrease when conditioning on E′

2,t,ξ. It follows from Hoeffding’s
inequality for sampling without replacement that for any ξ ≥ 2/(n− α), we have

Pr[E′′
2,t,ξ | E′

2,t,ξ, |At| = a] =
Pr[|Wt| ≥ ξ | E′

2,t,ξ, |At| = a] ≤
Pr[|Wt − E[Wt]| ≥ ξ − 1/(n− α) | E′

2,t,ξ, |At| = a] ≤
Pr[|Wt − E[Wt]| ≥ ξ/2 | E′

2,t,ξ, |At| = a] ≤

2 exp
(
− 2(aξ2/2)2

a(2k1/4ξ)2

)
=

2 exp
(
−a/(8

√
k)

)
.

Thus

Pr[E′
2,t ∩ E′′

2,t | |At| = a] ≤ 2 lg2(n) exp(−a/(8
√

k)).

Using this inequality, we then observe that

Pr
[
E′

2,t ∩ E′′
2,t

]
=

k∑
a=0

Pr
[
E′

2,t ∩ E′′
2,t | |At| = a

]
Pr [|At| = a]

=

k(1−α/n)−2
2∑

a=0
Pr

[
E′

2,t ∩ E′′
2,t | |At| = a

]
Pr [|At| = a]

+
k∑

a= k(1−α/n)
2

Pr
[
E′

2,t ∩ E′′
2,t | |At| = a

]
Pr [|At| = a]

≤

k(1−α/n)−2
2∑

a=0
Pr [|At| = a]

+
k∑

a= k(1−α/n)
2

2 lg2(n) exp
(
−(k(1− α/n)/2)/(8

√
k)

)
Pr [|At| = a]

≤Pr
[
|At| ≤

k(1− α/n)
2

]
+ 2 lg2(n) exp

(
−(k(1− α/n)/2)/(8

√
k)

)

ITC 2023

10:12 Distributed Shuffling in Adversarial Environments

To conclude the proof, we would now like to argue that both of the terms in the last
inequality above are small. We observe that Bt is a uniform sample without replacement
from the n cups and thus we have that E[|At|] = k(1− α/n). Using the Chernoff bound for
sampling without replacement and assuming k ≥ 16 ln(n/δ)(1− α/n)−1, we get

Pr[|At| ≤ (1/2)k(1− α/n)] ≤ exp(−k(1− α/n)/8) ≤ (δ/n)2.

Similarly, for k ≥ 256 ln2(δ/n)(1− α/n)−2, we have that

2 lg2(n) exp(−(1/2)k(1− α/n)/(8
√

k))

=2 lg2(n) exp(−
√

k(1− α/n)/16)
≤2 lg2(n)(δ/n)2

Thus for k ≥ 256 ln2(δ/n)(1− α/n)−2, we have

Pr[E′
2,t ∩ E′′

2,t] ≤ 3 lg2(n)(δ/n)2.

A union bound over all TH then implies

Pr[E2] ≤ 3TH lg2(n)(δ/n)2.

There are TH = 20(n/k) ln(n/δ) choices for t and for k ≥ 256 ln2(n/δ), we have that

Pr[E2] ≤ δ2/n,

which concludes the proof. ◀

5 Ethereum’s Block Proposer Elections

One particular real-world application that can benefit from our shuffling protocol, is Eth-
ereum’s block proposer election. In the following, we provide a high-level idea of this election
process and we refer the interested reader to the current proposal [14] for more details. In
this setting, we have commitments1 (c1, . . . , cn), where n = 214 and where ci belongs to some
identity i, who is the only entity that can open the commitment. These identities need to be
arranged in a random secret order. Once this is done, the first γ owners of the commitments
reveal themselves in order of the output list and perform some consensus related action that
is not relevant for us. That is, the first identity in the output list is the first block proposer,
the second identity the second proposer and so on. From a security perspective, one would
like to ensure that an adversary that corrupts α identities, β of the shufflers, and gets to see
some of the proposers that already revealed themselves, cannot guess the identity of the next
honest block proposer.

In order to obtain the random secret ordering, in the current proposal, a sequence
of shufflers are effectively executing Håstad’s square shuffle [17, 18], i.e. there k =

√
n,

interspersed with some additional public permutation steps. The current proposal is purely
heuristic, is only described in an informal model, and does not have a security proof. It is
not secure against an adversary that can corrupt shufflers adaptively.

1 We note again that all of our results work equally well for vectors of commitments.

K. G. Larsen, M. Obremski, and M. Simkin 10:13

Our approach can be used to obtain a secret random ordering of the block proposers with
stronger security guarantees and, in particular, with provable security guarantees. We note,
however, that in our model we do not consider parts of the performed permutation to be
revealed once the shuffling protocol is finished. Luckily our analysis can easily be amended
to account for this.

In the proof of Theorem 7, we assumed that a fixed number of cups, denoted α, were
idle. We will now generalize the results to the following setup: Before the random shuffling
process begins, we have two phases. In the first phase, we have a fixed set of α marked cups.
In the second phase, we choose a uniform random subset of γ of the cups and mark them. If
a cup was marked either during the first or second phase, it becomes idle and otherwise it is
active. Notice that this corresponds to first corrupting α ciphertexts and then revealing γ

random ciphertexts at the end. Let η be the number of idle cups.
Once the idle and active cups have been chosen, we run the water mixing process as in

the proof of Theorem 7. We now bound the probability of seeing an active cup with more
than 2/(n − η) units of water after T steps of mixing. We first bound the probability of
seeing many idle cups. For this, notice that the first phase marks precisely α cups. For
the second phase, the number of newly marked cups can be bounded by observing that the
γ samples without replacement each picks a cup already marked in the first phase with
probability precisely α/n (when looking at the marginal distribution of the cup). It follows
by a Hoeffding bound for sampling without replacement that the number of newly marked
cups in the second phase, denoted ζ, satisfies:

Pr[ζ − (1− α/n)γ > ℓ] < exp(−2ℓ2/γ).

Setting ℓ =
√

γ ln(n/δ) bounds the above by δ2/n2. Thus with probability at least 1− δ2/n2,
we have

η ≤ α + ζ ≤ α + ℓ + (1− α/n)γ

=α + γ − αγ/n +
√

γ ln(n/δ).

A union bound together with Lemma 8 invoked with δ′ = δ/(2n) gives us that with probability
at least 1 − δ2/n2 − δ/n, there is no index i with wT

i ≥ 2/(n − η). Note that the above
analysis above is for a fixed number γ of revealed output locations. Doing a union bound
over all γ′ ≤ γ shows that the probability that throughout the revealing any of γ additional
locations, that there is ever an input cup z whose output destination can be predicted with
probability greater than 2/(n− η) is at most n · (δ/(2n) + δ2/n2) ≤ δ.

6 Experiments

In this section, we perform numerical experiments to precisely determine the practical
constants in our distributed shuffling protocol. We consider different sets of parameters.
Since adversarially corrupt shufflers in our protocol are as bad as just no shuffle being
performed, we simply measure the number of required honest shuffles, until the desired
security guarantees are achieved. More precisely, if TH honest shuffles are sufficient, then
running our protocol for T rounds is secure against β = T − TH many corrupted shufflers.

In each experiment, we run the water mixing process from the proof of Lemma 8 with
varying values for n, k, and α. For each fixed set of parameters the benchmark is repeated 100
times. In every round of an experimental run, we check whether any cup has too much water.
If it does, then this run of the experiment for this round is considered to be failing. The

ITC 2023

10:14 Distributed Shuffling in Adversarial Environments

Table 1 Results of our numerical experiments for determining the number T −β of honest shuffles
that is needed for successfully shuffling with different sets of parameters.

n k α/n

1 214 128 1/4 δ 0.8 0.6 0.4 0.2 0
T − β 713 839 927 988 1804

2 214 256 1/4 δ 0.8 0.6 0.4 0.2 0
T − β 337 398 452 502 627

3 214 512 1/4 δ 0.8 0.6 0.4 0.2 0
T − β 199 229 254 278 438

4 214 128 1/2 δ 0.8 0.6 0.4 0.2 0
T − β 874 955 1080 1204 1853

fraction of failing simulations in a given round, denoted by δ, is an unbiased estimate of the
true probability that the adversary can determine the position of a uncorrupted ciphertext
with probability greater than 2/(n− α) in that round.

The result of our benchmarks are summarized in Figure 1. Even in a highly adversarial
setting, where 1/2 of all elements in the vector are corrupted and the local shuffle size is as
small as k = 128, our protocol successfully distributes the water after less than 2000 rounds
for a vector of length n = 214. In the context of Ethereum’s block proposer elections, we
have T = 213 time slots for one election and thus one can tolerate a fraction of around 3/4
of corrupted shufflers.

References

1 Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. The Annals of Applied
Probability, pages 294–313, 1992.

2 Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a
shuffle. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 263–280. Springer, 2012.

3 Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy
in public-key encryption. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 566–582. Springer, 2001.

4 Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages
12–24, 2020.

5 Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter MR Rasmussen,
and Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. In
Annual International Cryptology Conference, pages 565–596. Springer, 2018.

6 Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A Kroll, and
Edward W Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In International
Conference on Financial Cryptography and Data Security, pages 486–504. Springer, 2014.

7 Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 315–334. IEEE, 2018.

8 Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145.
IEEE, 2001.

K. G. Larsen, M. Obremski, and M. Simkin 10:15

9 Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally composable
single secret leader election from pairings. Cryptology ePrint Archive, Paper 2021/344, 2021.
URL: https://eprint.iacr.org/2021/344.

10 Dario Catalano, Dario Fiore, and Emanuele Giunta. Adaptively secure single secret leader
election from ddh. In Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing, 2022.

11 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

12 Persi Diaconis and Mehrdad Shahshahani. Generating a random permutation with random
transpositions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(2):159–179,
1981.

13 Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE transactions on information theory, 31(4):469–472, 1985.

14 Ethereum. Whisk: A practical shuffle-based ssle protocol for ethereum. Accessed 09/09/2022,
2022.

15 Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In Annual Interna-
tional Cryptology Conference, pages 368–387. Springer, 2001.

16 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 40–49, 2013.

17 Johan Håstad. The square lattice shuffle. Random Structures and Algorithms, 29(4):466–474,
2006.

18 Johan Håstad. The square lattice shuffle, correction. Random Structures and Algorithms,
48(1):213, 2016.

19 Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge arguments in
the discrete log setting, revisited. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 2093–2110, 2019.

20 Markus Jakobsson, Ari Juels, and Ronald L Rivest. Making mix nets robust for electronic
voting by randomized partial checking. In 11th USENIX Security Symposium (USENIX
Security 02), 2002.

21 Gregory Maxwell. Coinjoin: Bitcoin privacy for the real world. Accessed 09/09/2022, 2013.
22 Ben Morris and Phillip Rogaway. Sometimes-recurse shuffle. In Annual International Conference

on the Theory and Applications of Cryptographic Techniques, pages 311–326. Springer, 2014.
23 C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Proceedings of

the 8th ACM conference on Computer and Communications Security, pages 116–125, 2001.
24 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In Annual international cryptology conference, pages 129–140. Springer, 1991.
25 Thomas Ristenpart and Scott Yilek. The mix-and-cut shuffle: small-domain encryption secure

against n queries. In Annual Cryptology Conference, pages 392–409. Springer, 2013.
26 Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In International Conference

on the Theory and Applications of Cryptographic Techniques, pages 393–403. Springer, 1995.
27 Edward O Thorp. Nonrandom shuffling with applications to the game of faro. Journal of the

American Statistical Association, 68(344):842–847, 1973.

ITC 2023

https://eprint.iacr.org/2021/344

MPC with Low Bottleneck-Complexity:
Information-Theoretic Security and More
Hannah Keller #

Aarhus University, Denmark

Claudio Orlandi #

Aarhus University, Denmark

Anat Paskin-Cherniavsky #

Ariel University, Israel

Divya Ravi #

Aarhus University, Denmark

Abstract
The bottleneck-complexity (BC) of secure multiparty computation (MPC) protocols is a measure of
the maximum number of bits which are sent and received by any party in protocol. As the name
suggests, the goal of studying BC-efficient protocols is to increase overall efficiency by making sure
that the workload in the protocol is somehow “amortized” by the protocol participants.

Orlandi et al. [28] initiated the study of BC-efficient protocols from simple assumptions in the
correlated randomness model and for semi-honest adversaries. In this work, we extend the study
of [28] in two primary directions: (a) to a larger and more general class of functions and (b) to the
information-theoretic setting.

In particular, we offer semi-honest secure protocols for the useful function classes of abelian
programs, “read-k” non-abelian programs, and “read-k” generalized formulas.

Our constructions use a novel abstraction, called incremental function secret-sharing (IFSS), that
can be instantiated with unconditional security or from one-way functions (with different efficiency
trade-offs).

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases Secure Multiparty Computation, Bottleneck Complexity, Information-
theoretic

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.11

Related Version Full Version: https://eprint.iacr.org/2023/683

Funding Hannah Keller : European Research Council (ERC) under the European Unions’s Horizon
2020 research and innovation programme under grant agreement No 803096 (SPEC).
Claudio Orlandi: Concordium Blockhain Research Center, Aarhus University, Denmark; the Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM); the European Research
Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme
under grant agreement No 803096 (SPEC).
Divya Ravi: European Research Council (ERC) under the European Unions’s Horizon 2020 research
and innovation programme under grant agreement No 803096 (SPEC).

1 Introduction

Secure Multi-party Computation (MPC) [31, 19, 6, 11], allows a set of mutually distrusting
parties to perform a joint computation of their private inputs in a secure way, which essentially
means that no adversary corrupting a subset of parties can learn more information than the
output of the joint computation (privacy), nor can they affect the correctness of the output
(other than by choosing their own inputs).

© Hannah Keller, Claudio Orlandi, Anat Paskin-Cherniavsky, and Divya Ravi;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 11; pp. 11:1–11:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hkeller@cs.au.dk
https://orcid.org/0000-0002-4461-7067
mailto:orlandi@cs.au.dk
https://orcid.org/0000-0003-4992-0249
mailto:anatpc@ariel.ac.il
mailto:divya@cs.au.dk
https://orcid.org/0000-0001-6423-8331
https://doi.org/10.4230/LIPIcs.ITC.2023.11
https://eprint.iacr.org/2023/683
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

The complexity of MPC protocols is most commonly analyzed in terms of three fun-
damental metrics, namely communication complexity (that measures the total number of
bits communicated in the protocol), round complexity (number of sequential interactions
in the protocol) and computation complexity (that captures the computational resources
parties need to execute the protocol steps). In this paper, we focus on a more fine-grained,
comparitively less-explored metric called bottleneck complexity (BC) which was introduced by
Boyle et al. [9]. This metric, which can be informally defined as the maximum communication
complexity of any party captures the load-balancing aspect of MPC protocols – for e.g. a
protocol where everyone sends a bit to a central party would have O(n) BC (incurred by the
central party, where n denotes the number of parties) as opposed to a protocol where everyone
sends a single bit to its neighbour in a chain-like fashion, which has O(1) BC. Notably, both
these protocols have the same communication complexity but the communication in the
latter is more balanced among the parties as captured by its lower bottleneck complexity.

The works of [9, 28] focused on designing MPC protocols with bottleneck complexity
sublinear in the number of parties, which is particularly interesting for large-scale settings
where n is huge. [9] presented a FHE-based compiler that transforms insecure protocols into
secure protocols while preserving the bottleneck complexity. However, FHE is still relatively
inefficient, and is only known under a more limited set of assumptions - roughly, variants
of LWE. In light of this, [28] initiated the study of designing protocols with low bottleneck
complexity in the preprocessing model, under minimal computational assumptions (such
as one-way functions and linearly homomorphic encryption, which can in turn be based on
traditional assumptions such as discrete logarithm and factoring).

In this work, we extend the study of [28] in two primary directions: (a) to a larger and
more general class of functions and (b) to the information-theoretic setting. We additionally
consider a more extended notion of g-BC-efficiency to capture protocols which have BC
of poly(g(n), λ), where λ denotes the security parameter1. More specifically, [28] focused
on protocols with O(1)-BC-efficiency (i.e. with poly(λ) BC, independent of n) and log-BC-
efficiency (i.e. with poly(log(n), λ) BC); while we consider a more general notion of g-BC
efficiency, where g is any sublinear function. This allows us to work with a somewhat
extended parameter setting – Consider a function f(x1, ..., xn) where each xi has ℓ bits, and
the (common) output is z bits. The notions of BC-efficiency become meaningful only if these
parameters ℓ and z are typically small. In the prior work of [28], these are assumed to be
constant or polylogarithmic in n. In this work we extend our quest to settings where ℓ and z

are sublinear in size (o(n)), as this would still allow for constructions satisfying the extended
notion of BC-efficiency. Moreover, the constructions of [9, 28] have BC that scales with the
security parameter λ (where λ is typically ω(log(n))) in computational settings), which is
avoided by our information-theoretic constructions.

Related Work. The most relevant work to ours is [9, 28] (whose results we discuss above).
There are several works in the MPC literature that focus on optimizing communication
complexity, some of which we mention below. The works of [12, 15, 24] focus on designing
communication-efficient protocols in the information-theoretic setting with correlated ran-
domness. Interestingly, the notion of bottleneck complexity and communication complexity
are the same for the two-party setting. The work of [27] presented a compiler that transforms
an insecure protocol to secure one while preserving communication complexity. [13, 14, 29, 1]
focus on optimizing communication complexity related to the circuit size.

1 For information-theoretic protocols with perfect security where there is no dependency on λ, g-BC
efficiency refers to BC of poly(g(n)).

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:3

The constructions of [21, 23, 20] involve a chain-like interaction pattern (similar to our
constructions). However, these constructions achieve a weaker notion of security (namely,
residual security) as they are restricted to a single chain traversal (unlike our constructions
which typically involve multiple traversals over chain). The efficient non-interactive multiparty
computation (NIMPC) constructions in [22, 16, 4] also achieve this weaker security.

Our goal of minimizing bottleneck complexity is somewhat similar in spirit to the
massive parallel computation model of [18, 17] which focuses on minimizing the storage
and communication of servers. The works of [8] and [25] design protocols that optimize
metrics that are closely related to bottleneck complexity (namely, communication locality
and message complexity).

For further related work, we refer to references therein.

1.1 Our Contribution
Our main contribution is constructing BC-efficient protocols in the correlated randomness
model for various interesting function classes. Further, we introduce a new primitive, namely
Incremental Function Secret Sharing (IFSS), which not only serves as a neat abstraction
of BC-efficient computation, but also allows us to cast our constructions in a generalized
framework that captures both computational and information-theoretic variants.

All our constructions are secure against a semi-honest (passive) adversary who can
corrupt up to n − 1 among the n parties. Our computational constructions are based on
garbling schemes, which rely on one-way functions. Our information-theoretic constructions
(satisfying perfect security) are a BC-friendly extension of the OTTT (one-time truth-tables)
construction from [24]. We elaborate on our contributions below.

New primitive: Incremental Function Secret Sharing (IFSS). In Section 4, we introduce a
new primitive, namely, Incremental Function Secret Sharing (IFSS), which essentially allows
a set of parties to evaluate a hidden function on a joint public input. This tool is a clean
abstraction of the core ideas of BC-efficient evaluation in our constructions.

At a high-level, this primitive can be viewed as a variant of function secret sharing
(which additively shares a function among a set of evaluators, enabling them to compute
output shares which can be aggregated to obtain the output), with the difference that the
output shares are aggregated incrementally on a chain, in a BC-efficient manner. IFSS can
be instantiated with garbled circuits or one-time truth tables (OTTT), enabling us to unify
our computational and information-theoretic variants. We believe this primitive to be of
independent interest and a useful building block for BC-efficient protocols.

Abelian Programs. Recall that an abelian program h can be expressed as h(X1, . . . , Xn) =
f(

∑n
i=1 Xi) for some f : G → {0, 1}, where G denotes an abelian group. In Section 5,

we use our IFSS primitive to generalize the approach of [28] that constructs BC-efficient
(computational) protocols for abelian programs. Plugging in the information-theoretic OTTT-
based instantiation of IFSS yields an information-theoretic BC-efficient protocol for abelian
programs with BC of O(log |G|). For completeness, we additionally demonstrate how using
the garbled-circuit based instantiation of IFSS results in the computational protocol of [28].

As an interesting application of BC-efficient abelian programs, we demonstrate how it
could be used to compute the maximum among n values as y = max(X1, X2, . . . , Xn) in a
BC-efficient manner. This can be extended to compute f(max(X1, X2, . . . , Xn)), where f is
any arbitrary function.

ITC 2023

11:4 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

“Read-k” Non-Abelian Programs. Briefly, a non-abelian program extends the notion of an
abelian program to non-abelian groups. Here, h(x1, . . . , xn) : {D}n → {0, 1} is represented
as h(x) = g(π1,xi1

· . . . · πt,xit
), where each πj,xij

is an element of a group G that depends
only on j, xij

(where ij ∈ {1, . . . , n}), and f : G → {0, 1}2. In a read-k program, group
elements depending on some xi appear up to k times in the above representation.

We present a BC-efficient protocol for any function f , that can be represented as a
read-k non-abelian program over a group G. The computational and information-theoretic
variants of these constructions incur a BC of O(log |G|(λ + k)) and O(k log |G|) respectively
and will therefore have sublinear BC as long as each of the parameters k and log |G| are
“sufficiently small”. More specifically, we can allow k log |G| to be of size o(n). Even for e.g.,
|G| = 2nϵ

, k = O(1) for ϵ ∈ (0, 1), we obtain sublinear BC. The details of our results for
non-abelian programs appear in the full version [26].

“Tree-based” read-k generalized formulas. In Section 6, we present a BC-efficient protocol
for any function f that can be represented as a “tree-like” formula, which may have multi-
input (and output) gates. More concretely, nodes in this formula are either inputs Xi

(which may belong to some finite group, not necessarily boolean domain), and gates with 2
inputs that output a single output 3. The inputs, intermediate outputs (which are inputs
to other gates) and the output are assumed to be bounded by ℓ bits (where ℓ = log |G| in
our constructions). For a formula that is read-k (i.e. each input variable appears at most k

times) and has depth d 4, our computational and information-theoretic variants result in BC
of O(k · d · ℓ · λ) and O(k · d · ℓ) respectively.

As long as the above parameters of k, d, and ℓ are “sufficiently small” (i.e. k · d · ℓ is of
size o(n)), the protocols remain BC-efficient. Even with these restrictions, such formulas are
quite expressive. Notably, we allow for “generalized” gates in terms of the functions they
compute – the above restrictions are only with respect to the size of the inputs and outputs
of these gates but the structure of the functions computed by these gates may be quite
complex. For example, consider a generalized formula of depth O(log(n)), and k = ℓ = n0.4,
where each gate (having two inputs and an output of length ℓ = n0.4), evaluates a function
with circuit complexity of Ω(2n0.5). The BC complexity of the protocol above only would be
Õ(n0.8) 5 for our information theoretic implementation.

Lastly, we point out that while our information-theoretic constructions have better BC
than the computational variants, the size of the correlated randomness for our information-
theoretic constructions grows exponentially with the number of parties (due to the OTTT
approach). However, the BC still remains sublinear in the number of parties for all our
constructions.

In Section 2, we compare the expressiveness of the above function classes of abelian,
non-abelian programs and tree-based formulas.

Open Problems. It remains an open question to determine the complete characterization
of functions for which BC-efficient protocols exist. In fact, since BC-efficient protocols are
known to be impossible for general functions even when no security is required [9], it would
also be interesting to understand which functions can be computed in the clear with low
bottleneck complexity.

2 Note that unlike abelian programs, some πxi depending on xi may crucially appear more than once, as
the group G is not commutative.

3 The construction is actually more general, and could allow for “generalized gates” with larger fan-in,
but we stick with 2 for simplicity.

4 Note that for balanced trees, d = log2(k · n), which is sublinear in n.
5 Õ ignores logarithmic factors.

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:5

1.2 Technical Overview

Our constructions have the following common two-step approach: (1) First, the private
inputs are aggregated in a BC-efficient way to obtain a joint common public input that “hides”
the private inputs. (2) Next, we consider an augmented version of the function f , say f ′

(that may be required to be kept secret) such that evaluating f ′ on the common public input
essentially corresponds to an evaluation of f . The evaluation of f ′ is carried out via IFSS.

Overview of IFSS. Before describing details of our protocols, we give a high-level overview
of the IFSS primitive. In a nutshell, IFSS allows a set of parties to evaluate a hidden function
f on a common public input x such that nothing beyond f(x) is revealed (as long as one of
the evaluators is honest). This evaluation is done in an incremental manner, where each party
computes its “share” and these shares are aggregated over a chain. In the garbled-circuit
based instantiation, these “shares” are additive shares of the label corresponding to the
common input x. Once this label is reconstructed (via aggregation over chain), the garbled
circuit computing f (given as part of the setup) is evaluated to compute the output. This is
the crux of BC-efficient evaluation in the constructions of [28], which satisfy computational
security.

For the information-theoretic instantiation, we use an approach based on secret-sharing
the truth-table inspired by the one-time truth table (OTTT) protocol of [24]. As already
noted by [7], this leads to information-theoretic FSS. We detail the construction and show
how it fits the IFSS framework.

In this protocol, parties are given an additive sharing of the (permuted) truth table of the
function being evaluated, as a part of the correlated randomness setup. Roughly speaking,
the parties first identify the relevant entry of the truth table (using their input and correlated
randomness) i.e. the one that corresponds to the correct output. The pointer to this entry
can be interpreted as the common input of the IFSS. Now, the evaluation is nothing but
aggregating the additive shares of the relevant entry (determined by this common input),
which can be done in a chain-like fashion to maintain BC-efficiency. This is the main idea of
the information-theoretic instantiation of IFSS.

Next, we describe our constructions. Note that for protocols to be BC-efficient, the
interaction involved in the above outlined common two-step approach must satisfy the
following two properties: (a) Each intermediate value that is communicated must be “small”.
(b) Privacy of the inputs must be maintained.

Abelian Programs. The structure of abelian programs (say h(x1, . . . , xn) = f(
∑n

i=1 xi)) is
such that it naturally supports property (a).

This is because the sum of inputs can be computed incrementally in a chain-like fashion
with the property that the size of the intermediate sums does not blow up. However, to
satisfy (b), the protocol of [28] makes parties aggregate their masked inputs instead (using
masks received as part of setup) to compute a masked sum (say z = y + R, where y denotes
the sum of inputs and R denotes the mask). Generalizing their construction, we view this
“masked sum” as the common input, and use IFSS for evaluation. More specifically, we
consider a (private) augmented function f ′R(z) = f(z−R) (with secret R hard-coded), which
first unmasks this masked sum to retrieve the sum y, upon which h is computed. We use
IFSS to compute f ′, yielding computational and information-theoretic BC-efficient protocols
(depending on whether the IFSS is instantiated using the garbling-based or OTTT based
approach).

ITC 2023

11:6 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

“read-k” Non-Abelian Programs. Similar to abelian programs, non-abelian programs (say,
h(x) = f(π1,xi1

·. . .·πt,xit
)) support property (a) as the input value to f (i.e. π1,xi1

·. . .·πt,xit
)

can be computed incrementally in a chain-like fashion (where party i1 forwards π1,xi1
to i2

who computes π1,xi1
· π2,xi2

and forwards this value to i3 and so on) while making sure that
the intermediate values remain “small”. To maintain property (b), the aggregation could
be done over masked inputs instead. However, unlike the case of abelian groups (which is
commutative), we need to be slightly more careful in case of non-abelian groups (which may
be non-commutative) to ensure that this aggregation of masked inputs happens in a specific
order. In our protocol, the aggregated common input corresponds to

(
rt · . . . (r2 · (r1 · π1,xi1

) ·
π2,xi2

) · . . . · πt,xit

)
; accordingly each party ij must compute its intermediate value by using

its random value as a prefix and πj,xij
as a suffix to the intermediate value received from

its neighbour on the chain. Once, parties have computed this common public input, we use
IFSS to compute the augmented function f ′, where f ′ first uses a (secret hard-coded) prefix
r−1
1 · r−1

2 . . . · ·r−1
t to unmask this common input and then compute f .

“Tree-based” read-k generalized formulas. Next, consider the case of “tree-like” formulas.
Consider one of the “generalized gates” say f(x1, . . . , xm) (whose number of inputs and output
size is “sufficiently small” 6 but could have any arbitrarily complicated structure). Unlike
the previous cases, we cannot exploit the structure of the function to support incremental
aggregation (that supports property (a)). Instead, every party involved in f must compute
its masked input (using a random value given as part of the setup) and communicate it in a
chain-like fashion without any incremental computation. These masked inputs are simply
appended (therefore the size of the intermediate values grows in this case) and this set of
masked values forms the aggregated common input. Note that the size of this aggregated
common input grows with the number of inputs to this “generalized” gate, which brings in
the need for restricting the size and number of inputs to these gates to be “small” (i.e. o(n))
for sublinear BC.

Once the common input is determined, we proceed to evaluation. For this, we consider
an instance of IFSS for each “generalized” gate and combine the intermediate outputs in a
tree-like fashion. For simplicity, consider a gate at the first level, computing f(1,2) that takes
two leaf nodes (corresponding to inputs x1 and x2) as input. As mentioned previously, the
aggregate common input corresponds to z = z1||z2, where zi = xi + ri for i ∈ [2], where ri are
random masks given during setup. An instance of IFSS with hidden function f ′(1,2) (that has
ri values as hard-coded inputs) and single common input z is initiated, that first unmasks
the random values from the set of masked inputs z and then computes the output of f(1,2).
This instance involves only the subset of parties holding one of these inputs x1 or x2 as
evaluators, not the set of all parties. Note that this does not violate security because even if
one of the parties contributing an input to f(1,2) is honest, by IFSS security, the parties will
not learn anything except of the output of f(1,2). Otherwise, if all parties are corrupted, they
know all their inputs anyway, so there is nothing to hide. More generally, the IFSS instance
corresponding to a root of a subtree involves only the parties whose input is one of the leaf
nodes of this subtree. This is crucial to maintain BC-efficiency.

However, this approach would result in parties learning the output of f(1,2) which may
not necessarily be leaked by the output of f . Therefore, instead of computing the original
f(1,2), we compute the modified function f ′(1,2) that “masks” the output of f(1,2) with a
random mask r(1,2) chosen during setup. We ensure correctness of computation by defining

6 More specifically, these parameters are bounded by ℓ such that k · d · ℓ is of size o(n).

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:7

the functions at the levels above accordingly – for instance, consider another function f(3,4)
at level 1 (with its similarly defined f ′(3,4) that “masks” the output of f(3,4) with random
mask r(3,4)). Suppose the “tree-like” formula had a function f(1,4) at level 2 that is supposed
to take as input y(1,2) and y(3,4) (respectively the outputs of f(1,2) and f(3,4)). We now
define f ′(1,4) as the function with hard-coded masks r(1,2),r(3,4) and r(1,4) that receives instead
masked inputs (y(1,2) + r(1,2)) and (y(3,4) + r(3,4)), unmasks them, evaluates f(1,4), and finally
masks the output with r(1,4) (unless this node corresponds to the root). The evaluations
are done level-by-level in an upward fashion until the function corresponding to the root
of the tree is computed. This demonstrates how the outputs of various instances of IFSS
computations are combined; completing the high-level description of this construction.

Lastly, we point that in our constructions, the common input used in the IFSS could
be dictated by the adversary and still “unknown” to the honest party when the evaluation
of IFSS begins. For e.g. consider the case of abelian programs, where the common input
is the sum of masked inputs and computed over a forward-pass of the chain. Suppose the
adversary corrupts a set of parties at the end of the chain and the evaluation of IFSS is
executed over the subsequent backward pass of the chain. In such a case, this common
input is in some sense still “uncommitted” (as the adversary can consider various versions
of the common input and try to recompute the IFSS incremental evaluations in her head).
Even though the adversary is passive, she can try to learn more information by trying to
obtain multiple evaluations of IFSS corresponding to different common inputs (referred to
as a residual function attack); which would breach security 7. Security of IFSS does not
help in this case as it holds only if all evaluators agree on the common input. However, our
constructions ensure that the common input gets “committed” as soon as the backward pass
reaches the first honest evaluator. The incremental computation by this honest evaluator
would “fix” the common input (in a way that it is not possible to recompute evaluations on
other common inputs any further), which creates the effect of “fixing” the corrupt evaluators’
inputs. We refer to respective technical sections for further details.

2 Comparison of the function classes

In this section, we discuss what kind of functions are captured by the function classes
considered in this work.

Abelian versus Non-Abelian Programs. We observe that indeed non-abelian programs
appear to be more expressive than abelian programs within our BC constraints. As a nice
simple example, fix the regular language L accepted by a “permutation” DFA (deterministic
finite automaton) that has {0, 1} as the set of input symbols, {q0, q1, q2} as the set of states
(with q0 as the start state and q2 as the accepting state) and δ as the transition function
specified by δ(qi, 1) = qi+1 mod 3, δ(q0, 0) = q1, δ(q1, 0) = q0, δ(q2, 0) = q2.

Consider a function h(x1, . . . , xm) (where each xj is a bit, where j ∈ {1, . . . , m}) that
outputs 1 if x ∈ L, and 0 otherwise. Assume each xj is assigned to some party and each party is
assigned at most k = o(n) bits at fixed (not necessarily consecutive) positions. To evaluate this
function, one can devise a simple non-abelian program h(x1, . . . , xm) = f(π1,xi1

· . . . · πt,xit
),

7 Note that even if the IFSS computes a “masked” output (like in the case of a non-root gate in the
construction for tree-like formulas), this would still violate security as the adversary could learn additional
information about private inputs of honest parties involved in this gate just by comparing these multiple
masked outputs corresponding to different common inputs.

ITC 2023

11:8 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

where all πt,xt ’s are in the group S3 (where S3 denotes a permutation group, whose elements
are permutations of a set M = {1, 2, 3}, and the group operation is the composition of
permutations), and for each t, πt,0 = (1, 2)(3) and πt,1 = (1, 2, 3) 8. The function f(π)
outputs 1 if and only if π(1) = 3 9. Note that this non-abelian program is over a “small”
group. However, it is not clear how to devise an abelian program that works with “small”
groups of similar size for this function.

We point that it is always the case that a function h : Dm → {0, 1} can be expressed as
an abelian program that works over the group Zm

|D| – Each party Pi simply computes xie⃗i,
where e⃗i is the i’th vector in the standard basis, which can be aggregated to compute the
sum, denoting the entire input. The problem is that this group is too large, and it is not
clear (to us) how to do much better with abelian programs for the above DFA example.

Non-Abelian Programs versus “Tree”-based Formulas. In terms of feasibility (within the
o(n) domain), the formula-based construction is more expressive, within our BC constrains.
This holds since we can simulate a non-abelian program involving k · n terms via a (nearly)
balanced tree of depth d = log(k) + log(n), using associativity of multiplication in the group.
So, a read-k program would result in a read-k formula. Plugging in our constructions using
the two approaches would result in their BC being very close, with only polylogarithmic
overhead for the formula-based construction.

Next, we discuss whether there also exists a transformation in the other direction i.e.
from formula to non-abelian programs. Given a generalized read-k formula, it is not always
clear how to devise a (non)-abelian program with small overhead as above. In particular, the
generic transformation due to Barrington [2] transforming a formula into a BP results in a
BP of length in quadratic in formula size, and constant width, which is already Ω(n2) for
non-trivial formulas (with size at least n), and is prohibitively expensive for BC. In fact, the
resulting BP is already a permutation BP, but this does not help us, due to the large k (size
of formula Ω(n2) implies that k must be Ω(n)). Despite the fact that non-abelian programs
allow computing an arbitrarily complicated function f after a sequence of compositions on
non-abelian group elements (where the sequence can be visualized as a permutation BP), it
is not clear how this would help in the above transformation.

Next, we observe that the formula-based solution works for branching programs 10

(BP’s). This is because the formulas with the “generalized gates” can support arbitrary
transformations induced by inputs between the BP layers, which can be composed due to
associativity of the function. As long as the width and parameter k of a “k-read BP’ is
“small”, the formula-based approach would be BC-efficient.

The above raises a question regarding if non-abelian programs support BPs. We observe
that they would support a special kind of BPs, namely, permutation BPs 11. In such a
program of width w, the transition from root forward can be viewed as a composition of

8 We use the cycle notation to express permutations. E.g. π = (12)(3) denotes the permutation where
π(1) = 2, π(2) = 1 and π(3) = 3 as (1, 2) denotes the cyclic permutation and 3 is left unchanged.

9 For e.g. consider the x = x1, . . . , x6 = 001011, where each Pi (i ∈ {1, 2, 3}) holds xi and xi+3. One can
check that x ∈ L and g(π1,0 · π2,0 · π3,1 · π4,0 · π5,1 · π6,1) = 1.

10 A directed acyclic graph in which the nodes are labeled by input variables and every nonterminal node
has two outgoing edges, labeled by 0 and 1

11 In a nutshell, these are layered branching programs, where every level’s transitions, for each input
value xi = b constitute a permutation πi,b [3]. Another difference between it and standard BP’s is
the way acceptance is defined. There is no root and accept/reject nodes, but rather a single resulting
composed permutations, and acceptance/rejection is defined by belonging to one of two sets of output
permutations, partitioning Sw. The width of such a program is the number of nodes, w, in each layer
except for the first and last ones.

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:9

permutations in Sw, which defines a non-abelian program. The output is then determined
based on whether the composed permutation maps 1 to an accept node (where the first and
last transition are adapted to be permutations in a natural way). If w = n, the resulting
group elements are too large for sublinear BC (even when transferring a single element). If
all permutations actually fall in a subgroup of Sw, we could work in that subgroup and hope
to obtain efficiency. Notably, non-abelian programs would not support general branching BP,
as it may not be possible to map the transformations between layers in a general BP to a
group structure (as it may not have an inverse or identity element). Lastly, we point that
permutation BPs are somewhat restricted, and moving from (regular) BP to a permutation
BP may have large costs in terms of w.

The above discussion argues that formulas are generally more expressive. However, there
are still situations where using the non-abelian program approach is more useful. For instance,
consider functions for which the resulting BC for the non-abelian program based protocol
is constant (as in the permutation DFA example above). In such a case, moving from the
non-abelian program construction to the formula-based construction, incurs a super-constant
overhead. In particular, a O(k · d)/O(k) = log(n) overhead for the information-theoretic
construction is incurred. So, the former construction would still be preferred if one wishes to
achieve the “ideal” best possible notion of BC-efficiency, namely constant BC.

3 Preliminaries

Notation. The cryptographic security parameter will be denoted by λ. The n parties
{P1, . . . , Pn} are pair-wise connected by secure and authentic channels, where n is polyno-
mially bounded. We operate with semi-honest security and assume that any adversary can
passively corrupt up to n− 1 parties.

We evaluate functions f : X → Y from a function class F . We often assume that X and
Y are groups endowed with an operation. We consider both abelian and non-abelian groups.

Security Model. We prove the security of our protocols based on the standard real/ideal
world paradigm and refer to Section A for the details.

3.1 Definitions
▶ Definition 1 (Bottleneck Complexity of a Protocol). Let CCi(Π) denote the expected number
of bits sent or received by Pi in an execution of Π, with worst case inputs. The bottleneck
complexity of an n-party protocol Π is defined as BC(Π) = maxi∈[n] CCi.

We use the formal definition of [9] for bottleneck complexity. Informally, the bottleneck
complexity of a protocol is the maximum communication complexity required by any party
in the protocol execution. We consider a protocol Π to be BC-efficient if the BC is sublinear
in the number of total parties.

▶ Definition 2 (Abelian Programs). Let G be an abelian group, S1, . . . , Sn be subsets of G,
and HG

S1,...,Sn
be the set of functions h : S1 × · · · × Sn → {0, 1} of the form h(x1, . . . , xn) =

f(Σn
i=1xi), for some f : G→ {0, 1}. We call such functions h abelian programs.

▶ Definition 3 (Non-Abelian Programs). Let (G, ·) be a non-abelian group, x1, . . . , xn be
inputs from domain D, and HG

D be the set of functions h : {D}n → {0, 1} of the form
h(x1, . . . , xn) = f(π1,xi1

· . . . · πt,xit
), where each πj,xij

is an element of a group G that
depends only on j, xij (where ij ∈ {1, . . . , n}) for some f : G → {0, 1}. We call such
functions h non-abelian programs.

ITC 2023

11:10 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

3.2 Primitives

Garbled Circuits. A garbling scheme, introduced by Yao [30] and formalized by Bellare
et al. [5], enables a party to “encrypt” or “garble” a circuit in such a way that it can be
evaluated on inputs – given tokens or “labels” corresponding to those inputs – without
revealing what the inputs are.

▶ Definition 4 (Garbling Scheme). A projective garbling scheme is a tuple of efficient
algorithms GC = (garble, eval) defined as follows.
garble(1λ, C) → (GC, K): The garbling algorithm garble takes as input the security para-

meter λ and a boolean circuit C : {0, 1}ℓ → {0, 1}m, and outputs a garbled circuit GC and
ℓ pairs of garbled labels K = (K0

1 , K1
1 , . . . , K0

ℓ , K1
ℓ). For simplicity we assume that for

every i ∈ [ℓ] and b ∈ {0, 1} it holds that Kb
ℓ ∈ {0, 1}λ.

eval(GC, K1, . . . , Kℓ) → y: The evaluation algorithm eval takes as input the garbled circuit
GC and ℓ garbled labels K1, . . . , Kℓ, and outputs a value y ∈ {0, 1}m.

We require the following properties of a projective garbling scheme:

Correctness. We say GC satisfies correctness if for any boolean circuit C : {0, 1}ℓ → {0, 1}m

and x = (x1, . . . , xℓ) it holds that Pr[eval(GC, K[x]) ̸= C(x)] = negl(λ) where (GC, K) ←
garble(1λ, C) with K = (K0

1 , K1
1 , . . . , K0

ℓ , K1
ℓ), and K[x] = (Kx1

1 , . . . , Kxℓ

ℓ).
Next, we formally define the security notions we require for a garbling scheme. When

garbled circuits are used in such a way that decoding information is used separately, oblivi-
ousness requires that a garbled circuit together with a set of labels reveals nothing about the
input the labels correspond to, and privacy requires that the additional knowledge of the
decoding information reveals only the appropriate output. In our work, we do not consider
decoding information separately (but rather, consider it to be included in the garbled circuit),
so we do not need obliviousness.

Privacy. Informally, privacy requires that a garbled circuit together with a set of labels
reveal nothing about the input the labels correspond to (beyond the appropriate output
and the side-information). For our constructions, we assume the side-information to be the
topology of the circuit, denoted as θ(C).

More formally, we say that GC satisfies privacy if there exists a simulator simGC such
that for every PPT adversary A, it holds that Pr[A wins] ≤ 1

2 + negl(λ) in the following
experiment:

Adversary A Challenger C

C : {0, 1}ℓ → {0, 1}m

x = (x1, . . . , xℓ) ∈ {0, 1}ℓ

b← {0, 1}
if b = 0:

(GC, (K0
1 , K1

1 , . . . , K0
ℓ , K1

ℓ))← garble(1λ, C)
Ki = K

xi
i

for i ∈ [ℓ]
if b = 1:

(GC, K1, . . . , Kℓ)← simGC(1λ, θ(C), C(x))
GC, K1, . . . , Kℓ

b′

A wins if b = b′

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:11

4 Incremental Function Secret-Sharing

We begin by defining incremental function secret-sharing (IFSS), which allows a set of parties
to evaluate a hidden function on a joint input. Diverging from the original definition of
function secret sharing [7], IFSS requires shares to be aggregated incrementally on a chain,
in a BC-efficient communication pattern. IFSS can be instantiated with garbled circuits or
one-time truth tables and can be used in BC-efficient protocols for particular function classes.

▶ Definition 5 (Incremental Function Secret-Sharing). An n-party incremental function secret-
sharing (IFSS) scheme for a function class F is a pair of PPT algorithms (Gen, Eval) with
the following syntax:

Gen(1λ, f): On input security parameter 1λ and function description f ∈ F , Gen outputs
keys (k1, . . . , kn);
Eval(i, ki, x, yi+1): On input party index i, a key ki, input string x, and the output of
the next party yi+1, the algorithm Eval outputs a value yi;

We require the following:
Correctness: For all (f : X → Y) ∈ F , x ∈ X we require that the following holds except

with negligible probability:

Eval(1, k1, x, Eval(2, k2, x, . . . , Eval(n, kn, x,⊥))) = f(x)

Privacy: Let H be the set of honest parties. Then if k⃗ ← Gen(1λ, f), we define k⃗−H to be k⃗

where we replace, for all i ∈ H, ki with ⊥. We also define EvalH(k⃗, x) to compute, for
i = n, . . . , 1, yi = Eval(i, ki, x, yi+1) (with yn+1 = ⊥), and then output yi for all i ∈ H.
We say that an IFSS satisfies privacy if, there exists a PPT simulator Sim such that for
all f ∈ F ,H ⊂ [n], x ∈ X :

{k−H, EvalH(k⃗, x) : k⃗ ← Gen(1λ, f)}λ,f,x, and {Sim(1λ,H, x, f(x))}λ,f,x

are (unconditionally or computationally) indistinguishable.
Bottleneck Complexity: We define the bottleneck complexity BC of an IFSS for F as the

expected size of the largest yi, for all i ∈ [n], f ∈ F , x ∈ X .

4.1 Instantiating IFSS
We show two instantiations of IFSS, one based on one-way functions and one with uncondi-
tional security.

With Unconditional Security. IFSS can be implemented with information theoretic security
using an approach similar to the OTTT protocol [24] (as observed in [7]). The construction
is as follows: Gen(1λ, f) chooses random vectors T1, . . . , Tn whose dimensionality is |Xf |, the
size of the input domain of f , such that for all possible inputs x ∈ Xf ,

∑
i Ti[x] = f(x). Gen

then outputs ki = Ti. The evaluation algorithm Eval(i, ki, x, yi+1) outputs yi = Ti[x] + yi+1
(for yi+1 ̸= ⊥ and yi = Ti[x] otherwise).

The protocol satisfies correctness since by construction y1 =
∑

i Ti[x] = f(x). It also
satisfies unconditional privacy: The simulator Sim(1λ,H, x, f(x)) samples k−H = {Ti}i̸∈H
as a set of uniform random strings of length |Xf |, and random {zi}i∈H from Yf . Then it
simulates the outputs of the Eval function as follows: it sets y1 = f(x), and yi+1 = yi− ((i ∈

ITC 2023

11:12 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

H) ? zi : Ti[x]) 12 for all i < n, and finally outputs (k−H, {yi}i∈H). Indistinguishability
follows since in the simulation, like in the real protocol, the corrupt parties receive uniformly
random ki, and the yi values are uniformly distributed under the constraint that y1 is the
result of the computation.

Note that since the constructions leaks X ,Y , we assume that for all f ∈ F Xf = X ,Yf = Y .
For this IFSS, BC = O(log |Y|). (Note that the size of the keys can be exponential in the
input size, namely O(log |Y| · |X |), like the original OTTT protocol).

From One-Way Functions. IFSS can be implemented from garbled circuits (which in turn
can be implemented from one-way functions) by abstracting the “Phase 2” step of the
protocol for abelian programs presented in [28]. The construction is as follows: the algorithm
Gen(1λ, f) runs (GC, K)← garble(1λ, f). Then it picks uniformly random {Ki}i∈[n] under
the constraint that

∑
i Ki = K. Finally it outputs ki = Ki for all 1 ̸= i ∈ [n] and

k1 = (GC, K1). The evaluation algorithm Eval(i, ki, x, yi+1), for all i ̸= 1, selects the shares
of the encoding information of ki = Ki that correspond to x i.e., Ki[x] = ((Ki)x1

1 , . . . , (Ki)xℓ

ℓ)
where ℓ = ⌈log |X |⌉, and finally outputs yi = Ki[x] + yi+1 (for yi+1 ̸= ⊥ and yi = Ki[x]
otherwise). For i = 1 the Eval algorithm follows the instructions above to produce y1, and
finally outputs eval(GC, y1).

The protocol satisfies correctness since by construction y1 =
∑

i Ki[x] = K(x), and by
correctness of the garbling scheme eval(GC, K[x]) = f(x) except with negligible probability.

It also satisfies computational privacy: The simulator Sim(1λ,H, x, f(x)) runs the simu-
lator for the garbled circuits (GC, Y)← simGC(1λ, θ(F), f(x)), where Y is the set of ℓ labels
that make the simulated garbled circuit GC output f(x). The simulator then picks {Ki}i̸∈H,
a set of uniform random strings of the same length as K, and random strings {zi}i∈H of
the same length as K[x]. Then it simulates the outputs of the Eval function as follows:
it sets y1 = Y and yi+1 = yi − ((i ∈ H) ? zi : Ki[x]) for all i < n, and finally outputs
(k−H, {yi}i∈H).

An adversary A that can distinguish between the real and simulated distribution can
easily be used to break the privacy property of the underlying garbling scheme. The reduction
B queries the GC challenger C on input f, x and receives (GC, Y) in return. It then picks
random Ki for all i ̸∈ [n] and computes the yi as the simulator described above. The resulting
distribution corresponds to the real protocol execution if the GC challenger sampled b = 0, or
the simulated one if b = 1, therefore the reduction B wins in the GC privacy game with the
same advantage as the IFSS adversary A distingushes between the real and simulated view.

Note that privacy of the GC scheme leaks some information θ(f) about the function f ,
therefore we assume for simplicity that for all f ∈ F , θ(f) = θ(F). However, given an upper
bound of the size of f ∈ F it is possible to remove this requirement using universal circuits,
albeit with an efficiency loss, and this is reflected in the Lemma below. For the GC based
IFSS, BC = O(λ · log |X |). Note that the size of the keys is polynomial in the input size for
this instantiation, namely O(λ · (log |X |+ |f |)) for the first party and O(λ · log |X |) for the
others.

The discussion in this subsection can be summarized in the following:

▶ Lemma 6. Let F be a class of functions f : X → Y, λ the security parameter. Then for
all n:

It is possible to implement IFSS for F with BC = O(log |Y|) with unconditional security.
If one-way functions exist, it is possible to implement IFSS for F with BC = O(λ · log |X |)

12 Here, a ? b : c is used to denote the folllowing – if a holds, then b; else c.

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:13

In particular, the BC complexity in both cases is independent of n. Note however that the
size of the correlated randomness in the variant with unconditional security is exponential in
the input size.

Using IFSS in the compiler of [9]. The work of [9] presents a compiler that transforms
an insecure protocol to secure protocol while preserving BC. The compiler is based on the
tool of “incremental FHE”, which is similar to FHE except that its “joint” public key and
decryption of ciphertext can be computed by incrementally combining shares provided by
different parties. The main idea of the compiler is to execute the insecure protocol under
the hood of (incremental) FHE to compute the encryption of the output (say ciphertext ct).
Next, the parties combine their partial decryptions (computed locally by each party using its
share of secret key) corresponding to ct in an incremental manner to reconstruct the final
decrypted output.

We analyze whether this compiler can be viewed in terms of the common two-step
approach of our constructions (elaborated in the technical overview, where the first step
is to compute a “masked” aggregate common input and the second step is to use IFSS to
evaluate a hidden function on this input). Recall that in our constructions, the first step
involves masking the inputs using random values from setup (and either aggregating them
by incremental computation or concatenating them) and the second step involves using IFSS
to carry out the unmasking and compute the relevant function. On the other hand, in the
above compiler, the first step uses FHE to compute the encryption of output ct directly. We
observe that considering ct to be the common joint input, now IFSS can in fact be used to
carry out the “decryption” function of FHE. In some more detail, IFSS could be used to
evaluate the “hidden” function which has the secret decryption keys hardcoded and computes
the decryption of the ciphertext ct. The above approach would result in making the compiler
rely on correlated randomness, but would allow to instantiate it using any (non-incremental)
FHE scheme. This shows that IFSS can serve as a general useful building block in BC-efficient
constructions.

5 Low BC-complexity for Abelian Programs from IFSS

In this section, we generalize the results of [28] using the IFSS primitive defined above. Doing
so allows us to achieve an information-theoretic BC-efficient protocol for abelian programs.

Note that we can’t use IFSS directly in MPC protocols for two reasons: first, all parties
in IFSS would need to know all the inputs X⃗. This could be fixed by introducing a mask
R⃗, reveal X⃗ + R⃗ to all parties, and then modify the function so that it removes the mask
securely inside the IFSS. The second issue is that revealing (even a potentially masked) X⃗ to
all parties would lead to high BC since O(|X⃗|) = O(n).

Recall that an abelian program h can be expressed as h(X⃗) = f(
∑n

i=1 Xi) for some
f : G → {0, 1}, where G denotes an abelian group. We observe that the specific function
class of abelian programs has a special structure that allows us to view it as a single-input
function rather than an n-input function h. Exploiting this observation, we fix the above
problems as follows: first, the trusted dealer picks a (single) random R ∈ G, defines the
function f ′R(Z) = f(Z −R), and then gives all parties Pi an additive share ri of R, which
they can use to mask their inputs, and an IFSS key ki for the function f ′R.

In the protocol, the parties securely compute a masked sum of their inputs (say Z = X +R,
where R denotes the mask and X denotes the sum of inputs) in a BC-efficient way over a chain
(similar to the protocol of [28]). The parties mask their inputs Xi with ri as Zi = Xi + ri, add

ITC 2023

11:14 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

it to
∑i−1

j=1 Zj , which they received from the previous party Pi−1, and send the result to Pi+1.
The last party in the chain then can recover Z = X + R, and begins the second phase where
each party Pi sends Z together with yi = Eval(i, ki, Z, yi+1) to Pi−1, so that P1 can finally
retrieve f ′R(Z) = f(Z − R) = f(X) Intuitively, security follows from the use of the masks
and privacy of IFSS which hides which function (and therefore mask) was used. The BC of
the protocol is inherited from the IFSS plus the size of elements in G, both independent of n.

The formal protocol appears in Figure 1 and we state the theorem below (whose proof
appears in Section B).

Protocol Πabl

Private input. Each party Pi has input Xi ∈ G from group G.
Output. y = f(

∑n
i=1 Xi), where the output is a single bit.

Correlated Randomness Setup. The setup involves the following:

1. For each i ∈ [n], sample ri ∈ G, such that
∑n

i=1 ri = R.
2. Define the function f ′R(Z) that computes f(Z −R) on the input Z. Use an IFSS

scheme to compute (k1, . . . , kn)← Gen(1λ, f ′R).
3. Output (ri, ki) to Pi for each i ∈ [n].

The Protocol. The following steps are run in the online phase:
Phase 1 (Round 1 to Round n). (Input Masking) In round i, Pi does the following:

If i = 1, let Vi = ri + Xi.
If i ≠ 1, let Vi−1 denote the message received from Pi−1 during the previous
round. Compute Vi ← Vi−1 + Xi + ri.
If i < n, send Vi to Pi+1.
If i = n, set Z = Vn.

Phase 2 (Round n + 1 to Round 2n) (IFSS Evaluation) Each Pi does the following
in sequence, starting from i = n to 1:

If i = n, set yi = Eval(i, ki, Z,⊥).
If i ̸= n, parse the message received from Pi+1 in the previous round as (Z, yi+1).
Compute yi = Eval(i, ki, Z, yi+1).
If i ̸= 1 Send (Z, yi) to Pi−1.

Output Computation. P1 sets the output y = y1.
Phase 3 (Round 2n + 1 to 3n) (Output Transfer) For i starting from 1 to n, each Pi

does the following in sequence:

If i ̸= 1, let y denote the output received from Pi−1 in previous round.
If i ̸= n, send y to Pi+1.
Output y.

Figure 1 BC-efficient protocol for Abelian Programs.

▶ Theorem 7. Protocol Πabl securely computes the abelian program h against a semi-honest
adversary corrupting upto n− 1 parties. The BC of Πabl is O(log |G|) and O(λ log |G|) for
the information-theoretic and the computational variant respectively.

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:15

Lastly, we refer to the full version [26] for several protocols, which directly use Πabl as a
subprotocol in a BC-efficient way. In particular, we present protocols to compute maximum
among a set of values and any function of the maximum.

6 BC-efficient MPC for tree-structured circuits

In this section, we build on the ideas of our generalized protocol for abelian programs in
Figure 1 to formulate BC-efficient protocols for additional classes of functions.

We present a protocol that using IFSS allows to evaluate, in a BC-efficient way, functions
that can be expressed as a tree of sub-functions, each taking inputs only from a subset of
parties. This can be visualized as a tree with the leaves representing inputs and the non-leaf
nodes representing functions. More specifically, the root of a sub-tree would represent the
sub-function involving the values in the sub-tree. For our construction to be BC efficient,
we require that each sub-function involves at most o(n) inputs 13. Further, the resulting
tree depth d = logm(n) must also be sublinear in n. As a concrete example, the function
g = F

(
f1(x1

1, . . . , x1
m), . . . , fB(xB

1 , . . . , xB
m)

)
, can be expressed as 2-level tree with m =

√
n,

where the fi’s denote the sub-functions at level 1 and F denotes the function (represented
by the root) that aggregates the outputs of these sub-functions.

The main idea is that the subset of parties involved in computation of a single sub-function
first interact among themselves to compute the outputs of this sub-function, which are later
aggregated to compute the final output. In order to “hide” the outputs of these sub-functions
(since they may not necessarily be leaked by the output), the sub-functions are tweaked to
compute a “masked” output instead, using a mask chosen by the setup. When multiple
“masked” outputs are taken as inputs to another sub-function (at a higher-level of the tree),
the sub-function is further tweaked to unmask these values and then compute the function.

We observe that the above approach for an m-ary tree of depth d = logm n would result
in BC of Ω(m logm n) Note that this term m · logm n incurs the least communication when
m = 2. Since choosing m = 2 results in better BC-efficiency, we focus only on binary trees in
our formal protocol specification.

For ease of exposition, we use a slightly different naming convention and let the n parties
be P0, . . . , Pn−1, with n = 2d, and we consider a function f(x0, . . . , xn−1) that can be
decomposed with a binary tree of binary functions as explained below. Note that this can
be easily generalized to the k-read setting by letting each party “control” k different inputs
of the functions, but doing in the protocol description below would introduce unnecessarily
cumbersome notation.

We start by introducing some useful notation to explain our protocol: We label the
leaves of the binary tree with the bitstrings corresponding to the indices of the parties i.e.,
0d, 0d−11, . . . , 1d, and we assign the input of each party to its corresponding leaf. (We will
use integers and strings representing them interchangeably in the protocol description i.e.,
P0 = P0d , P1 = P0d−11, . . .). The internal nodes of the tree correspond to the functions into
which f can be decomposed. To label the internal nodes/functions, we introduce the wildchar
∗, and we label the n/2 parents of the leaf nodes as 0d−1∗, 0d−21∗, . . . , 1d−1∗, assigning one
function to each such node. We continue introducing an extra wildchar ∗ every time we

13 However, if there is a BC-efficient protocol independent of the number of inputs (such as our protocol
for abelian programs) that can be used to compute the sub-function, then our construction does not
require the number of inputs to this sub-function to be sublinear in n.

ITC 2023

11:16 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

climb a layer of the tree until we reach the root that gets labeled as ∗d, corresponding to
the function f∗d . For simplicity, we assume that all the inputs and the outputs of all the
functions in the tree are elements of the same group G.

We also introduce some notation to deal with strings with wildchars: We say a string
s ∈ {0, 1, ∗}d is valid if the wildchar ∗ is only followed by other ∗ wildchars (e.g., 0∗ is valid
while ∗0 is not). Then, given a valid string s, we denote by s|b the (valid) string s where the
first wildchar ∗ is replaced by the bit b. Finally, given a valid string s we define [s] ⊆ {0, 1}d

to be the set of all strings that can be obtained when replacing the wildchars ∗ in s with bits.
We can now conveniently describe how to decompose the function f(x1, . . . , xn): for

all valid strings s ∈ {0, 1, ∗}d (starting with the parents of the leaves) we compute xs =
fs(xs|0, xs|1), and finally we let the output be f(x1, . . . , xn) = f∗d(x∗d−10, x∗d−11) = x∗d . In
other words, we begin by pairing the leaf inputs two-by-two, then combine the results of
these computations two-by-two climbing the tree until we reach the root.

We now need to address two issues in order to evaluate such functions securely and in a
BC-efficient way. First, we need to make sure that no intermediate values are leaked. This
can be solved by assigning a mask rs|b on each edge of the tree, such that the child function
fs|b will mask its output with rs|b, and its parent function will de-mask the inputs before
evaluating the function. That is, instead of evaluating fs(xs|0, xs|1) we will evaluate using an
IFSS scheme f ′s(zs|0, zs|1) = fs(zs|0 − rs|0, zs|1 − rs|1) + rs (where the root has no mask i.e.,
r∗d = 0). Second, to make sure that the overall protocol is BC-efficient, we will only let the
parties Pi with i ∈ [s] participate in the secure evaluation of f ′s. Intuitively, this is fine since
if all parties i ∈ [s] are corrupt then they would already be able to compute all inputs and
outputs in the subtree of the function fs, thus it does not matter if those masks leak due to
the fact that all parties involved in those IFSS computations are corrupt.

The formal description and details of our protocol appear in Section C.

References
1 Prabhanjan Ananth, Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit

Sahai. From FE combiners to secure MPC and back. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019, Part I, volume 11891 of LNCS, pages 199–228. Springer, Heidelberg,
December 2019. doi:10.1007/978-3-030-36030-6_9.

2 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc(1). In Juris Hartmanis, editor, Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,
pages 1–5. ACM, 1986. doi:10.1145/12130.12131.

3 David Arno Barrington. Width-3 permutation branching programs. Laboratory for Computer
Science, Massachusetts Institute of Technology, 1985.

4 Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and Anat
Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 387–404.
Springer, Heidelberg, August 2014. doi:10.1007/978-3-662-44381-1_22.

5 Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM
Press, October 2012. doi:10.1145/2382196.2382279.

6 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988. doi:10.1145/62212.62213.

7 Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.
doi:10.1145/2976749.2978429.

https://doi.org/10.1007/978-3-030-36030-6_9
https://doi.org/10.1145/12130.12131
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/2976749.2978429

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:17

8 Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 356–376. Springer, Heidelberg, March 2013.
doi:10.1007/978-3-642-36594-2_21.

9 Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. The bottleneck
complexity of secure multiparty computation. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 24:1–
24:16. Schloss Dagstuhl, July 2018. doi:10.4230/LIPIcs.ICALP.2018.24.

10 Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, January 2000. doi:10.1007/s001459910006.

11 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.
doi:10.1145/62212.62214.

12 Geoffroy Couteau. A note on the communication complexity of multiparty computation in the
correlated randomness model. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part II, volume 11477 of LNCS, pages 473–503. Springer, Heidelberg, May 2019. doi:
10.1007/978-3-030-17656-3_17.

13 Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In Cynthia Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pages 501–520. Springer, Heidelberg, August
2006. doi:10.1007/11818175_30.

14 Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith. Scalable
multiparty computation with nearly optimal work and resilience. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 241–261. Springer, Heidelberg, August 2008.
doi:10.1007/978-3-540-85174-5_14.

15 Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael Raskin. On
the communication required for unconditionally secure multiplication. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 459–488.
Springer, Heidelberg, August 2016. doi:10.1007/978-3-662-53008-5_16.

16 Reo Eriguchi, Kazuma Ohara, Shota Yamada, and Koji Nuida. Non-interactive secure
multiparty computation for symmetric functions, revisited: More efficient constructions and
extensions. In Tal Malkin and Chris Peikert, editors, CRYPTO, 2021.

17 Rex Fernando, Yuval Gelles, Ilan Komargodski, and Elaine Shi. Maliciously secure massively
parallel computation for all-but-one corruptions. In CRYPTO 2022, 2022.

18 Rex Fernando, Ilan Komargodski, Yanyi Liu, and Elaine Shi. Secure massively parallel
computation for dishonest majority. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 379–409. Springer, Heidelberg, November 2020. doi:
10.1007/978-3-030-64378-2_14.

19 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987. doi:10.1145/28395.28420.

20 S. Dov Gordon, Tal Malkin, Mike Rosulek, and Hoeteck Wee. Multi-party computation of
polynomials and branching programs without simultaneous interaction. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 575–591.
Springer, Heidelberg, May 2013. doi:10.1007/978-3-642-38348-9_34.

21 Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Rabin. Secure multiparty
computation with general interaction patterns. In Madhu Sudan, editor, ITCS 2016, pages
157–168. ACM, January 2016. doi:10.1145/2840728.2840760.

22 Shai Halevi, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. Best possible information-
theoretic MPC. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 255–281. Springer, Heidelberg, November 2018. doi:10.1007/
978-3-030-03810-6_10.

ITC 2023

https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.4230/LIPIcs.ICALP.2018.24
https://doi.org/10.1007/s001459910006
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/978-3-030-64378-2_14
https://doi.org/10.1007/978-3-030-64378-2_14
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-642-38348-9_34
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-030-03810-6_10

11:18 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

23 Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Computing
without simultaneous interaction. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 132–150. Springer, Heidelberg, August 2011. doi:10.1007/978-3-642-22792-9_
8.

24 Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In Amit
Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 600–620. Springer, Heidelberg, March
2013. doi:10.1007/978-3-642-36594-2_34.

25 Yuval Ishai, Manika Mittal, and Rafail Ostrovsky. On the message complexity of secure
multiparty computation. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I,
volume 10769 of LNCS, pages 698–711. Springer, Heidelberg, March 2018. doi:10.1007/
978-3-319-76578-5_24.

26 Hannah Keller, Claudio Orlandi, Anat Paskin-Cherniavsky, and Divya Ravi. Mpc with low
bottleneck-complexity: Information-theoretic security and more. Cryptology ePrint Archive,
Paper 2023/683, 2023. URL: https://eprint.iacr.org/2023/683.

27 Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In 33rd ACM STOC, pages 590–599. ACM Press, July 2001. doi:10.1145/380752.
380855.

28 Claudio Orlandi, Divya Ravi, and Peter Scholl. On the bottleneck complexity of mpc with
correlated randomness. International Conference on Practice and Theory of Public-Key
Cryptography, 2022.

29 Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications.
In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE Computer Society Press, October
2018. doi:10.1109/FOCS.2018.00086.

30 Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, November 1982. doi:10.1109/SFCS.1982.38.

31 Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986. doi:10.1109/SFCS.1986.
25.

A Security Model

We prove the security of our protocols based on the standard real/ideal world paradigm.
Essentially, the security of a protocol is analyzed by comparing what an adversary can do in
the real execution of the protocol to what it can do in an ideal execution, that is considered
secure by definition (in the presence of an incorruptible trusted party). In an ideal execution,
each party sends its input to the trusted party over a perfectly secure channel, the trusted
party computes the function based on these inputs and sends to each party its respective
output. Informally, a protocol is secure if whatever an adversary can do in the real protocol
(where no trusted party exists) can be done in the above described ideal computation. In this
work, the adversary is assumed to be passive (alternately, referred to as being semi-honest) –
the corrupt parties must follow the protocol specifications. However, the adversary attempts
to learn private information by observing the view of the passively corrupt parties. We refer
to [10] for further details regarding the security model.

In more detail, let Π be a protocol and F be a functionality. Let I denote the set of
parties that are corrupt (of size at most n− 1). The “ideal” world execution involves parties
{P1, . . . , Pn}, an ideal adversary S who controls the parties in I. The “real” world execution
involves the PPT parties {P1, . . . , Pn}, and a real world adversary A who corrupts the parties
in I passively. The view of a party in the real world is defined to be its random tape, together
with all messages received during the execution of the protocol. In the ideal world, the

https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-319-76578-5_24
https://doi.org/10.1007/978-3-319-76578-5_24
https://eprint.iacr.org/2023/683
https://doi.org/10.1145/380752.380855
https://doi.org/10.1145/380752.380855
https://doi.org/10.1109/FOCS.2018.00086
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:19

simulator S is given as input nothing but the corrupt parties’ inputs sent to the trusted party
and the outputs they receive from the trusted party. If S is able to “simulate” the real-world
view with just this information, intuitively, security must hold. This is formalized below.

We define the following distributions of random variables.
REALΠ(1λ, I; x1, . . . , xn): suppose Π is run with security parameter λ where each party

Pi runs the protocol honestly using private input xi. Let Vi denote the view of party
Pi at the end of the protocol execution and let yi denote the output of Pi. Output(
{Vi}i∈I , (y1, . . . , yn)

)
.

IDEALF,S(1λ, I; x1, . . . , xn): Let (y1, . . . , yn)← F(x1, . . . , xn). Output
(
S(I, {xi, yi}i∈I),

(y1, . . . , yn)
)

A protocol is secure against passive adversaries if the corrupted parties in the real world
have views that are indistinguishable from their views in the ideal world.

▶ Definition 8. A protocol Π securely realizes F if there exists a PPT ideal world adversary
S, such that for every subset of corrupt parties I and all inputs x1, . . . , xn, the following two
distributions are computationally indistinguishable:

REALΠ(1λ, I; x1, . . . , xn) c
≈ IDEALF,S(1λ, I; x1, . . . , xn)

B Proof of Theorem 7

Let I and H = P\I denote the set of indices corresponding to corrupt and honest parties
respectively. Since we are running a protocol on a chain, it is useful to be able to talk
about corrupt parties who receive messages from honest parties, and we therefore define IL

(resp. IR) to be the sets of all i ∈ I such that i− 1 ∈ H (resp. i + 1 ∈ H).
To prove security, we define a simulator S that simulates the real-world view of the

corrupt parties. Recall that S is given (I, {xi}i∈I , y).

Setup simulation. Run ({ki}i∈I , {yi}i∈H)← simIFSS(1λ,H, Z ′, y), where simIFSS denotes
the simulator of the IFSS scheme’s Gen and Eval functionality for a function class F computing
f ′R(Z) = f(Z−R) (note that the function class is independent of the value R in the function).
Z ′ is chosen uniformly at random from the elements of G.

Additionally, for each i ∈ I, sample ri uniformly in G, and include (ki, ri) in the view
of Pi.

Phase 1 Simulation. We need to simulate Vi−1 for all i ∈ IL. We do so by choosing
uniformly random Vi−1 from G for all such i ∈ IL, except the largest one, which we denote
by ĩ, which we simulate by computing Vĩ−1 = Z ′ −

∑
j≥ĩ(Xj + rj) (In other words we define

the message sent by the honest party with the largest index, to be consistent with the Z ′

which was chosen when simulating the IFSS, the input of the corrupt parties and their shares
of R which were already defined during setup).

Phase 2 Simulation. We include in the view of all Pi with i ∈ IR the tuple (Z ′, yi+1),
where yi+1 was received from the IFSS simulator.

Phase 3 Simulation. We include in the view of all Pi with i ∈ IL the result y.
Below, we argue that the views of corrupt parties in the real and ideal world are

indistinguishable via a series of intermediate hybrids:

ITC 2023

11:20 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

Hyb0 : Same as the real-world execution.
Hyb1 : Same as Hyb0, except that the values ki for all i ∈ I and all yi+1 for i ∈ IR are
computed using the IFSS simulator on input (H, Z, f(x)).
This is in contrast to the previous hybrid, where the true IFSS evaluation is used instead of
a simulator, changing the ki of corrupt parties and yi of honest parties. Indistinguishability
follows from the privacy of IFSS.
Hyb2 : Same as Hyb1, except that R is not used anymore to define the ri : i ∈ I, which
are instead just chosen at random from G. Since the ri of the honest parties are not part
of the view the two distributions are identically distributed.
Hyb3 : Same as Hyb2, except that a random Z ′ is input to the IFSS simulator, and
Vi : i ∈ I are simulated as decribed in “Phase 1 Simulation”. This is in contrast to the
previous hybrid, where Z is computed from the Vi values, and Vi are computed based
on the parties’ inputs. Since the ri of the honest parties are not part of the view the
two distributions are identically distributed. Note that in this hybrid we do not use the
inputs of the honest parties anymore.

Since Hyb3 corresponds to the simulated execution and each pair of consecutive hybrids
are indistinguishable, this completes the proof that the views of corrupt parties in the real
and ideal worlds are indistinguishable.

BC-Analysis. We note that in Phase 1 and 3, the maximum communication complexity
incurred by a party is log |G|. In Phase 2, a party incurs the BC of the IFSS instance (in
addition to |Z| = log |G|), which is O(1) for the information-theoretic instantiation and
O(λ log |G|) for the computational instantiation. We can thus conclude that the resulting BC
of the information-theoretic protocol for abelian programs is O(log |G|). The computational
variant (which is the same as the construction in [28]) has a BC of O(λ log |G|).

C BC-efficient protocol for tree-structured circuits

We present the formal description of the protocol (Figure 2). For convenience, we enhance
the notation of the IFSS generation algorithm Gen to include an extra parameter S ⊆ [n],
which indicates which subset of parties should receive keys i.e., running (k0, . . . , kn−1) ←
Gen(1λ, S, f) returns |S| IFSS keys ki for i ∈ S and sets ki = ⊥ for i ̸∈ S.

Correctness. Thanks to the correctness of the IFSS scheme the output of each node in the
tree is computed correctly, meaning that the input masks are removed by f ′s before evaluating
fs and adding the output mask. Finally, since the mask of the root r∗∗ is 0, the output of
the final computation z∗∗ is equal to f(x0, . . . , xn−1).

BC-Analysis. First, we note that to transfer the masked inputs, a party sends messages of
size at most O(log |G|). Next, consider evaluation of a specific sub-function. Here, transferring
masked outputs would require a party to send messages of size at most O(log |G|) along
a chain. Next, the steps using IFSS incur communication of size at most O(λ log |G|) for
GC-based instantiation and O(log |G|) for the OTTT-based instantiation. Since the above
occurs for each level and there are log(n) levels, we can conclude that the overall BC of the
protocol is O(λ · log |G| · log(n)) for the computational variant and O(log |G| · log(n)) for
the information-theoretic variant. The above discussion assumes balanced trees. If this is
not the case, more generally, for depth d, the BC is O(λ · log |G| · d) for the computational
variant and O(log |G| · d) for the information-theoretic variant.

H. Keller, C. Orlandi, A. Paskin-Cherniavsky, and D. Ravi 11:21

Protocol Πtree

Private input. There are n = 2d parties. Each party Pi, with i = 0, . . . , n− 1 has input
xi. We assume all inputs are from some goup G.

Correlated Randomness Setup.

1. For each valid string s ∈ {0, 1, ∗}d choose a uniform random mask rs from G,
except for r∗d which is set to 0.

2. For each valid string s ∈ {0, 1, ∗}d \ {0, 1}d (e.g., for all nodes except the leaves)
run the IFSS setup

(ks
0, . . . , ks

n−1)← Gen(1λ, [s], f ′s)

(remember that ks
i = ⊥ for all i ̸∈ [s]) where f ′s is defined as

f ′s(zs|0, zs|1) = fs(zs|0 − rs|0, zs|1 − rs|1) + rs

Finally, send to each party Pi their mask ri and the keys ks
i for all s such that i ∈ [s].

The Protocol. The following steps are run in the online phase of the protocol:

1. Transferring Masked Inputs for Leaf Nodes.
Each Pi sets zi = xi + ri and sends it to their “sibling” party i.e., if i = s|b send
zi to Ps|(1−b).

2. Climbing the Tree.
For all valid strings s ∈ {0, 1, ∗}d\{0, 1}d (e.g., for all intermediate nodes, starting
with the parents of the leaves):
a. Evaluating the IFSS.

Let all parties Pi with i ∈ [s] run the IFSS evaluation on inputs zs|0, zs|1 e.g.,
starting from the party with the highest index i ∈ [s] and going backwards
run:

ys
i = Eval(i, ks

i , (zs|0, zs|1), ys
i+1)

(where as usual ys
j = ⊥ if j is “out of bounds”).

b. Transfering Masked Outputs.
Let ι be the smallest index in [s]. Let all parties Pi with i ∈ [s] learn the
output zs = ys

ι . E.g., all parties in [s], starting from Pι, send zs to the next
party in [s].

c. Transfering Masked Inputs for Subtrees. Each Pi with i ∈ [s] sends zs to one
party in the “sibling” sub-tree i.e., if i = s|b1, . . . , bh (with h representing the
height we have reached in the tree), then Pi sends zs to Pj with j = i =
s|(1− b1), . . . , bh.

Figure 2 BC-efficient protocol for tree-based formulas.

For a read-k tree-like structure (where a party’s input could correspond to at most k

leaves), the number of leaves is at most kn and the depth for a balanced tree is log(kn). This
results in BC of O(k·λ·log |G|·log(kn)) for the computational variant and O(k·log |G|·log(kn))
for the information-theoretic variant.

ITC 2023

11:22 MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

Privacy. Proving privacy of the tree-based construction requires building a simulator that
can simulate the view of an adversary corrupting up to n−1 parties in the protocol. This can
be done following the blueprint of the simulator of the protocol Πabl. That is, the simulator
receives as input the output of the computation y as well as the inputs of the malicious
parties. The simulator will pick random values for all edges on the tree and simulate the
setup phase by running the simulator of the IFSS on those random inputs/outputs. Then,
the simulator will provide masks to the adversary which are consistent with these random
inputs.

In the online phase, the simulator will simulate the transfer of masked inputs of leaf nodes
using the random values already chosen during setup. Then, the simulator includes in the view
of the corrupted parties the values ys

i provided by the IFSS simulator. Indistinguishability
between the real protocol and the simulated execution can be argued by replacing, one by
one, each real execution of IFSS with a simulated one. Indistinguishability in this first series
of hybrids follows from the privacy guarantees of IFSS. In the next series of hybrids, we
replace the masked inputs/outputs learned by the adversary in the protocol execution with
uniformly random values from G. Since in this hybrid the masks of the honest parties are not
used anymore (as the IFSS is simulated), this new series of hybrids are all unconditionally
indistinguishable from their previous one. As the final hybrid of this series corresponds to
the simulator, this concludes the argument.

The discussion above therefore leads to the following:

▶ Theorem 9. Protocol Πtree securely computes the aggregated function f against a semi-
honest adversary corrupting upto n − 1. The BC of Πtree is O(k · log |G| · log(kn)) and
O(k ·λ · log |G| · log(kn)) for the information-theoretic and computational variant respectively.

Randomness Recoverable Secret Sharing Schemes
Mohammad Hajiabadi #

Cheriton School of Computer Science, University of Waterloo, Canada

Shahram Khazaei #

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Behzad Vahdani #

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Abstract
It is well-known that randomness is essential for secure cryptography. The randomness used in
cryptographic primitives is not necessarily recoverable even by the party who can, e.g., decrypt or
recover the underlying secret/message. Several cryptographic primitives that support randomness
recovery have turned out useful in various applications. In this paper, we study randomness
recoverable secret sharing schemes (RR-SSS), in both information-theoretic and computational
settings and provide two results. First, we show that while every access structure admits a perfect
RR-SSS, there are very simple access structures (e.g., in monotone AC0) that do not admit efficient
perfect (or even statistical) RR-SSS. Second, we show that the existence of efficient computational
RR-SSS for certain access structures in monotone AC0 implies the existence of one-way functions.
This stands in sharp contrast to (non-RR) SSS schemes for which no such results are known.

RR-SSS plays a key role in making advanced attributed-based encryption schemes randomness
recoverable, which in turn have applications in the context of designated-verifier non-interactive
zero knowledge.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques; Security
and privacy → Mathematical foundations of cryptography

Keywords and phrases Secret sharing, Randomness recovery

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.12

Acknowledgements We would like to thank Sorush Bahariyan for bringing Fact 1 to our attention
and Motahareh Gharahi for fruitful discussions on the proof of Theorem 20.

1 Introduction

Without randomness, secure cryptography is unachievable. The randomness used in crypto-
graphic primitives is not necessarily, efficiently and even sometimes information-theoretically,
recoverable. For example, the randomness used for an ElGamal ciphertext is not efficiently
recoverable even by a party holding the secret key. On the other hand, several well-known
constructions for PKE, such as the OAEP [5] and its variants[35, 8, 32] are randomness
recoverable (RR). Another notable RR-PKE construction is Yao’s construction [37] based on
injective trapdoor functions (TDF).

RR-PKE schemes have found applications in constructing optimistic fair exchange pro-
tocols [30], signcryption schemes [28], proofs of correct decryptions in electronic-voting
applications in [24] (to avoid heavy zero-knowledge proofs) and recently in CCA-secure PKE
in [14].

In addition to PKE, RR variants of symmetric encryption schemes (SKE), attribute-based
encryption (ABE) and garbled circuits (GC) have been studied in the literature [25, 13].

© Mohammad Hajiabadi, Shahram Khazaei, and Behzad Vahdani;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 12; pp. 12:1–12:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mdhajiabadi@uwaterloo.ca
mailto:shahram.khazaei@sharif.ir
https://orcid.org/0000-0002-2493-8840
mailto:vahdani.behzad@proton.me
https://doi.org/10.4230/LIPIcs.ITC.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Randomness Recoverable Secret Sharing Schemes

1.1 RR secret sharing and motivations
In this paper, we initiate the study of secret sharing schemes (SSS) [34, 7] from a randomness
recovery point of view. In addition to being an interesting notion on its own, it has
applications in settings such as designated-verifier non-interactive zero-knowledge (DV-NIZK)
for NP [29, 13], as we will discuss later.

Main results. We take the first steps toward delineating the notion of RR-SSS from both
information-theoretic and computational perspectives. First, we show that while every access
structure admits a perfect RR-SSS, there are very simple access structures (e.g., in AC0) that
do not admit efficient perfect RR-SSS. Our result also applies to the weaker security notions
including statistical security. Second, we show that the existence of efficient computational
RR-SSS for certain access structures in AC0 implies one-way functions (OWF). Our second
result provides strong evidence that realizing RR-SSS for AC0 from assumptions not currently
known to imply OWFs (e.g., worst-case complexity-type assumptions) may be impossible.

Applications of RR-SSS and motivations. Assuming the existence of RR-PKE, RR-SSS
for access structures in NC1 seems to be an important step towards single-key RR-ABE for
circuits in P (see Section 1.5). Single-key RR-ABE for P, in turn, is sufficient for DV-NIZK
for all NP[29, 13]1. Currently, it is known how to base RR-ABE and DV-NIZK on CDH and
LWE [29, 13] but it is still open whether they can be achieved using weaker primitives such
as TDFs (which by [13] is implied by RR-PKE and hinting PRG [27]).

Moreover, RR-SSS can be useful in applications in which proofs of well-formedness are
needed for recovered shares. This motivates the study of RR-SSS as an independent primitive.

1.2 A perfect RR-SSS for every access structure
Let us first recall what an SSS is. In an SSS, a secret is shared among a set of participants by
giving a share to each one. The shares are computed by applying a public rule on the secret
and randomness. Only certain pre-specified subsets of participants are qualified to recover
the secret and the secret must remain hidden from every other subset of participants. These
requirements are called correctness and privacy, respectively, and can be defined either in
the computational or information-theoretic setting. The set of all qualified subsets is called
the access structure [18].

In an RR-SSS, we additionally require that every qualified set, in addition to the secret,
is also able to recover the randomness.

The most well-known SSS, Shamir’s threshold scheme, is RR. In Shamir’s scheme, a
secret s ∈ F is shared among a set of n participants as follows (F is a finite field with at
least n + 1 elements). The randomness (r1, . . . , rt−1) ∈ Ft−1 is chosen (1 ≤ t ≤ n), the
polynomial f(x) = s + r1x + r2x2 + . . . + rt−1xt−1 is constructed, and the share si = f(xi)
is given to participant i ∈ {1, . . . , n}, where x1, · · · , xn are some distinct public elements of
F. It is easy to verify that only a subset A of size at least t is qualified to recover the secret
using the shares {si}i∈A. The corresponding access structure is called the (n, t)-threshold
access structure. It is also easy to see that in Shamir’s scheme, a qualified set recovers the
polynomial f(x), and hence, the randomness.

1 Lombardi et al. [29] showed how to generically construct DV-NIZK from single-key weak function-hiding
ABE. These sorts of ABE can be constructed from single-key RR-ABE [13].

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:3

r1, r2 r3 r2 + r3 + sr1 + s

(a) A non-RR-SSS.
r1 + s r1, r2 r2 + s

(b) A RR-SSS.

Figure 1 Access structure 1a contains a minimal set of size 2 and a minimal set of size 3.
Access structure 1b contains two minimal sets of size 2. The secret is a single bit s and ris are the
randomness. The value written under each party, indicates that party’s share.

Not every SSS is RR. For example, consider the well-known Ito-Saito-Nishizeki construc-
tion in [18] for a general access structure, which we refer to as the ISN1. The secret is a
single bit s ∈ F2 and the randomness is

R = {rA,i | A is a minimal qualified set and i ∈ A},

where a qualified set is called minimal if none of its proper subsets are qualified. The rA,i’s
are randomly chosen bits subject to

∑
i∈A rA,i = s. The share of a participant i is

si = {rA,i | there exists a minimal qualified set A such that i ∈ A} .

It is easy to verify that the construction is information-theoretically both correct and private.
However, as shown in Figure 1, the ISN1 construction is not RR in general.

A perfect RR-SSS construction. A natural question to ask is whether every access structure
admits a perfect (i.e., information-theoretically secure) RR-SSS. The answer to this question
is not entirely trivial, but in the following, we show that another general construction, also
introduced by Ito-Saito-Nishizeki in [17] which we refer to as the ISN2, is RR.

The secret is again a single bit s ∈ F2 and the randomness is

R = {rB | B is a maximal unqualified set},

where an unqualified set is called maximal if every proper superset of it is qualified. The
rB ’s are randomly chosen bits. The share of a participant i is

si =
(

s +
∑

B

rB , {rB | B is a maximal unqualified set and i /∈ B}
)

.

It is easy to verify that the construction is both perfectly correct and perfectly private. Also,
a minimal qualified set recovers the whole randomness.

▶ Fact 1. The ISN2 construction [17] is RR.

1.3 Results on perfect RR-SSS
We study the RR variant of some questions that have been extensively studied for (standard)
perfect SSSs.

On Beimel’s conjecture for RR-SSSs. The information ratio, defined to be the ratio
between the largest share size and the secret size, is an important parameter that measures
the efficiency of a SSS. Both ISN1 and ISN2 constructions have exponential information ratios
in the number of participants. A long-standing open problem in the theory of secret sharing
is to answer whether exponential upper bound is inevitable. Beimel [3] has conjectured that
this is the case.

ITC 2023

12:4 Randomness Recoverable Secret Sharing Schemes

▶ Conjecture 2 (Beimel). There exists an ε > 0 such that, for every integer n, there is an
access structure with n participants such that every perfect SSS that realizes it has information
ratio 2Ω(nε).

Surprisingly, the best-known lower bound, due to Csirmaz [10], is Ω(n/ log n). We prove
that an exponential lower bound holds for perfect RR-SSSs.

▶ Theorem 3 (Exponential lower bound for perfect RR-SSS). For every integer n, there is
an access structure with n participants such that every perfect RR-SSS that realizes it has
information ratio 2Ω(n).

We prove the theorem for an access structure on n participants, which is the union of
n/3 disjoint (3, 3)-threshold access structures (see Figure 2); but the result holds in general,
i.e., for the union of n/k disjoint (k, k)-thresholds for every k ≥ 2. Similarly to Csirmaz, we
use the so-called Shannon-type information inequalities to prove an exponential lower bound
on the information ratio of this access structure for perfect RR-SSSs.

On weaker security notions. Several non-perfect security notions for secret sharing have
been proposed in the literature. It is well-known [20, Theorem 36] that any lower bound
derived using information inequalities applies not only to perfect security but also to standard
relaxations such as quasi-perfect [20, Chapter 5], almost-perfect [21, 11], and statistical
security. The exponential lower bound of Theorem 3 is also valid for these relaxations
because we only use (Shannon-type) information inequalities in the proof.

Ruling out the existence of efficient perfect RR-SSS for mAC0. Access structures are
in 1-1 correspondence with monotone circuits. The mAC0 class consists of all monotone
circuits of depth O(1) and polynomial size, with AND/OR gates with unbounded fan-in.
Unfortunately, the above result shows that we cannot have efficient perfect RR-SSS for access
structures even in mAC0.

On contrary, the class of access structures admitting efficient perfect (standard) SSSs is
much richer. In particular, it contains mNC1, the class of monotone circuits of depth O(log n)
and polynomial size with AND/OR gates with a maximum fan-in of 2, which is known to
strictly contain mAC0. We refer to [4] for further discussion on the class of efficient perfect
SSSs. It is open whether every access structure in mP, the class of monotone circuits of
polynomial size with AND/OR gates with unbounded fan-in, admits an efficient perfect SSS.

1.4 Results on computational RR-SSS
In a computational SSS [33], we require that the sharing and reconstruction algorithms be
polynomial-time in the security parameter and the number of participants. Furthermore,
we require that a polynomial-time adversary cannot distinguish between the shares of an
unqualified set for every pair of secrets.

An unpublished result by Yao shows that assuming the existence of one-way functions,
every access structure in mP admits an efficient computational SSS. The construction is a
generalization of the results of Benaloh and Leichter [6] that constructs a perfect SSS for
polynomial-size monotone formulae. We refer to [36] for details of the construction. It is
open whether (efficient) computational SSS for any class of access structures implies OWFs.
Assuming the existence of OWFs, an unpublished result of Rudich shows that computational
SSS for mNP implies oblivious transfer; see [3, 26].

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:5

OWFs from RR-SSS for AC0. As we mentioned above, it is still open whether computational
(standard) SSS for any class of access structures implies OWFs. One main obstacle to proving
this possibly true statement is that the existence of efficient perfect SSS for every access
structure has not yet been (unconditionally) ruled out, even though it is generally believed
not to be the case, as it has been manifested in Beimel’s conjecture (Conjecture 2). However,
by our result on the exponential lower bound for RR-SSS (Theorem 3), the situation for
RR-SSS is different. We use the method developed by Impagliazzo and Luby in [16], together
with a variant of Csirmaz’s framework [10] for lower bounding the information ratio of perfect
SSSs adapted for the computational setting, to prove that existence of computational RR-SSS
for certain access structures in AC0 implies the existence of OWFs.

Construction of computational RR-SSS. A perfect linear SSS can be converted into a
computational RR-SSS using a one-time KDM-secure SKE naturally and straightforwardly.
For the sake of completeness, in Section 5, we state this formally. In that section, we introduce
a type of PRG with a KDM-like security which turns out convenient in constructing a simple
computational RR-SSS from a perfect linear SSS with the same access structure.

1.5 Applications of RR-ABE
The notion of RR-SSS was implicitly used as a key tool to obtain randomness recoverable
single-key attribute-based public-key encryption schemes [29, 13], which in turn imply DV-
NIZK for all NP [29]. Let us recall the definition of ABE. We have a master public key mpk

and a master secret key msk. For any attribute string x, we have an attribute secret key
skx, obtained as KGen(msk, x), where KGen is the key generation algorithm of the ABE. We
encrypt a message m under mpk and a given circuit C to get a ciphertext ct. Now someone
who has skx can decrypt ct to get m iff C(x) = 1.

We say that the ABE is RR if when C(x) = 1, then skx not only recovers m, but also all
the randomness used by the encryption algorithm.

In the single-key security notion, an adversary can ask for only one attribute secret key
skx, and has to win in an indistinguishability sense against a challenger who encrypts with
respect to some circuit C where C(x) = 0.

A standard way to build single-key RR-ABE is as follows: if |x| = n, then the master
secret key has n PKE secret keys (sk1, ..., skn) and mpk contains the corresponding public
keys (pk1, ..., pkn). An attribute secret key for x contains those ski where xi = 1. To encrypt
m under mpk and C, we share m according to C to get the shares. We then encrypt each
share under pki, and return all the ciphertexts. The notion of RR-SSS is a key tool in
realizing randomness recoverability for the above single-key ABE scheme, as it allows us to
recover the randomness used by sharing process, a major source of the overall randomness.

2 Preliminaries

In this section, we present the necessary background.

2.1 Random variables
We denote random variables (RV) by boldface characters and use supp(X) to denote the
support of RV X. We use the terms RV and distribution interchangeably throughout the
paper. The Shannon entropy of X is denoted by H(X). The entropy of X conditioned on
RV Y is denoted and defined by H(X|Y) := H(X, Y) − H(Y). The mutual information
between X, Y is defined and denoted by I(X : Y) := H(X)−H(X|Y).

ITC 2023

12:6 Randomness Recoverable Secret Sharing Schemes

Let us also recall the functional representation lemma [12, page 626], a well-known lemma
in information theory, that will be used in this paper. We use the notation X ≡ Y for
identically distributed RVs.

▶ Lemma 4 (Functional representation lemma [12]). For every pair of jointly distributed
RVs (X, Y), there exists a RV R, independent of X, and a mapping µ such that (X, Y) ≡(
X, µ(X, R)

)
▶ Remark 5. Throughout the paper, we will consider a non-uniform model of computation,
however, our results hold true for the uniform model.

We call the family X = {Xλ}λ∈N of RVs efficiently sampleable if there exists a family of
polynomial-time algorithms Sample = {Sampleλ}λ∈N such that Sampleλ(1λ) ≡Xλ. We call
λ the security parameter and refer to X as a family of RVs, or simply an RV, indexed by the
security parameter. We recall that a function ε : N → R≥0 is called negligible if for every
d > 0 there exists some λ0 such that for every λ > λ0 it holds that ε(λ) < 1

λd .

▶ Definition 6 (Computational indistinguishablity). Let X and Y be efficiently sampleable
distributions indexed by the security parameter λ. We say that X and Y are computationally
indistinguishable and write Xλ

c≡Y λ if for every family of polynomial-time size circuits
D = {Dλ}λ∈N (i.e., Dλ has polynomially many gates in the security parameter), there exists
a negligible function ε such that

|Pr[Dλ(Xλ) = 1]− Pr[Dλ(Y λ) = 1]| ≤ ε(λ) .

We usually drop the security parameter and write X
c≡Y for Xλ

c≡Y λ, and D(Xλ) or
D(X) instead of Dλ(Xλ).

We will also face functions of the form ε(n, λ), indexed by two parameters, which we
require them to be polynomial in n and negligible in λ (e.g., to be of the form poly(n)negl(λ)),
where n will be the number of participants in secret sharing schemes. To remove any
confusion, we make the definition precise.

2.2 One-way function

▶ Definition 7 (OWF). A function f : {0, 1}⋆ → {0, 1}⋆ is called a one-way function (OWF)
if the following two conditions hold:
1. There is a polynomial-time algorithm that on input x outputs f(x).
2. For every polynomial-size circuit family {Cλ}λ, the following probability is negligible:

Pr[f(Cλ(f(Uλ))) = f(Uλ)].

The following lemma is due to Impagliazzo, Levin, and Luby [15]. It was used by
Impagliazzo and Luby in [16] to prove that short-key SKE implies OWF. In Section 4, we
use this lemma, in a similar manner, to prove that computational RR-SSS for AC0 implies
the existence of OWF.

▶ Lemma 8 ([15]). If there is a polynomial-time computable function f : {0, 1}λ → {0, 1}l(λ),
a polynomial-time samplable distribution D = {Dλ}λ and a constant d > 0 such that
f(Uλ) c≡Dλ and for large enough λ, H(Dλ) ≥ H(f(Uλ)) + 1/λd, then there is a OWF.

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:7

2.3 Access structure
In the secret sharing context, there is set of participants, which we denote by P , and a
distinguished participant called the dealer, which we denote by 0 /∈ P .

▶ Definition 9 (Access structure). A non-empty subset Γ ⊆ 2P , with ∅ /∈ Γ, is called an
access structure on P if it is monotone; that is, A ⊆ B ⊆ P and A ∈ Γ imply that that
B ∈ Γ. A subset A ⊆ P is called qualified if A ∈ Γ; otherwise, it is called unqualified. A
qualified subset is called minimal if none of its proper subsets is qualified. An unqualified
subset is called maximal if every proper superset of it is qualified.

There is a natural one-to-one correspondence between access structures with n participants
and monotone Boolean functions with n variables.

2.4 Secret sharing
A secret sharing scheme (SSS) can be defined in the following two equivalent ways. The first
definition is more useful for working in the information-theoretic setting, while the second
one is more useful in the computational setting.

▶ Definition 10 (SSS in terms of jointly distributed RVs). A tuple
(
Si

)
i∈P ∪{0} of jointly

distributed RVs is called a SSS on the set of participants P when |supp(S0)| ≥ 2. The RV S0
is called the secret RV and its support is called the secret space. The RV Si is called the
share RV of the participant i ∈ P and its support is called his share space.

▶ Definition 11 (SSS in terms of sharing map). Let µ : S0 ×R →
(
Si

)
i∈P

be a mapping and
R be a distribution on R, called the randomness RV. We refer to Π = (R, µ) as a SSS if
|S0| ≥ 2. We call µ the sharing map and R the randomness space. Also, S0 is called the
secret space and Si is called the share space of participant i.

The equivalence between these two definitions follows by the functional representation
lemma (Lemma 4).

The following notation will be used throughout the paper.

▶ Notation 12. For a SSS Π =
(
Si

)
i∈P ∪{0} and a subset A ⊆ P , we use the notation SA

for the projection of Π on the components in A; i.e., SA :=
(
Si

)
i∈A

. Also, for a sharing
map µ : S0 ×R →

(
Si

)
i∈P

, µA stands for the projection of µ on the components in A. That
is, if (si)i∈P = µ(s, r), then µA(s, r) := (si)i∈A.

Linear SSS. We call a SSS with sharing map µ : S0 ×R →
(
Si

)
i∈P

and randomness R

linear when R and all Si’s, i ∈ P ∪ {0}, are vector spaces over a common finite field, µ is a
linear map and R is uniformly distributed over R. Throughout the paper, for simplicity, we
assume that he underline finite field is the binary field.

2.5 Security definitions for SSSs
The security of a SSS can be defined both in information-theoretic and computational
settings.

▶ Definition 13 (Perfect security). We say that Π =
(
Si

)
i∈P ∪{0} is a perfect SSS for an

access structure Γ, if the following two conditions hold:
Perfect correctness: H(S0|SA) = 0 for every qualified set A ∈ Γ.
Perfect privacy: I(S0 : SB) = 0 for every unqualified set B /∈ Γ.

ITC 2023

12:8 Randomness Recoverable Secret Sharing Schemes

If Π is a perfect SSS for Γ, we also say that Π realizes Γ perfectly or Γ admits Π perfectly.
Computational secret sharing is defined to realize a family Γ = {Γn}n∈N of access

structures, where Γn is an access structure with n participants with participants set Pn. A
computational SSS for Γ is a tuple Π =

(
R, µ) with

R = {Rλ,n}n,λ∈N ,

µ = {µλ,n : S0,λ,n ×Rλ,n →
(
Si,λ,n

)
i∈Pn
}λ,n∈N ,

where for every λ, n ∈ N, the tuple
(
Rλ,n, µλ,n) is a secret sharing scheme with participant

set Pn.

▶ Definition 14 (Computational security). Let Γ = {Γn}n∈N be a collection of access structures
and Π =

(
R, µ) with R = {Rλ,n}λ,n and µ = {µλ,n : S0,λ,n×Rλ,n →

(
Si,λ,n

)
i∈Pn
}λ,n∈N be a

family of SSSs indexed by the security parameter λ and n. We say that Π is a computational
SSS for Γ if the following conditions hold:

Efficient randomness sampling: The RV R is polynomial-time sampleable in λ and n.
Polynomial secret length: log |S0,λ,n| is polynomial in λ and n.
Efficient sharing: The sharing map µλ,n is polynomial-time computable in λ and n.
Efficient secret reconstruction: There exists a polynomial-time algorithm Recon in
λ and n such that for every polynomial n = n(λ) there exists a negligible function negl
such that for every sequence of qualified sets {Aλ ∈ Γn(λ)}λ and every sequence of secrets
{sλ ∈ S0,λ,n(λ)}λ one has

Pr[Recon(µAλ
(sλ, Rλ,n(λ))) ̸= sλ] ≤ negl(λ). (1)

Computational privacy: For every polynomial n = n(λ), every sequence of unqualified
sets {Bλ /∈ Γn(λ)}λ and every pair of secret sequences {sλ ∈ S0,λ,n(λ)}λ and {s′

λ ∈
S0,λ,n(λ)}λ, one has

µBλ
(sλ, Rλ,n(λ))

c≡µBλ
(s′

λ, Rλ,n(λ)). (2)

If Π is a computational SSS for Γ we say that Π realizes Γ computationally or Γ admits Π
computationally.

▶ Remark 15. In the rest of the paper, in the computational setting, we implicitly take
the access structure, qualified sets and unqualified sets to be parameterized by n, and
take the secret space, share space, randomness space, and RVs over these spaces to be
parameterized by n and λ. In particular, we drop the indices in (1) and (2) and simply write:
Pr[Recon(µA(s, R)) ̸= s] is negligible and µB(s, R) c≡µB(s′, R). This simplifies the notation
and allows us to state some of the properties of the computational and perfect SSS in a
unified manner. Additionally, in the rest of paper, when we consider aysmptotic properties
of the scheme, we implicitly assume that n is a polynomial in λ.

The following lemma will be used later in the paper. We refer to Appendix A for the
proof.

▶ Lemma 16. Let Π = (µ, R) be a computational SSS for Γ with t-bit secrets and let S be
an RV independent of R over the secret space. Then, for every B /∈ Γ,

(S, µB(S, R)) c≡(S, µB(0t, R)).

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:9

2.6 Information ratio

The efficiency of SSSs is usually measured using a parameter called information ratio. The
information ratio of an SSS with participants set P , secret space S0 and share space Si for
participant i ∈ P , is defined to be maxi∈P

log |Si|
log |S0| .

The perfect information ratio, or simply information ratio, of an access structure is defined
to be the infimum of all information ratios of all SSSs that perfectly realize it.

Beimel [3] has conjectured that there are families of access structures with exponential
information ratio in the number of participants; see Conjecture 2.

▶ Remark 17. Beimel has also stated the conjecture in terms of share size instead of
information ratio in [3]; this corresponds to the case where the secret is a single bit. There
are access structures whose information ratio for exponentially-long secrets (in the number
of participants) may be significantly better than the information ratio achievable for short
secrets [2]. Nevertheless, it is widely believed that the stronger conjecture (i.e., for information
ratio) holds true.

Csirmaz framework for lower bounding information ratio. Following [23, 9], Csirmaz
proposed a framework in [10] to prove lower bounds on the information ratio of perfect SSSs.
His framework is captured in the following lemma which is based on the properties of the
entropy function as well as the correctness and privacy properties of perfect SSSs.

▶ Lemma 18 (Csirmaz/Perfect). Let Π = (Si)i∈P ∪{0} be a perfect SSS for an access structure
Γ. For every subset A ⊆ P ∪ {0}, let f(A) = H(SA)

H(S0) . Then, the following holds:
1. Non-negativity. f(A) ≥ 0 for every A ⊆ P ∪ {0}.
2. Monotonicity. f(A) ≥ f(B) for every B ⊆ A ⊆ P ∪ {0}.
3. Submodularity. f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for every A, B ⊆ P ∪ {0, }.
4. Strong monotonicity. f(A) ≥ f(B) + 1 for every A ∈ Γ and B ⊆ A such that B /∈ Γ.
5. Strong submodularity. f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) + 1 for every A, B ∈ Γ

such that A ∩B /∈ Γ.

If, using the inequalities (1)–(5), one can prove that for some participant i ∈ P , it holds
that f({i}) ≥ σ, then σ will be a lower bound on the information ratio of the underlying
access structure.

2.7 Randomness recoverable SSS

We call a SSS Π = (R, µ) randomness recoverable (RR) if qualified sets, in addition to the
secret, can also recover the randomness; that is, there exists a function RNDrecover such that
for every qualified set A, Pr[RNDrecover(µA(R, s)) = R] = 1 for every secret s. When Π is
a computational SSS, we require that RNDrecover be a polynomial-time algorithm, in the
security parameter and n, the number of participants; we also allow a negligible amount of
error; i.e., when n is a polynomial in λ, then Pr[RNDrecover(µA(s, R)) ̸= R] is negligible in
the security parameter.

The following claim will be used in Section 3 and Section 4.

▷ Claim 19. If Π = (Si)i∈P ∪{0} is an RR-SSS with perfect correctness (i.e., zero reconstruc-
tion error probability), then for every pair of qualified sets A, B, we have H(SA) = H(SB),
or equivalently f(A) = f(B), using the notation of Lemma 18.

ITC 2023

12:10 Randomness Recoverable Secret Sharing Schemes

a1

b1
c1

a2

b2
c2

. . .
an/3

bn/3 cn/3

Figure 2 The Moon-Moser access structure.

Proof. Denote the support of Si by Si, for i ∈ P ∪{0}. Let (R, µ), with µ : S0×R →
(
Si

)
i∈P

,
be the equivalent SSS in terms of Definition 11, which exists by the functional representation
lemma (Lemma 4); that is,

(
S0, (Si)i∈P

)
≡
(
S0, µ(S0, R)

)
. For simplicity, let us assume that

(Si)i∈P = µ(S0, R). Since SP is a function of the secret and randomness and every qualified
set can recover both of them, it follows that H(SP |SA) = 0, or equivalently H(SA) = H(SP),
for every qualified set A. The claim then follows. ◁

3 Exponential lower bound for perfect RR-SSS

In this section, we show that the Moon-Moser access structure, to be defined below, has
an exponential information ratio for every perfect RR-SSS that realizes it. The result also
applies to weaker security notions such as statistical security as will be discussed at the end
of this section.

The Moon-Moser access structure. Due to an old result by Moon and Moser [31], any
graph with n vertices has at most 3n/3 maximal independent sets. A graph with exactly 3n/3

maximal independent sets is easy to construct: simply take the disjoint union of n/3 triangle
graphs. Motivated by this example, we consider the access structure in Figure 2, which is
the union of n/3 (3, 3)-threshold access structures, and refer to it as the Moon-Moser access
structure. Clearly, this access structure lies in AC0.

▶ Theorem 20. For every n, there is an access structure in AC0 such that every perfect
RR-SSS that realizes it has information ratio 2Ω(n).

We first present a notation and a claim and then prove the theorem.

Notation. Denote the set of participants of the Moon-Moser access structure, with n

participants, by P = {a1, b1, c1, . . . , an/3, bn/3, cn/3} and let {ai, bi, ci} be a minimal qualified
set for every i = 1, . . . , n/3 (see Figure 2). Let Π = (Si)i∈P ∪{0} be a perfect RR-SSS for this
access structure and f be as in Lemma 18. For a participant pi ∈ {ai, bi, ci}, we define p′

i and
p′′

i to be the cyclic rotations of pi by one and two positions, respectively; i.e., a′′
i = b′

i = ci,
b′′

i = c′
i = ai and c′′

i = a′
i = bi. Also, we denote a set {pi1 , . . . , pik

} simply by pi1 · · · pik
.

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:11

▷ Claim 21. For every qualified set A, every k = 0, 1, . . . , n/3, and all choices for p1, . . . , pk

with pi ∈ {ai, bi, ci}, the following inequality holds:

f(A) ≥ f(p1p′
1 . . . pkp′

k) + 3n/3−k . (3)

Proof of Claim 21. First, let us show that the following inequality is implied by Inequality (3):

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1pk) + 2× 3n/3−k . (4)

By Inequality (3) we have:

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + 3n/3−k ,

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1p′′
kpk) + 3n/3−k .

Also by the monotonicity property, we have

f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + f(p1p′

1 . . . pk−1p′
k−1p′′

kpk) ≥
f(p1p′

1 . . . pk−1p′
k−1pkp′

kp′′
k)+ f(p1p′

1 . . . pk−1p′
k−1pk) .

Notice that p1p′
1 . . . pk−1p′

k−1pkp′
kp′′

k is qualified and, hence, by Claim 19 we have

f(A) = f(p1p′
1 . . . pk−1p′

k−1pkp′
kp′′

k).

Therefore, Inequality (4) follows by adding the above three inequalities.
Now, we prove Inequality (3) by backward induction on k.

Base. Denote m = n/3. For k = m, by strong submodularity property, we have:

f(p′′
1p1p′

1 . . . pmp′
m) + f(p′′

2p1p′
1 . . . pmp′

m) ≥
f(p′′

1p′′
2p1p′

1 . . . pmp′
m)+ f(p1p′

1 . . . pmp′
m) + 1 .

Since the sets p′′
1p1p′

1 . . . pmp′
m, p′′

2p1p′
1 . . . pmp′

m and p′′
1p′′

2p1p′
1 . . . pmp′

m are all qualified, for
every qualified set A, by Claim 19, we have:

f(A) = f(p′′
1p1p′

1 . . . pmp′
m) = f(p′′

2p1p′
1 . . . pmp′

m) = f(p′′
1p′′

2p1p′
1 . . . pmp′

m) .

Therefore,

f(A) ≥ f(p1p′
1 . . . pmp′

m) + 1 ;

that is, Inequality (3) holds for k = n/3.

Induction. Now suppose that by the induction hypothesis

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + 3n/3−k .

By Inequality (4), we also have:

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1p′′
k) + 2× 3n/3−k .

By the monotonicity property, we have

f(p1p′
1 . . . pk−1p′

k−1pkp′
k) + f(p1p′

1 . . . pk−1p′
k−1p′′

k) ≥
f(p1p′

1 . . . pk−1p′
k−1pkp′

kp′′
k)+ f(p1p′

1 . . . pk−1p′
k−1) .

By adding the above three inequalities, noticing that p1p′
1 . . . pk−1p′

k−1pkp′
kp′′

k is qualified,
and using Claim 19, we get:

f(A) ≥ f(p1p′
1 . . . pk−1p′

k−1) + 3n/3−(k−1) ;

that is, Inequality (3) holds for k − 1. This completes the proof of Claim 21. ◁

ITC 2023

12:12 Randomness Recoverable Secret Sharing Schemes

Proof of Theorem 20. Let pi ∈ {a1, b1, c1, . . . , an/3, bn/3, cn/3}. By letting k = 0 and A =
{pi, p′

i, p′′
i } in Inequality (3), we have:

f(pip
′
ip

′′
i) ≥ 3n/3 .

Also, f(pi) + f(p′
i) + f(p′′

i) ≥ f(pip
′
ip

′′
i). Therefore, for every i ∈ {1, . . . , n/3}, for at least

one p ∈ {ai, bi, ci}, we have

f(p) ≥ 3n/3−1 . ◀

▶ Remark 22. The above proof can be converted, in a straightforward manner, to a proof
for the case of an access structure that is the union of n/k disjoint (k, k)-thresholds. Stated
explicitly, every perfect RR-SSS that realizes the access structure that has

{a1,1, a1,2, · · · , a1,k}, {a2,1, a2,2, · · · , a2,k}, · · · , {an/k,1, an/k,2, · · · , an/k,k}

as its minimal qualified sets has information-ratio 2Ω(n log k/k). The best exponent is achieved
for k = 3, which justifies our choice for the Moon-Moser access structure in this section.

Exponential lower bound for non-perfect RR-SSSs. Besides perfect and computational
security, several non-perfect security notions for secret sharing have appeared in the literature,
including almost-perfect, quasi-perfect, and statistical. We refer to [19] for a comprehensive
study of these security notions. Kaced [20, Theorem 36] has shown that any lower bound
derived on the information ratio of (standard) SSSs using information inequalities applies
not only to perfect security but also to quasi-perfect security (which can be shown to apply
to almost-perfect and statistical security too). His result can also be extended to the case
of RR-SSSs. Since, we only used (Shannon-type) information inequalities to derive our
exponential lower bound on perfect RR-SSS, it also holds for all mentioned non-perfect
security notions.

4 Computational RR-SSS for AC0 implies OWF

In this section, we show that the existence of computational RR-SSS for some access structures
in AC0 implies the existence of OWFs. Our method is similar to Impagliazzo and Levin’s
method for proving that short-key SKE implies OWFs [16]. The idea is as follows: if
Π = (µ, R) is a SSS for an access structure where B is unqualified, then S||µB(S, R) and
S′||µB(S, R) are computationally indistinguishable, where S and S′ are independent uniform
RVs over the secret space. Indeed, when the SSS is perfect, µB(S, R) reveals no information
about S and so the two distributions are information-theoretically indistinguishable. But
when the SSS is computational, µB(S, R) reveals some information about S. If this amount
is not negligible, then we have two distributions that are computationally indistinguishable
but statistically distinguishable and we can apply Lemma 8 to deduce the existence of OWF.

In Section 3, it was shown that there are access structures in AC0 that do not admit
efficient perfect RR-SSSs. In other words, an RR-SSS for such an access structure, that
perfectly hides the secret from unqualified sets, has to have shares with exponential length.
Hence intuitively, in a computational RR-SSS for such an access structure (because shares
are of polynomial length), there are unqualified sets that obtain a considerable amount of
information about the secret. This intuition is exactly phrased and proved in this section.

For simplicity, we first study the simpler case where in the definition of computational
SSS (Definition 14), we require the reconstruction error probability to be equal to zero.

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:13

· · ·
a1

b1

a2

b2

an/2

bn/2

Figure 3 Union of (2, 2)-threshholds.

4.1 Zero reconstruction error
In this subsection, we present a lemma, a claim, and a corollary for computational SSSs
with zero reconstruction errors. These results are modified in Subsection 4.2 to consider
non-zero reconstruction error and will be used in Subsection 4.3 to prove the main result of
this section.

A variant of Csirmaz’s framework (see lemma 18) adapted to the computational setting
with perfect correctness (i.e., zero reconstruction error) is needed. The following lemma
states this variant.

▶ Lemma 23 (Csirmaz/Computational/Perfect correctness). Let Π = (Si)i∈P ∪{0} be a compu-
tational SSS with perfect correctness for an access structure Γ. For A, B ⊆ P ∪ {0}, denote
H(SA) with H(A) and H(SA|SB) with H(A|B), respectively. Then, the non-negativity,
monotonicity, and submodularity properties hold as in Lemma 18 and, one has the following
modified formulation of strong monotonicity and strong submodularity:
1. Strong monotonicity. H(A) ≥ H(B) + H(0|B) for every A ∈ Γ and B ⊂ A such that

B /∈ Γ.
2. Strong submodularity. H(A) + H(B) ≥ H(A∪B) + H(A∩B) + H(0|A∩B) for every

A, B ∈ Γ such that A ∩B /∈ Γ.

Proof. Inequality (1) holds because A is qualified and due to the monotonicity property:

H(A) = H({0} ∪A) ≥ H({0} ∪B) = H(B) + H(0|B).

Inequality (2) follows from the following relations:

H(A) + H(B) = H({0} ∪A) + H({0} ∪B)
≥ H({0} ∪A ∪B) + H({0} ∪ (A ∩B))
≥ H(A ∪B) + H(A ∩B) + H(0|A ∩B).

In the first equality, we have used the fact that A and B are qualified. The first and second
inequalities follow by the submodularity and monotonicity properties, respectively. ◀

Notation. In what follows, let P = {a1, b1, a2, b2, · · · , an/2, bn/2} and Γ be an access
structure with minimal qualified sets {a1, b1}, · · · , {an/2, bn/2} (see Figure 3). Note that this
access structure lies in AC0. According to Remark 22, Γ’s information ratio is 2Ω(n). For
pi ∈ {ai, bi}, let p′

i be the other element of {ai, bi}; i.e., if pi = ai then p′
i = bi and if pi = bi

then p′
i = ai. Also denote {p1, p2, · · · , pk} with p1p2 · · · pk and use the notation in Lemma

23 for entropies.

ITC 2023

12:14 Randomness Recoverable Secret Sharing Schemes

▷ Claim 24. Let Π be a computational RR-SSS with perfect correctness for Γ and A be a
qualified set in Γ with H(A) ≤ c. Then for all k = 0, 1, · · · , n/2,

H(p1p2 · · ·pk) + c

2k
≥ H(A),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. We prove the claim by induction on k.

Base. The base (k = 0) holds by the assumption.

Induction. Suppose that by the induction hypothesis we have:

H(p1p2 · · ·pk) + c

2k
≥ H(A), (5)

where k < n/2. By the submodularity property

H(p1p2 · · ·pkak+1)+H(p1p2 · · ·pkbk+1) ≥
H(p1p2 · · ·pkak+1bk+1) + H(p1p2 · · ·pk). (6)

Since {p1, p2, · · · , pk, ak+1, bk+1} is qualified, then according to Claim 19, we have:

H(p1p2 · · ·pkak+1bk+1) = H(A). (7)

Summing up relations (5),(6) and (7), we get:

H(p1p2 · · ·pkak+1) + H(p1p2 · · ·pkbk+1) + c

2k
≥ 2H(A).

So:

H(p1p2 · · ·pkpk+1) + c

2k+1 = 1
2
(
H(p1p2 · · ·pkak+1)

+ H(p1p2 · · ·pkbk+1)
)

+ c

2k+1 ≥ H(A) . ◁

The following corollary could be considered as a quantitative contrapositive for The-
orem 20.

▶ Corollary 25. Let Π be a computational RR-SSS for Γ with perfect correctness and m-bit
secrets and let n be a polynomial in λ. Then for large enough λ:

m

2 ≥ H(0|p1p2 · · ·pn/2),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. Sharing algorithm’s running time and m are polynomials, so for large enough λ we
have 2 n

2 −1m ≥ H(A), where A is an arbitrary qualified set. Applying Claim 24 to this
inequality, if follows that

H(p1p2 · · ·pn/2) + m

2 ≥ H(A). (8)

On the other hand, {p′
1, p1, p2, · · · , pn/2} and {p′

2, p1, p2, · · · , pn/2} are qualified sets, while
{p1, p2, · · · , pn/2} is not. So, according to the (computational) strong submodularity prop-
erty,

H(p′
1p1p2 · · ·pn/2) + H(p′

2p1p2 · · ·pn/2) ≥

H(p′
1p′

2p1p2 · · ·pn/2) + H(p1p2 · · ·pn/2) + H(0|p1p2 · · ·pn/2).

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:15

Applying Claim 19, we get

H(A) ≥ H(p1p2 · · ·pn/2) + H(0|p1p2 · · ·pn/2).

Summing up the above inequality and Inequality (8), one gets the desired result. ◀

4.2 Non-zero reconstruction error
In this subsection, we provide variants of Lemma 23, Claim 24, and Corollary 25 that do not
assume zero reconstruction error.

When the reconstruction error is zero, the entropy of the secret conditioned on the share
of a qualified set is zero, because in this case, the secret is determined by the qualified set’s
share. When we allow the reconstruction algorithm to fail with some bounded probability,
this property no longer holds. The following is a variant of Fano’s inequality that we will
use to prove that in this case, conditioned on the share of a qualified set, the entropy of the
secret is o(1).

▶ Lemma 26. Let X and Y be families of RVs such that Y has polynomial length and f be
a function such that Pr[Y ̸= f(X)] is negligible. Then H(Y |X) is o(1).

Proof. Define the indicator RV Z as follows:

Z =
{

1 if Y = f(X)
0 if Y ̸= f(X)

.

Since H(Z|X, Y) = 0, we have:

H(Y |X) = H(Y |X) + H(Z|X, Y)
= H(Y , Z|X)
= H(Z|X) + H(Y |X, Z)

≤ H(Z) +
∑

x∈Supp(X)

(
Pr[X = x, Z = 0]H(Y |X = x, Z = 0)

+ Pr[X = x, Z = 1]H(Y |X = x, Z = 1)
)

= o(1) +
∑

x∈Supp(X)

Pr[X = x, Z = 0]H(Y |X = x, Z = 0) (9)

≤ o(1) +
(∑

x∈Supp(X)

Pr[X = x, Z = 0]
)

log(|Supp(Y)|) (10)

= o(1) + Pr[Z = 0] log(|Supp(Y)|)
= o(1). (11)

Equation (9) holds for two reasons: First, Z is a Bernouli RV with Pr[Z = 0] = o(1) (indeed,
this probability is negligable), so H(Z) = o(1); Second, when Z = 1, Y is determined by X;
therefore, H(Y |X = x, Z = 1) = 0. Inequality (10) holds because H(Y) ≤ log(|Supp(Y)|).
Equality (11) holds because Pr[Z = 0] is negligable and Y has polynomial length. ◀

▶ Lemma 27. Let Π = (µ, R) be a computational SSS and S0 be an RV over the secret
space. Then for every qualified set A, H(S0|µA(S0, R)) = o(1).

Proof. Let Recon be the reconstruction algorithm. Then Pr[Recon(µA(S0, R)) ̸= S0] is
negligible in the security parameter. Also, the length of S0 is polynomial in the security
parameter. Therefore, according to Lemma 26, H(S0|µA(S0, R)) = o(1). ◀

ITC 2023

12:16 Randomness Recoverable Secret Sharing Schemes

The following is a variant of Claim 19 that does not assume zero reconstruction error.

▷ Claim 28. Let Π = (µ, R) be a computational RR-SSS, n be a polynomial in λ and S0
be an RV over the secret space. Then for any two qualified sets A and B, |H(µA(S0, R))−
H(µB(S0, R))| = o(1).

Proof. By Lemma 27, H(S0|µA(S0, R)) = o(1). Because Π is RR, it can be proved that
similarly

H(R|µA(S0, R)) = o(1).

Therefore, H(S0, R|µA(S0, R)) = o(1) and, hence, H(S0, R) ≤ H(µA(S0, R)) + o(1). On
the other hand, µA(S0, R) is determined by S0 and R; thus H(µA(S0, R)) ≤ H(S0, R).
Similar bounds hold for µB(S0, R). The claim follows from these bounds. ◁

The following is a variant of Csirmaz’s computational framework (23) stated for the case
of the non-zero reconstruction error.

▶ Lemma 29 (Csirmaz/Computational). Let Π = (Si)i∈P ∪{0} be a computational SSS for an
access structure Γ. Then, the non-negativity, monotonicity, and submodularity properties
hold as in Lemma 18 and, one has the following modified formulation of strong monotonicity
and strong submodularity:
1. Strong monotonicity. H(A) + o(1) ≥ H(B) + H(0|B) for every A ∈ Γ and B ⊂ A

such that B /∈ Γ.
2. Strong submodularity. H(A) + H(B) + o(1) ≥ H(A ∪B) + H(A ∩B) + H(0|A ∩B)

for every A, B ∈ Γ such that A ∩B /∈ Γ.

Proof. Inequality (1) follows from the following relations:

H(A) + o(1) = H({0} ∪A) ≥ H({0} ∪B) = H(B) + H(0|B).

The left-hand side equality follows from Lemma 28. The rest is as in the proof of Lemma 23.
Inequality (2) follows from the following relations:

H(A) + H(B) + o(1) = H({0} ∪A) + H({0} ∪B)
≥ H({0} ∪A ∪B) + H({0} ∪ (A ∩B))
≥ H(A ∪B) + H(A ∩B) + H(0|A ∩B).

The equality follows from Lemma 28. The rest is as in the proof of Lemma 23. ◀

Below is a modification of Claim 24 stated for the case of the non-zero reconstruction
error.

▷ Claim 30. Let Π be a computational RR-SSS for Γ and A be a qualified set such that
H(A) ≤ c. Then for k = 0, 1, · · · , n/2 one has:

H(p1p2 · · ·pk) + c

2k
+ o(1) ≥ H(A),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. Proof of this claim is achieved by applying appropriate and straightforward modi-
fications to the proof of Claim 24. Explicitly, Claim 19 is used there to deduce
H(p1p2 · · ·pkak+1bk+1) = H(A). Instead, we apply Claim 28 to deduce

H(p1p2 · · ·pkak+1bk+1) + o(1) ≥ H(A).

Also, the induction hypothesis should be modified to include the term o(1). ◁

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:17

Finally, we state a variant of Corollary 25 that does not assume zero reconstruction error.

▶ Corollary 31. Let Π be a computational RR-SSS for Γ with m-bit secrets. Then
m

2 + o(1) ≥ H(0|p1p2 · · ·pn/2),

where pi is a uniform RV over {ai, bi} and pi’s are independent.

Proof. The proof is the same as the proof of Corollary 25 with the following exceptions:
Usages of Claim 24 and Claim 19 are replaced with those of Claim 30 and Claim 28,
respectively. Indeed, these replacements substitute each claim with a corresponding variant
that is adapted to the case of the non-zero reconstruction error. Also, the variant of strong
submodularity that is stated in Lemma 29 should be used. ◀

4.3 Main result
▶ Theorem 32. Let Γ be the union of n/2 disjoint (2, 2)-thresholds (see Figure 3). If Γ has
a computational RR-SSS, then there exists an OWF.

Proof. As in the previous subsections, assume that {ai, bi}, 1 ≤ i ≤ n/2, are the minimal
qualified sets. Let Π = (µ, R) be a computational RR-SSS for Γ with m-bit secrets and
n = poly(λ). For 0 ≤ i ≤ n/2, take pi to be a uniform RV over {ai, bi} and set B =
{p1, p2, · · · , pn/2}.
According to Corollary 31 we have,

m

2 + o(1) ≥ H(0|p1p2 · · ·pn/2).

So if we let S0 be a uniform RV over the secret space, then
m

2 + o(1) + H(µB(S0, R)) ≥ H(S0||µB(S0, R)).

Let S′
0 be a uniform secret independent of S0 and R. Then

H(S′
0||µB(S0, R)) = m + H(µB(S0, R)).

These together imply that

H(S′
0||µB(S0, R)) + o(1) ≥ H(S0||µB(S0, R)) + m

2 . (12)

On the other hand,

S′
0||µB(S0, R) c≡S0||µB(S0, R). (13)

Applying Lemma 8 to (12) and (13) (with Dλ = S′
0||µB(S0, R) and f(S0||R||B) =

S0||µB(S0, R)), we get the desired result. ◀

5 Construction of computational RR-SSS

In this section, we observe that computational RR-SSS for NC1 can be based on simple
minicrypt primitives that have some kind of one-time KDM-like security. In particular, we
first observe that an efficient linear SSS (and generally, an efficient SSS with a property
that we call randomness simulatability) can be converted into a computational RR-SSS
assuming the existence of one-time KDM-secure RR-SKE. Next we introduce the notion of
linear-resistant PRG. Then, we see how an efficient perfect linear SSS can be converted into
an efficient computational RR-SSS, using a linear-resistant PRG.

ITC 2023

12:18 Randomness Recoverable Secret Sharing Schemes

5.1 RR-SKE and KDM security
First, we recall the definition of (RR-)SKE and (one-time) KDM-security.

▶ Definition 33 (SKE/RR-SKE). Let M = {Mλ}λ∈N be a family of message spaces and
Σ = (Gen, Enc, Dec) be a tuple of probabilistic polynomial-time algorithms where

Gen, called key-generation algorithm, on input 1λ returns a key k,
Enc, called encryption algorithm, gets a message m and a key k as input and returns a
ciphertext ct,
Dec, called decryption algorithm, gets a ciphertext ct and a key k as input and returns a
message m or ⊥.

Σ is called a symmetric-key encryption (SKE) for M if for every m ∈Mλ:

Pr[k ← Gen(1λ); ct← Enck(m) : Deck(ct) = m] = 1 .

We call Σ randomness recoverable SKE (RR-SKE) if additionally there exists a polynomial-
time algorithm Recover such that:

Pr[k ← Gen(1λ); ct← Enck(m; R) : Recoverk(ct) = R] = 1 ,

where R is the randomness used in the encryption algorithm.

▶ Definition 34. Let Π = (Gen, Enc, Dec) be an SKE with key-space K and message-space
M. We say that Π is one-time KDM-secure, if for each efficiently computable function
f : K →M,

{k ← Gen(1λ) : Enck(f(k)))} c≡{k ← Gen(1λ) : Enck(0|f(k)|)}.

▶ Lemma 35. Assume that Π = (Gen, Enc, Dec) is a one-time KDM-secure SKE and
g : {0, 1}l1+l2+l3 → {0, 1}l is an effieciently computable function. Then one has

(x, Enck(g(k, x, y))) c≡(x, Enck(0l))

where k is Π’s key and has length l1 and (x, y) are jointy distributed RVs over {0, 1}l2×{0, 1}l3

and independent of k.

We refer to Appendix B for the proof.

5.2 RR-SSS from randomness simulatable SSS and one-time
KDM-secure RR-SKE

Consider this simple construction for a computational RR-SSS using a general (i.e., not
necessarily perfect or linear) efficient standard SSS (which is known to exist for access
structures in mP, assuming OWF) and an RR-SKE with one-time KDM-security. The
construction is as follows. First, use the SSS to share s||k with randomness r to compute the
shares for the secret s, where k is the key of the SKE. Then, encrypt r under the secret key
k using the SKE and append the ciphertext to the shares. The correctness and randomness
recoverability requirements are trivial. Privacy follows from the KDM-security of the SKE.
However, in order for the proof to go through, we require a property of the original SSS
that we refer to as the randomness simulatability. Every linear SSS has this property but it
remains open whether every access structure in mP admits a randomness simulatable SSS.

In the following, we first define the notion of randomness simulatable SSS. Then, we
present a theorem that formalizes the above construction.

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:19

▶ Definition 36 (Randomness simulatable SSS). Let Π = (R, µ) be a perfect or computational
SSS for an access structure. We say that SSS Π is randomness simulatable, if for each RV
S over the secret space and each unqualified set B there exists an efficiently computable
function g and an efficiently sampleable RV R̂ independent of (S, R) such that

(S, µB , R) c≡(S, µB , g(S, µB , R̂)) ,

where µB = µB(S, R) denotes the share of the unqualified set B.

Notice that, ignoring the efficient computability of g and efficient sampleability of R̂, the
existence of g and R̂ is always guaranteed by the functional representation lemma (Lemma 4).
Also, in particular, linear SSSs are randomness simulatable. It is unclear to us whether
every access structure in mP – which is known to admit an efficient computational SSS [37] –
admits a randomness simulatable scheme.

▶ Theorem 37. Let Π be a one-time KDM-secure RR-SKE with ℓ-bit keys. Let µi be the
sharing map of the i’th participant in a perfect/computational randomness simulatable SSS
for an access structure with t-bit secret, t > l, and ρ-bit randomness (i.e., the share of
participant i is µi(s, r), where s is the secret and r is the randomness). Then, the SSS defined
below is a computational RR-SSS for the same access structure.

Given a secret s ∈ {0, 1}t−ℓ and a randomness r ∈ {0, 1}ρ:
generate a key k ← Gen(1λ),
let ct← Enck(r),
let µi(s||k, r)||ct be the share of i’th participant.

Proof. Correctness and randomness recoverability trivially hold. We prove privacy. Let
s ∈ {0, 1}t−ℓ be an arbitrary secret and let B be an unqualified set in the access structure.
Let R be SSS’s randomness, k denote Gen(1λ) and µB denote µB(s||k, R). For ease of
notation, we simply denote the share of B for the secret s by µB ||Enck(R) (i.e., we ignore
the repetitions of Enck(R)). Based on the randomness simulatability of the SSS, there exists
an efficiently computable function g and an efficiently sampleable RV R̂ independent of
(k, R) such that

(s||k, µB , R) c≡(s||k, µB , g(s||k, µB , R̂))

Therefore, one has the following indistinguishability:

µB ||Enck(R) c≡µB ||Enck(g(s||k, µB , R̂)) (14)

According to Lemma 16, one has

(k, µB(s||k, R)) c≡(k, µB(0t, R)) .

In other words, (k, µB) c≡(k, µ′
B), where µ′

B = µB(0t, R). Because g is efficiently computable
and R̂ is efficiently sampleable and independent of (k, R), we have

µB ||Enck(g(s||k, µB , R̂)) c≡µ′
B ||Enck(g(s||k, µ′

B , R̂)). (15)

On the other hand, because (µ′
B , R̂) is independent of k, by Lemma 35, we have:

µ′
B ||Enck(g(s||k, µ′

B , R̂)) c≡µ′
B ||Enck(0ρ). (16)

Equations (14), (15) and (16) then imply that

µB ||Enck(R) c≡µ′
B ||Enck(0ρ) .

Because µ′
B ||Enck(0ρ) hides the secret s, privacy follows. ◀

ITC 2023

12:20 Randomness Recoverable Secret Sharing Schemes

5.3 Linear-resistant PRG

In this section, we present a variant of pseudo-random generators (PRG), with a KDM-like
security for the class of linear functions.

Recall that a polynomial-time deterministic algorithm, G : {0, 1}⋆ → {0, 1}⋆ that maps
λ-bit strings to ℓ(λ)-bit strings is said to be PRG if ℓ(λ) > λ and G(Uλ) c≡U ℓ(λ).

In the following definition, {0, 1} is identified with F2, the finitie field with two elements,
and + stands for the addition in the field or bitwise-XOR; that is, for x = x1, . . . , xℓ and
y = y1, . . . , yℓ, x + y = (x1 ⊕ y1)|| · · · ||(xℓ ⊕ yℓ).

▶ Definition 38. Let G : {0, 1}λ → {0, 1}ℓ be a polynomial-time deterministic algorithm
with ℓ := ℓ(λ) > λ. We call G a linear-resistant PRG if for every F2-linear function
L : {0, 1}λ → {0, 1}ℓ, G(Uλ) + L(Uλ) c≡U ℓ.

Clearly, every linear-resistant PRG is also a PRG. However, the converse is not necessarily
correct. For example, if G : {0, 1}λ−1 → {0, 1}ℓ−1 is a PRG, then so is G′ : {0, 1}λ → {0, 1}ℓ

defined as G′(s1 · · · sλ) = s1||G(s2 · · · sλ). It is clear that G′ is not linear-resistant.
It is easy to see that linear-resistant PRG implies one-time KDM-secure SKE against the

class of all affine functions: simply consider the standard one-time-pad encryption scheme
Enck(m) = G(k) + m. More precisely, if the input and output lengths of the linear-resistant
PRG G are λ and ℓ, the key and message spaces of the constructed scheme are K = Fλ

2 and
M = Fℓ

2, respectively, and it has KDM-security against all affine functions from Fλ
2 to Fℓ

2.
In particular, since this scheme is deterministic, the resulting SKE is RR. Another variant

of PRG that has a KDM-like property is the hinting PRG which can be used to achieve
one-time KDM-secure SKE against any class of functions that can be computed in fixed
polynomial time [25, Appendix B]. Also, note that both of these primitives can be instantiated
using a random oracle. Despite the similarity between linear-resistant PRG and hinting
PRG, the relationship between these primitives remains open, as is the (im)possibility of
constructing linear-resistant PRG from OWF. In contrast, black-box separation between
hinting PRG and PKE is known [1].

5.4 RR-SSS from linear perfect SSS and linear-resistant PRG

Consider the following simple construction for a computational RR-SSS using an efficient
(standard) linear perfect SSS and a linear-resistant PRG G. To share a secret s, use the linear
SSS to share s||r with randomness G(r) to compute the shares, where r is the randomness.
It is clear that every qualified set can recover not only s but also r. Privacy follows from
the linear-resistance security of the PRG. Notice that the class of access structures that
admit efficient linear SSS is equivalent to the class of monotone boolean functions that
admit efficient MSP (monotone-span programs [22]) which includes NC1 (e.g., using the
Benaloh-Leichter [6] construction).

We state the above construction in a theorem:

▶ Theorem 39. Let µ be the sharing map of a perfect linear SSS for an access structure with
kλ-bit secrets, k > 1, and ℓ-bit randomness (i.e., the shares of participants are the outputs
of µ(s, r), where s is the secret and r is the randomness). Let G : {0, 1}λ → {0, 1}ℓ be a
linear-resistant PRG. Then, the SSS defined by the sharing map µ′(s, r) = µ(s||r, G(r)) is a
computational RR-SSS for the same access structure, where s ∈ {0, 1}(k−1)λ is the secret and
r ∈ {0, 1}λ is the randomness with uniform distribution.

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:21

Proof. Correctness and randomness recoverability trivially hold. We prove privacy. Let B

be an unqualified set and let µB(s1||s2, r) = L1(s1) + L2(s2) + L3(r) be the share of B for
the secret s1||s2 and randomness r ∈ {0, 1}ℓ in the perfect linear scheme, where Li’s are
linear functions, s1 ∈ {0, 1}(k−1)λ and s2 ∈ {0, 1}λ.

By perfect privacy of the linear scheme, for any s ∈ {0, 1}(k−1)λ, the RVs L2(s)+L3(r) and
L3(r) have the same distributions, where r is a uniform RVs on ℓ-bit strings (they correspond
to the shares of the secrets s||0λ and 0kλ, respectively). Therefore supp(L2(s) + L3(r)) =
supp(L3(r)) which implies that L2(s)+ range(L3) = range(L3). As a result L2(s) ∈ range(L3)
and because s is arbitrary, we have range(L2) ⊆ range(L3). If f and g are linear functions
from V to W such that range of g is a subspace of the range of f , then for a suitable linear
function h over V one has g = f ◦ h. By this fact, there is a linear function L such that
L2 = L3 ◦ L.

Let s, s′ ∈ {0, 1}(k−1)λ be two arbitrary secrets and r be as before. Again, by perfect
privacy of the linear scheme, L1(s) + L3(r) and L1(s′) + L3(r) have the same distributions
(they correspond to the shares of the secrets s||0λ and s′||0λ, respectively). Since G is linear-
resistant, by a standard reduction argument, L1(s)+L3(G(r)+L(r)) and L1(s′)+L3(G(r)+
L(r)) are computationally indistinguishable where r is a uniform RV on λ-bit strings.
Therefore, µ′

B(s, r) = L1(s) + L2(r) + L3(G(r)) and µ′
B(s′, r) = L1(s′) + L2(r) + L3(G(r))

are computationally indistinguishable, which is the desired result. ◀

We conclude this section with the following remark that relates the observations of this
section and the previous ones.

▶ Remark 40. Notice that in the proof of Theorem 37, we do not require that the SKE be
KDM-secure against the whole class of efficiently computable functions. Indeed, security
against all the functions g for all unqualified sets is sufficient. Since the class of linear SSSs
is randomness simulatable with linear g’s, and one-time secure RR-SKE against the class of
linear functions is implied by linear-resistant PRG, Theorem 39 follows by Theorem 37, via
a simpler construction though.

6 Conclusion

We initiated the study of SSS from the viewpoint of randomness recovery. By proving an
exponential lower bound for the information ratio of an RR-SSS that realizes some very
simple access structure in monotone AC0, we showed that the situation is very different for
RR-SSS, compared to the standard SSS, for which the best-known lower bound is sub-linear.
We also managed to shed some light on the complexity of the computational RR-SSS, by
proving that computational RR-SSS for certain access structures in monotone AC0 implies
OWF. This computational result is essentially a consequence of our information-theoretic
lower bound; This can be justified by the very general idea that an algorithm that hides the
secret from a bounded adversary but is unable to do so against an unbounded adversary
implies OWF.

In the final section, we observed that an efficient perfect linear SSS can be converted into
a computational RR-SSS for the same access structure using a type of PRG that we called
linear-resistant PRG. We also noted that using a one-time KDM-secure RR-SKE, one can
convert an efficient perfect/computational SSS into an RR-SSS, assuming that the SSS has
the extra property of randomness simulatability.

ITC 2023

12:22 Randomness Recoverable Secret Sharing Schemes

References
1 Navid Alamati and Sikhar Patranabis. Cryptographic primitives with hinting property. In

Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022 –
28th International Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part I, volume 13791 of Lecture
Notes in Computer Science, pages 33–62. Springer, 2022. doi:10.1007/978-3-031-22963-3_2.

2 Benny Applebaum and Barak Arkis. On the power of amortization in secret sharing: d-
uniform secret sharing and CDS with constant information rate. ACM Trans. Comput. Theory,
12(4):24:1–24:21, 2020. doi:10.1145/3417756.

3 Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology – Third Inter-
national Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011. Proceedings, pages
11–46, 2011. doi:10.1007/978-3-642-20901-7_2.

4 Amos Beimel and Yuval Ishai. On the power of nonlinear secret-sharing. In Proceedings of the
16th Annual IEEE Conference on Computational Complexity, Chicago, Illinois, USA, June
18-21, 2001, pages 188–202, 2001. doi:10.1109/CCC.2001.933886.

5 Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, Advances in Cryptology – EUROCRYPT ’94, Workshop on the Theory and Application
of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume 950 of
Lecture Notes in Computer Science, pages 92–111. Springer, 1994. doi:10.1007/BFb0053428.

6 Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In Advances in Cryptology – CRYPTO ’88, 8th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1988, Proceedings, pages 27–35, 1988. doi:
10.1007/0-387-34799-2_3.

7 George Robert Blakley. Safeguarding cryptographic keys. Proceedings of the 1979 AFIPS
National Computer Conference, 48:313–317, 1979.

8 Dan Boneh. Simplified OAEP for the RSA and rabin functions. In Joe Kilian, editor, Advances
in Cryptology – CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in
Computer Science, pages 275–291. Springer, 2001. doi:10.1007/3-540-44647-8_17.

9 Renato M. Capocelli, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the size of shares
for secret sharing schemes. J. Cryptology, 6(3):157–167, 1993. doi:10.1007/BF00198463.

10 László Csirmaz. The size of a share must be large. J. Cryptology, 10(4):223–231, 1997.
doi:10.1007/s001459900029.

11 László Csirmaz. Secret sharing and duality. J. Math. Cryptol., 15(1):157–173, 2020. doi:
10.1515/jmc-2019-0045.

12 Abbas El Gamal and Young-Han Kim. Network Information Theory. Cambridge University
Press, 2011. doi:10.1017/CBO9781139030687.

13 Sanjam Garg, Mohammad Hajiabadi, Giulio Malavolta, and Rafail Ostrovsky. How to build
a trapdoor function from an encryption scheme. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2021 – 27th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part III, volume 13092 of Lecture Notes in Computer Science, pages
220–249. Springer, 2021. doi:10.1007/978-3-030-92078-4_8.

14 Susan Hohenberger, Venkata Koppula, and Brent Waters. Chosen ciphertext security from
injective trapdoor functions. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology – CRYPTO 2020 – 40th Annual International Cryptology Confer-
ence, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
I, volume 12170 of Lecture Notes in Computer Science, pages 836–866. Springer, 2020.
doi:10.1007/978-3-030-56784-2_28.

15 Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In David S. Johnson, editor, Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washington,
USA, pages 12–24. ACM, 1989. doi:10.1145/73007.73009.

https://doi.org/10.1007/978-3-031-22963-3_2
https://doi.org/10.1145/3417756
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1109/CCC.2001.933886
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/3-540-44647-8_17
https://doi.org/10.1007/BF00198463
https://doi.org/10.1007/s001459900029
https://doi.org/10.1515/jmc-2019-0045
https://doi.org/10.1515/jmc-2019-0045
https://doi.org/10.1017/CBO9781139030687
https://doi.org/10.1007/978-3-030-92078-4_8
https://doi.org/10.1007/978-3-030-56784-2_28
https://doi.org/10.1145/73007.73009

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:23

16 Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography. In 30th Annual Symposium on Foundations of Computer Science, pages 230–235,
1989. doi:10.1109/SFCS.1989.63483.

17 Mitsuru Ito, Akira Saio, and Takao Nishizeki. Multiple assignment scheme for sharing secret.
J. Cryptol., 6(1):15–20, 1993. doi:10.1007/BF02620229.

18 Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Electronic
Science), 72(9):56–64, 1989.

19 Amir Jafari and Shahram Khazaei. Partial secret sharing schemes. IACR Cryptol. ePrint
Arch., 2020:448, 2020. URL: https://eprint.iacr.org/2020/448.

20 Tarik Kaced. Almost-perfect secret sharing. In 2011 IEEE International Symposium on
Information Theory Proceedings, ISIT 2011, St. Petersburg, Russia, July 31 – August 5, 2011,
pages 1603–1607, 2011. doi:10.1109/ISIT.2011.6033816.

21 Tarik Kaced. Information inequalities are not closed under polymatroid duality. IEEE Trans.
Information Theory, 64(6):4379–4381, 2018. doi:10.1109/TIT.2018.2823328.

22 Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, pages
102–111, 1993. doi:10.1109/SCT.1993.336536.

23 Ehud D. Karnin, J. W. Greene, and Martin E. Hellman. On secret sharing systems. IEEE
Trans. Information Theory, 29(1):35–41, 1983. doi:10.1109/TIT.1983.1056621.

24 Shahram Khazaei, Tal Moran, and Douglas Wikström. A mix-net from any CCA2 se-
cure cryptosystem. In Xiaoyun Wang and Kazue Sako, editors, Advances in Crypto-
logy – ASIACRYPT 2012 – 18th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceed-
ings, volume 7658 of Lecture Notes in Computer Science, pages 607–625. Springer, 2012.
doi:10.1007/978-3-642-34961-4_37.

25 Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. CCA security and trapdoor
functions via key-dependent-message security. J. Cryptol., 35(2):9, 2022. doi:10.1007/
s00145-022-09420-8.

26 Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. J. Cryptol., 30(2):444–
469, 2017. doi:10.1007/s00145-015-9226-0.

27 Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019 – 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part
II, volume 11693 of Lecture Notes in Computer Science, pages 671–700. Springer, 2019.
doi:10.1007/978-3-030-26951-7_23.

28 Chung Ki Li and Duncan S. Wong. Signcryption from randomness recoverable public key
encryption. Inf. Sci., 180(4):549–559, 2010. doi:10.1016/j.ins.2009.10.015.

29 Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu. New
constructions of reusable designated-verifier nizks. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019 – 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part
III, volume 11694 of Lecture Notes in Computer Science, pages 670–700. Springer, 2019.
doi:10.1007/978-3-030-26954-8_22.

30 Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In Elizabeth
Borowsky and Sergio Rajsbaum, editors, Proceedings of the Twenty-Second ACM Symposium
on Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA, July 13-16,
2003, pages 12–19. ACM, 2003. doi:10.1145/872035.872038.

31 John W Moon and Leo Moser. On cliques in graphs. Israel journal of Mathematics, 3(1):23–28,
1965.

ITC 2023

https://doi.org/10.1109/SFCS.1989.63483
https://doi.org/10.1007/BF02620229
https://eprint.iacr.org/2020/448
https://doi.org/10.1109/ISIT.2011.6033816
https://doi.org/10.1109/TIT.2018.2823328
https://doi.org/10.1109/SCT.1993.336536
https://doi.org/10.1109/TIT.1983.1056621
https://doi.org/10.1007/978-3-642-34961-4_37
https://doi.org/10.1007/s00145-022-09420-8
https://doi.org/10.1007/s00145-022-09420-8
https://doi.org/10.1007/s00145-015-9226-0
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1016/j.ins.2009.10.015
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1145/872035.872038

12:24 Randomness Recoverable Secret Sharing Schemes

32 Duong Hieu Phan and David Pointcheval. Chosen-ciphertext security without redundancy.
In Chi-Sung Laih, editor, Advances in Cryptology – ASIACRYPT 2003, 9th International
Conference on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, November 30 – December 4, 2003, Proceedings, volume 2894 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2003. doi:10.1007/978-3-540-40061-5_1.

33 Phillip Rogaway and Mihir Bellare. Robust computational secret sharing and a unified account
of classical secret-sharing goals. In Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007,
pages 172–184, 2007. doi:10.1145/1315245.1315268.

34 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. doi:10.1145/
359168.359176.

35 Victor Shoup. OAEP reconsidered. J. Cryptol., 15(4):223–249, 2002. doi:10.1007/
s00145-002-0133-9.

36 Vinod Vaikuntanathan, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and Kwangjo Kim.
On the power of computational secret sharing. In Thomas Johansson and Subhamoy Maitra, ed-
itors, Progress in Cryptology – INDOCRYPT 2003, 4th International Conference on Cryptology
in India, New Delhi, India, December 8-10, 2003, Proceedings, volume 2904 of Lecture Notes
in Computer Science, pages 162–176. Springer, 2003. doi:10.1007/978-3-540-24582-7_12.

37 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91. IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.45.

A Proof of Lemma 16

Assume that Π is a computational SSS. Let Γ = {Γn}n, R = {Rλ,n}λ,n, S = {Sλ,n}λ,n,
t = t(λ, n), B = {Bn}n and n = n(λ) be a polynomial. We should prove that

(Sλ,n(λ), µBn(λ)(Sλ,n(λ), Rλ,n(λ)))
c≡(Sλ,n(λ), µBn(λ)(0

t(λ,n(λ)), Rλ,n(λ))).

For contradiction, let poly be a polynomial and D = {Dλ}λ be a family of polynomial-size
distinguishers such that for infinitely many λ,

|Pr[Dλ(Sλ,n(λ),µBn(λ)(Sλ,n(λ), Rλ,n(λ))) = 1]

−Pr[Dλ(Sλ,n(λ), µBn(λ)(0
t(λ,n(λ)), Rλ,n(λ))) = 1]| ≥ 1

poly(λ) .

Therefore, according to the independence of S and R, for each such λ, there is sλ ∈
supp(Sλ,n(λ)) such that

|Pr[Dλ(sλ, µBn(λ)(sλ, Rλ,n(λ))) = 1]−Pr[Dλ(sλ, µBn(λ)(0
t(λ,n(λ)), Rλ,n(λ))) = 1]| ≥ 1

poly(λ) .

Therefore, for Cλ(·) = Dλ(sλ, ·) one has

|Pr[Cλ(µBn(λ)(sλ, Rλ,n(λ))) = 1]− Pr[Cλ(µBn(λ)(0
t(λ,n(λ)), Rλ,n(λ))) = 1]| ≥ 1

poly(λ) ,

which contradicts the computational privacy of the SSS.

https://doi.org/10.1007/978-3-540-40061-5_1
https://doi.org/10.1145/1315245.1315268
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/s00145-002-0133-9
https://doi.org/10.1007/s00145-002-0133-9
https://doi.org/10.1007/978-3-540-24582-7_12
https://doi.org/10.1109/SFCS.1982.45

M. Hajiabadi, S. Khazaei, and B. Vahdani 12:25

B Proof of Lemma 35

Let k = {kλ}λ where kλ = Gen(1λ), x = {xλ}λ, y = {yλ}λ and g = {gλ}λ. Assume that
the assertion is false and there is a polynomial poly and a polynomial-size distinguisher
D = {Dλ}λ and infinitely many λ for which:

|Pr[Dλ(xλ, Enckλ
(gλ(kλ, xλ, yλ))) = 1]− Pr[Dλ(xλ, Enckλ

(0l(λ))) = 1]| ≥ 1
poly(λ) .

Because k is independent of x and y, for each such λ, there is (xλ, yλ) ∈ supp(xλ)× supp(yλ)
such that:

|Pr[Dλ(xλ, Enckλ
(gλ(kλ, xλ, yλ))) = 1]− Pr[Dλ(xλ, Enckλ

(0l(λ))) = 1]| ≥ 1
poly(λ) .

Letting Cλ(·) = Dλ(xλ, ·) and fλ(·) = gλ(·, xλ, yλ), we have

|Pr[Cλ(Enckλ
(fλ(kλ))) = 1]− Pr[Cλ(Enckλ

(0l(λ))) = 1]| ≥ 1
poly(λ) ,

which contradicts the KDM-security of Π.

ITC 2023

Secure Communication in Dynamic Incomplete
Networks
Ivan Damgård #

Aarhus University, Denmark

Divya Ravi #

Aarhus University, Denmark

Daniel Tschudi #

Concordium, Zürich, Switzerland

Sophia Yakoubov #

Aarhus University, Denmark

Abstract
In this paper, we explore the feasibility of reliable and private communication in dynamic networks,
where in each round the adversary can choose which direct peer-to-peer links are available in the
network graph, under the sole condition that the graph is k-connected at each round (for some k).

We show that reliable communication is possible in such a dynamic network if and only if k > 2t.
We also show that if k = cn > 2t for a constant c, we can achieve reliable communication with
polynomial round and communication complexity.

For unconditionally private communication, we show that for a passive adversary, k > t is
sufficient (and clearly necessary). For an active adversary, we show that k > 2t is sufficient for
statistical security (and clearly necessary), while k > 3t is sufficient for perfect security. We
conjecture that, in contrast to the static case, k > 2t is not enough for perfect security, and we give
evidence that the conjecture is true.

Once we have reliable and private communication between each pair of parties, we can emulate a
complete network with secure channels, and we can use known protocols to do secure computation.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Secure Communication, Dynamic Incomplete Network, Information-theoretic

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.13

Related Version Full Version: https://eprint.iacr.org/2023/529

Funding Ivan Damgård: The SecureDNA project, The Villum Foundation.
Divya Ravi: The European Research Council (ERC) under the European Unions’s Horizon 2020
research and innovation programme under grant agreement No 803096 (SPEC).
Sophia Yakoubov: The Danish Independent Research Council under Grant-ID DFF-2064-00016B
(YOSO).

1 Introduction

In this paper, we study the feasibility of unconditionally secure communication (and hence
multiparty computation) when parties communicate over an incomplete and dynamic network.
More precisely, we assume a synchronous network with secure point-to-point channels where,
in each round, only some of the point-to-point connections work, so the network is incomplete.
Furthermore, the adversary can decide to change the set of active connections from one round
to the next. We call this a dynamic incomplete network, in contrast to a static incomplete
network, where the graph describing the active connections stays the same throughout the
protocol.

© Ivan Damgård, Divya Ravi, Daniel Tschudi, and Sophia Yakoubov;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ivan@cs.au.dk
mailto:divya@cs.au.dk
https://orcid.org/0000-0001-6423-8331
mailto:dt@concordium.com
https://orcid.org/0000-0001-6188-1049
mailto:sophia.yakoubov@cs.au.dk
https://doi.org/10.4230/LIPIcs.ITC.2023.13
https://eprint.iacr.org/2023/529
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Secure Communication in Dynamic Incomplete Networks

The study of reliable communication on an incomplete network starts with the work of
Dolev [2], who showed that, for a static incomplete network where t of the n parties are
malicious, one can do secure broadcast if and only if the network is at least 2t + 1-connected,
and 3t < n. (A network is k-connected if it remains connected when one removes any set of
less than k vertices. By Menger’s theorem, this is equivalent to requiring that any pair of
distinct nodes are connected by at least k disjoint paths.)

Later, Dolev et al. [3] showed that any two parties in a static incomplete network can
communicate with perfect security (privacy and reliability) if and only if the network is
2t + 1-connected. Using the protocols from that work, one can emulate a complete network
with secure point-to-point channels, so combining this with well-known feasibility results
for MPC, one can conclude that, in a static network, 2t + 1-connectivity is necessary and
sufficient for unconditionally secure MPC to be possible.

However, as mentioned, we are interested in what happens if the network is dynamic. To
the best of our knowledge, very little work has been done in this direction. The problem was
first considered in Mauer et al. [5], who define a notion called Dynamic Min-Cut for two nodes
a, b, denoted by DynMinCut(a, b). They show that reliable (non-private) communication in
a dynamic network from a to b is possible if and only if DynMinCut(a, b) > 2t. Intuitively,
this condition makes a statement on how the network evolves over time, and says that it
does so in a way that is “kind enough” to allow a message to travel from p to q on at least
2t + 1 disjoint paths. It is not surprising that this is the condition for reliable communication,
given what was known about static networks. However, dynamic min-cut makes a rather
complicated statement about the entire sequence of network graphs. It is natural to ask if
there is a simple property we can require for each individual network graph that would then
imply the DynMinCut-condition. This is a natural question from a theory point of view,
but also a question one would ask in order to decide if secure communication is feasible in a
given application scenario. Finally, the work of Mauer et al. did not consider unconditionally
private communication.

1.1 Our Contribution
In this paper, we aim to fill the gaps pointed out above. We introduce a model where an
adversary chooses, in each round, a network graph to be used, under the sole condition
that it is k-connected, for some k. This is a natural generalization of the static case and
also a model that might be relevant in practice – consider, for instance, a mobile network
where connections come and go, but where each possible connection is active with some
probability p. Known results on random graphs indicate that if p is large enough, then the
resulting graph is highly connected.

For a static network, it seems reasonable to assume that the parties know the topology
of the network, while this is quite unrealistic for a dynamic network, where the absence on
connections may be caused by movement of mobile devices, or equipment crashing. These
are events that a party cannot predict locally. We therefore assume that honest parties do
not know the network topology. In one version of the model, parties know their immediate
neighbourhood, but our protocols work in the worst case where parties do not know which
connections they have.

We show that reliable communication is possible in a dynamic network if and only if
k > 2t (note that we inherit impossibility results from the static case since the adversary could
choose to keep the network graph constant). For unconditionally private communication, we
show that for a passive adversary, k > t is sufficient (and clearly necessary). For an active
adversary, we show that k > 2t is sufficient for statistical security (and clearly necessary),

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:3

while k > 3t is sufficient for perfect security. We conjecture that, in contrast to the static
case, k > 2t is not enough for perfect security, and we give evidence that the conjecture is
true. As mentioned above, once we can emulate a complete network with secure channels,
we can use known protocols to do secure computation.

Even though we can provide secure communication on dynamic networks, it is natural to
expect that there is a performance penalty in going from static to dynamic networks: in the
static case we can use a fixed set of paths for communication, while this clearly will not work
in the dynamic case, as the adversary could block these paths. Intuition clearly suggests that
one needs to try a large number of paths from sender to receiver to make sure something
gets through.

We study a class of protocols where the main step is that the sender S tries to send data
along a set of paths Paths, and where the protocol will be successful if the receiver R receives
something on at least k disjoint paths. All the protocols we construct are in this class. We
will say that Paths is k-connected with respect to a family of graphs G if, for each graph
G ∈ G, for any pair (S, R), there exist k disjoint paths between S and R, such that these paths
are contained in both G and in Paths. Here, one should think of G as a sequence of network
graphs chosen by the adversary under the constraints in our model, so we assume throughout
that all graphs in G are k-connected. As short hand, we say that Paths is k-connected if it is
k-connected with respect to all graph families (within our model). Paths being k-connected
can be thought of as a condition saying that Paths is large enough, in comparison to the set
of connections that adversary allows at any one time.

We show that if Paths is k-connected (with respect to the family of graphs chosen by the
adversary), then our protocols terminate correctly in at most L|Paths| rounds, where L is
the maximal length of paths in Paths and |Paths| is the cardinality of Paths. We can make
sure that Paths is always k-connected by simply choosing Paths to be the set of all possible
paths, which unfortunately is exponentially large in n.

However, if k is Ω(n), we can do much better: we show that in this case, among the k

disjoint paths that exist in every round, there must be a large number of short (constant
length) paths. More precisely, if k = dn for a constant d, and we let Pathsc the set of paths
of length c for some constant c, then Pathsc is k′ = d′n-connected for d′ < d, and by choosing
c large enough, we can make d′ be arbitrarily close to d. Moreover, |Pathsc| is polynomial in
n for any constant c, so if we run our protocols with Pathsc as the target set of paths, their
complexity will be polynomial in n.

This efficient version is almost as robust against corruptions as is possible: from the
discussion above, it follows that the maximum number of corruptions that can be tolerated
with connectivity k is roughly (k− 1)/2. So if k is a constant times n, it is also the case that
t = αn for a constant α. Since we can get connectivity almost k with constant length paths,
our efficient version can be designed to tolerate βn corruptions, for any β < α.

Note that if we want to do MPC, one usually wants to tolerate Ω(n) corruptions, which
implies that k must also be Ω(n), even for a static network.

1.2 Technical overview
The case of sending a public message reliably from S to R is relatively straightforward: S
can send the same message on all paths in the pathset used. Here, as in all of our protocols,
each copy of the message will be accompanied by metadata that specifies on which path
the message travelled. Once R has received something on sufficiently many disjoint paths,
she can determine what the correct message is. This is basically the same protocol that
was considered in [7] for a static and asynchronous network. However, the proof that it
terminates correctly is completely different in our case.

ITC 2023

13:4 Secure Communication in Dynamic Incomplete Networks

Table 1 Reliable Communication Protocols for a message m, over k-connected path set Paths of
cardinality M and with maximal path length L. The communication complexity is given per party
per round. Paths′ denotes a k-connected path set having paths of length at most c, where c is a
constant.

Corruption Graph Complexity

Scheme Type Threshold Connectivity Rounds Communication

Protocol 1 passive t < n 1 n O(n|m|)

Protocol 2 active t < n
2 k > 2t LM O(n22n|m|)

Protocol 2 with
constant-length
paths

active t < n
2 k = cn > 2t c|Paths′| = poly(n) poly(n)|m|

Table 2 Private Communication Protocols: The communication complexity is given per party
per round.

Corruption Graph Complexity

Scheme Security Type Threshold Connectivity Rounds Communication

Protocol 3 perfect passive t < n k > t LM + 2n O(Mn2(log M + |m|))

Protocol 5 perfect active t < n
3 k > 3t 3LM O(Mnn(log M + |m|))

Protocol 5
communication
efficient variant

perfect active t < n
3 k > 3t poly(LM) Per attempt same as

Protocol 4. In the worst
case overall same as
Protocol 5.

Protocol 6 perfect active t < n
4 k > 4t 3LM O(Mn32n(log M + |m|))

Protocol 4 statistical active t < n
2 k > 2t 3LM O(n32n(|m| + log M) +

M(|m| + λ · M))

Sending unconditionally private messages comes with new and bigger challenges. For
the static case, Dolev et al. [3] designated a fixed set of k disjoint paths to be used for
communicating between S and R. After this, they could abstract away the network and
simply assume that S and R are connected by k channels where t of these are controlled by
the adversary. This is the problem of secure message transmission that has been studied in
many subsequent works. However, this abstraction cannot be used for a dynamic network:
we cannot predict on which paths R will receive something. Moreover, corrupt parties may
claim that they heard something on a path, even if the adversary’s choice of network graphs
actually did not allow transmission via that path. R has no obvious way to tell that such a
claim is false – after all, with a different scheduling of network graphs, the claim might have
been true.

We therefore need a new approach to sending private messages. For simplicity, we first
sketch the idea for a passive adversary: we let S send independent randomness on sufficiently
many different paths, and once R has received something on k disjoint paths, she can report
to S the identity of these paths (but not the randomness she received). The reporting can
be done using the protocol we already have for reliable public communication. If t < k, at
least one random value that made it to R is unknown to the adversary, so S can derive a key
(by XORing together all of the random values that made it), use that key to one-time pad
encrypt the message, and send the resulting ciphertext in public.

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:5

This will not work for an active adversary, as we need to make sure the correct message is
received. Our high-level strategy to solve this is as follows: if S sends data on a k-connected
pathset, R will eventually receive data on k − t disjoint paths (but not necessarily more, as t

paths can be blocked by corrupt players). However, due to misreporting by corrupt players,
R may have data delivered that claim to come from a large set of paths, containing many
sets of k− t disjoints paths. The idea is now to use reliable public communication to identify
a sufficiently large set C of disjoint paths where R received correct data on all paths in C.
We call such a set a good set. It turns out that if k ≥ 3t + 1 we can identify a good path set
of size 2t + 1 with zero error probability by exploiting the fact that any set of at least 2t + 1
disjoint paths must contain a majority of paths with only honest players. This requires a lot
of work, but if k ≥ 4t + 1, it can be done much more efficiently using error correction. If
k ≥ 2t + 1 we can identify a good set of size t + 1, except with negligible error probability,
by using unconditionally secure authentication1. Now, from the data received via paths in C

we can extract a value that can be used to one-time pad encrypt the secret message, as in
the passively secure solution. We therefore get statistical security for k ≥ 2t + 1 and perfect
security for k ≥ 3t + 1.

However, if the goal is perfect security and we only assume k ≥ 2t + 1, there are serious
problems, and we conjecture that in fact perfect security cannot be achieved in this case. We
give evidence for the conjecture: For connectivity 2t + 1, we construct an example scenario
where the set of paths delivered to R contains several maximal sets of disjoint paths of size
k − t = t + 1. One of these sets contains only honest paths, but the others have the same
number of honest and corrupt paths and may contain incorrect data. We show that R cannot
perfectly decide which one is the all-honest set: for each choice there exists an adversarial
strategy that would be consistent with that choice2. Now, consider any protocol which (as
we do) would select one of these path sets and try to use the data received there and public
communication to get a message across with perfect security. Any such protocol will fail with
non-zero probability: if the wrong set is selected, we may have a situation where half the
received values are known and/or manipulated by the adversary. Intuitively, if the receiver’s
output depends on only half the values (and the public communication) this may be the half
the adversary knows and the output is not secret. If it depends on more than half the values,
it must depend on values the adversary may have changed, and the output is not correct.
We therefore conjecture that, in contrast to the static network case, k > 3t is needed for
perfect security.

1.3 Related Work
Maurer et al. [5] consider the setting closest to our own. They identify the minimal and
necessary condition for authenticated peer-to-peer communication; that is, there should exist
2t+1 (or t+1, assuming digital signatures) disjoint paths from the sender to the receiver over
time. We would like to point that if the conditions required in our model are satisfied, this
would imply the conditions are also satisfied over time. Conversely, there could be settings
where conditions from Maurer et al. [5] are satisfied, while ours are not. For instance, the
condition of Maurer et al. [5] could be satisfied even if the graphs at every point in time

1 It may seem that authentication cannot be used here, as S needs to send a key to R, and this key must
be sent privately and correctly, just like the message. We solve this apparent circularity by observing
that S could send many keys on different paths and it is sufficient that one key makes it to R unseen by
the adversary. See more details within.

2 note that unconditionally secure authentication does not give perfect security and so does not help.

ITC 2023

13:6 Secure Communication in Dynamic Incomplete Networks

Table 3 Related Work.

Construction Assumptions Corruption Guarantees on Graph

auth. P2P [5] - t < n
2 dynamic, dynamic min cut > 2t

auth. P2P [5] signatures t < n
2 dynamic, dynamic min cut > t

auth. P2P [7] - t < n
3 static, connectivity k > 2t

broadcast [7] - t < n
3 static, connectivity k > 2t

are not even connected. However for this to happen, the network graphs would have to be
“engineered” in a way that allows the message to progress one step at a time; which seems
quite unrealistic.

Wang and Wattenhofer [7] consider static incomplete networks (and additionally consider
asynchrony, where messages can take arbitrarily long to traverse a link in the graph). We
build on one of their protocols, adapting it to our dynamic, synchronous setting.

1.4 Future Directions
Our work leaves open the question of proving / disproving our conjecture regarding whether
perfect security is possible to achieve when 3t > k > 2t. Another interesting open question
is whether the upper bound on the round complexity of our constructions can be improved.

2 Preliminaries

2.1 Model
We consider a set P = {P1, . . . , Pn} of n parties.

Corruption. A central adversary corrupts at most t parties. The corruption is static, i.e.,
the adversary is required to select the set of corrupted parties before the protocol execution.
We distinguish between passive corruption where the adversary can access the internal state
of corrupted parties and active corruption where the adversary has full control over the
behavior of corrupted parties.

Communication network. Parties communicate over a dynamic incomplete network of
secure (private and authentic) synchronous channels. In each round r (a.k.a. time-step),
parties can communicate over the network graph Gr that has been selected by the adversary
from a publicly-known family of graphs G. The graph family G models the guarantees for
honest parties, e.g., with respect to graph connectivity. There are three possibilities for
modelling the network adversary:

A static adversary is required to decide / commit to the set of graphs beforehand i.e.
before the protocol begins.
An (non-rushing) adaptive adversary can choose the graph for round r + 1 at the end of
round r.
A rushing adaptive adversary can first wait to see through what network edges the
messages were attempted to be sent during round r, before determining the graph for
round r.

In this paper, we consider a rushing adaptive network adversary.

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:7

We assume that honest parties are oblivious on the communication graph of a given
round. That is, they only know the overall family G, but not the actual Gr. So, in a protocol
they may attempt to use any channel in their neighborhood of Ḡ =

⋃
G∈G G whereas only

channels in the unknown Gr will actually transmit. Honest parties do not learn which of
their outgoing transmissions were successful.

Communication Complexity. In the setting with oblivious honest parties, every attempted
use of a communication channel will count towards the communication complexity even if
the actual transmission fails. For example, if an honest party tries to send a bit to every
other party, this will count as n bits of communication irrespective of outcome.

Future Work: Other Models. For static or adaptive adversaries we could also consider
aware honest parties, who are given Gr at the beginning of the round. We therefore assume
that they will only use channels within Gr which are guaranteed to work. Aware honest
parties will not attempt to send messages on channels which are not available, leading to
better communication complextiy.

In the rushing adaptive setting, we could also consider looking at retroactive awareness,
where honest parties are notified about successful transmissions.

2.2 Building Blocks
In this section we define the building blocks necessary for our protocols.

2.2.1 Threshold Secret Sharing Scheme
A t-out-of-n secret sharing scheme allows a party to “split” a secret into n shares that can be
distributed among different parties. To reconstruct the original secret x at least t + 1 shares
need to be used.

▶ Definition 1 (Secret Sharing). A t-out-of-n secret sharing scheme is a tuple of efficient
algorithms (share, reconstruct) defined as follows.

The randomized algorithm share takes as input a secret x ∈ F and outputs a set of n

share, i.e.,

(s1, . . . , sn) ∈ Fn $←− share(x).

The reconstruct algorithm reconstruct takes as input a vector of at least t + 1 shares
and outputs either the secret x, or outputs ⊥, i.e.,

{x,⊥} ← reconstruct
(
{si}i∈S⊆[n],|S|>t

)
.

We require the following properties of a t-out-of-n secret sharing scheme:

Perfect Correctness. The perfect correctness property requires that the shares of a secret
x should always reconstruct to x. More formally, a secret sharing scheme is perfectly
correct if for any secret x, for any subset S ⊆ [n], |S| > t,

P
[

x = x′ : (s1, . . . , sn) $←− share(x),
x′ ← reconstruct({si}i∈S)

]
= 1,

where the probability is taken over the random coins of share. Moreover, if a negligible
error probability is allowed, we simply say that the scheme is correct.

ITC 2023

13:8 Secure Communication in Dynamic Incomplete Networks

Protocol 1: Flood(G, S, R, m)

Let Ḡ =
⋃

G∈G G. The sender S has message m as input. The protocol runs for n rounds:

In each round the sender S sends m to all neighbors in Ḡ.
Once a party P ∈ P \ {S} receives the first message m′ from any neighbor, it will
send m′ to all neighbors in Ḡ in all subsequent rounds.
The receiver will output the first received message m′ at the end of the protocol.

Figure 1 Simple flooding protocol, secure against t < n passive corruptions in a connected
network.

Privacy: The privacy property requires that any combination of up to t shares should leak no
information about the secret x. More formally, we say that a secret sharing scheme is
private if for any x, and for any set A ⊆ {1, . . . , n}, |A| ≤ t the distribution of the set
{si}i∈A is statistically independent of x.

2.2.2 Instantiation
In our constructions, we use the Shamir’s threshold secret sharing scheme [6]. We give a
brief description of this scheme below. Informally, the shares output by the algorithm share
correspond to the set of evaluations on n different points of a t-degree polynomial (whose
coefficients are chosen at random from a finite field F) with constant term as its secret. The
algorithm reconstruct uses Lagrange interpolation to identify the t-degree polynomial that
is consistent with the set of shares in order to return the constant term as the secret (⊥ is
returned if no such polynomial exists).

3 Reliable Communication

In this section we describe protocols for reliable communication in our model, which we
summarize in Table 1.

3.1 Passive Corruptions
In the case of passive corruption and a family G of connected graphs, a simple flooding
protocol where parties echo the first received message can be used.

▶ Lemma 2. Given a family G of connected graphs, Protocol 1 allows S to reliably send
a message m to R in the presence of a rushing adaptive network adversary that passively
corrupts t < n parties. The protocol runs for n rounds and in each round a party sends
O(n|m|) bits.

Proof.
Correctness. Corruption is passive, so all parties which received a message actually get the
sender’s message m. Let H denote the set of nodes who have already heard the message,
and D denote the set that have not. Since the actual communication graph chosen by the
adversary is connected, there must be at least one edge between H and D. As any party in

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:9

Protocol 2: AuthenticatedP2P(Paths, S, R, m)

The set of possible paths Paths from S to R is public knowledge. The sender S has
message m as input.
The protocol runs for LM rounds:

In each round S sends (m, {S}) to each neighbor that is on a path in Paths.
Upon receiving (m′, π) from a neighbor Pj , party Pi ∈ P \ {S, R} does the following:

1. If i ∈ π or j ̸∈ π, Pi ignores the message.
2. Otherwise the party will in all subsequent rounds send (m′, π∪{i}) to all neighbors

that are next nodes on paths in Paths for which π ∪ {i} forms a prefix.

Upon receiving (m′, π) from a neighbor Pj , R stores (m′, π) unless R ∈ π or j ̸∈ π.

At the protocol end, if party R has more than t stored values (m′, π) with disjoint paths
in Paths, R outputs m′.

Figure 2 The modified authenticated P2P protocol of Wang and Wattenhofer [7].

H will try to send it to all potential neighbors in every round, at least one party in D will
learn the message in each round. By induction the message must reach the receiver after at
most n rounds.

Complexity. In each round a party sends at most one message of size |m| to at most n.
The round complexity follows from the protocol description. ◀

3.2 Active Corruptions
For the active corruption setting, we assume that the honest parties’ knowledge about G
comes in the form of a set Paths of possible paths between sender S and receiver R. We
assume that the paths have length of at most L and |Paths| = M .

In Protocol 2 we adapt the peer-to-peer protocol from [7] to allow for reliable communic-
ation in the presence of a rushing adaptive adversary.

▶ Theorem 3. The authenticated P2P protocol of Wang and Wattenhofer [7] modified to only
accept messages received over t + 1 disjoint paths as described in Protocol 2 achieves reliable
communication between S and R in the presence of a rushing adaptive network adversary that
actively corrupts at most t parties as long as the network has connectivity k > 2t in every
round. The protocol runs for LM rounds.

We approach Theorem 3 by first introducing Lemma 4 and Lemma 5.

▶ Lemma 4. If the network has connectivity k in every round, then there are k disjoint paths
from the sender to the receiver over time.

Proof. Since there are a finite number of sets of k disjoint paths from sender S to receiver
R, and the adversary has to choose one such path set in every round, it follows that after a
finite number of rounds one path set will have been chosen sufficiently many times that the
message had the opportunity to traverse all of its paths. ◀

ITC 2023

13:10 Secure Communication in Dynamic Incomplete Networks

The following lemma is useful for analyzing the round complexity of our constructions.

▶ Lemma 5. Consider a path set Paths which is k-connected and a sender S who sends a
message along each path of Paths. Then, the receiver R would receive the messages from a set
of k disjoint paths in at most LM rounds, where L is the maximal length of paths in Paths
and M is the cardinality of Paths.

Proof. Let Cr be the set of paths along which S’s message has reached R at round r, and let
Pathsr be the set of paths between S and R chosen in that round. In the first round, the
message advances along at least k edges. In every subsequent round, if Cr contains a set
of k disjoint paths, then we are done. Otherwise, it must be that |Pathsr \ Cr| > 0, so the
message must advance along at least one edge it has not advanced along before. Since the
total number of edges across all paths in Paths is at most LM , we can be certain that we
are done once the message advances along all of them, we must be done after at most LM

rounds. ◀

We can now give the proof for Theorem 3.

Proof.
Correctness. Assume S and R are honest.

First consider the network without the corrupted nodes. This network is guaranteed
to be t + 1 connected in every round (the overall network is at least 2t + 1 connected). It
follows from Lemma 4 and Lemma 5 that the message m sent by the sender will arrive at
the receiver R in at most LM rounds via at least t + 1 disjoint paths. This makes m a valid
output.

Next, consider any message m′ ̸= m. If R gets a tuple (m′, π′) there must be a corrupt
Pj that sent (m′, π′′) for π′′ ⊂ π′ to an honest party. Honest parties only forward a tuple if
the sender of the tuple is in the path information. This implies that j ∈ π′′ and thus j ∈ π′.
There are at most t corrupted parties, so R will receive m′ on at most t disjoint paths. Hence
m′ can never be a valid output. This means m is the unique output for R after LM rounds.
Round complexity. Follows from the protocol description. ◀

Analyzing the communication complexity of Protocol 2

We observe that the maximum communication complexity of any party in a round r is
O(2nn2|m|). This is because a party in round r− 1 may have received messages from various
paths represented by different sets (which we refer to as metadata). Since there could be
2n−1 such sets (all possible sets that exclude this party), we can infer that a party has to
communicate a message of size |m| and metadata of size at most O(n2n) (n bits are sufficient
to represent one set) to each of her neighbours (which are at most O(n)), which adds up to
a communication complexity of O(2nn(n + |m|)).

Lastly, we point that the computation done by the receiver R to check if she has received
values along t + 1 disjoint paths would involve O(LMn) computation per round. This can
be done by the receiver R as follows: consider the graph Cr formed by the set of paths
containing the same message along which S’s message has reached R at round r. Apply the
Ford-Fulkerson algorithm [4] (with complexity O(|E|n), where |E| denotes the number of
edges and n denotes the number of nodes) on Cr to check if it is t + 1 connected. If yes,
output this common message. Else, try with set of paths containing a different message. If
none of them succeed, try again in the next round.

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:11

Efficiency

In this section, we discuss a special case when this authenticated communication protocol
becomes efficient (has complexity polynomial in n). For this, suppose there are k short paths
from sender to receiver at each round. We let c denote the upper bound on the length of such
a “short” path. First, we analyze the case where c is any constant (Lemma 6). Finally, we
argue that for sufficiently large k, we are guaranteed to have many short paths (Lemma 7).

▶ Lemma 6. If S is connected to R via k disjoint paths of length at most c in every round
(for a constant c), then the authenticated P2P protocol of Wang and Wattenhofer [7] described
in Figure 2 runs in at most a polynomial (in n) number of rounds.

Proof. Let Paths′ be a set of paths with length at most c. Protocol 2 on Paths′ runs in
c|Paths′| rounds as shown in Theorem 3. So it remains to analyze the size of |Paths′|. Let
|Pathsℓ| denote how many paths of length at most ℓ exist from S to R in Paths′. We have
|Paths1| ≤ 1 and for ℓ > 1, |Pathsℓ| ≤ |Pathsℓ−1|+ (n−2)!

((n−2)−(ℓ−1))!
3. We have |Paths′| = |Pathsc|

which is polynomial in n for constant c. We can thus conclude that the protocol terminates
in at most a polynomial (in n) number of rounds. ◀

Ensuring Enough Paths of Constant Length. We have shown that if we have k disjoint
paths of constant length c at every timestep, S’s message will reach R along k disjoint paths
in polynomial time. Of course, k-connectivity over constant length paths is in general a much
stronger assumption than k-connectivity. However, we show here that (loosely speaking) if
we have many disjoint paths, this implies that at least some of them must be short, and in
particular, if we have k-connectivity for k linear in n, this implies we have k′-connectivity
over constant length paths, where k′ can be very close to k.

▶ Lemma 7. Say we have k disjoint paths in a graph on n nodes. For any L, at least k− n
L+1

of these have length at most L.

Proof. Let k≤L and k>L be the number of paths of length at most L and greater than L,
respectively, among the k given ones. The subset of paths of length greater than L contain
at least (L + 1)k>L distinct nodes, so we have (L + 1)k>L ≤ n, implying k>L ≤ n

L+1 . Since
clearly k = k≤L + k>L, the lemma follows. ◀

An immediate consequence of this is that if k = dn for a constant fraction d, we are
guaranteed to have at least n(d − 1

L+1) disjoint paths of length L. By choosing a large
enough but constant L, we can have Ω(n)-connectivity over constant length paths; in fact
that underlying constant can be chosen arbitrarily close to d.

In particular, assume we want to tolerate a constant fraction of corrupted players, as is
standard in MPC. We know that for t active corruptions and even for a static network, we
must always have connectivity at least 2t + 1 = cn (for a constant c); otherwise broadcast is
impossible. Therefore, in the dynamic case, if we ask for slightly larger connectivity, namely
k = dn for any d > c, the above lemma allows us to assume 2t + 1-connectivity over constant
length paths, implying that our protocols will run in polynomial time.

We state the formal theorem below.

3 where the latter term is the number of ways of choosing ℓ − 1 intermediate nodes among n − 2 nodes
(excluding S and R).

ITC 2023

13:12 Secure Communication in Dynamic Incomplete Networks

▶ Theorem 8. The modified authenticated P2P protocol of Wang and Wattenhofer [7] as
described in Protocol 2 is an efficient reliable communication protocol (i.e. runs in polynomial
time and with polynomial complexity) in the presence of t active corruptions as long as the
network has connectivity k = dn for any d > c (where c is a constant) in every round (using
the set of all paths of length at most c as Paths).

4 Private Communication

In this section, we look at the feasibility of establishing a secure channel between sender S
and receiver R. The knowledge on G is given as a set Paths of bidirectional paths between S
and R. The set is of size M and paths in the set are of length of at most L.

As a starting point, assume that S and R somehow have shared secret randomness o.
Given the results from the previous section, they could establish a reliable channel to securely
transmit message m as c = m + o. This reduces the problem of secure communication to
establishing shared randomness between S and R. At a first glance this seems as difficult
as the original problem. However, we note that there is a slight difference i.e. this value
o (unlike m) need not be a “fixed” value pre-determined by S but can be dynamically
determined during the protocol.

This is exactly what we exploit in our upper bounds that have the following common
approach: S chooses a set of random values, one for each path in Paths. Next, R upon
receiving “sufficiently many” random values reports back to S which paths she received
information from. For this, R acts as a sender and can rely on a reliable communication
protocol. This is because while we may want to hide the random values along paths that the
adversary does not have access to (i.e. the paths that comprise of only honest nodes), there
is no harm in revealing to the adversary the identity of the paths R received information
from (as these paths were in fact determined by the dynamic adversary). Given this path
information both S and R can compute o from the randomness sent along those paths. Finally,
S can mask the actual m with o and send it over a reliable channel.

For simplicity, we assume in the following that m ∈ F.

4.1 Passive Corruptions
In this section, we present a protocol that constructs a secure channel given that the graph
is at least t + 1-connected.

Consider plugging in the above common approach in a network with connectivity k > t

where the dynamic adversary corrupts up to t nodes passively. We are guaranteed that R
would receive random values from (t + 1) disjoint paths, among which the adversary has
access to at most t of them (because in the worst case, there could be one corrupt node in
each of the t disjoint paths). These (t + 1) random values could simply be viewed as an
additive sharing of the shared randomness o that remains private from this passive adversary.
Tying this with the above outlined approach, R would reliably communicate the identity
of these (t + 1) disjoint paths to S, allowing S to compute o and reliably communicate the
masked secret c = m + o. The formal description of the protocol is given as Protocol 3.

▶ Theorem 9. Protocol 3 is perfectly secure protocol that allows S to securely send m to R
in the presence of a rushing adaptive adversary that passively corrupts at most t parties, as
long as the network has connectivity k > t. The protocol runs for LM + 2n rounds and in
each round a party sends O(Mn2(log M + |m|)) bits.

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:13

Protocol 3: Πprv
perf,sh(Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.

Randomness Generation For ML rounds the parties do the following:
For each path p ∈ Paths the sender S:

1. Sample randomness rp ∈ F.
2. In each time step send mp = (p, rp) to the first node on the path p until the

phase is complete.
Once intermediate node Pi receives the first message mp = (p, rp) on path p, it
will echo mp to the next node on the path in each of the subsequent time steps
until the phase is complete.
The receiver node R initializes sets RecPaths = ∅ and sets RecPaths = RecPaths ∪
{p} upon receiving mp = (p, rp) for any p ∈ Paths.

Afterwards, the receiver define GoodPaths ⊆ RecPaths as a set of t + 1 disjoint
paths and send GoodPaths to S using an instance of Protocol 1. This concludes the
randomness generation phase.

Secure Communication The parties do the following:
1. Both S and R (locally) compute o = Σp∈GoodPathsrp.
2. S sends c = m + o to R using an instance of Protocol 1.
3. R outputs m = c− o.

Figure 3 Perfectly-secure private communication protocol against t < n passive corruptions in a
network with connectivity k > t.

Proof.

Correctness. As the graph is at least t+1 connected, receiver R will have received randomness
over at least t + 1 disjoint paths after LM rounds (cf. Lemma 5). This makes GoodPaths
well defined. Correctness therefore follows by the correctness of Protocol 1 (cf. Lemma 2)
and the correctness of one time pad encryption.

Privacy. To argue privacy, we note that the adversary has access to the random values
corresponding to at most t paths among the (t + 1) disjoint paths constituting GoodPaths.
The property of additive secret sharing guarantees that o remains perfectly hidden from
the adversary. It now directly follows from the security of the one-time pad encryption the
adversary does not learn m from c alone.

Complexity. Protocol 1 has a round complexity of n. This implies a round complexity of
LM + 2n. Lastly, we analyze the communication complexity. While sending the randomness
forward, the complexity per party in each round is O(M(log M + |m|)). Observe that
GoodPaths can be encoded in O(n log M) bits, so the per party per round complexity of
both instances of Protocol 1 is bounded by O(n2(log M + |m|)). This gives an overall (loose)
bound of O(Mn2(log M + |m|)). ◀

ITC 2023

13:14 Secure Communication in Dynamic Incomplete Networks

4.2 Active Corruptions
In this section, we provide protocols for secure communication in the presence of an adversary
that actively corrupts parties.

4.2.1 Statistical Security with k > 2t

The above construction (Protocol 3) does not withstand active corruptions as the active
adversary could tamper with the random values along the paths in GoodPaths where there is
an actively corrupt node. This would lead to R determining an incorrect random one-time
pad (o) i.e. different than the one computed by S; resulting in R obtaining the wrong secret.
Further, the adversary could also tamper with the path information (i.e. the sequence of
nodes forming the path); this may potentially lead R to wrongly believe that certain values
are coming from “disjoint” paths when in fact they are not.

To detect cheating of the above type in the statistical setting, one could authenticate the
random values (using information theoretic mac) and ensure that R verifies each potentially
tampered random value accompanied by its mac using the corresponding verification key
determined by the honest S. However, for this to work, we should make sure that the
verification key remains unknown to the adversary and untampered until it reaches R! We
resolve this seemingly circular issue in the following way: To authenticate a random value, say
rp along a path p, S generates a mac using a different verification key for every path disjoint
from p. R accepts rp only if its macs verify against at least t paths that are mutually disjoint
and also disjoint to p. The idea is that at least one of these t paths would comprise of only
honest nodes and the verification keys sent along this all-honest path would be untampered
and unknown to the adversary. (Note that if the value along p is tampered, then there must
be at least one corrupt node already in p; so there can be at most t− 1 paths disjoint to p

that could be influenced by the adversary.) This completes the high-level overview of the
protocol, whose formal details are described in Protocol 4.

▶ Theorem 10. Protocol 4 is a statistically-secure protocol that allows S to securely send m

to R in the presence of a rushing adaptive adversary that actively corrupts at most t parties,
as long as the network has connectivity k > 2t. The protocol runs for 3LM rounds and in
each round a party sends O(n32n(|m|+ log M) + M(|m|+ λ ·M)) bits.

Proof.

Correctness. By Theorem 3 sender and receiver will agree on GoodPaths and the receiver
will receive the sender’s c. So correctness follows if sender and receiver agree on o. This is
the case if R actually got the sender’s randomness for each path in GoodPaths. So assume
there must exist at least one path, say pi such that R obtained r′

pi
̸= rpi

but pi ∈ GoodPaths.
This can occur only if pi contains at least one corrupt node on behalf of which the adversary
tampered with the random value and potentially its set of accompanying macs. However,
since pi ∈ GoodPaths, it must hold that the macs verified against verification keys received
along t other disjoint paths, which must include at least one verification key that was
untampered and unknown to the adversary. This is because there can be at most t − 1
corrupt nodes along these t disjoint paths; therefore there must be a path containing all
honest nodes along which the verification key was correct (i.e. the same as chosen by S).
It now follows directly from the unforgeability property of the mac that the (potentially)
adversarial chosen mac can verify against this verification key successfully for r′

pi
̸= rpi only

with negligible probability. This implies statistical correctness.

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:15

Protocol 4: Πprv
stat,mal(Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.

Randomness Generation For ML rounds the parties do the following:
For each path pi ∈ Paths the sender S:

1. Sample randomness rpi
∈ F and for each disjoint path pj sample key opi,pj

and corresponding mac macpi,pj . Let Kpi = {opj ,pi} and Mpi = {macpi,pj}
the set of macs.

2. In each time step send mpi
= (pi, rpi

,Mpi
,Kpi

) to the first node on the path
pi until the phase is complete.

Once intermediate node P receives the first message mp = (p, rp,Mp,Kp) on path
p, it will echo mp to the next node on the path in each of the subsequent time
steps until the phase is complete.
The receiver node R initializes sets RecPaths = ∅ and sets RecPaths = RecPaths ∪
{p} upon receiving mp = (p, rp,Mp,Kp).

Afterwards the receiver initializes GoodPaths = ∅ and does the following for each
pi ∈ RecPaths:
1. Check if RecPaths contains a set Paths′ of at least t path disjoint from pi such that

for each pj ∈ Paths′ the key opi,pj
(received via pj) confirms the mac macpi,pj

on
rpi

(both received via pi).
2. If the above check holds (and |GoodPaths| < t) set GoodPaths = GoodPaths∪{p}.
Then R sends GoodPaths to S using an instance of Protocol 2. This concludes the
randomness generation phase.

Secure Communication As in Protocol 3 the message is sent one-time padded except
that Protocol 2 is used for the reliable communication channel.

Figure 4 Statistically-secure private communication protocol against t < n active corruptions in
a network with connectivity k > 2t.

Privacy. Privacy follows by the same argument as in the proof of Theorem 9.

Complexity. Protocol 2 has a round complexity of LM . This implies a round complexity of
3LM . Lastly, we analyze the communication complexity. The two instances of Protocol 2 have
a communication complexity of O(n32n(|m|+ log M)). The messages mp have a complexity
of O(|m|+ λ ·M) as the mac and key sets are O(λ ·M). So in the first LM rounds a party
communicates O(M(|m|+λ ·M)) bits per round. This totals upto communication complexity
of O(n32n(|m|+ log M) + M(|m|+ λ ·M)). ◀

4.2.2 Perfect Security with k > 3t

In the above construction, settling for statistical security allowed us to use authentication
tools to detect cheating. We now analyze how to achieve perfect security, where it becomes
more challenging to deal with the adversary tampering with the random values sent across
the paths.

ITC 2023

13:16 Secure Communication in Dynamic Incomplete Networks

To handle this, we make S send redundant information in a way that allows R to detect
such misbehaviour. Instead of using sum sharing, we rely on threshold sharing in the following
way: We let R report back (2t + 1) disjoint paths (instead of t + 1 as before). Next, we make
S compute a threshold sharing (with threshold t) of the message m and mask the shares
(instead of the message directly) using the (2t + 1) random values corresponding to paths
that were reported by R. Once these (2t + 1) masked shares are reliably communicated to R,
R can retrieve the shares and attempt to reconstruct the secret. The main idea is that, unlike
before, R can now check that she has the “correct” secret by checking that all the (2t + 1)
shares lie on a t-degree polynomial. This is because, the set of shares will comprise of (t + 1)
untampered shares (that were masked with random values along the paths that comprised
only of honest nodes) which suffice to uniquely determine the t degree polynomial. If the
check fails, we make R retry with another set of (2t + 1) disjoint paths until she finds one that
verifies. To accommodate for this, we assume larger connectivity i.e. k > 3t. This completes
the high-level idea of the protocol, which is formally described in Protocol 5 (Section A). We
state the formal theorem below (whose proof appears in Section A.1).

▶ Theorem 11. Protocol 5 is a perfectly-secure protocol that allows S to securely send m to
R in the presence of a rushing adaptive adversary that actively corrupts at most t parties, as
long as the network has connectivity k > 3t. The protocol runs for 3LM rounds and in each
round a party sends O(nMn(M + |m|)) bits.

We refer to Section A for our other results related to perfect security.

References

1 E. R. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent Number
4,633,470. Issued Dec., 1986.

2 Danny Dolev. The byzantine generals strike again. Journal of algorithms, 3(1):14–30, 1982.
3 Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message

transmission. Journal of the ACM (JACM), 40(1):17–47, 1993.
4 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of

Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.
5 Alexandre Maurer, Sébastien Tixeuil, and Xavier Defago. Communicating reliably in multihop

dynamic networks despite byzantine failures. In 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS), pages 238–245, 2015. doi:10.1109/SRDS.2015.10.

6 Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

7 Ye Wang and Roger Wattenhofer. Asynchronous byzantine agreement in incomplete networks.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, AFT
’20, pages 178–188, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3419614.3423250.

A Perfect Security

A.1 Perfect Security with k > 3t

In this section, we present the formal protocol (Protocol 5) and the security proof of
Theorem 11.

https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1109/SRDS.2015.10
https://doi.org/10.1145/3419614.3423250
https://doi.org/10.1145/3419614.3423250

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:17

Protocol 5: Πprv
perf,mal(Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.

Randomness Generation For ML rounds the parties do the following:
The sender S does the following:

1. For each set Paths′ ⊂ Paths such that the paths in Paths′ are disjoint and
|Paths′| = 2t + 1 the receiver samples for each p ∈ Paths′ random value rPaths′

p
a.

For any p ∈ Paths denote by rp = {rPaths′

p } the set of all sampled random
values.

2. In each time step send mp = (p, rp) to the first node on the path p until the
phase is complete.

Once intermediate node Pi receives the first message mp = (p, rp) on path p, it
will echo mp to the next node on the path in each of the subsequent time steps
until the phase is complete.
The receiver node R initializes sets RecPaths = ∅ and sets RecPaths = RecPaths ∪
{p} upon receiving mp = (p, rp) for any p ∈ Paths.

Afterwards, the receiver R sets GoodPaths to the maximal set of pairwise disjoint
paths in RecPaths. This can be done using the Ford-Fulkerson Algorithm. Then R
sends GoodPaths to S using an instance of Protocol 2. This concludes the randomness
generation phase.

Secure Communication The message m is sent as follows.
1. LetW denote the set of all subsets Paths′ ⊆ GoodPaths such that |Paths′| = 2t+1

For each Paths′ ∈ W :
The sender computes shamir-sharing of the message m with threshold t as
(sPaths′

1 , . . . , sPaths′

2t+1)← Shamir.share(m).
Set cPaths′

pi
= sPaths′

i +rPaths′

pi
for each pi ∈ Paths′, where rPaths′

pi
is the appropriate

random mask (i.e. the random value that was chosen for path pi corresponding
to set Paths′).

2. Sender S sends {cPaths′

pi
}pi∈Paths′,Paths′∈W to R using an instance of Protocol 2.

3. For each Paths′ ∈ W the receiver R:
Recovers the shares as si = cPaths′

pi
− rPaths′

pi
for pi ∈ Paths′

Checks if m′ ← reconstruct({si}i∈[2t+1]) results in m′ ≠ ⊥ (this step essen-
tially checks if all the shares lie on a t degree polynomial). If yes, the receiver
outputs m′.

a We assume that all possible sets Paths′ are lexicographically ordered. Abusing notation, when
Paths′ is used in superscript, it refers to the appropriate index of Paths′ based on this ordering.

Figure 5 Perfectly-secure private communication protocol against t < n active corruptions in a
network with connectivity k > 3t.

Proof.

Correctness. By Theorem 3 sender and receiver will agree on GoodPaths and thus on W.
This also hold for the set of one-time padded shares {cPaths′

pi
}.

By Lemma 4 the set W must contain at least 2t + 1 disjoint paths that comprise of only
honest nodes. So, there must exist at least one candidate set Paths′ which will lead would
lead to the correct output of m. On the other hand any set Paths′ that leads R to output
m′ contains at least t + 1 honest paths (This is because at most t paths in Paths′ could be
such that it has a corrupt node.). The adversary cannot tamper with the random values or

ITC 2023

13:18 Secure Communication in Dynamic Incomplete Networks

path information across these (t + 1) paths, therefore we are guaranteed that (t + 1) among
the (2t + 1) shares retrieved by R must indeed be correct. Since these suffice to uniquely
determine the t-degree polynomial that S used for Shamir sharing, it follows that the message
reconstructed by R must be correct.

Privacy. Note that for each candidate set Paths′ ⊆ W , the adversary knows at most t shares,
namely, those that were masked using random values corresponding to the (at most) t paths
in Paths′ that the adversarial nodes were a part of. Privacy of the secret now follows directly
from the privacy guarantee of threshold sharing and the security of one-time pad encryption
(which holds as each random value is used for encryption at most once).

Complexity. The round complexity follows analogous to the proof of Theorem 10. Lastly,
we analyze the communication complexity. The complexity is dominated by randomness
generation phase. There are fewer than M2t+1 sets Paths′ such that |Paths′| = 2t + 1.
Since there are 2t + 1 paths p in each Paths′, the sender picks fewer than (2t + 1)M2t+1

random values rPaths′

p . Each path can be represented using log M bits, and each random
value rPaths′

p can be represented using |m| bits; so, the communication per round per party is
O((2t + 1)M2t+1(log M + |m|)) = O(nMn(log M + |m|)). ◀

Improving the expected complexity. In Protocol 5, the primary communication bottleneck
is due to the fact that S has to account for all possible path sets of size 2t + 1. We propose
the following modification to improve the expected communication complexity: Similar to
Protocol 4, S could choose just one random value per path, and augment these values with
information-theoretic MACs. Accordingly R could include a path p in GoodPaths only if t of
the MACs have verified successfully using verification keys sent across t disjoint paths (that
are disjoint from p as well). Once GoodPaths comprises of 2t + 1 disjoint paths, these are
reported by R to S, who sends masked threshold shares corresponding to just this one subset.
However, the check in the communication phase still remains the same i.e. R continues
to check if all the shares lie on a t-degree polynomial (which maintains that the protocol
is perfectly-secure). If this check fails, then we re-run the protocol beginning with the
randomness generation phase.

While the communication complexity of the above modified protocol (which we refer
to as the communication-efficient variant of Protocol 5) is same as Protocol 5 in the worst
case (which occurs when the all-honest subset is the last one to be tried by R), the modified
protocol has an expected running time of poly(ML). This is because the security of the MAC
guarantees that the adversary can make an iteration fail only with negligible probability,
say µ. The probability that the protocol does not terminate in γ iterations is therefore µγ .

We remark that the MACs help only to improve the expected communication complexity,
but the protocol is still perfectly secure (due to the verification done by the receiver R before
accepting the output).

A.2 Perfect Security with k > 4t

In the above construction (Protocol 5), we make S account for all possible disjoint path sets
of size 2t + 1 as she does not know in advance which set of 2t + 1 all-honest disjoint paths will
eventually reach R. We observe that this can be avoided by assuming a larger connectivity
of k > 4t. Higher connectivity allows transferring more redundant information, enabling R
to recover from the incorrect information rather than simply detect it. We tweak the above

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:19

construction to let R report back (3t + 1) disjoint paths instead. Now upon receiving (3t + 1)
shares among which at most t could be incorrect, R can use error-correction techniques (such
as Reed-Solomon error correction) to reconstruct the correct t-degree polynomial despite the
errors. This completes the high-level description of the protocol, which is formally described
in Protocol 6.

Protocol 6: Πprv,k>4t
perf,mal (Paths, S, R, m)

The set of possible paths Paths is public knowledge. The sender S has message m as
private input.
We assume parties have access to decoding algorithm ΠRSDec(W, t) that takes as input
a vector W of shamir shares with threshold t (viewed as a Reed-Solomon codeword)
where some of these may be incorrect, and either removes the errors and returns the
correct secret if there are at most |W |−t−1

2 of them, or produces ⊥ if there are more than
|W |−t−1

2 errors. This can be instantiated for instance by Berlekamp-Welch algorithm [1].

Randomness Generation Same as in Protocol 3 where S sends one random value per
path p ∈ Paths. The set GoodPaths is selected to contain at least 3t + 1 disjoint
paths and sent back to S using Protocol 2.

Secure Communication The message m is sent as follows.
1. S computes a shamir-sharing of the message m with threshold t as (s1, . . . , sk′) $←−

Shamir.share(m), where k′ = |GoodPaths|.
2. The sender computes cpi = si + rpi for each pi ∈ GoodPaths.
3. The sender S sends {cpi

}pi∈GoodPaths to R using an instance of Protocol 2.
4. The receiver computes the shares as si = cpi − rpi for pi ∈ GoodPaths.
5. The sender outputs m← RSDec({si})i∈[k′], t).

Figure 6 Perfectly-secure private communication protocol against t < n active corruptions in a
network with connectivity k > 4t.

▶ Theorem 12. Protocol 6 is a perfectly-secure protocol that allows S to securely send m to
R in the presence of a rushing adaptive adversary that actively corrupts at most t parties, as
long as the network has connectivity k > 4t. The protocol runs for 3LM rounds and in each
round a party sends O(Mn32n(|m|+ log M)) bits.

Proof.

Correctness. First, we note that Lemma 4 and the presence of at most t active corruptions
imply that GoodPaths must consist of at least 3t + 1 disjoint paths, therefore |W | > 3t holds.
Since the quantity |W |−t−1

2 ≥ t, error-correction would definitely be successful as long as
there are at most t errors. This is indeed true in our case as only the shares that were masked
using random values sent along paths in GoodPaths where there was at least one corrupt
node could be incorrect; and there could be at most t such paths. Correctness now follows
directly from the correctness of the error correction algorithm RSDec and the correctness of
the reliable communication protocols.

ITC 2023

13:20 Secure Communication in Dynamic Incomplete Networks

Privacy. Privacy follows by similar argument as Theorem 11. Since the adversary knows at
most t shares, (namely, those that were masked using random values corresponding to the
(at most) t paths in GoodPaths that the adversarial nodes were a part of), privacy follows
directly from the privacy guarantee of threshold sharing and the security of one-time pad
encryption.

Complexity. The round complexity follows analogous to the proof of Theorem 10. Lastly,
we analyze the communication complexity. The two instances of the reliable communication
protocol Protocol 2 have a communication complexity of O(n32n(|m|+log M)). The messages
mp have a complexity of M(|m|+ log M). This totals upto communication complexity of
O(Mn32n(|m|+ log M)). ◀

A.3 Perfect Security With k > 2t?

In this section, we elaborate on our conjecture that it is impossible to achieve perfectly
private communication against an active adversary in a dynamic network with connectivity
k > 2t. The guarantee in such a network is that the receiver R receives values sent via a set
of at least t + 1 disjoint paths (if she waits long enough, as shown in Lemma 5). Consider any
protocol which, like ours, tries to identify such a set of paths where only correct values were
received, it then uses the data received on these paths and public communication to send the
secret message. Of course, if there is exactly one suitable set of paths, we would be done, as
this would be the all-honest set of paths. However, as we now explain, there are cases where
there are multiple sets and where the receiver cannot identify the right one with certainty.

For simplicity, consider t = 1 and k = 2t + 1 = 3. Say, the adversary chooses the same
3-connected graph, say G in all the rounds: G has three disjoint paths p1, p2 and p3, where
the corrupt node is the last node on path p2 denoted as Pc, adjacent to the receiver Pr

(see Figure 7). The adversary has the following strategy: She blocks the message along
the path p2 and sends two fabricated paths to the receiver node Pr instead. (a) p′

1 that
intersects with p1 but is disjoint from p3. (b) p′

3 that intersects with p3 but is disjoint from
p1. Note that the last node in each of these fabricated paths would be the corrupt node
Pc who directly communicates them to the receiver node Pr. Now, from the perspective of
the receiver, there are three disjoint sets of size 2, namely (1) {p1, p3}, (1) {p′

1, p3} and (3)
{p1, p′

3}. Assuming that the adversary tampers with the values associated with p′
1, p′

3, only
the first set has correct values. However, there is no way for the receiver to identify {p1, p3}
to be the all-honest set. This is because the receiver could have the same identical view in
the following different scenario – when the last node in p2 was actually honest, the paths
p′

1, p′
3 and p3 existed and the values delivered for these paths were correct. While, on the

other hand, the path p1 and the value it carries was fabricated by a corrupt node. In this
case, the receiver would have the same set of three candidate disjoint sets and values, but
{p′

1, p3} is the correct set this time.
While authentication can be used to select the correct set with overwhelming probability

as we showed earlier, this cannot give perfect security. Hence if the protocol is not allowed
to abort but must continue with some set, there is a non-zero probability that a set will be
chosen with one correct and one incorrect value. Intuitively, it is not possible to send a private
message reliably based on such data and public communication: the output of the receiver
must depend on the values received on both paths (as well as the public communication), if
it only depends on one of them, this might be value the adversary knows and the message
would not be private. But if it depends on both values and one is tampered with, the output
will be incorrect.

I. Damgård, D. Ravi, D. Tschudi, and S. Yakoubov 13:21

This type of argument is of course not a real impossibility proof as it only considers one
type of protocol, it should only be taken as evidence for our conjecture.

Ps

Pr

Pc

p2p1
p′1 p′3

p3

Figure 7 3-connected example graph.

ITC 2023

Locally Covert Learning
Justin Holmgren # Ñ

NTT Research, Sunnyvale, CA, USA

Ruta Jawale # Ñ

University of Illinois at Urbana-Champaign, IL, USA

Abstract
The goal of a covert learning algorithm is to learn a function f by querying it, while ensuring that
an adversary, who sees all queries and their responses, is unable to (efficiently) learn any more about
f than they could learn from random input-output pairs. We focus on a relaxation that we call local
covertness, in which queries are distributed across k servers and we only limit what is learnable by
k − 1 colluding servers.

For any constant k, we give a locally covert algorithm for efficiently learning any Fourier-sparse
function (technically, our notion of learning is improper, agnostic, and with respect to the uniform
distribution). Our result holds unconditionally and for computationally unbounded adversaries.
Prior to our work, such an algorithm was known only for the special case of O(log n)-juntas, and
only with k = 2 servers [9].

Our main technical observation is that the original Goldreich-Levin algorithm only utilizes
i.i.d. pairs of correlated queries, where each half of every pair is uniformly random. We give a
simple generalization of this algorithm in which pairs are replaced by k-tuples in which any k − 1
components are jointly uniform. The cost of this generalization is that the number of queries needed
grows exponentially with k.

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques; Theory
of computation → Machine learning theory

Keywords and phrases learning theory, adversarial machine learning, zero knowledge, Fourier
analysis of boolean functions, Goldreich-Levin algorithm, Kushilevitz-Mansour algorithm

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.14

1 Introduction

In CRYPTO 2019, [9] formulated a new learning task whose utility is illustrated by the
following scenario. Company A wishes to outsource experiments to company B while deterring
employees of B from selling the outcomes of these experiments to a competitor C. Motivated
by this scenario and others like it, they asked the following question (parameterized by a
function family F):

Can one learn1 a function f ∈ F with oracle queries such that an adversary, who sees
all queries x along with the corresponding values f(x), is unable to learn f?

When might this be possible? The adversary necessarily learns some non-trivial inform-
ation about f , namely pairs of the form

(
x, f(x)

)
, called examples of f . We need it to be

computationally intractable to use this information to “learn” f , e.g. output a circuit that
agrees with f on all but a small fraction of inputs. There are simple function families for
which learning from (uniformly) random examples is believed to be intractable. Such families
include noisy linear functions over finite fields (see the learning parity with noise (LPN) [3]

1 We are deliberately vague for now about the precise meaning of “learn”; we defer to Section 2 a detailed
specification of the learning model used in our results.

© Justin Holmgren and Ruta Jawale;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:justin.holmgren@ntt-research.com
https://justinholmgren.com/
mailto:jawale2@illinois.edu
https://rutajawale.github.io/
https://doi.org/10.4230/LIPIcs.ITC.2023.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Locally Covert Learning

and learning with errors (LWE) [13] assumptions), O(log n)-juntas [2], and more generally2

polynomial-size decision trees, DNFs, CNFs, and Fourier-sparse functions. In each of these
cases, we emphasize that the complexity of learning f depends on the joint distribution of
the examples, and is only conjectured to be difficult for examples that are independent and
uniformly random.

On the other hand, the learner has the power to choose the values of x for which it sees
f(x). This power, known in the learning theory literature as the ability to make membership
queries, enables learning all of the aforementioned function families in polynomial time.
However, this power is a double-edged sword in our setting; if not wielded carefully, it
provides exactly the same benefits to the adversary! In fact, a learning algorithm must
incorporate at least a one-way function in order to have any advantage over the adversary: if
the learner’s queries are not a (distributional) one-way function [8] of the learner’s randomness,
then the adversary could emulate the learner with arbitrary inverse polynomial accuracy.
This also shows that we can only hope for security against a computationally bounded
adversary.

Following Canetti and Karchmer [4], we focus on preserving any advantage of membership
queries over random examples. They defined a learning algorithm to be covert if its transcript3

with the membership query oracle is simulatable from random examples. As with all simulation
definitions of security, there are variants (e.g. with computational, statistical, and perfect
security) corresponding to analogous degrees of indistinguishability of the simulator’s output
from reality.

Previous Covert Learning Algorithms

There are two main previous results on covert learning, which we now quickly summarize.
1. Prior to [4], Ishai, Kushilevitz, Ostrovsky, and Sahai [9] gave a simple algorithm for

learning O(log n)-juntas with a relaxed notion of covertness that we retroactively call
1-out-of-2 covertness. In this relaxation, the learning algorithm’s membership queries are
distributed across two oracles, and we only require that the transcript with any one of
the oracles is simulatable given random examples.
The [9] algorithm is non-trivial in the sense that O(log n)-juntas are not known to be
learnable in polynomial time from random examples. However, this non-triviality is
quantitatively rather weak: r-juntas are learnable in time O(nr).
The notion of “1-out-of-2 covertness” naturally generalizes to “t-out-of-k covertness” for
any t ≤ k. The single-oracle setting considered by Canetti and Karchmer is the special
case obtained by setting t = k = 1. We call this case globally covert learning, and we call
the t < k case locally covert learning.
The motivating scenario with which we began this introduction is nearly as relevant to
locally covert learning as it is to globally covert learning. Only a small modification
is required: the company A now outsources its experiments to multiple companies
B1, . . . , Bk, and aims to deter employees from t of these companies from colluding and
selling their (combined) experiment outcomes to a competitor C.

2. Canetti and Karchmer [4] devised a globally covert algorithm for learning (polynomial-size)
decision trees. In fact, their algorithm achieves stronger guarantees known as agnostic
learning – even if the target function f is only α-close to a decision tree, their algorithm

2 It is easy to prove that any k-junta has a decision tree of depth k and size 2k, and also has at most 2k

non-zero Fourier coefficients.
3 The transcript lists the queries made to the oracle alongside the corresponding oracle replies.

J. Holmgren and R. Jawale 14:3

can still produce a circuit that is (α + ϵ)-close to f for arbitrarily small ϵ. Compared
to [9], Canetti and Karchmer learn a larger family of functions with stronger (agnostic)
correctness guarantees, and they achieve global rather than local covertness, but they
rely on the sub-exponential LPN assumption and only achieve the computational variant
of covertness.
Their main lemma regards a task that we call Goldreich-Levin learning (after the classic
paper [5], which gave the first algorithm for the problem): using membership queries,
produce a list of all parity functions whose correlation with f is above a given threshold
τ > 0. Goldreich-Levin learning is complemented by the Kushilevitz-Mansour al-
gorithm [10], which shows how to learn a Fourier-sparse function f from only random
examples if one is additionally given such a list of parity functions. Thus there is a quite
general reduction from covert learning to covert Goldreich-Levin learning.
Canetti and Karchmer’s algorithm actually achieves only a weak variant of Goldreich-
Levin learning; it does not output all parity functions that are correlated with f , only
those that depend on O(log n) variables. Nevertheless, they show that this variant is
sufficient for learning decision trees. We note that decision trees are also learnable with
only random examples if the learner is allowed to run in quasi-polynomial time (and use
quasi-polynomially many examples).

1.1 Our Contributions

For any constant k, we construct a polynomial-time algorithm for Goldreich-Levin learning
that is (perfectly) (k −1)-out-of-k covert. Combined with the Kushilevitz-Mansour algorithm,
this immediately implies a polynomial-time algorithm for (k − 1)-out-of-k covertly and
agnostically learning Fourier-sparse functions under the uniform distribution. In contrast to
previous works, this learning task is probably not achievable in quasi-polynomial time given
only random examples. Assuming the sub-exponential hardness of LPN (with constant noise
rate), it is even impossible to agnostically learn parities, which are maximally Fourier-sparse,
in sub-exponential time given only random examples.

Unlike [4], our algorithm achieves the full functionality of the Goldreich-Levin algorithm
(outputting all parities that correlate with the target function). In fact, for k = 2 our
algorithm is nearly identical to the original algorithm! We merely specify which queries go to
which oracle, add some dummy queries, and observe that the resulting algorithm is perfectly
1-out-of-2 covert. Our generalization to k > 2 is just a simple tweak to this algorithm, the
crux of which is our Proposition 11.

We believe that our observation, though straightforward, is only obvious with hindsight.
In particular, the original Fourier-analytic Goldreich-Levin algorithm that we crucially rely
on appears to have been largely forgotten within the cryptography community. It has been
supplanted in every cryptography curriculum known to the authors (and also in [4, 7]) by
a more elementary algorithm that is attributed (see e.g. [1]) to Charles Rackoff. However,
Rackoff’s algorithm does not suffice for us. It is not locally covert with any reasonable
parameters (i.e. t-out-of-k covert for t = Ω(k)) for the simple reason that its queries do
not have enough entropy. We believe that the modern language of Fourier analysis makes
it easier to appreciate the elegance of the original proof. In the course of explaining our
observations we give a succinct exposition of that proof (heavily inspired by O’Donnell [12]),
which we hope will help in that regard.

ITC 2023

14:4 Locally Covert Learning

Interactive Proofs for Verifying Machine Learning [7]

We also mention the work of [7], which focused on a different but related problem that they
call interactive proofs for PAC verification. In this problem, the goal is to verify that a given
hypothesis h̃ is as accurate as it is purported to be, making use of both random examples and
interaction with an untrusted prover. At first glance this appears easy even without a prover
– one can easily see how well h̃ agrees with the target concept f by testing h̃ on random
examples for f . The key requirement that makes their problem technically challenging is that
they focus on agnostic learning, where h̃ is supposed to perform as well as the best function
h∗ in a function family F , and the verifier does not know h∗ or how well h∗ agrees with f .

Covert learning turns out to be applicable to this problem, as explored in both [4] and [7].
The rough idea is that the verifier runs a covert learning algorithm L, and whenever L
makes a query q, the verifier requests f(q) from the prover. To prevent the prover from lying
with impunity, the verifier also requests f(x) for different values of x for which the verifier
already knows f(x) – such x are readily available in the form of random examples for f .
Covertness is used to ensure that the prover cannot distinguish these “dummy” queries (on
which incorrect answers would be caught) from the real queries (where incorrect answers
would be impactful). Since the prover is now forced to answer queries mostly correctly, the
verifier is assured that the resulting output of L is good.

The connection between covertness and interactive PAC verifiability remains intact for
locally covert learning. Specifically, a 1-out-of-k covert learning algorithm gives rise to a
standard multi-prover interactive proof (MIP), where each prover’s messages are a function
only of the messages sent to that prover. Starting instead with a t-out-of-k covert learning
algorithm for t > 1 gives soundness against a form of bounded prover collusion that to our
knowledge has not been previously studied in the context of MIPs.

2 Locally Covert Learning

In this section, we spell out the details of our learning model. We first formalize what
an adversary (a coalition of oracles) is able to see when one of our learning algorithms is
executed.

▶ Definition 1 (The Adversarial View). For any k-oracle algorithm L, an input x, and a
function f , we define

Viewf
(
L, x

)
:= (T1, . . . , Tk),

where T1, . . . , Tk are correlated random variables that are sampled as follows. Let r be
uniformly sampled randomness for L. Suppose that on input x and randomness r, and with
each oracle implementing f , the algorithm L’s queries to its ith oracle are q

(i)
1 , . . . , q

(i)
mi . Then

Ti (the transcript with the ith oracle) is defined as

Ti :=
((

q
(i)
1 , f(q(i)

1)
)
, . . . ,

(
q(i)

mi
, f(q(i)

mi
)
))

.

For any subset S = {i1, . . . , it} ⊆ [k] with i1 < · · · < it, we also define Viewf
S(L, x) :=(

Ti1 , . . . , Tit

)
.

We are now ready to define locally covert algorithms, following the standard real/ideal
simulation paradigm that dates back to [6].

J. Holmgren and R. Jawale 14:5

▶ Definition 2 (Local Covertness). We say that a k-oracle learning algorithm L is (perfectly)
t-out-of-k covert modulo ℓ(·) if there exists a probabilistic polynomial-time algorithm Sim
such that for every subset S ⊆ [k] with |S| ≤ t, every function f , and every input x, it holds
that

Viewf
S(L, x) ≡ SimEx(f)(S, ℓ(x)

)
, (1)

where ≡ denotes equality of distributions and Ex(f) denotes a probabilistic oracle that when
queried, samples x uniformly from the domain of f and returns

(
x, f(x)

)
.

If “≡” in Equation (1) is replaced by a form of computational (resp. statistical) indistin-
guishability, we say that L is computationally (resp. statistically) t-out-of-k covert.

In this definition, the function ℓ(·) serves to enumerate all leakage about L’s input that we
consider benign. For example, the input x to a learning algorithm often includes an accuracy
parameter ϵ and a confidence parameter δ. Relaxing the desired guarantees on accuracy or
error probability means that the algorithm can make fewer queries. Fewer queries is usually
a good thing, but it is also clearly visible to the adversary, so we declare it benign by defining
ℓ(x) to include ϵ and δ.

On the other hand, for some learning algorithms the input may explicitly include more
sensitive information, such as auxiliary information z about the target function f . When
this information is omitted from ℓ(x), covertness modulo ℓ(·) guarantees that the algorithm’s
queries do not convey information about z.

3 Fourier Analysis Preliminaries

It is mathematically convenient in this paper to view Boolean functions as functions from n
2

to {−1, 1} (as opposed to functions from {0, 1}n to {0, 1}). In this setting, a parity function
is also known as a character.

▶ Definition 3. A character of n
2 is a homomorphism from n

2 to the multiplicative group
{−1, 1} ⊆ R. Characters are parameterized by a vector γ ∈n

2 , with the character corresponding
to γ mapping x 7→ (−1)γ·x.

The characters form a group under multiplication, which corresponds to addition of the
vectors γ in n

2 . We will identify characters with their index, i.e. we will simply write γ(x)
rather than (−1)γ·x. To avoid resulting confusion, we will denote the set of characters by n̂

2
instead of n

2 .

▶ Theorem 4 (Fourier Expansion Theorem [12, Theorem 1.1]). Every function f :n2 → R can
be uniquely expressed as

f(x) =
∑
γ∈n̂

2

f̂(γ) · γ(x)

where each f̂(γ) is a real number called the Fourier coefficient of f on γ. This expression is
called the Fourier expansion of f .

▶ Proposition 5 (Fourier Coefficient Formula [12, Proposition 1.8]). For f : n
2 → R and γ ∈ n̂

2 ,
the Fourier coefficient f̂(γ) is given by the formula

f̂(γ) = E
x←n

2
[f(x) · γ(x)].

ITC 2023

14:6 Locally Covert Learning

One can view f̂ as a function from n
2 to R (because characters γ correspond to elements

of n
2 as described in Definition 3). Then combining Theorem 4 and Proposition 5, we obtain

the standard fact that two iterations of the Fourier transform applied to a function returns
the same function scaled by a factor of 2−n.

▶ Theorem 6 (Fourier Duality). For any f :n2 → R, ˆ̂
f = 2−n · f .

▶ Theorem 7 (Parseval’s theorem). For any function f : n
2 → R, it holds that

E
x←n

2
[f(x)2] =

∑
γ∈n̂

2

f̂(γ)2.

Recall that for a subset A ⊆ X, the indicator function of A in X, denoted by 1A, maps
x ∈ X to 1 if x ∈ A and to 0 otherwise.

▶ Proposition 8 (Fourier Transform of Affine Subspaces [12, Proposition 3.12]). If A = V + x

is an affine subspace of n
2 with codimension k, then

1̂A(γ) =
{

2−k · γ(x) if γ ∈ V ⊥

0 otherwise.

Here 1A :n2 → {0, 1} denotes the indicator function for A in n
2 , and V ⊥ denotes the set of

γ ∈ n̂
2 for which γ · v = 0 (i.e. γ(v) = 1) for every v ∈ V .

In the statement of Proposition 8, note that although the decomposition A = V + x is
not unique (A can also be written A = V + x′ for any x′ ∈ x + V), the definition of 1̂A is
independent of the choice of decomposition. This is because for any x′ ∈ x + V and any
γ ∈ V ⊥, we have γ(x) = γ(x′ + (x − x′)) = γ(x′) · γ(x − x′) = γ(x′).

▶ Corollary 9. If A = V + γ∗ is an affine subspace of n̂
2 with dimension d, then for any x ∈n

2 ,

∑
γ∈A

γ(x) =
{

2d · γ∗(x) if x ∈ V ⊥

0 otherwise.

Equivalently, the function f :n2 → R defined by f̂ = 1A : n̂
2 → {0, 1} is

f(x) =
{

2d · γ∗(x) if x ∈ V ⊥

0 otherwise.

Proof. Follows from applying Fourier duality (Theorem 6) to Proposition 8. ◀

▶ Corollary 10 (Generalization of Plancherel). For any f1, . . . , fk : n
2 → R, it holds that

∑
γ∈n̂

2

k∏
j=1

f̂j(γ) = E
x1,...,xk∈n

2
x1+···+xk=0

 k∏
j=1

fj(xj)

 . (2)

J. Holmgren and R. Jawale 14:7

Proof. We have

∑
γ∈n̂

2

k∏
j=1

f̂j(γ)

=
∑

γ

k∏
j=1

E
x←n

2
[fj(x) · γ(x)] (Proposition 5)

=
∑

γ

E
x1,...,xk←n

2

[k∏
j=1

fj(xj) · γ(xj)
]

(independence of x1, . . . , xk)

=
∑

γ

E
x1,...,xk←n

2

[(k∏
j=1

fj(xj)
)

· γ
(k∑

j=1
xj

)]
(characters are homomorphisms)

= E
x1,...,xk←n

2

[
f1(x1) · · · fk(xk) ·

∑
γ

γ
(k∑

j=1
xj

)]
(linearity of expectation)

But this is equal to

E
x1,...,xk∈n

2
x1+···+xk=0

 k∏
j=1

fj(xj)

because

∑
γ

γ
(k∑

j=1
xj

)
=

{
2n if x1 + · · · + xk = 0
0 otherwise.

◀

4 Covertly Measuring Fourier Weight on Affine Spaces

The following algorithm is the main subroutine in our exposition of the Goldreich-Levin
algorithm.

▶ Proposition 11. For all k ∈ Z+, there is a perfectly (k − 1)-out-of-k covert algorithm
(modulo the parameters n, ϵ and δ below) that takes as input:

an affine subspace A = V + γ∗ of n̂
2 , where V is a vector subspace;

an “accuracy” parameter ϵ > 0;
a “confidence” parameter δ > 0; and
oracle access to a function f :n2 → [−1, 1],

runs in time poly
(
n, 1

ϵ , log(1
δ)

)
and, with all but δ probability, outputs a real number w̃

satisfying

w̃ − ϵ ≤
∑
γ∈A

f̂(γ)k ≤ w̃ + ϵ.

Moreover, the queries of this algorithm are non-adaptive and are computable in time
poly

(
n, 1

ϵ , log(1
δ)

)
given V , ϵ, δ, and the algorithm’s randomness (in particular there is no

dependence on γ∗).

ITC 2023

14:8 Locally Covert Learning

Proof. Let A = V + γ∗ be an affine subspace of n̂
2 (here V is the vector space parallel to A,

and γ∗ ∈ n̂
2 is the offset of A), and let d denote the dimension of A. We can write∑

γ∈A

f̂(γ)k =
∑
γ∈n̂

2

f̂(γ)k · 1A(γ).

By Corollary 9, the indicator function 1A : n̂
2 → {0, 1} is the Fourier transform of the

function

g :n2 → R

g(x) =
{

2d · γ∗(x) if x ∈ V ⊥

0 otherwise.

Rewriting 1A as ĝ, we obtain∑
γ∈n̂

2

f̂(γ)k · ĝ(γ) = E
x1,...,xk←n

2

[
f(x1) · · · f(xk) · g(x1 + · · · + xk)

]
(Corollary 10)

= E
x1,...,xk

x1+···+xk∈V ⊥

[
f(x1) · · · f(xk) · γ∗(x1 + · · · + xk)

]
(3)

Our algorithm estimates Equation (3) by sampling m = O(log(1/δ)/ϵ2) i.i.d. tuples(
(x(i)

1 , . . . , x
(i)
k)

)
i∈[m]

sampled uniformly from
(n

2

)k conditioned on x
(i)
1 + · · · + x

(i)
k ∈ V ⊥.

Then for each j ∈ [k], the algorithm queries its jth oracle to obtain f(x(i)
j), and computes

a “sample” f(x(i)
1) · · · f(x(i)

k) · γ∗(x(i)
1 + · · · + x

(i)
k). Finally, it outputs the average of these

samples. This output satisfies the desired accuracy guarantee by Hoeffding’s inequality. The
“moreover” of the theorem statement follows from the fact that the values

(
x

(i)
j

)
were sampled

from a distribution that depends only on V .
(k − 1)-out-of-k covertness follows from the standard fact that for any v, when the

queries (x(i)
1 , . . . , x

(i)
k) are sampled uniformly from n

2 conditioned on x
(i)
1 + · · · + x

(i)
k = v, the

distribution of x
(i)
S is uniform on (n

2)|S| for any S ⊆ [k] with |S| < k. ◀

5 The Goldreich-Levin Theorem

The seminal theorem of Goldreich and Levin [5] plays an important role in cryptography,
learning theory, and this paper. Loosely speaking, the theorem says that it is possible to
efficiently find all heavy Fourier coefficients of a function f using membership queries to f .
We prove a (k − 1)-out-of-k covert variant of this theorem for any constant k (the running
time and number of queries grow exponentially in k).

▶ Theorem 12 (Locally Covert Goldreich-Levin). For every integer k ≥ 2, there is an explicit
algorithm that when given:

an integer n ∈ Z+,
a “threshold” parameter 0 < τ ≤ 1,
a “confidence” parameter δ > 0, and
access to k oracles all implementing the same function f :n2 → [−1, 1],

the algorithm runs in time poly(n, log(1
δ), 1

τk) and outputs a set S ⊆ n̂
2 (of size O(1/τk)) such

that with all but δ probability,

S contains all γ ∈ n̂
2 for which |f̂(γ)| ≥ τ . (4)

Moreover, this algorithm is perfectly (k − 1)-out-of-k covert modulo (n, τ, δ).

J. Holmgren and R. Jawale 14:9

Proof. We assume without loss of generality that k is even (so we are looking for γ satisfying
f̂(γ)k ≥ τk). This is without loss of generality because for odd k, we can emulate a k-out-
of-(k + 1) covert algorithm L. Whenever L makes a query q to its ith oracle, we pass the
query to our (i mod k)th oracle. With this query mapping, it is easy to see that the view of
any k − 1 of our oracles is simulatable from the view of k of L’s oracles, which is in turn
simulatable from random examples.

For a given f and τ , say that γ ∈ n̂
2 is heavy if |f̂(γ)| ≥ τ , and let H denote the set

of heavy γ. Our algorithm maintains a set S of O(1/τk) disjoint affine subspaces that
collectively cover H (i.e. H ⊆ ∪A∈SA). The algorithm starts with the trivial covering
S = {n̂

2 }. It then “refines” S until S contains only affine sets of dimension 0, i.e. singleton
sets, at which point S (or more precisely ∪A∈SA) is the desired output.

To refine S, the algorithm repeats the following two steps n times:
1. Replace each A ∈ S by disjoint A0 and A1 such that dim A0 = dim A1 = dim A − 1 and

A = A0 ∪ A1.
2. Use Proposition 11 to “filter” S, keeping all A for which

∑
γ∈A f̂(γ)k ≥ τk (in particular

this includes all A that contain a heavy γ) and removing all A for which
∑

γ∈A f̂(γ)k ≤
τk/2. This involves running the algorithm of Proposition 11 |S| times, where recall
|S| ≤ O(1/τk). For covertness, we we also perform up to O(1/τk) “dummy” executions
of the algorithm so that we do not leak information through |S|.

We remark that with a careful choice of decomposition in step 1, this algorithm can be
made non-adaptive. Specifically, fix a basis e1, . . . , en for n

2 , and in the ith iteration choose
Ab :=

{
γ ∈ A : γ(ei) = (−1)b

}
. Then in the ith iteration at step 2, each affine space A ∈ S

will be parallel to the fixed vector space Vi =
{

γ ∈ n̂
2 : γ(e1) = · · · = γ(ei) = 1

}
. The

“moreover” of Proposition 11 then implies that the queries can all be made nonadaptively.
To complete the description and analysis of the algorithm, it remains to show that this

filtration process guarantees |S| ≤ O(1/τk). Specifically we claim |S| ≤ 2/τk, for otherwise
we would have

1 < |S| · τk

2
≤

∑
A∈S

∑
γ∈A

f̂(γ)k

≤
∑
A∈S

∑
γ∈A

f̂(γ)2 (each f̂(γ) lies in [−1, 1])

≤
∑
γ∈n̂

2

f̂(γ)2 (the spaces A ∈ S are disjoint)

≤ 1 (Parseval). ◀

References
1 Mihir Bellare. The goldreich-levin theorem, October 1999. Lecture notes, available at

https://cseweb.ucsd.edu/~mihir/papers/gl.pdf.
2 Avrim Blum. Learning a function of r relevant variables. In Bernhard Schölkopf and Man-

fred K. Warmuth, editors, Computational Learning Theory and Kernel Machines, 16th Annual
Conference on Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003,
Washington, DC, USA, August 24-27, 2003, Proceedings, volume 2777 of Lecture Notes in
Computer Science, pages 731–733. Springer, 2003. doi:10.1007/978-3-540-45167-9_54.

3 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506–519, 2003.

ITC 2023

https://cseweb.ucsd.edu/~mihir/papers/gl.pdf
https://doi.org/10.1007/978-3-540-45167-9_54

14:10 Locally Covert Learning

4 Ran Canetti and Ari Karchmer. Covert learning: How to learn with an untrusted intermediary.
In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography – 19th International
Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part III,
volume 13044 of Lecture Notes in Computer Science, pages 1–31. Springer, 2021. doi:
10.1007/978-3-030-90456-2_1.

5 Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washington, USA, pages 25–32. ACM, 1989. doi:
10.1145/73007.73010.

6 Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365–377. ACM, 1982.

7 Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive
proofs for verifying machine learning. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume
185 of LIPIcs, pages 41:1–41:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ITCS.2021.41.

8 Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In FOCS, pages 230–235. IEEE Computer Society, 1989.

9 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptographic sensing. In
CRYPTO (3), volume 11694 of Lecture Notes in Computer Science, pages 583–604. Springer,
2019.

10 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993. doi:10.1137/0222080.

11 Yishay Mansour. Learning boolean functions via the fourier transform. Theoretical advances
in neural computation and learning, pages 391–424, 1994.

12 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014. Available
online at arXiv:2105.10386.

13 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84–93. ACM, 2005.

A Agnostic Learning from Heavy Fourier Coefficients

In agnostic learning, the goal is to learn a hypothesis h ∈ H that is nearly as good as any
other hypothesis H. More precisely, we aim to (approximately) minimize a loss function
L(h, f).

We use the squared ℓ2 loss function, i.e. L(h, f) = ∥h−f∥2 := Ex←n
2

[(
h(x)−f(x))2

]
. This

loss function possesses a number of appealing mathematical properties. When h, f :n2 → {0, 1}
are both Boolean functions, L(h, f) is just the fraction of inputs on which h and f differ. On
the other hand if h̃ is a real-valued function with L(h̃, f) = ϵ, then one can efficiently obtain
a Boolean function h with L(h, f) ≤ 4ϵ by setting h(x) = 0 if h̃(x) ≤ 1/2, and h(x) = 1
otherwise.

This loss function has two appealing properties that connect it to Boolean functions.
When h, f :n2 → {−1, 1} are both Boolean functions, L(h, f) is exactly four times the fraction
of inputs on which h and f differ. On the other hand if h̃ is a real-valued function with
L(h̃, f) = α, then one can efficiently obtain a Boolean function h with L(h, f) ≤ 4α by
setting h(x) = sign(h̃(x)), i.e.

h(x) =
{

1 if h̃(x) ≥ 0
−1 otherwise.

https://doi.org/10.1007/978-3-030-90456-2_1
https://doi.org/10.1007/978-3-030-90456-2_1
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.1137/0222080
https://arxiv.org/abs/2105.10386

J. Holmgren and R. Jawale 14:11

For completeness we include a proof of the following proposition, which was already known
(see e.g. the survey of Mansour [11]).

▶ Proposition 13. For every integer k ≥ 2, there is an explicit algorithm that when given:
an integer n ∈ Z+,
a “sparsity” parameter t ∈ Z+,
an “accuracy” parameter ϵ > 0,
a “confidence” parameter δ > 0, and
access to k oracles all implementing the same function f : {−1, 1}n → [−1, 1],

runs in time poly
(

n, log(1
δ),

(
t
ϵ

)k
)

and outputs a t-sparse polynomial p̃ : Rn → R (as a list
of monomials and coefficients) such that with all but δ probability, L(p̃, f) ≤ L(p, f) + ϵ for
every t-sparse polynomial p.

Moreover, this algorithm is perfectly (k − 1)-out-of-k covert modulo (n, t, ϵ, δ).

Proof. The algorithm executes the following steps:
1. Use the (locally covert) Goldreich-Levin algorithm of Theorem 12 to find a set S̃ ⊆ n̂

2 such
that, for some parameter τ to be specified later, S̃ contains all γ for which |f̂(γ)| ≥ τ

(unless a certain bad event B1 occurs, which happens with probability at most δ/2).
Without loss of generality assume |S̃| ≥ t (arbitrary elements can be added to S̃ if
necessary to ensure this).

2. Use random examples to obtain estimates f̃(γ) of f̂(γ) such that∣∣f̃(γ) − f̂(γ)
∣∣ ≤

√
τ for each γ ∈ S̃ (5)

(unless a certain bad event B2 occurs, which happens with probability at most δ/2).
3. Sort the elements of S̃ as γ̃1, . . . , γ̃|S̃| such that |f̃(γ̃1)| ≥ |f̃(γ̃2)| ≥ · · · ≥

∣∣f̃(γ̃|S̃|)
∣∣, and

define S̃t = {γ̃1, . . . , γ̃t}.
4. Output p̃ =

∑
γ∈S̃t

f̃(γ) · γ.

Toward analyzing the correctness of this algorithm, enumerate the elements of n̂
2 as

γ1, γ2, . . . , γ2n such that |f̂(γ1)| ≥ · · · ≥
∣∣f̂(γ2n)

∣∣, let St denote the set {γ1, . . . , γt}, and
define the function p =

∑
γ∈St

f̂(γ) ·γ. Note that this p is the t-sparse function that is closest
to f , so we wish to compare L(p̃, f) to L(p, f).

L(p, f) has a convenient formula in the Fourier domain:

L(p, f) =
∑
γ∈n̂

2

(
p̂(γ) − f̂(γ)

)2 =
∑
γ /∈St

f̂(γ)2. (6)

Similarly

L(p̃, f) =
∑
γ /∈S̃t

f̂(γ)2 +
∑
γ∈S̃t

(
f̂(γ) − f̃(γ)

)2
, (7)

so we have

L(p̃, f) − L(p, f) =
∑
γ /∈S̃t

f̂(γ)2 −
∑
γ /∈St

f̂(γ)2 +
∑
γ∈S̃t

(
f̂(γ) − f̃(γ)

)2
.

︸ ︷︷ ︸
≤ tτ by (5)

(8)

It remains to bound∑
γ∈S̃t

f̂(γ)2 −
∑
γ∈St

f̂(γ)2 =
t∑

i=1

(
f̂(γi)2 − f̂(γ̃i)2)

. (9)

ITC 2023

14:12 Locally Covert Learning

Recall that f̂(γi) can be obtained by sorting the 2n Fourier coefficients of f and picking the
ith largest. In comparison, f̂(γ̃i) is obtained by first perturbing each Fourier coefficient by at
most τ , then sorting and taking the ith largest, then unperturbing by at most τ . Sorting of
real numbers is 1-Lipschitz with respect to the ℓ∞ metric (this follows from the analogous
fact for min and max), which implies that |f̂(γi) − f̂(γ̃i)| ≤ 2τ for every i. Since each |f̂(γ)|
is at most 1, (9) is at most 4tτ , which finally implies that (8) is at most 5tτ .

Setting τ = ϵ/5t then achieves the desired accuracy. ◀

Online Mergers and Applications to
Registration-Based Encryption and Accumulators
Mohammad Mahmoody #

University of Virginia, Charlottesville, VA, USA

Wei Qi #

University of Virginia, Charlottesville, VA, USA

Abstract
In this work we study a new information theoretic problem, called online merging, that has direct
applications for constructing public-state accumulators and registration-based encryption schemes.
An online merger receives the sequence of sets {1} , {2} , . . . in an online way, and right after receiving
{i}, it can re-partition the elements 1, . . . , i into T1, . . . , Tmi by merging some of these sets. The goal
of the merger is to balance the trade-off between the maximum number of sets wid = maxi∈[n] mi

that co-exist at any moment, called the width of the scheme, with its depth dep = maxi∈[n] di, where
di is the number of times that the sets that contain i get merged. An online merger can be used to
maintain a set of Merkle trees that occasionally get merged.

An online merger can be directly used to obtain public-state accumulators (using collision-
resistant hashing) and registration-based encryptions (relying on more assumptions). Doing so, the
width of an online merger translates into the size of the public-parameter of the constructed scheme,
and the depth of the online algorithm corresponds to the number of times that parties need to
update their “witness” (for accumulators) or their decryption key (for RBE).

In this work, we construct online mergers with poly(log n) width and O(log n/ log log n) depth,
which can be shown to be optimal for all schemes with poly(log n) width. More generally, we show
how to achieve optimal depth for a given fixed width and to achieve a 2-approximate optimal width
for a given depth d that can possibly grow as a function of n (e.g., d = 2 or d = log n/ log log n).
As applications, we obtain accumulators with O(log n/ log log n) number of updates for parties’
witnesses (which can be shown to be optimal for accumulator digests of length poly(log n)) as
well as registration based encryptions that again have an optimal O(log n/ log log n) number of
decryption updates, resolving the open question of Mahmoody, Rahimi, Qi [TCC’22] who proved
that Ω(log n/ log log n) number of decryption updates are necessary for any RBE (with public
parameter of length poly(log n)). More generally, for any given number of decryption updates
d = d(n) (under believable computational assumptions) our online merger implies RBE schemes with
public parameters of length that is optimal, up to a constant factor that depends on the security
parameter. For example, for any constant number of updates d, we get RBE schemes with public
parameters of length O(n1/(d+1)).

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Registration-based encryption, Accumulators, Merkle Trees

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.15

Funding Mohammad Mahmoody: Supported by NSF grants CCF-1910681 and CNS193679.
Wei Qi: Supported by NSF grants CCF-1910681 and CNS193679.

1 Introduction

Registration-based encryption [12] is a primitive that aims to offer what identity-based
encryption [26, 5] offers (i.e., a compact public parameter that can be used to encrypt for
all identities) but without the key-escrow problem (i.e., that the holder of the master secret
key can decrypt all the messages). It was shown [12] that essentially two relaxations will

© Mohammad Mahmoody and Wei Qi;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohammad@virginia.edu
mailto:wq4sr@virginia.edu
https://doi.org/10.4230/LIPIcs.ITC.2023.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Online Mergers and Applications

enable such a primitive. In particular, in RBE the parties generate their own public and
secret keys, and then they register them to a transparent algorithm called the key curator
(KC). However, this comes at the cost of an evolving (compact) public parameter and need
for occasional decryption updates. Namely, firstly the public parameter ppn is now possibly
changing after the nth identity registers into the system, and secondly the parties might
sometimes need to reach out to the KC for hints/updates so that they can complete their
decryption tasks. It was shown in [12] that with a total of O(log n) number of decryption
updates, one can keep the length of the public parameter poly(log n) (with a constant that
depends on the security parameter). The follow-up works on RBE [13, 16, 9] made progress
in various aspects such as assumptions and concrete efficiency, but asymptotically they all
required the same Θ(log n) number of decryption updates.

How many decryption updates are needed? The above state of affairs left open the
possibility that RBE schemes with sub-logarithmic o(log n) number of updates could be
constructed. Recently, Qi, Rahimi, and Mahmoody [22] proved that Ω(log n/ log log n) many
updates are necessary for any RBE schemes (with a public parameter of size poly(log n), as
required by the standard definition of RBE) regardless of the computational assumptions
used for constructing them, so long as the updates arrived at fixed times. The latter property
is known to hold for all constructions of RBE so far. It remained open to close the gap
between the upper bound of O(log n) and the lower bound of Ω(log n/ log log n).

In this work, we further close this gap and show that the lower bound of Ω(log n/ log log n)
on the number of decryption updates is optimal (up to a constant factor that depends on
the security parameter). We do so by improving the core information theoretic object that is
at the center of the original RBE scheme of [12] as well as the accumulators used in such
RBE schemes. More specifically, the RBE scheme of [12] relies on a transparent accumulator
(i.e., one that does not have a secret state) [4, 3, 6, 25] that accumulates all the public-keys
tied with their corresponding identities. In such an accumulator, a short digest pp of all the
accumulated strings {x1, . . . , xn} can be used to efficiently verify membership of, say, xi in
the collection, so long as this verifier is provided with a short witness wi of the membership.
Hence, there are clear similarities between what RBE does with the keys and what an
accumulator does with the strings xi, and so it is not surprising that accumulators are useful
for building RBEs. Our main result is to identify a core problem that is also at the heart of
transparent accumulators that in turn are used for building RBEs.

The most natural approach for building a transparent accumulator is to use Merkle trees,
based on collision resistant hash functions. Namely, one can build a Merkle tree T over the
leaves S = {x1, . . . , xn}, and publish the label of the root r as the public parameter. Then,
to prove membership of xi in the collection S, one can provide the “Merkle opening” of xi,
which consists of the labels along the path from (the leaf) xi to the root r as well as the labels
of the neighbors of this path. Then the verifier will do the basic sanity checks to pass the
verification, and the scheme will be sound so long as the compressing hash function used for
building the tree is collision resistant. When we are in the dynamic setting and the elements
{x1, . . . , xn} arrive one by one, we no longer can use a single Merkle tree for hashing them,
at least as long as we do not want to change the “opening witnesses” frequently.

The work of Reyzin and Yakoubov [25] showed how to make use of a collection of Merkle
trees in such a way that the opening of each xi will needs to be updated only O(log n) times
over the course of the n steps of the system. They called an accumulator with this feature
an asynchronous accumulator, and their construction was also used in the RBE construction
of [12]. The idea behind this accumulator is to keep the collection of trees T in a way that:
(1) any tree T ∈ T is always a full binary tree with 2i leaves, (2) every pair of different trees

M. Mahmoody and W. Qi 15:3

T1, T2 ∈ T have different sizes, (3) there is a bijection between the leaves of the trees in
T and the accumulated set of objects. Therefore, the sizes of the trees in T directly give
the binary representation of n, where n is the total number of elements in the collection.
When a new element xn arrives, this accumulator first generates a set {xn}, and then the
accumulator keeps merging the trees of the same size till there is no such pair of trees. It
can be seen that the maximum depth of any tree T ∈ T will upper bound the number of
times that an opening witness of an element x ∈ {x1, . . . , xn} needs to be updated, and this
number is Θ(log n). This is the core reason that this accumulator and the RBE scheme
of [12] require logarithmically many updates.

1.1 Online mergers
In this work, we revisit the way a collection of sets/trees are merged to maintain a collection
of “Merkle trees”, but we study the problem more abstractly and independently of the
direct connection to Merkle trees. We ask how to do the merging, while we try to balance
the number of trees versus their maximum depth. More formally, we ask the following
question. Suppose the elements {x1, . . . , xn} arrive one by one in n rounds, and suppose
at the beginning of each round i + 1 we have a collection of sets T i

1, . . . , T i
mi

already that
partitions {x1, . . . , xi} and the new single-element set T i

mi+1 = {xi+1} gets added to the
current collection of sets. Then, the job of an online merger is to choose how to merge
some of the sets and shape the updated collection T i+1

1 , . . . , T i+1
mi+1

that is a partitioning of
T i

1, . . . , T i
mi

, {xi+1} (and also of {x1, . . . , xi+1}). Since the merger has to decide about these
choices in each of the n rounds, we call it an online merger.1 The two key parameters of
interest for online mergers are the following.

The width of an online merger is the maximum number of sets (i.e., maximum of mi

over all i ∈ [n]) that it ever maintains during the course of its execution in the n rounds.
This parameter is important as it captures the size of the digest/public parameter if each
of the sets T is a Merkle tree, because it simply counts the number of roots of the trees
at its maximum peak.
The depth of an online merger is the maximum of di for i ∈ [n], where di is the number
of times that the set containing xi gets merged with other sets. If we choose to represent
the sets as trees and merge them as such, the depth of a scheme is simply the maximum
depth of the collected trees at the end. If xi has depth di, then (in case the sets shape
Merkle trees) the opening witness for the membership of xi in the collection needs to be
updated di times.

Key questions about online mergers. On the extreme points, one can achieve width 1
and depth n − 1 by immediately merging any incoming set, and one can achieve depth 0
and width n by not merging any of the sets. Thus, the interesting question is to find the
optimal trade-off between the width and depth of online mergers as a function of n. We
can ask this question both for online mergers that know the set size n ahead of the time
(called bounded online mergers) and for those that are “unbounded” and receive the incoming
single-element sets without knowing the upper bound n on the final set size (called unbounded
online mergers). More specifically, we are interested in finding the minimum width needed
for mergers that are given an upper bound on their depth, and conversely we would like to
find out the minimum depth needed for mergers that are given an upper bound on their

1 In contrast, an offline merger gets all of {x1, . . . , xn} before deciding on how to partition them.

ITC 2023

15:4 Online Mergers and Applications

width. The given upper bounds (for width or depth) could be absolute constants or growing
functions of n. On the one hand, both width and depth can be Θ(log n) simultaneously, due
to the accumulator of [25]. On the other hand, as we will show, the tools from [22] can be
used to show that the depth of any online merger needs to be at least Ω(log n/ log log n)
if the width needs to be poly(log n) (which is the standard size of the public parameter
for RBE [12]). Prior to our work, it was not known how many updates are necessary for
achieving public parameters of length poly(log n).

1.2 Our results
Our main result is to find the exact trade-off between the two key parameters (width
and depth) of online mergers. As a corollary, we obtain transparent accumulators and
RBE schemes that can take as input parameters the number of updates and produce
public parameters that are optimal within a constant factor. As a special case, we also
obtain accumulators and RBE schemes that have the optimal O(log n/ log log n) number
of witness/decryption updates, while their public parameter is assumed to be of length
O(poly(log n)). Below, we explain these results in more detail.

Our results about online mergers. To have a reference to judge the optimality of a trade
off between depth and width of an online merger, we start by proving a lower bound on
this trade off. In particular, using a key combinatorial tool from [22], we first derive a lower
bound on the trade-off between the depth d and width w of any online merger, and the lower
bound holds even if the set of elements [n] = {1, . . . , n}2 is known to the online merger ahead
of the time. In particular, we find lower bound functions widthLB(n, d) (for the with) and
depthLB(n, w) (for the depth) when we are given the set size n and either of the width w or
the depth d as inputs.

We remark that the mere fact that one can use the tools of [22] to obtain a lower bound
for the trade off between depth and width of online mergers is not surprising, as online
mergers are one way to obtain accumulators and RBEs and the lower bound of [22] applies
to any RBE scheme. However, we emphasize that as our starting point in this work we
obtain concrete lower bound functions widthLB(n, d) and depthLB(n, w) that do not hide any
unknown constants that can depend, say, on the security parameter, as online mergers are a
purely information theoretic object without security parameters. Hence, these lower bound
functions allow us to prove exact bounds on the trade-off between depth and width of online
mergers, which is what we do next. Having the reference lower bounds widthLB(n, d) and
depthLB(n, w) we show how to achieve positive constructions that (sometimes approximately)
match these lower bounds, as stated below.

▶ Theorem 1 (Optimal bounded online mergers – informally stated). For any known set size n,
there is an efficient construction of online merger MerWidw of width w that achieves optimal
depth depthLB(n, w), and there is an efficient construction of an online merger MerDepd of
depth d that achieves optimal width widthLB(n, d).

See Theorem 13 and Proposition 14 for formalization of the above theorem.
We remark that the appendix in [22] included a graph construction that showed their

lower-bound cannot be further improved. However, that graph construction only shows
the limitation of the proof approach of [22] and does not uniquely determine a positive

2 Note that even though we will use larger blocks of data in applications of online mergers (i.e., accumulators
and RBE schemes) for simplicity we can pretend that the arriving sets are {1} , . . . , {n}.

M. Mahmoody and W. Qi 15:5

construction. In fact, any positive construction (e.g., that of our Theorem 1) can be used to
obtain such graphs, showing that the approach of [22] cannot lead to better lower bounds,
but the reverse is not true.

▶ Theorem 2 (Approximately optimal unbounded online mergers – informally stated). If
we do not know n ahead of the time, and if d(n) is a non-decreasing function of n (e.g.,
d(n) = log n/ log log n) that upper bounds the depth of the online merger that we would like
to have for a set of n elements, then there is an unbounded online merger that achieves width
at most 2 · widthLB(n, d(n)).

See Proposition 19 for a formal statement.

The cost of being unbounded. Theorem 2 only achieves a solution whose width is within 2
multiplicative approximation of the optimal solution. Hence, it brings up the question of
whether the approximation factor 2 (or any other factor bigger than 1) is needed here. We
prove that this is indeed the case, so long as we aim for unbounded online mergers. Namely,
in Theorem 22 we show that for unbounded online mergers such overhead is necessary.

Implications to accumulators and RBEs. Theorems 1 and 2 can be directly used to
construct accumulators and RBEs whose number of witness/decryption updates are bounded
by the depth of the corresponding online merger, and whose public parameters are of the
size Oκ(w), where w is the width of the online merger and the constant in Oκ(w) could
depend on the security parameter κ of the accumulator/RBE scheme. In fact, Theorem 1
already suffices for obtaining accumulators and RBEs with optimal number of updates when
we already know the final size of the set of elements/identities that will join the system over
time. We then study unbounded online mergers who do not know the upper bound n on the
population size, and obtain an almost tight solution.

The idea is quite straightforward: an online merger can be used to maintain a set of
Merkle trees T = {T1, . . . , Tm} that would serve as an accumulator for the incoming objects
{x1, . . . , xn}, while the set of the roots of the trees r1, . . . , rm would serve as the digest/public
parameter. To prove membership of xi in the set, one has to prove the Merkle opening of xi

with respect to the tree T ∈ T that contains xi as a leaf. Then, so long as the hash function
used for constructing the Merkle trees in T is collision resistant, it would be computationally
hard to prove membership of any x ̸∈ {x1, . . . , xn} successfully. See Construction 44 for a
formal description of this reduction. As formally stated in Proposition 45 the width and
depth of the used online merger directly translate (in order) into the number of updates and
length of the public parameter of the constructed accumulator. Finally, we observe that this
construction of (transparent) accumulators is tight in its trade-off between the number of
updates vs. the length of public parameter (up to a constant factor that can depend on the
security parameter). The reason is that the same proof of the lower bound of [22] for RBEs
can be directly adapted to transparent accumulators as well.

Finally, due to the fact that RBE schemes heavily rely on an internal accumulators for
compressing the submitted public keys, using our optimal accumulator and extra assump-
tions (i.e., indistinguishability obfuscation [2, 11, 21] and somewhere-statistically binding
hashing [20]) we can adapt the original construction of [12] to obtain an RBE scheme with
an optimal log n/ log log n number of updates, while all the other efficiency and compactness
requirements of the scheme are as defined and required by [12].

ITC 2023

15:6 Online Mergers and Applications

▶ Theorem 3 (RBE with optimal number of decryption updates – informal). Assuming standard
computational hardness assumptions, there is an RBE scheme that has log n/ log log n number
of decryption updates.

See Construction 28 for a formal adaptation of the construction of [12] to using an
arbitrary online merger. The proof of security for this construction is identical to the
(rather long) proof of the similar scheme in [12]. In fact, we obtain a more general result:
using any given number of updates d(n) as input parameter that can depend on n (e.g.,
d(n) = log(n)1/2) we can use our optimal online merger for that depth function d(n) to
obtain RBE schemes with optimal length for the public parameter for the given number of
updates d(n). An interesting corollary is that even using just one update allows us to obtain
a scheme with a sublinear public parameter of length O(

√
n) and using a larger constant d

will lead to significantly smaller public parameters of length O(n1/(d+1)).

Other assumptions. We emphasize that our Theorem 3 above is merely to show that one
can obtain the right number of updates for RBEs using some computational assumptions,
and to show that we choose the simplest construction that is based on Indistinguishability
obfuscation and Somewhere Statistically Binding Hashing [20]. However, as we explain
in the full version of the paper, our main tool of this paper, namely online mergers, are
versatile enough to be incorporated into other constructions of RBE based on standard
assumptions [14, 16] as well.

1.3 Techniques

We now review some of the ideas used in the proof of our main results about online mergers.

Lower bound. To obtain the lower bound functions widthLB(n, d) (for the width) and
depthLB(n, w) (for the depth) we take the following steps.
1. We first show how to derive a DAG of out-degree at most d from any merger of depth d,

by connecting i to j if the set containing i gets merged in round j (see Definition 8).
2. We then use a result from [22] showing that DAGs with small out-degrees have a

substructure, called skipping sequence (see Definition 33 and Theorem 34).
3. Finally, we observe that skipping sequences directly imply lower bounds on the width.

Optimal depth for a given constant width. Our starting point is an extremely simple
scheme that obtains optimal depth (i.e., matching depthLB(n, w)) when we are given any fixed
width w as input. This scheme works even if we do not know the set size n in advance. The
scheme can be described in one sentence: when a new set T = {n} (as a single-node tree) is
added to the collection of trees T , if T has w + 1 trees, merge the newly arrived tree T with
all the trees in T that have minimum depth (among the trees already in T). Equivalently, as
long as |T | = w + 1, keep merging all the trees of minimum depth in T . See Construction 11
and Theorem 13 for more details. One can interpret this scheme as “lazy merging” approach
that does not do any merges when it does not have to, but when the merge is needed it only
merges trees of minimal depth (with the incoming tree of depth 0). Interestingly, this simple
scheme achieves a depth that is optimal for every n, as careful calculations can be used to
show that its depth matches the lower bound depthLB(n, w) exactly.

M. Mahmoody and W. Qi 15:7

Optimal width for a given depth and known set sizes. Once we have an online merger
MerWidw that achieves optimal depth for any given set size n and width w, we can turn this
scheme around and switch the role of depth and width. Namely, for a given set size n and
depth d, the new online merger MerDepd can find the smallest w such that a construction
on set [n] with width w will have a depth at most d, and this would be an optimal choice
of the width due to the optimality of the original algorithm MerWidw. (See Proposition 14
for a formalization.) This finishes the proof of Theorem 1. Note that we lost something in
this transformation: although our “width-based” merger MerWidw did not need to know the
set size n (and hence it was unbounded), the new “depth-based” merger MerDepd needs to
know n ahead of the time to find the optimal choice of width w. So, the new online merger
is not unbounded anymore.

2-approximation for the width of unbounded online mergers. We finally describe how to
achieve our online merger of Theorem 2. The key idea is to use our “width-based” merger
MerWidc for specifically chosen values of n(c), by pretending that n(c) is an upper bound on
the total size of the streaming set. We will also increase c whenever d(n) jumps by at least
one (as it can gradually grow). Our careful choice of n(c) and a “non-black-box” use of the
analysis of our scheme MerDepd allows us to prove that the resulting scheme will never use a
width more than 2 · widthLB(n, d(n)).

1.4 Related work

In addition to RBE, other works have also pursued paths to eliminate the key escrow problem
from IBE. The work of [5] aimed to make the private-key generator decentralized. The works
of [17, 18] proposed a notion of “accountablity” for PKG, by proposing how to catch an
irresponsible PKG in case of breach. The works of [7, 8, 28] aimed to make it harder for
the PKG to find out the receiver’s identity. The works of [8, 10] studied interactive key
generation that allows hiding user’s identities. The work of [1] proposed to mix IBE and
public-key encryption by constructing “Certificateless” Public Key Cryptography.

More recently, the work of [27] showed how to make RBE even more transparent by
deploying it on blockchain. The two works of [15, 19] showed how to achieve black-box
constructions of RBE based on assumptions on bilinear maps, while leveraging a polynomially
large CRS that can grow with the number of parties. Further more, the work of [15] gave
concrete implementations of RBE, and the work of [19] further generalized the notion of
RBE to registered attribute-based encryption schemes that can handle attributes beyond
identity (which is what RBE does).

The concept of cryptographic accumulators was first introduced by Benaloh and de
Mare [4]. Using an accumulator, one can represent a set of values S by a short digest
such that (1) there is a witness to prove membership for values in S and (2) it is infeasible
to find such witness for values that are not in S. Later, Barić and Pfitzmann [3] gave a
more generalized definition called collision-resistant accumulators and a construction of such
accumulators based on the strong RSA assumption. Both of the accumulators are static in
the sense that the set of values S never changes after the digest has been generated. However,
for many applications, the set of values can evolve with time. Observing this, Camenish and
Lysyanskaya [6] introduced the concept of dynamic accumulators and provided a construction
based on the strong RSA assumption. In a dynamic accumulator scheme, the set of values S
can change. Namely, values can be added to or removed from the set. Therefore, both the
digest and witnesses might be updated from time to time.

ITC 2023

15:8 Online Mergers and Applications

2 Online mergers and partitioners: constructions and lower bounds

In this section, we introduce the key information-theoretic problem of our work. To begin,
we need to define merging operation on rooted trees.

▶ Definition 4 (Merging operation and tree partitioning). A rooted tree is either a single vertex
rt (called root), or it has a root rt with i ≥ 1 children u1, . . . , ui such that each ui is the root
of a rooted tree itself. A leaf is any vertex that has no children. (So a tree with a single vertex
has a root that is also a leaf.) A merge operation takes a sequence (T1, . . . , Tj) of j ≥ 1
rooted trees and returns a single T, where T has a root rt with j children and the ith sub-tree
of rt for i ∈ [j] is Ti. For k ≤ m, we say that a set of trees {T′

1, . . . , T′
k} can be obtained by a

single merge operation from (T1, . . . , Tm), if there is a subset {T′′
1 , . . . , T′′

ℓ } ⊆ {T1, . . . , Tm}
that is merged into T, and {T′

1, . . . , T′
k} = {T} ∪ {T1, . . . , Tm} \ {T′′

1 , . . . , T′′
ℓ }. We also say

that a set of trees {T′
1, . . . , T′

k} is a merging of {T1, . . . , Tm}, if one can obtain {T′
1, . . . , T′

m}
from {T1, . . . , Tm} by a series of (zero or more) single merge operations. A set of rooted
trees {T1, . . . , Tm} form a tree partitioning of S, if they have |S| many leaves, and that each
x ∈ S appears as a leaf in exactly one of {T1, . . . , Tm}.

It is easy to see that if {T1, . . . , Tm} form a tree partitioning of S, then any merging of
{T1, . . . , Tm} will also be a tree partitioning of S.

We now define the main object of our interest, namely an online merger on a set [n].

▶ Definition 5 (Online merger). An online merger M for [n] is a deterministic algorithm
that works in n rounds as follows. Originally we have an empty set T0 = ∅ of trees. In
round i, we start from Ti−1 ∪ {i}; namely, a new tree with a single node labeled i gets added.
Then, the algorithm M is allowed to apply any number of merge operations on Ti−1 ∪ {i} to
reach Ti (at the end of round i). We call widi = |Ti| the width at (the end of) round i and
wid[n] = maxi∈[n] |Ti| simply the width of M for [n]. At round i and j ∈ [i], the depth of node
j in round i, denoted by depj

i is the distance of the node j from the root in its rooted tree
at the end of round i.3 The depth of Ti is simply defined as depi = maxj∈[i] depj

i , and the
depth of M for [n] is dep[n] = maxi∈[n] depi. An online merger for all the natural numbers N,
also called an unbounded online merger, informally, is one that keeps going forever. More
specifically, an unbounded merger gets the inputs {1} , {2} , . . . , and always maintains a tree
partitioning over [n] for all n ∈ N. For an unbounded merger, we can still define the depths
di, d[n] and widths widi, wid[n] of such mergers for all i, n ∈ N. Any online merger M for [n]
(resp. N) defines an online merger for all m ∈ [n] (resp. [n], n ∈ N).

Extensions and generalizations. The definition above can be extended in multiple ways:
Randomness. We could allow online mergers to be randomized algorithms, in which
case the depth and width are defined with respect to a fixed randomness. However, in
this work, we construct deterministic mergers, as our focus is on upper bounds, while our
lower bounds also directly apply to randomized algorithms as well.
Other sets. For simplicity, we defined mergers on [n], while one can think of mergers
who deal with arbitrary sets S of size n.
Partitioning. One can generalize the notion of online mergers to algorithms that
arbitrarily change the partitioning of the current set of elements. This class of algorithms
are, e.g., useful to model algorithms that maintain a set of Merkle trees, but decide to
break down those trees every now and then and reconstruct them from scratch.

3 This is equal to the number of times that the trees containing j are merged, since {j} was added and
till the end of round i.

M. Mahmoody and W. Qi 15:9

▶ Definition 6 (Online partitioner). An online partitioner Part for [n] and an unbounded
online partitioner for N are both defined similarly to their corresponding mergers with the
difference that they can arbitrarily re-partition the current set of vertices rather than merely
merging them. The notions of depth and width are defined similarly for partitioners, with
the only difference that depth of a node j ∈ [n] will denote the number of times that the set
containing j has changed.

Below, we first study lower bounds on depths and widths of bounded mergers. We then
give unbounded online schemes that (closely) match these lower bounds.

2.1 Lower bounds for bounded partitioners
The goal of this subsection is to present functions depthLB(n, w) (resp. widthLB(n, d)) that
serve as lower bounds on the depth (resp. width) of any online bounded partitioner, assuming
that the set size is n and the width is w (resp. depth is d).

We start by defining a DAG for any online partitioner or merger. Since partitioners
generalize mergers, we only define these notions for partitioners.

▶ Definition 7 (Forward DAGs of online partitioners and mergers). Let Part be a deterministic
online partitioner for [n]. Then, Part defines the following DAG Gn over [n]: (i, j) ∈ G for
i ≤ j if the set S that contains i at the beginning of round j is different from the one that
contains i at the end of the round j. For the special case of mergers, (i, j) ∈ G means that
the tree containing i at the beginning of round j is merged during round j.

We now observe that skipping sequences in the DAGs of online partitioners imply a lower
bound on their width.

▶ Proposition 8 (Lower bound on the width from skipping sequences). Let Part be an online
partitioner for [n]. Let Gn be the forward DAG over [n] defined by Part. Let S be a skipping
sequence in Gn. Then, the width of Part is at least |S|.

Proof. Let S = {s1 < · · · < sℓ}. It suffices to show that si and sj belong to different sets at
the end of round ℓ for all 1 ≤ i < j ≤ ℓ. Assume, on the contrary, that si and sj belong to
the same set at the end of round ℓ. This means that at some time k such that sj ≤ k ≤ sℓ

the sets containing si, sj change to include both of them, which implies the existence of the
edge (si, k) ∈ Gn, where si < sj ≤ k ≤ sℓ. Such an edge, however, contradicts the definition
of skipping sequences. ◀

If the depth of a partitioner or a merger is at most d, then by definition the out-degree of
the vertices in the corresponding forward DAG Gn is at most d. Therefore, using Proposition 8
and Theorem 34 (proved in [22]) we obtain the following lower bound.

▶ Theorem 9 (Lower bound on the width based on the depth). Suppose Part is an online
partitioner for [n]. Then the following hold for all d ≥ 0, w ≥ 1.
1. If n ≥

(
w+d
d+1

)
and dep[n] ≤ d, then wid[n] ≥ w.

2. If n ≥
(

w+d
d

)
and wid[n] ≤ w, then dep[n] ≥ d.

Proof. The first part follows directly from Proposition 8 and Theorem 34. To prove the
second part, suppose wid[n] ≤ w and dep[n] ≤ d−1. Then, by applying the first part on depth
d− 1 (rather than d), we obtain that the depth should be at least w + 1, which contradicts
wid[n] ≤ w. ◀

We now present the depthLB and widthLB functions that serve as lower bounds on the
depth and width of any online partitioner. Both of them can be expressed through the same
function in the following corollary that follows directly from Theorem 9 above.

ITC 2023

15:10 Online Mergers and Applications

▶ Corollary 10 (Lower-bound functions depthLB, widthLB for depth and width). For natural
numbers x, y, let minBin(x, y) = min{z ∈ N+ |

(
y+z

y

)
> x}. Then, the following holds for

any partitioner Part over the set [n].
1. If wid[n] ≤ w, then dep[n] ≥ depthLB(n, w) for depthLB(n, w) = minBin(n, w)− 1.
2. If dep[n] ≤ d, then wid[n] ≥ widthLB(n, d) for widthLB(n, d) = minBin(n, d + 1).

2.2 Optimal bounded mergers
In this subsection, we focus on bounded online mergers that know the set-size n in advance
and aims to optimally balance the trade-off between the width and the depth. For this
setting, we show that a simple construction optimally matches the bounds of Corollary 10.
In fact, we show that the following extremely simple construction achieves optimal depth
for all set sizes, so long as the width is upper bounded by a fixed given amount. In other
words, our simple construction is even an unbounded online merger for any given bound on
the width. As a corollary, when the set-size n and a given depth are both known in advance,
one can use our simple construction using the width w = widthLB(n, d) and achieve optimal
width for the given depth.

▶ Construction 11 (Optimal unbounded online merger for fixed width). The online merger
MerWidw is parameterized by a positive integer w. At each round, while the total number
of trees equals w + 1, MerWidw merges the subset of trees consisting of all trees with the
minimum depth. (Note that if there is a unique tree of minimum depth, merging it with itself
will simply increase its depth by one.)

By definition the width (i.e., widi = |Ti|, where Ti is the collection of trees at the end of
every round i ∈ N) in Construction 11 it holds that widn ≤ w, and hence wid[n] ≤ w for all
n ∈ N. We now analyze the depth.

Alternative construction. Construction 11 sometimes merges a single tree, which simply
increases its depth. This artificial merging can be avoided without increasing the depth
or width. However, the redundant operations simplify some of the claims below about the
analysis of the depth.

▶ Lemma 12. In Construction 11, the following holds.
1. At the end of round

(
d+w

d

)
− 1 there are w trees of depth d− 1.

2. Round
(

d+w
d

)
is the first round, at the end of which there is a single tree of depth d.

Proof. We use induction on d. The base case where d = 1 is true by inspection of the
first w + 1 rounds. Assume the claim is true for d − 1. We show that it is true for d. By
assumption we know at round

(
d−1+w

d−1
)
, there is exactly one tree of depth d. Reusing the

assumption, we know at round
(

d+w−1
d−1

)
+

(
d+w−2

d−1
)

there are 2 trees of depth d and no trees
of other depth. Similarly, we know at round

∑w
i=1

(
d+w−i

d−1
)

=
(

d+w
d

)
− 1 there are w trees of

depth d and no trees of other depth. By inspection, we know at round
(

d+w
d

)
there is exactly

one tree of depth d and this is the first round where there is a tree of depth d. ◀

Using the lemma above, we can get an upper bound on the depth for Construction 11.

▶ Theorem 13 (Construction 11 achieves optimal depth for all set sizes and widths). In
Construction 11, the depth dep[n] of MerWidw for set size n is depthLB(n, w) = minBin(n, w)−
1, which is optimal.

M. Mahmoody and W. Qi 15:11

Proof. Using Lemma 12, we know for n ∈ [
(

d+w
d

)
,
(

d+w+1
d+1

)
− 1], the depth of M is exactly d.

For such choice of n, d, it holds that
(

w+d+1
w

)
> n and

(
w+d

w

)
≤ n. Therefore, by definition,

this means that d + 1 = minBin(n, w), and hence d = minBin(n, w)− 1. ◀

▶ Proposition 14 (Achieving optimal width, given set size and depth). Let n, d be two positive
integers. Using MerWidw in Construction 11 with width w = widthLB(n, d) = minBin(n, d+1)
will have depth at most d. Consequently, the scheme will use optimal width.

Proof. Using Lemma 12, we know round
(

d+1+w
d+1

)
is the first round where there is a tree of

depth d + 1. However, by construction we know
(

d+1+w
d+1

)
> n. Thus, the depth will be at

most d. ◀

2.3 Unbounded online mergers
In this section, we study unbounded online mergers that do not know the set size [n]
in advance. We first design unbounded mergers for a given constant depth and then will
generalize our construction to the setting in which d is a growing function of n (e.g., d = log n).

2.3.1 Unbounded mergers for a given fixed depth
The key idea of our extension to unbounded mergers is as follows. Even though unbounded
mergers play in a game with an infinite number of rounds, one can divide the rounds into
stages where each stage only has a finite number of consecutive rounds. We can then treat each
stage as an independent known-size merging game, which allows us to use Construction 11.

▶ Construction 15 (Unbounded online mergers for given fixed depth d). We construct a merger
MerDepd which uses MerWidw in Construction 11 as a subroutine. We first partition the set
of rounds into stages Si that consist of consecutive rounds and that |Si| =

(
d+i

d

)
. In stage

Si (i.e., for round k, k ∈ [
∑i−1

j=1 |Sj |+ 1,
∑i

j=1 |Sj |]) we use MerWidw using width w = i and
treat the incoming sets {ℓ} , ℓ ∈ I as if it is {ℓ−

∑i−1
j=1}. While doing so, we ignore the trees

that are constructed in the previous i− 1 stages (i.e., keep them as part of the set of trees,
without merging them).

▶ Proposition 16. In Construction 15, we have wid[n] ≤ 2 · widthLB(n, d)− 1 for all d ≥ 0.

Proof. If d = 0, Construction 15 is trivially optimal in width. Below, assume d > 0. Uing
Lemma 12, we know each completed stage ends up with exactly one tree of depth d.

Let k be the smallest positive integer such that
(

d+1
d

)
+

(
d+2

d

)
+· · ·+

(
d+k

d

)
=

(
d+1+k

d+1
)
−1 ≥ n.

There are at least k−1 completed stage. If the last stage is also completed, there are in total k

trees. Otherwise, since the width of the last stage is bounded by k, the total width is bounded
by 2k − 1. Note that

(
d+1+k

d+1
)

> n but
(

d+k
d+1

)
≤ n, which means k = minBin(n, d + 1) =

widthLB(n, d). ◀

2.3.2 Unbounded online mergers for growing depths
Let d(n) be a non-decreasing function from N to N modeling our desired upper bound on
dep[n]. For example, we might want to have a scheme with depth log log n or log n/ log log n

(rounded to integers). In this subsection, we show how to achieve online mergers that respect
the upper bound dep[n] ≤ d(n), while achieving a width that is within 2 multiplicative factor
of the optimal width, as it will hold that wid[n] ≤ 2widthLB(n, d(n)).

Before defining the construction, here we define jumping points of the function d(n).

ITC 2023

15:12 Online Mergers and Applications

▶ Definition 17 (Jumping points). Suppose d(n) : N→ N is non-decreasing. Define the set
of jumping points of d(n), {a1, a2, a3, . . . }, as follows.
1. a1 = 1;
2. For i > 1, ai is the smallest positive integer satisfying d(ai) > d(ai−1).

▶ Construction 18 (Approximately optimal merger for a growing depth). Suppose {a1, a2, a3, . . .}
are the jumping points of the non-decreasing depth function d(n). Our unbounded merger
MerDepd(n) uses an unbounded merger MerDepc for fixed depth c as a subroutine. Originally,
there is no trees, and the algorithm MerDepd(n) works as follows at round n.

If n = ai for i ∈ {1, 2, . . .}, then MerDepd(n) will merge all the current trees (including
the single-node tree {ai} that has just arrived) into one tree.
For ai < n < ai+1, MerDepd(n) ignores the single merged tree that was shaped in round ai

and will treat the arriving sets {ℓ} as {ℓ− ai} and runs MerDepc for c = d(ai) = d(n).

The fact that the depth of the trees of Construction 18 satisfy dep[n] ≤ d(n) is immediate by
its definition and the fact that d(n) is non-decreasing. Specifically, for n = ai, assuming the
depth was previously at most d(ai − 1), by doing the single merge, the single merged tree
will have depth at most 1 + d(ai − 1) ≤ d(ai) = d(n). Hence, in the following we focus on
analyzing its width.

▶ Proposition 19. Suppose widc
[n] is the width of MerDepc that is used inside Construction 18.

Then the width of the final merger in Construction 18 is at most widd(n)
[n] + 1.

Proof. At every round ai for i ∈ {1, 2, . . . }, there will be exactly one tree. At round n

where ai < n < ai+1, the width of MerDepd(ai) is upper bounded by widd(ai)
[n−ai]. Since

widc
[n] is a non-decreasing function of n for any fixed c and that d(ai) = d(n), we have

widd(ai)
[n−ai] ≤ widd(ai)

[n] = widd(n)
[n] . Also note that the tree built at ai is not touched during

the rounds n such that ai < n < ai+1 . Therefore, the width wid[n] of the merger in
Construction 18 is upper bounded by widd(n)

[n] + 1. ◀

The following corollary follows immediately from Propositions 16 and 19.

▶ Corollary 20 (2-approximating the width for a given growing depth). If d(n) is a non-
decreasing depth function of n, and if one uses Construction 15 as the subroutine in Construc-
tion 18, then the resulting construction will have width bounded as wid[n] ≤ 2·widthLB(n, d(n)).

How about unbounded online mergers for a growing width? The results above leave
one case uncovered: what if we want to have an unbounded merger that satisfies width
wid[n] ≤ w(n) for a given non-decreasing function w(n)? For the constant w(n) = w, we
already have an optimal solution (see Theorem 13). But, what if w(n) is an increasing
function of n? Here we argue that it is in fact impossible to find an unbounded merger that
approximates the optimal depth within any constant factor, the way Corollary 20 does this
for the width. The reason is that the width function w(n) can remain small for too long
(when n grows) and then suddenly jump significantly. For example, suppose w(i) = 1 for all
i < n, and w(n) = n. Then, the depth is forced to grow linearly dn′ = n′ − 1 for all n′ < n,
while after reaching round n, the width is suddenly allowed to be n, for which we do not need
any depth more than 1. However, we have already paid the cost of having depth dn > n− 1.

M. Mahmoody and W. Qi 15:13

Examples of choices of depth functions. Here we demonstrate the bounds on the width
that follow from choosing the depth in various ways in the construction of Corollary 20.

▶ Corollary 21. In Construction 18, and for non-decreasing depth function d(n) it holds
that wid[n] = O(d · n

1
d+1), where d = d(n). In particular, if d(n) = c · log n/ log log n, then

wid[n] < poly(log n).

Proof. Let w = widthLB(n, d) = minBin(n, d + 1). Using the bound
(

m
k

)
≥ (m

k)k, we have
(w+d

d+1)d+1 ≤
(

w+d
d+1

)
≤ n. We can then bound w ≤ (d + 1) · n

1
d+1 − d. By Corollary 20, we

know wid[n] ≤ 2 · (d + 1) · n
1

d+1 − 2d.
Now, we prove the second part. By the first part, we know wid[n] = O(d · n

1
d+1), where

d = d(n) = c·log n/ log log n. In addition, we have n
1

d+1 = n
1

c·log n/ log log n+1 < (2log n)
log log n
c log n =

log1/c n. Therefore, wid[n] = O(d · n
1

d+1) = O(log1+1/c n/ log log n). ◀

2.3.3 Stronger lower bounds for unbounded online mergers
In this section, we show that there is a real cost to pay when we aim for unbounded online
mergers. Namely, we show that when the merger is not aware of the set size n, it cannot
match the lower bound widthLB(n, d), even though we could match this bound knowing n

ahead of the time. In particular, we prove the following theorem.

▶ Theorem 22 (Stronger lower bound for depth-one unbounded online mergers). Let M be
an unbounded online merger (for N) whose depth is bounded by 1 (i.e., only one merge is
allowed for each element’s set). Then, wid[n] ̸≤ (2

√
2− Ω(1))

√
n.

To appreciate the bound of Theorem 22 we observe that when we know n ahead of the
time, we can beat this lower bound. As shown in Proposition 23, there is a merger satisfying
wid[n] ≤

√
2n. So, the lower bound of Theorem 22 is strictly larger than the optimal bound

for the setting of knowing set sizes.

▶ Proposition 23. Let n be a given positive integer. There is an online merger for [n] whose
depth is bounded by 1 and width is bounded by

√
2n.

Proof. From Proposition 14, we know MerWidw in Construction 11 with width w =
minBin(n, 2) is an online merger for [n] whose depth is bounded by 1. By definition, we know(

w+1
2

)
≤ n. We then have w ≤

√
8n+1−1

2 ≤
√

2n. ◀

Moreover, as shown in Proposition 24, Construction 15 matches this bound up to an
additive constant gap.

▶ Proposition 24. The unbounded merger of Construction 15 has wid[n] ≤ 2
√

2n for d = 1.

Proof. From Proposition 16, we know wid[n] ≤ 2·widthLB(n, 1) = 2·minBin(n, 2) ≤ 2
√

2n. ◀

The key tool we use is a special kind of depth one merger called 1-regular merger. First
recall that a stage is a sequence of consecutive rounds. Intuitively, a merger is 1-regular if
rounds can be divided into stages such that at the last round of every stage all trees added
during this stage are merged into one tree. Note that since the merger has depth one, no
trees are merged at times other than the last round of a stage.

ITC 2023

15:14 Online Mergers and Applications

▶ Definition 25 (1-regular merger). Let M be an unbounded online merger (for N) whose
depth is bounded by 1. Let T = {t1 < t2 < t3 < · · · } be the set of all rounds where the merge
operation is performed. Let t0 = 0. We say M is 1-regular if at every ti ∈ T the set of
single-node trees {ti−1 + 1, ti−1 + 2, · · · , ti} are all merged into one set (i.e., tree of depth 1).

We first show that given any M whose depth is bounded by 1, there is a 1-regular M′

that is at least as good as M with respect to width.

▶ Lemma 26. Let M be a merger for N whose depth is bounded by 1. Then, there exists a
1-regular M′ for N such that the width of M′ is at most the width of M at every round n.

Proof. If M is already 1-regular, then we are done. Otherwise, let T = {t1 < t2 < t3 < · · · }
be the set of all rounds where the merge operation is performed by M. Let t0 = 0. M′ simply
merges {ti−1 + 1, ti−1 + 2, · · · , ti} at ti. At round ti ∈ T , M′ has only i trees while M has at
least i trees since it has performed at least i merge operations, and due to the depth being 1,
these merge operations are on separate nodes. At other times, since no merge operation is
performed, M has at least as many trees as M′ does. ◀

The following lemma is also useful for the proof of Theorem 22.

▶ Lemma 27. Let j > 2 be an integer, and d < 2 and c be two positive reals. Define the
function f(i) := i···j

(i−d)···(j−d) · c for arbitrary positive integer i > j. Then, f(i) = o(i2).

Proof. We first define the function g(i) := i···j
(i−2)···(j−2) · c for arbitrary positive integer i > j.

Note that we have g(i) = i·(i−1)
(j−1)·(j−2) · c. Therefore, we have g(i) = θ(i2). Then, it suffices to

prove that f(i) = o(g(i)).
Let γ be an arbitrary positive real number. We show that g(i) > γ · f(i) for sufficiently

large i. Equivalently, we prove that ln g(i)− ln f(i) > ln γ for sufficiently large i. We have

ln g(i)− ln f(i) = ln i− d

i− 2 + · · ·+ ln j − d

j − 2 =
i−2∑

k=j−2
ln

(
1 + 2− d

k

)
.

It suffices to show that the series
∑∞

k=j−2 ln(1 + 2−d
k) diverges. To this end, we use

integral test to show that it diverges. Note that∫
ln

(
1 + 2− d

x

)
dx = (2− d) · ln |x + 2− d|+ x · ln

(
1 + 2− d

x

)
+ C.

Therefore, we have
∫ ∞

j−2 ln(1+ 2−d
x)dx =∞, which implies that

∑i−2
k=j−2 ln(1+ 2−d

k) > ln γ

for sufficiently large i. ◀

Proof of Theorem 22. By Lemma 26, it suffices to prove the theorem for 1-regular mergers.
Therefore, we assume M is 1-regular. Let T = {t1 < t2 < t3 < · · · } be the set of all rounds
where M performs a merge operation. Let t0 = 0 and si = ti − ti−1 be the size of stage i.

We first consider the case where T is a finite set. Then, starting at some round, no merge
operation is ever performed, which means the width will be Θ(n).

Let d < 2 be an arbitrary positive real number. We now consider the case where T is
an infinite set and there are only finitely many i satisfying si ≥ d · ti

i . Then, there is a j

such that si < d · ti

i for i ≥ j. Note that si = ti − ti−1 < d · ti

i , which implies ti < i
i−d · ti−1.

We then have ti < i···j
(i−d)···(j−d) · tj−1. From Lemma 27, we know ti = o(i2), which means

i > ω(
√

ti). In this case, we know wid[ti] ≥ ω(
√

ti).

M. Mahmoody and W. Qi 15:15

Finally, we consider the case where T is an infinite set and there are infinitely many
i satisfying si ≥ d · ti

i . Let’s consider one such i. At round ti − 1, the width is at least
i− 1 + si− 1 > i + d · ti−1

i − 2 ≥ 2 ·
√

d · (ti − 1)− 2. Note that this holds for arbitrary d < 2,
which means that wid[n] ̸≤ (2

√
2− Ω(1))

√
n. Otherwise, there would be a constant d′ < 2

such that wid[n] ≤ 2
√

d′ · n for sufficiently large n, contradicting that wid[m] ≥ 2 ·
√

d ·m− 2
for a constant d > d′ and m = ti − 1, as proved above. ◀

3 RBE with optimal number of decryption updates

In this section, we observe that the same approach of using online merger for transparent
additive accumulators in Section B extends to registration based encryption schemes (RBEs),
while the length of the digests and number of witness updates would correspond to the length
of the public parameter and the number of decryption updates. Hence, we can obtain RBEs
with optimal number of decryption updates matching the lower bound of [22]. The basic
definitions of RBE and the primitives used in our construction can be found in Section A.
Roughly speaking, the construction is the same as the IO-based construction of [12], while
we use our own updates-optimal accumulator instead of the one by [25].

▶ Construction 28. We will use an IO scheme (Obf, Eval), and a SSB hash function system
(Hash, HGen) and a PKE scheme (G, E, D). Using them together with a merger M, we show
how to implement the subroutines of RBE according to Definition 37.

Stp(1κ)→ (pp0, aux0): This algorithm outputs pp0 = hk2 ← HGen(1κ, 2, 0) and aux = ∅
is empty. Then, initialize HMer (see Definition 43) using M and H. H is defined such
that H(Val(x1), . . . , Val(xi)) = Hash(hki, (Val(x1), . . . , Val(xi))). Note that here we have
only sampled hk2. If another key hki is needed in Reg because HMer needs to merge more
trees, Reg will generate the key on the fly by running HGen.
Reg[aux](ppn, id, pk)→ ppn+1: First add a new tree whose root has value Hash(hk2, (id, pk))
with id and pk as the children nodes. We then let HMer handles the merging of trees. If
another key hki is needed, run HGen(1κ, i, 0) to get the key. Then, output the list of pairs
of root and depth of all trees ((rt1, d1), . . . , (rtη, dη)) together with all keys hki as ppn+1.
Enc(pp, id, m) → ct: First parse pp to get a list of pairs of root and depth of all trees
((rt1, d1), . . . , (rtη, dη)). Generate programs P1, . . . , Pη where Pi works as follows:
Hardwired values: rti, di, (hk1, . . . , hkκ), m, id, r (the randomness)
Input: pth

1. Parse pth = ((ℓdi , rdi), . . . , (ℓ1, r1)), and if not possible, output ⊥.
2. If id ̸= ℓdi

, then output ⊥.
3. Compute tmpj−1 = Hash(hklenj , (ℓj , tmpj , rj)) for j = di, . . . , 1 where tmpdi

is the
empty string and lenj is the length of (ℓj , tmpj , rj). (Note that ℓj and rj are tuples.)
If tmp0 = rti, then output E(rdi

, m; r) by using rdi
as the public key and r as the

randomness, otherwise output ⊥.
Then, output ct := (pp, Obf(P1), . . . , Obf(Pη)) where Obf is IO obfuscation.
Updaux(pp, id)→ u: First locate the tree T having id as one of the leaves. If no such tree
exists, halt. Otherwise, let d be the depth of T and (pd, . . . , p0) be the path from pd, which
is id, to the root p0. Let ℓi (resp. ri) be the tuple of values of left (resp. right) siblings
of pi for i ∈ [d− 1]. Note that the sibling of id is pk. Let ℓd = id and rd = pk. Output
w = ((ℓd, rd), . . . , (ℓ1, r1)).
Dec(sk, u, ct) → m: Parse ct = (pp, Obf(P̄1), . . . , Obf(P̄η)). Form mi = Dsk(P̄i(u)) for
each program P̄i. Output the first mi ̸= ⊥.

ITC 2023

15:16 Online Mergers and Applications

Completeness of Construction 28 is straightforward.

▶ Proposition 29 (Compactness and Efficiency of Construction 28). Construction 28 satisfies
the compactness requirements of Definition 38.

Proof. The length of public parameter is the sum of the length of keys, which is bounded
by κ · wid[n], and roots, which is again bounded by κ · wid[n], and depth, which is bounded
by wid[n] · log dep[n]. In total, it is bounded by (2 · κ + log dep[n]) · wid[n]. The number of
updates is bounded by dep[n]. The size of update for an accumulated value is the number
of trees that are merged with the tree it belongs times the length of the roots. Since the
depth is bounded by dep[n], we know at most dep[n] merges can happen. Since the width is
bounded by wid[n], we know at most wid[n] · dep[n] trees are merged. Therefore, the size of
update is bounded by κ · wid[n] · dep[n]. For efficiency, note that the total number of merges
during the addition of a value is bounded by wid[n] · dep[n]. Also note that one can use an
appropriate data structure that efficiently finds the tree an identity belongs. ◀

▶ Remark 30. By Corollary 21, we know that if we use the fully online merger in Construction
18 where d(n) = log n

log log n , the number of updates is bounded by log n
log log n and the length of

public parameter is poly(κ, log(n)), resolving the open question of [22].

▶ Proposition 31 (Security of Construction 28). Construction 28 satisfies the soundness
requirements of Definition 39.

Proof (Sketch). The proof is almost identical to the proof in [12]. The key idea is that
the index-hiding and somewhere statistically binding property forces all PPT algorithms to
behave as if the public key is statistically binding to the root of the tree. Then, obfuscation
and the semantic security of public key encryption guarantees that encryptions of different
messages are indistinguishable. We refer readers to [12] for details. ◀

References
1 Sattam S Al-Riyami and Kenneth G Paterson. Certificateless public key cryptography. In

International Conference on the Theory and Application of Cryptology and Information Security,
pages 452–473. Springer, 2003.

2 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 1–18, Santa Barbara, CA, USA, August 19–23 2001. Springer, Heidelberg, Germany.
doi:10.1007/3-540-44647-8_1.

3 Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT ’97, pages
480–494, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

4 Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Tor Helleseth, editor, Advances in Cryptology – EUROCRYPT ’93, pages
274–285, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

5 Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23 2001. Springer,
Heidelberg, Germany. doi:10.1007/3-540-44647-8_13.

6 Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Moti Yung, editor, Advances in Cryptology – CRYPTO
2002, pages 61–76, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_13

M. Mahmoody and W. Qi 15:17

7 Zhaohui Cheng, Richard Comley, and Luminita Vasiu. Remove key escrow from the identity-
based encryption system. In Exploring New Frontiers of Theoretical Informatics, pages 37–50.
Springer, 2004.

8 Sherman SM Chow. Removing escrow from identity-based encryption. In International
Workshop on Public Key Cryptography, pages 256–276. Springer, 2009.

9 Kelong Cong, Karim Eldefrawy, and Nigel P Smart. Optimizing registration based encryption.
In IMA International Conference on Cryptography and Coding, pages 129–157. Springer, 2021.

10 Keita Emura, Shuichi Katsumata, and Yohei Watanabe. Identity-based encryption with
security against the KGC: a formal model and its instantiation from lattices. In European
symposium on research in computer security, pages 113–133. Springer, 2019.

11 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29 2013. IEEE Computer Society Press. doi:10.1109/FOCS.2013.13.

12 Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.
Registration-based encryption: Removing private-key generator from ibe. In Theory of
Cryptography Conference, pages 689–718. Springer, 2018.

13 Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and
Sruthi Sekar. Registration-based encryption from standard assumptions. In Dongdai Lin
and Kazue Sako, editors, PKC 2019: 22nd International Conference on Theory and Practice
of Public Key Cryptography, Part II, volume 11443 of Lecture Notes in Computer Science,
pages 63–93, Beijing, China, April 14–17 2019. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-17259-6_3.

14 Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi
Sekar. Registration-based encryption from standard assumptions. In Dongdai Lin and Kazue
Sako, editors, Public-Key Cryptography – PKC 2019, pages 63–93, Cham, 2019. Springer
International Publishing.

15 Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient
registration-based encryption. Cryptology ePrint Archive, Paper 2022/1505, 2022. URL:
https://eprint.iacr.org/2022/1505.

16 Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part I, volume 12170 of Lecture Notes in Computer Science, pages 621–651, Santa Barbara, CA,
USA, August 17–21 2020. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-56784-2_
21.

17 Vipul Goyal. Reducing trust in the PKG in identity based cryptosystems. In Alfred Menezes,
editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 430–447, Santa Barbara, CA, USA, August 19–23 2007. Springer, Heidelberg,
Germany. doi:10.1007/978-3-540-74143-5_24.

18 Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box accountable authority
identity-based encryption. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 427–436. ACM, 2008.

19 Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based
encryption. Cryptology ePrint Archive, Paper 2022/1500, 2022. URL: https://eprint.iacr.
org/2022/1500.

20 Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015: 6th Conference on
Innovations in Theoretical Computer Science, pages 163–172, Rehovot, Israel, January 11–13
2015. Association for Computing Machinery. doi:10.1145/2688073.2688105.

21 Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 60–73, 2021.

ITC 2023

https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-030-17259-6_3
https://doi.org/10.1007/978-3-030-17259-6_3
https://eprint.iacr.org/2022/1505
https://doi.org/10.1007/978-3-030-56784-2_21
https://doi.org/10.1007/978-3-030-56784-2_21
https://doi.org/10.1007/978-3-540-74143-5_24
https://eprint.iacr.org/2022/1500
https://eprint.iacr.org/2022/1500
https://doi.org/10.1145/2688073.2688105

15:18 Online Mergers and Applications

22 Mohammad Mahmoody, Wei Qi, and Ahmadreza Rahimi. Lower bounds for the number of
decryption updates in registration-based encryption. In Eike Kiltz and Vinod Vaikuntanathan,
editors, Theory of Cryptography, pages 559–587, Cham, 2022. Springer Nature Switzerland.

23 Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations
of somewhere statistically binding hashing and positional accumulators. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, pages 121–145, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

24 Ilker Ozcelik, Sai Medury, Justin Broaddus, and Anthony Skjellum. An overview of cryp-
tographic accumulators. In Proceedings of the 7th International Conference on Information
Systems Security and Privacy. SCITEPRESS – Science and Technology Publications, 2021.
doi:10.5220/0010337806610669.

25 Leonid Reyzin and Sophia Yakoubov. Efficient asynchronous accumulators for distributed pki.
In Security and Cryptography for Networks: 10th International Conference, SCN 2016, Amalfi,
Italy, August 31–September 2, 2016, Proceedings 10, pages 292–309. Springer, 2016.

26 Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture Notes
in Computer Science, pages 47–53, Santa Barbara, CA, USA, August 19–23 1984. Springer,
Heidelberg, Germany.

27 Qin Wang, Rujia Li, David Galindo, Qi Wang, Shiping Chen, and Yang Xiang. Transparent
registration-based encryption through blockchain. Distributed Ledger Technologies: Research
and Practice, 2022.

28 Quanyun Wei, Fang Qi, and Zhe Tang. Remove key escrow from the BF and Gentry identity-
based encryption with non-interactive key generation. Telecommunication Systems, pages
1–10, 2018.

A Preliminaries

▶ Definition 32 (Forward DAGs). Let G = (VG, EG) be a directed acyclic graph (DAG)
with vertices VG = [n] (in case of being finite) or VG = N (in case of being infinite).
We write i ∈ G if i ∈ VG, ad we write (i, j) ∈ G if (i, j) ∈ EG (i.e., there is an edge
from i to j in G). We call G a forward DAG, if for all (i, j) ∈ G, we have i ≤ j. For
any vertex u, by deg+(u) = |{v | (u, v) ∈ G}| we denote the out-degree of u, and we let
deg+(G) = maxu∈G deg+(u).

▶ Definition 33 (Skipping sequences [22]). Let G be a forward DAG (see Definition 32). We
call S = {u1 < u2 < · · · < uk} ⊆ VG a skipping sequence if for every i ≤ k − 1 and every
edge (ui, v) ∈ G, it holds that: either v < ui+1 or v > uk (i.e., v /∈ {ui+1, ui+1 + 1, . . . , uk}).

▶ Theorem 34 (Skipping sequences in low-degree DAGs [22]). Let G be a forward DAG over
vertices [n], where n ≥

(
w+d
d+1

)
for w, d ∈ N, and that that deg+(G) ≤ d. Then, there exists a

skipping sequence in G of size at least w.

▶ Definition 35 (Indistinguishability obfuscation). A uniform PPT algorithm Obf is called an
indistinguishability obfuscator for a circuit class {Cκ}κ∈N (where each Cκ is a set indexed by
a security parameter κ) if the following holds:

Completeness. For all security parameters κ ∈ N and all circuits C ∈ Cκ, we obtain an
obfuscation with the same function:

Pr
Obf

[C ′ ≡ C : C ′ = Obf(1κ, C)] = 1.

https://doi.org/10.5220/0010337806610669

M. Mahmoody and W. Qi 15:19

Security. For any PPT distinguisher D, there exists a negligible function negl(·) such
that for all κ ∈ N, for all pairs of functionally equivalent circuits C1 ≡ C2 from the same
family C1, C2 ∈ Cκ,

|Pr
Obf

[D(1κ, Obf(1κ, C1)) = 1]− Pr
Obf

[D(1κ, Obf(1κ, C2)) = 2]| = 1.

▶ Definition 36 (SSB hash functions [23]). A somewhere statistically binding hash system
consists of two polynomial time algorithms HGen, Hash.

HGen(1κ, 1s, L, i)→ hk : This algorithm takes as input the security parameter 1κ, a block
size s, an input length L ≤ 2κ and an index i ∈ {0, . . . , L − 1} and outputs a hashing
key hk. Without loss of generality, we assume that s = κ. Therefore, we will not write s

explicitly.
Hash(hk, x) → y : This deterministic algorithm takes as input a hashing key hk and a
value x ∈ {0, 1}s·L and outputs a hash y ∈ {0, 1}κ.

We require the following properties:
Index hiding. We consider the following game between an attacker A and a challenger:

The attacker A(1κ) chooses parameters 1s, L and two indices i0, i1 ∈ {0, . . . , L− 1}.
The challenger chooses a bit b← {0, 1} and sets hk← HGen(1κ, 1s, L, ib).
The attacker A gets hk and outputs a bit b′.

We require that for any PPT attacker A we have |Pr[b = b′]− 1
2 | = negl(κ) in the above

game.
Somewhere statistically binding. Let x ∈ {0, 1}s·L and i ∈ {0, . . . , L − 1}. By x[i]
we denote the sub-string of x starting at s · i + 1 and ending at s · (i + 1). We say that
hk is statistically binding for an index i ∈ {0, . . . , L− 1} if there do not exist any values
x, x′ ∈ {0, 1}s·L with x[i] ̸= x′[i] such that Hash(hk, x) = Hash(hk, x′). We require that for
any parameters s, L and any integer i ∈ {0, . . . , L− 1} we have:

Pr
HGen

[hk is statistically binding for index i : hk← HGen(1κ, 1s, L, i)] ≥ 1− negl(κ).

A.1 Registration-Based Encryption
▶ Definition 37 (Syntax of RBE). PPT algorithms (Gen, Reg, Enc, Upd, Dec) form a
registration-based encryption (RBE for short) if they work together as follows.

Generating CRS. A common random string crs of length poly(κ) is publicly sampled at
the beginning, for the security parameter κ.
Key Generation. Gen(1κ)→ (pk, sk): The randomized algorithm Gen outputs a pair of
public and secret keys (pk, sk). The key generation algorithm is run by any honest party
locally who wants to register itself into the system.
Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic algorithm Reg takes as
input the CRS crs, current public parameter pp, a registering identity id and a public key
pk (supposedly for the identity id), and it outputs pp′ as the updated public parameters.
The Reg algorithm uses read and write access to auxiliary information aux which will be
updated into aux′ during the process of registration and helps with the efficiency of the
registration and updates (below). The system is initialized with pp, aux = ⊥.
Encryption. Enc(crs, pp, id, m)→ ct: The randomized algorithm Enc takes as input the
CRS crs, a public parameter pp, a recipient identity id, and a plaintext message m, and it
outputs a ciphertext ct.

ITC 2023

15:20 Online Mergers and Applications

Update. Updaux(pp, id, pk) → u: The deterministic algorithm Upd takes as input the
current public parameter pp, an identity id, and a public key pk. It has read only oracle
access to aux and generates an update information u that can help id to decrypt its
messages.
Decryption. Dec(sk, u, ct)→ m: The deterministic decryption algorithm Dec takes as
input a secret key sk, an update information u, and a ciphertext ct, and it outputs a
message m ∈ {0, 1}∗ or in {⊥, GetUpd}. The symbol ⊥ indicates a syntax error while
GetUpd indicates that more recent update information (than u) might be needed for
decryption.

The Reg and Upd algorithms are performed by the party called key curator, which we call
KC for short, and aux can be seen as the state held by the KC.

▶ Definition 38 (Completeness, compactness, and efficiency of RBE). Consider the following
game CompA(κ) between a challenger C and an interactive computationally unbounded
adversary A who is yet limited to poly(κ) rounds of interaction.
1. Initialization. C sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0, and

crs← Upoly(κ), and sends the sampled crs to A.
2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every iteration,
A chooses exactly one of the actions below to perform.
a. Registering a corrupted (non-target) identity. A sends some id /∈ D and pk to
C. C registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.

b. Registering the (uncorrupted) target identity. This step is allowed only if id∗ = ⊥.
In that case, A sends some id∗ /∈ D to C. C then samples (pk∗, sk∗)← Gen(1κ), updates
pp := Reg[aux](crs, pp, id∗, pk∗) and D := D ∪ {id∗}, and sends pk∗ to A.

c. Encrypting for the target identity. This step is allowed only if id∗ ̸= ⊥. In that
case, C sets t = t + 1. A sends mt ∈ {0, 1}∗ to C who then sets m′

t := mt and sends
back a corresponding ciphertext ctt ← Enc(crs, pp, id∗, mt) to A.

d. Decryption for the target identity. A sends a j ∈ [t] to C. C then lets
m′

j = Dec(sk∗, u, ctj). If m′
j = GetUpd, C gets u = Updaux(pp, id∗) and then

m′
j = Dec(sk∗, u, ctj).

Let n = |D| be the number of identities registered till a specific moment. We require the
following properties to hold for all such A (as specified above) and for all the moments during
the game CompA(κ).

Completeness. The adversary A wins, if there is some j ∈ [t] for which m′
j ̸= mj. We

require that Pr[Awins CompA(κ)] = negl(κ).
Parameterized compactness and efficiency. 4

Size of public parameter. |pp| = w(κ, n).
Number of updates. The total number of invocations of Upd for identity id∗ in Step
2(d) of the game CompA(κ) is at most d(κ, n).
Size of update. |u| ≤ poly(κ, w, d).
Runtime of registration and update. The running time of each invocation of Reg
and Upd is at most poly(κ, w, d).

▶ Definition 39 (Security of RBE). For any interactive PPT adversary A, consider the
following game SecA(κ) between A and a challenger C.

4 If both w(κ, n) and d(κ, n) are poly(κ, log n), then this becomes the standard definition.

M. Mahmoody and W. Qi 15:21

1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs← Upoly(κ) and sends the
sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every iteration,
A chooses exactly one of the actions below to perform.
a. Registering non-target identity. A sends some id /∈ D and pk to C. C registers

(id, pk) by pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.
b. Registering the target identity. This step can be run only if id∗ = ⊥. A

sends some id∗ /∈ D to C. C then samples (pk∗, sk∗) ← Gen(1κ), updates pp :=
Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗}, and sends pk∗ to A.

3. Encrypting for the target identity. If id∗ = ⊥, then A first sends some id∗ /∈ D to C
(this is for modeling encryptions for non-registered target identities.) Next A sends two
messages m0, m1 of the same length to C. Next, C generates ct ← Enc(crs, pp, id∗, mb),
where b← {0, 1} is a random bit, and sends ct to A.

4. The adversary A outputs a bit b′ and wins the game if b = b′.
An RBE scheme is secure if for all PPT A, Pr[Awins SecA(κ)] < 1

2 + negl(κ).

B Accumulators with optimal number of witness updates

An accumulator is a primitive in which a sequence of inputs x1, . . . , xn are added gradually
to a pool, while (1) there is a compact digest/public parameter that is the representative of
the added inputs {x1, . . . , xn}, and (2) using the right witness, and the digest, one can prove
the membership of xi to the set. Such accumulators are called additive accumulators [24].
In this section, we use our results about online mergers to study the relation between the
length of the digest and the number of updates for accumulators. Also, the accumulators
that we study are transparent. Namely, there is no secret state hold by the accumulator.

In the remainder of this section, we first give the formal definition of transparent additive
accumulators. Then, we give a general construction of such accumulators from collision
resistant hash functions and online mergers. Finally, by applying our results on online
merging, we will study the relation between the length of the digest and the number of times
that the witnesses of membership need to be updated in such accumulators.

▶ Definition 40 (Accumulators). An accumulator scheme consists of four algorithms.
Key Generation. Gen(1κ) → k : The randomized algorithm Gen takes as input the
security parameter 1κ and outputs an accumulator key k.
Addition. Add[aux](k, pp, v)→ pp′ : The deterministic algorithm Add takes as input an
accumulator key k, a digest pp and a value v, has read and write access to the auxiliary
information aux, and outputs a new digest pp′.
Witness update. Updaux(pp, v)→ w : The deterministic algorithm Upd takes as input a
digest pp, a value v, has read-only access to aux and outputs a witness w.
Verification. Ver(k, pp, v, w) → b : The deterministic algorithm Ver takes as input an
accumulator key k, a digest pp, a value v, a witness w and outputs a bit b ∈ {0, 1}.

▶ Definition 41 (Completeness of accumulators). For any interactive computationally un-
bounded adversary A that still has a limited poly(κ) round complexity, consider the following
game CompA(κ) between A and a challenger C.
1. Initialization. The challenger C sets pp = ⊥, aux = ⊥, t = ⊥, V = ∅, generates

k← Gen(1κ) and sends k to the adversary A.
2. Till A continues (which is at most poly(κ) steps), A chooses one of the following operations

to perform.

ITC 2023

15:22 Online Mergers and Applications

a. Addition. A sends a value v /∈ V to C and C sets pp← Add[aux](k, pp, v) and adds v
to V.

b. Set target. A sends a value v ∈ V to C. If t ̸= ⊥, C does nothing. Otherwise, C sets
t← v.

c. Witness generation. If t = ⊥, C does nothing. Otherwise, C generates w ←
Updaux(pp, t).

The adversary A wins the game if Ver(k, pp, t, w) = 0 for at least once in Step 2c. We call an
accumulator scheme complete if Pr[A wins in CompA(κ)] = negl(κ) for any A.

Let n = |V| be the number of values added till a specific moment during the game CompA(κ).
We define the number of updates of an accumulator system at time n to be the number of
all possible different witnesses generated for value t in Step 2c.

Security requires that no PPT adversary can find a witness for values that are not added.

▶ Definition 42 (Security of accumulators). For any interactive PPT adversary A, consider
the following game SecA(κ) between A and a challenger C.
1. Initialization. The challenger C sets pp = ⊥, aux = ⊥, V = ∅, generates k← Gen(1κ)

and sends k to the adversary A.
2. Addition. Till A continues (which is at most poly(κ) steps), A sends a value v /∈ V to C

and C sets pp← Add[aux](k, pp, v) and adds v to V.
3. The adversary A outputs v /∈ V and a witness w and wins the game if Ver(k, pp, v, w) = 1.

We call an accumulator scheme secure if Pr[A wins in SecA(κ)] = negl(κ) for any PPT A.

To construct accumulators, we first construct a special kind of merger called hash tree
merger that has a hash function H as subroutine. The difference is that now the nodes in the
trees also have a string as its value. Let x be a node. For simplicity, we assume that every
node x is uniquely identified. We use Val(x) to denote its value. When merging a list of trees
whose roots are (rt1, . . . , rtk), the root of the new tree has value H(Val(rt1), . . . , Val(rtk)).

▶ Definition 43 (Hash tree merger). Let M be an online merger and H be a hash function.
At every round, the hash tree merger HMer(M, H) first uses M to merge trees. When a set
of trees whose roots are (rt1, . . . , rtk) are being merged, they will first be ordered according
to their unique identifiers. Without loss of generality, we can assume that rt1 < · · · < rtk.
Then, HMer(M, H) assigns the root of the new tree the value H(Val(rt1), . . . , Val(rtk)).

Now, we give the construction of accumulators from collision resistant hash functions,
where an online merger M is given as a subroutine. Looking ahead, the auxiliary information
aux will be a list of hash trees where the accumulated values are stored in the leaves of the
trees. The digest pp is simply the values of all the roots.

▶ Construction 44. Let M be an online merger and (Gen, Hash) be a collision resistant hash
function. Using them, we implement an accumulator according to Definition 40 as follows.

Gen(1κ)→ k : Sample and output a key k← Gen(1κ) for the function (Gen, Hash). Ini-
tialize HMer(M, H) such that H(Val(x1), . . . , Val(xt)) = 1||Hash(k, (Val(x1), . . . , Val(xt)))
for arbitrary t ∈ N.
Add[aux](k, pp, v)→ pp′ : Parse aux as a list of trees. Add a new tree with a single node
whose value is 0||v. Let HMer handle the merging. Output the values of the roots of the
trees as pp′.
Updaux(pp, v)→ w : First parse aux as a list of hash trees and locate one tree containing a
leaf of value 0||v. If no such tree exists, halt. Otherwise, let d be the depth of the tree and
(pd, . . . , p0) be the path from pd, which has value 0||v, to the root p0. Let ℓi (resp. ri) be

M. Mahmoody and W. Qi 15:23

the tuple of values of left (resp. right) siblings of pi for i ∈ [d]. Note that when computing
hashes, we first order the roots according to their identifiers. Thus, it is legitimate to talk
about tuples of left siblings and right siblings. Output w = ((ℓd, rd), . . . , (ℓ1, r1)).
Ver(k, pp, v, w)→ b : First parse pp = {rt1, . . . , rtk} and w = ((ℓd, rd), . . . , (ℓ1, r1)). Then,
compute tmpi−1 = 1||Hash(k, (ℓi, tmpi, ri)) for i = d, . . . , 1, where tmpd = 0||v. Output 1
if tmp0 ∈ pp and 0 otherwise.

Completeness of Construction 44 is straightforward. We now bound the length of digest
and number of updates.

▶ Proposition 45 (Length of digest and number of updates of Construction 44). In Construc-
tion 44, after adding n inputs, the length of digest is bounded by (κ + 1) ·w[n] and the number
of update is bounded by dep[n].

Proof. The length of digest equals the number of trees times the length of the root, which is
bounded by (κ + 1) · w[n]. An update for an accumulated value is required only when the
tree it belongs get merged. Therefore, the number of update is bounded by the depth of the
merger which is dep[n]. ◀

We now prove that Construction 44 satisfies the security requirement of Definition 42.

▶ Proposition 46 (Security of Construction 44). Construction 44 is a secure accumulator
according to Definition 42.

Proof. It suffices to show that when A wins SecA(κ), a collision for the underlying hash
function is found. Let v be the value outputted by A. Note that v can not be one
of the trees which has only a single node. Otherwise, it means A has already added
v. Therefore, A must have also outputted a witness w = ((ℓd′ , rd′), . . . , (ℓ1, r1)). Let
tmpi−1 = 1||Hash(k, (ℓi, tmpi, ri)) for i = d′, . . . , 1 where tmpd′ = 0||v. Since v is accepted,
we know there must exist a tree T whose root rt = tmp0. Let d be the depth of T . Let
{tmpk, . . . , tmp0} be the longest sub-path of {tmpd′ , . . . , tmp0} that exist in T .
1. Suppose k = d and k = d′. This contradicts the assumption that A wins the game as v

must be one of the leaves.
2. Suppose k = d and k < d′. Note that tmpk begins with 1 while the values of all nodes of

depth k in T begins with 0, which means we have found a collision.
3. Suppose k < d and k = d′. Note that tmpk begins with 0 while the values of all nodes of

depth k in T begins with 1, which means we have found a collision.
4. Suppose k < d and k < d′. In this case we have also found a collision because tmpk+1 ̸=

tmp′
k+1. ◀

ITC 2023

Lower Bounds for Secret-Sharing Schemes for
k-Hypergraphs
Amos Beimel #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
A secret-sharing scheme enables a dealer, holding a secret string, to distribute shares to parties such
that only pre-defined authorized subsets of parties can reconstruct the secret. The collection of
authorized sets is called an access structure. There is a huge gap between the best known upper
bounds on the share size of a secret-sharing scheme realizing an arbitrary access structure and the
best known lower bounds on the size of these shares. For an arbitrary n-party access structure, the
best known upper bound on the share size is 2O(n). On the other hand, the best known lower bound
on the total share size is much smaller, i.e., Ω(n2/ log(n)) [Csirmaz, Studia Sci. Math. Hungar.].
This lower bound was proved more than 25 years ago and no major progress has been made since.

In this paper, we study secret-sharing schemes for k-hypergraphs, i.e., for access structures where
all minimal authorized sets are of size exactly k (however, unauthorized sets can be larger). We
consider the case where k is small, i.e., constant or at most log(n). The trivial upper bound for
these access structures is O(n ·

(
n−1
k−1

)
) and this can be slightly improved. If there were efficient

secret-sharing schemes for such k-hypergraphs (e.g., 2-hypergraphs or 3-hypergraphs), then we would
be able to construct secret-sharing schemes for arbitrary access structures that are better than the
best known schemes. Thus, understanding the share size required for k-hypergraphs is important.
Prior to our work, the best known lower bound for these access structures was Ω(n log(n)), which
holds already for graphs (i.e., 2-hypergraphs).

We improve this lower bound, proving a lower bound of Ω(n2−1/(k−1)/k) on the total share size
for some explicit k-hypergraphs, where 3 ≤ k ≤ log(n). For example, for 3-hypergraphs we prove a
lower bound of Ω(n3/2). For log(n)-hypergraphs, we prove a lower bound of Ω(n2/ log(n)), i.e., we
show that the lower bound of Csirmaz holds already when all minimal authorized sets are of size
log(n). Our proof is simple and shows that the lower bound of Csirmaz holds for a simple variant of
the access structure considered by Csirmaz. Using our results, we prove a near quadratic separation
between the required share size for realizing an explicit access structure and the monotone circuit
size describing the access structure, i.e., the share size in Ω(n2/ log(n)) and the monotone circuit
size is O(n log(n)) (where the circuit has depth 3).

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy; Theory of computation → Cryptographic primitives

Keywords and phrases Secret Sharing, Share Size, Lower Bounds, Monotone Circuits

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.16

Related Version Full Version: https://eprint.iacr.org/2023/289

Funding Research supported by ERC grant 742754 (project NTSC) and Israel Science Foundation
grant no. 391/21.

1 Introduction

Secret-sharing schemes are a tool used in many cryptographic protocols. A secret-sharing
scheme involves a dealer who has a secret, a set of n parties, and an access structure Γ – a
collection of (authorized) subsets of the parties. A secret-sharing scheme for Γ is a method
by which the dealer distributes strings (called shares) to the parties such that: (1) any subset
in Γ can reconstruct the secret from its shares, and (2) any subset not in Γ cannot reveal any

© Amos Beimel;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 16; pp. 16:1–16:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amos.beimel@gmail.com
https://orcid.org/0000-0002-6572-4195
https://doi.org/10.4230/LIPIcs.ITC.2023.16
https://eprint.iacr.org/2023/289
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

partial information on the secret. The share size of a scheme is the maximum share size in the
scheme (i.e., the maximum length of the strings representing the shares). Originally motivated
by the problem of secure information storage, secret-sharing schemes have found numerous
other applications in cryptography, distributed computing, and complexity, e.g., Byzantine
agreement [54], secure multiparty computations [13, 24, 26], threshold cryptography [36],
access control [51], attribute-based encryption [42, 62], generalized oblivious transfer [56, 61],
and proving NP-hardness of the partial minimum circuit size problem [43].

Secret-sharing schemes were introduced by Blakley [16] and Shamir [55] for the threshold
case. Secret-sharing schemes for general access structures were introduced and constructed
by Ito, Saito, and Nishizeki [44]. More efficient construction for specific families of access
structure were given in [14, 57, 20, 45, 15, 17, 37]. For general n-party access structures, the
share size in the schemes of [44] is 2n; for 30 years no schemes with share size better than
2n−o(n) were known. Liu and Vaikuntanathan [47], in a breakthrough paper, constructed for
every access structure a secret-sharing scheme with share size 20.994n. This was improved
in a sequence of works [3, 5, 7], where the currently best known scheme has share size
(3/2)(1+o(1))n < 20.585n [7]. The best known lower bound was proved by Csirmaz [28, 29],
stating that, for every n, there is an n-party access structure such that sharing ℓ-bit secrets
requires that the total share size (i.e., the sum of sizes of the n shares) is Ω((n2/ log(n)) · ℓ).
The question if there exist more efficient schemes, or if there exist access structures that do
not have (space) efficient schemes remains open.

In this paper, we consider a natural class of access structure – k-hypergraph access
structures, in which the size of the minimal authorized sets is exactly k. Two-hypergraph
access structures are called graph access structures and they have been studied extensively,
e.g., [21, 22, 23, 38, 18, 30, 35, 31, 32, 10, 40, 33]. k-hypergraph access structures for
k > 2 have also been studied previously (although not as much as graph secret sharing),
e.g., [58, 60, 52, 27, 34, 10, 9]. The naive way to construct a secret-sharing scheme for a
k-hypergraph is to share the secret independently for each minimal authorized set; this results
in a scheme with total share size k ·

(
n
k

)
. A result of Erdös and Pyber [39] implies that every n-

vertex graph can be realized by a secret-sharing scheme with ℓ-bit secrets and total share size
O((n2/ log(n))ℓ) (for secrets of size ℓ ≥ log(n)). Using this result and Stinson’s decomposition
technique [59], every n-party k-hypergraph can be realized by a secret-sharing scheme with
ℓ-bit secrets and total share size O((

(
n
k

)
/ log(n)) · ℓ) (for secrets of size ℓ ≥ k4 log(n) and for

k ≤ n/2) (see Remark 8). In contrast, the best known lower bound on the total share size
in secret-sharing realizing a graph with an ℓ-bit secret is Ω(n log(n)ℓ) [38, 30]. Prior to our
work, this was the best known lower bound for k-hypergraphs. Blundo et al. [18] showed a
lower bound of Ω(n/ log(n) · ℓ) on the max share size for an access structure in which the
size of the minimal authorized sets is at most log n. In Table 1, we summarize the known
upper bounds and lower bounds on the share size in secret-sharing schemes.

One reason for studying secret-sharing schemes for k-hypergraphs is that they can be
used to construct secret-sharing schemes for arbitrary access structures. Every n-party access
structure is a union of k-hypergraph access structures, thus, to construct more efficient secret-
sharing schemes for arbitrary access structures, it suffices to construct efficient secret-sharing
schemes for k-hypergraphs. Moreover, even if we have efficient secret-sharing schemes for
k-hypergraphs for a small k, then, as described in the next lemma, for every access structure
there is a secret-sharing scheme that is better than the best known secret-sharing schemes
(the proof of the lemma for k = 2 appears in [53]; for completeness the proof of this lemma
appears in Appendix A).

A. Beimel 16:3

Table 1 Summary of known results on upper and lower bounds on the total share size for
secret-sharing schemes.

Upper bound Lower bounds

Arbitrary access structures O(20.585n) [7] Ω(n2/ log(n)) [29]

Graph access structures O(n2/ log(n)) [39] Ω(n log(n)) [38, 30]

k-hypergraph access structures
for k ≤ log(n)

(
n
k

)
k2

log(n) Ω(n2−1/(k−1)/k) [This paper]

▶ Lemma 1. Assume that there exists constants k, c such that every N -party k-hypergraph
access structure can be realized by a secret-sharing scheme with total share size O(N c). Then
every n-party access structure can be realized by a secret-sharing scheme with total share size
Õ(2cn/k).

Another reason for studying secret-sharing schemes for k-hypergraphs is that there were no
improvements in their share size for more than two decades and the share size in the best known
schemes for them is almost as big as the naive scheme for them. This should be compared with
the new secret-sharing schemes for arbitrary access structures [47, 3, 5, 7] and the new CDS
protocols and secret-sharing schemes for uniform access structures [11, 41, 48, 2, 49, 12, 1, 3].
Furthermore, k-hypergraph access structures resemble k-uniform access structures, in which
all sets of size smaller than k are unauthorized, all sets of size larger than k are authorized,
and some sets of size k are authorized and some are not. The best known share size for
k-uniform access structure is 2Õ(

√
k log(n)) [49, 3], i.e., it is much smaller than the best known

share size for k-hypergraphs. It is interesting to understand if the difference in the share size
is inherent.

1.1 Our Results
Our main result is a new lower bound on the share size in secret-sharing schemes for
k-hypergraphs.

▶ Theorem 2 (Informal). For every n, every 3 ≤ k ≤ log(n), there is an explicit n-party
k-hypergraph access structure such that for every secret length ℓ in every secret-sharing
scheme realizing the access structure the total share size is at least Ω

(
n2−1/(k−1)

k · ℓ
)

.

Our lower bound applies to k-partite hypergraph access structures, i.e., access structures
in which the parties are partitioned to k parts and each minimal authorized set contains
exactly one party from each part. k-partite hypergraph access structures are very useful, i.e.,
they are used in the proof of Lemma 1. The uniform access structure that are equivalent to
CDS protocols are also k-partite.

For k = 3, we get a 3-partite hypergraph access structure that requires total share size
Ω(n3/2 · ℓ). This implies that the applying Lemma 1 with k = 3 cannot result in a secret-
sharing scheme with share size smaller than 2n/2. For k = log(n), we get a log(n)-partite
hypergraph access structure that requires total share size Ω((n2/ log(n)) · ℓ), i.e., the best
known lower bound on the share size.

ITC 2023

16:4 Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

For the interesting case of graph secret-sharing schemes, i.e., k = 2, our lower bound is
Ω(n · ℓ); this is a trivial lower bound as Karnin et al. [46] proved that the size of the share
of any non-redundant party is Ω(ℓ). Improving the lower bound of Ω(n log(n) · ℓ) for graph
secret sharing, or constructing better schemes for graphs, is left as an open question.

We observe that the log(n)-partite access structure for which we prove a lower bound
of O(n2/ log(n)) on the total share size can be described by a monotone circuit of size
O(n log(n)) and depth 3 (where we count the number of wires in the circuit). That is, we
prove a near quadratic separation between the required share size and the monotone circuit
size. In contrast, the size of the monotone formula describing an access structure is an upper
bound on the share size required to realize the access structure [14]. Monotone circuits
describing an access structure imply a computational secret-sharing scheme for the access
structure [63];1 our result raises the question if monotone circuits can be used to construct
secret-sharing schemes with information-theoretic security.

To prove Theorem 2, we take the access structure used by Csirmaz in [28, 29] and
transform it to a k-hypergraph access structure. The access structures that we construct
to prove the lower bounds are quite simple. For example, for k = 3, we take two parts
D1, D2 of size

√
n and a third part D3 of size n− 2

√
n; for every a1 ∈ D1, a2 ∈ D2 we take

a distinct party c3 ∈ D3 and add the minimal authorized set {a1, a2, c3}. See Figure 1 for an
illustration of this construction.

𝑎1,1

𝑎1,2

𝑎2,1

𝑎2,2

𝑐1

𝑐2

𝑐3

𝑐4

Figure 1 Illustration of the 3-partite hypergraph access structure 3-CSI8. The parties are
{a1,1, a1,2, a2,1, a2,2, c1, c2, c3, c4} and the 4 minimal authorized sets are described by blue circles.

As explained above, the lower bound of Csirmaz [28, 29] of Ω((n2/ log(n)) · ℓ) on the
total size of shares for a some access structure is the best known lower bound on the share
size in secret-sharing schemes. This lower bound was used to derive a separation between
the size of monotone real formulas and the size of shares in secret-sharing schemes [6] and
a separation between the size of shares in information theoretic secret-sharing schemes
and the size of shares in computational secret-sharing schemes [4]. Recently, in a work
that inspired this work, it was used to prove exponential lower bounds on the size of the
shares in evolving secret-sharing schemes [50]. The result we use to derive our lower bound
(Theorem 10) was generalized by Blundo et al. [18] with the so-called independent sequence
method. They constructed, using this method, an access structure in which the size of the
minimal authorized sets is at most log n and the maximum share size is Ω((n/ log(n)) · ℓ).

1 The size of the public information in this scheme is the number of wires in the monotone circuit and the
size of each share is the security parameter.

A. Beimel 16:5

2 Preliminaries

In this section, we define secret-sharing schemes realizing general access structures. We start
by defining a secret-sharing scheme, which is a randomized mapping whose input is a string,
called the secret, and output is the n strings, called shares.

▶ Definition 3 (Secret-Sharing Schemes). Let {p1, . . . , pn} be a set of parties. A secret-sharing
scheme Π with domain of secrets S is a randomized mapping from S to a set of n-tuples
S1 × S2 × · · · × Sn, where Sj is called the domain of shares of pj, that is, given a secret
s ∈ S, the secret-sharing scheme outputs the shares sh1, . . . , shn. For a set A ⊆ {p1, . . . , pn},
we denote ΠA(s) as the restriction of Π(s) to its A-entries, i.e. ⟨shi⟩pi∈A.

Informally, in a secret-sharing scheme, we consider a dealer that distributes a secret s ∈ S

according to Π by first sampling a vector of shares ⟨sh1, . . . , shn⟩ ← Π(s), and privately
communicating each share shj to party pj .

▶ Definition 4 (Access Structures). Let {p1, . . . , pn} be a set of parties. A collection Γ ⊆
2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure is a
monotone collection Γ ⊆ 2{p1,...,pn} of non-empty subsets of {p1, . . . , pn}. Sets in Γ are called
authorized, and sets not in Γ are called unauthorized.

We next define the correctness and perfect security of a secret-sharing scheme realizing
a general access structure; we require that such scheme is secure against an unbounded
adversary, i.e., its security is information-theoretic. The definition is based on [25, 8] and
does not assume any probability distribution on the secrets.

▶ Definition 5 (Secret-Sharing Schemes Realizing an Access Structure). Let S be a finite set
of secrets, where |S| ≥ 2. A secret-sharing scheme Π with domain of secrets S realizes an
access structure Γ if the following two requirements hold:
Perfect Correctness. The secret s can be reconstructed by any authorized set of parties. That

is, for any set B ∈ Γ (where B = {pi1 , . . . , pi|B|}), there exists a reconstruction function
ReconB : Si1 × · · · × Si|B| → S such that for every s ∈ S,

Pr[ReconB(ΠB(s)) = s] = 1. (1)

Perfect Security. Every unauthorized set cannot learn anything about the secret (in the
information theoretic sense) from their shares. Formally, for any set T /∈ Γ, for every
two secrets s1, s2 ∈ S, and for every possible vector of shares ⟨shj⟩pj∈T :

Pr[ΠT (s1) = ⟨shj⟩pj∈T] = Pr[ΠT (s2) = ⟨shj⟩pj∈T], (2)

where the probabilities are over the randomness of Π.

The most important complexity measure that we study in secret-sharing schemes in the
share size.

▶ Definition 6 (Share Size). The size of the secret in a secret-sharing scheme Π with domain
of secrets S and domains of shares S1, · · · , Sn is log(|S|), the share size of party pi is log(|Si|),
the max share size is max1≤j≤n log(|Sj |), and the total share size is

∑
1≤j≤n log(|Sj |).

▶ Definition 7. An access structure Γ is a k-hypergraph access structure (also called k-
homogeneous access structure) if the size of every minimal authorized set in A ∈ Γ is exactly
k. An access structure Γ is a k-partite hypergraph access structure if there exists a partition
of the set of parties to k sets D1, . . . , Dk such that every minimal authorized set A ∈ Γ
contains exactly one party from each Di, that is |A ∩Di| = 1 for every 1 ≤ i ≤ k.

ITC 2023

16:6 Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

Note that that the size of unauthorized sets in a k-hypergraph access structure can be
much larger that k. For example, in a graph access structure (i.e., in a 2-hypergraph access
strucure), the minimal authorized sets are the edges of the graph and the unauthorized sets
are independent sets.
▶ Remark 8. Erdös and Pyber [39] have proved that every graph can be partitioned into
complete bipartite graphs such that each vertex is contained in at most O(n/ log(n)) complete
bipartite graphs. Blundo et al. [19] observed that this implies that for every n-vertex graph
there is a secret-sharing realizing the graph with 1-bit secret, max share size O(n/ log(n)),
and, in particular, total share size O(n2/ log(n)).

This secret-sharing scheme can be used to construct a secret-sharing scheme for k-
hypergraphs as follows. Given a k-hypergraph Γ with a set of parties P , define for every set
of parties A of size exactly k − 2 an access structure ΓA = {B ⊆ P \A : A ∪B ∈ Γ}. Notice
that ΓA is a graph access structure. We independently share the secret s for each access
structure ΓA, that is, we independently choose k − 2 random bits r1, . . . , rk−2, give each bit
to a party in A, and share s ⊕ r1 ⊕ · · · ⊕ rk−2 using a graph secret-sharing for the graph
access structure ΓA. The total share in this scheme is O

((
n

k−2
)

n2

log(n)

)
; this expression is

equal to O
((

n
k

)
k2

log(n)

)
for k ≤ n/2. Observe that each minimal authorized set (of size k) is

an authorized set in
(

k
2
)

access structures ΓA. Thus, we can use Stinson’s decomposition [59]
to construct a secret-sharing scheme realizing Γ with ℓ-bit secrets, where ℓ > k4 log(n), and
total share size O

((
n
k

) 1
log(n) · ℓ

)
.

3 Lower Bounds on the Size of the Shares in k-Partite Hypergraph
Access Structures

Lower bounds for secret-sharing schemes have been proved in, e.g., [46, 23, 19, 38, 28, 29, 18].
The best lower bound was proved by Csirmaz [28, 29], who proved that for every n there
exists an explicit n-party access structure such that every secret-sharing scheme realizing it
with an ℓ-bit secret requires total share size Ω(n2/ log(n) · ℓ). We use this lower bound to
prove lower bounds for k-partite hypergraphs. We do this in two stages, we first define in
Definition 11 a k-partite access structure in which the max share size is Ω

(
n1−1/(k−1)ℓ/k

)
and then define in Definition 15 a k-partite access structure in which the total share size is
Ω

(
n2−1/(k−1)ℓ/k

)
.

3.1 A Lower Bound on the Max Share Size
We first define a family of access structures CSI; access structures from this family were used
by Csirmaz [28] to prove his lower bound. Each access structure in the family is defined
by a given sequence of subsets satisfying the following condition: we say that a sequence of
subsets A1, A1, . . . , Am is valid if Ai ̸⊆ Aj for every i < j (e.g., |Ai| ≥ |Ai+1| for 1 ≤ i ≤ m).

▶ Definition 9 ([28]). Let A be a set and A1, A2, . . . , Am be a valid sequence of subsets of A.
Furthermore, let B = {b1, . . . , bm} and define Bi = {b1, . . . , bi} for 1 ≤ i ≤ m. We assume
that A ∩ B = ∅. Define the access structure CSIA1,...,Am , whose parties are A ∪ B and the
minimal authorized sets of CSIA1,...,Am are A1 ∪B1, A2 ∪B2, . . . , Am ∪Bm.
▶ Theorem 10 ([28]). For every valid sequence of subsets A1, A2, . . . , Am and every integer
ℓ ∈ N, in every secret-sharing scheme realizing CSIA1,A1,...,Am with domain of secrets {0, 1}ℓ,
the total share size of the parties A (i.e.,

∑
p∈A |shp|) is at least (m− 1) · ℓ.

A. Beimel 16:7

Csirmaz considered the case in which A = {p1, . . . , pk}, m = 2k, and A1 . . . , Am is some
valid ordering of all subsets of A. In this case the number of parties in the access structure
is n = O(2k) and Theorem 10 implies that there is at least one party whose share size is
Ω(2k/|A|) = Ω(n/ log(n)). However, Csirmaz’s proof applies to any access structure defined
for a valid sequence. We will use larger sets A.

The main contribution of this paper is a construction of a k-hypergraph access structure
k-CSIn from CSI; this access structure requires long shares. An illustration of the 3-CSI8

access structure appears in Figure 1.

▶ Definition 11 (The Access Structure k-CSIn). Fix k, n and let t be the maximal number
such that (k − 1) · t + tk−1 ≤ n. Let Di = {ai,1, . . . , ai,t} for 1 ≤ i ≤ k − 1, A = ∪k−1

i=1 Di,
m = tk−1, and A1, . . . , Am be any ordering of the subsets of A of size k − 1 that contain
exactly one element from each Di (that is, |Aj ∩Di| = 1 for every 1 ≤ j ≤ m, 1 ≤ i ≤ k− 1).
Finally, let C =

{
c1, . . . , cn−(k−1)·t

}
. Define the access structure k-CSIn, whose parties are

A ∪ C and the minimal sets of k-CSIn are A1 ∪ {c1} , A2 ∪ {c2} , . . . , Am ∪ {cm}.

Every minimal authorized set in k-CSIn contains exactly one party from each part
D1, . . . , Dk−1, C, i.e., there is a minimal authorized set

{
a1,j1 , a2,j2 , . . . , ak−1,jk−1 , cj

}
for

every sequence (j1, j2, . . . , jk−1) ∈ [t]k−1 and the appropriate j.

▶ Remark 12. To define an access structure with exactly n parties, we added the redundant
parties cm+1, . . . , cn−(k−1)·t. These parties do not belong to any minimal authorized set and
they can be ignored.

▶ Theorem 13. For every n, every k ≤ log(n), every ℓ ∈ N, in every secret-sharing scheme
realizing the n-party k-hypergraph access structure k-CSIn with domain of secrets {0, 1}ℓ, the
total share size of the parties in A is Ω(n · ℓ), in particular, there is at least one party with
share size Ω

(
n1−1/(k−1)

k · ℓ
)

.

Proof. Consider any secret-sharing scheme Π realizing k-CSIn with domain of secrets {0, 1}ℓ.
We construct from it a secret-sharing Π′ realizing CSIA1,...,Am (where A1, . . . , Am are all the
subsets of A that contain exactly one party from each Di) such that the share of each ai,j is
the same in both schemes.

The construction of Π′ is as follows:
Share the secret using the scheme Π. Let sha

i,j be the share of ai,j for 1 ≤ i ≤ k − 1, 1 ≤
j ≤ t and shc

i be the share of ci for 1 ≤ i ≤ m.
For 1 ≤ i ≤ m, share shc

i using an i-out-of-i secret-sharing scheme. Denote the shares by
shc

i,j for 1 ≤ j ≤ i.
The share of ai,j is sha

i,j and the share of bj is shc
i,j for j ≤ i ≤ m.

Any authorized set Ai∪Bi ∈ CSIA1,...,Am holds in Π′ the shares of Ai and can reconstruct
the share shc

i , hence the parties in Ai ∪Bi can reconstruct the secret. Next we argue that
the scheme Π′ is secure. Consider an unauthorized set T ′ /∈ CSIA1,...,Am and let j ≤ m be
the minimal index such that bj /∈ T ′; if such index does not exist set j = m + 1. Define
T = (T ′ ∩ A) ∪ {c1, . . . , cj−1}. Since T ′ /∈ CSIA1,...,Am and {b1, . . . , bj−1} ⊆ T ′, it must be
that Ai ̸⊆ T ′ for every i ≤ j − 1. This implies that T /∈ k-CSIn. By the properties of the
i-out-of-i secret-sharing scheme, the parties in T ′ have no information on shc

i for i ≥ j. I.e.,
the parties in T ′ only have the shares of the unauthorized set T in Π and get no information
on the secret.

ITC 2023

16:8 Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

We next analyze the lower bound on the share size that we get. By the choice of the
parameters in k-CSIn, we get that tk−1 = m = Θ(n) and |A| = (k−1) ·t = (k−1)Ω(n1/(k−1)).
By Theorem 10, the total share size of the parties in A in Π′, hence also in Π, is Ω(m · ℓ) =
Ω(n · ℓ), in particular, there exists a party p ∈ A whose share size in Π is

Ω
(

n

|A|
· ℓ

)
= Ω

(
n

(k − 1)n1/(k−1) · ℓ
)

. ◀

▶ Remark 14. We proved the lower bound by using Theorem 10 as a black-box. An alternative
proof for Theorem 13 can directly apply the information inequalities as in the proof of [28].

3.2 A Lower Bound on the Total Share Size
We next construct a k-partite hypergraph access structure k-TotCSIn that requires large
total share size. The construction is similar to the construction of Csirmaz [29], who showed
how to construct an access structure requiring total share size Ω(n2/ log(n) · ℓ); to show a
small monotone circuit for this access structure, we use a variant of [4] of this construction.
Recall that in the access structure k-CSIn there is a small set A, whose total share size is
large. To construct k-TotCSIn, we will take many copies of the access structure k-CSIn using
the same set C, i.e., we only use many copies of the set A. Since the set A is small, the
number of parties in k-TotCSIn will be small. On the other hand, we have many copies of
the set A, each copy requires large share size, hence the total share size is large. Specifically,
we take α = O(n/(k · t)) copies of each party in A and for each minimal authorized set
Aj ∪ {cj} in k-CSIn we take αk−1 minimal authorized sets in k-TotCSIn by replacing each
party a1

i,ji
in Aj by each ah

i,ji
.

▶ Definition 15 (The Access Structure k-TotCSIn). Fix k, n, take t as the maximal integer
such that tk−1 ≤ n/2, and let m = tk−1 and α = ⌊n/(2(k − 1) · t)⌋. For every 1 ≤ h ≤ α,
let Dh

i =
{

ah
i,1, . . . , ah

i,t

}
for 1 ≤ i ≤ k − 1, Ah = ∪k−1

i=1 Dh
i , and A1, . . . , Am be any ordering

of the subsets of A1 of size k − 1 that contain exactly one element from each D1
i (that is,

|Aj ∩ D1
i | = 1 for every 1 ≤ j ≤ m, 1 ≤ i ≤ k − 1). Furthermore, let A = ∪1≤h≤αAh

and let C =
{

c1, . . . , cn−|A|
}

. Define the access structure k-TotCSIn, whose parties are
A ∪ C and for every 1 ≤ j ≤ m we have the following αk−1 minimal authorized sets in
k-TotCSIn: Let Aj =

{
a1

1,j1
, . . . , a1

k−1,jk−1

}
for a sequence (j1, . . . , jk−1) ∈ [t]k−1; for every

sequence h1, . . . , hk−1 ∈ [α]k−1 the set
{

ah1
1,j1

, . . . , a
hk−1
k−1,jk−1

, cj

}
is a minimal authorized set

in k-TotCSIn.

Note that k-TotCSIn is a k-partite hypergraph access structure, where the parts are
∪α

h=1Dh
1 , . . . , ∪α

h=1Dh
k−1, C. The access structure has (t · α)k−1 minimal authorized sets.

▶ Theorem 16. For every n, every k ≤ log(n), every integer ℓ ∈ N, in every secret-sharing
scheme realizing the n-party k-hypergraph access structure k-TotCSIn with domain of secrets
{0, 1}ℓ, the total share size is at least Ω

(
n2−1/(k−1)

k · ℓ
)

.

Proof. For every 1 ≤ h ≤ α, the access structure k-TotCSIn restricted to the parties in
Ah ∪ {c1, . . . , ctk−1} is isomorphic to k-CSIn′ , where n′ = (k − 1)t + tk−1 = Θ(n). Thus, by
Theorem 13, in any secret-sharing scheme realizing k-TotCSIn the total share size of the
parties in Ah is Ω(n · ℓ), hence the total share size of the parties in A is

Ω(αn · ℓ) = Ω
(

n2

k · t
· ℓ

)
= Ω

(
n2

k · n1/(k−1) · ℓ
)

. ◀

A. Beimel 16:9

3.3 Secret Sharing vs. Monotone Circuits
We next observe that the access structure log(n)-TotCSIn can be described by a shallow
monotone circuit of size O(n log(n)); that is, we derive an almost quadratic separation
between the total share size required in any secret-sharing scheme realizing k-TotCSIn and
the size of the monotone circuit for it.

▶ Theorem 17. The access structure log(n)-TotCSIn can be described by a monotone circuit
of size O(n log(n)) and depth 3.

Proof. The access structure log(n)-CSIn′ , where t = 2 and n′ = (log(n)− 1)2 + 2log(n)−1 =
Θ(n) has 2log(n)−1 = n/2 minimal authorized sets of size log(n), thus it can be described
by a monotone CNF formula F of size O(n log(n));2 denote the variables of this formula
by {ai,ji

}i∈[log(n)−1],ji∈[t] ∪
{

c1, . . . , cn/2
}

. For every i ∈ [log(n) − 1], ji ∈ [t], we compute
∧h∈[α]a

h
i,ji

and connect this AND gate to each leaf in F labeled by ai,ji . The resulting
monotone circuit describes the access structure log(n)-TotCSIn. The size of the circuit is
O(n log(n) + α(log(n)− 1)2) = O(n log(n)) and its depth is 3. ◀

References
1 Benny Applebaum and Barak Arkis. On the power of amortization in secret sharing: d-uniform

secret sharing and CDS with constant information rate. In TCC 2018, volume 11239 of LNCS,
pages 317–344, 2018.

2 Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional
disclosure of secrets: Amplification, closure, amortization, lower-bounds, and separations. In
CRYPTO 2017, volume 10401 of LNCS, pages 727–757, 2017.

3 Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing
schemes for general and uniform access structures. In EUROCRYPT 2019, volume 11478 of
LNCS, pages 441–471, 2019.

4 Benny Applebaum, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, Tianren Liu, and Vinod
Vaikuntanathan. Succinct computational secret sharing. In 55th STOC, pages 1553–1566,
2023.

5 Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via robust
conditional disclosure of secrets. In 52nd STOC, pages 280–293, 2020.

6 Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, and Toniann Pitassi. Secret sharing,
slice formulas, and monotone real circuits. In ITCS 2022, volume 215 of LIPIcs, pages 8:1–8:23,
2022.

7 Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity of
1.5n. In CRYPTO 2021, volume 12827 of LNCS, pages 627–655, 2021.

8 Amos Beimel and Benny Chor. Universally ideal secret-sharing schemes. IEEE Trans. on
Information Theory, 40(3):786–794, 1994.

9 Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes for almost all access
structures and graphs. IACR Cryptol. ePrint Arch., 2020:664, 2020. Conference version in
TCC 2020, volume 12552 of LNCS, pages 499–529, 2020. URL: https://eprint.iacr.org/
2020/664.

10 Amos Beimel, Oriol Farràs, and Yuval Mintz. Secret-sharing schemes for very dense graphs. J.
of Cryptology, 29(2):336–362, 2016.

11 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions. In TCC 2014, volume 8349 of LNCS, pages 317–342, 2014.

2 It can also be described by a monotone formula of size O(n) and depth O(log(n)).

ITC 2023

https://eprint.iacr.org/2020/664
https://eprint.iacr.org/2020/664

16:10 Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

12 Amos Beimel and Naty Peter. Optimal linear multiparty conditional disclosure of secrets
protocols. In ASIACRYPT 2018, volume 11274 of LNCS, pages 332–362, 2018.

13 Michael Ben-Or, Shaffi Goldwasser, and Avi Wigderson. Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In 20th STOC, pages 1–10, 1988.

14 Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In CRYPTO ’88, volume 403 of LNCS, pages 27–35, 1988.

15 Michael Bertilsson and Ingemar Ingemarsson. A construction of practical secret sharing
schemes using linear block codes. In AUSCRYPT ’92, volume 718 of LNCS, pages 67–79, 1992.

16 George Robert Blakley. Safeguarding cryptographic keys. In Proc. of the 1979 AFIPS National
Computer Conference, volume 48, pages 313–317, 1979.

17 George Robert Blakley and Grigory A. Kabatianskii. Linear algebra approach to secret sharing
schemes. In Error Control, Cryptology, and Speech Compression, volume 829 of LNCS, pages
33–40. Springer, 1994.

18 Carlo Blundo, Alfredo De Santis, Roberto De Simone, and Ugo Vaccaro. Tight bounds on the
information rate of secret sharing schemes. Des. Codes Cryptography, 11(2):107–122, 1997.

19 Carlo Blundo, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the information rate
of secret sharing schemes. Theoretical Computer Science, 154(2):283–306, 1996.

20 Ernest F. Brickell. Some ideal secret sharing schemes. Journal of Combin. Math. and Combin.
Comput., 6:105–113, 1989.

21 Ernest F. Brickell and Daniel M. Davenport. On the classification of ideal secret sharing
schemes. J. of Cryptology, 4(73):123–134, 1991.

22 Ernest F. Brickell and Douglas R. Stinson. Some improved bounds on the information rate of
perfect secret sharing schemes. J. of Cryptology, 5(3):153–166, 1992.

23 Renato M. Capocelli, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the size of
shares for secret sharing schemes. J. of Cryptology, 6(3):157–168, 1993.

24 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols. In 20th STOC, pages 11–19, 1988.

25 Benny Chor and Eyal Kushilevitz. Secret sharing over infinite domains. J. of Cryptology,
6(2):87–96, 1993.

26 Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party computation
from any linear secret-sharing scheme. In EUROCRYPT 2000, volume 1807 of LNCS, pages
316–334, 2000.

27 Giovanni Di Crescenzo and Clemente Galdi. Hypergraph decomposition and secret sharing.
In 14th ISAAC, volume 2906 of LNCS, pages 645–654, 2003.

28 László Csirmaz. The size of a share must be large. In EUROCRYPT ’94, volume 950 of LNCS,
pages 13–22, 1994. doi:10.1007/BFb0053420.

29 László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math.
Hungar., 32(3–4):429–437, 1996.

30 László Csirmaz. Secret sharing schemes on graphs. Technical Report 2005/059, Cryptology
ePrint Archive, 2005.

31 László Csirmaz. An impossibility result on graph secret sharing. Des. Codes Cryptography,
53(3):195–209, 2009. doi:10.1007/s10623-009-9304-0.

32 László Csirmaz. Secret sharing on the d-dimensional cube. Des. Codes Cryptography, 74(3):719–
729, 2015.

33 László Csirmaz and Péter Ligeti. Secret sharing on large girth graphs. Cryptogr. Commun.,
11(3):399–410, 2019. doi:10.1007/s12095-018-0338-x.

34 László Csirmaz, Péter Ligeti, and Gábor Tardos. Erdös-pyber theorem for hypergraphs and
secret sharing. Graphs and Combinatorics, 31(5):1335–1346, 2014.

35 László Csirmaz and Gábor Tardos. Optimal information rate of secret sharing schemes on
trees. IEEE Trans. Inf. Theory, 59(4):2527–2530, 2013. doi:10.1109/TIT.2012.2236958.

36 Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signatures. In
CRYPTO ’91, volume 576 of LNCS, pages 457–469, 1991.

https://doi.org/10.1007/BFb0053420
https://doi.org/10.1007/s10623-009-9304-0
https://doi.org/10.1007/s12095-018-0338-x
https://doi.org/10.1109/TIT.2012.2236958

A. Beimel 16:11

37 Marten van Dijk. A linear construction of perfect secret sharing schemes. In EUROCRYPT
’94, volume 950 of LNCS, pages 23–34, 1995.

38 Marten van Dijk. On the information rate of perfect secret sharing schemes. Des. Codes
Cryptography, 6(2):143–169, 1995.

39 Paul Erdös and László Pyber. Covering a graph by complete bipartite graphs. Discrete
Mathematics, 170(1–3):249–251, 1997.

40 Oriol Farràs, Tarik Kaced, Sebastià Martín, and Carles Padró. Improving the linear pro-
gramming technique in the search for lower bounds in secret sharing. In EUROCRYPT 2018,
LNCS, pages 597–621, 2018.

41 Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In CRYPTO 2015, volume 9216 of LNCS,
pages 485–502, 2015.

42 Viput Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In 13th CCS, pages 89–98, 2006.

43 Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In 63rd FOCS, pages
968–979, 2022.

44 Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general access
structure. In Globecom 87, pages 99–102, 1987. Journal version: Multiple assignment scheme
for sharing secret. J. of Cryptology, 6(1), 15-20, 1993.

45 Mauricio Karchmer and Avi Wigderson. On span programs. In 8th Structure in Complexity
Theory, pages 102–111, 1993.

46 Ehud D. Karnin, Jonathan W. Greene, and Martin E. Hellman. On secret sharing systems.
IEEE Trans. on Information Theory, 29(1):35–41, 1983.

47 Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In
50th STOC, pages 699–708, 2018.

48 Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional disclosure of secrets via
non-linear reconstruction. In CRYPTO 2017, volume 10401 of LNCS, pages 758–790, 2017.

49 Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential
barrier for general secret sharing. In EUROCRYPT 2018, volume 10820 of LNCS, pages
567–596, 2018.

50 Noam Mazor. A lower bound on the share size in evolving secret sharing. Electron. Colloquium
Comput. Complex., TR23-013, 2023. URL: https://eccc.weizmann.ac.il/report/2023/013.

51 Moni Naor and Avishai Wool. Access control and signatures via quorum secret sharing. IEEE
Transactions on Parallel and Distributed Systems, 9(1):909–922, 1998.

52 Carles Padró and Germán Sáez. Lower bounds on the information rate of secret sharing
schemes with homogeneous access structure. Inform. Process. Lett., 83(6):345–351, 2002.

53 Naty Peter. Secret-Sharing Schemes and Conditional Disclosure of Secrets Protocols. PhD thesis,
Ben-Gurion University of the Negev, 2020. URL: https://primo.bgu.ac.il/permalink/
972BGU_INST/23v028/alma9926575584104361.

54 Michael O. Rabin. Randomized Byzantine generals. In 24th FOCS, pages 403–409, 1983.
55 Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.
56 Bhavani Shankar, Kannan Srinathan, and C. Pandu Rangan. Alternative protocols for

generalized oblivious transfer. In 9th ICDCN, volume 4904 of LNCS, pages 304–309, 2008.
doi:10.1007/978-3-540-77444-0_31.

57 Gustavus J. Simmons, Wen-Ai Jackson, and Keith M. Martin. The geometry of shared secret
schemes. Bulletin of the ICA, 1:71–88, 1991.

58 Douglas R. Stinson. New general lower bounds on the information rate of secret sharing
schemes. In CRYPTO ’92, volume 740 of LNCS, pages 168–182, 1993.

59 Douglas R. Stinson. Decomposition construction for secret sharing schemes. IEEE Trans. on
Information Theory, 40(1):118–125, 1994.

60 Hung-Min Sun and Shiuh-Pyng Shieh. Constructing perfect secret sharing schemes for general
and uniform access structures. J. Inf. Sci. Eng., 15(5):679–689, 1999.

ITC 2023

https://eccc.weizmann.ac.il/report/2023/013
https://primo.bgu.ac.il/permalink/972BGU_INST/23v028/alma9926575584104361
https://primo.bgu.ac.il/permalink/972BGU_INST/23v028/alma9926575584104361
https://doi.org/10.1007/978-3-540-77444-0_31

16:12 Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

61 Tamir Tassa. Generalized oblivious transfer by secret sharing. Des. Codes Cryptography,
58(1):11–21, 2011.

62 Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization. In PKC 2011, volume 6571 of LNCS, pages 53–70, 2011.

63 Andrew Chi-Chih Yao. Unpublished manuscript, 1989. Presented at Oberwolfach and DIMACS
workshops.

A A Secret-Sharing Scheme for an Arbitrary Access Structure from a
Secret-Sharing Scheme for k-Hypergraph

We next describe a simple reduction from realizing an arbitrary access structure to realizing
k-hypergraphs. Given an access structure Γ with parties p1, . . . , pn we define the following
k-hypergraph access structure Γk with k ·N vertices, where N = 2n/k (for simplicity assume
that n/k is an integer):

Let Pi =
{

p(i−1)·n/k+1, . . . , pi·n/k

}
for 1 ≤ i ≤ k, Di = 2Pi , and D = ∪k

i=1Di. The
parties in Γk are D, i.e., each party in Γk is a subset of the parties in Γ.3
For every minimal authorized set A in Γ, the set

{A ∩ P1, . . . , A ∩ Pk}

is a minimal authorized set in Γk.

An illustration of a construction of such access structure for k = 2 appears in Figure 2.

{𝑝1, 𝑝2}

{𝑝2}

{𝑝1}

∅

{𝑝3, 𝑝4}

{𝑝4}

{𝑝3}

∅

Figure 2 The access structure Γ2 constructed from the access structure with two minimal
authorized sets {p1, p3} and {p1, p2, p4}. The minimal authorized sets of Γ2 are described by an
edge.

The secret-sharing Π for Γ is as follows:
Construct the above hypergraph access structure Γk from the access structure Γ.
Share the secret s using any secret-sharing scheme Πk for Γk. Let shC be the share in
this scheme of the vertex C ∈ D.
For every non-empty set C ∈ D, independently share shC using a |C|-out-of-|C| secret-
sharing scheme among the parties of C. In addition, give the shares of ∅ ∈ Di for each
1 ≤ i ≤ k to all parties in Γ.

We next argue the correctness and security of the scheme. First, let A = A1 ∪ · · · ∪ Ak

be a minimal authorized set in Γ, where Ai ⊆ Pi for every 1 ≤ i ≤ k. By the construction of
Γk, the set {A1, . . . , Ak} is an authorized set in Γk, thus shA1 , . . . , shAk

determine the secret.
Furthermore, the parties in A can reconstruct shA1 , . . . , shAk

, hence, can reconstruct the
secret.

3 There is party for the empty set in each Di. These are k distinct parties.

A. Beimel 16:13

For the security of the scheme, consider an unauthorized set T = T1 ∪ · · · ∪ Tk /∈ Γ, where
Ti ⊆ Pi for every 1 ≤ i ≤ k. Clearly, the parties in T can reconstruct shTi

for every 1 ≤ i ≤ k;
however they can also reconstruct the shares of every subset of Ti. On the other hand, for
any other set B ∈ D, the parties in T miss at least one party in B. Hence, the parties in T

have no information of the shares of these sets.
Since T is unauthorized, every subset of T is unauthorized and for every T ′

1 ⊆ T1, . . . , T ′
k ⊆

Tk, the set {T ′
1, . . . , T ′

k} is unauthorized in Γk. Thus, the shares in Πk that the parties in T

can reconstruct are shares of an unauthorized set in Γk and these shares do not reveal any
information on the secret s.

The total share size of the scheme Π is at most n times the total share size of the scheme
Π′, i.e., n times the share size required to realize a (k · 2n/k)-party k-hypergraph.

ITC 2023

Differentially Private Aggregation via Imperfect
Shuffling
Badih Ghazi #

Google Research, Mountain View, CA, USA

Ravi Kumar #

Google Research, Mountain View, CA, USA

Pasin Manurangsi #

Google Research, Mountain View, CA, USA

Jelani Nelson #

University of California at Berkeley, CA, USA
Google Research, Mountain View, CA, USA

Samson Zhou #

University of California at Berkeley, CA, USA
Rice University, Houston, TX, USA

Abstract
In this paper, we introduce the imperfect shuffle differential privacy model, where messages sent
from users are shuffled in an almost uniform manner before being observed by a curator for private
aggregation. We then consider the private summation problem. We show that the standard split-
and-mix protocol by Ishai et. al. [FOCS 2006] can be adapted to achieve near-optimal utility bounds
in the imperfect shuffle model. Specifically, we show that surprisingly, there is no additional error
overhead necessary in the imperfect shuffle model.

2012 ACM Subject Classification Security and privacy → Human and societal aspects of security
and privacy

Keywords and phrases Differential privacy, private summation, shuffle model

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.17

1 Introduction

Differential privacy (DP) [18] has emerged as a popular concept that mathematically quantifies
the privacy of statistics-releasing mechanisms. Consequently, DP mechanisms have been
recently deployed in industry [29, 21, 35, 16], as well as by government agencies such as the
US Census Bureau [2]. DP is parameterized by ε and δ, where ε is a privacy loss parameter
that is generally a small positive constant such as 1 and δ is an approximation parameter or
“failure” probability that is typically (smaller than) inverse-polynomial in n:

▶ Definition 1 (Differential privacy; [18, 17]). Given ε > 0 and δ ∈ (0, 1), a randomized
algorithm A : X → Y is (ε, δ)-differentially private if, for every neighboring datasets x and
x′, and for all S ⊆ Y , Pr [A(x) ∈ S] ≤ eε · Pr [A(x′) ∈ S] + δ.

In this paper, we study the real summation problem, where each of n parties holds
a number xi ∈ [0, 1] for all i ∈ [n] and the goal is to privately (approximately) compute∑n

i=1 xi. Due to its fundamental nature, the private real summation problem has a wide
range of applications, such as private distributed mean estimation [40, 10], e.g., in federated
learning [33, 27, 31], private stochastic gradient descent [37, 8, 1, 3, 13], databases and
information systems [34, 43], and clustering [39, 38].

© Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Jelani Nelson, and Samson Zhou;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 17; pp. 17:1–17:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:badihghazi@gmail.com
mailto:ravi.k53@gmail.com
mailto:pasin@google.com
mailto:minilek@alum.mit.edu
mailto:samsonzhou@gmail.com
https://doi.org/10.4230/LIPIcs.ITC.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Differentially Private Aggregation via Imperfect Shuffling

In the central model of DP, where a curator is given full access to the raw data in order
to release the private statistic or data structure, the Laplace mechanism [18] can achieve, for
real summation, additive error O

(1
ε

)
, which is known to be nearly optimal for ε ≤ 1 [26].

However, the ability for the curator to observe the full data is undesirable in many
commercial settings, where the users do not want their raw data to be sent to a central
curator. To address this shortcoming, the local model of DP [32, 42] (LDP) demands that
all messages sent from an individual user to the curator is private. Unfortunately, although
the local model enjoys near-minimal trust assumptions, numerous basic tasks provably must
suffer from significantly larger estimation errors compared to their counterparts in the central
model. For the real summation problem, [9] achieves additive error Oε(

√
n) and it is known

that smaller error bounds cannot be achieved [12].
Consequently, the shuffle model [11, 20, 14] of DP was introduced as an intermediary

between the generous central model and the strict local model. In the shuffle model, the
messages sent from the users are randomly permuted before being observed by the curator, in
an encode-shuffle-analyze architecture. Surprisingly, when users are allowed to send multiple
messages, there exist protocols in the shuffle model of DP that achieve additive error Oε(1)
for the private real summation problem [25, 6, 24]. Unfortunately, practical applications can
lack the ideal settings that provide the full assumptions required by the shuffle model of DP.

1.1 Model and Motivation
We first define a natural generalization of the uniform shuffler that tolerates imperfections.
Let Π be the set of permutations on [n]. For π, π′ ∈ Π, we define Swap(π, π′) to be the
minimum number of coordinate swaps1 that can be applied to π to obtain π′.

▶ Definition 2 (γ-Imperfect Shuffler). For a distortion parameter γ > 0, we say that S is a
γ-imperfect shuffler if, for all π, π′ ∈ Π,

Pr [S = π] ≤ eγ·Swap(π,π′)Pr [S = π′] .

We call an output from such a shuffler a γ-imperfect shuffle or a γ-I-shuffle, for short. Here,
γ represents an upper bound on the multiplicative distortion of the output probabilities of
the distributions of the shuffler, i.e., how the distribution deviates from a perfectly symmetric
shuffler. For example, γ = 0 corresponds to a perfectly symmetric shuffler while γ → ∞
represents almost no guarantee from the shuffler.

To understand the motivation behind this definition, consider a setting where a number
of user devices collect statistics to be sent to an intermediate buffer, which is ultimately sent
to a central curator for processing. The devices may choose to perform this collection over
different periods of time, so that immediately sending their statistics over to the curator
could reveal information about their identity, through the timestamp.

For example, consider a setting where sensors are monitoring traffic in US cities during
peak afternoon hours. Then reports that are received earlier in the day by the curator are
more likely to correspond to cities that are in the east, while reports that are received later
in the day by the curator are more likely to correspond to cities in the west. To mitigate
this, the sensors instead could choose a universally fixed hour during the day to broadcast
their reports from the previous day, at some random time during the hour.

1 We say that π′ results from an application of a coordinate swap on π iff π(i) = π′(i) on all except two
i ∈ [n].

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:3

Specifically, each user i ∈ [n] could choose a time ti, say normalized without loss of
generality to ti ∈ [0, 1], and send their messages at time ti. If the ti are chosen uniformly
at random and this protocol was executed perfectly, it would result in a uniform shuffle
of the messages for a buffer that strips both the source information and the exact time
of arrival, e.g., [41].2 However, issues may arise such as different clock skews, where users
may not perfectly synchronize the fixed hour during which the messages should be sent, or
communication delays, either because an intermediate link has failed or simply because the
latency varies across different networks. It is unclear how to model the imperfect shuffle
resulting from these issues using the standard shuffle model.

For a better handle on modeling the imperfection, we can assume that each ti is ad-
versarially chosen in [0, 1]. Moreover, each message transmission time can now be altered
by a random offset from the intended release time, where the offset is drawn, e.g., from a
Laplacian distribution. Specifically, each user i ∈ [n] draws an offset τi from the (centered)
Laplacian distribution with scale 2

γ , and sends their message at time ti + τi instead of at
time ti.

In other words, each user i ∈ [n] sends their message at time ti + τi, which is determined
by the two following quantities:

(1) ti is an arbitrary and possibly adversarially chosen offset due to nature or some other
external source, e.g., clock skews, transmission failure, communication delay.

(2) τi is an internal source of noise that the protocol can sample from a predetermined
distribution to mitigate the negative privacy effects of ti.

Note that whereas two permutations π, π′ on [n] with swap distance one were equally
likely to be output by the shuffler, this may now no longer be the case. On the other hand, for
fixed i, j ∈ [n] and conditioning on the values of {t1, τ1, . . . , tn, τn}∖{ti, τi, tj , τj}, we can see
that for a, b ∈ [n], the probability that ta + τa ≤ ti + τi ≤ ta+1 + τa+1 and tb + τb ≤ tj + τj ≤
tb+1 + τb+1 is within an eγ factor of the probability that ta + τa ≤ tj + τj ≤ ta+1 + τa+1 and
tb + τb ≤ ti + τi ≤ tb+1 + τb+1.

Specifically, let E1 be the event that τi ∈ [ta + τa − ti, ta+1 + τa+1 − ti], where τi is
a (centered) Laplace random variable and scale 2

γ . Similarly, let E2 be the event that
τj ∈ [tb + τb − tj , tb+1 + τb+1 − tj] where τj is a (centered) Laplace random variable and scale
2
γ . Furthermore, let E3 be the event that τj ∈ [ta +τa −tj , ta+1 +τa+1 −tj] and E4 be the event
that τi ∈ [tb + τb − ti, tb+1 + τb+1 − ti]. Then by the properties of the Laplace distribution
and the assumption that ti, tj ∈ [0, 1], we have Pr [E1 ∧ E2] = Pr [E1] Pr [E2] ≤ (eγ/2 ·
Pr [E3])(eγ/2 · Pr [E4]) = eγ · Pr [E3 ∧ E4] . Thus, the resulting distribution over permutations
is captured by the γ-I-shuffle model.

We can naturally generalize this setting to the model where each user sends m messages,
e.g., m buffers collect messages from n users, which results in times {ti,j}i∈[n],j∈[m] and
offsets {τi,j}i∈[n],j∈[m]. Formally, for m rounds of messages for the n users, {mi,j}i∈[n],j∈[m],
a separate permutation πj drawn from a γ-imperfect shuffler is used to shuffle the messages
{mi,j}i∈[n], for each j ∈ [m]. For example, {mi,1}i∈[n] is shuffled according to a permutation
π1 drawn from a γ-imperfect shuffler, {mi,2}i∈[n] is shuffled according to an independent
permutation π2 drawn from the same γ-imperfect shuffler, and so on and so forth.

2 We assume in this example that the buffer can queue the messages, and then forward them to the
analyst at some point of time, but that it cannot further shuffle them. The (imperfect) shuffling we
consider stems solely from the randomization of the transmission time of the messages by the users.

ITC 2023

17:4 Differentially Private Aggregation via Imperfect Shuffling

We remark that the above model is sometimes referred to as the m-parallel shuffling
model; another model that has been considered in literature is one where all the mn messages
are shuffled together using a single shuffler. We only focus on the former in this paper. It
remains an interesting open question whether our results can be extended to the latter model.

1.2 Our Contributions
Surprisingly, we present a protocol for the real summation problem that matches the utility
bounds of the best protocols in the shuffle model. Thus, we show that there is no additional
error overhead necessary in the γ-I-shuffle model, i.e., there is no utility loss due to the
imperfect shuffler.

▶ Theorem 3. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. Then there exists an

(ε, δ)-DP protocol for summation in the γ-I-shuffle model with expected absolute error O
(1

ε

)
and m = O

(
e4γ + e4γ (log 1

δ +log n)
log n

)
messages per party. Each message uses O (log q) bits, for

q =
⌈
2n3/2⌉.

Observe that when δ is inverse-polynomial in n and the distortion parameter γ is a
constant O (1), then the number of messages m sent by each player in Theorem 3 is a
constant. Moreover, under these settings, Theorem 3 recovers the guarantees in the standard
shuffle model from [6, 25], though we remark that more communication efficient protocols [24]
are known in the standard shuffle model across more general settings. Regardless, we again
emphasize that the privacy and utility guarantees of the protocol are independent of the
distortion parameter γ.

1.3 Overview of our Techniques
In this section, we describe both our protocol for private real summation in the γ-I-shuffle
model and the corresponding analysis for correctness and privacy.

A natural starting point is the recent framework by [44, 45], which achieves amplification
of privacy using differentially oblivious (DO) shufflers that nearly match amplification of
privacy results using fully anonymous shufflers [20, 4, 14, 22]. Unfortunately, the framework
crucially uses LDP protocols, which are known to not give optimal bounds even with fully
anonymous shufflers. For instance, [6, 14, 5] showed that any single-message shuffled protocol
for summation based on LDP protocols must exhibit mean squared error Ω(n1/3) or absolute
error Ω(n1/6).

Another natural approach is to adapt recent works for private real summation in the
shuffle model, e.g., [25, 24]. One challenge in generalizing these proofs is that they often
leverage the fully anonymous shuffler by analyzing a random sample from an alternate view
of the output of the local randomizers, which often have some algebraic or combinatorial
interpretation that facilitates the proof of specific desirable properties. However, these
properties often seem substantially more difficult to prove once the symmetry of the fully
anonymous shuffler is lost. In fact, we do not even know the mass that the γ-imperfect
shuffler places on each permutation.

From private real summation to statistical security of summation on fixed fields. We
first use an observation from [6] that reduces the problem of private real summation to
the problem of private summation on a fixed field of size q, so that each user has an input
xi ∈ Fq for all i ∈ [n]. We then consider the well-known split-and-mix protocol [30], where

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:5

each user i outputs a set of m messages xi,1, . . . , xi,m ∈ Fq uniformly at random conditioned
on xi,1 + . . . + xi,m = xi. For the private summation on a fixed field problem, we adapt
a well-known reduction [6] for the split-and-mix protocol in the shuffle DP model to the
notion of statistical security in the γ-I-shuffle model. Statistical security demands small total
variation between the output of a protocol on input x and input x′, if

∑n
i=1 xi =

∑n
i=1 x

′
i.

In other words, it suffices to show that the output distribution looks “similar” for two inputs
with the same sum. See Definition 5 for a formal definition of statistical security.

To show statistical security, we first upper-bound the total variation distance in terms of
the probability that two independent instances of the same protocol with the same input give
the same output. Balle et al. [6] use a similar approach, but then utilizes the symmetry of the
fully anonymous shuffler to further upper-bound this quantity in terms of the probability that
R⃗(X⃗) = S ◦ R⃗′(X⃗), where X⃗ = (x1, . . . , xn) is the input vector, R⃗ and R⃗′ are independent
instances of the local randomizer, and S is an instance of the uniform shuffler. We do not
have access to such symmetries in the γ-I-shuffle model or even explicit probabilities that
the γ-imperfect shuffler places on each permutation.

Connected components of a communication graph. Instead, we first upper-bound the
total variation distance by R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗), where S−1 is the inverse of an instance
of a γ-imperfect shuffle and S ′ is an independent instance of the same γ-imperfect shuffle.
Intuitively, R⃗(X⃗) and S−1 ◦ S ′ ◦ R⃗′(X⃗) can look very different if there exists a large number
of users whose messages are not shuffled with those of other users. Formally, this can be
captured by looking at the number of connected components in the communication graph
of S−1 ◦ S ′ ◦ R⃗′(X⃗), so that there exists an edge connecting users i and j if the protocol
swaps one of their messages. Hence, evaluating the number of connected components in the
communication graph is closely related to analyzing the probability that there is no edge
between S and [n] ∖ S, for a given set S ⊆ [n].

Although this quantity would be somewhat straightforward to evaluate for a uniform
shuffler [6], it seems more challenging to evaluate for γ-imperfect shufflers, since we do not
have explicit probabilities for each permutation. Therefore, we develop a novel coupling
argument to relate the probability that there is no edge between S and [n] ∖ S in the
γ-I-shuffle model to the probability of this event in the shuffle model. In particular, a specific
technical challenge that our argument handles is when both S and [n]∖S has large cardinality,
because then there can be a permutation π that swaps many coordinates while still leaving
S and [n] ∖ S disconnected. However, if we simply relate the probability of Π in the shuffle
and the γ-I-shuffle model, we incur a gap of et·γ , where γ is the distortion parameter and t

is the number of swaps by Π, which can have size Ω(n). Thus without additional care, this
gap can overwhelm the probability achieved from the coupling argument. We circumvent
this issue by considering a subset of S with size k and coupling the “good” permutations in
the shuffle and the γ-I-shuffle model, which results in a smaller gap of ek·γ . For more details,
see Lemma 26.

Putting things together. At this point, we are almost done. Unfortunately, our coupling
only addresses the case where a single imperfect shuffle is performed on a local randomizer,
but we require the bound for the composition S−1 ◦S ′ ◦R⃗′(X⃗), which seems significantly more
challenging because communication between users i and j under S ′ may be “erased” by S−1.
Instead, we show a simple observation for γ-imperfect shuffling, which states that if S,S ′

are two shufflers such that S is a γ-imperfect shuffler, then S ′ ◦ S is a γ-imperfect shuffler.
This statement, presented in Lemma 23, can be considered as a post-processing preservation

ITC 2023

17:6 Differentially Private Aggregation via Imperfect Shuffling

property of γ-imperfect shuffling. In light of this statement, we can now view S−1 ◦S ′ ◦R⃗′(X⃗)
as a single γ-imperfect shuffler applied to the local randomizer, and use our new results
upper-bounding the number of connected components in the resulting communication graph
to ultimately show σ-security.

1.4 Preliminaries
For an integer n > 0, we define [n] := {1, . . . , n}.

▶ Definition 4 (Total variation distance). Given probability measures µ, ν on a domain Ω,
their total variation distance is defined by TVD(µ, ν) = 1

2 ∥µ− ν∥1 = 1
2
∑

x∈Ω|µ(x) − ν(x)|.

▶ Definition 5 (σ-security). Given a security parameter σ > 0, a protocol P is σ-secure for
computing a function f : X n → Z if, for any x, x′ ∈ X n such that f(x) = f(x′), we have
TVD(P(x),P(x′)) ≤ 2−σ.

Recall the following two well-known properties of DP:

▶ Theorem 6 (Basic Composition, e.g., [19]). Let ε, δ ≥ 0. Any mechanism that permits k
adaptive interactions with mechanisms that preserve (ε, δ)-DP is (kε, kδ)-DP.

▶ Theorem 7 (Post-processing [19]). Let M : U∗ → X be an (ε, δ)-DP algorithm. Then, for
any arbitrary random mapping g : X → X ′, we have that g(M(x)) is (ε, δ)-DP.

We use Ber(p) to denote the Bernoulli distribution with parameter p and use DLap(α)
to denote the discrete Laplace distribution, so that Z ∼ DLap(α) has the probability mass
function Pr [Z = k] ∝ α|k| for k ∈ Z. We use Polya(r, p) to denote the Polya distribution
with parameter r > 0, p ∈ (0, 1), which induces the probability density function k 7→(

k+r−1
k

)
pk(1 − p)r for k ∈ Z≥0. We require the following equivalence between a discrete

Laplacian random variable and the sum of a differences of Polya random variables.

▶ Fact 8. Let x1, . . . , xn, y1, . . . , yn ∼ Polya
(1

n , α
)
. Then z =

∑n
i=1(xi − yi) ∼ DLap(α).

We also require the following property about randomized rounding.

▶ Lemma 9 ([4]). Given a precision p ≥ 1, let x1, . . . , xn ∈ R and yi = ⌊xip⌋+Ber(xip−⌊xip⌋)

for each i ∈ [n]. Then E
[(∑n

i=1

(
xi − yi

p

))2
]

≤ n
4p2 .

1.5 Related Work
To amplify the privacy, the trusted shuffler is the key component of the shuffle model,
which in some sense only shifts the point of vulnerability from the curator to the shuffler,
particularly in the case where the shuffler may be colluding with the curator. Hence among
the various relaxations for distributed DP protocols, e.g., [7, 15], the DO shuffle model has
been recently proposed [36, 28] to permit some privacy leakage in the shuffling stage, called
a DO shuffle. In fact, [36, 28] showed that DO shuffling can be more efficient to achieve than
a fully anonymous shuffle while [44, 45] showed that locally private protocols can be used in
conjunction with a DO shuffler to achieve almost the same privacy amplification bounds as
with a fully anonymous shuffler, up to a small additive loss resulting from the DO shuffle.
However, the best known results in the shuffle model of DP do not utilize LDP protocols,
and thus cannot directly be applied in the framework of [44, 45].

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:7

2 A Simple Reduction

In this section, we briefly describe a simple reduction for showing amplification of privacy
for imperfect shuffling. The result can be viewed as in the same spirit as similar privacy
amplification statements, e.g., [22, 44, 23], but for imperfect shuffling. In particular, the
following well-known result achieves privacy amplification for local randomizers in the shuffle
model:

▶ Theorem 10 ([22]). For any domain D and i ∈ [n], let R(i) : S(1) × . . .×S(i−1) ×D → S(i),
where S(i) is the range space of R(i), such that R(i)(z1:i−1, ·) is an ε0-DP local randomizer
for all values of auxiliary inputs z1:i−1 ∈ S(1) × . . . × S(i−1). Let As : Dn → S(1) ×
. . . × S(n) be the algorithm that given a dataset x1:n ∈ Dn, samples a uniform random
permutation π over [n] and sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n] and
outputs z1:n. Then for any δ ∈ [0, 1] such that ε0 ≤ log

(
n

16 log(2/δ)

)
, As is (ε, δ)-DP for

ε ≤ log
(

1 + eε0 −1
eε0 +1

(
8
√

eε0 log(4/δ)√
n

))
.

We would like to show privacy amplification statements for the imperfect shuffle model
that are qualitatively similar to Theorem 10. To that end, we first recall the following
definition of DO shufflers.

▶ Definition 11 (Differentially Oblivious Shuffle). A shuffle protocol is (ε, δ)-differentially
oblivious if for all adversaries V, all π, π′ ∈ Π, and all subsets S of the view space,
Pr
[
ViewV(π) ∈ S

]
≤ eε·Swap(π,π′)Pr

[
ViewV(π′) ∈ S

]
+ δ.

Zhou and Shi [44] showed that DO shufflers also amplify privacy.

▶ Theorem 12 (Theorem 1 in [44]). For any domain D and range space S, i ∈ [n],
let R(1), . . . ,R(n) : D → S be ε0-DP local randomizers and let As be a (ε1, δ1)-DO
shuffler. Then the composed protocol As(R(1), . . . ,R(n)) is (ε + ε1, δ + δ1)-DP for ε =

O
(

(1−eε0)eε0/2
√

log(1/δ)√
n

)
.

It turns out that imperfect shufflers can be parametrized by DO shufflers, i.e., imperfect
shufflers are a specific form of DO shufflers. Therefore, we can immediately apply the previous
statement to obtain the following statement for privacy amplification for imperfect shufflers.

▶ Theorem 13. For any domain D and range space S, i ∈ [n], let R(1), . . . ,R(n) : D → S
be ε0-DP local randomizers and let As be a γ-imperfect shuffler. Then the composed protocol

As(R(1), . . . ,R(n)) is (ε+ γ, δ)-DP for ε = O
(

(1−eε0)eε0/2
√

log(1/δ)√
n

)
.

Proof. By the definition of γ-imperfect shuffle, we have that for all π, π′ ∈ Π, Pr [S = π] ≤
eγ·Swap(π,π′)Pr [S = π′] . Since no additional information is leaked by the shuffler, then for
all adversaries V and all subsets S of the view space,

Pr
[
ViewV(π) ∈ S

]
≤ eγ·Swap(π,π′)Pr

[
ViewV(π′) ∈ S

]
.

In other words, the γ-imperfect shuffler is a (γ, 0)-DO shuffler. Thus by Theorem 12, the

composed protocol As(R(1), . . . ,R(n)) is (ε+γ, δ)-DP for ε = O
(

(1−eε0)eε0/2
√

log(1/δ)√
n

)
. ◀

ITC 2023

17:8 Differentially Private Aggregation via Imperfect Shuffling

3 Differentially Private Summation

In this section, we first introduce the structural statements necessary to argue privacy for
the standard split-and-mix protocol [30]. We then assume correctness of these statements,
deferring their proofs to subsequent sections, and we prove the guarantees of Theorem 3. We
also give an application to private vector aggregation as a simple corollary of Theorem 3.

We first relate DP protocols for summation under a γ-imperfect shuffler to σ-secure
protocols. Lemma 4.1 in [4] showed this relationship for uniform shufflers. It turns out their
proof extends to γ-imperfect shufflers as well.

▶ Lemma 14 (Lemma 4.1 in [4]). Given a σ-secure protocol in the γ-I-shuffle model for
n-party private summation on Zq such that each player sends f(n, q, σ) bits of messages,
there exists an (ε, (1 + eε)2−σ−1)-DP protocol for any ε ≤ O(1) in the γ-I-shuffle model for
n-party private summation on real numbers with expected absolute error O

(1
ε

)
such that each

player sends f(n,O(n3/2), σ) bits of messages.

In Section 4, we prove the following guarantees about the split-and-mix protocol from [30].

▶ Theorem 15. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. For worst-case

statistical security with parameter σ, it suffices to use m = O
(
e4γ + e4γ (σ+log n)

log n

)
messages,

where each message has O (log q) bits, for q =
⌈
2n3/2⌉.

By Lemma 14 and Theorem 15, we have our main statement:

▶ Theorem 3. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. Then there exists an

(ε, δ)-DP protocol for summation in the γ-I-shuffle model with expected absolute error O
(1

ε

)
and m = O

(
e4γ + e4γ (log 1

δ +log n)
log n

)
messages per party. Each message uses O (log q) bits, for

q =
⌈
2n3/2⌉.

Applications to private vector summation. An immediate application of our results is to
the problem of private vector aggregation, where n parties have vectors x⃗1, . . . , x⃗n ∈ [0, 1]d
and the goal is to privately compute X⃗ =

∑n
i=1 x⃗i ∈ Rd. Given a protocol P for private

summation where n players each send m messages, the n players can perform a protocol P ′

for vector aggregation by performing P on each of their d coordinates. In particular, the n
players can first perform P on the first coordinate of their vectors, then perform P on the
second coordinate of their vectors, and so on and so forth, by sending md messages in total.
Equivalently, the n players can perform P on a field of size qd rather than size q and just
send m messages in total. However, the total communication size is still the same, because
each message increases by a factor of d due to the larger field size. Thus we consider the
approach where the n players perform P on each of the d coordinates.

To argue privacy, we observe that the n players run d iterations of the protocol P, once
for each of the coordinates. By composition of DP, i.e., Theorem 6, to guarantee ε-privacy
for the overall protocol, it suffices to run each of the d iterations with privacy ε′ = ε

d and
failure probability δ′ = δ

d . By post-processing of DP, i.e., Theorem 7, the resulting vector
where each coordinate is computed using the corresponding protocol is (ε, δ)-DP.

Then as a corollary to Theorem 3 with privacy parameter ε′ = ε
d and failure probability

δ′ = δ
d , we obtain:

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:9

▶ Theorem 16. Let n ≥ 19, d ≥ 1, ε > 0 be a (constant) privacy parameter, and
γ ≤ log log n

80 be a distortion parameter. Then there exists an (ε, δ)-DP protocol for vec-
tor summation in the γ-I-shuffle model with expected absolute error O

(
d
ε

)
per coordinate and

m = O
(
d
(
e4γ + e4γ (log d

δ +log n)
log n

))
messages per party. Each message uses O (log q) bits, for

q =
⌈
2n3/2⌉.

4 Security of Split-and-Mix Protocol

In this section, we prove the σ-security of the split-and-mix protocol. The proof largely
attempts to follow the outline of the split-and-mix protocol analysis for private aggregation
by [4], which first reduces from worst-case input to average-case input and then analyzes the
connectivity of the resulting communication graph induced by a uniform shuffle.

We similarly first reduce from worst-case input to average-case input and then analyze
the connectivity of the resulting communication graph induced by a uniform shuffle. The
former appears in Section 4.1 and the latter appears in Section 4.2.

However, the main challenge is that the symmetric properties of the uniform shuffler
is often crucially utilized in various steps of the approach. Unfortunately, these properties
do not often seem to translate to γ-imperfect shufflers, where we might not even know the
mass that is placed on each permutation. Thus we need to handle a number of technical
challenges to recover qualitatively similar structural properties to the uniform shuffling model.
Along the way, we show that the composition of two shufflers, where the inner shuffler is a
γ-imperfect shuffler, is also a γ-imperfect shuffler with the same parameter, which can be
interpreted as a post-processing statement for γ-imperfect shuffling.

We first formally define the split-and-mix protocol:

▶ Definition 17 (Split-and-Mix Protocol, e.g., [30]). Given an integer parameter m ≥ 1, the
m-message n-player split-and-mix protocol Pm,n is defined as follows. Each player i outputs
a set of m messages xi,1, . . . , xi,m uniformly at random conditioned on xi,1 + . . .+ xi,m = xi.
For each j ∈ [m], the set of messages x1,j , . . . , xn,j are then swapped according to a γ-imperfect
shuffler S(j).

4.1 Worst-case to Average-case Reduction
In this section, we show a reduction from worst-case input to average-case input. In other
words, rather than analyze the split-and-mix protocol over the worst-case input, we show it
suffices to analyze the expected performance of the split-and-mix protocol across all possible
inputs. The approach is nearly identical to that of [6], but they can further simplify their
final expression due to the symmetric properties of the uniform shuffler, which do not hold
for the γ-imperfect shuffler.

Let Pm,n denote the m-message n-player split-and-mix protocol and let P̃m,n be defined
as follows. Each player i outputs a set of m+1 messages xi,1, . . . , xi,m+1 uniformly at random
conditioned on xi,1 + . . . + xi,m+1 = xi. For each i ∈ [n], we use the notation Rm(xi) =
(xi,1, . . . , xi,m) to denote the choice of the m messages for player i. Let G = Fq and for j ∈ [m],
let S(j) : Gn → Gn be independent shufflers. Then the output of P̃m,n is S(j) applied to the
first m messages of each player, concatenated with the unshuffled final message of each player,
i.e., P̃m,n(x1, . . . , xn) = S(1)(x1,1, . . . , xn,1) ◦ . . . ◦ S(m)(x1,m, . . . , xn,m) ◦x1,m+1, . . . , xn,m+1.

We first reduce the problem to average-case statistical security using the approach of
Lemma 6.1 in [6]. Formally, we say that a protocol Pm,n provides average-case statistical
security with parameter σ if EX⃗,X⃗′ [TVD|X⃗,X⃗′(Pm,n(X⃗),Pm,n(X⃗′))] ≤ 2−σ, where X⃗ and X⃗′ are

ITC 2023

17:10 Differentially Private Aggregation via Imperfect Shuffling

each drawn uniformly at random from all pairs of vectors in Gn with the same sum. Here we
use the notation TVD|X⃗,X⃗′ to denote the total variation distance between two distributions
conditioned on fixings of X⃗ and X⃗′.

▶ Lemma 18. Suppose Pm,n provides average-case statistical security with parameter σ, then
Pm+1,n and P̃m,n provide worst-case statistical security with parameter σ.

Proof. Let x⃗ and x⃗′ be a pair of vectors in Gn with the same sum. Given an output of
P̃m,n(x⃗), the protocol Pm+1,n(x⃗) can be simulated by using an additional application of Rm+1
to randomly permute the last message of each of the players according to the distribution of
the γ-imperfect shuffle. Hence, TVD(Pm+1,n(x⃗),Pm+1,n(x⃗′)) ≤ TVD(P̃m,n(x⃗), P̃m,n(x⃗′)). It
thus suffices to upper bound the worst-case statistical security of P̃m,n by σ.

The worst-case security of P̃m,n is reduced to the average-case security of P̃m,n by noting
that the addition of the (m+1)st message to each player can effectively be viewed as adding a
random value to each player’s input and thus transforming each input value xi into a uniformly
random value in G. More formally, consider the definition Rm+1(x) = (Rm(x− U),U), for
x ∈ G, where U is a uniformly random element of G.

Since x⃗ − U⃗ is a uniformly random vector in Gn, then we can couple the randomness
observed from two instances U⃗, U⃗′ resulting from two independent executions of Pm,n with
two inputs having the same sum. Therefore,

TVD(P̃m+1,n(x⃗), P̃m+1,n(x⃗′)) = TVD((Pm,n(x⃗− U⃗), U⃗), (Pm,n(x⃗′ − U⃗′), U⃗′))

= EU⃗,U⃗′ [TVD(Pm,n(x⃗− U⃗),Pm,n(x⃗′ − U⃗′))]]

= EX⃗,X⃗′ [TVD(Pm,n(X⃗),Pm,n(X⃗′))],

where X⃗, X⃗′ are chosen uniformly at random conditioned on X⃗ = X⃗′ + x⃗− x⃗′. ◀

We now upper bound the expected total variation distance between the two independent
executions of the γ-imperfect shuffle, using an approach similar to Lemma C.1 in [6].

▶ Lemma 19. Let X⃗ and X⃗′ be drawn uniformly at random from all pairs of vectors in
Gn with the same sum, noting that X⃗ and X⃗′ are not independent. For two independent
executions Pm,n and P ′

m,n of the γ-imperfect shuffle, EX⃗,X⃗′ [TVD|X⃗,X⃗′(Pm,n(X⃗),Pm,n(X⃗′))] ≤√
qmn−1Pr

[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

− 1.

We note that the probability that two independent executions of the protocol can be
decomposed into the split protocol and the mix protocol as follows. By comparison, Lemma
C.2 in [6] was able to prove a simpler relationship by leveraging properties of their symmetric
shuffler, which we do not have for an imperfect shuffler.

▶ Lemma 20. Let Rm,n and R′
m,n denote two independent executions of the split protocol

in Pm,n so that Pm,n = Sm,n ◦ Rm,n. Then

Pr
[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

= Pr
[
Rm,n(X⃗) = S−1

m,n ◦ S ′
m,n ◦ R′

m,n(X⃗)
]
.

Proof. Note that

Pr
[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

= Pr
[
Sm,n ◦ Rm,n(X⃗) = S ′

m,n ◦ R′
m,n(X⃗)

]
= Pr

[
Rm,n(X⃗) = S−1

m,n ◦ S ′
m,n ◦ R′

m,n(X⃗)
]
. ◀

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:11

From Lemma 19 and Lemma 20, we have

▶ Lemma 21. For two independent executions Pm,n and P ′
m,n of the split-and-mix protocol

with a γ-imperfect shuffler,

EX⃗,X⃗′ [TVD(Pm,n(X⃗),Pm,n(X⃗′))] ≤
√
qmn−1Pr

[
Rm,n(X⃗) = S−1

m,n ◦ S ′
m,n ◦ R′

m,n(X⃗)
]

− 1.

4.2 Reduction to Connected Components
In this section, we prove the following general statement upper bounding the probability
that the shuffler S−1

m,n ◦ S ′
m,n(·) on the output of a randomizer achieves the same output as

an independent instance of the randomizer by the expectation of a quantity relating to the
number of connected components in the communication graph of the shuffler S−1

m,n ◦ S ′
m,n(·).

Specifically, we can view a protocol Pm,n that is an ordered tuple π1, . . . , πm, where πj is
a permutation on [n] for each j ∈ [m], so that in each round j ∈ [m], user i ∈ [n] sends a
message to user πj(i).

Then we can define the communication graph for the multi-message shuffle protocol Pm,n

as follows. The graph G consists of n vertices, which we associate with [n], corresponding to
the players [n] participating in the protocol Pm,n. We add an edge between vertices i and j

if player i passes one of their m messages to player j.
The following proof is the same as Lemma C.4 in [6].

▶ Lemma 22. Let G be the graph on n vertices formed the communication graph of
the shuffle S−1 ◦ S ′. Let C(G) be the number of connected components of G. Then
Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗)

]
≤ E

[
qC(G)−mn

]
.

Proof. By the law of total expectation,

Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗)

]
= E

[
Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗) | S,S ′

]]
.

Thus for the graph G conditioned on S and S ′, it suffices to show that

Pr
[
R⃗(X⃗) = S−1 ◦ S ′ ◦ R⃗′(X⃗) | S,S ′

]
= qC(G)−mn.

Note that C(G) depends on the choices of S and S ′ but we omit these dependencies in the
notation for the sake of presentation. Recall that Pm,n(X⃗) = Sm,n ◦ R⃗m,n(X⃗) is currently
indexed so that the first message of each player after the shuffle protocol completes are the
first n indices, followed by the second message of each of the n players and so forth. We
thus define a re-indexing permutation ψ : [mn] → [mn] to that the m messages of the first
player will be the first m indices, followed by the m messages of the second player and so
forth. That is, ψ(j) =

⌊
j−1
m

⌋
+ n(j − 1 mod n) + 1. Let W,W′ ∈ Gmn be defined so that

Wj = ψ(R⃗(X⃗))j and W′
j = ψ(S−1 ◦ S ′ ◦ R⃗′(X⃗))j . The task then becomes to show that

Pr [W = W′ | S,S ′] = qC(G)−mn. Toward that end, for each j ∈ [mn], we define Ej to be the
event that Wj = W′

j and pj = Pr [Ej | E1, . . . , Ej−1], so that Pr [W = W′ | S,S ′] =
∏m

j=1 npj .

Firstly, consider the messages that are not the last message by a particular player, i.e.,
consider the values of j ∈ [mn] that are not divisible by m. Observe that conditioning on
fixed values of X⃗ and R⃗′, as well as the events E1, . . . , Ej−1, the value of Wj remains uniformly
distributed and has probability q−1 of being equal to to W′

j . Hence, we have pj = q−1.
For the cases where j is divisible by m, we further consider two subcases. In particular,

we consider the case where j is the largest index in Cj and the case where j is not the largest
index in Cj , where Cj is the set of vertices in the same connected component as j in G.

ITC 2023

17:12 Differentially Private Aggregation via Imperfect Shuffling

In the first subcase, the multisets of W′ and R⃗′(X′) restricted to Ci are the same and thus
the multisets of the summands are the same, so that

∑
i|Ci=Cj

W′
i =

∑
i|Ci=Cj

ψ(R⃗′(X′))i.

Moreover, since the indices corresponding to all messages of a fixed player are in the same
connected component, then

∑
i|Ci=Cj

ψ(R⃗′(X′))i =
∑

i|Ci=Cj
Wi. Finally, we have that

conditioning on E1, . . . , Ej−1 and the fact that j is the largest index in Cj ,
∑

i|Ci=Cj ,i ̸=j W′
i =∑

i|Ci=Cj ,i ̸=j Wi. Therefore, we have pj = 1.
For the second subcase, we shall show that pj = q−1. Let T be the subset of (W,W′) ∈

G2mn that are consistent with E1, . . . , Ej−1 and a fixed value of X⃗. We show there exists
a homomorphism ϕ : G → G2mn that maps from g ∈ G to a ug ∈ G2mn with a specific
property to be defined. We then consider the action of G2mn on itself by addition of ug.
Then the property of ϕ that we show is that ug fixes T and Wj but adds g to W′

j . Consider
the partitioning of T into equivalence classes where two elements of T are equivalent if they
are equal under addition by ug for some g. Then the homomorphism induces a partitioning
of T into subsets of size q such that each subset contains exactly one element for which Ej

holds. Since each value of T is equally probable, it then follows that pj = q−1 as desired.
We now define the homomorphism ϕ as follows. Since there exists a path in G from the

vertex with the jth message to a higher index vertex, then there exists some path parameter
ℓ and a corresponding path (a1, b1, . . . , aℓ, bℓ, aℓ+1) such that the following hold. Firstly,
each of the terms ai, bi are elements of [mn] that will ultimately map to indices of elements
in Gmn. Secondly, for all i ∈ [ℓ], we have π(bi) = ai for the permutation π induced by
the m message n player protocol and moreover, bi and ai+1 correspond to the same vertex.
Finally, it holds that a1 = j, bℓ > j, ai ̸= ai′ for any i ̸= i′, and bi < j for all i < ℓ. Then
we implicitly define the homomorphism ϕ by defining ug to be the element of G2mn with
the value g in the entries a2, . . . , aℓ+1, b1 +mn, . . . , bℓ +mn and the identity 0 in all other
coordinates, where we recall that the elements ai and bi correspond to indices of elements in
Gmn.

We observe that the group action of addition by ug does not affect the realization of
E1, . . . , Ej−1 since Wai

and W′
ai

= R⃗′(X⃗)bi
are increased by exactly the same amount by ug,

except for the case when i = 1 or i = ℓ+ 1. However, note that ai ≥ j for both of the cases
where i = 1 and i = ℓ+ 1, which does not affect the realization of E1, . . . , Ej−1. Hence, ug

has the desired properties and so it follows that pj = q−1.
Therefore, conditioned on any fixed realization of S, we have that

∏mn
j=1 pj = qC(G)−mn,

so that in summary Pr
[
R⃗ = S−1 ◦ S ′ ◦ R⃗′(X⃗)

]
≤ E[qC(G)−mn]. ◀

We remark that the statement of Lemma 22 holds even for a general shuffler S with the
corresponding communication graph, rather than the specific shuffler S−1

m,n ◦ S ′
m,n(·).

We now show that the composition of two shufflers, where the inner shuffler is a γ-imperfect
shuffler, is also a γ-imperfect shuffler with the same parameter.
▶ Lemma 23. Let S,S ′ be two shufflers such that S is a γ-imperfect shuffler. Then, S ′ ◦ S
is a γ-imperfect shuffler.
Proof. Let S ′ be an arbitrary shuffler and S be a γ-imperfect shuffler. Then, for any
π, π′ ∈ Π,

Pr [S ′ ◦ S = π] = Pr
[
S = (S ′)−1 ◦ π

]
≤ eγ·Swap((S′)−1◦π,(S′)−1◦π′)Pr

[
S = (S ′)−1 ◦ π′]

= eγ·Swap(π,π′)Pr [S ′ ◦ S = π′] . ◀

We now show a few structural statements that upper bound the probability that there
exists no edge from a set S ⊂ [n] to [n] ∖ S for a communication graph induced by a
γ-imperfect shuffler.

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:13

▶ Lemma 24. Let G be the communication graph of a γ-imperfect shuffler (on an n-player
m-message protocol). For a fixed set S of size s, the probability that there exists no edge from
S to [n] ∖ S in G is at most e2smγ

(
n
s

)−m for s ≤ n
2 and at most e2(n−s)mγ

(
n
s

)−m for s ≥ n
2 .

Proof. Without loss of generality, let S = [s], i.e., S is the first s integers of [n]. Then
for a permutation to not induce an edge between S and [n] ∖ S, the permutation can be
decomposed into a permutation of the first s integers and a permutation of the remaining
n− s integers. Hence, there are s!(n− s)! permutations of [n] such that S is preserved. Let
ΠS be the set of permutations that preserves S so that |ΠS | = s!(n− s)!.

For each permutation π ∈ ΠS , we define a subset Cπ of permutations so that (1)
Cπ′ ∩ Cπ = ∅ for all π, π′ ∈ ΠS with π ̸= π′, (2) π is the only permutation of Cπ that
preserves S, (3) |Cπ| =

(
n
s

)
, and (4) π and π′ have swap distance at most 2s for any π′ ∈ Cπ,

hence implying that Pr [S = π] ≤ e2sγ · Pr [S = π′]. Recall that since π ∈ ΠS , then π can be
decomposed into permutations π1 of the first s integers and permutations π2 of the remaining
n− s integers.

Let A be any set of s indices of [n], sorted in increasing order. Consider the following
transformation TA on a permutation π to produce a permutation ψ. Place the elements of π
in positions [s] in order into the s indices of A, so that π′(Ai) = π(i). For the supplanted
indices that have not been assigned to indices in A, place them in order into the remaining
positions of [s]. Formally, let X = [s] ∖A and Y = A∖ [s]. Then we set π′(Xi) = π(Yi) for
all i ∈ [|X|], noting that |X| = |Y |. We then define Cπ to be the set of permutations that
can be obtained from this procedure, i.e., Cπ = {π′ : ∃A with π = TA(π)}. See Figure 1 for
an example of the application of such an example TA.

[s]

2 4 3 1 7 5 8 6 9

A

(2, 4, 3, 1) ? ? ? ? 7 5 8 6 9

(5, 6) ? 2 4 ? 7 3 8 1 9

5 2 4 6 7 3 8 1 9

Figure 1 An example of the transformation TA for the permutation π = (8, 4, 6, 2, 1, 3, 7, 5, 9),
with n = 9, s = 4, and A = (2, 3, 6, 8). Note that the order (8, 4, 6, 2) is preserved within the indices
of A in the resulting permutation π′ = TA(π) and the order (3, 5) is preserved within the indices
[s] ∖ A.

We first claim that Cπ′ ∩ Cπ = ∅ for all π, π′ ∈ ΠS with π ̸= π′. Suppose by way of
contradiction, there exists ψ ∈ Cπ ∩Cπ′ , so that there exist sets A and A′ with ψ = TA(π) =
TA′(π′). Recall that since π, π′ ∈ ΠS , then π, π′ can be decomposed into permutations π1, π

′
1

of the first s integers and permutations π2, π
′
2 of the remaining n− s integers. After applying

TA to π, then the first s integers are in the indices of A′, in some order. Similarly, after
applying TA′ to π′, then the first s integers are in the indices of A, in some order. Hence for
ψ = TA(π) = TA′(π′), it follows that A = A′, so it suffices to show that TA is injective for a
fixed A. To that end, note that TA preserves the order of [s] within A and thus if π = π1 ◦π2,
then π1 is the restriction of TA(π) to A. Similarly, note that TA does not touch the indices
outside of A∪ [s] and so π2 is preserved by TA(π) in the restriction of [n]∖ (A∪ [s]). Finally,

ITC 2023

17:14 Differentially Private Aggregation via Imperfect Shuffling

TA preserves the relative order of π2 inside the indices of [s] ∖ A. Therefore, given A and
TA(π), we can completely recover π1 and π2 and thus π. In other words, TA is injective, so
that TA(π) = TA(π′) implies π = π′, which is a contradiction.

To see that π is the only permutation of Cπ that preserves S, note that if any of the s
positions are picked outside [s], then there exists a value of [s] outside of the first s positions
and so the resulting permutation does not preserve S. However, there is only a single way to
pick s indices from [n] that are all inside [s], which corresponds to π. Hence, π is the only
permutation of Cπ that preserves S.

To see the third property, note that A is formed by choosing s indices of [n]. Hence,
|A| =

(
n
s

)
. Since A is exactly the set of positions for which π1 is mapped to, then each

element of A corresponds to a unique element in Cπ. Thus, |Cπ| =
(

n
s

)
.

To see the fourth property, note that the only swaps are indices in A with indices in [s],
meaning that at most 2s indices are changed. Thus, π and π′ have swap distance at most 2s
for any π′ ∈ Cπ. Then by the γ-imperfect shuffle property, Pr [S = π] ≤ e2sγ · Pr [S = π′].

Since we have associated each π ∈ ΠS with a set Cπ of size
(

n
s

)
such that π′ ̸∈ Cπ for

π′ ∈ ΠS with π′ ̸= π and Pr [S = π] ≤ esγ · Pr [S = π′], then it follows from a coupling
argument that the probability that there exists no edge from S to [n] ∖ S after one iteration
of the γ-imperfect shuffle is at most e2sγ

(
n
s

)−1. By independence, the probability that there
exists no edge from S to [n] ∖ S in G after m iterations is at most e2smγ

(
n
s

)−m.
By symmetry for sets S with size s and n − s, we have the probability is at most

min
(
e2smγ

(
n
s

)−m
, e2(n−s)mγ

(
n
s

)−m
)

across all ranges of s. ◀

▶ Lemma 25. Let G be the communication graph of a γ-imperfect shuffler (on an n-player
m-message protocol). For a fixed set S with size s, the probability that there exists no edge
from S to [n]∖S in G is at most ekmγ

(
n/2

k

)−m
for any integer k with 0 ≤ k ≤ min(s, n− s).

By Lemma 24 and Lemma 25, we have:

▶ Lemma 26. Let G be the communication graph of a γ-imperfect shuffler (on an n-player
m-message protocol). For a fixed set S with size s, the probability that there exists no edge
from S to [n]∖S in G is at most e2smγ

(
n
s

)−m for s ≤ n
2 , at most e2(n−s)mγ

(
n
s

)−m for s ≥ n
2 ,

and at most ekmγ
(

n/2
k

)−m
for any integer k with 0 ≤ k ≤ min(s, n− s).

Lemma 23 and Lemma 26 are the two main structural properties of imperfect shufflers
that we use to overcome the challenge of adapting the analysis of [6] to shufflers without
symmetry.

We now upper bound the probability that the number of connected components of G is
c, where G is the underlying communication graph for the split-and-mix-protocol under a
γ-imperfect shuffle.

▶ Lemma 27. Let n ≥ 19 and m ≥ 8e4γ . Let G be the communication graph of a γ-imperfect
shuffler (on an n-player m-message protocol). Let p(n, c) denote the probability that the
number of connected components of G is c. Then p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1).

We now upper bound the expected value of E
[
qC(G)] for the purposes of upper bounding

the right hand side of Lemma 22.

▶ Lemma 28. Let n ≥ 19, m ≥ 8e4γ, and q ≤
(

n
e

) (m−1)
32e4γ e2γ(1−m). Let G be the graph

on n vertices formed a random instantiation of the split-and-mix protocol Pm,n with m

messages for each of n players, using a γ-imperfect shuffler S. That is, let G have an edge
between i and j if and only if player i passes one of their m messages to player j. Then
E
[
qC(G)] ≤ q + 3q2e2γ(m−1) (e

n

) m−1
32e4γ .

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:15

Proof. By Lemma 27, we have p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1). Taking the ex-

pectation, we have E
[
qC(G)] ≤

∑n
c=1 q

c 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1). Since term in the

summand after the second term is at most 2q
3
(

e
n

) (m−1)
32e4γ e2γ(m−1) times the previous term

in the summand, then E
[
qC(G)] ≤ q + q2e2γ(m−1) (e

n

) m−1
32e4γ

∑∞
i=0

(
2q
3
(

e
n

) (m−1)
32e4γ e2γ(m−1)

)i

.

Since q ≤
(

n
e

) (m−1)
32e4γ e2γ(1−m) by assumption, then E

[
qC(G)] ≤ q+ 3q2e2γ(m−1) (e

n

) m−1
32e4γ . ◀

We now analyze the statistical security of the split-and-mix protocol.

▶ Lemma 29. Let n ≥ 19, m ≥ 8e4γ , and q ≤
(

n
e

) (m−1)
32e4γ e2γ(1−m). Then we have worst-case

statistical security with parameter σ ≤ (m− 1)
(

log n−log e
64e4γ − 2γ log e

)
− 3 log(3q),

Proof. By Lemma 21 and Lemma 22, we have

EX⃗,X⃗′ [TVD(Pm,n(X⃗),Pm,n(X⃗′))] ≤
√
qmn−1E

[
qC(G)−mn

]
− 1,

where C(G) is the communication graph for the shuffle S−1 ◦ S ′. By Lemma 23 and the
fact that S ′ is a γ-imperfect shuffler, we have that S−1 ◦ S ′ is also a γ-imperfect shuffler
and thus it suffices to upper bound E

[
qC(G)−mn

]
where C(G) is the communication graph

for an arbitrary γ-imperfect shuffler S. Therefore by Lemma 28, we have average case

statistical security less than or equal to 2−σ ≥
√

3q3e2γ(m−1)
(

e
n

) m−1
32e4γ , which holds for

σ ≤ (m− 1)
(

log n−log e
64e4γ − 2γ log e

)
− 3 log(3q). The claim then follows by the reduction of

worst-case input to average-case input by Lemma 18. ◀

Now it can be verified that by restricting γ ≤ log log n
80 , then we have both 728e4γ ≤ log n

and
⌈
2n3/2⌉ ≤

(
n
e

) (m−1)
32e4γ e2γ(1−m). These conditions imply that 1)

(
log n−log e

64e4γ − 2γ log e
)

=

O
(

log n
e4y

)
, so that the parameter σ has a non-empty range in the statement of Lemma 29,

and 2) q =
⌈
2n3/2⌉ satisfies q ≤

(
n
e

) (m−1)
32e4γ e2γ(1−m) in the statement of Lemma 29. As a

corollary, we obtain the following guarantees for worst-case statistical security:

▶ Theorem 15. Let n ≥ 19 and γ ≤ log log n
80 be a distortion parameter. For worst-case

statistical security with parameter σ, it suffices to use m = O
(
e4γ + e4γ (σ+log n)

log n

)
messages,

where each message has O (log q) bits, for q =
⌈
2n3/2⌉.

5 Conclusion and Discussion

In this work, we introduce the imperfect shuffle DP model, as a means of abstracting out
real-world scenarios that prevent perfect shuffling. We also give a real summation protocol
with nearly optimal error and small communication complexity. The protocol, which is based
on the split-and-mix protocol [30], is similar to that of the (perfect) shuffle model [6, 25],
while the main challenge comes in the analysis. Although we overcome this hurdle for this
particular protocol, our techniques are quite specific. Therefore, an interesting open question
is whether there is a general theorem that transfer the privacy guarantee in the perfect
shuffle model to that in the imperfect shuffle model, possibly with some loss in the privacy
parameters.

ITC 2023

17:16 Differentially Private Aggregation via Imperfect Shuffling

References
1 Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal

Talwar, and Li Zhang. Deep learning with differential privacy. In CCS, pages 308–318, 2016.
2 John M Abowd. The US census bureau adopts differential privacy. In KDD, pages 2867–2867,

2018.
3 Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and Brendan McMahan.

cpSGD: communication-efficient and differentially-private distributed SGD. In NeurIPS, pages
7575–7586, 2018.

4 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Differentially private summation
with multi-message shuffling. CoRR, abs/1906.09116, 2019. arXiv:1906.09116.

5 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle
model. In CRYPTO, pages 638–667, 2019.

6 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. Private summation in the multi-
message shuffle model. In CCS, pages 657–676, 2020.

7 Borja Balle, Peter Kairouz, Brendan McMahan, Om Dipakbhai Thakkar, and Abhradeep
Thakurta. Privacy amplification via random check-ins. In NeurIPS, 2020.

8 Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In FOCS, pages 464–473, 2014.

9 Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simultaneously
solving how and what. In CRYPTO, pages 451–468, 2008.

10 Sourav Biswas, Yihe Dong, Gautam Kamath, and Jonathan R. Ullman. CoinPress: Practical
private mean and covariance estimation. In NeurIPS, 2020.

11 Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In SOSP, pages 441–459, 2017.

12 T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for differentially private
multi-party aggregation. In ESA, pages 277–288, 2012.

13 Xiangyi Chen, Zhiwei Steven Wu, and Mingyi Hong. Understanding gradient clipping in
private SGD: A geometric perspective. In NeurIPS, 2020.

14 Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, and Maxim Zhilyaev.
Distributed differential privacy via shuffling. In EUROCRYPT, pages 375–403, 2019.

15 Albert Cheu and Chao Yan. Necessary conditions in multi-server differential privacy. In ITCS,
pages 36:1–36:21, 2023.

16 Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
In NIPS, pages 3571–3580, 2017.

17 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486–503,
2006.

18 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284, 2006.

19 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

20 Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy via
anonymity. In SODA, pages 2468–2479, 2019.

21 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In CCS, pages 1054–1067, 2014.

22 Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple and
nearly optimal analysis of privacy amplification by shuffling. In FOCS, pages 954–964, 2021.

23 Vitaly Feldman, Audra McMillan, and Kunal Talwar. Stronger privacy amplification by
shuffling for renyi and approximate differential privacy. In SODA, pages 4966–4981, 2023.

https://arxiv.org/abs/1906.09116

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:17

24 Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and Amer Sinha. Differentially
private aggregation in the shuffle model: Almost central accuracy in almost a single message.
In ICML, pages 3692–3701, 2021.

25 Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. Private aggregation
from fewer anonymous messages. In EUROCRYPT, pages 798–827, 2020.

26 Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-maximizing
privacy mechanisms. SIAM J. Comput., 41(6):1673–1693, 2012.

27 Antonious M. Girgis, Deepesh Data, Suhas N. Diggavi, Peter Kairouz, and Ananda Theertha
Suresh. Shuffled model of federated learning: Privacy, accuracy and communication trade-offs.
IEEE J. Sel. Areas Inf. Theory, 2(1):464–478, 2021.

28 S. Dov Gordon, Jonathan Katz, Mingyu Liang, and Jiayu Xu. Spreading the privacy blanket:
Differentially oblivious shuffling for differential privacy. In ACNS, pages 501–520, 2022.

29 Andy Greenberg. Apple’s “differential privacy” is about collecting your data – but not your
data, June 2016.

30 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from anonymity.
In FOCS, pages 239–248, 2006.

31 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh
Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser,
Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova,
Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar
Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar,
Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theer-
tha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning.
Found. Trends Mach. Learn., 14(1-2):1–210, 2021.

32 Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam D. Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826, 2011.

33 Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. CoRR,
abs/1610.05492, 2016. arXiv:1610.05492.

34 Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanavajjhala, Michael
Hay, and Gerome Miklau. Privatesql: A differentially private SQL query engine. Proc. VLDB
Endow., 12(11):1371–1384, 2019.

35 Stephen Shankland. How google tricks itself to protect chrome user privacy. CNET, October,
2014.

36 Elaine Shi and Ke Wu. Non-interactive anonymous router. In EUROCRYPT, pages 489–520,
2021.

37 Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In GlobalSIP, pages 245–248, 2013.

38 Uri Stemmer. Locally private k-means clustering. J. Mach. Learn. Res., 22:176:1–176:30, 2021.
39 Uri Stemmer and Haim Kaplan. Differentially private k-means with constant multiplicative

error. In NeurIPS, pages 5436–5446, 2018.
40 Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Distributed

mean estimation with limited communication. In ICML, pages 3329–3337, 2017.
41 Martin Thomson and Christopher A. Wood. Oblivious http, 2023. URL: https://datatracker.

ietf.org/doc/draft-ietf-ohai-ohttp/.
42 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer

bias. JASA, 60(309):63–69, 1965.

ITC 2023

https://arxiv.org/abs/1610.05492
https://datatracker.ietf.org/doc/draft-ietf-ohai-ohttp/
https://datatracker.ietf.org/doc/draft-ietf-ohai-ohttp/

17:18 Differentially Private Aggregation via Imperfect Shuffling

43 Royce J. Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel Simmons-
Marengo, and Bryant Gipson. Differentially private SQL with bounded user contribution.
PoPETS, 2020(2):230–250, 2020.

44 Mingxun Zhou and Elaine Shi. The power of the differentially oblivious shuffle in distributed
privacy mechanisms. IACR Cryptol. ePrint Arch., page 177, 2022.

45 Mingxun Zhou, Elaine Shi, T.-H. Hubert Chan, and Shir Maimon. A theory of composition
for differential obliviousness. In EUROCRYPT, 2023.

A Missing Proofs

Proof of Lemma 19. We write P and P ′ as shorthand for Pm,n and P ′
m,n, respectively. Let

V⃗ be a uniformly random vector drawn from Gmn, conditioned on V⃗ having the same sum as
X⃗ and X⃗′. Then by the triangle inequality,

EX⃗,X⃗′ [TVD
|X⃗,X⃗′

(P(X⃗),P(X⃗′))] ≤ EX⃗,X⃗′ [TVD
|X⃗,X⃗′

(P(X⃗), V⃗) + TVD
|X⃗,X⃗′

(V⃗,P(X⃗′))]

= EX⃗[TVD
|X⃗

(P(X⃗), V⃗)] + EX⃗′ [TVD
|X⃗′

(V⃗,P(X⃗′))]

= 2EX⃗[TVD
|X⃗

(P(X⃗), V⃗)].

Moreover, considering the distribution over V⃗,

2 TVD
|X⃗

(P(X⃗), V⃗) =
∑

v⃗∈Gmn

∣∣∣Pr
[
P(X⃗) = v⃗

]
− Pr

[
V⃗ = v⃗

]∣∣∣
=

∑
v⃗∈Gmn,

∑
v⃗=
∑

X⃗

|Pr
[
P(X⃗) = v⃗

]
− q1−mn|

= qmn−1EV⃗

[∣∣∣Pr
[
P(X⃗) = V⃗

]
− q1−mn

∣∣∣] .
Since V⃗ is a uniformly random vector from Gmn with its sum being equal to that of X⃗, then
for the random variable Z := Z(X,V) := Pr

[
P(X⃗) = V⃗

]
, we have E [Z] = q1−mn. Therefore,

2 TVD|X⃗(P(X⃗), V⃗) ≤ qmn−1E[|Z − E[Z]|]. By convexity, E[|Z − E[Z]|] ≤
√
E[Z2]. Since we

have

EV⃗ [Z2] = q1−mn
∑

v⃗∈Gmn,
∑

v⃗=
∑

X⃗

Pr
[
P(X⃗) = v⃗

]2
= q1−mnPr

[
P(X⃗) = P ′(X⃗)

]
,

we thus have

EX⃗,X⃗′ [TVD
|X⃗,X⃗′

(P(X⃗),P(X⃗′)] ≤ 2 TVD
|X⃗

(P(X⃗), V⃗)

≤ qmn−1EV(X⃗′)[|Pr
[
P(X⃗) = V⃗

]
− q1−mn|]

≤
√
qmn−1Pr

[
Pm,n(X⃗) = P ′

m,n(X⃗)
]

− 1. ◀

Proof of Lemma 25. We can similarly show that the probability that there exists no edge
from S to [n] ∖ S in G after the m iterations is at most ekmγ

(
n/2

k

)−m
for any integer k with

0 ≤ k ≤ min(s, n− s) by the following modifications to the coupling argument. We again let
S = [s] without loss of generality and let k ≤ min(s, n− s) be a fixed non-negative integer.

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:19

Recall that there are s!(n− s)! permutations of [n] such that S is preserved. We define
ΠS to be the set of permutations that preserves S so that |ΠS | = s!(n− s)! and we define a
transformation TA(π) for a permutation π ∈ ΠS as follows.

If s ≤ n
2 , we let A be a set of k positions in {s + 1, . . . , n}, sorted in increasing order.

We then initialize ψ = π and iteratively perform the following procedure k times. For each
i ∈ [k], we swap the value in the ith index of ψ with the value in the Aith index of A. We
then output set TA(π) to be the result of ψ after applying these k swaps. Note that since [s]
and A are disjoint, we can also explicitly define the resulting ψ = TA(π) by

ψ(i) =

π(i), i /∈ (A ∪ [k])
π(Ai), i ∈ [k]
π(j), j = Ai, i ∈ [k]

.

Similarly, if s ≥ n
2 , we let A be a set of k positions in [n− s], sorted in increasing order,

and initialize ψ = π. Then for each i ∈ [k], we swap the value in the (n− i+ 1)st index of ψ
with the value in the ith index of A. Alternatively, we can also explicitly define the resulting
ψ = TA(π) by

ψ(i) =

π(i), i /∈ (A ∪ {n− k + 1, . . . , n})
π(Ai), i ∈ {n− k + 1, . . . , n}
π(j), j = Ai, i ∈ [k]

.

We again define Cπ to be the set of permutations that can be obtained from this procedure,
i.e., Cπ = {π′ : ∃A with π = TA(π)}. By the same argument as in Lemma 25, we have (1)
Cπ′ ∩Cπ = ∅ for all π, π′ ∈ ΠS with π ̸= π′, (2) π is the only permutation of Cπ that preserves
S, (3) |Cπ| =

(
n
k

)
. By the construction of TA performing k swaps on π, we also have that π

and π′ have swap distance at most k for any π′ ∈ Cπ, so that Pr [S = π] ≤ ekγ · Pr [S = π′].
Also by construction, we have |Cπ| ≥

(
n/2

k

)
and so by adapting the above coupling

argument, we have that the probability that there exists no edge from S to [n]∖S in G after
the m iterations is at most ekmγ

(
n/2

k

)−m
. ◀

Proof of Lemma 27. For a fixed set S, let PS denote the probability that there is no edge
from S to [n]∖S. Let p(n, c) denote the probability that the number of connected components
of G is c. Then

p(n, c) ≤ 1
c

∑
S⊆[n]

PS · p(n− |S|, c− 1) ≤ 1
c

n−c+1∑
s=1

(
n

s

)
PS · p(n− |S|, c− 1).

We decompose this sum and apply Lemma 26.
By Lemma 26, we have PS ≤ min(e2(n−s)mγ

(
n
s

)−m
, e2smγ

(
n
s

)−m). By Lemma 26, we also
have PS ≤ ekmγ

(
n/2

k

)−m
for any k ≤ min(s, n− s). Observe that for k ≥ n− s ≥ n

2 , we have
e2(n−s)mγ

(
n
s

)−m ≤ e2kmγ
(

n
k

)−m ≤ e2kmγ
(

n/2
k

)−m
. Thus for k = n

4e4γ ,

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)(
n/2
k

)−m

e2kmγ · p(n− |S|, c− 1).

ITC 2023

17:20 Differentially Private Aggregation via Imperfect Shuffling

Observe that k = n
4e4γ implies that

e2γ ≤
(n

2k

)1/2

e2kmγ ≤
(n

2k

)km/2
≤
(
n/2
k

)m/2

(
n/2
k

)−m

e2kmγ ≤
(
n/2
k

)−m/2
≤
(
n

k

)−m/2
.

Thus we have

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)(
n

k

)−m/2
· p(n− |S|, c− 1).

Since k = n
4e4γ , then

(
n

k

)−m/2
≤ (4e4γ)− nm

8e4γ ≤ (2e)− nm
8e4γ ≤

(
n

n/2

)− m
4e4γ

≤
(
n

s

)− m
4e4γ

.

Hence,

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)1− m
4e4γ

· p(n− |S|, c− 1).

For m ≥ 8e4γ , we have 1 ≤ m
8e4γ and thus

p(n, c) ≤ 1
c

k∑
s=1

(
n

s

)(
n

s

)−m

e2smγ · p(n− |S|, c− 1)

+ 1
c

n−c+1∑
s=k+1

(
n

s

)− m
8e4γ

· p(n− |S|, c− 1).

We first apply the induction hypothesis that p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · eγ(m−1)(c−1):

p(n, c) ≤ 2c−1

c!

(e
n

) (m−1)(c−1)
32e4γ

· e2γ(m−1)(c−1) · 1
2 · e

(1−m)
32e4γ · e2γ(1−m)

·

(
k∑

s=1

(
n

s

)1−m

e2smγ

(
nc−1

(n− s)c−2

) m−1
32e4γ

+
n−c+1∑
s=k+1

(
(n− s)!s!nc−1

n!(n− s)c−2

) m−1
32e4γ

)
.

We upper bound p(n, c) by upper bounding the summation across the first k terms, i.e.,
the head of the summation, then upper bounding the tail terms of the summation, i.e., the
terms with s ≥ 3n

4 , and finally upper bounding the remaining terms of the summation, i.e.,
s ∈

[
k, 3n

4
]
.

B. Ghazi, R. Kumar, P. Manurangsi, J. Nelson, and S. Zhou 17:21

Upper bounding the head terms in the summation. We now upper bound the summation

across all s ≤ k. Let as =
(

n
s

)1−m
e2smγ

(
nc−1

(n−s)c−2

) m−1
32e4γ

. For s ≤ k = n
4e4γ and m ≥ 8e4γ ,

as

as−1
=
(

s

n− s+ 1

)m−1
e2mγ

(
n− s+ 1
n− s

) (m−1)(c−2)
32e4γ

≤
(

1
8e4γ

)m−1
e2mγe

(m−1)(c−2)
n−s

≤
(

1
8e4γ

)m−1
(e4γ)m−1e

4(m−1)
3

≤
(
e4/3

8

)m−1

≤
(

1
2

)m−1
≤ 1

25 .

Then through a geometric series, we bound the summation
k∑

s=1
as ≤

∞∑
s=1

a1

25s−1 ≤ 26a1

25

≤ 26
25n

1−memγ

(
nc−1

(n− 1)c−2

) m−1
32e4γ

≤ 26
25e

mγe
m−1

32e4γ

Upper bounding the tail terms in the summation. We now upper bound the summation

across all s ≥ ⌈ 3n
4 ⌉. Let bs =

(
(n−s)!s!nc−1

n!(n−s)c−2

) m−1
32e4γ

. Then for s ≥ 3n
4 ,

bs

bs−1
=
(

s

n− s+ 1

(
n− s+ 1
n− s

)c−2
) m−1

32e4γ

≥
(

s

n− s

) m−1
32e4γ

≥ 9.

We again bound another subset of the sum through a geometric series:
n−c+1∑

s=⌈3n/4⌉

bs ≤
n−c+1∑

s=⌈3n/4⌉

bn−c+1

9n−c+1−s

n−c+1∑
s=−∞

bn−c+1

9n−c+1−s

= 9bn−c+1

8

= 9
8

(
(c− 1)!(n− c+ 1)!nc−1

n!(c− 1)c−2

) m−1
32e4γ

.

Similar to [6], we bound the last expression using Sterling’s bound,
√

2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n, so that 9
8

(
(c−1)!(n−c+1)!nc−1

n!(c−1)c−2

) m−1
32e4γ

≤

9
8

(
e√
2π

(c− 1)1.5
(

1 − (c−1)
n

)n−c+1.5
) m−1

32e4γ

, which is maximized at c = 3 for n ≥ 19,

m ≥ 8e4γ , and c ≤ n
4 . Thus,

ITC 2023

17:22 Differentially Private Aggregation via Imperfect Shuffling

9
8

(
e√
2π

(c− 1)1.5
(

1 − (c− 1)
n

)n−c+1.5
) m−1

32e4γ

≤ 9
8

(
2e√
π

(
1 − 2

n

)n−1.5
) m−1

32e4γ

≤ 9
8(1.27)

m−1
32e4γ .

Upper bounding the middle terms in the summation. It remains to upper bound the

summation across s ∈
[

n
4e4γ ,

3n
4
]
. We have for α = s

n , bs =
(

((1−α)n)!(αn)!
(n−1)!(1−α)c−2

) m−1
32e4γ

. By Ster-

ling’s bound, we have bs ≤
(

e2
√

2π

√
n(1 − α)2.5−c+(1−α)nααn+ 1

2

) m−1
32e4γ

≤
(

e2√
n√

2π
ααn

) m−1
32e4γ

.

Since there are at most n such terms bs, then
∑⌈3n/4⌉−1

s=k+1 bs ≤ n
(

e2√
n√

2π

(3
4
) 3n

4
) m−1

32e4γ

≤

2
(
en
(3

4
) 3n

4
) m−1

32e4γ

≤ 2.

Putting things together. Combining the upper bounds across the three summations, we
have

k∑
s=1

(
n

s

)1−m

e2smγ

(
nc−1

(n− s)c−2

) m−1
32e4γ

+
n−c+1∑
s=k+1

(
(n− s)!s!nc−1

n!(n− s)c−2

) m−1
32e4γ

≤ 26
25e

mγe
m−1

32e4γ + 2 + 9
8(1.27)

m−1
32e4γ

≤ 2e
m−1

32e4γ · emγ ≤ 2e
m−1

32e4γ · e2γ(m−1).

Therefore, we have p(n, c) ≤ 2c−1

c!
(

e
n

) (m−1)(c−1)
32e4γ · e2γ(m−1)(c−1), as desired. ◀

Exponential Correlated Randomness Is Necessary
in Communication-Optimal Perfectly Secure
Two-Party Computation
Keitaro Hiwatashi #

The University of Tokyo, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Koji Nuida #

Kyushu University, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Abstract
Secure two-party computation is a cryptographic technique that enables two parties to compute a
function jointly while keeping each input secret. It is known that most functions cannot be realized
by information-theoretically secure two-party computation, but any function can be realized in the
correlated randomness (CR) model, where a trusted dealer distributes input-independent CR to the
parties beforehand. In the CR model, three kinds of complexities are mainly considered; the size of
CR, the number of rounds, and the communication complexity.

Ishai et al. (TCC 2013) showed that any function can be securely computed with optimal online
communication cost, i.e., the number of rounds is one round and the communication complexity
is the same as the input length, at the price of exponentially large CR. In this paper, we prove
that exponentially large CR is necessary to achieve perfect security and online optimality for a
general function and that the protocol by Ishai et al. is asymptotically optimal in terms of the size
of CR. Furthermore, we also prove that exponentially large CR is still necessary even when we allow
multiple rounds while keeping the optimality of communication complexity.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases Secure Computation, Correlated Randomness, Lower Bound

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.18

Funding Supported by JST CREST Grant Number JPMJCR2113.
Keitaro Hiwatashi: This research was in part conducted under a contract of “Research and develop-
ment on new generation cryptography for secure wireless communication services” among “Research
and Development for Expansion of Radio Wave Resources (JPJ000254),” which was supported by the
Ministry of Internal Affairs and Communications, Japan. The author was also partially supported
by JSPS KAKENHI Grant Number JP21J20186 and JP22KJ0546.
Koji Nuida: Supported by JSPS KAKENHI Grant Number JP19H01109, JP22K11906, and JST
AIP Acceleration Research JPMJCR22U5.

1 Introduction

Secure multi-party computation (MPC) is a cryptographic technique that enables some
parties to compute a function jointly while keeping each input secret. Secure multi-party
computation has been extensively studied since Yao advocated it in the 1980s [25]. From a
theoretical point of view, Kushilevitz [18] gave a complete characterization of a function class
that can be realized by a two-party protocol perfectly secure against a semi-honest adversary,
and Chor and Kushilevitz [7] gave a complete characterization of a boolean function that
can be realized by a perfectly secure multi-party protocol in the dishonest-majority and

© Keitaro Hiwatashi and Koji Nuida;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:keitaro_hiwatashi@mist.i.u-tokyo.ac.jp
mailto:nuida@imi.kyushu-u.ac.jp
https://orcid.org/0000-0001-8259-9958
https://doi.org/10.4230/LIPIcs.ITC.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

semi-honest adversary setting. From their result, most functions (including even simple
functions such as the AND function) cannot be securely realized by a multi-party protocol in
the dishonest-majority setting. However, if we are allowed to use correlated randomness (CR,
in short), any function can be securely realized. Indeed, by using additive secret sharing and
Beaver Triple [2], we can securely compute any boolean circuits. For simplicity, we focus on
the two-party case and consider a semi-honest adversary in this paper.

The CR model, also known as a preprocessing model, is a model where we are allowed to
use CR, which is a randomness independent of an input of a function. In the CR model, a
protocol is divided into two phases: the offline phase and the online phase. In the offline
phase, CR is generated and distributed to the parties. In the online phase, the parties
securely compute a function with their input and the CR distributed in the offline phase.
In most cases, the online phase consists of lightweight computation and is fast enough, and
therefore many recent works (e.g., [1, 5, 6, 9, 17]) adopted the CR model. Some papers
(e.g., [1, 5, 6]) assume that a trusted dealer generates and distributes CR in the offline phase.
In the CR model, three kinds of complexities are mainly considered: the size of CR, the
number of rounds of the online phase, and the communication complexity of the online phase.
By using Beaver Triple, we can construct a secure protocol for a boolean circuit C with
O(s)-bit CR, O(depth(C)) rounds, and O(s)-bit communication complexity, where s is the
size of C and depth(C) is the depth of C. It is a major open problem whether it is possible
to make the communication complexity sublinear in the circuit size.

Ishai et al. [16] partially solved the above open problem by developing a one-time truth
table. In their protocol, the communication complexity is independent of the circuit size and
is linear in the input length. Furthermore, their protocol using a one-time truth table achieves
online optimality, i.e., the number of rounds is one round and the communication complexity
is the same as the input length. However, the size of CR of their protocol is exponential in
the input length.1 Indeed, their protocol needs O(N2)-bit CR where N is the cardinality
of their input domain (which is exponential in the input length). Beimel et al. [4], the full
version of [3], reduced the size of CR to O(N1/2) bits, at the price of increasing the number
of rounds to two rounds and the communication complexity to O(N1/2) bits. Although there
might have to be some trade-off among the three kinds of complexities mentioned above,
the quantitative property of such a trade-off has not been well investigated in the literature.
For example, focusing on Ishai et al.’s protocol, it is even not known whether the size of CR
can be reduced to o(N2) bits while keeping the single round and optimal communication
complexity.

1.1 Our Contributions
In this paper, we show some trade-offs by giving lower bounds of the size of CR in online-
restricted settings where online communication cost (i.e., the number of rounds and the
communication complexity) is restricted. Here we assume “shared-output” setting that the
outputs (y0, y1) by two parties satisfy that the function value is reconstructed by y0 + y1
where ‘+’ is some additive group operation. We discuss this setting in Section 1.2.

More concretely, we give (exponential) lower bounds of the size of CR in two types of online-
restricted settings: online-optimal setting and communication-optimal setting. As described
above, “online-optimal” means that the number of rounds is one round and the communication

1 It is still an open problem whether it is possible to make the communication complexity sublinear in
the circuit size in the setting that the time complexity (and therefore the size of CR) is polynomial in
the input length.

K. Hiwatashi and K. Nuida 18:3

complexity is the same as the input length. On the other hand, “communication-optimal”
means that we allow multiple rounds but the total size of messages sent by a party to the
other party during the multiple rounds is still equal to the size of the input of the party.

Our results are summarized as follows, where N is the cardinality of the domain X :
1. We prove that there exists a function f : X × X → {0, 1}2 such that any online-optimal

perfectly secure two-party protocol for f needs CR of at least (N − 1)2 = Ω(N2) bits.
2. We prove that there exists a function f : X × X → {0, 1}2 such that any communication-

optimal perfectly secure two-party protocol for f needs CR of at least N − 1 = Ω(N)
bits.

The first result implies that the one-time truth table [16], which is an online-optimal secure
two-party protocol with O(N2)-bit CR, is asymptotically optimal among online-optimal ones
for general functions in terms of the size of CR.

1.2 Shared-output vs. Plain-output

Some papers, including Ishai et al. [16] and Beimel et al. [4], considered the “plain-output”
setting, in which both parties output the function value itself, not the share of the function
value. The shared-output setting is more general in the sense that shared-output protocols
can be converted into plain-output protocols by adding a reconstruction step. The protocols
in both Ishai et al. [16] and Beimel et al. [4] contained shared-output protocols in the sense
that their protocols can be divided into two steps: Both protocols (Fig.1 in [16] and Theorem
D.1 in [4]) compute the share of the function value first, and then reconstruct the function
value by exchanging the shares.

Furthermore, the shared-output setting is suitable for the situation where the protocol is
used as a subprotocol in another MPC protocol since the shared output does not leak any
information about the function value itself. Due to this composability, many recent MPC
protocols (e.g., [1, 5, 6, 24]) adopt the shared-output setting.

1.3 Related Work

The prior work most relevant to our setting is a combination of [6] and [14]. In [6], Boyle et
al. showed that distributed point functions (DPF) can be constructed from an online-optimal
(shared-output) equality protocol. In more detail, they showed that given an online-optimal
shared-output equality protocol with r-bit CR, a DPF scheme with O(r)-bit key size can
be constructed2. On the other hand, as Gilboa et al. [14] mentioned, the key size of an
information-theoretic DPF scheme is at least 2Ω(log N) = NΩ(1) bits, where N corresponds to
the cardinality of the domain of point functions. Combining it with the reduction by Boyle
et al., it can be proved that the size of CR of an online-optimal protocol for the equality
function EQ : [N]× [N]→ {0, 1} is at least NΩ(1) bits. To the best of our knowledge, this is
the only prior result showing an exponential lower bound of the size of CR.

There are several results on the randomness complexity not on the size of CR (e.g.,
[13, 15, 19, 20, 21, 22, 23]). We note that they consider MPC in the plain model (not
in the CR model) and with more than two parties. There are also several results on the
communication complexity in multi-party computation (e.g., [8, 10, 11, 12]).

2 Though they only considered the computational security, their reduction can be applied also in the
information-theoretic setting.

ITC 2023

18:4 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

1.4 Organization
We provide the notations used in this paper and the definitions of online- or communication-
optimal secure two-party protocols in Section 2. We provide a technical overview in Section 3.
In Section 4, we prove the lower bound in the online-optimal setting. We prove the lower
bound in the communication-optimal setting in Section 5.

2 Preliminaries

2.1 Notations
For an integer N , let [N] denote the set {0, 1, . . . , N − 1}. Let P0 and P1 be the parties
participating in a two-party protocol. We use ∆k×ℓ(i, j) to denote the k× ℓ matrix for which
the (i, j)-th element is 1 and the other elements are 0. We let G denote an Abelian group,
+ denote the operation on G, and 0 denote the identity element of G. For a boolean value
b ∈ {0, 1}, let b̄ be the negation of b. For a matrix M , M [x, y] denotes the (x, y)-th element
of M .

2.2 Online-Optimal Protocols
▶ Definition 1. An online-optimal secure two-party protocol for f : X0 × X1 → G with
correlated randomness CR ⊆ R0 × R1 consists of three algorithms (Gen, Msg, Eval) with
following syntax:

Gen: Gen outputs a correlated randomness (r0, r1) ∈ CR ⊆ R0 ×R1 without taking any
input.
Msg: Taking party id b ∈ {0, 1}, input x ∈ Xb, and randomness r ∈ Rb, Msg (determin-
istically) outputs a message m ∈Mb.
Eval: Taking party id b ∈ {0, 1}, input x ∈ Xb, randomness r ∈ Rb, and message m ∈Mb̄,
Eval (deterministically) outputs g ∈ G.

satisfying the following three requirements:
Optimality: For b ∈ {0, 1}, the size of Mb is equal to the size of Xb.
Correctness: For all (x0, x1) ∈ X0 ×X1,

Pr

g0 + g1 = f(x0, x1)

∣∣∣∣∣∣∣∣∣∣∣∣

(r0, r1)← Gen,

m0 ← Msg(0, x0, r0),
m1 ← Msg(1, x1, r1),

g0 ← Eval(0, x0, r0, m1),
g1 ← Eval(1, x1, r1, m0)

 = 1.

Security: For b ∈ {0, 1}, the distribution of {
(
rb, Msg(b̄, x, rb̄)

)
}(r0,r1)←Gen is independent

of x ∈ Xb̄.

Without loss of generality, we assume that the randomness space is not redundant. That is,
we assume that the probability Pr[(r0, r1)← Gen] is positive for all (r0, r1) ∈ CR and that for
all r0 ∈ R0 (r1 ∈ R1, resp.), there exists r1 ∈ R1 (r0 ∈ R0, resp.) such that (r0, r1) ∈ CR.

2.3 Communication-Optimal Protocols
▶ Definition 2. A (T -round) communication-optimal secure two-party protocol for f : X0 ×
X1 → G with correlated randomness CR ⊆ R0 ×R1 consists of algorithms (Gen, Msg, Eval)
with following syntax:

K. Hiwatashi and K. Nuida 18:5

Gen: Gen outputs a correlated randomness (r0, r1) ∈ CR ⊆ R0 ×R1 without taking any
input.
Msg: Taking (x0, r0) ∈ X0 ×R0 and (x1, r1) ∈ X1 ×R1, Msg (deterministically) outputs
messages (mes1, . . . , mesT) ∈M1×· · ·×MT . Here mesi is a message sent to Pi mod 2 from
Pi+1 mod 2 which is determined by Pi+1 mod 2’s input xi+1 mod 2, Pi+1 mod 2’s randomness
ri+1 mod 2 and the messages (mes1, . . . , mesi−1) exchanged so far.
Eval: Taking party id b ∈ {0, 1}, input x ∈ Xb, randomness r ∈ Rb, and messages
(mes1, . . . , mesT) exchanged so far, Eval (deterministically) outputs g ∈ G.

satisfying the following three requirements:
Optimality: For b ∈ {0, 1}, the size of the message space Mb is equal to that of the input
space Xb, where M0 = M1 ×M3 ×M5 × · · · and M1 = M2 ×M4 ×M6 × · · · .
Correctness: For all (x0, x1) ∈ X0 ×X1,

Pr

g0 + g1 = f(x0, x1)

∣∣∣∣∣∣∣
(r0, r1)← Gen,

(mes1, . . . , mesT)← Msg(x0, r0, x1, r1),
gb ← Eval(b, xb, rb, (mes1, . . . , mesT))

 = 1.

Security: For b ∈ {0, 1}, the distribution of {(rb, Msg(x0, r0, x1, r1))}(r0,r1)←Gen is inde-
pendent of xb̄ ∈ Xb̄.

As an online-optimal secure two-party protocol, we assume that the randomness space is
not redundant. In our definition, P0 is the first party who sends a message. Note that a
two-party protocol where P1 is the first party who sends a message can be reduced to a
protocol where P0 is the first party who sends a message by letting the first message space
M1 be a singleton.

2.4 Non-Redundant Functions
Throughout this paper, we consider non-redundant functions in the following sense:

▶ Definition 3. We say that a function f : X0 × X1 → G is non-redundant for P0 if
f(x0, ·)− f(x′0, ·) : X1 → G is not constant for all x0 ̸= x′0 ∈ X0; a function f : X0 ×X1 → G
is non-redundant for P1 if f(·, x1)− f(·, x′1) : X0 → G is not constant for all x1 ̸= x′1 ∈ X1;
and a function f : X0 ×X1 → G is non-redundant if f is non-redundant for P0 and P1.

A two-party protocol for a redundant (i.e., not non-redundant) function f is reducible to
a two-party protocol for a non-redundant function f ′ without any overhead. See Appendix A
for more details.

3 Technical Overview

Similar research (e.g., [11, 12]) on the lower bounds for communication or randomness
complexity mainly focuses on information entropy, e.g. the Shannon entropy. However, in
such arguments, it is difficult to effectively handle the correctness requirement as a restraint
condition, and thus the obtained bounds may not be tight in general. We consider this
may be the main reason why strict bounds for our setting have not been obtained so far,
and to overcome this issue, in this work, we instead directly utilize the algebraic aspect
of the correctness requirement. This may require a more complicated argument than the
entropy-based approach, but it would allow the correctness requirement to be fully utilized
in the derivation of the tight lower bound. We provide a more detailed explanation of our
approach in the following subsections.

ITC 2023

18:6 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

3.1 The Case of Online-Optimal Setting

We give the Ω(N2)-bit lower bound for some function f : [N]× [N]→ {0, 1}2 in two steps:
1. By the security, correctness and optimality requirements, we show that the following

equation (hereinafter referred to as the correctness equation) holds: For all (r0, r1) ∈ CR,

A0,r0 + A1,r1 = P T
0,r0

FP1,r1 , (1)

where Ab,rb
is an N ×N matrix determined by rb, Pb,rb

is an N ×N permutation matrix
determined by rb, and F is an N ×N matrix whose (i, j)-th element is equal to f(i, j).

2. For some r0 ∈ R0, we prove that the size of the set {A0,r0 − A0,r′
0
}r′

0∈R0 is at least
2(N−1)2 . This implies that log |R0| ≥ (N − 1)2 and proves the Ω(N2)-bit lower bound.

Roughly speaking, each element of Ab,rb
corresponds to an output of Eval and Pb,rb

is a
permutation matrix corresponding to Msg.

3.1.1 The First Step

The correctness equation Eq.(1) is deduced from the correctness requirement and the fact
that Msg(b, ·, rb) : Xb →Mb is bijective for all b ∈ {0, 1} and rb ∈ Rb (Lemma 6). First, we
give an informal proof of the fact that Msg is bijective. Since the size of the domain Xb and
the range Mb are the same, it is enough to prove that the function is injective. Without
loss of generality, we set b = 0. Suppose on the contrary that there exist x0 ̸= x′0 ∈ X0 such
that Msg(0, x0, r0) = Msg(0, x′0, r0) = m0. This assumption implies that for any input x1
of P1, P1’s output of Eval for the case of P0’s input being x0 is the same as that for the
case of x′0. Therefore, from the correctness requirement, f(x0, x1) − f(x′0, x1) is equal to
Eval(0, x0, r0, m1)−Eval(0, x′0, r0, m1) where m1 is P1’s message with some r1 ∈ R1 satisfying
(r0, r1) ∈ CR. The former depends on x1 by the non-redundancy of f , while the latter can
be computed solely by P0, contradicting the security requirement that P0 should not obtain
any information on x1.

Since Msg(b, ·, rb) is bijective, the input of Pb can be determined by the correlated
randomness rb and the message mb sent from Pb. Therefore, Pb’s output of Eval can be
computed from the messages (m0, m1) and the randomness rb. Let Ab,rb

be an N × N

matrix whose (m0, m1)-th element is equal to Pb’s output of Eval when the messages and
the randomness are (m0, m1) and rb, respectively. From the correctness requirement, for
all (m0, m1), A0,r0 [m0, m1] + A1,r1 [m0, m1] is equal to the entry of the matrix F at the
π−1

0,r0
(m0)-th row and the π−1

1,r1
(m1)-th column, where πb,rb

denotes the bijection Msg(b, ·, rb).
This implies the correctness equation Eq.(1), where P0,r0 and P1,r1 are permutation matrices
corresponding to π−1

0,r0
and π−1

1,r1
, respectively.

3.1.2 The Second Step

For simplicity, let F be ∆N×N (0, 0), G be {0, 1} and the operation on G be XOR. Then, the
right term of the correctness equation Eq.(1) is equal to ∆N×N (Msg(0, 0, r0), Msg(1, 0, r1)).
The notable point is that, given r0 ∈ R0, we can choose the value of Msg(1, 0, r1) arbitrarily
(Lemma 7). That is, for all m1 ∈ M1, there exists r1 ∈ R1 such that (r0, r1) ∈ CR and
Msg(1, 0, r1) = m1 (otherwise, the fact that P0 receives P1’s message m1 would tell P0 that
P1’s input is not 0, contradicting the security).

K. Hiwatashi and K. Nuida 18:7

Let r0 ∈ R0 satisfy Msg(0, 0, r0) = 0. From the property described above, for all
m0 ∈ M0\{0} and m1 ∈ M1\{0}, there exist r′0, r′′0 ∈ R0 and r1, r′1 ∈ R1 such that
(r0, r1), (r′0, r1), (r′0, r′1), (r′′0 , r′1) ∈ CR, Msg(1, 0, r′1) = m1, Msg(0, 0, r′0) = m0, Msg(1, 0, r′1) =
0, and Msg(0, 0, r′′0) = 0. Taking the sum of both sides of the four correctness equations, we
have

A0,r0 + A0,r′′
0

= ∆N×N (0, m1) + ∆N×N (m0, m1) + ∆N×N (m0, 0) + ∆N×N (0, 0).

Note that A+A = 0 since the operation is XOR. This implies that the bottom right corner of
A0,r0 +A0,r′′

0
is equal to ∆(N−1)×(N−1)(m0−1, m1−1) (Theorem 9). Taking the sum of these

equations with various values of m0 and m1, it follows that for all M ∈ {0, 1}(N−1)×(N−1),
there exists r′0 ∈ R0 such that Msg(0, 0, r′0) = 0 and the bottom right corner of A0,r0 + A0,r′

0

is equal to M (Corollary 10). This implies that the size of {A0,r0 + A0,r′
0
}r′

0∈R0 is at least
the size of {0, 1}(N−1)×(N−1), i.e., 2(N−1)2 and this proves the Ω(N2)-bit lower bound.

3.2 The Case of Communication-Optimal Setting
The basic approach to proving the Ω(N)-bit lower bound is the same as in the online-optimal
setting. The main difference is that the message sent from one party at the second or later
round may depend on the other party’s input or randomness. Nevertheless, the situation is
still similar due to the following facts:
1. The map Tr0,r1 : X0 ×X1 →M0 ×M1, which maps the pair of inputs to the transcript

when the correlated randomness is (r0, r1), is bijective. (Lemma 13)
2. The input of Pb can be determined by the correlated randomness rb and the transcript

(m0, m1), and therefore, Pb’s output of Eval can be computed from the transcript (m0, m1)
and the randomness rb. (Lemma 15)

From these facts, even in the present setting, the correctness equation (with a slight modific-
ation on the right side) holds: A0,r0 + A1,r1 = Tr0,r1 ◦ F , where Tr0,r1 ◦ F is an M0 ×M1
matrix whose (m0, m1)-th element is equal to the T−1

r0,r1
(m0, m1)-th element of F .

Let F be ∆N×N (0, 0). Unlike the online-optimal setting, now the right side of the
correctness equation is equal to ∆N×N (Tr0,r1(0, 0)). A notable point is that each of the row
and column entries of Tr0,r1(0, 0) depends on both r0 and r1, in contrast to the online-optimal
setting where the row entry Msg(0, 0, r0) (resp. the column entry Msg(1, 0, r1)) depends only
on r0 (resp. r1). However, we can still somehow control the value of Tr0,r1(0, 0) (Lemma 12
and Lemma 14), and we can set the (N − 1) × 1 submatrix at the bottom left corner of
A0,r0 + A0,r′

0
arbitrarily by varying r′0. This proves the Ω(N)-bit lower bound.

4 The Case of Online-Optimal Setting

In this section, we prove the optimality of Ishai et al.’s protocol [16] among online-optimal
two-party protocols in terms of the size of CR for the “worst” function. In Section 4.1, we
give a matrix representation of the three requirements for an online-optimal secure two-party
protocol given in Section 2 (Theorem 8). In Section 4.2, we give a function whose domain is
[N]× [N] such that any online-optimal two-party protocol for f needs Ω(N2)-bit CR.

4.1 Matrix Representation
Throughout this subsection, we let (Gen, Msg, Eval) denote an online-optimal secure two-party
protocol for f : X0 × X1 → G with correlated randomness CR ⊆ R0 ×R1. For b ∈ {0, 1},
x ∈ Xb, and m ∈Mb, let Rb,x,m = {r ∈ Rb | Msg(b, x, r) = m}.

ITC 2023

18:8 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

First, we give four lemmas for the matrix representation:

▶ Lemma 4. For all b ∈ {0, 1} and x ∈ Xb, the following hold:
Rb,x,m ∩Rb,x,m′ = ∅ for all m ̸= m′ ∈Mb.

∪m∈Mb
Rb,x,m = Rb.

Proof. These two statements are deduced from the fact that r is in Rb,x,m if and only if m

is equal to Msg(b, x, r). ◀

▶ Lemma 5. For all b ∈ {0, 1} and m ∈Mb, the following hold:
Rb,x,m ∩Rb,x′,m = ∅ for all x ̸= x′ ∈ Xb.
∪x∈Xb

Rb,x,m = Rb.

Proof. We fix b = 0 in this proof. In the case of b = 1, the statement can be proved similarly.
First, we prove the first statement. Suppose on the contrary that an r ∈ R0,x,m ∩R0,x′,m

exists. By the non-redundancy of the randomness space, there is an r′ ∈ R1 such that (r, r′) ∈
CR. Now it suffices to show that there exist y, y′ ∈ X1 such that y ̸= y′ and Msg(1, y′, r′′) ̸=
Msg(1, y, r′) for any r′′ ∈ R1 with (r, r′′) ∈ CR; indeed, this implies that (r, Msg(1, y, r′))
belongs to {(r∗, Msg(1, y, r∗∗))}(r∗,r∗∗)∈CR but not to {(r∗, Msg(1, y′, r∗∗))}(r∗,r∗∗)∈CR, which
contradicts the security requirement. To show the claim, suppose on the contrary that for
any y, y′ ∈ X1 with y ̸= y′, there is an r′′ ∈ R1 such that (r, r′′) ∈ CR and Msg(1, y′, r′′) =
Msg(1, y, r′). From the correctness requirement, we have

Eval(0, x, r, Msg(1, y, r′)) + Eval(1, y, r′, Msg(0, x, r)) = f(x, y),
Eval(0, x′, r, Msg(1, y, r′)) + Eval(1, y, r′, Msg(0, x, r)) = f(x′, y)

(note that now Msg(0, x′, r) = m = Msg(0, x, r) by the choice of r), and therefore

Eval(0, x, r, Msg(1, y, r′))− Eval(0, x′, r, Msg(1, y, r′)) = f(x, y)− f(x′, y). (2)

By the same argument for (y′, r′′) instead of (y, r′), we also have

Eval(0, x, r, Msg(1, y′, r′′))− Eval(0, x′, r, Msg(1, y′, r′′)) = f(x, y′)− f(x′, y′). (3)

By the choice of r′′, the left-hand sides of Equations (2) and (3) are equal, therefore we have
f(x, y) − f(x′, y) = f(x, y′) − f(x′, y′). Since y ̸= y′ were arbitrary, this implies that the
function f(x, ·)− f(x′, ·) on X1 is constant, contradicting the non-redundancy of f . Hence,
we have R0,x,m ∩R0,x′,m = ∅.

Next, we prove the second statement. Suppose that ∪x∈X0R0,x,m ⊊ R0. Then, we have∑
m∈M0

∑
x∈X0

|R0,x,m| =
∑

m∈M0

| ∪x∈X0 R0,x,m| (∵ the first statement)

<
∑

m∈M0

|R0| = |M0| · |R0|.

From Lemma 4, we have∑
x∈X0

∑
m∈M0

|R0,x,m| =
∑

x∈X0

|R0| = |X0| · |R0|.

This means that |X0| · |R0| < |M0| · |R0| and contradicts the optimality requirement. Hence,
we have ∪x∈X0R0,x,m = R0. ◀

▶ Lemma 6. For all b ∈ {0, 1} and r ∈ Rb, Msg(b, ·, r) : Xb →Mb is a bijection.

K. Hiwatashi and K. Nuida 18:9

Proof. From Lemma 5, Msg(b, ·, r) is an injection. Since |Xb| = |Mb| from the optimality
requirement, the injective function Msg(b, ·, r) is a bijection. ◀

▶ Lemma 7. For all b ∈ {0, 1}, rb̄ ∈ Rb̄, and (xb, mb) ∈ Xb ×Mb, there exists rb ∈ Rb such
that (r0, r1) ∈ CR and Msg(b, xb, rb) = mb.

Proof. We fix b = 0 in this proof. In the case of b = 1, the statement can be proved similarly.
Let r1 ∈ R1 and (x0, m0) ∈ X0 × M0. By the non-redundancy of the randomness

space, there is an r∗ ∈ R0 with (r∗, r1) ∈ CR. By Lemma 6, there exists an x′ ∈ X0
such that Msg(0, x′, r∗) = m0 and therefore (r1, m0) ∈ {(r′, Msg(0, x′, r))}(r,r′)∈CR. Since
this set is independent of x′ from the security requirement, we also have (r1, m0) ∈
{(r′, Msg(0, x0, r))}(r,r′)∈CR, therefore there is an r0 ∈ R0 such that (r0, r1) ∈ CR and
Msg(0, x0, r0) = m0. This proves the statement. ◀

Then, we give a matrix representation of the three requirements for an online-optimal
secure two-party protocol:

▶ Theorem 8. Given an online-optimal secure two-party protocol (Gen, Msg, Eval) for f : X0×
X1 → G with correlated randomness CR ⊆ R0 × R1, let F be an X0 × X1 matrix whose
(x0, x1)-th element is f(x0, x1). Then, for any b ∈ {0, 1} and r ∈ Rb, there exist anM0×M1
matrix Ab,r and an Xb ×Mb permutation matrix Pb,r such that

for all (r0, r1) ∈ CR, A0,r0 + A1,r1 = P T
0,r0

FP1,r1 holds;
for all rb̄ ∈ Rb̄ and (xb, mb) ∈ Xb ×Mb, there exists rb ∈ Rb such that (r0, r1) ∈ CR and
Pb,rb

[xb, mb] = 1.

Note that, roughly speaking, the optimality requirement corresponds to Pb,r being a
permutation matrix, and the correctness and security requirements correspond to the first
and the second conditions of the theorem, respectively.

Proof. For b ∈ {0, 1}, let Eb,rb
for rb ∈ Rrb

be an Xb×Mb̄ matrix whose (xb, mb̄)-th element
is equal to Eval(b, xb, rb, mb̄). For b ∈ {0, 1}, let Pb,rb

for rb ∈ Rrb
be an Xb ×Mb matrix

whose (xb, Msg(b, xb, rb))-th element is 1 and other elements are 0. Since the (xb, xb̄)-th
element of Eb,rb

P T
b̄,rb̄

is equal to Eval(b, xb, rb, Msg(b̄, xb̄, rb̄)), the correctness requirement can
be expressed by the following:

E0,r0P T
1,r1

+
(
E1,r1P T

0,r0

)T = F (4)

for all (r0, r1) ∈ CR. From Lemma 6, Pb,rb
is a permutation matrix and therefore P T

b,rb
is

its inverse. By multiplying P T
0,r0

from the left (P1,r1 from the right, resp.) to both sides of
Equation (4), we have

P T
0,r0

E0,r0 + ET
1,r1

P1,r1 = P T
0,r0

FP1,r1 . (5)

Therefore, (A0,r0 , A1,r1) = (P T
0,r0

E0,r0 , ET
1,r1

P1,r1) satisfies the first condition of the statement.
The second condition of the statement is deduced from Lemma 7. ◀

4.2 Lower Bound
We prove the Ω(N2)-bit lower bound for the function f : [N] × [N] → {0, 1}2 defined as

follows:

f(x0, x1) =

11 (x0 = x1 = 0)
01 (x0 = x1 ̸= 0)
00 (otherwise).

ITC 2023

18:10 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

That is, we prove that any online-optimal secure two-party protocol for f needs Ω(N2)-bit
CR. Note that the operation ‘+’ on {0, 1}2 is bitwise XOR here and that f is non-redundant.

In the rest of this section, we write [N] instead of Xb and Mb. Without loss of generality,
we consider the lower bound for the size of P0’s CR (i.e., log |R0|).

We use the notation Ab,rb
and Pb,rb

for representing N × N matrices whose existence
is guaranteed by Theorem 8. Since the operation on {0, 1}2 is bitwise XOR, Equation (5)
holds even if we focus on the first bit of each element of Ab,rb

and F . Therefore, we focus on
the first bit and use the same notation Ab,rb

and F . Then we have F = ∆N×N (0, 0) in the
current setting.

First, we prove the following theorem:

▶ Theorem 9. Suppose that r0 ∈ R0 satisfies Msg(0, 0, r0) = 0. Then, for all i, j ∈ [N − 1],
there exists an r′0 ∈ R0 such that

Msg(0, 0, r′0) = 0,
the (N − 1)× (N − 1) submatrix in the bottom right corner of A0,r0 + A0,r′

0
is equal to

∆(N−1)×(N−1)(i, j).

Proof. From the definition of Pb,rb
(see the proof of Theorem 8), the right term of Equation (5)

is equal to ∆N×N (Msg(0, 0, r0), Msg(1, 0, r1)). From Theorem 8, there exists an r1 ∈ R1 such
that (r0, r1) ∈ CR and Msg(1, 0, r1) = j +1, and there exists r′′0 ∈ R0 such that (r′′0 , r1) ∈ CR
and Msg(0, 0, r′′0) = i + 1. From the property mentioned at the beginning, we have

A0,r0 + A1,r1 = ∆N×N (0, j + 1) and A0,r′′
0

+ A1,r1 = ∆N×N (i + 1, j + 1),

and therefore

A0,r0 + A0,r′′
0

= (A0,r0 + A1,r1) + (A0,r′′
0

+ A1,r1)
= ∆N×N (0, j + 1) + ∆N×N (i + 1, j + 1).

Similarly, there exist an r′1 ∈ R1 and an r′0 ∈ R0 such that (r′′0 , r′1) ∈ CR, Msg(1, 0, r′1) = 0,
(r′0, r′1) ∈ CR, and Msg(0, 0, r′0) = 0. Then, we have

A0,r′′
0

+ A1,r′
1

= ∆N×N (i + 1, 0) and A0,r′
0

+ A1,r′
1

= ∆N×N (0, 0),

and

A0,r′′
0

+ A0,r′
0

= (A0,r′′
0

+ A1,r′
1
) + (A0,r′

0
+ A1,r′

1
) = ∆N×N (i + 1, 0) + ∆N×N (0, 0).

Hence, we have

A0,r0 + A0,r′
0

= ∆N×N (0, j + 1) + ∆N×N (i + 1, j + 1) + ∆N×N (i + 1, 0) + ∆N×N (0, 0).

Especially, the (N − 1)× (N − 1) submatrix in the bottom right corner of A0,r0 + A0,r′
0

is
equal to ∆(N−1)×(N−1)(i, j). Therefore, r′0 satisfies the condition of the statement. ◀

Using Theorem 9 sequentially, we have the following corollary:

▶ Corollary 10. Suppose that r0 ∈ R0 satisfies Msg(0, 0, r0) = 0. Then, for all M ∈
{0, 1}(N−1)×(N−1), there exists an r′0 ∈ R0 such that

Msg(0, 0, r′0) = 0,
the (N − 1)× (N − 1) submatrix in the bottom right corner of A0,r0 + A0,r′

0
is equal to M .

K. Hiwatashi and K. Nuida 18:11

Proof. For r ∈ R0, we use the notation A′0,r for the (N − 1) × (N − 1) submatrix in the
bottom right corner of A0,r. Let I be the set of indices where the element of M is equal
to 1, i.e., I = {(i, j) ∈ [N − 1]× [N − 1] |M [i, j] = 1}. Let Mk = ∆(N−1)×(N−1)(ik, jk) for
k ≥ 0, where (ik, jk) is the k-th element of I (in some ordering). We define the sequence
r0,0, r0,1, . . . , r0,|I| as follows:

r0,0 = r0.
For k ≥ 1, r0,k is an element of R0 such that A′0,r0,k−1

+ A′0,r0,k
is equal to Mk−1 and

Msg(0, 0, r0,k) is equal to 0. The existence of such r0,k is guaranteed by Theorem 9.
We have

A′0,r0,0
+ A′0,r0,|I|

=
|I|∑

k=1
(A′0,r0,k−1

+ A′0,r0,k
) =

|I|∑
k=1

Mk−1 = M,

and therefore r′0 = r0,|I| satisfies the condition of the statement. ◀

The lower bound of the size of P0’s CR is derived from Corollary 10:

▶ Corollary 11. The size of CR delivered to P0 is Ω(N2) bits. More concretely, it is greater
than or equal to (N − 1)2 bits.

Proof. Let r0 ∈ R0 satisfy Msg(0, 0, r0) = 0. (The existence of such r0 is guaranteed by
Lemma 7.) From Corollary 10, the following inequality holds:∣∣{A0,r0 + A0,r′

0
}r′

0∈R0

∣∣ ≥ ∣∣∣{0, 1}(N−1)×(N−1)
∣∣∣ .

Since the left term of the above inequality is upper-bounded by |R0|, we have

|R0| ≥
∣∣∣{0, 1}(N−1)×(N−1)

∣∣∣ = 2(N−1)2
.

Therefore, the size of P0’s CR is greater than or equal to (N − 1)2 bits. ◀

5 The Case of Communication-Optimal Setting

In this section, we prove the Ω(N)-bit lower bound for the size of CR of a communication-
optimal two-party protocol for the concrete function f given in Section 4.2.

We give a matrix representation of the three requirements for a communication-optimal
secure two-party protocol in Section 5.1 (Theorem 16). In Section 5.2, we prove that any
communication-optimal two-party protocol for f given in Section 4.2 needs Ω(N)-bit CR.

5.1 Matrix Representation
Throughout this subsection, we let (Gen, Msg, Eval) denote a communication-optimal secure
two-party protocol for f : X0 × X1 → G with correlated randomness CR ⊆ R0 × R1. For
(r0, r1) ∈ R0 ×R1, let Tr0,r1 : X0 ×X1 →M0 ×M1 be a function such that Tr0,r1(x0, x1) =
(m0, m1), where mb is a message which Pb sends to Pb̄ in the online phase whose input (CR,
resp.) is (x0, x1) ((r0, r1), resp.). That is, m0 is equal to (mes1, mes3, . . .) and m1 is equal to
(mes2, mes4, . . .), where (mes1, mes2, . . .) = Msg(x0, r0, x1, r1). Note that the message mb

which Pb sends to Pb̄ is uniquely determined by (xb, rb, mb̄), where xb is Pb’s input, rb is Pb’s
CR, and mb̄ is a message sent to Pb by Pb̄. We define a function gb

xb,rb
: Mb̄ →Mb based on

the above correspondence. Let S0
x0,r0

be the set {(g0
x0,r0

(m1), m1)}m1∈M1 ⊆M0 ×M1 and
let S1

x1,r1
be the set {(m0, g1

x1,r1
(m0))}m0∈M0 ⊆M0 ×M1.

First, we give four lemmas for the matrix representation:

ITC 2023

18:12 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

▶ Lemma 12. S0
x0,r0

∩ S1
x1,r1

= {Tr0,r1(x0, x1)} holds for all (r0, r1) ∈ CR and (x0, x1) ∈
X0 ×X1.

Proof. Let (m0, m1) := Tr0,r1(x0, x1). By the definition, g0
x0,r0

(m1) = m0 and g1
x1,r1

(m0) =
m1, and therefore (m0, m1) ∈ S0

x0,r0
∩ S1

x1,r1
. Suppose on the contrary that there exists

(m′0, m′1) ∈ S0
x0,r0

∩ S1
x1,r1

such that (m′0, m′1) ̸= (m0, m1). Let t be the first round where the
two transcripts determined by (m0, m1) and (m′0, m′1) differ and let Pb be the party who
sends a message at t-th round. Since gb

xb,rb
(mb̄) = mb and gb

xb,rb
(m′

b̄
) = m′b, the t-th messages

msgt and msg′t in the transcripts (m0, m1) and (m′0, m′1) are determined by (xb, rb) and the
(t− 1)-th or earlier messages in the transcripts (m0, m1) and (m′0, m′1), respectively. Since
the latter messages are equal by the minimality of t, we have msgt = msg′t, contradicting the
choice of t. Therefore, there is no (m′0, m′1) ∈ S0

x0,r0
∩ S1

x1,r1
such that (m′0, m′1) ̸= (m0, m1),

and the statement holds. ◀

▶ Lemma 13. For all (r0, r1) ∈ CR, Tr0,r1 is bijective.

Proof. Since |X0 ×X1| = |M0 ×M1| from the optimality requirement, it is enough to prove
that Tr0,r1 is injective. Suppose on the contrary that there exist (x0, x1) ̸= (x′0, x′1) ∈ X0×X1
such that Tr0,r1(x0, x1) = Tr0,r1(x′0, x′1) =: (m0, m1). We assume that x0 ̸= x′0 in the proof;
the other case x1 ̸= x′1 is similar.

For any x′′1 ∈ X1, there exists an r′′1 ∈ R1 such that (r0, r′′1) ∈ CR and Tr0,r′′
1
(x0, x′′1) =

(m0, m1), since we have {(r∗, Tr∗,r∗∗(x0, x1))}(r∗,r∗∗)∈CR = {(r∗, Tr∗,r∗∗(x0, x′′1))}(r∗,r∗∗)∈CR
by the security requirement and the left-hand side contains (r0, (m0, m1)). By
Lemma 12, (m0, m1) belongs to all of S0

x0,r0
, S0

x′
0,r0

, and S1
x′′

1 ,r′′
1
, therefore Tr0,r′′

1
(x0, x′′1) =

Tr0,r′′
1

(x′0, x′′1) = (m0, m1) by Lemma 12 again. Then, from the correctness requirement, we
have

Eval(0, x0, r0, (m0, m1)) + Eval(1, x′′1 , r′′1 , (m0, m1)) = f(x0, x′′1),
Eval(0, x′0, r0, (m0, m1)) + Eval(1, x′′1 , r′′1 , (m0, m1)) = f(x′0, x′′1),

and therefore

Eval(0, x0, r0, (m0, m1))− Eval(0, x′0, r0, (m0, m1)) = f(x0, x′′1)− f(x′0, x′′1). (6)

Since x′′1 was arbitrary, it follows that the function f(x0, ·) − f(x′0, ·) is constant on X1,
contradicting the non-redundancy of f . Hence the statement holds. ◀

▶ Lemma 14. For all b ∈ {0, 1}, rb ∈ Rb, xb̄ ∈ Xb̄, and (m0, m1) ∈M0 ×M1, there exists
rb̄ ∈ Rb̄ such that (r0, r1) ∈ CR and (m0, m1) ∈ S b̄

xb̄,rb̄
.

Proof. We prove the statement for the case of b = 0; the other case b = 1 is similar. By
the non-redundancy of the randomness space, there is an r′1 ∈ R1 such that (r0, r′1) ∈ CR.
By Lemma 13, there is (x′0, x′1) ∈ X0 × X1 such that (m0, m1) = Tr0,r′

1
(x′0, x′1). There-

fore we have (r0, (m0, m1)) ∈ {(r∗, Tr∗,r∗∗(x′0, x′1))}(r∗,r∗∗)∈CR, while this set is equal to
{(r∗, Tr∗,r∗∗(x′0, x1))}(r∗,r∗∗)∈CR by the security requirement. This implies that there is an
r1 ∈ R1 such that (r0, r1) ∈ CR and Tr0,r1(x′0, x1) = (m0, m1), therefore (m0, m1) ∈ S1

x1,r1

by Lemma 12. Hence the statement holds. ◀

▶ Lemma 15. For all (m0, m1) ∈M0 ×M1, b ∈ {0, 1}, and rb ∈ Rb, there exists a unique
xb ∈ Xb such that gb

xb,rb
(mb̄) = mb.

K. Hiwatashi and K. Nuida 18:13

Proof. We prove the statement for the case of b = 0; the other case b = 1 is similar. First,
we prove the existence. By definition, g0

x0,r0
(m1) = m0 holds if and only if (m0, m1) ∈ S0

x0,r0
.

Let r1 ∈ R1 satisfy (r0, r1) ∈ CR. From Lemma 13, there exists (x0, x1) ∈ X0×X1 such that
Tr0,r1(x0, x1) = (m0, m1). From Lemma 12, S0

x0,r0
contains Tr0,r1(x0, x1) and this proves the

existence.
Then, we prove the uniqueness. Suppose on the contrary that there exist x0 ̸= x′0 ∈ X0

such that g0
x0,r0

(m1) = g0
x′

0,r0
(m1) = m0 and therefore S0

x0,r0
and S0

x′
0,r0

contain (m0, m1).
From Lemma 14, for all x1 ∈ X1, there exists r1 ∈ R1 such that (r0, r1) ∈ CR and
(m0, m1) ∈ S1

x1,r1
. Since (m0, m1) ∈ S0

x0,r0
∩ S1

x1,r1
and (m0, m1) ∈ S0

x′
0,r0
∩ S1

x1,r1
, we have

Tr0,r1(x0, x1) = Tr0,r1(x′0, x1) = (m0, m1) from Lemma 12. This contradicts the fact that
Tr0,r1 is bijective (Lemma 13). This proves the uniqueness. ◀

Then, we give a matrix representation of the three requirements for a communication-
optimal secure two-party protocol:

▶ Theorem 16. Given a communication-optimal secure two-party protocol (Gen, Msg, Eval)
for f : X0×X1 → G with correlated randomness CR ⊆ R0×R1, let F be an X0×X1 matrix
whose (x0, x1)-th element is f(x0, x1). Then, for b ∈ {0, 1} and rb ∈ Rb, there exist an
M0 ×M1 matrix Ab,rb

and a bijection Tr0,r1 : X0 ×X1 →M0 ×M1 such that
for all (r0, r1) ∈ CR, A0,r0 + A1,r1 = Tr0,r1 ◦ F holds;
for all b ∈ {0, 1}, rb ∈ Rb, xb̄ ∈ Xb̄ and (m0, m1) ∈M0 ×M1, there exists rb̄ ∈ Rb̄ such
that (r0, r1) ∈ CR and (m0, m1) ∈ S b̄

xb̄,rb̄
.

Here, Tr0,r1 ◦F is an M0×M1 matrix whose (m0, m1)-th element is equal to T−1
r0,r1

(m0, m1)-th
element of F .

Note that, roughly speaking, the optimality requirement corresponds to Tr0,r1 being a
bijection,the correctness requirement corresponds to the first condition of the theorem, and
the security requirement corresponds to the second condition of the theorem.

Proof. Eval(b, xb, rb, (m0, m1)) is determined by (m0, m1, rb) since xb is uniquely determined
by (m0, m1, rb) from Lemma 15. Let Ab,rb

be anM0×M1 matrix whose (m0, m1)-th element
is equal to Eval(b, xb, rb, (m0, m1)). Note that Tr0,r1 is bijective from Lemma 13.

The first condition is deduced from the correctness requirement and the definition of
Ab,rb

and Tr0,r1 . The second condition is the same as Lemma 14. ◀

5.2 Lower Bound
We prove the Ω(N)-bit lower bound for the function f : [N] × [N] → {0, 1}2 defined in
Section 4.2. That is, we prove that any communication-optimal secure two-party protocol
for f needs Ω(N)-bit CR.

In the rest of this section, we write [N] instead of Xb and Mb. We consider the lower
bound for the size of P0’s CR (i.e., log |R0|); the lower bound for the size of P1’s CR is similar.
We use the notation Ab,rb

for representing N ×N matrices whose existence is guaranteed by
Theorem 16, and as in Section 4.2, we focus on the first bit and use the same notation Ab,rb

and F . Then we have F = ∆N×N (0, 0) in the current setting.
First, we prove the following theorem:

▶ Theorem 17. Suppose that r0 ∈ R0 satisfies (0, 0) ∈ S0
0,r0

. Then, for all i ∈ [N − 1], there
exists r′0 ∈ R0 such that

(0, 0) ∈ S0
0,r′

0
.

The (N−1)×1 submatrix at the bottom left corner of A0,r0 +A0,r′
0

is equal to ∆(N−1)×1(i, 0).

ITC 2023

18:14 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

Proof. Let Bb,rb
be the (N − 1)× 1 submatrix at the bottom left corner of Ab,rb

. From the
definition of the operation ◦, Tr0,r1◦F is equal to ∆N×N (Tr0,r1(0, 0)). From Theorem 16, there
exists r1 ∈ R1 such that (r0, r1) ∈ CR and (i + 1, 0) ∈ S1

0,r1
, and there exists r′′0 ∈ R0 such

that (r′′0 , r1) ∈ CR and (i + 1, 0) ∈ S0
0,r′′

0
. Let M := ([N]× [N])\{(m, 0) | m = 1, . . . , N − 1}.

From the definition of S0
0,r0

and the assumption that (0, 0) belongs to S0
0,r0

, g0
0,r0

(0) = 0
and S0

0,r0
is equal to {(0, 0)}∪{(g0

0,r0
(m), m)}m=1,...,N−1 ⊆M . Therefore, from Lemma 12, we

have Tr0,r1(0, 0) ∈ S0
0,r0
∩S1

1,r1
⊆M and B0,r0 + B1,r1 is the zero matrix. Also, Tr′′

0 ,r1(0, 0) =
(i + 1, 0) since (i + 1, 0) ∈ S0

0,r′′
0
∩ S1

0,r1
. Therefore, B0,r′′

0
+ B1,r1 is equal to ∆(N−1)×1(i, 0)

and we have

B0,r0 + B0,r′′
0

= (B0,r0 + B1,r1) + (B0,r′′
0

+ B1,r1) = ∆(N−1)×1(i, 0).

Let (m′0, m′1) ∈ S0
0,r′′

0
\{(i, 0)}. Note that (m′0, m′1) ∈ M since S0

0,r′′
0
\{(i, 0)} is equal

to {(g0
0,r′′

0
(m), m)}m=1,...,N−1 ⊆ M . From Theorem 16, there exists r′1 ∈ R1 such that

(r′′0 , r′1) ∈ CR and (m′0, m′1) ∈ S1
0,r′

1
, and there exists r′0 ∈ R0 such that (r′0, r′1) ∈ CR

and (0, 0) ∈ S0
0,r′

0
. From Lemma 12 and the fact that (m′0, m′1) ∈ S0

0,r′′
0
∩ S1

0,r′
1
, we have

Tr′′
0 ,r′

1
(0, 0) = (m′0, m′1) ∈M and B0,r′′

0
+B1,r′

1
is the zero matrix. Also, from the definition of

S0
0,r′

0
and the fact that (0, 0) ∈ S0

0,r′
0
, S0

0,r′
0

is equal to {(0, 0)} ∪ {(g0
0,r′

0
(m), m)}m=1,...,N−1 ⊆

M . From Lemma 12, we have Tr′
0,r′

1
(0, 0) ∈ S0

0,r′
0
∩ S1

0,r′
1
⊆M and B0,r′

0
+ B1,r′

1
is the zero

matrix. Therefore, B0,r′′
0

+ B0,r′
0

= (B0,r′′
0

+ B1,r′
1
) + (B0,r′

0
+ B1,r′

1
) is the zero matrix.

Hence, B0,r0 + B0,r′
0

= (B0,r0 + B0,r′′
0

) + (B0,r′′
0

+ B0,r′
0
) is equal to ∆(N−1)×1(i, 0), and

therefore r′0 satisfies the conditions of the statement. ◀

Using Theorem 17 sequentially, we have the following corollary:

▶ Corollary 18. Suppose that r0 ∈ R0 satisfies (0, 0) ∈ S0
0,r0

. Then, for all M ∈
{0, 1}[N−1]×[1], there exists r′0 ∈ R0 such that

(0, 0) ∈ S0
0,r′

0
.

The (N − 1)× 1 submatrix at the bottom left corner of A0,r0 + A0,r′
0

is equal to M .

Proof. We can prove this corollary similarly to Corollary 10. ◀

The lower bound of the size of P0’s CR is derived from Corollary 18:

▶ Corollary 19. The size of CR delivered to P0 is Ω(N) bits. More concretely, it is greater
than or equal to N − 1 bits.

Proof. We can prove this corollary similarly to Corollary 11. ◀

References
1 Nuttapong Attrapadung, Goichiro Hanaoaka, Takahiro Matsuda, Hiraku Morita, Kazuma

Ohara, Jacob C. N. Schuldt, Tadanori Teruya, and Kazunari Tozawa. Oblivious linear group
actions and applications. In CCS’21, pages 630–650. ACM, 2021. doi:10.1145/3460120.
3484584.

2 Donald Beaver. Efficient multiparty protocols using circuit randomization. In 11th CRYPTO,
volume 576 of LNCS, pages 420–432. Springer, 1991. doi:10.1007/3-540-46766-1_34.

3 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions. In 11th TCC, volume 8349 of LNCS, pages 317–342.
Springer, 2014. doi:10.1007/978-3-642-54242-8_14.

4 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions (full version of [3]). https://people.csail.mit.edu/
ranjit/papers/BIKK.pdf, 2014.

https://doi.org/10.1145/3460120.3484584
https://doi.org/10.1145/3460120.3484584
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-54242-8_14
https://people.csail.mit.edu/ranjit/papers/BIKK.pdf
https://people.csail.mit.edu/ranjit/papers/BIKK.pdf

K. Hiwatashi and K. Nuida 18:15

5 Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar, and
Mayank Rathee. Function secret sharing for mixed-mode and fixed-point secure computation.
In 40th EUROCRYPT, volume 12697 of LNCS, pages 871–900. Springer, 2021. doi:10.1007/
978-3-030-77886-6_30.

6 Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing via
function secret sharing. In 17th TCC, volume 11891 of LNCS, pages 341–371. Springer, 2019.
doi:10.1007/978-3-030-36030-6_14.

7 Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. In 21st STOC, pages
62–72. ACM, 1989. doi:10.1145/73007.73013.

8 Geoffroy Couteau. A note on the communication complexity of multiparty computation in the
correlated randomness model. In 38th EUROCRYPT, volume 11477 of LNCS, pages 473–503.
Springer, 2019. doi:10.1007/978-3-030-17656-3_17.

9 Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The tinytable
protocol for 2-party secure computation, or: Gate-scrambling revisited. In 37th CRYPTO,
volume 10401 of LNCS, pages 167–187. Springer, 2017. doi:10.1007/978-3-319-63688-7_6.

10 Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael Raskin. On the
communication required for unconditionally secure multiplication. In 36th CRYPTO, volume
9815 of LNCS, pages 459–488. Springer, 2016. doi:10.1007/978-3-662-53008-5_16.

11 Ivan Bjerre Damgård, Boyang Li, and Nikolaj Ignatieff Schwartzbach. More communication
lower bounds for information-theoretic mpc. In 2nd ITC, volume 199 of LIPIcs, pages 2:1–2:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITC.2021.2.

12 Deepesh Data, Manoj M. Prabhakaran, and Vinod M. Prabhakaran. On the communication
complexity of secure computation. In 34th CRYPTO, volume 8617 of LNCS, pages 199–216.
Springer, 2014. doi:10.1007/978-3-662-44381-1_12.

13 Anna Gál and Adi Rosén. Lower bounds on the amount of randomness in private computation.
In 35th STOC, pages 659–666. ACM, 2003. doi:10.1145/780542.780638.

14 Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
33rd EUROCRYPT, volume 8441 of LNCS, pages 640–658. Springer, 2014. doi:10.1007/
978-3-642-55220-5_35.

15 Vipul Goyal, Yuval Ishai, and Yifan Song. Tight bounds on the randomness complexity of
secure multiparty computation. In 42nd CRYPTO, volume 13510 of LNCS, pages 483–513.
Springer, 2022. doi:10.1007/978-3-031-15985-5_17.

16 Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In 10th TCC,
volume 7785 of LNCS, pages 600–620. Springer, 2013. doi:10.1007/978-3-642-36594-2_34.

17 Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious arithmetic
secure computation with oblivious transfer. In CCS’16, pages 830–842. ACM, 2016. doi:
10.1145/2976749.2978357.

18 Eyal Kushilevitz. Privacy and communication complexity. In 30th FOCS, pages 416–421.
IEEE Computer Society, 1989. doi:10.1109/sfcs.1989.63512.

19 Eyal Kushilevitz and Yishay Mansour. Randomness in private computations. In 15th PODC,
pages 181–190. ACM Press, 1996. doi:10.1145/248052.248089.

20 Eyal Kushilevitz, Rafail Ostrovsky, Emmanuel Prouff, Adi Rosén, Adrian Thillard, and
Damien Vergnaud. Lower and upper bounds on the randomness complexity of private
computations of and. In 17th TCC, volume 11892 of LNCS, pages 386–406. Springer, 2019.
doi:10.1007/978-3-030-36033-7_15.

21 Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear size circuits in terms
of privacy. In 28th STOC. ACM, 1996. doi:10.1145/237814.238002.

22 Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Amortizing randomness in private
multiparty computations. In 17th PODC, pages 81–90. ACM, 1998. doi:10.1145/277697.
277710.

ITC 2023

https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-77886-6_30
https://doi.org/10.1007/978-3-030-36030-6_14
https://doi.org/10.1145/73007.73013
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.4230/LIPIcs.ITC.2021.2
https://doi.org/10.1007/978-3-662-44381-1_12
https://doi.org/10.1145/780542.780638
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-031-15985-5_17
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1109/sfcs.1989.63512
https://doi.org/10.1145/248052.248089
https://doi.org/10.1007/978-3-030-36033-7_15
https://doi.org/10.1145/237814.238002
https://doi.org/10.1145/277697.277710
https://doi.org/10.1145/277697.277710

18:16 Exponential Correlated Randomness Is Necessary in Communication-Optimal 2PC

23 Eyal Kushilevitz and Adi Rosén. A randomness-rounds tradeoff in private computation. In 14th
CRYPTO, volume 839 of LNCS, pages 397–410. Springer, 1994. doi:10.1007/3-540-48658-5_
36.

24 Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0: improved mixed-
protocol secure two-party computation. In 30th USENIX Security Symposium, pages 2165–2182.
USENIX Association, 2021. URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/patra.

25 Andrew C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS,
pages 162–167. IEEE Computer Society, 1986. doi:10.1109/SFCS.1986.25.

A Reduction to Protocol for Non-Redundant Function

In this section, we reduce a protocol for f : X0 ×X1 → G to a protocol for a non-redundant
function f ′. We define the binary relations ‘∼’ on X0 as follows: x0 ∼ x′0 if and only if
f(x0, ·)− f(x′0, ·) : X1 → G is constant. Note that is an equivalence relation. Let X ′0 ⊆ X0
be a complete system of representatives, and let ϕ0 be the natural sujection X0 → X ′0. By
the definition, f(x, ·)− f(ϕ(x), ·) : X1 → G is constant and we denote h0(x) as the constant.
Similarly, we define X ′1, ϕ1, and h1(x).

Let f ′ : X ′0 ×X ′1 → G be a restriction of f . Note that f ′ is non-redundant. Then, we can
construct a two-party protocol Π for f from a two-party protocol Π′ for f ′ with the same
CR size, the number of rounds, and the communication complexity: Π(x0, x1) computes
(g0, g1)← Π′(ϕ0(x0), ϕ(x1)) and outputs (g0 + h0(x0), g1 + h1(x1)). CR size, the number of
rounds, and the communication complexity of Π is the same as Π′ and the security, and Π is
secure when Π′ is secure.

https://doi.org/10.1007/3-540-48658-5_36
https://doi.org/10.1007/3-540-48658-5_36
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://doi.org/10.1109/SFCS.1986.25

	p000-Frontmatter
	Preface
	Steering Committee
	Organization

	p001-Resch
	1 Introduction
	2 Preliminaries
	3 The Protocol
	3.1 A Simple Protocol for l = 1
	3.2 A Protocol with (4+o_{l- > infinity}(1))n Transmission Rate
	3.3 Protocol with (2+o_{l- > infinity}(1))n Transmission Rate

	4 Lower Bound
	A Algorithm 1
	B Algorithm 2
	C Algorithm 3
	D Procedure for Finding a Vector Far from Code

	p002-Mazor
	1 Introduction
	1.1 Our Result
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Notations
	2.1.1 Entropy and Mutual Information

	2.2 Secret Sharing Schemes
	2.3 Evolving Secret Sharing
	2.4 Csirmaz's lower bound

	3 The Lower Bound on the Share Size
	3.1 The Adaptive Case
	3.2 The Non-Adaptive Case
	3.3 Evolving Secret Sharing Over a Fixed Number of Parties

	p003-Bogdanov
	p004-Freitag
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Technical Overview

	2 Generic Group Proof Systems
	2.1 The Generic Group Model
	2.2 Proof Systems in the Generic Group Model

	3 One Round Proofs
	A Preliminaries
	A.1 Number Theory
	A.2 Linear Algebra
	A.3 Concentration Inequalities

	B Existing Proofs for RS
	C Extension to General Hidden Order Groups

	p005-Fleischhacker
	1 Introduction
	1.1 Results and Technical Overview
	1.2 Instantiating the Construction
	1.3 Related Works

	2 Preliminaries
	2.1 Notation
	2.2 Encryption and Message Authentication Codes
	2.3 2-Non-Malleable Extractors

	3 Interactive Protocols and Tampering Model
	3.1 Correctness and Encodings
	3.2 Tampering Model
	3.3 Bounded State Tampering

	4 Arbitrary Message Topologies
	4.1 Transformations from Arbitrary to Fixed Message Topology
	4.1.1 Trivial Transformation
	4.1.2 Maintaining the Communication Graph
	4.1.3 Dropping Low Probability Messages

	5 An INMC for Bounded-State Tampering Functions
	5.1 Defining the Next Message Function

	A Proof of Main Theorem

	p006-Goyal
	1 Introduction
	2 Our Contributions
	2.1 MPC with Asymmetric Delays
	2.2 MPC with Asymmetric Communication Cost
	2.3 Open Questions

	3 Technical Overview
	3.1 Information-Theoretic MPC with Asymmetric Delays
	3.2 MPC with Asymmetric Communication Cost

	4 Models and Definitions
	4.1 Communication Network and Adversary
	4.2 Broadcast
	4.3 Secret Sharing
	4.4 Oblivious Transfer

	5 MPC with Asymmetric Delays
	5.1 Security with Abort
	5.2 Broadcast with Asymmetric Delays
	5.3 Guaranteed Output Delivery

	6 MPC with Asymmetric Communication Cost
	6.1 Security with Abort
	6.2 Barriers on Communication Complexity

	A Related Work
	B Proof of Theorem 5
	C Recap of Protocol [14]
	D Description of Protocol Pi_{rgod}
	E Proof of Theorem 6

	p007-Damgard
	1 Introduction
	1.1 Unstable Networks
	1.2 Our Contribution
	1.3 Related Work
	1.4 Preliminaries and Organization

	2 Instantiating F_{StableNet}^{P_S- > P_R} with Perfect Security
	2.1 Passive Security
	2.2 Active Security

	3 Instantiating F_{StableNet}^{P_S- > P_R} with Statistical Security
	3.1 Robust Secret Sharing
	3.2 Delivering within 2 rounds
	3.3 From (k-1)-delivery to k-delivery

	A Shamir Secret Sharing
	B A More Efficient Protocol with Perfect Security
	B.1 Bivariate Sharings and Transition of Shares
	B.2 Preprocessing and Input Phases
	B.3 Computation Phase
	B.4 Security Analysis

	p008-Benhamouda
	1 Introduction
	1.1 Overview of Our Techniques
	1.1.1 Binary Symmetric Channels
	1.1.2 Additive Gaussian Channels

	1.2 Prior Work

	2 Background
	2.1 Channels and Error Correcting Codes
	2.2 Wiretap Channel Transmission Schemes

	3 Weighted Secret Sharing
	3.1 Ramp WSS from Multi-Secret Sharing
	3.2 A Rounding-Based (alpha,beta)-ramp WSS Protocol

	4 A Blueprint for WSS from Wiretap Channels
	5 Constructions from Binary Symmetric Wiretap Channels
	5.1 Background
	5.1.1 Binary Symmetric Channels
	5.1.2 Wiretap Schemes for Binary Symmetric Channels

	5.2 Our Construction
	5.3 Performance Characteristics of This Construction

	6 Conclusions
	A Constructions from AWGN Wiretap Channels
	A.1 Background
	A.1.1 Additive White Gaussian Noise Channels
	A.1.2 AWGN Wiretap Channels
	A.1.3 Using Discrete Gaussian Distributions

	A.2 A Discrete AWGN Construction

	p009-Bouaziz-Ermann
	1 Introduction
	1.1 Our results
	1.2 Technical Overview
	1.3 Related works, discussion and open problems

	2 Preliminaries
	2.1 Compressed oracle technique
	2.2 The problem of subset cover and its variants

	3 Lower bound on the k-restricted subset cover problem
	3.1 Finding k distinct 2-restricted subset cover
	3.2 Finding k distinct s-restricted subset cover

	4 The (r,k)-subset cover problem
	4.1 Lower bound on finding a (1,k)-subset cover
	4.2 Algorithm for finding a (1,k)-subset cover
	4.3 Algorithm for finding a (r,k)-subset cover

	p010-Larsen
	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.2.1 Single Secret Leader Elections

	1.3 Related Works
	1.3.1 Benign Shuffling
	1.3.2 Single Secret Leader Elections

	2 Preliminaries
	2.1 Notation
	2.2 Encryption Schemes
	2.3 Local Shuffling Algorithms

	3 Model
	3.1 Corruptions
	3.2 Definitions

	4 Construction
	5 Ethereum's Block Proposer Elections
	6 Experiments

	p011-Keller
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Comparison of the function classes
	3 Preliminaries
	3.1 Definitions
	3.2 Primitives

	4 Incremental Function Secret-Sharing
	4.1 Instantiating {IFSS}

	5 Low BC-complexity for Abelian Programs from {IFSS}
	6 BC-efficient MPC for tree-structured circuits
	A Security Model
	B Proof of Theorem 7
	C BC-efficient protocol for tree-structured circuits

	p012-Hajiabadi
	1 Introduction
	1.1 RR secret sharing and motivations
	1.2 A perfect RR-SSS for every access structure
	1.3 Results on perfect RR-SSS
	1.4 Results on computational RR-SSS
	1.5 Applications of RR-ABE

	2 Preliminaries
	2.1 Random variables
	2.2 One-way function
	2.3 Access structure
	2.4 Secret sharing
	2.5 Security definitions for SSSs
	2.6 Information ratio
	2.7 Randomness recoverable SSS

	3 Exponential lower bound for perfect RR-SSS
	4 Computational RR-SSS for AC^0 implies OWF
	4.1 Zero reconstruction error
	4.2 Non-zero reconstruction error
	4.3 Main result

	5 Construction of computational RR-SSS
	5.1 RR-SKE and KDM security
	5.2 RR-SSS from randomness simulatable SSS and one-time KDM-secure RR-SKE
	5.3 Linear-resistant PRG
	5.4 RR-SSS from linear perfect SSS and linear-resistant PRG

	6 Conclusion
	A Proof of Lemma 16
	B Proof of Lemma 35

	p013-Damgard
	1 Introduction
	1.1 Our Contribution
	1.2 Technical overview
	1.3 Related Work
	1.4 Future Directions

	2 Preliminaries
	2.1 Model
	2.2 Building Blocks
	2.2.1 Threshold Secret Sharing Scheme
	2.2.2 Instantiation

	3 Reliable Communication
	3.1 Passive Corruptions
	3.2 Active Corruptions

	4 Private Communication
	4.1 Passive Corruptions
	4.2 Active Corruptions
	4.2.1 Statistical Security with {k} > 2 {t}
	4.2.2 Perfect Security with {k} > 3 {t}

	A Perfect Security
	A.1 Perfect Security with {k} > 3 {t}
	A.2 Perfect Security with {k} > 4 {t}
	A.3 Perfect Security With {k} > 2 {t}?

	p014-Holmgren
	1 Introduction
	1.1 Our Contributions

	2 Locally Covert Learning
	3 Fourier Analysis Preliminaries
	4 Covertly Measuring Fourier Weight on Affine Spaces
	5 The Goldreich-Levin Theorem
	A Agnostic Learning from Heavy Fourier Coefficients

	p015-Mahmoody
	1 Introduction
	1.1 Online mergers
	1.2 Our results
	1.3 Techniques
	1.4 Related work

	2 Online mergers and partitioners: constructions and lower bounds
	2.1 Lower bounds for bounded partitioners
	2.2 Optimal bounded mergers
	2.3 Unbounded online mergers
	2.3.1 Unbounded mergers for a given fixed depth
	2.3.2 Unbounded online mergers for growing depths
	2.3.3 Stronger lower bounds for unbounded online mergers

	3 RBE with optimal number of decryption updates
	A Preliminaries
	A.1 Registration-Based Encryption

	B Accumulators with optimal number of witness updates

	p016-Beimel
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Lower Bounds on the Size of the Shares in k-Partite Hypergraph Access Structures
	3.1 A Lower Bound on the Max Share Size
	3.2 A Lower Bound on the Total Share Size
	3.3 Secret Sharing vs. Monotone Circuits

	A A Secret-Sharing Scheme for an Arbitrary Access Structure from a Secret-Sharing Scheme for k-Hypergraph

	p017-Ghazi
	1 Introduction
	1.1 Model and Motivation
	1.2 Our Contributions
	1.3 Overview of our Techniques
	1.4 Preliminaries
	1.5 Related Work

	2 A Simple Reduction
	3 Differentially Private Summation
	4 Security of Split-and-Mix Protocol
	4.1 Worst-case to Average-case Reduction
	4.2 Reduction to Connected Components

	5 Conclusion and Discussion
	A Missing Proofs

	p018-Hiwatashi
	1 Introduction
	1.1 Our Contributions
	1.2 Shared-output vs. Plain-output
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Online-Optimal Protocols
	2.3 Communication-Optimal Protocols
	2.4 Non-Redundant Functions

	3 Technical Overview
	3.1 The Case of Online-Optimal Setting
	3.1.1 The First Step
	3.1.2 The Second Step

	3.2 The Case of Communication-Optimal Setting

	4 The Case of Online-Optimal Setting
	4.1 Matrix Representation
	4.2 Lower Bound

	5 The Case of Communication-Optimal Setting
	5.1 Matrix Representation
	5.2 Lower Bound

	A Reduction to Protocol for Non-Redundant Function

