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Abstract
In this talk, I will present an overview of recent formalisations, in the interactive theorem prover
Isabelle/HOL, of significant theorems in additive combinatorics, an area of combinatorial number
theory. The formalisations of these theorems were the first in any proof assistant to my knowledge.
For each of these theorems, I will discuss selected aspects of the formalisation process, focussing on
observations on our treatment of certain mathematical arguments when translated into Isabelle/HOL
and our overall formalisation experience with Isabelle/HOL for this area of mathematics.
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1 Summary

Additive combinatorics studies the properties of sumsets of subsets of groups, often employing
proof techniques from other mathematical areas. In 2022 I initiated a line of formalisations
of results in this area of mathematics using Isabelle/HOL [11], one of my main goals being
the formalisation of advanced course material from the Cambridge Mathematical Tripos. My
collaborators and I achieved the formalisation of a number of profound theorems in this area.
A first project involved the formalisation of a proof of the Plünnecke–Ruzsa Inequality [9], an
inequality giving information on the size (cardinality) of sumsets (and difference sets) of finite
subsets of an abelian group. To this end, Lawrence Paulson and I, building on an algebra
library by Clemens Ballarin [2], introduced the basics of sumset theory in Isabelle/HOL
including basic results such as the Ruzsa Triangle Inequality [9]. Our source was the set
of the 2022 lecture notes by Timothy Gowers for Part III of the Cambridge Mathematical
Tripos [5]. Building on our formalisation of the basics [9] and again following [5], Lawrence
Paulson and I went on to formalise Khovanskii’s Theorem [8], which attests that for all
sufficiently large n, the cardinality of the n-iterated sumset of a finite subset of an abelian
group is polynomial in n. Continuing to follow [5], Mantas Bakšys, Chelsea Edmonds and I,
formalised the Balog–Szemerédi–Gowers Theorem [7, 6], a profound result which played a
central role in Gowers’s proof deriving the first effective bounds for Szemerédi’s Theorem.
The Balog–Szemerédi–Gowers Theorem attests that every finite subset (of given additive
energy) of an abelian group must contain a large subset whose sumset (difference set) is small,
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1:2 Additive Combinatorics in Isabelle/HOL

and gives bounds on these cardinalities depending on the given additive energy. The proof
is of great mathematical interest in itself given that it involves an interplay between graph
theory, probability theory and additive combinatorics. This interplay made the formalisation
process more rich and technically challenging, and was handled by an appropriate use of
locales, Isabelle’s module system. To treat the graph-theoretic aspects of the proof, we made
use of a new, more general undirected graph theory library by Chelsea Edmonds [4]. Another
subsequent formalisation project, this time involving proofs of purely combinatorial and
algebraic flavour, was the formalisation of Kneser’s Theorem (following a paper by Matt
DeVos [3]) and the Cauchy–Davenport Theorem as its corollary by Mantas Bakšys and myself
[1]. Both theorems give information on various estimates on the cardinality of sumsets of
finite subsets of abelian groups under certain conditions. Lastly, I will very briefly comment
on a new line of ongoing formalisation work that I initiated, currently in progress by my
students from the Computer Science Department and my interns from the Mathematics
Department at Cambridge: formalising material in additive number theory, a related research
area involving combinatorial tools. In particular, this line of work involves material related
to Waring’s problem and follows Nathanson’s book [10].

References
1 Mantas Bakšys and Angeliki Koutsoukou-Argyraki. Kneser’s Theorem and the Cauchy–

Davenport Theorem. Archive of Formal Proofs, November 2022. Formal proof development.
URL: https://isa-afp.org/entries/Kneser_Cauchy_Davenport.html.

2 Clemens Ballarin. A Case Study in Basic Algebra. Archive of Formal Proofs, August 2019.
Formal proof development. URL: https://isa-afp.org/entries/Jacobson_Basic_Algebra.
html.

3 Matt DeVos. A Short Proof of Kneser’s Addition Theorem for Abelian Groups. In Springer
Proceedings in Mathematics and Statistics, vol 101, pages 39–41, New York, NY, USA, 2014.
Springer New York. doi:10.1007/978-1-4939-1601-6_3.

4 Chelsea Edmonds. Undirected Graph Theory. Archive of Formal Proofs, September 2022.
Formal proof development. URL: https://isa-afp.org/entries/Undirected_Graph_Theory.
html.

5 Timothy Gowers. Introduction to Additive Combinatorics. Online course notes for Part III of
the Mathematical Tripos, University of Cambridge, 2022.

6 Angeliki Koutsoukou-Argyraki, Mantas Bakšys, and Chelsea Edmonds. The Balog–Szemerédi–
Gowers Theorem. Archive of Formal Proofs, November 2022. Formal proof development. URL:
https://isa-afp.org/entries/Balog_Szemeredi_Gowers.html.

7 Angeliki Koutsoukou-Argyraki, Mantas Bakšys, and Chelsea Edmonds. A Formalisation of
the Balog–Szemerédi–Gowers Theorem in Isabelle/HOL. In Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs, Boston, MA, USA,
pages 225–238, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3573105.3575680.

8 Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson. Khovanskii’s Theorem. Archive of
Formal Proofs, September 2022. Formal proof development. URL: https://isa-afp.org/
entries/Khovanskii_Theorem.html.

9 Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson. The Plünnecke–Ruzsa Inequality.
Archive of Formal Proofs, May 2022. Formal proof development. URL: https://isa-afp.
org/entries/Pluennecke_Ruzsa_Inequality.html.

10 Melvyn B. Nathanson. Additive Number Theory: The Classical Bases. Springer-Verlag New
York, 1996.

11 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL, A Proof Assistant
for Higher-Order Logic. Springer-Verlag Berlin Heidelberg, 2002. Updated online tutorial on
https://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf.

https://isa-afp.org/entries/Kneser_Cauchy_Davenport.html
https://isa-afp.org/entries/Jacobson_Basic_Algebra.html
https://isa-afp.org/entries/Jacobson_Basic_Algebra.html
https://doi.org/10.1007/978-1-4939-1601-6_3
https://isa-afp.org/entries/Undirected_Graph_Theory.html
https://isa-afp.org/entries/Undirected_Graph_Theory.html
https://isa-afp.org/entries/Balog_Szemeredi_Gowers.html
https://doi.org/10.1145/3573105.3575680
https://doi.org/10.1145/3573105.3575680
https://isa-afp.org/entries/Khovanskii_Theorem.html
https://isa-afp.org/entries/Khovanskii_Theorem.html
https://isa-afp.org/entries/Pluennecke_Ruzsa_Inequality.html
https://isa-afp.org/entries/Pluennecke_Ruzsa_Inequality.html
 https://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf

	1 Summary

