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Abstract
Verifying the metatheory of a formal system in Coq involves a lot of tedious “infrastructural” reasoning
about variable binders. We present Tealeaves, a generic framework for first-order representations of
variable binding that can be used to develop this sort of infrastructure once and for all. Given a
particular strategy for representing binders concretely, such as locally nameless or de Bruijn indices,
Tealeaves allows developers to implement modules of generic infrastructure called backends that end
users can simply instantiate to their own syntax. Our framework rests on a novel abstraction of
first-order abstract syntax called a decorated traversable monad (DTM) whose equational theory
provides reasoning principles that replace tedious induction on terms. To evaluate Tealeaves, we
have implemented a multisorted locally nameless backend providing generic versions of the lemmas
generated by LNgen. We discuss case studies where we instantiate this generic infrastructure to
simply-typed and polymorphic lambda calculi, comparing our approach to other utilities.
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1 Introduction

Computer-verified metatheory is increasingly critical for establishing trust in the design and
implementation of formal systems [6], which we take to include formal logics, programming
languages, query languages, lambda calculi, specification languages, and basically any system
with a precise syntax. Formalizing metatheory in a general-purpose proof assistant like Coq
requires a lot of tedious reasoning about variable binding. When performed manually, this
typically involves the user proving a suite of “infrastructure” lemmas concerned with the
properties of capture-avoiding substitution. In practice, if not in principle, this infrastructure
is tightly coupled to the exact signature used to generate the syntax, owing to the prolific use
of structural recursion and induction on terms. This dependency makes metatheory brittle,
prevents reusability, hampers collaboration by users working on different systems, and can
make syntax infrastructure more challenging to automate. This paper presents Tealeaves, a
Coq framework for building extensible libraries of generic syntax infrastructure that users
can instantiate to their own syntax, thus facilitating collaboration and reuse. Our framework
rests on top of a principled category-theoretic abstraction of raw first-order abstract syntax,
that of a decorated traversable monad, which we introduce in Section 3.
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14:2 Tealeaves

A wide variety of syntax formalization strategies have been proposed in the literature, and
a commensurate number of utilities have been designed to automate syntax infrastructure.
Why, then, should we introduce yet another syntax metatheory framework? Generally,
frameworks will differ in what sorts of syntax can be handled, what support is required
from the proof assistant, and especially the cost of entry to the user. The main novelty of
Tealeaves lies in the intersection of three features:
1. Raw syntax Tealeaves considers “raw” syntax that is extrinsically typed and scoped, in

contrast to work on intrinsically well-scoped, well-typed syntax.
2. Modular representations Tealeaves’ extensible design is agnostic about how binding

is represented, admitting multiple backend modules that formalize syntax infrastructure
for a particular first-order strategy, such as de Bruijn indices or locally nameless.

3. Signature-generic Tealeaves is based on the theory of decorated traversable monads,
a set of equations independent of the signature of a particular language. Substitution
lemmas proved in the form of reusable Tealeaves backends are proved once and for all,
and do not rely on external code generators, which can be slow and fallible.

We briefly summarize some of the more salient points of these features. Sections 4 and 5
offer more detailed comparison to related work.

Extrinsically typed first-order abstract syntax is defined inductively. Notions such as well-
scopedness and well-typedness, as well as lemmas about substitution and other operations,
are defined post factum by structural recursion [10] on terms. This contrasts with intrinsically
well-scoped, well-typed syntax [4], which uses the type system of the metatheory (in our case,
Coq) to enforce constraints on the embedded syntax, blurring the line between operations’
types and their correctness properties. The practical difficulties encountered by the two
approaches differ, especially because the intrinsically typed workflow makes heavier use of
dependently-typed programming that can be inconvenient to formalize in Coq. The raw
approach contrasts with recent work [17] which is formalized in Agda and considers a different
category-theoretic abstraction of intrinsically-typed syntax. Both of these styles also contrast
with higher-order abstract syntax [26] and representations based on nominal sets [28], which
are well-known to require adaptation for use in a general-purpose proof assistant like Coq
(see Section 5).

Within the family of first-order approaches, a variety of binding representation strategies
are available, with typical examples being de Bruijn indices [13] and locally nameless [11].
At its core, Tealeaves aims to be agnostic about how binding is represented concretely,
accommodating multiple representations. Existing utilities for formalizing syntax in Coq,
such as Autosubst [32, 36] and LNgen [5], target a specific representation (de Bruijn indices
and locally nameless, respectively), and they prove signature-specific lemmas using synthesis
or external code generators whereas our lemmas are signature-generic and formalized statically
in Coq. Unlike those tools, our design supports variadic binders (i.e. those introducing a
variable number of new entities) without modifying the core abstraction.

To achieve the modularity of Tealeaves, it is necessary to have an abstraction of (i.e.
interface to) abstract syntax. For us this comes in the form of decorated traversable monads
(DTMs). Definition 3.1 presents DTMs in terms of a highly expressive combinator binddt that
we use to define a wide range of syntax-related operations. A previous proof-of-concept Coq
framework, GMeta [23], also offers multiple representation strategies formalized generically
over syntax, but it lacks a principled abstraction of syntax like DTMs, resorting to proofs by
induction on a universe of representable types. One benefit of using DTMs is that the DTM
composition law (Equation (3)) yields a fusion law for the composition of any two operations
defined with Tealeaves.
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To evaluate our framework, we have implemented a locally nameless backend module
providing essentially the same infrastructure that a user would generate with LNgen, but
whose lemmas are statically verified, generic, and proved using a principled equational theory
rather than unverifiable, dynamically-generated proof scripts. We have used this backend
to prove type soundness for the simply-typed and polymorphic lambda calculi. The latter
especially demonstrates that our framework neatly handles heterogeneous substitution (e.g.
substitution of types in terms). We discuss evaluation of Tealeaves in Section 4.

In sum, the contributions of this paper are threefold. (1) We introduce a principled
abstraction of raw, first-order abstract syntax, decorated traversable monads, which provides
an expressive equational framework for generic reasoning about substitution and related op-
erations. (2) We implement the Coq library Tealeaves, an extensible and modular framework
for generic reasoning about syntax, including syntax with many different kinds of variables.
(3) We implement a locally nameless Tealeaves backend and use it to formalize progress and
preservation lemmas for the two lambda calculi above, evaluating the practicality of our
approach.

The rest of this document is laid out as follows. Section 2 explains how a Coq user
incorporates Tealeaves into their formal metatheory workflow. Section 3 introduces DTMs
and describes how they facilitate generic reasoning. Section 4 evaluates Tealeaves, including
a description of our case studies and a feature-wise comparison to the utilities LNgen and
Autosubst 1 and 2. Section 5 discusses other related work. Section 6 concludes with our
future plans for Tealeaves, especially investigating extensions to the DTM concept.

2 Using Tealeaves

In this section, we examine how Tealeaves fits into the workflow of a formal semanticist
working in Coq. As a running example, we consider a formalization of the untyped lambda
calculus where variables are represented in the locally nameless style, though Tealeaves
accommodates more sophisticated kinds of syntax (see Section 3.4) and can be extended to
other representations of variables. It is up to the user what sorts of metatheory they want to
develop about the calculus – Tealeaves only provides the syntax infrastructure. The details
are unchanged if the user is interested in a typed system because substitution is defined on
raw (untyped) terms.

The first-order1 (or initial algebraic) representation of abstract syntax defines terms
inductively in the form of term algebras. In the simplest case of a single sort of variables,
one starts from a base set V of variables and constructs a set T (V ) of terms by closing the
set under well-sorted applications of constructors. This construction justifies definitions by
structural recursion on terms. Figure 1 shows a first-order definition of the syntax of the
untyped lambda calculus, called Lam, as it would be defined by a user of Tealeaves. To keep
the example simple, since we will consider locally nameless variables, the Abs case only needs
to take the abstraction body as an argument and not a variable name.

Locally nameless is a hybrid strategy mixing Bruijn indices with named variables. A bound
variable n ∈ N is a natural number that always refers to the nth most recently introduced
abstraction, indexing innermost to outermost from 0. A free variable is represented as an
atom, an abstract type about which we assume only a decidable equality. Figure 2 shows a
type LN of locally nameless variables as the sum of nat and atom; this definition is provided
by our locally nameless backend. The type of raw lambda terms with locally nameless
variables is then Lam LN.

1 “First-order” here refers to the fact that the term constructors do not take Coq-level functions as

ITP 2023



14:4 Tealeaves

Inductive Lam (V : Type) : Type :=
| Var : V -> Lam V
| Ap : Lam V -> Lam V -> Lam V
| Abs : Lam V -> Lam V.

Figure 1 Syntax of the untyped lambda calculus.

Inductive LN : Type :=
| Fr : atom -> LN (* free variables *)
| Bd : nat -> LN. (* bound variables *)

Figure 2 The type of locally nameless variables.

As argued by Pollack [29, 30], the main advantage of locally nameless is that there is
no possibility of variable capture during substitution and that α-equivalence of expressions
coincides with syntactical equality, making this representation more practical in Coq formal-
izations than a fully named approach as with pen-and-paper. This convenience comes at
a mild cost: some terms in Lam LN do not correspond to ordinary lambda terms modulo
α-equivalence, owing to the possibility of a de Bruijn index n appearing under fewer than
n + 1 abstractions. Such an occurrence is neither free (because it is not an atom) nor bound,
so locally nameless substitution lemmas tend to mention a local closure predicate ruling out
these ill-formed occurrences. Only locally closed terms represent (α-equivalence classes of)
ordinary lambda terms.

Without using Tealeaves, most users would not benefit from separating Lam and LN as
shown; they would likely inline LN into the definition of Lam. We take this approach in
Tealeaves mainly so we can exploit the fact that Lam is a decorated traversable monad later.
Incidentally, this modularity could prove useful to the user who desires to consider more
than one representation of variables in the same development, say because one is amenable
to formalization in Coq and another is more convenient to program with. As future work,
we hope to use Tealeaves to formalize a translation between named and locally nameless
variables (see Section 6).

Workflow without Tealeaves
The inductive nature of Lam admits a notion of structural recursion on terms, which is
used to define operations like capture-avoiding substitution. Our formalization of locally
nameless employs five operations: opening one term by another, closing a term by an atom,
substitution of a term for a free variable, a free-variable enumeration operation FV, and the
local closure predicate.2 The types of these operations are shown in Figure 3. Figure 4 shows
an example of how one conventionally defines FV.

Users working without tool support must prove a suite of lemmas about these operations,
some prototypical examples of which are included in Figure 3. For instance, subst_fresh
posits that replacing occurrences of an atom x with expression u in a term t leaves t
unchanged if x does not occur in t. Such lemmas are needed while developing metatheory
about the lambda calculus. They are almost invariably proved by induction on terms.

arguments, even if the formal system is higher-order in some other sense.
2 Local closure can also be given its own Inductive definition. In our unified treatment, we prefer to

think of the predicate as another operation on terms which happens to return a proposition.
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open : Lam LN → Lam LN → Lam LN
subst : atom → Lam LN → Lam LN → Lam LN
close : atom → Lam LN → Lam LN

FV : Lam LN → list atom
LC : Lam LN → Prop

subst_fresh : ∀(x : atom)(u t : Lam LN), x /∈ FV t =⇒ subst x u t = t

subst_spec : ∀(x : atom)(u t : Lam LN), subst x u t = open u (close x t)
fv_subst_upper : ∀(x : atom)(u t : Lam LN), FV (subst x u t) ⊆ (FV t \ {x}) ∪ FV u

open_inj : ∀(x : atom)(u t : Lam LN), x /∈ (FV t ∪ FV u) =⇒
open (Var (Fr x)) t = open (Var (Fr x)) u =⇒ t = u

Figure 3 Locally nameless operations and some typical infrastructure lemmas.

Fixpoint FV (t : Lam LN) : list atom := match t with
| Var (Fr x) => [x]
| Var (Bd _) => []
| Ap t1 t2 => FV t1 ++ FV t2
| Abs body => FV body
end.

Figure 4 Example definition in Coq of a recursively-defined function FV.

This workflow is inherently linearly-ordered as shown in Figure 5: syntax is defined,
syntax infrastructure is implemented, then system-specific metatheory is formalized. “System-
specific metatheory” can include properties like confluence of the lambda calculus, which
is undoubtedly more interesting to the metatheorist than proving dozens of substitution
lemmas.

One way a user could save labor is to use a tool like LNgen [5] to generate the infrastructure.
LNgen accepts a grammar from the user in the form expected by Ott [33] and generates Coq
modules containing lemmas and operations like those in Figure 3. The high-level workflow is
unchanged, however: the infrastructure comes after the syntax is defined.

Whether it be implemented by hand or generated automatically, the syntax infrastructure
for Lam represents a bottleneck in the user’s workflow. It is a prerequisite for developing
interesting metatheory, but it depends on the definition of Lam, so it cannot be formalized
as a general-purpose library. The reason for the dependency is that functions defined by
recursion (as well as proofs by induction) essentially follow the shape of Lam. For instance,
adding a new constructor to Lam will break FV and subst_fresh until the user updates them
to account for the new constructor or re-executes LNgen.

Figure 5 Basic workflow without Tealeaves.

ITP 2023



14:6 Tealeaves

Besides making the infrastructure brittle, this phenomenon implies a user who is formal-
izing a different syntax cannot reuse the infrastructure for Lam. This situation is all the more
unfortunate when one realizes that most of the interesting reasoning of locally nameless does
not really depend on Lam at all. The only interesting case in the proof of subst_fresh, for
example, is Var – the Ap and Abs cases hold just by induction. Can we do better than this
linear workflow?

2.1 The Tealeaves workflow
In a workflow incorporating Tealeaves, the user does not develop the locally nameless syntax
infrastructure – we the Tealeaves developers have already implemented it in the form of
a reusable Tealeaves backend module. Operations and lemmas like those in Figure 3 are
provided by this backend, with a caveat: the formalization is generic in the sense that all
references to Lam are replaced with references to a parameter T : Type → Type. The user’s
obligation is to instantiate the backend to the choice T = Lam, which achieves essentially
the same effect for the user as if they had constructed the infrastructure themselves. The
user benefits as long as it is easier to perform this instantiation than to implement the
infrastructure from scratch.

The cost of instantiating the backend is modest: the user must prove that Lam forms a
decorated traversable monad (DTM), a principled category-theoretic concept which Tealeaves
defines in the form of a typeclass [34]. All constructs implemented by the backend module
are polymorphic over an instance of this typeclass; therefore they can automatically be
specialized to any choice of T, such as Lam, for which a corresponding DTM instance has
been registered with Coq’s typeclass instance database.

The DTM instantiation process we describe below is for the simplest case when there
is one grammatical category (Lam) and one sort of variable (arguments to Var). Section
3.4 indicates how we generalize this to more complex situations, such as a set of mutually-
inductive grammatical categories involving multiple sorts of variables.

Supplying the DTM typeclass instance for Lam requires the user to define two operations.
The first, which following standard Haskell terminology we call return (abbreviated ret),
represents a coercion from variables to (atomic) terms of the user’s syntax. For Lam, ret is
exactly the Var constructor.

The more interesting operation is a higher-order function we call binddt (bind for a
decorated traversable monad). Conceptually, binddt acts like a template for defining (some)
structurally recursive functions on Lam, including context-sensitive substitutions like open
and “aggregation” operations like FV. The type of binddt, written in pseudo-Coq notation
and specialized to Lam, is as follows:

binddt ‘ (Applicative F) (A B : Type) : (nat × A → F (Lam B)) → Lam A → F (Lam B)

We show the definition of binddt for Lam in Section 3.
Programmers with experience using monads may recognize the previous type as that of

the usual bind operation extended with two features. First, just like the traverse operation
of McBride and Paterson [25], the first argument to binddt is a choice of applicative functor
F : Type → Type. Second, observe that nat appears as an input of the function supplied
to binddt – strictly speaking, one says that Lam is a traversable monad decorated by the
natural numbers under addition. We discuss both of these features in Section 3. To recover
the usual bind operation, one can instantiate binddt at the identity (applicative) functor
and apply the projection nat × A → A.
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Once the user defines binddt, they must supply a proof that it satisfies the axioms of
decorated traversable monads, a set of four equations. These too shall be shown in Section 3.

Altogether, instantiating Tealeaves to Lam looks as follows. Note that ret and binddt are
registered as instances of two operational typeclasses [35] called Return and Binddt. This
is just a convenience allowing us to use the notation ret and binddt throughout Tealeaves
and let Coq deduce which DTM instance is being referred to.

From Tealeaves Require Import Classes . Kleisli .DTM.
Fixpoint binddt_Lam ‘{ Applicative F} (A B : Type)

(f : nat * A -> F (Lam B)) (t : Lam A) : F (Lam B) := ...
Instance : Return Lam := Var.
Instance : Binddt nat Lam := binddt_Lam .
Instance : DecoratedTraversableMonad nat Lam.
(* Proofs of the equational axioms of DTMs ... *)
Qed.

Having bundled all this up into a DTM typeclass instance, the user imports our locally
nameless backend, Tealeaves.Backends.LN. This module defines all of the operations of
locally nameless polymorphically over a choice T of DTM (specifically, T must be decorated
by nat). It also supplies polymorphic lemmas. Using Coq’s typeclass mechanism, the user
can specialize these constructs to their own syntax. We show examples of this specialization
below by explicitly passing (T := Lam) to each function, but in practice Coq can usually
infer the choice of T implicitly. These commands will fail with an error message if Coq cannot
locate an instance of the DTM typeclass for Lam.

From Tealeaves Require Import Backends .LN.
Check LN.open (T := Lam) : Lam LN -> Lam LN -> Lam LN.
Check LN.subst (T := Lam) : atom -> Lam LN -> Lam LN -> Lam LN.
Check LN. locally_closed (T := Lam) : Lam LN -> Prop.
Check LN. subst_fresh (T := Lam) : forall (t u : Lam LN) (x : atom),

not (List.In x (FV t)) -> subst x u t = t.
Check LN. subst_spec (T := Lam) : forall (x : atom) (t u : Lam LN),

subst x u t = open u (close x t).

Now that syntax infrastructure for Lam is available, the user can proceed with their
ordinary workflow, which might consist of defining a type system and developing more
interesting metatheory that is specific to the lambda calculus. When the properties of
operations like substitution and opening are needed during a proof, the user invokes the
corresponding lemma from the backend. The is akin to how one uses the modules that would
be generated by LNgen, except no code generation has taken place.

Figure 6 shows a simplified architectural diagram of Tealeaves, which is broadly divided
into three parts: the core formalization of DTMs and their properties, the locally nameless
backend, and the effort required of the end user. We see again that the user’s work logically
divides into 3 steps as in Figure 5, but now the second step consists of proving the DTM
instance for the user’s syntax, while the locally nameless infrastructure is supplied by
Tealeaves. We shall explain the rest of the architecture in Section 4.

An inherent limitation of implementing syntax infrastructure as a Coq library is that the
backend can only prove a finite number of lemmas about substitution. For locally nameless,
it is not entirely clear what constitutes a “complete” set of properties.3 Suppose a user comes

3 See Section 4 of [5] for a discussion of this issue in the context of LNgen, along with an informal
argument for completeness of their generated lemmas, which our backend also proves.
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14:8 Tealeaves

Figure 6 Simplified Tealeaves architecture and user workflow.

across a property of substitution that the backend does not prove. In this case, the user
could state their lemma and prove it by induction on Lam like usual – Tealeaves does not
impede the user’s ordinary workflow.4

Alternatively, a Tealeaves power user could extend the locally nameless backend with
their lemma. Of course, the backend module does not know about Lam, so a generic version
of their lemma could not be proved by induction on lambda terms. Instead, the proof
would have to be developed so as to apply to any DTM. Examples of such generic proofs
are shown in Section 3.3. The advantage of extending the backend is that the user’s effort
would be reusable, even to users formalizing other kinds of syntax. This is how Tealeaves
facilitates collaboration by users implementing different formal systems. Note that extending
the backend with new lemmas requires no programming with Coq’s tactic language Ltac [14]
or any language outside of Coq itself, unlike the other utilities discussed in Section 4.

3 Decorated Traversable Monads

We now give a high-level intuition for DTMs and their equational theory, starting with
the definition of binddt for Lam. While DTMs can be understood in terms of principled
abstractions from monoidal category theory, users of Tealeaves are mostly shielded from
this. In this section, we only assume some familiarity with functors and the use of monads
to structural functional programs [38]. Like Haskell, we indicate the action of a functor F
on morphisms as fmap (A B : Type) : (A → B) → F A → F B. When it improves clarity, we
use subscripts to indicate the implicit values of parametric arguments, and superscripts to
disambiguate methods of typeclass instances, e.g. fmap f vs. fmapF

A,B f.

4 The only possible issue is that unfolding the operations exported by the backend will reveal generic
constructs that may be challenging to understand, a problem inherent to any generic framework. Future
work on Tealeaves could supply custom simplification tactics to hide some of this complexity.



L. Dunn, V. Tannen, and S. Zdancewic 14:9

3.1 Proving the DTM instance for Lam

The first step required to instantiate Tealeaves to Lam is to define binddt, which can be
thought of as a template for structurally recursive functions. We have seen that the first
argument to binddt is a choice of applicative functor, an abstraction introduced by McBride
and Paterson [25] and used often by functional programmers. For present purposes it suffices
to know that an applicative functor F : Type → Type is characterized by two operations,
pure and ap, whose types are as follows:

pure (A : Type) : A → F A
ap (A B : Type) : F (A → B) → F A → F B

Like monads, applicative functors provide a notion of computational effect, but they are
a more general abstraction. Intuitively, pure lifts a value into the functor by wrapping
it in a trivial effect. ap applys effectful functions to effectful values, yielding an effectful
value. These operations are subject to unsurprising laws given in [25], but they are not
important here. The identity functor, written I, is applicative; applicatives are also closed
under composition. An applicative homomorphism ϕ : F =⇒ G is a natural transformation
between applicative functors that commutes with ap and pure in the obvious way.

A prototypical applicative functor is the datatype list of finite lists, interpreted as
the effect of non-determinism. pure a is the deterministic singleton [a]. ap applys lists
of functions to lists of arguments to get a list of outputs by applying each function to
each argument, representing a non-deterministic choice of both. A typical applicative
homomorphism would be the transformation that maps a list to the set of its elements.
Another important class of examples is given by a constant functor over any monoid, with
pure and ap identified with the unit and multiplication, respectively.

The definition the user should give for binddt for Lam is as follows. Here, <*> is infix
notation for ap. The helper function preincr will be explained below.

Fixpoint binddt ‘{ Applicative F} {A B : Type}
(f : nat * A -> F (Lam B)) : Lam A -> F (Lam B) := match t with
| Var v => f (0, v)
| Ap t1 t2 => pure Ap <*> binddt f t1 <*> binddt f t2
| Abs body => pure Abs <*> binddt ( preincr f 1) body
end.

The first non-implicit argument f is a substitution rule that specifies what should happen
at each variable. The role of binddt is to apply this substitution rule to each variable in a
term. f itself takes two arguments. The first, here of type nat, represents the number of
binders in scope at some variable occurrence, while the second represents the occurrence
itself. When binddt is specialized to locally nameless case where A = B = LN (recall Figure
2), the second argument to f will be either a de Bruijn index or an atom.

The output of f has type F (Lam B), representing an expression to replace the occurrence
with, with the added flexibility that it may be wrapped in an applicative effect F. To account
for this effect, the Ap and Abs cases of binddt lift the constructor into F with pure and
replace ordinary function application with effectful application <*>. This pattern for working
with applicative effects is common enough that there is an established notation of “idiom
brackets” [25] (not shown here) to reduce the syntactic clutter.

We draw the reader’s attention to the Var case: binddt f (Var v) = f (0, v). This
definition is in fact an axiom of DTMs (Equation (1)) and corresponds to the fact that there
are no binders in scope in an atomic expression. This may appear to suggest that f will only

ITP 2023



14:10 Tealeaves

ever see 0 binders in scope. Actually, f is informed about binders using a helper function
preincr (“precompose increment”), whose definition is (preincr f n) (n’, v) = f(n + n’, v).
That Abs is a binder is reflected in the recursive call to binddt, which modifies f with
preincr. The idea is that when preincr f 1 is eventually applied to a binding context and
a variable, it will increment its binding context before calling f. The reader should convince
themselves that when the recursion of binddt f t bottoms out on a Var, the invocation of
f will be of the form

preincr
(
preincr

(
. . .

(
preincr f 1

)
. . .

)
1
)

1︸ ︷︷ ︸
n times

(0, v) = f (n, v)

where n ∈ N is the number of Lam constructors gone under during recursion.
This scheme is quite general. For example, to extend the lambda calculus with a variadic

Let construct accepting a list l of bound definitions, we can use preincr f (length l)
to introduce several new entities at once. We can also use monoids other than nat. For
example, a fully-named representation could use the monoid of finite lists of names under
concatenation. The principle limiting what kinds of information one can pass to f using
preincr is that binddt must satisfy Equation (3), below, a constraint we discuss further in
Section 4.

The final step of instantiating the backend is to prove that binddt satisfies a set of four
equations. The axioms are given by the following

▶ Definition 3.1 (DTM, Kleisli-style presentation). A traversable monad decorated by a
monoid ⟨W, ·, 1W⟩ is a type constructor T : Type → Type equipped with operations:

ret (A : Type) : A → T A
binddt (Applicative F) (A B : Type) : (W × A → F (T B)) → T A → F (T B)

subject to the following four equations:

binddtF f ◦ ret = f ◦ retW× (1)
binddtI

(
ret ◦ extractW×)

= idTA (2)
fmapF (binddtG g) ◦ (binddtF f) =

binddt(F◦G)
(
λ(w, a).fmapF (binddtG (preincr g w)) (f (w, a))

)
(3)

ϕ ◦ binddtF f = binddtG (ϕ ◦ f) (for all ϕ : F =⇒ G applicative hom.) (4)

In Equation (1), retW× is defined retW×a = (1W, a) where 1W is the monoid unit. In (2),
extractW× is the projection extractW× (w, a) = a. These functions come from the Cartesian-
product-with-monoid class of monads (such as used in 2.6 in [38]), known often as the
“logging” or “writer” monad. Note that (2) instantiates binddt to the identity applicative,
while (3) mentions the composition of two applicatives and (4) mentions homomorphisms
between two applicatives.

The operations of the locally nameless backend are defined in terms of binddt and ret,
while its lemmas are proved from these four equations only. Notably, this includes properties
like subst_fresh (recall Figure 3), which is a conditional equality, unlike the axioms above.
The next two sections show how the axioms of DTMs give rise to high-level properties like
subst_fresh.

Category theory

Category theorists may wonder if we can give a more “theoretical” definition of DTMs.
Law-abiding traversable functors were defined in [21]. Our library extends these to what we
call decorated-traversable functors and proves the following characterization.
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▶ Theorem 3.2. Definition 3.1 is equivalent to a monoid in the category of decorated-
traversable functors.

This theorem is formalized for single-sorted DTMs (Definition 3.1) and a body of general-
purpose category theory as shown in Figure 6. This part of Tealeaves is largely separate
from the multisorted formalization described in the rest of this paper. A more thorough
explanation of this useful perspective shall be forthcoming.

3.2 DTMs as containers
One often has occasion to consider the notion of variable occurrence, especially occurrence
in a binding context. For example, FV lists occurrences of free variables, while local closure
stipulates that no de Bruijn index n ∈ N occurs under fewer than n + 1 abstractions. Both
operations are more like “aggregations” than “substitutions.” FV aggregates free variables
into a list, while LC quantifies over all occurrences, aggregating a set of propositions (one
for each occurrence) into a conjunction. It is not so obvious how an equational theory like
that of DTMs can incorporate these collection-themed concepts. Tealeaves achieves this by
building on a body of work on traversable [25, 18, 21, 8] and shapely [22] functors.

The way to define aggregations is to instantiate the applicative functor F to a (constant
functor over some) monoid. The most general such choice is the free monoid, i.e. list. In
particular, we can enumerate occurrences, including their context, as such:5

tolistd : T LN → list (N × LN) tolistd
def
≡ binddtlist (N×LN) (λ(n, v).[(n, v)])

We also define a context-sensitive notion of variable occurrence (∈d) as a special case of
binddt. For a term t of Lam LN, (n, v) ∈d t means a variable v:LN occurs somewhere in t
underneath n:nat abstractions.

(n, v) ∈d t
def
≡ binddt∨ (λ(n′, v′).(n, v) = (n′, v′)) t

Here, ∨ indicates we instantiate to the monoid of propositions under disjunction. We also
provide a version v ∈ t that checks for occurrences of v in any binding context.

Because variable occurrence is defined a special case of binddt, we immediately obtain a
characterization of how ret and binddt interact with the occurrence relation.

▶ Lemma 3.3. Equations (1) and (3) imply the following, respectively.

(n, v2) ∈d ret v1 ⇐⇒ v1 = v2 ∧ n = 0 (5)
(n, v2) ∈d binddtI f t ⇐⇒

∃ n1 n2 v1, (n1, v1) ∈d t ∧ (n2, v2) ∈d f (n1, v1) ∧ n = n1+ n2 (6)

(5) states that the only variable in an atomic expression occurs with 0 binders in scope.
(6) characterizes the set of occurrences in t after performing a substitution codified by f. If
v1 occurs in t under n1 binders and v1 is replaced by f (n1, v1), the occurrences introduced
by the subterm have n1 added to their context, in addition to their context as occurrences in
f (n1, v1) – binding context accumulates with tree depth.

5 Tealeaves generally names context-aware versions of operations with a trailing d for decoration.
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subst x u = bind (substloc x u) substloc x u v =
{

u if v = Fr x

ret v else

open u = bindd (openloc u) openloc u (n, v) =


Bd (m-1) if v = Bd m, m > n

u if v = Bd n

ret v else

close x = fmapd (closeloc x) closeloc x (n, v) =


Bd (m+1) if v = Bd m, m ≥ n

Bd n if v = Fr x

v else

FV = foldMaplist FVloc FVloc v =
{

[x] if v = Fr x

[] else

LC = foldMapd∧ lcloc LCloc (n, v) =
{

n > m if v = Bd m

True else

Figure 7 Locally nameless operations defined as special cases of binddt.

Reasoning about syntax often involves conditions on the variable occurrences – for
example, subst_fresh requires knowledge about the freshness of a given variable. The
next theorem gives a pointwise reasoning principle that is used to exploit information about
occurrences. This theorem is proved using the coalgebraic presentation of traversability
developed in [20].

▶ Theorem 3.4 (Pointwise reasoning). Let T be a DTM. For all t : T A and f, g : W × A → F (T B)
where F is any applicative functor, the following reasoning principle holds.

(∀ (w : W) (a : A) , (w, a) ∈d t =⇒ f (w, a) = g (w, a)) =⇒ binddtF f t = binddtF g t.

3.3 Locally nameless backend
Let T be a DTM decorated by nat. We now define the operations of Figure 3 and prove
some exemplary lemmas. Our locally backend actually uses multisorted DTMs (defined in
the next section), but the basic principles are the same.

The five main operations are defined in Figure 7. On the right, each operation is defined
“locally” in terms of its action on individual variable occurrences; three such operations
require the number n of binders in scope. On the left, each operation is extended to operate
on terms using a combinator, all of which are special cases of binddt. E.g. bindd is
binddt specialized to the identity applicative, while fmapd is like bindd for maps rather
than substitutions. The foldMap* operations instantiate the applicative functor argument
of binddt to a monoid: list uses concentation, while ∧ is shorthand for the monoid of
propositions under conjunction. The following properties are proven for all atoms x:atom
and abstract terms t, u:T LN.

▶ Lemma 3.5 (subst_fresh). x /∈ FV t =⇒ subst x u t = t.

Proof. Combining Theorem 3.4 with (2) reduces the problem to

∀(v : LN), v ∈ t =⇒ substloc x u v = ret v,

which follows by case analysis on v and a lemma y ∈ FV t ⇐⇒ Fr y ∈ t proved by (4). ◀
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▶ Lemma 3.6 (subst_spec). subst x u t = open u (close x t).

Proof. By (3) and (1), open u (close x t) can be fused together to obtain

bindd (λ(n, v).openloc u (n, closeloc x (n, v))) t.

One then shows the middle expression is equal to λ(n, v).substloc x u v by case analysis. ◀

▶ Lemma 3.7 (fv_subst_upper). FV (subst x u t) ⊆ (FV t \ {x}) ∪ FV u.

Proof. By x ∈ FV t ⇐⇒ Fr x ∈ t, the problem reduces to

Fr y ∈ subst x u t =⇒ (Fr y ∈ t ∧ y ̸= x) ∨ (Fr y ∈ u) .

This follows by rewriting the left hand side with (6), and case analysis. ◀

The vast majority of proofs in our locally nameless backend proceed along similar
lines: fusing sequential operations with (1) and (3), using (5) and (6) to reason about how
operations affect the set of occurrences, applying pointwise reasoning to prove equalities, and
case analysis on concrete variables.

3.4 Multisorted DTMs
In practice, few formal systems involve just one sort of variable. For example, polymorphic
lambda calculi like System F include both type and term variables. Fixed-point extensions
of first-order logic [19], which provide a theoretical foundation for languages like Datalog [2],
involve both term and relation variables, as do second-order logics. For such systems it is
necessary to consider a generalization of Definition 3.1 that supports parallel substitution of
more than one sort of variable at the same time. This is because our approach rests on the
assumption that all substitution and related operations are special cases of a single operation,
so they can always be fused together with an appropriate generalization of (3). This is our
motivation for introducing Definition 3.8.

▶ Definition 3.8 (Multisorted DTM). Let K be a set of sorts. Let T : K → Type → Type be a
K-indexed set of type constructors and let U be a type constructor. A traversable T -module
decorated by a monoid ⟨W, ·, 1W⟩ is defined from the following data:

ret (A : Type) : ∀ (k : K) , A → T k A
binddt (Applicative F) (A B : Type) : (∀(k : K), W × A → F (T k B)) → U A → F (U B)

subject to conditions generalizing those of Definition 3.1.

For short, we call an instance of Definition 3.8 a K-sorted DTM (where “M” technically
stands for “right Module.”) When K is the unit type and T tt = U (tt being Coq’s name
for the constructor of unit type), this definition reduces to Definition 3.1. In general, such
structures represent a grammatical category U inside which one can substitute any of |K|-many
different kinds of variables in parallel. Reasoning with multisorted DTMs works as before,
but now incorporating case analysis on K as well.

4 Evaluating Tealeaves

Next we discuss how we evaluate Tealeaves. First we describe the size and scope of Tealeaves’
core and backend before discussing case studies instantiating Tealeaves with different kinds
of syntax. Then we offer a feature-wise comparison to two popular syntax frameworks for
Coq, Autosubst versions 1 and 2 [32, 36] and LNgen [5].
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Implementation

We recall Figure 6, which shows the division of Tealeaves into two major components:
Core Tealeaves, which formalizes DTMs and the properties discussed in Section 3.2.
The locally nameless backend, which develops generic locally nameless syntax infrastruc-
ture like that shown in Section 3.3.

The core is a formalization of multisorted DTMs (Definition 3.8). On top of the axioms
we implement an additional layer of high-level derived theory like that presented in Section
3.2, the chief export of which is a proof of Theorem 3.4. Additionally, the core includes a
general formalization of numerous category-theoretic concepts used to prove Theorem 3.2 for
single-sorted DTMs, but this is primarily of theoretical interest; it does not affect end-users
and would not be required to port Tealeaves to another proof assistant like Agda. Altogether,
as measured by coqwc, the core includes about 10,000 lines of specification (including imports,
notations, etc.) and 9,000 lines of proof. Of these, the essential parts formalizing multisorted
DTMs account for about 2,000 lines of specification of 1,000 of proof.

The locally nameless backend includes a core part independent of DTMs that formalizes
basic notions like atoms, sets, and environments. This part consists of about 2000 lines
derived from the Metalib library, a component of LNgen, lightly adapted to fit into our more
category-theoretic framework. The locally nameless infrastructure, which is parameterized by
a DTM instance, consists of about 1000 lines of specification and 650 of proof. The backend
export several dozen high-level infrastructural lemmas like the ones generated by LNgen,
as well as many other lower-level lemmas. Examples of lemmas include the ones proved in
Section 3.3, as well as generalizations that describe the interaction between operations that
act on different sorts of variables.

The locally nameless backend supports the claim that the DTM abstraction is adequate
for reasoning about raw syntax generically. Next we ask whether this concept is actually
useful, i.e. does it save labor, and for which kinds of syntax does it work?

Case studies

So far we have implemented a few different case studies with Tealeaves.
STLC Our first study is a proof of type soundness for the simply-typed lambda calculus

(STLC). We use Alectryon [27] to present this file in the form of browser-based tutorial
on Equations (1)–(4), demonstrating the general strategy for proving each one. We also
provide an alternate version of this tutorial that uses the category-theoretic description
of DTMs indicated in Theorem 3.2.

System F In the second study, we instantiate Tealeaves with the syntax of System F before
proving type soundness for this system. This makes essential use of multisorted DTMs and
the ability of our backend to reason about non-trivial interactions between substitution
operations that act on different sorts of variables.

Variadic binding We are developing tutorials demonstrating how to instantiate Tealeaves
with languages featuring mutually-inductively defined grammatical categories and variadic
binders, such as a letrec construct.

The cost to instantiate Tealeaves is to define binddt and prove multisorted versions of
Equations (1)–(4). These proofs proceed by induction on terms, where each case proceeds
by rewriting with laws like those of applicative functors. In the future, we expect to provide
automated support for the instantiation process. Happily, three of the DTM axioms are
straightforward to prove in most cases, regardless of the user’s syntax. Equation (1) defines
the behavior of binddt on variables and is proved with the reflexivity tactic, while (2)
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and (4) are straightforward inductive proofs. Equation (3), however, presents a challenge
when binding information (i.e. data passed with preincr) is computed from an argument
which itself is subject to substitution. A key example of this phenomenon is a variadic let
(or letrec) construct that accepts a list of definitions, in which case binddt f is defined
to pass the length of the list to f in the let body. The bound definitions are themselves
subject to substitution with binddt, and it is not immediately clear how to prove that this
does not change the length of the list, a key requirement of Equation (3) manifest in the
two occurrences of w. This requires applying the representation theorem for traversals [18],
which states that shape is invariant under traversals.

Comparison to other utilities

Three commonly used utilities for automating syntax infrastructure in Coq are Autosubst [32],
Autosubst 2 [36], and LNgen [5], all of which involve dynamically generating infrastructure
after being provided with a user’s syntax. The Autosubst family represent variables as
de Bruijn indices, while LNgen generates locally nameless infrastructure. In some ways
Tealeaves is more general than these utilities, as the operations they reason about are special
cases of binddt. Table 1 summarizes the features offered by the utilities.

Autosubst provides tool support for working with de Bruijn indices based on the σ-
calculus [1], a version of untyped λ-calculus extended with explicit substitution. Given an
Inductive definition of a user’s syntax, the user calls upon Ltac to synthesize a parallel
substitution operation and a small number of equational axioms for this operation. Users
invoke a complete decision procedure, autosubst, which proves all true equalities between a
delineated class of substitution expressions from these axioms. Semanticists generate these
goals while developing metatheory and call on Autosubst to solve them.

Autosubst provides only ad-hoc support for substitution involving multiple sorts of
variables. The limitations of Ltac also prevent their automation from working with mutually-
inductively defined grammatical categories. The authors note that the fragile semantics of
Ltac mean it is sometimes necessary to manually inspect generated definitions for errors.

Autosubst 2 is an external code generator written in Haskell which accepts a second-order
specification of a syntax and generates Coq modules containing proofs of the equations to
instantiate an extended calculus that handles multisorted substitution much the same way
we do. Compared to the first version, Autosubst 2 handles potentially mutually inductive
grammatical categories with multiple kinds of variables. The authors conjecture, but do
not prove, that their modified calculus is confluent. Users who modify their syntax must
re-execute the external program to reinstantiate the Autosubst library.

The Autosubst family does not provide support for conditional equalities or operations
that compute the set of free variables, perhaps because these are not as essential when using
de Bruijn indices as when using a locally nameless representation.

LNgen is a code generator that, given an annotated grammar in an Ott-compatible [33]
format, generates Coq files containing the operations of locally nameless and proof scripts
than synthesize infrastructural lemmas. The scripts proceed by induction and are based on
the authors’ “knowledge of how such proofs usually go.” As with Autosubst 2, modifying the
syntax involves re-executing the utility. In private correspondence, the authors of LNgen have
reported to us cases of long compile times (about 30 minutes in some cases) and the potential
for some proofs to fail, requiring manual intervention from the user. As with Autosubst, this
problem is exacerbated by the opaque semantics of Ltac.
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Table 1 Features supported by Coq syntax frameworks.

Utility Representation Underlying theory Multisorted Variadic Binders
Autosubst de Bruijn σ-calculus Ad-hoc No
Autosubst 2 de Bruijn σ-calculus Yes No
LNgen Locally nameless Structural recursion Yes No
Tealeaves Generic DTMs Yes Yes

5 Related work

Besides Autosubst and LNgen, there are syntax metatheory frameworks for Coq that share
some of Tealeaves’ features but lack the principled theory and flexibility of DTMs.

GMeta [23] is prior art implementing a generic Coq framework for first-order syntax
metatheory. Like Tealeaves, it features an extensible architecture supporting multi-sorted
syntax and multiple representations of variable binding. However, the implementations differ
substantially because GMeta lacks a principled abstraction of syntax like DTMs, considering
instead a universe of representable types. In effect, one has a set of type expressions and
a denotation mapping these into Coq’s types; generic proofs proceed by induction on an
expression denoting a type. By contrast, we showed in Section 3.3 how infrastructural lemmas
with Tealeaves proceed by the equational theory of DTMs. The user’s cost of entry for
GMeta is to prove the type of their syntax is representable up to isomorphism, which is
supported with automation.

DBlib [31] is a community-maintained Coq library that supports reasoning about de
Bruijn indices. Like Tealeaves, it is based on a structured recursion combinator subject to
axioms, but these axioms are ad-hoc and not pure equations, whereas (1)–(4) are equations
derived from a principled theory of structured monads as manifest in Theorem 3.2. Using
results from Section 3.2, it is easy to see that DBlib’s axioms are immediate corollaries of
DTMs. For instance, their axiom TraverseVarIsIdentity can be derived by specializing
Theorem 3.4 to g = ret ◦ extractW× and simplifying with (2).

The application of monads to formal syntax metatheory was proposed by Bellegarde and
Hook [7], who considered a combinator Ewp (“extension with policy”) that is reminiscent of
binddt but less expressive and lacking an axiomatization. Work building on the monadic
approach, typically using a de Bruijn representation, has emphasized well-scoped [9, 4] and
well-scoped, well-typed [3] syntax. Fiore and Szamozvancev have recently introduced an
Agda framework for well-typed syntax that is inspired by work on presheaf-theoretic models
of syntax [16, 15]. The heavy use of dependent types in this work leads to a workflow in
which the types of operations are very nearly their own correctness properties, whereas our
“raw” approach separates the definition of operations from their metatheory. Investigating
the theoretical relation between the two approaches may be an interesting direction for future
work.

Two fundamentally different formalization strategies for abstract syntax are higher-order
abstract syntax (HOAS) [26] and techniques using nominal sets [28], both of which are closely
associated with dedicated-purpose proof assistants. Implementing HOAS in Coq requires
using a variation like parametric higher-order abstract syntax (PHOAS) [12]. Nominal sets
are generally used with first-class support from the proof assistant, such as in Nominal
Isabelle [37].
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6 Conclusion and future work

We have presented Tealeaves, a generic Coq framework for reusable syntax metatheory. We
showed how a user instantiates Tealeaves by proving their syntax forms a DTM, allowing
them to specialize a body of generic infrastructure lemmas to their syntax. We evaluated
Tealeaves with case studies instantiating locally nameless infrastructure to languages with
multiple sorts of variables, mutually-inductive grammatical categories, and variadic binders.

Tealeaves offers a number of interesting directions for future investigation. Currently we
are investigating precisely which kinds of syntax and reasoning work well with Tealeaves. More
precisely, we are exploring how the core theory of DTMs can be modified to accommodate
more sophisticated situations than raw terms with locally nameless variables or de Bruijn
indices.

Well-scoped syntax

We initially sought an abstraction for raw syntax, largely because this representation is
simple and commonly used. However, there are convincing theoretical and practical reasons
to consider intrinisically well-scoped syntax. We are investigating how to extend DTMs to
the well-scoped setting. As a first step, let LN be parameterized by a context ctx of free
variables and by a maximum value n for de Bruijn indices using Coq’s type Fin.t of finite
sets, as follows.

Inductive LN (ctx : list atom) (n : nat) : Type :=
| Fr : forall (a : atom), In a ctx -> LN ctx n
| Bd : Fin.t n -> LN ctx n.

The type of lambda terms is generalized to allow the set of variables to be parameterized
by the number of entities in scope (here, preincr V n maps m to the set V (n + m)).

Inductive Lam (V : nat -> Type) :=
| Var : V 0 -> Lam V
| Abs : Lam ( preincr V 1) -> Lam V
| App : Lam V -> Lam V -> Lam V.

The type of locally closed terms with free variables in ctx is then Lam (LN ctx). For example,
the term Var (Fr x) can be given this type if x ∈ ctx. On the other hand, the open term
Var (Bd 0) cannot be given this type, while it can be given type Lam (preincr (LN ctx) 1).

A generalization of Definition 3.1 can be formulated for this situation on paper. An unfor-
tunate limitation of Coq’s type theory is that types like LN ((n + m) + p) and LN (n + (m + p))
are not defintionally equal, hence their terms cannot even be compared for equality, obstruct-
ing a naïve attempt to formalize this definition in Coq. Further parameterizing V by types
would also move closer towards the type-preserving approach of McBride [24].

Fully named variables

The Tealeaves repository includes a generalization of Definition 3.1 that additionally takes
a binder-renaming operation, with which we intend to implement a fully named Tealeaves
backend. With such an extension, our aim is to give a certified change in representation
between locally nameless and fully named variables. One use case would be to implement a
verified programming language in Coq using locally nameless while allowing programmers to
write code with named variables, assured that the change in representation introduces no
bugs.
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