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Abstract
We present LISA, a proof system and proof assistant for constructing proofs in schematic first-order
logic and axiomatic set theory. The logical kernel of the system is a proof checker for first-order
logic with equality and schematic predicate and function symbols. It implements polynomial-time
proof checking and uses the axioms of ortholattices (which implies the irrelevance of the order
of conjuncts and disjuncts and additional propositional laws). The kernel supports the notion of
theorems (whose proofs are not expanded), as well as definitions of predicate symbols and objects
whose unique existence is proven. A domain-specific language enables construction of proofs and
development of proof tactics with user-friendly tools and presentation, while remaining within the
general-purpose language, Scala. We describe the LISA proof system and illustrate the flavour
and the level of abstraction of proofs written in LISA. This includes a proof-generating tactic for
propositional tautologies, leveraging the ortholattice properties to reduce the size of proofs. We also
present early formalization of set theory in LISA, including Cantor’s theorem.
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1 Introduction

We present the design and initial implementation of a new proof assistant, named LISA.
Much like Mizar [31], LISA aims to use classical mainstream foundations of mathematics with
first order logic and set theory. LISA uses (single-sorted) first-order logic (with schematic
variables) as the syntactic framework, sequent calculus as the deduction framework and set
theory as the semantic framework. On top of this foundation, we can construct mathematical
theories without introducing additional axioms. As the target use of LISA we envision a
library of theorems, but also correctness proofs of computer systems.

LISA’s source code and a reference manual, as well as all the examples in the present
paper, are available from

https://github.com/epfl-lara/lisa

1.1 Design Goals
Our design is inspired by the LCF line of proof assistants, including HOL Light, HOL4, and
Isabelle. The envisioned path for axiomatic foundations is closer to Mizar. LISA’s logical
kernel is a hybrid between LCF-style encoding of theorems as a sealed Theorem type (similar
to HOL Light [22]) and explicit requirement of proofs. Namely, proofs are self-contained
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sequences of proof steps that derive a conclusion from assumptions (they are not explicitly
in the form of lambda terms). LISA’s kernel checks the validity of steps and assumptions,
and then creates an instance of a theorem.

As the unified implementation, proof writing and tactic language, we use Scala instead of
the ML family of languages that are common to many proof assistants. Scala is a high-level
functional and object-oriented language. We hope to avoid a sharp boundary between user
proofs and tactic developments by using a single language with good support for domain-
specific constructs. To provide a flavour of LISA, consider several ways of constructing
proofs that are available to LISA users. Figure 2 shows a proof of Pierce’s law as an explicit
sequence of sequent calculus proof steps. Figure 5 and Figure 6 show proofs built using a
higher-level domain-specific language (DSL). This DSL detects high-level errors in incorrect
proofs, but always generates the underlying lower-level proof and forwards it to the kernel
to obtain a kernel-certified theorem. Finally, Figure 9 shows a solver for propositional
tautologies that uses the same mechanisms as the proofs to implement a proof tactic. It
was not our immediate goal to create an interactive experience, so our interaction model is
more HOL4-like than Isabelle/HOL-like. For us, this means using Scala IDEs, rerunning
projects, relying on incremental compilation. As the sizes of theories grow, we plan to develop
serializations for proofs and theories to reduce re-execution. We discuss both the kernel and
the DSL in the rest of the paper.

The design philosophy of LISA focuses on what one might call the Six Virtues of Modern
Proof Systems. Efficiency say a proof system components should have polynomial complexity
(as close as possible to linear). Trust means high confidence in the system, through a
combination of well understood mathematical foundations, explicit proofs and a concise
logical kernel. Usability is making it simple, both for human users and automated methods,
to formalize mathematics and to develop tools. Predictability is the property of systems
whose behaviour and output have clear characterizations. Interoperability, whose importance
has become clear over the years, consists in making it as easy as possible for the system
to be used by other systems and to export and import proofs to and from other systems.
Finally, Programmability implies that as a computer system, a proof assistant should provide
all the expressiveness allowed by a programming language. When designing and developing
the LISA proof system, we aim to respect the six virtues as much as possible, and, when
they oppose each other, to strike for the best balance between them.

1.2 Contributions

The contribution of this paper is to present the design of LISA, a new proof construction
system embedded in Scala, based on schematic first-order logic with set theory axioms. We
focus on the following aspects.

We describe how the logical kernel is constructed and how it can be used or interacted
with by other tools.
As the most unusual design aspect, we describe ortholattice-based algorithms implemented
in the kernel to make proofs shorter.
We present a domain-specific language embedded in Scala that makes the writing of
proofs easier and generates and checks kernel proofs to obtain kernel-certified theorems.
We show that the same domain-specific language can scale from writing proofs of specific
theorems to writing general tactics. As an example of a tactic, we present a (proof
generating) solver for propositional formulas leveraging the ortholattice algorithm.
We report on the initial steps of developing elementary axiomatic set theory in the system.
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2 Logical Kernel

LISA’s deductive system is a variant of Gentzen’s Sequent Calculus for first-order logic (FOL)
[15]. Formally, a sequent in LISA is a pair of sets of formulas Γ and ∆, represented Γ ⊢ ∆
and its interpretation is

∧
Γ →

∨
∆. LISA extends the prototypical Sequent Calculus with

schematic symbols, substitution rules, and a normalization of formulas.

2.1 Schematic Symbols
Formulas in LISA’s kernel are built with the usual variables, constant function and predicate
symbols, logical connectors and binders, but also admit the use of schematic function,
predicate and connector symbols. These symbols behave like uninterpreted constant symbols
which can be substituted by any well-typed term or formula across a whole sequent, or like
variables which cannot be bound. We refer to them as second-order schematic symbols, as
opposed to regular variables, which are first-order schematic symbols. This gives the system a
flavour of second order logic and allows writing axiom and theorem schemas, as the following
example illustrates:

▶ Example 1. The following sequent (whose proof we show in Figure 5) is provable without
additional assumptions on the function symbol f and the predicate symbol P :

∀x.P (x) → P (f(x)) ⊢ ∀x.P (x) → P (f(f(x)))

This means that this sequent with f replaced by a specific term (with a distinguished free
variable) remains provable by an analogous proof, and similarly for P replaced by a formula.

In traditional first-order logic, this concept is formalized as a meta-theorem stating that
for every f and P , a corresponding proof can be built. However, in a formal setting, this
requires duplicating the whole proof for every specific f and P . Instantiation of schematic
symbols avoids this issue of proof duplication. This is similar to the schematic variables found
in Isabelle [33], and in particular Isabelle/FOL [35], where variables from the meta-logic can
be used to represent arbitrary functions, predicates, and connectors in FOL. Crucially, it does
not increase the expressive power of the system, because it can, in principle, be simulated.

2.2 Ortholattice Algorithm Applied to First-Order Logic
We find that using a proof system that is sensitive to the order of conjuncts and similar
semantically irrelevant syntactic differences can be frustrating and increases proof size
unnecessarily. To address this issue, LISA’s kernel strengthens sequent calculus with a
built-in algorithm to compute normal form and equivalence of formulas with respect to a
subset of equational rules of propositional logic. These rules, shown in Table 1, characterize
the algebraic theory of ortholattices (abbreviated OL) [3, Chapter II.1], [7].

Ortholattices are a generalization of Boolean algebra where instead of the law of dis-
tributivity, the weaker absorption law (L9, Table 1) holds. In particular, every identity in
the theory of ortholattices is also a theorem of propositional logic.

This algebraic structure has been shown to possess a quadratic-time normalization
algorithm [18] and has been suggested as the basis for normalization of formulas in the
context of verification and mechanized proofs. Notably, it subsumes negation normal form.

As a special kind of lattices, ortholattices can be viewed as partially ordered sets, with the
ordering relation on two elements a and b of an ortholattice defined as a ≤ b ⇐⇒ a ∧ b = a,
which, by absorption (L9), is also equivalent to a ∨ b = b. If s and t are terms over the

ITP 2023
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Table 1 Laws of ortholattices, an algebraic theory with signature (S,∧,∨, 0, 1,¬). [18]

L1: x ∨ y = y ∨ x L1’: x ∧ y = y ∧ x

L2: x ∨ (y ∨ z) = (x ∨ y) ∨ z L2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z

L3: x ∨ x = x L3’: x ∧ x = x

L4: x ∨ 1 = 1 L4’: x ∧ 0 = 0
L5: x ∨ 0 = x L5’: x ∧ 1 = x

L6: ¬¬x = x L6’: same as L6
L7: x ∨ ¬x = 1 L7’: x ∧ ¬x = 0
L8: ¬(x ∨ y) = ¬x ∧ ¬y L8’: ¬(x ∧ y) = ¬x ∨ ¬y
L9: x ∨ (x ∧ y) = x L9’: x ∧ (x ∨ y) = x

signature (S,∧,∨, 0, 1,¬), we denote s ≤OL t if and only if OL ⊨ s ≤ t, i.e., it holds in
all ortholattices. We write s ∼OL t if both s ≤OL t and s ≥OL t hold (or equivalently, if
OL ⊨ s = t). Theorem 1 is the main result we rely on.

▶ Theorem 1 ([18]). There exists an algorithm running in worst case quadratic time
producing, for any terms s over the signature (∧,∨,¬), a normal form NFOL(s) such that for
any t, s ∼OL t if and only if NFOL(s) = NFOL(t). The algorithm is also capable of deciding
if s ≤OL t holds in quadratic time.

Moreover, the algorithm works with structure sharing with the same complexity, which is
very relevant for example when x ↔ y is expanded to (x ∧ y) ∨ (¬x ∧ ¬y). It can produce a
normal form in this case as well.

These properties, along with completeness characterization, make the OL algorithm a
good candidate to include in a proof system. LISA’s kernel further extends OL inequality
algorithm to first order logic formulas as follows. It first expresses the formula using de
Bruijn indices [11], then desugars ∃.ϕ into ¬∀.¬ϕ. It then extends the OL algorithm with
the rules in Table 2.

Table 2 Extension of OL algorithm to first-order logic. We call it the F(OL)2 algorithm. =
denotes the equality predicate in FOL, while == denotes syntactic equality of terms.

To decide... Reduce to...
1 {∧,∨,→,↔,¬}(ϕ⃗) ≤ ψ Base algorithm
2 ϕ ≤ {∧,∨,→,↔,¬}(ψ⃗) Base algorithm
3 s1 = s2 ≤ t1 = t2 {s1, s2} == {t1, t2}
4 ϕ ≤ t1 = t2 t1 == t2

5 ∀.ϕ ≤ ∀.ψ ϕ ≤ ψ

6 ′C(ϕ1, ..., ϕn) ≤ ′C(ψ1, ..., ψn) ϕi ∼OL ψi, for every 1 ≤ i ≤ n

7 Anything else false

When either of the two formulas being compared have a top-level propositional operator
(cases 1 and 2), the recursion is done according to the algorithm described in [18], considering
any non-propositional expressions (predicates, quantified formulas, and schematic connectors)
as propositional variables. The third and fourth rules take into account reflexivity and
symmetry of equality. The fifth relies on monotonicity of ∀, and the sixth rule applies
when ′C is a schematic connector, i.e., a logical connector about which we know nothing.
These rules extend to the normal-form-producing algorithm, and it is easy to see that if
≤ is interpreted as logical implication, they are sound. We decided not to include a rule
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such as ∀.ϕ ≤ ϕ(t). The reason is that incorporating such a rule systematically runs risk
of introducing higher complexity [27] in the kernel. We instead decided that such steps
should be implemented using tactics, outside the kernel in the future (possibly making use of
type-like hints encoded in first-order logic [14]).

Using the First Order Logic OrthoLattices algorithm, noted F(OL)2, the proof checker in
LISA’s kernel performs every correctness check up to F(OL)2 equivalence. This does not
prevent sequents and formulas from having arbitrary constructions and being inspected in a
stable, predictable way by tactics, as formulas are not normalized in-place. The set of LISA
deduction rules is shown in Figure 1.

Moreover, the proof checker contains a special Restate proof step, which permits F(OL)2-
transformations on the entire sequent, leveraging the interpretation of a sequent as a formula
(an implication). We also leverage specifically the partial order computed by F(OL)2 to
expand the usual Weakening rule so that the premise sequent only has to be ≤F(OL)2 stronger
than the conclusion, with both interpreted as formulas. Weakening clearly subsumes Restate,
but the latter ensures that the transformation is actually an equivalence and hence could be
reversed, which can be a useful safeguard in practice. These rules subsume most propositional
rules in Figure 1.

2.3 Substitution Rules
The substitution rules substitute equal terms or equivalent formulas inside a formula. They
are deduced steps whose simulation from simpler steps can take a number of steps linear in
the size of the sequent, yet are very frequent both in human-written proofs and automated
reasoning (as done by SAT solvers or in systems with rewrite rules, for example), justifying
their inclusion as base steps. A special case of substitution that is particularly important is
the following:

ϕ ⊢ ψ
SubstIff

ϕ ⊢ ψ[ϕ := ⊤]
This holds in a single step because ϕ ↔ ⊤ ∼F(OL)2 ϕ. In fact, Restate and SubstIff form
a complete basis for propositional logic that we will leverage in Subsection 4.1 to write a
complete proof-producing tactic for propositional logic.

The inclusion of F(OL)2 and the substitution and instantiation deduced rules in the
logical kernel is a slight bend to the trust principle, but as the algorithm is only 300 lines
of code, this is largely overshadowed by the increased usability and shorter proofs. In fact,
the whole kernel adds up to a grand total of only 1607 lines of code. This comprises the
implementation of first-order logic, the F(OL)2 algorithm, first and second-order substitution,
the sequent calculus steps, the proof checker, and a manager for definitions and theorems
(detailed in Subsection 2.5). Moreover, LISA’s kernel is efficient: except for the quadratic
F(OL)2 algorithm, every procedure in the kernel is linear (up to logarithmic coefficients) in
the size of the formulas or proofs being considered.

2.4 Proof Objects
In LISA, a proof is an explicit list of proof steps, where each step can refer to previous steps
via their respective position in the list and be referred by multiple subsequent steps. In
other words, a proof is represented as a topological linearization of the proof tree, or, more
generally, a directed acyclic graph (permitting reuse of intermediate steps). A proof step
also contains the arguments that allow the proof checker to efficiently verify it. In particular,
LISA’s kernel does not rely on a unification algorithm to check correctness of proof steps
related to quantifiers.

ITP 2023
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Hypothesis
Γ, ϕ ⊢ ϕ,∆

Γ ⊢ ϕ,∆ Σ, ϕ ⊢ Π
CutΓ,Σ ⊢ ∆,Π

Γ, ϕ, ψ ⊢ ∆
LeftAndΓ, ϕ ∧ ψ ⊢ ∆

Γ ⊢ ϕ,∆ Σ ⊢ ψ,Π RightAnd
Γ,Σ ⊢ ϕ ∧ ψ,∆,Π

Γ, ϕ ⊢ ∆ Σ, ψ ⊢ Π
LeftOrΓ,Σ, ϕ ∨ ψ ⊢ ∆,Π

Γ ⊢ ϕ, ψ∆ RightOr
Γ ⊢ ϕ ∨ ψ,∆

Γ ⊢ ϕ,∆ Σ, ψ ⊢ Π LeftImplies
Γ,Σ, ϕ → ψ ⊢ ∆,Π

Γ, ϕ ⊢ ψ,∆ RightImplies
Γ ⊢ ϕ → ψ,∆

Γ, ϕ → ψ ⊢ ∆
LeftIffΓ, ϕ ↔ ψ ⊢ ∆

Γ ⊢ ϕ → ψ,∆ Σ ⊢ ψ → ϕ,Π RightIff
Γ,Σ ⊢ ϕ ↔ ψ,∆,Π

Γ ⊢ ϕ,∆
LeftNotΓ,¬ϕ ⊢ ∆

Γ, ϕ ⊢ ∆ RightNot
Γ ⊢ ¬ϕ,∆

Γ, ϕ[t := ′x] ⊢ ∆
LeftForall

Γ, ∀′x.ϕ ⊢ ∆
Γ ⊢ ϕ,∆ RightForall

Γ ⊢ ∀′x.ϕ,∆

Γ, ϕ ⊢ ∆
LeftExists

Γ, ∃′x.ϕ ⊢ ∆
Γ ⊢ ϕ[t := ′x],∆

RightExists
Γ ⊢ ∃′x.ϕ,∆

Γ ⊢ ∆ InstSchema
Γ[ψ(v⃗) := ′p(v⃗)] ⊢ ∆[ψ(v⃗) := ′p(v⃗)]

Γ, ϕ[s := ′f ] ⊢ ∆
LeftSubstEq

Γ, s = t, ϕ[t := ′f ] ⊢ ∆
Γ ⊢ ϕ[s := ′f ],∆

RightSubstEq
Γ, s = t ⊢ ϕ[t := ′f ],∆

Γ, ϕ[a := ′p] ⊢ ∆
LeftSubstIff

Γ, a ↔ b, ϕ[b := ′p] ⊢ ∆
Γ ⊢ ϕ[a := ′p],∆

RightSubstIff
Γ, a ↔ b ⊢ ϕ[b := ′p],∆

Γ, t = t ⊢ ∆
LeftReflΓ ⊢ ∆

RightRefl
⊢ t = t

Γ1 ⊢ ∆1 Restate if (
∧

Γ1 →
∨

∆1) ∼F(OL)2 (
∧

Γ2 →
∨

∆2)
Γ2 ⊢ ∆2

Γ1 ⊢ ∆1 Weakening if (
∧

Γ1 →
∨

∆1) ≤F(OL)2 (
∧

Γ2 →
∨

∆2)
Γ2 ⊢ ∆2

Figure 1 Deduction rules allowed by LISA’s kernel. Different occurrences of the same symbols
need not represent equal elements, but only elements with the same F(OL)2 normal form.
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Moreover, proofs are standalone objects checkable and exportable without the need for
any kind of context. Figure 2 shows an example of sequent calculus proof as a sequence
of steps. Each step lists a sequent with a rule from Figure 1 and a list of (the position of)
previous steps from which the sequent follows. Figure 3 shows executable Scala code that
denotes the same proof, which can be given directly to the LISA kernel. The kernel can
efficiently check its correctness and create a theorem whose statement corresponds to the
last sequent, corresponding to the root of the proof tree. Note that, in this particular case,
the same conclusion could be reached in a single step using the Restate rule.

If the proof relies on external theorems, axioms or definitions, those are stated after the
list of proof steps and referred to with negative positions. We call those imported sequents
(imports, for short). We adopt an analogous mechanism to support subproofs. A subproof
simulates deduced steps by encapsulating an inner proof and appears as a single step in the
outer proof. In that case, the premises of the subproof become imports of the inner proof.

0 Hypothesis ϕ ⊢ ϕ

1 Weakening(0) ϕ ⊢ ϕ, ψ

2 RightImplies(1) ⊢ ϕ, (ϕ → ψ)
3 LeftImplies(2, 0) (ϕ → ψ) → ϕ ⊢ ϕ

4 RightImplies(3) ⊢ ((ϕ → ψ) → ϕ) → ϕ

Figure 2 The proof of Pierce’s Law as a sequence of steps using classical Sequent Calculus rules.

1 val PierceLawProof = SCProof(IndexedSeq(
2     Hypothesis(               ϕ ⊢ ϕ,                                 ϕ),
3     Weakening(                ϕ ⊢ (ϕ, ψ),                            0),
4     RightImplies(            () ⊢ (ϕ, ϕ =⇒ ψ),                1, ϕ, ψ),
5     LeftImplies( (ϕ =⇒ ψ) =⇒ ϕ ⊢ ϕ,                2, 0, (ϕ =⇒ ψ), ϕ),
6     RightImplies(            () ⊢ ((ϕ =⇒ ψ) =⇒ ϕ) =⇒ ϕ,
7                                                  3, (ϕ =⇒ ψ) =⇒ ϕ, ϕ)
8 ), Seq.empty /* no imports */ )

Figure 3 The proof from Figure 2 written for LISA’s kernel. ⊢ and =⇒ are alternative, nicer
constructors for sequents and formulas and are not part of the kernel. The second argument (here
empty) is the sequence of proof imports.

2.5 Theories
LISA’s proof checker can be used as a tool to produce and check proofs, independent of any
context, but is not a sufficient tool to develop mathematical theories, as it lacks in particular
the ability to make definitions. For this task, the kernel also offers a minimal utility to allow
development of mathematical theories with the ability to introduce axioms, theorems, and
definitions with guaranteed soundness.

Theorems

This part of the kernel, called the Theory, is inspired from the LCF style [16]. It allows
checking a proof once, producing a value of a sealed type Theorem, which can then be reused
many times. The proof can then be forgotten. The Theory will also verify that the given

ITP 2023
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proof’s imports are properly justified by existing axioms, theorems or definitions, so that the
proven Theorem can be considered unconditionally true, unlike its standalone proof. Figure 4
shows how to use the Theory to obtain a theorem.

1 val theory = new Theory
2 val pierceThm: theory.Theorem = theory.makeTheorem(
3 "Pierce’s Law",
4 () ⊢ ((ϕ =⇒ ψ) =⇒ ϕ) =⇒ ϕ,
5 PierceLawProof,
6 Seq.empty
7 )

Figure 4 The proof from Figure 3 can be transformed into a Theorem by a Theory. The arguments
are, in order, the name of the theorem, its statement, a proof of the statement and the list of
previous theorems, axioms or definitions used to justify the proof’s imports, if any.

The Theory naturally corresponds to the concept of a “mathematical theory” in first-order
logic, containing the language and axioms of said theory. To allow coexistence of multiple
different theories with different valid theorems, LISA makes the Theory a class that can be
instantiated multiple times. The Theorem type is dependent on a specific instance of Theory,
so that two different theories will reject the theorem of the other. In a language without
dependent types, this could be replaced by a simple runtime check. Note that in proof
development, it is expected that the user will never need to use more than one theory at
once, so this aspect is abstracted by the DSL.

Definitions

The theory also allows introducing new definitions for predicate and function symbols.
A predicate symbol P definition is of the form P (x1, . . . , xn) := ϕx1,...,xn , where the

x1, . . . , xn are the free variables of a given formula ϕ. To define a function symbol f , the
definition requires a proof of unique existence of the form:

∃!y. ϕy,x1,...,xn
(1)

and introduces a definitional axiom ϕf(x1,...,xn),x1,...,xn
, where again x1, . . . , xn are the free

variables of the formula ϕ. To make such a definition, the Theory checks that the symbol has
not already been defined and requires a proof of (1), i.e., of existence and uniqueness.

Remark on unique existence. One may hope that only the existence (but not uniqueness)
was needed to obtain conservative extensions in first-order logic. Unfortunately, this is not
true in the presence of axiom schemas. In particular, with such a definition principle, it
becomes possible to prove the Axiom of Choice in ZF set theory, while they are well known
to be independent [8]. Indeed, in ZF it is possible to prove

∀x.∃y. (x ̸= ∅ =⇒ y ∈ x)

from which we would obtain a function pick with the property

∀x. (x ̸= ∅ =⇒ pick(x) ∈ x)

If then the symbol pick is allowed in axiom schemas, as would be the case in LISA, it is then
easy to use pick and the replacement schema to construct a choice function on any set (see
also LISA’s Reference Manual [17]).
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Abstraction via underspecified definitions. We have seen that we need uniqueness to
ensure conservative extensions. On the other hand, such requirement often forces the defining
formula to be overly specific and representation-dependant. For example, one may want to
define the set of real numbers, R, as a structure that satisfies the axioms of real closed fields.
Since there are many isomorphic structures satisfying these, a uniqueness proof cannot be
obtained. It is then necessary to use a specific construction, such as Cauchy sequences, as
the definition of the set of real numbers. This, however, means that it becomes possible to
prove properties of real numbers which are specific to the chosen representation, which is
undesirable and especially so when transferring proofs to other proof systems, which may
have different representations of reals. Our solution is to allow underspecified definitions.
An underspecified definition still requires existence and uniqueness (ensuring a conservative
extension), but the theorem that the kernel provides is only the desired, weaker, one. This
mechanism makes use of the ≤ relation of F(OL)2. Section 3 shows an example of the use of
underspecified definitions in set theory.

This issue is addressed in Metamath [29] by assuming a specific construction of the
structure to conditionally prove a desired defining property (for example, the axioms of the
real field) and then introducing said property independently as an axiom. This mechanism
however is not enforced by Metamath itself but only an informal practice. LISA’s kernel
support for underspecified definitions ensures that the same goal is achieved with guaranteed
soundness. Underspecification was also discussed in the context of HOL by Rob Arthan [1].
Our approach is similar but the challenges are different. The use of Hilbert’s description
operator leads to undesired properties being provable, similarly as definition via unique
existence, but for the reason explained above, Lisa can’t relax the condition to existence only
due to the presence of axiom schemas. Forgetting a part of the definition after it was made
was tried in HOL Light, but this made reasoning about the system harder, as it has to take
into account not only the state of the system but also the sequence of operation leading to
this state. LISA avoid this issue by making underspecified definitions an integral part of the
foundation.

3 DSL for LISA in Scala

While the minimality of the kernel makes it tedious to use directly, the tools offered by
Scala (and especially Scala 3) allow us to design a more intuitive DSL, similar to other
proof assistants, directly within the host language. Moreover, essentially all the verification
related to the syntactic construction and writing of the proof are checked at compilation
time, leaving only the wrong use of proof steps and tactics (such as when trying to prove an
invalid statement) as possible failure at runtime. LISA’s interface encapsulates the kernel
and provides convenient tools and syntax to make mathematical development easier to write
and read. Figure 5 shows a minimal example of how to use the DSL to write a proof. This
approach makes LISA programmable. It offers the user the full range of tools of the host
language when writing proofs, allowing them to express proofs in novel ways or adapted to
different areas of mathematics, similar to writing on paper.

LISA’s environment is activated simply by creating an object extending lisa.Main. This
will make available all the essential features to develop mathematics in LISA. Declarations in
lines 2, 3 and 4 define a variable, a schematic predicate of arity one, and a schematic function
of arity one, such that their symbols are the same as their Scala name, i.e., respectively "x",
"P" and "f". This is made possible by implicit arguments and reflection. Line 6 starts the
declaration of a theorem. (Note that the kernel itself does not rely on such specific features;
we expect the kernel to be straightforward to implement in most languages.)
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1 object Exercise extends lisa.Main {
2 val x = variable
3 val P = predicate(1)
4 val f = function(1)
5
6 val fixedPointDoubleApplication = Theorem(
7 ∀(x, P(x) =⇒ P(f(x))) ⊢ P(x) =⇒ P(f(f(x)))
8 ) {
9 assume(∀(x, P(x) =⇒ P(f(x))))

10 val step1 = have(P(x) =⇒ P(f(x))) by InstantiateForall
11 val step2 = have(P(f(x)) =⇒ P(f(f(x)))) by InstantiateForall
12 have(thesis) by Tautology.from(step1, step2)
13 }
14 }

Figure 5 A small proof written with LISA’s DSL. Unicode characters are obtained in practice
through ligatures or Scala’s direct support for unicode.

3.1 Higher-Level Proofs
LISA’s interface defines a proof constructing class. This class uses proof tactics to generate
pieces of the final pure sequent calculus proof, which are encapsulated into kernel subproofs.
The result from the point of view of the user is the ability to define arbitrarily computed
deduced proof steps (here Tautology and InstantiateForall) from the base steps of sequent
calculus. Thanks to Scala 3’s implicit functions types [32], the proof constructor is automat-
ically created in the code block following the Theorem declaration (line 6 of Figure 5) without
the need for the user to even realize it exists. The existence of an implicit proof constructor
in scope is necessary for the other keywords (have, assume, ...) to be well-defined, meaning
that using those outside of a theorem environment will fail to compile.

The assume keyword (line 9) allows stating a formula that will be assumed true for the
rest of the proof. Technically, it will be considered as part of the left-hand-side of any further
written sequent in the proof. have states a proposition that can be reached using a proof
tactic (or a subproof, see next example). If a step requires some premises, they can be given
as parameters to the tactic, as in line 12. have produces a Fact that can be used by later
steps.

The example in Figure 6 illustrates a more advanced proof structure, using axioms from
set theory. As the proof independently proves both directions of the double implication, it
makes use of the subproof construction. Similarly to the Theorem keyword, this construction
implicitly creates a new proof constructor environment, internal to the outer proof and
with its own goal. In a proof, a Fact is a type that contains external theorems, axioms and
definitions, as well as previously proven steps from the current or outer proof, but not from
any proof that is not a direct ancestor of the current proof. This is made possible by using
recursively defined path-dependent types (see Figure 7) and can be checked at compile-time.

Moreover, a fact can also be one of the above, accompanied by information about a
specific instantiation of schematic symbols. The actual instantiation step is then carried
automatically. This is done in practice with the of keyword, as in line 11.

When a tactic requires a single premise, and this premise is the most recently proven fact,
thenHave passes said premise directly to the tactic without the step having to be named. For
some tactics, such as the Substitution step at line 21, the resulting sequent will be inferred
by the tactic and isn’t required to be given by the user. In this case, have and thenHave
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1 val unionOfSingleton = Theorem( (union(singleton(x)) ≡ x) ) {
2 val X = singleton(x)
3 val forward = have( (in(z, x) =⇒ in(z, union(X))) ) subproof {
4 ...
5 }
6 val backward = have( in(z, union(X)) =⇒ in(z, x) ) subproof {
7 have(in(z, y) ⊢ in(z, y)) by Restate
8 val step2 = thenHave((y≡x, in(z, y)) ⊢ in(z, x))
9 by Substitution

10 have(in(z, y) ∧ in(y, X) ⊢ in(z, x))
11 by Tautology.from(pairAxiom of (y→x, z→y), step2)
12 val step4 = thenHave(∃(y, in(z, y) ∧ in(y, X)) ⊢ in(z, x))
13 by LeftExists
14 have( in(z, union(X)) =⇒ in(z, x))
15 by Tautology.from(unionAxiom of (x → X), step4)
16 }
17 have( in(z, union(X)) ⇐⇒ in(z, x))
18 by RightIff(forward, backward)
19 thenHave( forall(z, in(z, union(X)) ⇐⇒ in(z, x)))
20 by RightForall
21 andThen(Substitution(extensionalityAxiom of (x → union(X), y → x)))
22 }

Figure 6 A LISA proof with more advanced construction.

takes the tactic as argument. The Tautology step proves statements using propositional laws
and the Substitution makes substitution of equals for equals, either everywhere or using
unification to find the specific occurrences to replace.

1 class Proof {
2 class ProofStep {...}
3 class InnerProof extends Proof {
4 val parent:Proof.this.type = Proof.this // The encapsulating proof
5 type Fact = parent.Fact | this.ProofStep
6 }
7 }
8 class BaseProof extends Proof {
9 type Fact = Theorem | Axiom | Definition | this.ProofStep

10 }

Figure 7 Simplified outline of the type structure for proof constructors and their facts.

Definitions. Transparent definitions come for free with the Scala host language (see line 2 of
Figure 6), these are not visible to the kernel. The DSL offers syntax for the non-transparent
definitions. Predicate symbol and function symbol (of which constant symbols are a special
type) definitions can be direct, as illustrated by the two first examples in Figure 8. Function
symbols can also be defined by unique existence, as shown in the last example. Note that
this is an example of an underspecified definition, as mentioned in the previous Section. It
defines a constant symbol nonEmpty with only the property ¬(nonEmpty≡∅), but the given
proof shows the existence of a specific non-empty set.
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1 val succ = DEF(x) → union(uPair(x, singleton(x)))
2 val inductive = DEF(x) → in(∅, x) ∧ ∀(y, in(y, x) =⇒ in(succ(y), x))
3 val nonEmptySetExists = Lemma( ∃!(x, ¬(x ≡ ∅) ∧ (x ≡ uPair(∅, ∅)))){...}
4 val nonEmpty = DEF() → The(x, ¬(x ≡ ∅))(nonEmptySetExists)

Figure 8 Definitions in LISA.

4 Tactics in LISA and Comparison

Developing proof tactics in proof assistants where the proof-writing language is different
from the host language (and sometimes when both are different from the tactic-writing
language) tends to exhibit high entry barriers for newcomers. They require learning multiple
new languages and how they interact with each other. This difficulty can be observed for
example with the length of the tactic-writing tutorial for Isabelle [40], or in the Coq Reference
Manual, where the Ltac tactic language [13] is described as having unclear semantics, being
slow, non-uniform, error-prone and even lacking essential programming features such as data
structures. Ltac2 [24], yet another tactic language, aims to solve some of these problems.
Newly developed systems, such as Lean [12], have the advantage of being designed from
scratch and addressing these problems. We have similar aims with LISA, but rely on an
existing programming language which has already solved those issues, has an active user base
that draws on more than the development of theorems and has well-developed and actively
maintained IDEs and libraries. In particular, for a LISA user, seeing how a proof tactic
works is ever only a ctrl-click away from their proof and when a new tactic is written, using
it is as simple as writing import MyTactic.

Not unlike in HOL Light, where a proof tactic is essentially any function returning a
value of type Theorem, a tactic in LISA is simply a function returning a proof or an error
message. The tactic can take arbitrary arguments, such as a target sequent and known
facts (which will be imports of the resulting proof) and can access the current state of the
proof constructor (if needed). To write a low level or highly optimized proof tactic, the user
can directly construct a sequent calculus proof and give it to the kernel, but they can also
use LISA’s DSL directly inside the body of the function and use pre-existing proof tactics.
Writing a tactic then consists in writing a generic LISA proof computationally.

LISA defines tactics that correspond to each basic proof step within the kernel, but with
all the parameters automatically inferred. These tactics are intended for didactic purpose.
Compared to directly using kernel proof steps, these simple tactics are more convenient
to write, but also slightly less efficient to check because the system needs to compute the
parameters of the proof step. Moreover, most of these simple tactics are subsumed by more
general tactics.

4.1 A Proof-Producing SAT Solver Using F(OL)2

The Tautology tactic is able to prove any valid sequent that requires only propositional
reasoning. It is based on a simple proof-producing DPLL-like [10] procedure complete for
propositional logic. The procedure makes decisions on atoms, so the worst case complexity is
exponential in the number of unique atoms in the formula. It is a non-clausal solver (like,
e.g., [25]) whose unique aspect is that, between each decision, it simplifies the propositional
formula using the algorithm presented in Subsection 2.2). In the context of proving validity
as in LISA as well as when trying to find a satisfying assignment in a SAT solver, this allows
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to close branches early in the exploration of the decision tree, or simply to eliminate atoms
before they even need to get decided. Moreover, this procedure does not need to compute
Tseytin’s normal form, avoiding creating more atoms, and conveniently allows producing a
proof of the statement. Figure 9 sketches the proof search procedure as it is implemented
in LISA. Our current implementation uses a simple decision heuristics that picks the atom
that occurs most frequently. Further work may also include extension of the algorithm with
quantifier reasoning, to obtain a complete procedure for FOL.

1 def solveFormula(f: Formula,
2 decisionsPos:List[Formula],
3 decisionsNeg:List[Formula]): ProofTacticJudgement = {
4 val redF = reduceWithFol2(f)
5 if (redF == ⊤) {
6 Restate(decisionsPos ⊢ f :: decisionsNeg)
7 } else if (redF == ⊥) {
8 InvalidProofTactic("Sequent is not a propositional tautology")
9 } else {

10 val atom = findBestAtom(redF)
11 val substInRedF: Formula => Formula = (f => RedF[atom:=f])
12 TacticSubproof {
13 have(solveFormula(substInRedF(⊤), atom::decisionsPos, decisionsNeg))
14 val step2 = thenHave(atom :: decisionsPos ⊢ redF :: decisionsNeg)
15 by Substitution(⊤ <=> atom)
16 have(solveFormula(substInRedF(⊥), decisionsPos, atom::decisionsNeg))
17 val step4 = thenHave(decisionsPos ⊢ redF :: atom :: decisionsNeg)
18 by Substitution(⊥ <=> atom)
19 thenHave(decisionsPos ⊢ redF :: decisionsNeg)
20 by Cut(step2, step4)
21 thenHave(decisionsPos ⊢ f :: decisionsNeg)
22 by Restate
23 }
24 }
25 }

Figure 9 Outline of the F(OL)2-based solver. Note that the actual implementation produces
directly kernel proofs for optimization. Each recursive call to solveFormula adds at most 4 kernel
steps to the final proof.

Thanks to properties of ortholattices, the solver is already capable of resolving proposi-
tional problems that are too difficult for some proof assistants. As an example, we found
that Isabelle’s Blast tactic (a general tableau prover, [34]) was in general not able to prove
the equivalence of two reasonably large formulas made only of variables, disjunctions and
conjunctions which only differed in the ordering of their arguments. On the other hand, this
is instantaneous (one step) with our described OL-based approach.

4.2 Error Reporting

LISA’s DSL also contains a printer for proof (both kernel and high level) and defines
specialized error reporting. Tactics are allowed to fail if they are used incorrectly and return
an error. Figure 10 shows LISA’s output for an incorrect proof, with the current state of the
proof, the faulty step, its line number and the error message from the tactic.
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∀x. P(x) =⇒ P(f(x)) ⊢ P(x) =⇒ P(f(f(x)))
0 Hypothesis ∀x. P(x) =⇒ P(f(x)) ⊢ ∀x. P(x) =⇒ P(f(x))
1 Hypothesis P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(x)
2 InstantiateForall P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(x) =⇒ P(f(x))
3 InstantiateForall P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(f(x)) =⇒ P(f(f(x)))
have(thesis) by Tautology.from(step1)

Proof tactic Tautology used in (Example.scala:47) did not succeed:
The statement is not provable within propositional logic.
The proof search needs the truth of the following sequent:
P(f(x)); P(x); ∀x. ¬(P(x) ∧ ¬P(f(x))) ⊢ P(f(f(x)))

Figure 10 LISA’s output when the step in line 12 of proof in Figure 5 is incorrectly modified to
not use step2. The indicated sequent in fact corresponds to step2.

5 Beginning Set Theory Development and Cantor’s theorem

In this section, we present a brief overview of the current mathematical development in LISA
and outline an example of a short proof in set theory.

Inspired by Mizar[31] and Isabelle/HOTG[6] we make the choice of Tarski-Grothendieck
set theory (TG) as the axiomatic foundation for LISA’s associated mathematical library. As
the main reference for the ZFC aspect of the set theory development, we follow Thomas
Jech’s book Set Theory [26]. In the future, we plan to use the axiom on Grothendieck
universes (corresponding to the existence of certain large cardinals) to support the embedding
of category theory and of systems such as Coq [44].

5.1 Current Theory Development
The mathematical library in LISA begins with the ZFC (and TG) axioms, defining the
basic constructs and operations on sets, the subset relation, the empty set, power sets, and
unordered pairs. On top of thes axioms, we define structures such as ordered pairs, relations,
and functions. Relations are sets of ordered pairs drawing elements from a set, and functions
are relations which contain the graph of the function. Function symbols have as a domain
the whole set space and must not be mixed with function objects, which are special sets and
considered as constants in the light of first order logic. During exploratory development,
proofs involving case analysis on these basic structures required significant manual effort,
but the Tautology and Substitution tactics as well as the quick instantiation of axioms
and theorems offered by the of keyword tend to automate most tedious manipulations.
Formalization of partial orders, well-ordered sets, ordinals and induction [26, Chapters 2, 3]
is ongoing.

Technically, we define for sets A and B the set of relations from A to B as the power set
of their Cartesian product P (A×B), and its restriction to functional relations, A → B, the
set of all functions with domain equal to A and their codomain included in B.

A function symbol can always apply to any term, meaning we cannot rely on well-
definedness of terms to define symbols with partial function semantics. Considering the
unique existence requirement for definitions, the standard approach consists in extending the
limited domain of the partial function by assigning a default value, for example the empty
set, to all inputs where it should be undefined, constructing a unique object. This specific
construction and default value can then be forgotten using an underspecified definition. In
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particular, interpretations of the function with all combinations of values outside the fixed
domain will be valid models for the symbol, and no non-trivial property can be proved about
those values.

For example, consider the definition for function application, app(f, x). When f is not a
functional relation, or x is not in its domain, we fix ∅ as the default value in order to obtain
a proof of existence and uniqueness.

1 val appDefinition = Theorem( ∀(f, (∀ x, (∃!(z,
2 functional(f) ∧ in(x, dom(f)) =⇒ in(pair(x, z), f)))) )
3 ∧ ¬functional(f) ∨ ¬in(x, dom(f)) =⇒ z ≡ ∅)

We can then obtain the function symbol app with only the desired property using an
underspecified definition:

1 val app = DEF (f, x) → The(z,
2 functional(f) ∧ in(x, dom(f)) =⇒ in(pair(x, z), f))
3 (appDefinition)

Cantor’s Theorem

Finally, several of these definitions and lemmas build up to the formalization of Cantor’s
theorem, stating that there is no surjection from any set to its power set:

1 val cantorTheorem = Theorem( ¬surjective(f, x, powerSet(x)) )

where f and x are schematic set variables, making the sequent implicitly universally quantified.
The proof of Cantor’s theorem is about 25 lines of code 1. Internally, the proof expands to
130 sequent calculus steps.

Cantor’s theorem is the first theorem formalized in LISA from the list Formalizing 100
Theorems [45]. While not a difficult theorem, it requires some ground development and
definitions related to set-theoretic functions and relations. The proof itself requires handling
the quantifiers for a contradiction construction and combining lemmas about surjective
functions. Much of the latter is achieved using Tautology. It shows that LISA is capable of
non-trivial mathematical development. We expect future developments to become easier and
faster with gradual development of reasoning tools and proofs.

6 Related Work

A polynomial algorithm for free ortholattices was presented in [18]. A weaker structure with
log linear complexity was first presented in [19]. In LISA we use the ortholattice normal form
for first-order logic formulas. Our F(OL)2 implementation does not aim to be complete for
structures such as quantum monadic algebras that treat extensions of OL (and orthomodular
lattices) to monadic first-order logic [21].

Much of what we described is concerned with the schematic first-order logic kernel. We
chose to include schematic variables to be able to state explicitly the axiom schemas of
Zermelo-Fraenkel set theory and its extensions, as well as theorem schemas. Another way to
generalize schematic second-order variables would be to use higher-order logic. This is the
approach pursued by Isabelle as a framework, and instantiated in Isabelle/ZF.

1 https://github.com/epfl-lara/lisa/blob/fc37f2a6e879d5f43679a4476c1d6e4685bb14a2/src/main/scala/lisa/
mathematics/SetTheory.scala#L1700
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The choice of set theory may be considered unusual by some, as Coq [4], Lean [12],
the HOL-family [22] and Isabelle/HOL [43] are based either on type theory or on higher-
order logic. We consider HOL to be one of the most elegant formulations for formal proof
developments. However, set theory is arguably the most widely recognized foundation of
mathematics in the mathematical community, and, despite type-theory based tools having
the advantage of being easier to express formalisms in from the get-go, we believe that
through the development and use of abstracting tactics, a soft-type system and adequate
tools, more familiarity and flexibility in writing proofs can be achieved with a set-theory
based mathematical library. We also hope to provide a test bed to explore direct first-order
foundations as an alternative to the many current systems based on higher-order logic.
Concrete results in Mizar [31], Isabelle/ZF [20], ZF in Isabelle/HOL [6, 36], and TLA+

[9, 37] suggest substantial relevance of set-theoretic foundations. Arguments in favour of set
theoretic foundations have also been discussed by John Harrison [23] and Bohua Zhan [46].

Even one more level of indirection than in Isabelle/ZF is present in Isabelle/HOL/TG [6],
which develops the Tarski-Grothendieck extension of ZF inside Isabelle/HOL. Whereas our
system is less flexible and does not currently connect to such a well-developed ecosystem as
Isabelle/HOL has, our hope is that it is conceptually simpler thanks to fewer layers and a
kernel that does not rely on unification.

Another modern approach to theorem proving is Lean [12], a proof assistant based on
dependent type theory and inspired in part by Coq. We believe Lean makes significant
improvements over older proof assistant regarding the Six Virtues. In particular, it has a
strong focus on programmability, with the new version of Lean [30] even having a compiler
written in its own proof language. While LISA and Lean’s design objectives share similarities,
their strategies and specific choice (foundations, language, interface) are different.

To automate proofs that do not instantiate schematic formulas we hope to make use of
proof generating theorem provers, such as Vampire [28], SPASS [42], E [38], as well as SMT
solvers [2]. Higher-order provers such as Zipperposition [41], Leo-III [39], and Satallax [5]
would further increase automation even in the case of axiom schema instantiation.

7 Conclusion

LISA is both a proof system for automated tools and a proof assistant based on first order
logic and set theory. It uses Scala as both a host language and a proof writing language,
relying on the advanced features it offers to make the system as programmable as the
user desires. LISA is strongly committed to interoperability. In particular, it has a small
logical kernel which has guaranteed complexity and completeness characterizations, simple
foundations and explicit proofs checkable without context. Moreover, it can be compiled
into a Scala and Java library. All these properties should favour transfer of proofs from
and to other proof systems and uses of LISA as a tool for program verification. To improve
usability and reduce the size of proofs, LISA makes use of an efficient normal form algorithm
for propositional logic extended to first order logic. This algorithm is also the basis for a
complete propositional proof-producing procedure implemented in LISA as a tactic.

LISA is still under active development, but already proposes an advanced proof writing
DSL not entirely dissimilar to already existing interpreted languages in other assistants.
LISA also allows defining arbitrary tactics in a simple way and has specialized error reporting.
The current embryo of set-theoretic development encompasses properties of relations and
functions, and in particular Cantor’s theorem has been successfully proven.
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